Research on verification and validation strategy of detonation fluid dynamics code of LAD2D
NASA Astrophysics Data System (ADS)
Wang, R. L.; Liang, X.; Liu, X. Z.
2017-07-01
The verification and validation (V&V) is an important approach in the software quality assurance of code in complex engineering application. Reasonable and efficient V&V strategy can achieve twice the result with half the effort. This article introduces the software-Lagrangian adaptive hydrodynamics code in 2D space (LAD2D), which is self-developed software in detonation CFD with plastic-elastic structure. The V&V strategy of this detonation CFD code is presented based on the foundation of V&V methodology for scientific software. The basic framework of the module verification and the function validation is proposed, composing the detonation fluid dynamics model V&V strategy of LAD2D.
Mordijck, S.; Owen, L. W.; Moyer, R. A.
2010-02-23
In this paper we compare the pedestal density changes in resonant magnetic perturbations (RMP) H-modes at low collisionality with enhanced free streaming due to the creation of open field lines. First, we derive the effective radial transport coefficients by matching an ELMing (edge localized mode) H-mode using SOLPS5. Next, a vacuum field line tracing code, TRIP3D, is employed to calculate free streaming of particles along open field lines inside the traditional 2D axisymmetric separatrix. These coefficients are added to the effective radial transport coefficients from the ELMing H-mode and inserted in SOLPS5 to compute midplane profiles. Finally, we compare the SOLPS5 results with the experimental data from RMP H-modes and find good agreement. This good agreement was achieved not only for one single case, but also for two different experiments, with different triangularities, where the high triangularity case contains two RMP H-modes that give good agreement.
2-d Finite Element Code Postprocessor
Sanford, L. A.; Hallquist, J. O.
1996-07-15
ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
MAGNUM-2D computer code: user's guide
England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.
1985-01-01
Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.
ENERGY LANDSCAPE OF 2D FLUID FORMS
Y. JIANG; ET AL
2000-04-01
The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.
2D FEM Heat Transfer & E&M Field Code
1992-04-02
TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.
Collisions and separations in 2D hydrodynamical code
NASA Astrophysics Data System (ADS)
Asida, Shimon
1991-06-01
Hydrodynamic problems involving the collision or separation of zones of different materials include the following types: armor penetration by a jet formed in the explosion of a shaped charge or by a kinetic projectile, and instabilities in cosmic jets. Calculations of hydrodynamic processes are based on numerical simulations which solve the differential equations by means of difference equations. A special grid is defined and the physical system is advanced via finite steps in time; in a Eulerian treatment, the grid is stationary in space whereas in a Lagrangian treatment it moves together with the fluid. In Lagrangian methods, the grid is defined on the fluid and the boundaries between materials are formed by the edges of computational cells, so that the shape of the grid depends on the shape of the boundary. Where there is a strong flow, the cells distort and the grid must be frequently redefined to enable the calculation to continue. Boundary collisions cause difficulty in defining a grid. In Eulerian methods, where the computational grid is defined over all the space through which the materials flow, it is necessary to use cells with non-homogeneous contents to follow the boundaries; such calculations are more complicated and less accurate. The aim of the present work was to develop a Lagrangian method for treating such collisions. The code, based on an existing 2D Lagrangian code with the addition of a new collision mechanism, uses a mixed computational grid, comprising squares and triangles, with which it is possible to describe systems.
CAST2D: A finite element computer code for casting process modeling
Shapiro, A.B.; Hallquist, J.O.
1991-10-01
CAST2D is a coupled thermal-stress finite element computer code for casting process modeling. This code can be used to predict the final shape and stress state of cast parts. CAST2D couples the heat transfer code TOPAZ2D and solid mechanics code NIKE2D. CAST2D has the following features in addition to all the features contained in the TOPAZ2D and NIKE2D codes: (1) a general purpose thermal-mechanical interface algorithm (i.e., slide line) that calculates the thermal contact resistance across the part-mold interface as a function of interface pressure and gap opening; (2) a new phase change algorithm, the delta function method, that is a robust method for materials undergoing isothermal phase change; (3) a constitutive model that transitions between fluid behavior and solid behavior, and accounts for material volume change on phase change; and (4) a modified plot file data base that allows plotting of thermal variables (e.g., temperature, heat flux) on the deformed geometry. Although the code is specialized for casting modeling, it can be used for other thermal stress problems (e.g., metal forming).
Validation and testing of the VAM2D computer code
Kool, J.B.; Wu, Y.S. )
1991-10-01
This document describes two modeling studies conducted by HydroGeoLogic, Inc. for the US NRC under contract no. NRC-04089-090, entitled, Validation and Testing of the VAM2D Computer Code.'' VAM2D is a two-dimensional, variably saturated flow and transport code, with applications for performance assessment of nuclear waste disposal. The computer code itself is documented in a separate NUREG document (NUREG/CR-5352, 1989). The studies presented in this report involve application of the VAM2D code to two diverse subsurface modeling problems. The first one involves modeling of infiltration and redistribution of water and solutes in an initially dry, heterogeneous field soil. This application involves detailed modeling over a relatively short, 9-month time period. The second problem pertains to the application of VAM2D to the modeling of a waste disposal facility in a fractured clay, over much larger space and time scales and with particular emphasis on the applicability and reliability of using equivalent porous medium approach for simulating flow and transport in fractured geologic media. Reflecting the separate and distinct nature of the two problems studied, this report is organized in two separate parts. 61 refs., 31 figs., 9 tabs.
ORION96. 2-d Finite Element Code Postprocessor
Sanford, L.A.; Hallquist, J.O.
1992-02-02
ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
TRO-2D - A code for rational transonic aerodynamic optimization
NASA Technical Reports Server (NTRS)
Davis, W. H., Jr.
1985-01-01
Features and sample applications of the transonic rational optimization (TRO-2D) code are outlined. TRO-2D includes the airfoil analysis code FLO-36, the CONMIN optimization code and a rational approach to defining aero-function shapes for geometry modification. The program is part of an effort to develop an aerodynamically smart optimizer that will simplify and shorten the design process. The user has a selection of drag minimization and associated minimum lift, moment, and the pressure distribution, a choice among 14 resident aero-function shapes, and options on aerodynamic and geometric constraints. Design variables such as the angle of attack, leading edge radius and camber, shock strength and movement, supersonic pressure plateau control, etc., are discussed. The results of calculations of a reduced leading edge camber transonic airfoil and an airfoil with a natural laminar flow are provided, showing that only four design variables need be specified to obtain satisfactory results.
Users manual for the laser welding code WELD2D
Russo, A.J.
1984-04-01
The two-dimensional laser welding code, WELD2D, was developed to model the conduction mode welding (weld pool motions are not considered) of common metals. For butt welded configurations two dissimilar materials may be used. Either Gaussian or uniform laser beam power distributions may be selected and insulated or conducting ends can be treated. Specification of the laser wavelength, energy per pulse, pulse duration and repetition rate is required as input and the temperature field and molten pool shape are calculated as functions of time. Currently material parameters for six metals, aluminum, nickel, steel, molybdenum, copper and silicon are included in the code; however, these may be modified or expanded easily with simple changes to data records. This report is a users manual for WELD2D and contains a description of the models employed, code usage, and sample calculations.
Rheological Properties of Quasi-2D Fluids in Microgravity
NASA Technical Reports Server (NTRS)
Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha
2015-01-01
In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.
ELLIPT2D: A Flexible Finite Element Code Written Python
Pletzer, A.; Mollis, J.C.
2001-03-22
The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.
CBEAM. 2-D: a two-dimensional beam field code
Dreyer, K.A.
1985-05-01
CBEAM.2-D is a two-dimensional solution of Maxwell's equations for the case of an electron beam propagating through an air medium. Solutions are performed in the beam-retarded time frame. Conductivity is calculated self-consistently with field equations, allowing sophisticated dependence of plasma parameters to be handled. A unique feature of the code is that it is implemented on an IBM PC microcomputer in the BASIC language. Consequently, it should be available to a wide audience.
TOPAZ2D heat transfer code users manual and thermal property data base
Shapiro, A.B.; Edwards, A.L.
1990-05-01
TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.
CFD code comparison for 2D airfoil flows
NASA Astrophysics Data System (ADS)
Sørensen, Niels N.; Méndez, B.; Muñoz, A.; Sieros, G.; Jost, E.; Lutz, T.; Papadakis, G.; Voutsinas, S.; Barakos, G. N.; Colonia, S.; Baldacchino, D.; Baptista, C.; Ferreira, C.
2016-09-01
The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3 × 106 and 15 × 106. The necessary grid resolution, domain size, and iterative convergence criteria to have consistent results are discussed, and suggestions are given for best practice. For the fully turbulent results four out of seven codes provide consistent results. For the laminar-turbulent transitional results only three out of seven provided results, and the agreement is generally lower than for the fully turbulent case.
Fluid Film Bearing Code Development
NASA Technical Reports Server (NTRS)
1995-01-01
The next generation of rocket engine turbopumps is being developed by industry through Government-directed contracts. These turbopumps will use fluid film bearings because they eliminate the life and shaft-speed limitations of rolling-element bearings, increase turbopump design flexibility, and reduce the need for turbopump overhauls and maintenance. The design of the fluid film bearings for these turbopumps, however, requires sophisticated analysis tools to model the complex physical behavior characteristic of fluid film bearings operating at high speeds with low viscosity fluids. State-of-the-art analysis and design tools are being developed at the Texas A&M University under a grant guided by the NASA Lewis Research Center. The latest version of the code, HYDROFLEXT, is a thermohydrodynamic bulk flow analysis with fluid compressibility, full inertia, and fully developed turbulence models. It can predict the static and dynamic force response of rigid and flexible pad hydrodynamic bearings and of rigid and tilting pad hydrostatic bearings. The Texas A&M code is a comprehensive analysis tool, incorporating key fluid phenomenon pertinent to bearings that operate at high speeds with low-viscosity fluids typical of those used in rocket engine turbopumps. Specifically, the energy equation was implemented into the code to enable fluid properties to vary with temperature and pressure. This is particularly important for cryogenic fluids because their properties are sensitive to temperature as well as pressure. As shown in the figure, predicted bearing mass flow rates vary significantly depending on the fluid model used. Because cryogens are semicompressible fluids and the bearing dynamic characteristics are highly sensitive to fluid compressibility, fluid compressibility effects are also modeled. The code contains fluid properties for liquid hydrogen, liquid oxygen, and liquid nitrogen as well as for water and air. Other fluids can be handled by the code provided that the
SALE2D. General Transient Fluid Flow Algorithm
Amsden, A.A.; Ruppel, H.M.; Hirt, C.W.
1981-06-01
SALE2D calculates two-dimensional fluid flows at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held fixed in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude results from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a two-dimensional network of quadrilateral cells for either cylindrical or Cartesian coordinates, and a variety of user-selectable boundary conditions are provided in the program.
Transport simulations of the C-2 and C-2U Field Reversed Configurations with the Q2D code
NASA Astrophysics Data System (ADS)
Onofri, Marco; Dettrick, Sean; Barnes, Daniel; Tajima, Toshiki; TAE Team
2016-10-01
The Q2D code is a 2D MHD code, which includes a neutral fluid and separate ion and electron temperatures, coupled with a 3D Monte Carlo code, which is used to calculate source terms due to neutral beams. Q2D has been benchmarked against the 1D transport code Q1D and is used to simulate the evolution of the C-2 and C-2U field reversed configuration experiments [1]. Q2D simulations start from an initial equilibrium and transport coefficients are chosen to match C-2 experimental data. C-2U is an upgrade of C-2, with more beam power and angled beam injection, which demonstrates plasma sustainment for 5 + ms. The simulations use the same transport coefficients for C-2 and C-2U, showing the formation of a steady state in C-2U, sustained by fast ion pressure and current drive.
Numerical solution to the Vlasov equation: The 2D code
NASA Astrophysics Data System (ADS)
Fijalkow, Eric
1999-02-01
The present code solves the two-dimensional Vlasov equation for a periodic in space system, in presence of an external magnetic field B O. The self coherent electric field given by Poisson equation is computed by Fast Fourier Transform (FFT). The output of the code consist of a list of diagnostics, such as total mass conservation, total momentum and energies, and of projections of the distribution function in different subspaces as the x- v x space, the x- y space and so on.
Numerical modelling of spallation in 2D hydrodynamics codes
NASA Astrophysics Data System (ADS)
Maw, J. R.; Giles, A. R.
1996-05-01
A model for spallation based on the void growth model of Johnson has been implemented in 2D Lagrangian and Eulerian hydrocodes. The model has been extended to treat complete separation of material when voids coalesce and to describe the effects of elevated temperatures and melting. The capabilities of the model are illustrated by comparison with data from explosively generated spall experiments. Particular emphasis is placed on the prediction of multiple spall effects in weak, low melting point, materials such as lead. The correlation between the model predictions and observations on the strain rate dependence of spall strength is discussed.
Quasi-2D Unsteady Flow Procedure for Real Fluids (PREPRINT)
2006-05-17
modeling paradigm, an existing user community across many disciplines, and commercially-funded code development and maintenance. A Fortran95 code...Matlab/Simulink® as well as Fortran95 to allow for application on a wide variety of computer platforms. The computational efficiency of the various...pipe network are presented to demonstrate the capability of the current techniques and the unsteady flow physics that can occur in system lines
NASA Technical Reports Server (NTRS)
Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.
1994-01-01
A two-dimensional computational code, PRLUS2D, which was developed for the reactive propulsive flows of ramjets and scramjets, was validated for two-dimensional shock-wave/turbulent-boundary-layer interactions. The problem of compression corners at supersonic speeds was solved using the RPLUS2D code. To validate the RPLUS2D code for hypersonic speeds, it was applied to a realistic hypersonic inlet geometry. Both the Baldwin-Lomax and the Chien two-equation turbulence models were used. Computational results showed that the RPLUS2D code compared very well with experimentally obtained data for supersonic compression corner flows, except in the case of large separated flows resulting from the interactions between the shock wave and turbulent boundary layer. The computational results compared well with the experiment results in a hypersonic NASA P8 inlet case, with the Chien two-equation turbulence model performing better than the Baldwin-Lomax model.
2D Simulations of KSTAR edge plasma using SOLPS 4.3 code
NASA Astrophysics Data System (ADS)
Shim, Seung Bo; Kotov, Vladislav; Reiter, Detelev; Han, Hyunsun; Kim, Jin Yong; Na, Yong-Su; Lee, Hae June
2012-10-01
Control of plasma density and impurity content is crucial to achieve high performance long pulse operation in tokamaks. In this paper edge plasma scenarios of KSTAR are analyzed numerically. ITER version of the well-known SOLPS code package (SOLPS4.3) which comprises 2D multi-species fluid plasma code B2 and 3D Monte-Carlo particle solver EIRENE coupled self-consistently. This latter allows full kinetic neutral particle transport modeling in realistic geometries including pump ducts and leaks to the main vessel from the sub-divertor volumes. Both connected and disconnected double null configurations are investigated. The main focus is made on studying the sensitivity of the edge plasma parameters with respect to gas puffing rate (density scans), thus, effectiveness of this latter for the plasma control. Preliminary findings show that for the reference KSTAR pumps: total pumping speed 100 m^3/s, pumping rates up to 13 Pa.m^3/s, and high performance discharges with heating power 8 MW plasma in both divertors is likely to stay attached. At the same time, plasma temperature at the divertor targets as well as the peak incident heat flux density can be effectively reduced with increased gas puff, been especially sensitive in the inner divertors.
2-D traveling-wave patterns in binary fluid convection
Surko, C.M.; Porta, A.L.
1996-12-31
An overview is presented of recent experiments designed to study two-dimensional traveling-wave convection in binary fluid convection in a large aspect ratio container. Disordered patterns are observed when convection is initiated. As time proceeds, they evolve to more ordered patterns, consisting of several domains of traveling-waves separated by well-defined domain boundaries. The detailed character of the patterns depends sensitively on the Rayleigh number. Numerical techniques are described which were developed to provide a quantitative characterization of the traveling-wave patterns. Applications of complex demodulation techniques are also described, which make a detailed study of the structure and dynamics of the domain boundaries possible.
NATRAN2. Fluid Hammer Analysis 1D & 2D Systems
Shin, Y.W.; Valentin, R.A.
1992-03-03
NATRAN2 analyzes short-term pressure-pulse transients in a closed hydraulic system consisting of a two-dimensional axisymmetric domain connected to a one-dimensional piping network. The one-dimensional network may consist of series or parallel piping, pipe junctions, diameter discontinuities, junctions of three to six branches, closed ends, surge tanks, far ends, dummy junctions, acoustic impedance discontinuities, and rupture disks. By default, the working fluid is assumed to be liquid sodium without cavitation; but another working fluid can be specified in terms of its density, sonic speed, and viscosity. The source pressure pulse can arise from one of the following: a pressure-time function specified at some point in the two-dimensional domain, a pressure-time function or a sodium-water reaction specified at some point in the one-dimensional domain. The pressure pulse from a sodium-water reaction is assumed to be generated according to the dynamic model of Zaker and Salmon.
Optical CDMA system using 2-D run-length limited code
NASA Astrophysics Data System (ADS)
Liu, Maw-Yang; Jiang, Joe-Air
2010-10-01
In this paper, time-spreading wavelength-hopping optical CDMA system using 2-D run-length limited code is investigated. The run-length limited code we use here is predicated upon spatial coding scheme, which can improve system performance significantly. In our proposed system, we employ carrier-hopping prime code and its shifted version as signature sequences. Based on the zero auto-correlation sidelobes property of signature sequence, we propose a two-state trellis coding architecture, which utilizes 2-D parallel detection scheme. The proposed scheme is compact and simple that can be applied to more complicated trellis to further enhance system performance. Multiple access interference is the main deterioration factor in optical CDMA system that affects system performance adversely. Aside from the multiple access interference, some of the adverse impacts of system performance are also taken into consideration, which include thermal noise, shot noise, relative intensity noise, and beat noise.
NASA Astrophysics Data System (ADS)
Payne, Joshua; Taitano, William; Knoll, Dana; Liebs, Chris; Murthy, Karthik; Feltman, Nicolas; Wang, Yijie; McCarthy, Colleen; Cieren, Emanuel
2012-10-01
In order to solve problems such as the ion coalescence and slow MHD shocks fully kinetically we developed a fully implicit 2D energy and charge conserving electromagnetic PIC code, PlasmaApp2D. PlasmaApp2D differs from previous implicit PIC implementations in that it will utilize advanced architectures such as GPUs and shared memory CPU systems, with problems too large to fit into cache. PlasmaApp2D will be a hybrid CPU-GPU code developed primarily to run on the DARWIN cluster at LANL utilizing four 12-core AMD Opteron CPUs and two NVIDIA Tesla GPUs per node. MPI will be used for cross-node communication, OpenMP will be used for on-node parallelism, and CUDA will be used for the GPUs. Development progress and initial results will be presented.
10Gbps 2D MGC OCDMA Code over FSO Communication System
NASA Astrophysics Data System (ADS)
Professor Urmila Bhanja, Associate, Dr.; Khuntia, Arpita; Alamasety Swati, (Student
2017-08-01
Currently, wide bandwidth signal dissemination along with low latency is a leading requisite in various applications. Free space optical wireless communication has introduced as a realistic technology for bridging the gap in present high data transmission fiber connectivity and as a provisional backbone for rapidly deployable wireless communication infrastructure. The manuscript highlights on the implementation of 10Gbps SAC-OCDMA FSO communications using modified two dimensional Golomb code (2D MGC) that possesses better auto correlation, minimum cross correlation and high cardinality. A comparison based on pseudo orthogonal (PSO) matrix code and modified two dimensional Golomb code (2D MGC) is developed in the proposed SAC OCDMA-FSO communication module taking different parameters into account. The simulative outcome signifies that the communication radius is bounded by the multiple access interference (MAI). In this work, a comparison is made in terms of bit error rate (BER), and quality factor (Q) based on modified two dimensional Golomb code (2D MGC) and PSO matrix code. It is observed that the 2D MGC yields better results compared to the PSO matrix code. The simulation results are validated using optisystem version 14.
PiCode: A New Picture-Embedding 2D Barcode.
Chen, Changsheng; Huang, Wenjian; Zhou, Baojian; Liu, Chenchen; Mow, Wai Ho
2016-08-01
Nowadays, 2D barcodes have been widely used as an interface to connect potential customers and advertisement contents. However, the appearance of a conventional 2D barcode pattern is often too obtrusive for integrating into an aesthetically designed advertisement. Besides, no human readable information is provided before the barcode is successfully decoded. This paper proposes a new picture-embedding 2D barcode, called PiCode, which mitigates these two limitations by equipping a scannable 2D barcode with a picturesque appearance. PiCode is designed with careful considerations on both the perceptual quality of the embedded image and the decoding robustness of the encoded message. Comparisons with the existing beautified 2D barcodes show that PiCode achieves one of the best perceptual qualities for the embedded image, and maintains a better tradeoff between image quality and decoding robustness in various application conditions. PiCode has been implemented in the MATLAB on a PC and some key building blocks have also been ported to Android and iOS platforms. Its practicality for real-world applications has been successfully demonstrated.
In situ fluid typing and quantification with 1D and 2D NMR logging.
Sun, Boqin
2007-05-01
In situ nuclear magnetic resonance (NMR) fluid typing has recently gained momentum due to data acquisition and inversion algorithm enhancement of NMR logging tools. T(2) distributions derived from NMR logging contain information on bulk fluids and pore size distributions. However, the accuracy of fluid typing is greatly overshadowed by the overlap between T(2) peaks arising from different fluids with similar apparent T(2) relaxation times. Nevertheless, the shapes of T(2) distributions from different fluid components are often different and can be predetermined. Inversion with predetermined T(2) distributions allows us to perform fluid component decomposition to yield individual fluid volume ratios. Another effective method for in situ fluid typing is two-dimensional (2D) NMR logging, which results in proton population distribution as a function of T(2) relaxation time and fluid diffusion coefficient (or T(1) relaxation time). Since diffusion coefficients (or T(1) relaxation time) for different fluid components can be very different, it is relatively easy to separate oil (especially heavy oil) from water signal in a 2D NMR map and to perform accurate fluid typing. Combining NMR logging with resistivity and/or neutron/density logs provides a third method for in situ fluid typing. We shall describe these techniques with field examples.
Snapshot 2D tomography via coded aperture x-ray scatter imaging
MacCabe, Kenneth P.; Holmgren, Andrew D.; Tornai, Martin P.; Brady, David J.
2015-01-01
This paper describes a fan beam coded aperture x-ray scatter imaging system which acquires a tomographic image from each snapshot. This technique exploits cylindrical symmetry of the scattering cross section to avoid the scanning motion typically required by projection tomography. We use a coded aperture with a harmonic dependence to determine range, and a shift code to determine cross-range. Here we use a forward-scatter configuration to image 2D objects and use serial exposures to acquire tomographic video of motion within a plane. Our reconstruction algorithm also estimates the angular dependence of the scattered radiance, a step toward materials imaging and identification. PMID:23842254
NASA Astrophysics Data System (ADS)
Stone, James M.; Norman, Michael L.
1992-06-01
A detailed description of ZEUS-2D, a numerical code for the simulation of fluid dynamical flows including a self-consistent treatment of the effects of magnetic fields and radiation transfer is presented. Attention is given to the hydrodynamic (HD) algorithms which form the foundation for the more complex MHD and radiation HD algorithms. The effect of self-gravity on the flow dynamics is accounted for by an iterative solution of the sparse-banded matrix resulting from discretizing the Poisson equation in multidimensions. The results of an extensive series of HD test problems are presented. A detailed description of the MHD algorithms in ZEUS-2D is presented. A new method of computing the electromotive force is developed using the method of characteristics (MOC). It is demonstrated through the results of an extensive series of MHD test problems that the resulting hybrid MOC-constrained transport method provides for the accurate evolution of all modes of MHD wave families.
Field depth extension of 2D barcode scanner based on wavefront coding and projection algorithm
NASA Astrophysics Data System (ADS)
Zhao, Tingyu; Ye, Zi; Zhang, Wenzi; Huang, Weiwei; Yu, Feihong
2008-03-01
Wavefront coding (WFC) used in 2D barcode scanners can extend the depth of field into a great extent with simpler structure compared to the autofocus microscope system. With a cubic phase mask (CPM) employed in the STOP, blurred images will be obtained in charge coupled device (CCD), which can be restored by digital filters. Direct methods are used widely in real-time restoration with good computational efficiency but with details smoothed. Here, the results of direct method are firstly filtered by hard-threshold function. The positions of the steps can be detected by simple differential operators. With the positions corrected by projection algorithm, the exact barcode information is restored. A wavefront coding system with 7mm effective focal length and 6 F-number is designed as an example. Although with the different magnification, images of different object distances can be restored by one point spread function (PSF) with 200mm object distance. A QR code (Quickly Response Code) of 31mm X 27mm is used as a target object. The simulation results showed that the sharp imaging objective distance is from 80mm to 355mm. The 2D barcode scanner with wavefront coding extends field depth with simple structure, low cost and large manufacture tolerance. This combination of the direct filter and projection algorithm proposed here could get the exact 2D barcode information with good computational efficiency.
Status of BOUT fluid turbulence code: improvements and verification
NASA Astrophysics Data System (ADS)
Umansky, M. V.; Lodestro, L. L.; Xu, X. Q.
2006-10-01
BOUT is an electromagnetic fluid turbulence code for tokamak edge plasma [1]. BOUT performs time integration of reduced Braginskii plasma fluid equations, using spatial discretization in realistic geometry and employing a standard ODE integration package PVODE. BOUT has been applied to several tokamak experiments and in some cases calculated spectra of turbulent fluctuations compared favorably to experimental data. On the other hand, the desire to understand better the code results and to gain more confidence in it motivated investing effort in rigorous verification of BOUT. Parallel to the testing the code underwent substantial modification, mainly to improve its readability and tractability of physical terms, with some algorithmic improvements as well. In the verification process, a series of linear and nonlinear test problems was applied to BOUT, targeting different subgroups of physical terms. The tests include reproducing basic electrostatic and electromagnetic plasma modes in simplified geometry, axisymmetric benchmarks against the 2D edge code UEDGE in real divertor geometry, and neutral fluid benchmarks against the hydrodynamic code LCPFCT. After completion of the testing, the new version of the code is being applied to actual tokamak edge turbulence problems, and the results will be presented. [1] X. Q. Xu et al., Contr. Plas. Phys., 36,158 (1998). *Work performed for USDOE by Univ. Calif. LLNL under contract W-7405-ENG-48.
On the performance of a 2D unstructured computational rheology code on a GPU
NASA Astrophysics Data System (ADS)
Pereira, Simão P.; Vuik, Kees; Pinho, Fernando T.; Nóbrega, João M.
2013-04-01
The present work explores the massively parallel capabilities of the most advanced architecture of graphics processing units (GPUs) code named "Fermi", on a two-dimensional unstructured cell-centred finite volume code. We use the SIMPLE algorithm to solve the continuity and momentum equations that was fully ported to the GPU. The benefits of this implementation are compared with a serial implementation that traditionally runs on the central processing unit (CPU). The developed codes were assessed with the bench-mark problems of Poiseuille flow, for Newtonian and generalized Newtonian fluids, as well as by the lid-driven cavity and the sudden expansion flows for Newtonian fluids. The parallel (GPU) code accelerated the resolution of those three problems by factors of 19, 10 and 11, respectively, in comparison with the corresponding CPU single core counterpart. The results are a clear indication that GPUs are and will be useful in the field of computational fluid dynamics (CFD) for rheologically simple and complex fluids.
Sagert, Irina; Even, Wesley Paul; Strother, Terrance Timothy
2017-05-17
Here, we perform two-dimensional implosion simulations using a Monte Carlo kinetic particle code. The application of a kinetic transport code is motivated, in part, by the occurrence of nonequilibrium effects in inertial confinement fusion capsule implosions, which cannot be fully captured by hydrodynamic simulations. Kinetic methods, on the other hand, are able to describe both continuum and rarefied flows. We perform simple two-dimensional disk implosion simulations using one-particle species and compare the results to simulations with the hydrodynamics code rage. The impact of the particle mean free path on the implosion is also explored. In a second study, we focusmore » on the formation of fluid instabilities from induced perturbations. We find good agreement with hydrodynamic studies regarding the location of the shock and the implosion dynamics. Differences are found in the evolution of fluid instabilities, originating from the higher resolution of rage and statistical noise in the kinetic studies.« less
MHDust: A 3-fluid dusty plasma code
NASA Astrophysics Data System (ADS)
Lazerson, Samuel
MHDust is a next generation 3-fluid magnetized dusty plasma code, treating the inertial dynamics of both the dust and ion components. Coded in ANSI C, the numerical method employs Leap-Frog and Dufort-Frankel integration schemes. Features include: nonlinear collisional terms, quasi-neutrality or continuity based electron densities, and dynamical dust charge number. Tests of wave-mode propagation (Acoustic and Electromagnetic) allow a comparison to linear wave mode theory. Additional nonlinear phenomena are presented including magnetic reconnection and shear-flow instabilities. Relevant parameters for the space environment are considered, allowing a comparison to be made with previous dusty plasma codes (DENISIS). The utility of the code is expanded through the possibility of small dust mass. This allows MH- Dust to be used as a 2-ion plasma code. MHDust considerably expands the range of numerical investigations into nonlinear phenomena in the field of astrophysical dusty plasmas.
An Integrative Model of Excitation Driven Fluid Flow in a 2D Uterine Channel
NASA Astrophysics Data System (ADS)
Maggio, Charles; Fauci, Lisa; Chrispell, John
2009-11-01
We present a model of intra-uterine fluid flow in a sagittal cross-section of the uterus by inducing peristalsis in a 2D channel. This is an integrative multiscale computational model that takes as input fluid viscosity, passive tissue properties of the uterine channel and a prescribed wave of membrane depolarization. This voltage pulse is coupled to a model of calcium dynamics inside a uterine smooth muscle cell, which in turn drives a kinetic model of myosin phosphorylation governing contractile muscle forces. Using the immersed boundary method, these muscle forces are communicated to a fluid domain to simulate the contractions which occur in a human uterus. An analysis of the effects of model parameters on the flow properties and emergent geometry of the peristaltic channel will be presented.
NASA Astrophysics Data System (ADS)
Stone, James M.; Norman, Michael L.
1992-06-01
In this, the second of a series of three papers, we continue a detailed description of ZEUS-2D, a numerical code for the simulation of fluid dynamical flows in astrophysics including a self-consistent treatment of the effects of magnetic fields and radiation transfer. In this paper, we give a detailed description of the magnetohydrodynamical (MHD) algorithms in ZEUS-2D. The recently developed constrained transport (CT) algorithm is implemented for the numerical evolution of the components of the magnetic field for MHD simulations. This formalism guarantees the numerically evolved field components will satisfy the divergence-free constraint at all times. We find, however, that the method used to compute the electromotive forces must be chosen carefully to propagate accurately all modes of MHD wave families (in particular shear Alfvén waves). A new method of computing the electromotive force is developed using the method of characteristics (MOC). It is demonstrated through the results of an extensive series of MHD test problems that the resulting hybrid MOC-CT method provides for the accurate evolution of all modes of MHD wave families.
NASA Astrophysics Data System (ADS)
Shurong, Sun; Yin, Hongxi; Wang, Ziyu; Xu, Anshi
2006-04-01
A new family of two-dimensional optical orthogonal code (2-D OOC), one-coincidence frequency hop code (OCFHC)/OOC, which employs OCFHC and OOC as wavelengthhopping and time-spreading patterns, respectively, is proposed in this paper. In contrary to previously constructed 2-D OOCs, OCFHC/OOC provides more choices on the number of available wavelengths and its cardinality achieves the upper bound in theory without sacrificing good auto-and-cross correlation properties, i.e., the correlation properties of the code is still ideal. Meanwhile, we utilize a new method, called effective normalized throughput, to compare the performance of diverse codes applicable to optical code division multiple access (OCDMA) systems besides conventional measure bit error rate, and the results indicate that our code performs better than obtained OCDMA codes and is truly applicable to OCDMA networks as multiaccess codes and will greatly facilitate the implementation of OCDMA access networks.
Position coding effects in a 2D scenario: the case of musical notation.
Perea, Manuel; García-Chamorro, Cristina; Centelles, Arnau; Jiménez, María
2013-07-01
How does the cognitive system encode the location of objects in a visual scene? In the past decade, this question has attracted much attention in the field of visual-word recognition (e.g., "jugde" is perceptually very close to "judge"). Letter transposition effects have been explained in terms of perceptual uncertainty or shared "open bigrams". In the present study, we focus on note position coding in music reading (i.e., a 2D scenario). The usual way to display music is the staff (i.e., a set of 5 horizontal lines and their resultant 4 spaces). When reading musical notation, it is critical to identify not only each note (temporal duration), but also its pitch (y-axis) and its temporal sequence (x-axis). To examine note position coding, we employed a same-different task in which two briefly and consecutively presented staves contained four notes. The experiment was conducted with experts (musicians) and non-experts (non-musicians). For the "different" trials, the critical conditions involved staves in which two internal notes that were switched vertically, horizontally, or fully transposed--as well as the appropriate control conditions. Results revealed that note position coding was only approximate at the early stages of processing and that this encoding process was modulated by expertise. We examine the implications of these findings for models of object position encoding.
Computation of nozzle flow fields using the PARC2D Navier-Stokes code
NASA Technical Reports Server (NTRS)
Collins, Frank G.
1986-01-01
Supersonic nozzles which operate at low Reynolds numbers and have large expansion ratios have very thick boundary layers at their exit. This leads to a very strong viscous/inviscid interaction upon the flow within the nozzle and the traditional nozzle design techniques which correct the inviscid core with a boundary layer displacement do not accurately predict the nozzle exit conditions. A full Navier-Stokes code (PARC2D) was used to compute the nozzle flow field. Grids were generated using the interactive grid generator code TBGG. All computations were made on the NASA MSFC CRAY X-MP computer. Comparison was made between the computations and in-house wall pressure measurements for CO2 flow through a conical nozzle having an area ratio of 40. Satisfactory agreement existed between the computations and measurements for a stagnation pressure of 29.4 psia and stagnation temperature of 1060 R. However, agreement did not exist at a stagnation pressure of 7.4 psia. Several reasons for the lack of agreement are possible. The computational code assumed a constant gas gamma whereas gamma for CO2 varied from 1.22 in the plenum chamber to 1.38 at the nozzle exit. Finally, it is possible that condensation occurred during the expansion at the lower stagnation pressure.
Numerical Instability in a 2D Gyrokinetic Code Caused by Divergent E × B Flow
NASA Astrophysics Data System (ADS)
Byers, J. A.; Dimits, A. M.; Matsuda, Y.; Langdon, A. B.
1994-12-01
In this paper, a numerical instability first observed in a 2D electrostatic gyrokinetic code is described. The instability should also be present in some form in many versons of particle-in-cell simulation codes that employ guiding center drifts. A perturbation analysis of the instability is given and its results agree quantitatively with the observations from the gyrokinetic code in all respects. The basic mechanism is a false divergence of the E × B flow caused by the interpolation between the grid and the particles as coupled with the specific numerical method for calculating E - ∇φ. Stability or instability depends in detail on the specific choice of particle interpolation method and field method. One common interpolation method, subtracted dipole, is stable. Other commonly used interpolation methods, linear and quadratic, are unstable when combined with a finite difference for the electric field. Linear and quadratic interpolation can be rendered stable if combined with another method for the electric field, the analytic differential of the interpolated potential.
The origin of the self-organization of the 2D Euler fluid flows
NASA Astrophysics Data System (ADS)
Spineanu, Florin; Vlad, Madalina
2011-11-01
The 2D ideal incompressible fluid is usually described in terms of streamfunction, velocity and vorticity. An equivalent model consists of a discrete set of point-like vortices interacting in plane by a long-range potential. The essential property of the latter model is that it re-formulates the description in terms of matter, field and interaction. We first extend the model to reflect the parity-invariance and show that returning to continuum it leads to a field-theoretical formulation, with a Lagrangian density for a nonlinear scalar (matter) field, a gauge field and their minimal interaction. A fundamental property of the 2D Euler fluid is revealed in this way: the extremum of the action functional shows Self-Duality, a property known to generate coherent structures (almost all known solitons and instantons in the natural systems). We derive analytically the sinh-Poisson equation, governing the stationary states at relaxation.The presence of the Chern- Simons part in the Lagrangian explains why in 3D the fluid will never relax to a stationary coherent flow. Connections with 4D fermion systems (Nambu-Jona-Lasinio) and with surfaces of constant mean curvature (CMC) will be presented. Stability of certain regular flows results from the property of non-self- intersection of CMC surfaces embedded in 3D space. Partially supported by CNCSIS-UEFISCDI, PNII - IDEI 1104/2008.
Pullback Asymptotic Behavior of Solutions for a 2D Non-autonomous Non-Newtonian Fluid
NASA Astrophysics Data System (ADS)
Liu, Guowei
2016-10-01
This paper studies the pullback asymptotic behavior of solutions for the non-autonomous incompressible non-Newtonian fluid in 2D bounded domains. Firstly, with a little high regularity of the force, the semigroup method and ɛ -regularity method are used to establish the existence of compact pullback absorbing sets. Then, with a minimal regularity of the force, by verifying the flattening property also known as the "Condition (C)", the author proves the existence of pullback attractors for the universe of fixed bounded sets and for the another universe given by a tempered condition. Furthermore, the regularity of pullback attractors is given.
Embedded morphological dilation coding for 2D and 3D images
NASA Astrophysics Data System (ADS)
Lazzaroni, Fabio; Signoroni, Alberto; Leonardi, Riccardo
2002-01-01
Current wavelet-based image coders obtain high performance thanks to the identification and the exploitation of the statistical properties of natural images in the transformed domain. Zerotree-based algorithms, as Embedded Zerotree Wavelets (EZW) and Set Partitioning In Hierarchical Trees (SPIHT), offer high Rate-Distortion (RD) coding performance and low computational complexity by exploiting statistical dependencies among insignificant coefficients on hierarchical subband structures. Another possible approach tries to predict the clusters of significant coefficients by means of some form of morphological dilation. An example of a morphology-based coder is the Significance-Linked Connected Component Analysis (SLCCA) that has shown performance which are comparable to the zerotree-based coders but is not embedded. A new embedded bit-plane coder is proposed here based on morphological dilation of significant coefficients and context based arithmetic coding. The algorithm is able to exploit both intra-band and inter-band statistical dependencies among wavelet significant coefficients. Moreover, the same approach is used both for two and three-dimensional wavelet-based image compression. Finally we the algorithms are tested on some 2D images and on a medical volume, by comparing the RD results to those obtained with the state-of-the-art wavelet-based coders.
Simulation and calculation of particle trapping using a quasistatic 2D simulation code
NASA Astrophysics Data System (ADS)
Morshed, Sepehr; Antonsen, Thomas; Huang, Chengkun; Mori, Warren
2008-11-01
In LWFA schemes the laser pulse must propagate several centimeters and maintain its coherence over this distance, which corresponds to many Rayleigh lengths. These Wakefields and their effect on the laser can be simulated in quasistatic approximation [1, 2]. In this approximation the assumption is that the driver (laser) does not change shape during the time it takes for it to pass by a plasma particle. As a result the particles that are trapped and moving with near-luminal velocity can not be treated with this approximation. Here we have modified the 2D code WAKE with an alternate algorithm so that when a plasma particle gains sufficient energy from wakefields it is promoted to beam particle status which later on may become trapped in the wakefields of laser. Similar implementations have been made in the 3D code QUICKPIC [2]. We also have done comparison between WAKE and results from 200 TW laser simulations using OSIRIS [3]. These changes in WAKE will give users a tool that can be used on a desk top machine to simulate GeV acceleration.[0pt] [1] P. Mora and T. M. Antonsen Jr., Phys Plasma 4, 217 (1997)[0pt] [2] C. Huang et al. Comp Phys. 217 (2006)[0pt] [3] W. Lu et al. PRST, Accelerators and Beams 10, 061301 (2007)
Modelling 2001 lahars at Popocatépetl volcano using FLO2D numerical code
NASA Astrophysics Data System (ADS)
Caballero, L.; Capra, L.
2013-12-01
Popocatépetl volcano is located on the central part of the Transmexican Volcanic Belt. It is one of the most active volcanoes in Mexico and endanger more than 25 million people that lives in its surroundings. In the last months, the renewal of its volcanic activity put into alert scientific community. One of the possible scenarios is the 2001 explosive activity, which was characterized by a 8 km eruptive column and the subsequent formation of pumice flows up to 4 km from the crater. Lahars were generated few hours after, remobilizing the new deposits towards NE flank of the volcano, along Huiloac Gorge, almost reaching Santiago Xalitzintla town (Capra et al., 2004). The occurrence of a similar scenario makes very important to reproduce this event to delimitate accurately lahar hazard zones. In this work, 2001 lahar deposit is modeled using FLO2D numerical code. Geophone data is used to reconstruct initial hydrograph and sediment concentration. Sensitivity study of most important parameters used by this code like Manning, and α and β coefficients was conducted in order to achieve a good simulation. Results obtained were compared with field data and demonstrated a good agreement in thickness and flow distribution. A comparison with previously published data with laharZ program (Muñoz-Salinas, 2009) is also made. Additionally, lahars with fluctuating sediment concentrations but with similar volume are simulated to observe the influence of the rheological behavior on lahar distribution.
Vortex Dynamics in 2-D Fluid Turbulence: Theory and Experiments Using Non-neutral Plasmas
NASA Astrophysics Data System (ADS)
Dubin, Daniel H. E.
2001-04-01
The free relaxation of turbulence in inviscid, incompressible 2D fluids (Euler fluids) plays an important role in geophysical and astrophysical flows, as well as in magnetized plasmas. Such flows can be described as a collection of intense self-trapped vortices interacting, merging, and shearing apart as they move through a diffuse background vorticity. The background can either be present initially (as in the potential vorticity gradient created by planetary rotation), or can be created by filamentation of the intense vortices. This talk will review recent theories and experiments analyzing the interaction between intense vortices and a diffuse background vorticity. The experiments employ magnetized pure electron plasma columns as a simulacrum of a 2D Euler fluid. The plasma evolves according to 2D ``E × B'' dynamics, which is isomorphic to Euler flow dynamics, with the plasma density proportional to the vorticity of the flow. The experiments observe that the intense vortices can strongly affect the background dynamics, launching surface waves on vorticity edges; these waves can eventually break and filament.(J. Fajans and D. Durkin, Phys. Rev. Lett. 85), 4052 (2000); D.Z. Jin and D. Dubin, Phys. Fluids (in press). Theory for the filamentation time matches the experiments. Experiments also show that even a diffuse background can substantially alter the motion of the intense vortices. For example, a background vorticity gradient causes an intense vortex to move up or down the gradient. New experimental and theoretical results(Y. Kimamoto et al.), Phys. Rev. Lett. 85, 3173 (2000); D. Schecter and D. Dubin, Phys. Rev. Lett. 83, 2191 (1999). will be presented for this venerable problem, which show that the rate at which the intense vortex moves can change by an order of magnitude or more, depending on whether the vortex rotates with or against the background shear flow. Another example is the surprising spontaneous formation of vortex crystal states during the free
Ion cyclotron emission calculations using a 2D full wave numerical code
NASA Astrophysics Data System (ADS)
Batchelor, D. B.; Jaeger, E. F.; Colestock, P. L.
1987-09-01
Measurement of radiation in the HF band due to cyclotron emission by energetic ions produced by fusion reactions or neutral beam injection promises to be a useful diagnostic on large devices which are entering the reactor regime of operation. A number of complications make the modelling and interpretation of such measurements difficult using conventional geometrical optics methods. In particular the long wavelength and lack of high directivity of antennas in this frequency regime make observation of a single path across the plasma into a viewing dump impractical. Pickup antennas effectively see the whole plasma and wall reflection effects are important. We have modified our 2D full wave ICRH code2 to calculate wave fields due to a distribution of energetic ions in tokamak geometry. The radiation is modeled as due to an ensemble of localized source currents distributed in space. The spatial structure of the coherent wave field is then calculated including cyclotron harmonic damping as compared to the usual procedure of incoherently summing powers of individual radiators. This method has the advantage that phase information from localized radiating currents is globally retained so the directivity of the pickup antennas is correctly represented. Also standing waves and wall reflections are automatically included.
On the dynamics of inviscid relaxation in 2D fluids and nonneutral plasmas
NASA Astrophysics Data System (ADS)
Schecter, David Anton
Two-dimensional (2D) flows in atmospheres, oceans and plasmas can rapidly relax to metastable patterns before viscosity affects the dynamics. This dissertation is on the mechanics of inviscid relaxation. Three topics are covered: vortex motion driven by a background vorticity gradient, the inviscid damping (Landau damping) of asymmetries on a circular vortex, and vortex crystal formation. All topics were motivated by experiments with magnetized electron columns, where the (r, θ) flow of electrons is approximately governed by the 2D Euler equations. These equations also govern 2D inviscid incompressible uniform-density fluids. In one experiment, a turbulent flow relaxed through the migration of vortices to extrema in the background vorticity. In Chapter 2, a theory describing this vortex motion is developed. Generally, the vortex speed is proportional to the background vorticity gradient; however, a vortex that is prograde with respect to the background shear moves slower than a retrograde vortex of equal strength. Separate theories are given for the motion of prograde and retrograde vortices. Both theories compare favorably to simulations and the experiment. In Chapter 3, the rate at which a perturbed vortex relaxes toward an axisymmetric equilibrium is examined using linear perturbation theory. The initial perturbation is created by the brief application of an external flow field, modelling recent experiments. In the core of the vortex, the perturbation typically behaves like an exponentially damped normal mode. An eigenmode analysis shows that this ``quasi-mode'' is actually a wave-packet of neutral continuum modes that decays through interference as the continuum modes disperse. Physically, a quasi-mode decays to conserve total angular momentum as vorticity is mixed in an outer resonance layer. Theoretical decay rates are found to agree with the experiments. In Chapter 4, vortex-in-cell simulations of 2D Euler flow are compared directly to electron plasma
MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data
NASA Astrophysics Data System (ADS)
Key, Kerry
2016-10-01
This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM) data from onshore and offshore surveys. MARE2DEM parametrizes the inverse model using a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids are typically used due to their ease of construction. Unstructured grids provide significantly more geometric flexibility and parameter efficiency than the structured rectangular grids commonly used by most other inversion codes. Transmitter and receiver components located on topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic fields accurately reproduce the real survey geometry. The forward solution is implemented with a goal-oriented adaptive finite-element method that automatically generates and refines unstructured triangular element grids that conform to the inversion parameter grid, ensuring accurate responses as the model conductivity changes. This dual-grid approach is significantly more efficient than the conventional use of a single grid for both the forward and inverse meshes since the more detailed finite-element meshes required for accurate responses do not increase the memory requirements of the inverse problem. Forward solutions are computed in parallel with a highly efficient scaling by partitioning the data into smaller independent modeling tasks consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion is carried out with a new Occam inversion approach that requires fewer forward calls. Dense matrix operations are optimized for memory and parallel scalability using the ScaLAPACK parallel library. Free parameters can be bounded using a new non-linear transformation that leaves the transformed parameters nearly the same as the original parameters within the bounds, thereby reducing non-linear smoothing effects. Data
MULTI2D - a computer code for two-dimensional radiation hydrodynamics
NASA Astrophysics Data System (ADS)
Ramis, R.; Meyer-ter-Vehn, J.; Ramírez, J.
2009-06-01
Simulation of radiation hydrodynamics in two spatial dimensions is developed, having in mind, in particular, target design for indirectly driven inertial confinement energy (IFE) and the interpretation of related experiments. Intense radiation pulses by laser or particle beams heat high-Z target configurations of different geometries and lead to a regime which is optically thick in some regions and optically thin in others. A diffusion description is inadequate in this situation. A new numerical code has been developed which describes hydrodynamics in two spatial dimensions (cylindrical R-Z geometry) and radiation transport along rays in three dimensions with the 4 π solid angle discretized in direction. Matter moves on a non-structured mesh composed of trilateral and quadrilateral elements. Radiation flux of a given direction enters on two (one) sides of a triangle and leaves on the opposite side(s) in proportion to the viewing angles depending on the geometry. This scheme allows to propagate sharply edged beams without ray tracing, though at the price of some lateral diffusion. The algorithm treats correctly both the optically thin and optically thick regimes. A symmetric semi-implicit (SSI) method is used to guarantee numerical stability. Program summaryProgram title: MULTI2D Catalogue identifier: AECV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 151 098 No. of bytes in distributed program, including test data, etc.: 889 622 Distribution format: tar.gz Programming language: C Computer: PC (32 bits architecture) Operating system: Linux/Unix RAM: 2 Mbytes Word size: 32 bits Classification: 19.7 External routines: X-window standard library (libX11.so) and corresponding heading files (X11/*.h) are
Thin soap films are quasi-2D fluids and thick soap films are not
NASA Astrophysics Data System (ADS)
Vivek, Skanda; Weeks, Eric R.
2012-11-01
We use microrheology to measure the 2D (interfacial) viscosity of soap films. Microrheology uses the diffusive motion of tracer particles suspended in the soap film to infer the viscosity. Our particles are colloids of diameter d = 0 . 5 μm. We measure the interfacial viscosity of soap films ranging in thickness from h = 0 . 5 μm to 2.0 μm. The thickness of these films is measured using the infrared absorbance of the water based soap films, based on a previous setup [X. L. Wu, R. Levine, M. A. Rutgers, H. Kellay, W.I. Goldburg, Rev. Sci. Inst. 72, 2467 (2001)]. From the knowledge of the film thickness and the viscosity of the fluid used to make the film, we can infer the interfacial viscosity due to the surfactant layers at the film/air interfaces. Consistent results are found for thin films (h / d < 3) whereas for thicker films inconsistent and unphysical results are found indicating 3D effects begin to play a role. The transition from 2D to 3D properties as a function of h / d is sharp.
A hybrid numerical fluid dynamics code for resistive magnetohydrodynamics
Johnson, Jeffrey
2006-04-01
Spasmos is a computational fluid dynamics code that uses two numerical methods to solve the equations of resistive magnetohydrodynamic (MHD) flows in compressible, inviscid, conducting media[1]. The code is implemented as a set of libraries for the Python programming language[2]. It represents conducting and non-conducting gases and materials with uncomplicated (analytic) equations of state. It supports calculations in 1D, 2D, and 3D geometry, though only the 1D configuation has received significant testing to date. Because it uses the Python interpreter as a front end, users can easily write test programs to model systems with a variety of different numerical and physical parameters. Currently, the code includes 1D test programs for hydrodynamics (linear acoustic waves, the Sod weak shock[3], the Noh strong shock[4], the Sedov explosion[5], magnetic diffusion (decay of a magnetic pulse[6], a driven oscillatory "wine-cellar" problem[7], magnetic equilibrium), and magnetohydrodynamics (an advected magnetic pulse[8], linear MHD waves, a magnetized shock tube[9]). Spasmos current runs only in a serial configuration. In the future, it will use MPI for parallel computation.
NEPHTIS: Core depletion validation relying on 2D transport core calculations with the APOLLO2 code
Damian, F.; Raepsaet, X.; Groizard, M.; Poinot, C.
2006-07-01
The CEA, in collaboration with EDF and AREVA-NP, is developing a core modelling tool called NEPHTIS, for Neutronic Process for HTGR Innovating Systems and dedicated at present day to the prismatic block-type HTGR (High Temperature Gas-Cooled Reactors). Due to the lack of usable HTGR experimental results, the confidence in this neutronic computational tool relies essentially on comparisons to reference or best-estimate calculations. In the present analysis, the Aleppo deterministic transport code has been selected as reference for validating core depletion simulations carried out within NEPHTIS. These reference calculations were performed on fully detailed 2D core configurations using the Method of Characteristics. The latter has been validated versus Monte Carlo method for different static core configurations [1], [2] and [3]. All the presented results come from an annular HTGR core loaded with uranium-based fuel (15% enrichment). During the core depletion validation, reactivity, reaction rates distributions and nuclei concentrations have been compared. In addition, the impact of various physical and geometrical parameters such as the core loading (one-through or batch-wise reloading) and the amount of burnable poison has been investigated during the validation phases. The results confirm that NEPHTIS is able to predict the core reactivity with uncertainties of {+-}350 pcm. At the end of the core irradiation, the U-235 consumption is calculated within {+-} 0, 7 % while the plutonium mass discharged from the core is calculated within {+-}1 %. As far as the core power distributions are concerned, small discrepancies ( and < 2.3 %) can be observed on the fuel block-averaged power distribution in the core. (authors)
Gradient-Driven Vortex Motion in Nonneutral Plasmas and Ideal 2D Fluids
NASA Astrophysics Data System (ADS)
Schecter, David A.
2000-10-01
Two-dimensional (2D) turbulent flows can relax to metastable patterns without dissipation of kinetic energy. This ``rapid'' relaxation has been observed in computer simulations of ideal 2D fluids, and more recently in experiments with pure electron plasmas, which can obey similar dynamics. The late stage of relaxation often involves small vortices moving in a larger ``background'' shear-flow.(X.P. Huang et al., Phys. Rev. Lett. 74), 4424 (1995). In time, positive vortices (rotating counter-clockwise) move to peaks in background vorticity, whereas negative vortices (rotating clockwise) move to minima.(C.G. Rossby, J. Mar. Res. 7), 175 (1948); C.H. Liu and L. Ting, Comp. & Fluids 15, 77 (1987). In general, the rate of this migration increases with the magnitude of the background vorticity gradient, whereas it decreases as the background shear intensifies.\\vspace12pt Positive and negative vortices can also be classified as either prograde or retrograde, depending on whether they rotate with or against the local background shear. Surprisingly, a retrograde vortex moves up or down a background vorticity gradient orders of magnitude faster than a prograde vortex of equal strength.(D.A. Schecter and D.H.E. Dubin, Phys. Rev. Lett. 83), 2191 (1999). An accurate expression for the velocity of a weak retrograde vortex is obtained from an analytic calculation, in which the response of the background flow to the vortex is linearized. However, this linear theory fails for prograde vortices of any strength. Interestingly, the velocity of a prograde vortex can be obtained from a simple estimate, which accounts for the nonlinear ``trapping'' of background fluid around the vortex. The analytic expressions for the velocities of both prograde and retrograde vortices are in good quantitative agreement with vortex-in-cell simulations, and with electron plasma experiments, when the background shear is below a critical level. When the ratio of background shear to background vorticity
2D Resistive Magnetohydrodynamics Calculations with an Arbitrary Lagrange Eulerian Code
NASA Astrophysics Data System (ADS)
Rousculp, C. L.; Gianakon, T. A.; Lipnikov, K. N.; Nelson, E. M.
2015-11-01
Single fluid resistive MHD is useful for modeling Z-pinch configurations in cylindrical geometry. One such example is thin walled liners for shock physics or HEDP experiments driven by capacitor banks such as the LANL's PHELIX or Sandia-Z. MHD is also useful for modeling high-explosive-driven flux compression generators (FCGs) and their high-current switches. The resistive MHD in our arbitrary Lagrange Eulerian (ALE) code operates in one and two dimensions in both Cartesian and cylindrical geometry. It is implemented as a time-step split operator, which consists of, ideal MHD connected to the explicit hydro momentum and energy equations and a second order mimetic discretization solver for implicit solution of the magnetic diffusion equation. In a staggered grid scheme, a single-component of cell-centered magnetic flux is conserved in the Lagrangian frame exactly, while magnetic forces are accumulated at the nodes. Total energy is conserved to round off. Total flux is conserved under the ALE relaxation and remap. The diffusion solver consistently computes Ohmic heating. Both Neumann and Dirichlet boundary conditions are available with coupling to external circuit models. Example calculations will be shown.
Analytic Grad-Shafranov test criteria and checks of a 1-1/2-D BALDUR code
Seidl, F.G.P.
1986-05-01
As discussed by Shafranov, Solov'ev, and others, two special constraints allow the Grad-Shafranov equation to yield simple analytic solutions. From the simplest solution, formulae are derived for properties of the corresponding toroidally symmetric plasma and for the space profile of poloidal magnetic flux density. These formulae constitute test criteria for code performance once the code is made consistent with the two constraints. Obtaining consistency with the first constraint is straightforward, but with the second it is circumstantial. Moreover, the poloidal flux profile of the analytic solution implies a certain artificial form for the resistivity, which is also derived. These criteria have been used to check a composite code which had been assembled by linking a geometrically generalized 1-D BALDUR transport code with a computationally efficient 2-D equilibrium code. A brief description of the composite code is given as well as of its performance with respect to the Grad-Shafranov test criteria.
Development of a CFD Code for Analysis of Fluid Dynamic Forces in Seals
NASA Technical Reports Server (NTRS)
Athavale, Mahesh M.; Przekwas, Andrzej J.; Singhal, Ashok K.
1991-01-01
The aim is to develop a 3-D computational fluid dynamics (CFD) code for the analysis of fluid flow in cylindrical seals and evaluation of the dynamic forces on the seals. This code is expected to serve as a scientific tool for detailed flow analysis as well as a check for the accuracy of the 2D industrial codes. The features necessary in the CFD code are outlined. The initial focus was to develop or modify and implement new techniques and physical models. These include collocated grid formulation, rotating coordinate frames and moving grid formulation. Other advanced numerical techniques include higher order spatial and temporal differencing and an efficient linear equation solver. These techniques were implemented in a 2D flow solver for initial testing. Several benchmark test cases were computed using the 2D code, and the results of these were compared to analytical solutions or experimental data to check the accuracy. Tests presented here include planar wedge flow, flow due to an enclosed rotor, and flow in a 2D seal with a whirling rotor. Comparisons between numerical and experimental results for an annular seal and a 7-cavity labyrinth seal are also included.
Fanchi, J.R.
1985-04-01
Under the sponsorship of the US Department of Energy, a publicly available chemical simulator has been evaluated and substantially enhanced to serve as a useful tool for projecting polymer or chemical flood performance. The program, CHEM2D, is a two-dimensional, three-phase, nine-component finite-difference numerical simulator. It can model primary depletion, waterfloods, polymer floods, and micellar/polymer floods using heterogeneous linear, areal, or cross-sectional reservoir descriptions. The user may specify well performance as either pressure or rate constrained. Both a constant time step size and a variable time step size based on extrapolation of concentration changes are available as options. A solution technique which is implicit in pressure and explicit in saturations and concentrations is used. The major physical mechanisms that are modeled include adsorption, capillary trapping, cation exchange, dilution, dispersion, interfacial tension, binary or ternary phase behavior, non-Newtonian polymer rheology, and two-phase or three-phase relative permeability. Typical components include water, oil, surfactant, polymer, and three ions (chloride, calcium, and sodium). Components may partition amongst the aqueous, oleic, and microemulsion phases. Volume I of this report provides a discussion of the formulation and algorithms used within CHEM2D. Included in Volume I are a number of validation and illustrative examples, as well as the FORTRAN code. The CHEM2D user's manual, Volume II, contains both the input data sets for the examples presented in Volume I and an example output. All appendices and a phase behavior calculation program are collected in Volume III. 20 references.
SINFAC - SYSTEMS IMPROVED NUMERICAL FLUIDS ANALYSIS CODE
NASA Technical Reports Server (NTRS)
Costello, F. A.
1994-01-01
The Systems Improved Numerical Fluids Analysis Code, SINFAC, consists of additional routines added to the April 1983 revision of SINDA, a general thermal analyzer program. The purpose of the additional routines is to allow for the modeling of active heat transfer loops. The modeler can simulate the steady-state and pseudo-transient operations of 16 different heat transfer loop components including radiators, evaporators, condensers, mechanical pumps, reservoirs and many types of valves and fittings. In addition, the program contains a property analysis routine that can be used to compute the thermodynamic properties of 20 different refrigerants. SINFAC can simulate the response to transient boundary conditions. SINFAC was first developed as a method for computing the steady-state performance of two phase systems. It was then modified using CNFRWD, SINDA's explicit time-integration scheme, to accommodate transient thermal models. However, SINFAC cannot simulate pressure drops due to time-dependent fluid acceleration, transient boil-out, or transient fill-up, except in the accumulator. SINFAC also requires the user to be familiar with SINDA. The solution procedure used by SINFAC is similar to that which an engineer would use to solve a system manually. The solution to a system requires the determination of all of the outlet conditions of each component such as the flow rate, pressure, and enthalpy. To obtain these values, the user first estimates the inlet conditions to the first component of the system, then computes the outlet conditions from the data supplied by the manufacturer of the first component. The user then estimates the temperature at the outlet of the third component and computes the corresponding flow resistance of the second component. With the flow resistance of the second component, the user computes the conditions down stream, namely the inlet conditions of the third. The computations follow for the rest of the system, back to the first component
DYNA2D: A nonlinear, explicit, two-dimensional finite element code for solid mechanics: User manual
NASA Astrophysics Data System (ADS)
Whirley, R. G.; Engelmann, B. E.
1992-04-01
This report is the User Manual for the 1992 version of DYNA2D, and also serves as an interim User Guide. DYNA2D is a nonlinear, explicit, finite element code for analyzing the transient dynamic response of two-dimensional solids. The code is fully vectorized and is available on several computer platforms. DYNA2D incorporates a large deformation formulation to allow maximum flexibility in modeling physical problems. Many material models are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects, and rate dependence. Also, a variety of equations of state are available for modeling the hydrodynamic response of many materials, including explosives and propellants. In addition, DYNA2D has a sophisticated contact interface capability, including frictional sliding, single surface contact, and a new automatic contact option. DYNA2D contains a rezoner to allow nodes to be repositioned when the finite element mesh becomes excessively distorted during a calculation. This rezoner can be used in either an interactive graphics mode or an automatic mode. In addition, DYNA2D now contains a general remeshing option which allows a completely new mesh to be defined for a body during an analysis. A real-time analysis display option allows the analyst to view an evolving graphical display of the analysis results as they are calculated. A material model driver with interactive graphics display is incorporated into DYNA2D to permit accurate modeling of complex material response based on experimental data. This document provides the information necessary to apply DYNA2D to solve a wide range of engineering analysis problems.
Dynamic in-situ sensing of fluid-dispersed 2D materials integrated on microfluidic Si chip
NASA Astrophysics Data System (ADS)
Hogan, Benjamin T.; Dyakov, Sergey A.; Brennan, Lorcan J.; Younesy, Salma; Perova, Tatiana S.; Gun’Ko, Yurii K.; Craciun, Monica F.; Baldycheva, Anna
2017-02-01
In this work, we propose a novel approach for wafer-scale integration of 2D materials on CMOS photonic chip utilising methods of synthetic chemistry and microfluidics technology. We have successfully demonstrated that this approach can be used for integration of any fluid-dispersed 2D nano-objects on silicon-on-insulator photonics platform. We demonstrate for the first time that the design of an optofluidic waveguide system can be optimised to enable simultaneous in-situ Raman spectroscopy monitoring of 2D dispersed flakes during the device operation. Moreover, for the first time, we have successfully demonstrated the possibility of label-free 2D flake detection via selective enhancement of the Stokes Raman signal at specific wavelengths. We discovered an ultra-high signal sensitivity to the xyz alignment of 2D flakes within the optofluidic waveguide. This in turn enables precise in-situ alignment detection, for the first practicable realisation of 3D photonic microstructure shaping based on 2D-fluid composites and CMOS photonics platform, while also representing a useful technological tool for the control of liquid phase deposition of 2D materials.
Dynamic in-situ sensing of fluid-dispersed 2D materials integrated on microfluidic Si chip.
Hogan, Benjamin T; Dyakov, Sergey A; Brennan, Lorcan J; Younesy, Salma; Perova, Tatiana S; Gun'ko, Yurii K; Craciun, Monica F; Baldycheva, Anna
2017-02-10
In this work, we propose a novel approach for wafer-scale integration of 2D materials on CMOS photonic chip utilising methods of synthetic chemistry and microfluidics technology. We have successfully demonstrated that this approach can be used for integration of any fluid-dispersed 2D nano-objects on silicon-on-insulator photonics platform. We demonstrate for the first time that the design of an optofluidic waveguide system can be optimised to enable simultaneous in-situ Raman spectroscopy monitoring of 2D dispersed flakes during the device operation. Moreover, for the first time, we have successfully demonstrated the possibility of label-free 2D flake detection via selective enhancement of the Stokes Raman signal at specific wavelengths. We discovered an ultra-high signal sensitivity to the xyz alignment of 2D flakes within the optofluidic waveguide. This in turn enables precise in-situ alignment detection, for the first practicable realisation of 3D photonic microstructure shaping based on 2D-fluid composites and CMOS photonics platform, while also representing a useful technological tool for the control of liquid phase deposition of 2D materials.
Dynamic in-situ sensing of fluid-dispersed 2D materials integrated on microfluidic Si chip
Hogan, Benjamin T.; Dyakov, Sergey A.; Brennan, Lorcan J.; Younesy, Salma; Perova, Tatiana S.; Gun’ko, Yurii K.; Craciun, Monica F.; Baldycheva, Anna
2017-01-01
In this work, we propose a novel approach for wafer-scale integration of 2D materials on CMOS photonic chip utilising methods of synthetic chemistry and microfluidics technology. We have successfully demonstrated that this approach can be used for integration of any fluid-dispersed 2D nano-objects on silicon-on-insulator photonics platform. We demonstrate for the first time that the design of an optofluidic waveguide system can be optimised to enable simultaneous in-situ Raman spectroscopy monitoring of 2D dispersed flakes during the device operation. Moreover, for the first time, we have successfully demonstrated the possibility of label-free 2D flake detection via selective enhancement of the Stokes Raman signal at specific wavelengths. We discovered an ultra-high signal sensitivity to the xyz alignment of 2D flakes within the optofluidic waveguide. This in turn enables precise in-situ alignment detection, for the first practicable realisation of 3D photonic microstructure shaping based on 2D-fluid composites and CMOS photonics platform, while also representing a useful technological tool for the control of liquid phase deposition of 2D materials. PMID:28186118
NASA Astrophysics Data System (ADS)
Ghizzo, A.; Bertrand, P.; Lebas, J.; Shoucri, M.; Johnston, T.; Fijalkow, E.; Feix, M. R.
1992-10-01
The present 1 1/2D relativistic Euler-Vlasov code has been used to check the validity of a hydrodynamic description used in a 1D version of the Vlasov code. By these means, detailed numerical results can be compared; good agreement furnishes full support for the 1D electromagnetic Vlasov code, which runs faster than the 1 1/2D code. The results obtained assume a nonrelativistic v(y) velocity.
NASA Astrophysics Data System (ADS)
Hallo, L.; Olazabal-Loumé, M.; Maire, P. H.; Breil, J.; Morse, R.-L.; Schurtz, G.
2006-06-01
This paper deals with ablation front instabilities simulations in the context of direct drive ICF. A simplified DT target, representative of realistic target on LIL is considered. We describe here two numerical approaches: the linear perturbation method using the perturbation codes Perle (planar) and Pansy (spherical) and the direct simulation method using our Bi-dimensional hydrodynamic code Chic. Numerical solutions are shown to converge, in good agreement with analytical models.
Common behavior of the critical properties of the 2D and 3D square-well fluids.
Reyes, Yuri; Flores-Sandoval, César A; Orea, Pedro
2013-10-28
We have analyzed the behavior of the critical properties and second virial coefficient of the square well fluids in two (2D) and three dimensions (3D) as a function of the interaction range. In both systems, the critical density shows an oscillating-like behavior as the interaction range increases. The second virial coefficient evaluated at the critical temperature as a function of the interaction range shows a general behavior for both cases, and quite surprisingly, there is a minimum of this parameter, for the 2D and 3D fluids, located approximately at the same interaction range. These findings are discussed in terms of the structure of the fluids, via the analysis of the radial distribution function evaluated at the critical point.
Simulation of 2D Kinetic Effects in Plasmas using the Grid Based Continuum Code LOKI
NASA Astrophysics Data System (ADS)
Banks, Jeffrey; Berger, Richard; Chapman, Tom; Brunner, Stephan
2016-10-01
Kinetic simulation of multi-dimensional plasma waves through direct discretization of the Vlasov equation is a useful tool to study many physical interactions and is particularly attractive for situations where minimal fluctuation levels are desired, for instance, when measuring growth rates of plasma wave instabilities. However, direct discretization of phase space can be computationally expensive, and as a result there are few examples of published results using Vlasov codes in more than a single configuration space dimension. In an effort to fill this gap we have developed the Eulerian-based kinetic code LOKI that evolves the Vlasov-Poisson system in 2+2-dimensional phase space. The code is designed to reduce the cost of phase-space computation by using fully 4th order accurate conservative finite differencing, while retaining excellent parallel scalability that efficiently uses large scale computing resources. In this poster I will discuss the algorithms used in the code as well as some aspects of their parallel implementation using MPI. I will also overview simulation results of basic plasma wave instabilities relevant to laser plasma interaction, which have been obtained using the code.
Phase coding by grid cells in unconstrained environments: Two-dimensional (2D) phase precession
Climer, Jason R.; Newman, Ehren L.; Hasselmo, Michael E.
2014-01-01
Action potential timing is thought to play a critical role in neural representation. For example, theta phase precession is a robust phenomenon exhibited by spatial cells of the rat entorhinal-hippocampal circuit. In phase precession, the time a neuron fires relative to the phase of theta rhythm (6-10Hz) oscillations in the local field potential reduces uncertainty about the position of the animal. This relationship between neural firing and behavior has made precession an important constraint for hypothetical mechanisms of temporal coding. However, challenges exist in identifying what regulates the spike timing of these cells. We have developed novel analytical techniques for mapping between behavior and neural firing that provide sufficient sensitivity to examine features of grid cell phase coding in open environments. Here, we show robust, omnidirectional phase precession by entorhinal grid cells in openfield enclosures. We present evidence that full phase precession persists regardless of how close the animal comes to the center of a firing field. We found many conjunctive grid cells, previously thought to be phase locked, also exhibit phase coding. However, we were unable to detect directional or field specific phase coding predicted by some variants of models. Finally, we present data that suggests bursting of layer II grid cells contributes to the bimodality of phase precession. We discuss implications of these observations for models of temporal coding and propose the utility of these techniques in other domains where behavior is aligned to neural spiking. PMID:23718553
Suzuki, Taizo; Kudo, Hiroyuki
2015-12-01
We propose a 2D non-separable block-lifting structure (2D-NSBL) that is easily formulated from the 1D separable block-lifting structure (1D-SBL) and 2D non-separable lifting structure (2D-NSL). The 2D-NSBL can be regarded as an extension of the 2D-NSL, because a two-channel 2D-NSBL is completely equivalent to a 2D-NSL. We apply the 2D-NSBL to M-channel ( M=2(n), n ∈ N) perfect reconstruction filter banks (PRFBs). The 2D-NSBL-based PRFBs outperform 1D-SBL-based PRFBs at lossy-to-lossless coding, whose image quality is scalable from lossless data to high compressed lossy data, because their rounding errors are reduced by merging many rounding operations.
NASA Astrophysics Data System (ADS)
Krause, M.; Camenzind, M.
2001-12-01
In the present paper, we examine the convergence behavior and inter-code reliability of astrophysical jet simulations in axial symmetry. We consider both pure hydrodynamic jets and jets with a dynamically significant magnetic field. The setups were chosen to match the setups of two other publications, and recomputed with the MHD code NIRVANA. We show that NIRVANA and the two other codes give comparable, but not identical results. We explain the differences by the different application of artificial viscosity in the three codes and numerical details, which can be summarized in a resolution effect, in the case without magnetic field: NIRVANA turns out to be a fair code of medium efficiency. It needs approximately twice the resolution as the code by Lind (Lind et al. 1989) and half the resolution as the code by Kössl (Kössl & Müller 1988). We find that some global properties of a hydrodynamical jet simulation, like e.g. the bow shock velocity, converge at 100 points per beam radius (ppb) with NIRVANA. The situation is quite different after switching on the toroidal magnetic field: in this case, global properties converge even at 10 ppb. In both cases, details of the inner jet structure and especially the terminal shock region are still insufficiently resolved, even at our highest resolution of 70 ppb in the magnetized case and 400 ppb for the pure hydrodynamic jet. The magnetized jet even suffers from a fatal retreat of the Mach disk towards the inflow boundary, which indicates that this simulation does not converge, in the end. This is also in definite disagreement with earlier simulations, and challenges further studies of the problem with other codes. In the case of our highest resolution simulation, we can report two new features: first, small scale Kelvin-Helmholtz instabilities are excited at the contact discontinuity next to the jet head. This slows down the development of the long wavelength Kelvin-Helmholtz instability and its turbulent cascade to smaller
TOPAZ - a finite element heat conduction code for analyzing 2-D solids
Shapiro, A.B.
1984-03-01
TOPAZ is a two-dimensional implicit finite element computer code for heat conduction analysis. This report provides a user's manual for TOPAZ and a description of the numerical algorithms used. Sample problems with analytical solutions are presented. TOPAZ has been implemented on the CRAY and VAX computers.
NEPHTIS: 2D/3D validation elements using MCNP4c and TRIPOLI4 Monte-Carlo codes
Courau, T.; Girardi, E.
2006-07-01
High Temperature Reactors (HTRs) appear as a promising concept for the next generation of nuclear power applications. The CEA, in collaboration with AREVA-NP and EDF, is developing a core modeling tool dedicated to the prismatic block-type reactor. NEPHTIS (Neutronics Process for HTR Innovating System) is a deterministic codes system based on a standard two-steps Transport-Diffusion approach (APOLLO2/CRONOS2). Validation of such deterministic schemes usually relies on Monte-Carlo (MC) codes used as a reference. However, when dealing with large HTR cores the fission source stabilization is rather poor with MC codes. In spite of this, it is shown in this paper that MC simulations may be used as a reference for a wide range of configurations. The first part of the paper is devoted to 2D and 3D MC calculations of a HTR core with control devices. Comparisons between MCNP4c and TRIPOLI4 MC codes are performed and show very consistent results. Finally, the last part of the paper is devoted to the code to code validation of the NEPHTIS deterministic scheme. (authors)
MOD_FreeSurf2D: a Surface Fluid Flow Simulation Model for Rivers, Streams, and Shallow Estuaries
NASA Astrophysics Data System (ADS)
Martin, N.; Gorelick, S. M.
2003-12-01
The MOD_FreeSurf2D, Modular Free Surface Flow in Two-Dimensions, computer model simulates free surface fluid flow in streams, rivers, and shallow estuaries under the assumptions of a well-mixed water column, a small water depth to width ratio, and a hydrostatic pressure distribution. The dependent variables in the model are free surface elevation, which provides total water depth, and fluid velocity. Primary advantages of MOD_FreeSurf2D relative to other two-dimensional models are a stable and computationally efficient numerical representation and a transparent representation of wetting and drying of the simulation domain. MOD_FreeSurf2D approximates the depth-averaged, shallow water equations with a finite volume, semi-implicit, semi-Lagrangian numerical representation similar to the TRIM method (Casulli, 1990; Casulli and Cheng, 1992; Casulli, 1999). The semi-implicit, semi-Lagrangian approach is computationally efficient because time steps can exceed the Courant-Friedrich-Lewy (CFL) stability criterion without significant accuracy degradation (Robert, 1982; Casulli, 1990). The rectangular, Arakawa C-grid, finite-volume layout allows flooding and drying in response to changing flow conditions without prior channel specification or closed boundary specification. Open boundary conditions available in MOD_FreeSurf2D are specified flux, specified total water depth, specified velocity, radiation free surface, and radiation velocity. MOD_FreeSurf2D requires initial topography, undisturbed water depth, and Manning's roughness coefficient. MOD_FreeSurf2D simulated results are shown to converge to the semi-empirical solution for a simple straight channel case. Two applications demonstrate the accuracy of MOD_FreeSurf2D. The first application is the evolution of water depth in the dambreak-style flume experiment of Bellos et al. (1992). In this case, MOD_FreeSurf2D accurately simulates the changing water depth in the flume during the experiment and models the wetting of
A 2D Benchmark for the Verification of the PEBBED Code
Barry D. Ganapol; Hans A. Gougar; A. O. Ougouag
2008-09-01
A new benchmarking concept is presented for verifying the PEBBED 3D multigroup finite difference/nodal diffusion code with application to pebble bed modular reactors (PBMRs). The key idea is to perform convergence acceleration, also called extrapolation to zero discretization, of a basic finite difference numerical algorithm to give extremely high accuracy. The method is first demonstrated on a 1D cylindrical shell and then on an r,8 wedge where the order of the second order finite difference scheme is confirmed to four places.
NASA Astrophysics Data System (ADS)
Singh, Simranjit; Kaur, Ramandeep; Singh, Amanvir; Kaler, R. S.
2015-03-01
In this paper, security of the spectrally encoded-optical code division multiplexed access (OCDMA) system is enhanced by using 2-D (orthogonal) modulation technique. This is an effective approach for simultaneous improvement of the system capacity and security. Also, the results show that the hybrid modulation technique proved to be a better option to enhance the data confidentiality at higher data rates using minimum utilization of bandwidth in a multiuser environment. Further, the proposed system performance is compared with the current state-of-the-art OCDMA schemes.
Efficient simulation of pitch angle collisions in a 2+2-D Eulerian Vlasov code
NASA Astrophysics Data System (ADS)
Banks, Jeff; Berger, R.; Brunner, S.; Tran, T.
2014-10-01
Here we discuss pitch angle scattering collisions in the context of the Eulerian-based kinetic code LOKI that evolves the Vlasov-Poisson system in 2+2-dimensional phase space. The collision operator is discretized using 4th order accurate conservative finite-differencing. The treatment of the Vlasov operator in phase-space uses an approach based on a minimally diffuse, fourth-order-accurate discretization (Banks and Hittinger, IEEE T. Plasma Sci. 39, 2198). The overall scheme is therefore discretely conservative and controls unphysical oscillations. Some details of the numerical scheme will be presented, and the implementation on modern highly concurrent parallel computers will be discussed. We will present results of collisional effects on linear and non-linear Landau damping of electron plasma waves (EPWs). In addition we will present initial results showing the effect of collisions on the evolution of EPWs in two space dimensions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LDRD program at LLNL under project tracking code 12-ERD-061.
A 2D and 3D Code Comparison of Turbulent Mixing in Spherical Implosions
NASA Astrophysics Data System (ADS)
Flaig, Markus; Thornber, Ben; Grieves, Brian; Youngs, David; Williams, Robin; Clark, Dan; Weber, Chris
2016-10-01
Turbulent mixing due to Richtmyer-Meshkov and Rayleigh-Taylor instabilities has proven to be a major obstacle on the way to achieving ignition in inertial confinement fusion (ICF) implosions. Numerical simulations are an important tool for understanding the mixing process, however, the results of such simulations depend on the choice of grid geometry and the numerical scheme used. In order to clarify this issue, we compare the simulation codes FLASH, TURMOIL, HYDRA, MIRANDA and FLAMENCO for the problem of the growth of single- and multi-mode perturbations on the inner interface of a dense imploding shell. We consider two setups: A single-shock setup with a convergence ratio of 4, as well as a higher convergence multi-shock setup that mimics a typical NIF mixcap experiment. We employ both singlemode and ICF-like broadband perturbations. We find good agreement between all codes concerning the evolution of the mix layer width, however, the are differences in the small scale mixing. We also develop a Bell-Plesset model that is able to predict the mix layer width and find excellent agreement with the simulation results. This work was supported by resources provided by the Pawsey Supercomputing Centre with funding from the Australian Government.
2-D Circulation Control Airfoil Benchmark Experiments Intended for CFD Code Validation
NASA Technical Reports Server (NTRS)
Englar, Robert J.; Jones, Gregory S.; Allan, Brian G.; Lin, Johb C.
2009-01-01
A current NASA Research Announcement (NRA) project being conducted by Georgia Tech Research Institute (GTRI) personnel and NASA collaborators includes the development of Circulation Control (CC) blown airfoils to improve subsonic aircraft high-lift and cruise performance. The emphasis of this program is the development of CC active flow control concepts for both high-lift augmentation, drag control, and cruise efficiency. A collaboration in this project includes work by NASA research engineers, whereas CFD validation and flow physics experimental research are part of NASA s systematic approach to developing design and optimization tools for CC applications to fixed-wing aircraft. The design space for CESTOL type aircraft is focusing on geometries that depend on advanced flow control technologies that include Circulation Control aerodynamics. The ability to consistently predict advanced aircraft performance requires improvements in design tools to include these advanced concepts. Validation of these tools will be based on experimental methods applied to complex flows that go beyond conventional aircraft modeling techniques. This paper focuses on recent/ongoing benchmark high-lift experiments and CFD efforts intended to provide 2-D CFD validation data sets related to NASA s Cruise Efficient Short Take Off and Landing (CESTOL) study. Both the experimental data and related CFD predictions are discussed.
Moment-of-fluid analytic reconstruction on 2D Cartesian grids
NASA Astrophysics Data System (ADS)
Lemoine, Antoine; Glockner, Stéphane; Breil, Jérôme
2017-01-01
Moment-of-Fluid (MoF) is a piecewise linear interface reconstruction method that tracks fluid through its volume fraction and centroid, which are deduced from the zeroth and first moments. We present a method that replaces the original minimization stage by an analytic reconstruction algorithm on bi-dimensional Cartesian grids. This algorithm provides accurate results for a lower computational cost than the original minimization algorithm. When more than two fluids are involved, this algorithm can be used coupled with the minimization algorithm. Although this paper deals with Cartesian grids, everything remains valid for any meshes that are made of rectangular cells.
The 1963 Vajont landslide (Italy) simulated through a numerical 2D code
NASA Astrophysics Data System (ADS)
Zaniboni, Filippo; Ausilia Paparo, Maria; Elsen, Katharina; Tinti, Stefano
2013-04-01
On October 9th, 1963, a huge mass of about 260 million m3 collapsed along Mt. Toc flank into the artificial lake called Vajont and generated a gigantic wave that invested the town of Longarone (North-East Italy, about 100 km north of Venice), provoking about 2000 casualties. The event started a public debate on the responsibilities for the disaster, and also raised crucial issues for the scientific and engineering community, regarding reservoir flank instability and safety of the hydroelectric plant. The peculiar features of the event were immediately evident. The clay layers remained uncovered in the upper part of the detachment niche, supporting the hypothesis of a well-defined pre-existing sliding surface, that could explain the high falling velocity (around 20 m/s as a maximum) and the compactness of the deposit layers that were found to sit almost unperturbed on the bottom of the valley. The numerical study presented here contributes to the understanding of dynamics of the Vajont landslide. It is found that the accurate knowledge of the pre- and post-slide morphology provides tight constraints on the parameters of the numerical model, that are tuned to fit the observed deposit. Numerical simulations are carried out by means of the in-house built code UBO-BLOCK2. The initial sliding body is divided into a mesh of interacting volume-conserving blocks, whose motion is computed numerically. The friction coefficient at the base of the landslide is determined through a best fit search by maximizing the degree of overlapping between the calculated and observed deposits. Our best solution is also able to account for the observed slight easterly rotation of the mass, the different behaviors of the eastern and western part of the sliding surface and the retrogressive motion of the slide that after climbing up the opposite flank of the valley reverted velocity to settle down on the bottom of the valley.
Maestro, Armando; Guzmán, Eduardo; Chuliá, Raquel; Ortega, Francisco; Rubio, Ramón G; Miller, Reinhard
2011-05-28
We report an experimental study that points out the existence of a fluid to soft-glass transition in Langmuir polymer monolayers of poly(methyl methacrylate) (PMMA), for which the water/air interface behaves as a poor-solvent. The temperature dependence of surface pressure vs. surface area equilibrium isotherms shows a glass-like transition temperature at T(g,2D)≈ 298 K, significantly lower than the value for bulk PMMA (T(g,bulk)≈ 378 K). The plot of the film thickness h vs. temperature shows a sharp change of slope at about the same temperature, 298 K, which is a typical hallmark of a glass transition in thin polymer films [J. L. Keddie, R. A. L. Jones, R. A. Cory, Europhys. Lett., 1996, 27, 59-64]. Furthermore, slightly above T(g,2D), the temperature dependence of the dilational viscosity does not follow an Arrhenius law, but instead can be described by a Vogel-Fulcher-Tamman equation with parameters that are typical of a fragile glass. Not only the qualitative behavior of three distinct equilibrium and dynamic properties, but also the quantitative agreement of the values of T(g) obtained, are a strong evidence of the existence of a fluid to soft-glass transition in this quasi-2D system.
Vlasov Fluid stability of a 2-D plasma with a linear magnetic field null
Kim, J.S.
1984-01-01
Vlasov Fluid stability of a 2-dimensional plasma near an O type magnetic null is investigated. Specifically, an elongated Z-pinch is considered, and applied to Field Reversed Configurations at Los Alamos National Laboratory by making a cylindrical approximation of the compact torus. The orbits near an elliptical O type null are found to be very complicated; the orbits are large and some are stochastic. The kinetic corrections to magnetohydrodynamics (MHD) are investigated by evaluating the expectation values of the growth rates of a Vlasov Fluid dispersion functional by using a set of trial functions based on ideal MHD. The dispersion functional involves fluid parts and orbit dependent parts. The latter involves phase integral of two time correlations. The phase integral is replaced by the time integral both for the regular and for the stochastic orbits. Two trial functions are used; one has a large displacement near the null and the other away from the null.
2D numerical modelling of fluid percolation in the subduction zone
NASA Astrophysics Data System (ADS)
Dymkova, D.; Gerya, T.; Podladchikov, Y.
2012-04-01
Subducting slab dehydration and resulting aqueous fluid percolation triggers partial melting in the mantle wedge and is accompanied with the further melt percolation through the porous space to the region above the slab. This problem is a complex coupled chemical, thermal and mechanical process responsible for the magmatic arcs formation and change of the mantle wedge properties. We have created a two-dimensional model of a two-phase flow in a porous media solving a coupled Darcy-Stokes system of equations for two incompressible media for the case of nonlinear visco-plastic rheology of solid matrix. Our system of equation is expanded for the high-porosity limits and stabilized for the case of high porosity contrasts. We use a finite-difference method with fully staggered grid in a combination with marker-in-cell technique for advection of fluid and solid phase. We performed a comparison with a benchmark of a thermal convection in a porous media in a bottom-heated box to verify the interdependency of Rayleigh and Nusselt numbers with earlier obtained ones (Cherkaoui & Wilcock, 1999). We have demonstrated the stability and robustness of the algorithm in case of strongly non-linear visco-plastic rheology of solid including cases with localization of both deformation and porous flow along spontaneously forming shear bands. We have checked our model for the forming of localized porous channels under a simple shear stress (Katz et al, 2006). We have developed a setup of a self-initiating due to gravitational instability subduction. With our coupled fluid-solid flow we have achieved a self-consistent water downward suction by a slab bending predicted by the other models with a simplified fluid kinematical motion implementation (Faccenda et al, 2009). With this setup we have obtained a self-consistent upper crust weakening by a porous fluid pressure which was theoretically assumed in the previously existing subduction models (Gerya & Meilick, 2011; Faccenda et al, 2009
A New Cell-Centered Implicit Numerical Scheme for Ions in the 2-D Axisymmetric Code Hall2de
NASA Technical Reports Server (NTRS)
Lopez Ortega, Alejandro; Mikellides, Ioannis G.
2014-01-01
We present a new algorithm in the Hall2De code to simulate the ion hydrodynamics in the acceleration channel and near plume regions of Hall-effect thrusters. This implementation constitutes an upgrade of the capabilities built in the Hall2De code. The equations of mass conservation and momentum for unmagnetized ions are solved using a conservative, finite-volume, cell-centered scheme on a magnetic-field-aligned grid. Major computational savings are achieved by making use of an implicit predictor/multi-corrector algorithm for time evolution. Inaccuracies in the prediction of the motion of low-energy ions in the near plume in hydrodynamics approaches are addressed by implementing a multi-fluid algorithm that tracks ions of different energies separately. A wide range of comparisons with measurements are performed to validate the new ion algorithms. Several numerical experiments with the location and value of the anomalous collision frequency are also presented. Differences in the plasma properties in the near-plume between the single fluid and multi-fluid approaches are discussed. We complete our validation by comparing predicted erosion rates at the channel walls of the thruster with measurements. Erosion rates predicted by the plasma properties obtained from simulations replicate accurately measured rates of erosion within the uncertainty range of the sputtering models employed.
A New Cell-Centered Implicit Numerical Scheme for Ions in the 2-D Axisymmetric Code Hall2de
NASA Technical Reports Server (NTRS)
Lopez Ortega, Alejandro; Mikellides, Ioannis G.
2014-01-01
We present a new algorithm in the Hall2De code to simulate the ion hydrodynamics in the acceleration channel and near plume regions of Hall-effect thrusters. This implementation constitutes an upgrade of the capabilities built in the Hall2De code. The equations of mass conservation and momentum for unmagnetized ions are solved using a conservative, finite-volume, cell-centered scheme on a magnetic-field-aligned grid. Major computational savings are achieved by making use of an implicit predictor/multi-corrector algorithm for time evolution. Inaccuracies in the prediction of the motion of low-energy ions in the near plume in hydrodynamics approaches are addressed by implementing a multi-fluid algorithm that tracks ions of different energies separately. A wide range of comparisons with measurements are performed to validate the new ion algorithms. Several numerical experiments with the location and value of the anomalous collision frequency are also presented. Differences in the plasma properties in the near-plume between the single fluid and multi-fluid approaches are discussed. We complete our validation by comparing predicted erosion rates at the channel walls of the thruster with measurements. Erosion rates predicted by the plasma properties obtained from simulations replicate accurately measured rates of erosion within the uncertainty range of the sputtering models employed.
Cpt 2.0: A 2-D Fluid Visualization Program for Unsteady Data
NASA Technical Reports Server (NTRS)
Levit, Creon; Shermer, Russ; Krystynak, John; Lasinski, T. A. (Technical Monitor)
1994-01-01
Cpt is an interactive two dimensional fluid visualization program for unsteady data sets. Cpt is capable of showing the velocity and scalar fields, calculating streaml@nes and contours, advecting particles, bubblers and more. The user interface is simple point and click and most of its operations are deducible from a few minutes of experimentation.
NASA Astrophysics Data System (ADS)
Velioǧlu, Deniz; Cevdet Yalçıner, Ahmet; Zaytsev, Andrey
2016-04-01
Tsunamis are huge waves with long wave periods and wave lengths that can cause great devastation and loss of life when they strike a coast. The interest in experimental and numerical modeling of tsunami propagation and inundation increased considerably after the 2011 Great East Japan earthquake. In this study, two numerical codes, FLOW 3D and NAMI DANCE, that analyze tsunami propagation and inundation patterns are considered. Flow 3D simulates linear and nonlinear propagating surface waves as well as long waves by solving three-dimensional Navier-Stokes (3D-NS) equations. NAMI DANCE uses finite difference computational method to solve 2D depth-averaged linear and nonlinear forms of shallow water equations (NSWE) in long wave problems, specifically tsunamis. In order to validate these two codes and analyze the differences between 3D-NS and 2D depth-averaged NSWE equations, two benchmark problems are applied. One benchmark problem investigates the runup of long waves over a complex 3D beach. The experimental setup is a 1:400 scale model of Monai Valley located on the west coast of Okushiri Island, Japan. Other benchmark problem is discussed in 2015 National Tsunami Hazard Mitigation Program (NTHMP) Annual meeting in Portland, USA. It is a field dataset, recording the Japan 2011 tsunami in Hilo Harbor, Hawaii. The computed water surface elevation and velocity data are compared with the measured data. The comparisons showed that both codes are in fairly good agreement with each other and benchmark data. The differences between 3D-NS and 2D depth-averaged NSWE equations are highlighted. All results are presented with discussions and comparisons. Acknowledgements: Partial support by Japan-Turkey Joint Research Project by JICA on earthquakes and tsunamis in Marmara Region (JICA SATREPS - MarDiM Project), 603839 ASTARTE Project of EU, UDAP-C-12-14 project of AFAD Turkey, 108Y227, 113M556 and 213M534 projects of TUBITAK Turkey, RAPSODI (CONCERT_Dis-021) of CONCERT
NASA Astrophysics Data System (ADS)
Zheng, Liang; May, Dave; Gerya, Taras; Bostock, Michael
2016-08-01
Shear deformation, accompanied with fluid activity inside the subduction interface, is related to many tectonic energy-releasing events, including regular and slow earthquakes. We have numerically examined the fluid-rock interactions inside a deforming subduction interface using state-of-the-art 2-D hydromechanical numerical models, which incorporate the rock fracturing behavior as a plastic rheology which is dependent on the pore fluid pressure. Our modeling results suggest that two typical dynamical regimes of the deforming subduction interface exist, namely, a "coupled" and a "decoupled" regime. In the coupled regime the subduction interface is subdivided into multiple rigid blocks, each separated by a narrow shear zone inclined at an angle of 15-20° with respect to the slab surface. In contrast, in the decoupled regime the subduction interface is divided into two distinct layers moving relative to each other along a pervasive slab surface-parallel shear zone. Through a systematic parameter study, we observe that the tensile strength (cohesion) of the material within the subduction interface dictates the resulting style of deformation within the interface: high cohesion (~60 MPa) results in the coupled regime, while low cohesion (~10 MPa) leads to the decoupled regime. We also demonstrate that the lithostatic pressure and inflow/outflow fluid fluxes (i.e., fluid-fluxed boundary condition) influence the location and orientation of faults. Predictions from our numerical models are supported by experimental laboratory studies, geological data, and geophysical observations from modern subduction settings.
Viscous dissipation in 2D fluid dynamics as a symplectic process and its metriplectic representation
NASA Astrophysics Data System (ADS)
Blender, Richard; Badin, Gualtiero
2017-03-01
Dissipation can be represented in Hamiltonian mechanics in an extended phase space as a symplectic process. The method uses an auxiliary variable which represents the excitation of unresolved dynamics and a Hamiltonian for the interaction between the resolved dynamics and the auxiliary variable. This method is applied to viscous dissipation (including hyper-viscosity) in a two-dimensional fluid, for which the dynamics is non-canonical. We derive a metriplectic representation and suggest a measure for the entropy of the system.
2D numerical modelling of fluid and melt percolation in the subduction zone
NASA Astrophysics Data System (ADS)
Dymkova, D.; Gerya, T.; Podladchikov, Y.
2011-12-01
Subducting slab dehydration and resulting aqueous fluid percolation triggers partial melting in the mantle wedge and is accompanied with the further melt percolation through the porous space to the region above the slab. This problem is a complex coupled chemical, thermal and mechanical process responsible for the magmatic arcs formation and change of the mantle wedge properties. We have created a two-dimensional model of a two-phase flow in a porous media solving a coupled Darcy-Stokes system of equations for two incompressible media for the case of visco-plastic rheology of solid matrix. Our system of equation is expanded for the high-porosity limits and stabilized it for the case of high porosity contrasts. Melting process is implemented according to the model of Katz (2003) where melting degree is a function of pressure, temperature, composition and water content. We use a finite-difference method with fully staggered grid in a combination with marker-in-cell technique for advection of fluid and solid phase. We performed a comparison with a benchmark of a thermal convection in a porous media in a bottom-heated box to verify the interdependency of Rayleigh and Nusselt numbers with a theoretical one. We have demonstrated the stability and robustness of the algorithm in case of strongly non-linear visco-plastic rheology of solid including cases with localization of both deformation and porous flow along spontaneously forming shear bands. We have checked our model for the forming of localized porous channels under a simple shear stress (channelling instability). Current work includes implementation of non-liner viscous rheology and elaboration on the setup of self-initiating subduction. Later we plan to include solid elasticity and fluid/solid compressibility. Also we have developed a full complexity system of equations for visco-elastic case and currently are working on numerical realisation of it to verify our simplifying assumptions for the general model
Multitasking the code ARC3D. [for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Barton, John T.; Hsiung, Christopher C.
1986-01-01
The CRAY multitasking system was developed in order to utilize all four processors and sharply reduce the wall clock run time. This paper describes the techniques used to modify the computational fluid dynamics code ARC3D for this run and analyzes the achieved speedup. The ARC3D code solves either the Euler or thin-layer N-S equations using an implicit approximate factorization scheme. Results indicate that multitask processing can be used to achieve wall clock speedup factors of over three times, depending on the nature of the program code being used. Multitasking appears to be particularly advantageous for large-memory problems running on multiple CPU computers.
A 2D suspension of active agents: the role of fluid mediated interactions.
Behmadi, Hojjat; Fazli, Zahra; Najafi, Ali
2017-03-22
Taking into account both the Vicsek short-range ordering and the far-field hydrodynamic interactions mediated by the ambient fluid, we investigate the role of long-range interactions in the ordering phenomena in a quasi 2-dimensional active suspension. By studying the number fluctuations, the velocity correlation functions and cluster size distribution function, we show that depending on the number density of swimmers and the strength of noise, the hydrodynamic interactions can have significant effects in a suspension. For a fixed value of noise, at larger density of particles, long-range interactions enhance the particle pairing and cluster formation in the system.
NASA Astrophysics Data System (ADS)
Mahmood, T.; Shahzad, A.; Iqbal, Z.; Ahmed, J.; Khan, M.
A study is presented for the flow and heat transfer of Sisko fluid model over an unsteady stretching sheet in the presence of uniform magnetic field. While taking newly developed similarity transformations, the governing time dependent partial differential equations are reduced to nonlinear ordinary differential equations. Numerical solutions of the reduced nonlinear differential equations are found by employing Shooting method. The influence of physical parameters of interest on the velocity and temperature profiles are highlighted graphically and examined in detail. Moreover, the skin friction coefficient and Nusselt number are tabulated against influential parameters. Skin friction coefficient increases with unsteadiness parameter, magnetic field and suction parameter.
A 2D suspension of active agents: the role of fluid mediated interactions
NASA Astrophysics Data System (ADS)
Behmadi, Hojjat; Fazli, Zahra; Najafi, Ali
2017-03-01
Taking into account both the Vicsek short-range ordering and the far-field hydrodynamic interactions mediated by the ambient fluid, we investigate the role of long-range interactions in the ordering phenomena in a quasi 2-dimensional active suspension. By studying the number fluctuations, the velocity correlation functions and cluster size distribution function, we show that depending on the number density of swimmers and the strength of noise, the hydrodynamic interactions can have significant effects in a suspension. For a fixed value of noise, at larger density of particles, long-range interactions enhance the particle pairing and cluster formation in the system.
Code verification for unsteady 3-D fluid-solid interaction problems
NASA Astrophysics Data System (ADS)
Yu, Kintak Raymond; Étienne, Stéphane; Hay, Alexander; Pelletier, Dominique
2015-12-01
This paper describes a procedure to synthesize Manufactured Solutions for Code Verification of an important class of Fluid-Structure Interaction (FSI) problems whose behaviors can be modeled as rigid body vibrations in incompressible fluids. We refer this class of FSI problems as Fluid-Solid Interaction problems, which can be found in many practical engineering applications. The methodology can be utilized to develop Manufactured Solutions for both 2-D and 3-D cases. We demonstrate the procedure with our numerical code. We present details of the formulation and methodology. We also provide the reasonings behind our proposed approach. Results from grid and time step refinement studies confirm the verification of our solver and demonstrate the versatility of the simple synthesis procedure. In addition, the results also demonstrate that the modified decoupled approach to verify flow problems with high-order time-stepping schemes can be employed equally well to verify code for multi-physics problems (here, those of the Fluid-Solid Interaction) when the numerical discretization is based on the Method of Lines.
LUDWIG: A parallel Lattice-Boltzmann code for complex fluids
NASA Astrophysics Data System (ADS)
Desplat, Jean-Christophe; Pagonabarraga, Ignacio; Bladon, Peter
2001-03-01
This paper describes Ludwig, a versatile code for the simulation of Lattice-Boltzmann (LB) models in 3D on cubic lattices. In fact, Ludwig is not a single code, but a set of codes that share certain common routines, such as I/O and communications. If Ludwig is used as intended, a variety of complex fluid models with different equilibrium free energies are simple to code, so that the user may concentrate on the physics of the problem, rather than on parallel computing issues. Thus far, Ludwig's main application has been to symmetric binary fluid mixtures. We first explain the philosophy and structure of Ludwig which is argued to be a very effective way of developing large codes for academic consortia. Next we elaborate on some parallel implementation issues such as parallel I/O, and the use of MPI to achieve full portability and good efficiency on both MPP and SMP systems. Finally, we describe how to implement generic solid boundaries, and look in detail at the particular case of a symmetric binary fluid mixture near a solid wall. We present a novel scheme for the thermodynamically consistent simulation of wetting phenomena, in the presence of static and moving solid boundaries, and check its performance.
NASA Astrophysics Data System (ADS)
Hassan, Ehab; Hatch, D. R.; Morrison, P. J.; Horton, W.
2016-09-01
Progress in understanding the coupling between plasma instabilities in the equatorial electrojet based on a unified fluid model is reported. Simulations with parameters set to various ionospheric background conditions revealed properties of the gradient-drift and Farley-Buneman instabilities. Notably, sharper density gradients increase linear growth rates at all scales, whereas variations in cross-field E × B drift velocity only affect small-scale instabilities. A formalism defining turbulent fluctuation energy for the system is introduced, and the turbulence is analyzed within this framework. This exercise serves as a useful verification test of the numerical simulations and also elucidates the physics underlying the ionospheric turbulence. Various physical mechanisms involved in the energetics are categorized as sources, sinks, nonlinear transfer, and cross-field coupling. The physics of the nonlinear transfer terms is studied to identify their roles in producing energy cascades, which explain the generation of small-scale structures that are stable in the linear regime. The theory of two-step energy cascading to generate the 3 m plasma irregularities in the equatorial electrojet is verified for the first time in the fluid regime. In addition, the nonlinearity of the system allows the possibility of an inverse energy cascade, potentially responsible for generating large-scale plasma structures at the top of the electrojet as found in different rocket and radar observations.
Masoumi, Nafiseh; Framanzad, F.; Zamanian, Behnam; Seddighi, A.S.; Moosavi, M.H.; Najarian, S.; Bastani, Dariush
2013-01-01
Many diseases are related to cerebrospinal fluid (CSF) hydrodynamics. Therefore, understanding the hydrodynamics of CSF flow and intracranial pressure is helpful for obtaining deeper knowledge of pathological processes and providing better treatments. Furthermore, engineering a reliable computational method is promising approach for fabricating in vitro models which is essential for inventing generic medicines. A Fluid-Solid Interaction (FSI)model was constructed to simulate CSF flow. An important problem in modeling the CSF flow is the diastolic back flow. In this article, using both rigid and flexible conditions for ventricular system allowed us to evaluate the effect of surrounding brain tissue. Our model assumed an elastic wall for the ventricles and a pulsatile CSF input as its boundary conditions. A comparison of the results and the experimental data was done. The flexible model gave better results because it could reproduce the diastolic back flow mentioned in clinical research studies. The previous rigid models have ignored the brain parenchyma interaction with CSF and so had not reported the back flow during the diastolic time. In this computational fluid dynamic (CFD) analysis, the CSF pressure and flow velocity in different areas were concordant with the experimental data. PMID:25337330
Masoumi, Nafiseh; Framanzad, F; Zamanian, Behnam; Seddighi, A S; Moosavi, M H; Najarian, S; Bastani, Dariush
2013-01-01
Many diseases are related to cerebrospinal fluid (CSF) hydrodynamics. Therefore, understanding the hydrodynamics of CSF flow and intracranial pressure is helpful for obtaining deeper knowledge of pathological processes and providing better treatments. Furthermore, engineering a reliable computational method is promising approach for fabricating in vitro models which is essential for inventing generic medicines. A Fluid-Solid Interaction (FSI)model was constructed to simulate CSF flow. An important problem in modeling the CSF flow is the diastolic back flow. In this article, using both rigid and flexible conditions for ventricular system allowed us to evaluate the effect of surrounding brain tissue. Our model assumed an elastic wall for the ventricles and a pulsatile CSF input as its boundary conditions. A comparison of the results and the experimental data was done. The flexible model gave better results because it could reproduce the diastolic back flow mentioned in clinical research studies. The previous rigid models have ignored the brain parenchyma interaction with CSF and so had not reported the back flow during the diastolic time. In this computational fluid dynamic (CFD) analysis, the CSF pressure and flow velocity in different areas were concordant with the experimental data.
Efficient simulation of 2+2-D multi-species plasmas waves using an Eulerian Vlasov code
NASA Astrophysics Data System (ADS)
Banks, Jeffrey; Berger, Richard; Chapman, Thomas; Hittinger, Jeffrey; Bruner, Stephan
2013-10-01
We discuss multi-species aspects of the Eulerian-based kinetic code LOKI that evolves the Vlasov-Poisson system in 2+2-dimensional phase space (Banks et al., Phys. Plasmas 18, 052102 (2011)). In order to control the inherent cost associated with phase-space simulation, our approach uses a minimally diffuse, fourth-order-accurate finite-volume discretization (Banks and Hittinger, IEEE T. Plasma Sci. 39, 2198-2207). The scheme is discretely conservative and controls unphysical oscillations. The details of the numerical scheme will be presented, and the implementation on modern highly concurrent parallel computers will be discussed. We will present results of 2D simulations of propagating ion acoustic waves (IAWs) created using an external driving potential. The evolution of the plasma wave field and associated self-consistent distribution of trapped electrons and ions is studied after the external drive is turned off. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD-061.
Explicit electromagnetic algorithm for 2D using a multi-fluid model in laser-produced plasmas
NASA Astrophysics Data System (ADS)
García, S.; Fuentes, F.; Paz, C.
2000-05-01
A new algorithm is presented for the explicit calculation of the electromagnetic fields in 2D simulation plasmas. This paper describes a multi-fluid model for the simulation of laser plasma interaction. Our description includes a simple two-electron fluid model and the background ions in a laser target, as coupled fluid components moving relative to a fixed Eulerian mesh. The electrons become a perfect gas obeying the non relativistic Maxwell-Boltzmann distribution. Braginskii's expression is used. The magnetic field equation is integrated in time by the Lax-Wendroff modified scheme, a method that is known to be stable as long as the Courant-Friedrichs-Lewy condition is satisfied. The first approximation step B m+1/2=+(
Eyler, L.L.; Budden, M.J.
1985-03-01
The objective of this work is to assess prediction capabilities and features of the MAGNUM-2D computer code in relation to its intended use in the Basalt Waste Isolation Project (BWIP). This objective is accomplished through a code verification and benchmarking task. Results are documented which support correctness of prediction capabilities in areas of intended model application. 10 references, 43 figures, 11 tables.
Droplet growth during vapor-liquid transition in a 2D Lennard-Jones fluid.
Midya, Jiarul; Das, Subir K
2017-01-14
Results for the kinetics of vapor-liquid phase transition have been presented from the molecular dynamics simulations of a single component two-dimensional Lennard-Jones fluid. The phase diagram for the model, primary prerequisite for this purpose, has been obtained via the Monte Carlo simulations. Our focus is on the region very close to the vapor branch of the coexistence curve. Quenches to such region provide morphology that consists of disconnected circular clusters in the vapor background. We identified that these clusters exhibit diffusive motion and grow via sticky collisions among them. The growth follows power-law behavior with time, exponent of which is found to be in nice agreement with a theoretical prediction.
Droplet growth during vapor-liquid transition in a 2D Lennard-Jones fluid
NASA Astrophysics Data System (ADS)
Midya, Jiarul; Das, Subir K.
2017-01-01
Results for the kinetics of vapor-liquid phase transition have been presented from the molecular dynamics simulations of a single component two-dimensional Lennard-Jones fluid. The phase diagram for the model, primary prerequisite for this purpose, has been obtained via the Monte Carlo simulations. Our focus is on the region very close to the vapor branch of the coexistence curve. Quenches to such region provide morphology that consists of disconnected circular clusters in the vapor background. We identified that these clusters exhibit diffusive motion and grow via sticky collisions among them. The growth follows power-law behavior with time, exponent of which is found to be in nice agreement with a theoretical prediction.
Anomalous diffusion of an ellipsoid in quasi-2D active fluids
NASA Astrophysics Data System (ADS)
Peng, Yi; Yang, Ou; Tang, Chao; Cheng, Xiang
Enhanced diffusion of a tracer particle is a unique feature in active fluids. Here, we studied the diffusion of an ellipsoid in a free-standing film of E. coli. Particle diffusion is linearly enhanced at low bacterial concentrations, whereas a non-linear enhancement is observed at high bacterial concentrations due to the giant fluctuation. More importantly, we uncover an anomalous coupling between the translational and rotational degrees of freedom that is strictly prohibited in the classical Brownian diffusion. Combining experiments with theoretical modeling, we show that such an anomaly arises from the stretching flow induced by the force dipole of swimming bacteria. Our work illustrates a novel universal feature of active matter and transforms the understanding of fundamental transport processes in microbiological systems. ACS Petroleum Research Fund #54168-DNI9, NSF Faculty Early Career Development Program, DMR-1452180.
Experimental methodology for computational fluid dynamics code validation
Aeschliman, D.P.; Oberkampf, W.L.
1997-09-01
Validation of Computational Fluid Dynamics (CFD) codes is an essential element of the code development process. Typically, CFD code validation is accomplished through comparison of computed results to previously published experimental data that were obtained for some other purpose, unrelated to code validation. As a result, it is a near certainty that not all of the information required by the code, particularly the boundary conditions, will be available. The common approach is therefore unsatisfactory, and a different method is required. This paper describes a methodology developed specifically for experimental validation of CFD codes. The methodology requires teamwork and cooperation between code developers and experimentalists throughout the validation process, and takes advantage of certain synergisms between CFD and experiment. The methodology employs a novel uncertainty analysis technique which helps to define the experimental plan for code validation wind tunnel experiments, and to distinguish between and quantify various types of experimental error. The methodology is demonstrated with an example of surface pressure measurements over a model of varying geometrical complexity in laminar, hypersonic, near perfect gas, 3-dimensional flow.
Fluid-Rock Interaction Models: Code Release and Results
NASA Astrophysics Data System (ADS)
Bolton, E. W.
2006-12-01
Numerical models our group has developed for understanding the role of kinetic processes during fluid-rock interaction will be released free to the public. We will also present results that highlight the importance of kinetic processes. The author is preparing manuals describing the numerical methods used, as well as "how-to" guides for using the models. The release will include input files, full in-line code documentation of the FORTRAN source code, and instructions for use of model output for visualization and analysis. The aqueous phase (weathering) and supercritical (mixed-volatile metamorphic) fluid flow and reaction models for porous media will be released separately. These codes will be useful as teaching and research tools. The codes may be run on current generation personal computers. Although other codes are available for attacking some of the problems we address, unique aspects of our codes include sub-grid-scale grain models to track grain size changes, as well as dynamic porosity and permeability. Also, as the flow field can change significantly over the course of the simulation, efficient solution methods have been developed for the repeated solution of Poisson-type equations that arise from Darcy's law. These include sparse-matrix methods as well as the even more efficient spectral-transform technique. Results will be presented for kinetic control of reaction pathways and for heterogeneous media. Codes and documentation for modeling intra-grain diffusion of trace elements and isotopes, and exchange of these between grains and moving fluids will also be released. The unique aspect of this model is that it includes concurrent diffusion and grain growth or dissolution for multiple mineral types (low-diffusion regridding has been developed to deal with the moving-boundary problem at the fluid/mineral interface). Results for finite diffusion rates will be compared to batch and fractional melting models. Additional code and documentation will be released
2D µ-Particle Image Velocimetry and Computational Fluid Dynamics Study Within a 3D Porous Scaffold.
Campos Marin, A; Grossi, T; Bianchi, E; Dubini, G; Lacroix, D
2017-05-01
Transport properties of 3D scaffolds under fluid flow are critical for tissue development. Computational fluid dynamics (CFD) models can resolve 3D flows and nutrient concentrations in bioreactors at the scaffold-pore scale with high resolution. However, CFD models can be formulated based on assumptions and simplifications. μ-Particle image velocimetry (PIV) measurements should be performed to improve the reliability and predictive power of such models. Nevertheless, measuring fluid flow velocities within 3D scaffolds is challenging. The aim of this study was to develop a μPIV approach to allow the extraction of velocity fields from a 3D additive manufacturing scaffold using a conventional 2D μPIV system. The μ-computed tomography scaffold geometry was included in a CFD model where perfusion conditions were simulated. Good agreement was found between velocity profiles from measurements and computational results. Maximum velocities were found at the centre of the pore using both techniques with a difference of 12% which was expected according to the accuracy of the μPIV system. However, significant differences in terms of velocity magnitude were found near scaffold substrate due to scaffold brightness which affected the μPIV measurements. As a result, the limitations of the μPIV system only permits a partial validation of the CFD model. Nevertheless, the combination of both techniques allowed a detailed description of velocity maps within a 3D scaffold which is crucial to determine the optimal cell and nutrient transport properties.
NASA Astrophysics Data System (ADS)
Kirnev, G.; Fundamenski, W.; Corrigan, G.
2007-06-01
The scrape-off layer (SOL) of the JET tokamak has been modelled using a two-dimensional plasma/neutral code, EDGE2D/NIMBUS, with variable transport coefficients, chosen according to nine candidate theories for radial heat transport in the SOL. Comparison of the radial power width on the outer divertor plates, λq, predicted by modelling and measured experimentally in L-mode and ELM-averaged H-mode at JET is presented. Transport coefficients based on classical and neo-classical ion conduction are found to offer the best agreement with experimentally measured λq magnitude and scaling with target power, upstream density and toroidal field. These results reinforce the findings of an earlier study, based on a simplified model of the SOL (Chankin 1997 Plasma Phys. Control. Fusion 39 1059), and support the earlier estimate of the power width at the entrance of the outer divertor volume in ITER, λq ap 4 mm mapped to the outer mid-plane (Fundamenski et al 2004 Nucl. Fusion 44 20).
NASA Astrophysics Data System (ADS)
Marozas, J. A.; Collins, T. J. B.
2012-10-01
The cross-beam energy transfer (CBET) effect causes pump and probe beams to exchange energy via stimulated Brillouin scattering.footnotetext W. L. Kruer, The Physics of Laser--Plasma Interactions, Frontiers in Physics, Vol. 73, edited by D. Pines (Addison-Wesley, Redwood City, CA, 1988), p. 45. The total energy gained does not, in general, equate to the total energy lost; the ion-acoustic wave comprises the residual energy balance, which can decay, resulting in ion heating.footnotetext E. A. Williams et al., Phys. Plasmas 11, 231 (2004). The additional ion heating can retune the conditions for CBET affecting the overall energy transfer as a function of time. CBET and the additional ion heating are incorporated into the 2-D hydrodynamics code DRACOfootnotetext P. B. Radha et al., Phys. Plasmas 12, 056307 (2005). as an integral part of the 3-D ray trace where CBET is treated self-consistently within on the hydrodynamic evolution. DRACO simulation results employing CBET will be discussed. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.
NASA Astrophysics Data System (ADS)
Meqbel, Naser; Weckmann, Ute; Muñoz, Gerard; Ritter, Oliver
2016-12-01
We report on a study to explore the deep electrical conductivity structure of the Dead Sea Basin (DSB) using magnetotelluric (MT) data collected along a transect across the DSB where the left lateral strike-slip Dead Sea transform (DST) fault splits into two fault strands forming one of the largest pull-apart basins of the world. A very pronounced feature of our 2-D inversion model is a deep, subvertical conductive zone beneath the DSB. The conductor extends through the entire crust and is sandwiched between highly resistive structures associated with Precambrian rocks of the basin flanks. The high electrical conductivity could be attributed to fluids released by dehydration of the uppermost mantle beneath the DSB, possibly in combination with fluids released by mid- to low-grade metamorphism in the lower crust and generation of hydrous minerals in the middle crust through retrograde metamorphism. Similar high conductivity zones associated with fluids have been reported from other large fault systems. The presence of fluids and hydrous minerals in the middle and lower crust could explain the required low friction coefficient of the DST along the eastern boundary of the DSB and the high subsidence rate of basin sediments. 3-D inversion models confirm the existence of a subvertical high conductivity structure underneath the DSB but its expression is far less pronounced. Instead, the 3-D inversion model suggests a deepening of the conductive DSB sediments off-profile towards the south, reaching a maximum depth of approximately 12 km, which is consistent with other geophysical observations. At shallower levels, the 3-D inversion model reveals salt diapirism as an upwelling of highly resistive structures, localized underneath the Al-Lisan Peninsula. The 3-D model furthermore contains an E-W elongated conductive structure to the northeast of the DSB. More MT data with better spatial coverage are required, however, to fully constrain the robustness of the above
High-Performance Java Codes for Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Riley, Christopher; Chatterjee, Siddhartha; Biswas, Rupak; Biegel, Bryan (Technical Monitor)
2001-01-01
The computational science community is reluctant to write large-scale computationally -intensive applications in Java due to concerns over Java's poor performance, despite the claimed software engineering advantages of its object-oriented features. Naive Java implementations of numerical algorithms can perform poorly compared to corresponding Fortran or C implementations. To achieve high performance, Java applications must be designed with good performance as a primary goal. This paper presents the object-oriented design and implementation of two real-world applications from the field of Computational Fluid Dynamics (CFD): a finite-volume fluid flow solver (LAURA, from NASA Langley Research Center), and an unstructured mesh adaptation algorithm (2D_TAG, from NASA Ames Research Center). This work builds on our previous experience with the design of high-performance numerical libraries in Java. We examine the performance of the applications using the currently available Java infrastructure and show that the Java version of the flow solver LAURA performs almost within a factor of 2 of the original procedural version. Our Java version of the mesh adaptation algorithm 2D_TAG performs within a factor of 1.5 of its original procedural version on certain platforms. Our results demonstrate that object-oriented software design principles are not necessarily inimical to high performance.
NASA Astrophysics Data System (ADS)
Gramusset, Anneli; Herrera, Paulo; Parada, Miguel Angel
2014-05-01
A thorough understanding of the thermal processes that occur in aquifers is essential to assess local and regional low enthalpy geothermal resources. The relationship between heat convection and heat conduction has been widely studied in basins around the world at a regional scale. However, few studies have focused on smaller, shallower basins containing free aquifers hosted in unconsolidated fluvial-alluvial sediments, like Santiago Basin. We use numerical modeling to simulate the fluid dynamics of the Santiago basin groundwater system under different thermal conditions. Despite the current computational advances, modeling such a complex system with a full 3D approach is still numerically time demanding and unstable. Besides, the basin has irregular geometry and variable hydraulic and thermal features. Thus, we performed a 2D model comprising a thin water saturated slice of sediments beneath the central part of the city, where the basin morphology is well constrained. We simulate coupled groundwater and heat flow throughout this vertical slice and we compare results for different scenarios that comprise different hydraulic, thermal and geometric parameters. Results obtained with certain hydraulic conductivities show that instabilities appear giving rise to free thermal convection in the deepest parts of the basin. If the system is split into several hydrogeological units, the onset of these instabilities is inhibited. Consequently, we suggest that the stratigraphic complexities of a fluvial-alluvial deposit should be considered to better understanding the thermal-driven groundwater fluid dynamics.
Methodology for computational fluid dynamics code verification/validation
Oberkampf, W.L.; Blottner, F.G.; Aeschliman, D.P.
1995-07-01
The issues of verification, calibration, and validation of computational fluid dynamics (CFD) codes has been receiving increasing levels of attention in the research literature and in engineering technology. Both CFD researchers and users of CFD codes are asking more critical and detailed questions concerning the accuracy, range of applicability, reliability and robustness of CFD codes and their predictions. This is a welcomed trend because it demonstrates that CFD is maturing from a research tool to the world of impacting engineering hardware and system design. In this environment, the broad issue of code quality assurance becomes paramount. However, the philosophy and methodology of building confidence in CFD code predictions has proven to be more difficult than many expected. A wide variety of physical modeling errors and discretization errors are discussed. Here, discretization errors refer to all errors caused by conversion of the original partial differential equations to algebraic equations, and their solution. Boundary conditions for both the partial differential equations and the discretized equations will be discussed. Contrasts are drawn between the assumptions and actual use of numerical method consistency and stability. Comments are also made concerning the existence and uniqueness of solutions for both the partial differential equations and the discrete equations. Various techniques are suggested for the detection and estimation of errors caused by physical modeling and discretization of the partial differential equations.
Code Verification of the HIGRAD Computational Fluid Dynamics Solver
Van Buren, Kendra L.; Canfield, Jesse M.; Hemez, Francois M.; Sauer, Jeremy A.
2012-05-04
The purpose of this report is to outline code and solution verification activities applied to HIGRAD, a Computational Fluid Dynamics (CFD) solver of the compressible Navier-Stokes equations developed at the Los Alamos National Laboratory, and used to simulate various phenomena such as the propagation of wildfires and atmospheric hydrodynamics. Code verification efforts, as described in this report, are an important first step to establish the credibility of numerical simulations. They provide evidence that the mathematical formulation is properly implemented without significant mistakes that would adversely impact the application of interest. Highly accurate analytical solutions are derived for four code verification test problems that exercise different aspects of the code. These test problems are referred to as: (i) the quiet start, (ii) the passive advection, (iii) the passive diffusion, and (iv) the piston-like problem. These problems are simulated using HIGRAD with different levels of mesh discretization and the numerical solutions are compared to their analytical counterparts. In addition, the rates of convergence are estimated to verify the numerical performance of the solver. The first three test problems produce numerical approximations as expected. The fourth test problem (piston-like) indicates the extent to which the code is able to simulate a 'mild' discontinuity, which is a condition that would typically be better handled by a Lagrangian formulation. The current investigation concludes that the numerical implementation of the solver performs as expected. The quality of solutions is sufficient to provide credible simulations of fluid flows around wind turbines. The main caveat associated to these findings is the low coverage provided by these four problems, and somewhat limited verification activities. A more comprehensive evaluation of HIGRAD may be beneficial for future studies.
Improvement of Basic Fluid Dynamics Models for the COMPASS Code
NASA Astrophysics Data System (ADS)
Zhang, Shuai; Morita, Koji; Shirakawa, Noriyuki; Yamamoto, Yuichi
The COMPASS code is a new next generation safety analysis code to provide local information for various key phenomena in core disruptive accidents of sodium-cooled fast reactors, which is based on the moving particle semi-implicit (MPS) method. In this study, improvement of basic fluid dynamics models for the COMPASS code was carried out and verified with fundamental verification calculations. A fully implicit pressure solution algorithm was introduced to improve the numerical stability of MPS simulations. With a newly developed free surface model, numerical difficulty caused by poor pressure solutions is overcome by involving free surface particles in the pressure Poisson equation. In addition, applicability of the MPS method to interactions between fluid and multi-solid bodies was investigated in comparison with dam-break experiments with solid balls. It was found that the PISO algorithm and free surface model makes simulation with the passively moving solid model stable numerically. The characteristic behavior of solid balls was successfully reproduced by the present numerical simulations.
Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali
2014-01-01
Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization. PMID:24600168
Numerical model of water flow and solute accumulation in vertisols using HYDRUS 2D/3D code
NASA Astrophysics Data System (ADS)
Weiss, Tomáš; Dahan, Ofer; Turkeltub, Tuvia
2015-04-01
boundary to the wall of the crack (so that the solute can accumulate due to evaporation on the crack block wall, and infiltrating fresh water can push the solute further down) - in order to do so, HYDRUS 2D/3D code had to be modified by its developers. Unconventionally, the main fitting parameters were: parameter a and n in the soil water retention curve and saturated hydraulic conductivity. The amount of infiltrated water (within a reasonable range), the infiltration function in the crack and the actual evaporation from the crack were also used as secondary fitting parameters. The model supports the previous findings that significant amount (~90%) of water from rain events must infiltrate through the crack. It was also noted that infiltration from the crack has to be increasing with depth and that the highest infiltration rate should be somewhere between 1-3m. This paper suggests a new way how to model vertisols in semi-arid regions. It also supports the previous findings about vertisols: especially, the utmost importance of soil cracks as preferential pathways for water and contaminants and soil cracks as deep evaporators.
ZEUS-MP/2: Computational Fluid Dynamics Code
NASA Astrophysics Data System (ADS)
Hayes, John C.; Norman, Michael L.; Fiedler, Robert A.; Bordner, James O.; Li, Pak Shing; Clark, Stephen E.; Ud-Doula, Asif; Mac Low, Mordecai-Mark
2011-02-01
ZEUS-MP is a multiphysics, massively parallel, message-passing implementation of the ZEUS code. ZEUS-MP offers an MHD algorithm that is better suited for multidimensional flows than the ZEUS-2D module by virtue of modifications to the method of characteristics scheme first suggested by Hawley & Stone. This MHD module is shown to compare quite favorably to the TVD scheme described by Ryu et al. ZEUS-MP is the first publicly available ZEUS code to allow the advection of multiple chemical (or nuclear) species. Radiation hydrodynamic simulations are enabled via an implicit flux-limited radiation diffusion (FLD) module. The hydrodynamic, MHD, and FLD modules can be used, singly or in concert, in one, two, or three space dimensions. In addition, so-called 1.5D and 2.5D grids, in which the "half-D'' denotes a symmetry axis along which a constant but nonzero value of velocity or magnetic field is evolved, are supported. Self-gravity can be included either through the assumption of a GM/r potential or through a solution of Poisson's equation using one of three linear solver packages (conjugate gradient, multigrid, and FFT) provided for that purpose. Point-mass potentials are also supported. Because ZEUS-MP is designed for large simulations on parallel computing platforms, considerable attention is paid to the parallel performance characteristics of each module in the code. Strong-scaling tests involving pure hydrodynamics (with and without self-gravity), MHD, and RHD are performed in which large problems (2563 zones) are distributed among as many as 1024 processors of an IBM SP3. Parallel efficiency is a strong function of the amount of communication required between processors in a given algorithm, but all modules are shown to scale well on up to 1024 processors for the chosen fixed problem size.
NASA Technical Reports Server (NTRS)
Hanson, Donald B.
1994-01-01
A two dimensional linear aeroacoustic theory for rotor/stator interaction with unsteady coupling was derived and explored in Volume 1 of this report. Computer program CUP2D has been written in FORTRAN embodying the theoretical equations. This volume (Volume 2) describes the structure of the code, installation and running, preparation of the input file, and interpretation of the output. A sample case is provided with printouts of the input and output. The source code is included with comments linking it closely to the theoretical equations in Volume 1.
nMHDust: A 4-Fluid Partially Ionized Dusty Plasma Code
NASA Astrophysics Data System (ADS)
Lazerson, Samuel
2008-11-01
nMHDust is a next generation 4-fluid partially ionized magnetized dusty plasma code, treating the inertial dynamics of dust, ion and neutral components. Coded in ANSI C, the numerical method is based on the MHDust 3-fluid fully ionized dusty plasma code. This code expands the features of the MHDust code to include ionization/recombination effects and the netCDF data format. Tests of this code include: ionization instabilities, wave mode propagation (electromagnetic and acoustic), shear-flow instabilities, and magnetic reconnection. Relevant parameters for the space environment are considered, allowing a comparison to be made with previous dusty plasma codes (MHDust and DENISIS). The utility of the code is expanded through the possibility of a small dust mass. This allows nMHDust to be used as a 2-ion plasma code. nMHDust completes the array of fluid dusty plasma codes available for numerical investigations into nonlinear phenomena in the field of astrophysical dusty plasmas.
Shapiro, A.B.
1983-08-01
The computer code FACET calculates the radiation geometric view factor (alternatively called shape factor, angle factor, or configuration factor) between surfaces for axisymmetric, two-dimensional planar and three-dimensional geometries with interposed third surface obstructions. FACET was developed to calculate view factors for input to finite-element heat-transfer analysis codes. The first section of this report is a brief review of previous radiation-view-factor computer codes. The second section presents the defining integral equation for the geometric view factor between two surfaces and the assumptions made in its derivation. Also in this section are the numerical algorithms used to integrate this equation for the various geometries. The third section presents the algorithms used to detect self-shadowing and third-surface shadowing between the two surfaces for which a view factor is being calculated. The fourth section provides a user's input guide followed by several example problems.
Bdzil, John Bohdan
2016-09-21
The full level-set function code, DSD3D, is fully described in LA-14336 (2007) [1]. This ASCI-supported, DSD code project was the last such LANL DSD code project that I was involved with before my retirement in 2007. My part in the project was to design and build the core DSD3D solver, which was to include a robust DSD boundary condition treatment. A robust boundary condition treatment was required, since for an important local “customer,” the only description of the explosives’ boundary was through volume fraction data. Given this requirement, the accuracy issues I had encountered with our “fast-tube,” narrowband, DSD2D solver, and the difficulty we had building an efficient MPI-parallel version of the narrowband DSD2D, I decided DSD3D should be built as a full level-set function code, using a totally local DSD boundary condition algorithm for the level-set function, phi, which did not rely on the gradient of the level-set function being one, |grad(phi)| = 1. The narrowband DSD2D solver was built on the assumption that |grad(phi)| could be driven to one, and near the boundaries of the explosive this condition was not being satisfied. Since the narrowband is typically no more than10*dx wide, narrowband methods are discrete methods with a fixed, non-resolvable error, where the error is related to the thickness of the band: the narrower the band the larger the errors. Such a solution represents a discrete approximation to the true solution and does not limit to the solution of the underlying PDEs under grid resolution.The full level-set function code, DSD3D, is fully described in LA-14336 (2007) [1]. This ASCI-supported, DSD code project was the last such LANL DSD code project that I was involved with before my retirement in 2007. My part in the project was to design and build the core DSD3D solver, which was to include a robust DSD boundary condition treatment. A robust boundary condition treatment was required, since for an important local
VFLOW2D - A Vorte-Based Code for Computing Flow Over Elastically Supported Tubes and Tube Arrays
WOLFE,WALTER P.; STRICKLAND,JAMES H.; HOMICZ,GREGORY F.; GOSSLER,ALBERT A.
2000-10-11
A numerical flow model is developed to simulate two-dimensional fluid flow past immersed, elastically supported tube arrays. This work is motivated by the objective of predicting forces and motion associated with both deep-water drilling and production risers in the oil industry. This work has other engineering applications including simulation of flow past tubular heat exchangers or submarine-towed sensor arrays and the flow about parachute ribbons. In the present work, a vortex method is used for solving the unsteady flow field. This method demonstrates inherent advantages over more conventional grid-based computational fluid dynamics. The vortex method is non-iterative, does not require artificial viscosity for stability, displays minimal numerical diffusion, can easily treat moving boundaries, and allows a greatly reduced computational domain since vorticity occupies only a small fraction of the fluid volume. A gridless approach is used in the flow sufficiently distant from surfaces. A Lagrangian remap scheme is used near surfaces to calculate diffusion and convection of vorticity. A fast multipole technique is utilized for efficient calculation of velocity from the vorticity field. The ability of the method to correctly predict lift and drag forces on simple stationary geometries over a broad range of Reynolds numbers is presented.
TRAC code assessment using data from SCTF Core-III, a large-scale 2D/3D facility
Boyack, B.E.; Shire, P.R.; Harmony, S.C.; Rhee, G.
1988-01-01
Nine tests from the SCTF Core-III configuration have been analyzed using TRAC-PF1/MOD1. The objectives of these assessment activities were to obtain a better understanding of the phenomena occurring during the refill and reflood phases of a large-break loss-of-coolant accident, to determine the accuracy to which key parameters are calculated, and to identify deficiencies in key code correlations and models that provide closure for the differential equations defining thermal-hydraulic phenomena in pressurized water reactors. Overall, the agreement between calculated and measured values of peak cladding temperature is reasonable. In addition, TRAC adequately predicts many of the trends observed in both the integral effect and separate effect tests conducted in SCTF Core-III. The importance of assessment activities that consider potential contributors to discrepancies between the measured and calculated results arising from three sources are described as those related to (1) knowledge about the facility configuration and operation, (2) facility modeling for code input, and (3) deficiencies in code correlations and models. An example is provided. 8 refs., 7 figs., 2 tabs.
ZORNOC: a 1 1/2-D tokamak data analysis code for studying noncircular high beta plasmas
Zurro, B.; Wieland, R.M.; Murakami, M.; Swain, D.W.
1980-03-01
A new tokamak data analysis code, ZORNOC, was developed to study noncircular, high beta plasmas in the Impurity Study Experiment (ISX-B). These plasmas exhibit significant flux surface shifts and elongation in both ohmically heated and beam-heated discharges. The MHD equilibrium flux surface geometry is determined by solving the Grad-Shafranov equation based on: (1) the shape of the outermost flux surface, deduced from the magnetic loop probes; (2) a pressure profile, deduced by means of Thomson scattering data (electrons), charge exchange data (ions), and a Fokker-Planck model (fast ions); and (3) a safety factor profile, determined from the experimental data using a simple model (Z/sub eff/ = const) that is self-consistently altered while the plasma equilibrium is iterated. For beam-heated discharches the beam deposition profile is determined by means of a Monte Carlo scheme and the slowing down of the fast ions by means of an analytical solution of the Fokker-Planck equation. The code also carries out an electron power balance and calculates various confinement parameters. The code is described and examples of its operation are given.
HYDRA, A finite element computational fluid dynamics code: User manual
Christon, M.A.
1995-06-01
HYDRA is a finite element code which has been developed specifically to attack the class of transient, incompressible, viscous, computational fluid dynamics problems which are predominant in the world which surrounds us. The goal for HYDRA has been to achieve high performance across a spectrum of supercomputer architectures without sacrificing any of the aspects of the finite element method which make it so flexible and permit application to a broad class of problems. As supercomputer algorithms evolve, the continuing development of HYDRA will strive to achieve optimal mappings of the most advanced flow solution algorithms onto supercomputer architectures. HYDRA has drawn upon the many years of finite element expertise constituted by DYNA3D and NIKE3D Certain key architectural ideas from both DYNA3D and NIKE3D have been adopted and further improved to fit the advanced dynamic memory management and data structures implemented in HYDRA. The philosophy for HYDRA is to focus on mapping flow algorithms to computer architectures to try and achieve a high level of performance, rather than just performing a port.
Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.
1995-09-01
Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.
Viriato: A Fourier-Hermite spectral code for strongly magnetized fluid-kinetic plasma dynamics
NASA Astrophysics Data System (ADS)
Loureiro, N. F.; Dorland, W.; Fazendeiro, L.; Kanekar, A.; Mallet, A.; Vilelas, M. S.; Zocco, A.
2016-09-01
We report on the algorithms and numerical methods used in Viriato, a novel fluid-kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model (KREHM) equations (Zocco and Schekochihin, 2011) (which reduce to the standard Reduced-MHD equations in the appropriate limit) and (ii) the kinetic reduced MHD (KRMHD) equations (Schekochihin et al., 2009). Two main applications of these equations are magnetized (Alfvénic) plasma turbulence and magnetic reconnection. Viriato uses operator splitting (Strang or Godunov) to separate the dynamics parallel and perpendicular to the ambient magnetic field (assumed strong). Along the magnetic field, Viriato allows for either a second-order accurate MacCormack method or, for higher accuracy, a spectral-like scheme composed of the combination of a total variation diminishing (TVD) third order Runge-Kutta method for the time derivative with a 7th order upwind scheme for the fluxes. Perpendicular to the field Viriato is pseudo-spectral, and the time integration is performed by means of an iterative predictor-corrector scheme. In addition, a distinctive feature of Viriato is its spectral representation of the parallel velocity-space dependence, achieved by means of a Hermite representation of the perturbed distribution function. A series of linear and nonlinear benchmarks and tests are presented, including a detailed analysis of 2D and 3D Orszag-Tang-type decaying turbulence, both in fluid and kinetic regimes.
This study is a part of an ongoing research project that aims at assessing the environmental benefits of DNAPL removal. The laboratory part of the research project is to examine the functional relationship between DNAPL architecture, mass removal and contaminant mass flux in 2-D ...
This study is a part of an ongoing research project that aims at assessing the environmental benefits of DNAPL removal. The laboratory part of the research project is to examine the functional relationship between DNAPL architecture, mass removal and contaminant mass flux in 2-D ...
NASA Astrophysics Data System (ADS)
Bateman, A.; Medina, V.; Hürlimann, M.
2009-04-01
Debris flows are present in every country where a combination of high mountains and flash floods exists. In the northern part of the Iberian Peninsula, at the Pyrenees, sporadic debris events occur. We selected two different events. The first one was triggered at La Guingueta by the big exceptional flood event that produced many debris flows in 1982 which were spread all over the Catalonian Pyrenees. The second, more local event occurred in 2000 at the mountain Montserrat at the Pre-litoral mountain chain. We present here some results of the FLATModel, entirely developed at the Research Group in Sediment Transport of the Hydraulic, Marine and Environmental Engineering Department (GITS-UPC). The 2D FLATModel is a Finite Volume method that uses the Godunov scheme. Some numerical arranges have been made to analyze the entrainment process during the events, the Stop & Go phenomena and the final deposit of the material. The material rheology implemented is the Voellmy approach, because it acts very well evaluating the frictional and turbulent behavior. The FLATModel uses a GIS environment that facilitates the data analysis as the comparison between field and numerical data. The two events present two different characteristics, one is practically a one dimensional problem of 1400 m in length and the other has a more two dimensional behavior that forms a big fan.
NASA Astrophysics Data System (ADS)
Marandet, Y.; Nace, N.; Valentinuzzi, M.; Tamain, P.; Bufferand, H.; Ciraolo, G.; Genesio, P.; Mellet, N.
2016-11-01
Plasma material interactions on the first wall of future tokamaks such as ITER and DEMO are likely to play an important role, because of turbulent radial transport. The latter results to a large extent from the radial propagation of plasma filaments through a tenuous background. In such a situation, mean field descriptions (on which transport codes rely) become questionable. First wall sputtering is of particular interest, especially in a full W machine, since it has been shown experimentally that first wall sources control core contamination. In ITER, beryllium sources will be one of the important actors in determining the fuel retention level through codeposition. In this work, we study the effect of turbulent fluctuations on mean sputtering yields and fluxes, relying on a new version of the TOKAM-2D code which includes ion temperature fluctuations. We show that fluctuations enhance sputtering at sub-threshold impact energies, by more than an order of magnitude when fluctuation levels are of order unity.
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Lazarev, Alexander A.; Michalnichenko, Nikolay N.
2004-04-01
The article deals with a conception of building arithmetic-logic devices (ALD) with a 2D-structure and optical 2D-array inputs-outputs as advanced high-productivity parallel basic operational training modules for realization of basic operation of continuous, neuro-fuzzy, multilevel, threshold and others logics and vector-matrix, vector-tensor procedures in neural networks, that consists in use of time-pulse coding (TPC) architecture and 2D-array smart optoelectronic pulse-width (or pulse-phase) modulators (PWM or PPM) for transformation of input pictures. The input grayscale image is transformed into a group of corresponding short optical pulses or time positions of optical two-level signal swing. We consider optoelectronic implementations of universal (quasi-universal) picture element of two-valued ALD, multi-valued ALD, analog-to-digital converters, multilevel threshold discriminators and we show that 2D-array time-pulse photoconverters are the base elements for these devices. We show simulation results of the time-pulse photoconverters as base components. Considered devices have technical parameters: input optical signals power is 200nW_200μW (if photodiode responsivity is 0.5A/W), conversion time is from tens of microseconds to a millisecond, supply voltage is 1.5_15V, consumption power is from tens of microwatts to a milliwatt, conversion nonlinearity is less than 1%. One cell consists of 2-3 photodiodes and about ten CMOS transistors. This simplicity of the cells allows to carry out their integration in arrays of 32x32, 64x64 elements and more.
NASA Astrophysics Data System (ADS)
Lopes Filho, Milton C.; Nussenzveig Lopes, Helena J.; Titi, Edriss S.; Zang, Aibin
2015-06-01
The second-grade fluid equations are a model for viscoelastic fluids, with two parameters: α > 0, corresponding to the elastic response, and , corresponding to viscosity. Formally setting these parameters to 0 reduces the equations to the incompressible Euler equations of ideal fluid flow. In this article we study the limits of solutions of the second-grade fluid system, in a smooth, bounded, two-dimensional domain with no-slip boundary conditions. This class of problems interpolates between the Euler- α model (), for which the authors recently proved convergence to the solution of the incompressible Euler equations, and the Navier-Stokes case ( α = 0), for which the vanishing viscosity limit is an important open problem. We prove three results. First, we establish convergence of the solutions of the second-grade model to those of the Euler equations provided , as α → 0, extending the main result in (Lopes Filho et al., Physica D 292(293):51-61, 2015). Second, we prove equivalence between convergence (of the second-grade fluid equations to the Euler equations) and vanishing of the energy dissipation in a suitably thin region near the boundary, in the asymptotic regime , as α → 0. This amounts to a convergence criterion similar to the well-known Kato criterion for the vanishing viscosity limit of the Navier-Stokes equations to the Euler equations. Finally, we obtain an extension of Kato's classical criterion to the second-grade fluid model, valid if , as . The proof of all these results relies on energy estimates and boundary correctors, following the original idea by Kato.
NASA Astrophysics Data System (ADS)
Um, Jeong-Gi; Han, Jisu; Lee, Dahye; Cho, Taechin
2017-04-01
A computer program code was developed to estimate the hydraulic head distribution through the 2-D DFN(discrete fracture network) blocks considering hydraulic aperture of the individual fractures, and to determine flow quantity, directional block hydraulic conductivity and principal hydraulic conductivity tensor according to fracture geometry such as orientation, frequency and size of the fracture network systems. The generated stochastic DFN system is assumed to have a network structure in which the equivalent flow pipe composed linear fractures is complexly connected. DFN systems often include individual or group of sub-network that are isolated from a network that can act as fluid flow passages from one flow boundary to another, and the fluid flow is completely blocked due to lack of connectivity. Fractures that are completely or partially isolated in the DFN system do not contribute to the overall fluid flow through the DFN system and add to the burden of numerical computation. This sometimes leads to numerical instability and failure to provide a solution. In this study, geometric and mathematical routines were designed and implemented to classify and eliminate such sub-networks. The developed program code can calculate the total head at each node connected to the flow path with various aperture as well as hydraulic conductivity of the individual flow pipe using the SOR method. Numerical experiments have been carried out to explore the applicability of the developed program code. A total of 108 stochastic 2-D DFN blocks of 20 m×20 m with various hydraulic aperture were prepared using two joint sets with fixed input parameters of fracture orientation, frequency and size distribution. The hydraulic anisotropy and the chance for equivalent continuum behavior of the DFN system were found to depend on the variability of fracture aperture.
NASA Astrophysics Data System (ADS)
Berger, Richard; Chapman, T.; Banks, J. W.; Brunner, S.
2015-11-01
We present 2D+2V Vlasov simulations of Ion Acoustic waves (IAWs) driven by an external traveling-wave potential, ϕ0 (x , t) , with frequency, ω, and wavenumber, k, obeying the kinetic dispersion relation. Both electrons and ions are treated kinetically. Simulations with ϕ0 (x , t) , localized transverse to the propagation direction, model IAWs driven in a laser speckle. The waves bow with a positive or negative curvature of the wave fronts that depends on the sign of the nonlinear frequency shift ΔωNL , which is in turn determined by the magnitude of ZTe /Ti where Z is the charge state and Te , i is the electron, ion temperature. These kinetic effects result can cause modulational and self-focusing instabilities that transfer wave energy to kinetic energy. Linear dispersion properties of IAWs are used in laser propagation codes that predict the amount of light reflected by stimulated Brillouin scattering. At high enough amplitudes, the linear dispersion is invalid and these kinetic effects should be incorporated. Including the spatial and time scales of these instabilities is computationally prohibitive. We report progress including kinetic models in laser propagation codes. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 15.
Lappala, E.G.; Healy, R.W.; Weeks, E.P.
1987-01-01
This report documents FORTRAN computer code for solving problems involving variably saturated single-phase flow in porous media. The flow equation is written with total hydraulic potential as the dependent variable, which allows straightforward treatment of both saturated and unsaturated conditions. The spatial derivatives in the flow equation are approximated by central differences, and time derivatives are approximated either by a fully implicit backward or by a centered-difference scheme. Nonlinear conductance and storage terms may be linearized using either an explicit method or an implicit Newton-Raphson method. Relative hydraulic conductivity is evaluated at cell boundaries by using either full upstream weighting, the arithmetic mean, or the geometric mean of values from adjacent cells. Nonlinear boundary conditions treated by the code include infiltration, evaporation, and seepage faces. Extraction by plant roots that is caused by atmospheric demand is included as a nonlinear sink term. These nonlinear boundary and sink terms are linearized implicitly. The code has been verified for several one-dimensional linear problems for which analytical solutions exist and against two nonlinear problems that have been simulated with other numerical models. A complete listing of data-entry requirements and data entry and results for three example problems are provided. (USGS)
MHD and 2-Fluid Stability of DIII-D Shot #96043 using the NIMROD Code
NASA Astrophysics Data System (ADS)
Schnack, Dalton; Kruger, Scott; Kim, C. C.; Turnbull, Alan
2010-11-01
DIII-D shot #96043 exhibits sawtooth free periods during NB/RF heating. These periods are terminated by ``giant sawtooth'' crashes. This discharge has formed the basis for computational evaluation of the Porcelli model [1]. We have begun [2] to use this discharge in a verification and validation campaign for energetic particle model the NIMROD code [3]. The ability to perform and understand resistive and extended MHD computations is necessary for a proper V & V study of the energetic particle model. At t=1900 msec, unstable modes are the 1/1 ideal kink mode, a resistive 2/2 mode and a number of high-n localized rippling modes with q ˜3 (near the separatrix). With resistive MHD the high-n modes can be stabilized by a combination of viscosity profile and anisotropic thermal conductivity. When 2-fluid are introduced new high-n localized mode appear. Linear results for all models and nonlinear results for resistive MHD are presented.[0pt] [1] M. Choi, A. D. Turnbull, V. S. Chan, et al., Phys. Plasmas 14, 112517 (2007). [2] D. D. Schnack, et al., Bull. Am. Phys. Soc. 54, paper S1.00056 (Abstract Only) (2009). [3] C. C. Kim and the NIMROD Team, Phys. Plasmas 15, 072507 (2008).
NASA Astrophysics Data System (ADS)
Widiwijayanti, C.; Voight, B.; Hidayat, D.; Patra, A.; Pitman, E.
2004-12-01
Soufrière Hills Volcano (SHV), Montserrat, has experienced numerous episodes of dome collapses since 1996. They range from relatively small rockfalls to major dome collapses, several >10x106 m3, and one >100x106 m3 (Calder, Luckett, Sparks and Voight 2002; Voight et al. 2002). The hazard implications for such events are significant at both local and regional scales, and include pyroclastic surges, explosions, and tsunami. Problems arise in forecasting and hazards mitigation, particularly in zoning for populated areas. Determining the likely extent of flow deposits is important for hazard zonation. For this, detailed mapping (topography of source areas and paths, material properties, structure, track roughness and erosion) has an important role, giving clues on locations of future collapse and runout paths. Here we present an application of a numerical computation model of geophysical mass flow using the TITAN2D code (Patra et al. 2004; Pitman et al. 2004), to simulate dome collapses at SHV. The majority of collapse-type pyroclastic flows at SHV are consistent with an initiation by gravitational collapse of oversteepened flanks of the dome. If the gravity controls the energy for such processes, then the flow tracks can be predicted on the basis of topography, and friction influences runout. TITAN2D is written to simulate this type of volcanic flow, and the SHV database is used to validate the code and provide calibrated data on friction properties. The topographic DEM was successively updated by adding flow deposit thicknesses for previous collapses. Simulation results were compared to observed flow parameters, including flow path, deposit volume, duration, velocity, and runout distance of individual flows, providing calibration data on internal and bed friction, and demonstrating the validity and limitations of such modeling for practical volcanic hazard assessment.
The development of an intelligent interface to a computational fluid dynamics flow-solver code
NASA Technical Reports Server (NTRS)
Williams, Anthony D.
1988-01-01
Researchers at NASA Lewis are currently developing an 'intelligent' interface to aid in the development and use of large, computational fluid dynamics flow-solver codes for studying the internal fluid behavior of aerospace propulsion systems. This paper discusses the requirements, design, and implementation of an intelligent interface to Proteus, a general purpose, 3-D, Navier-Stokes flow solver. The interface is called PROTAIS to denote its introduction of artificial intelligence (AI) concepts to the Proteus code.
The development of an intelligent interface to a computational fluid dynamics flow-solver code
NASA Technical Reports Server (NTRS)
Williams, Anthony D.
1988-01-01
Researchers at NASA Lewis are currently developing an 'intelligent' interface to aid in the development and use of large, computational fluid dynamics flow-solver codes for studying the internal fluid behavior of aerospace propulsion systems. This paper discusses the requirements, design, and implementation of an intelligent interface to Proteus, a general purpose, three-dimensional, Navier-Stokes flow solver. The interface is called PROTAIS to denote its introduction of artificial intelligence (AI) concepts to the Proteus code.
The development of an intelligent interface to a computational fluid dynamics flow-solver code
NASA Technical Reports Server (NTRS)
Williams, Anthony D.
1988-01-01
Researchers at NASA Lewis are currently developing an 'intelligent' interface to aid in the development and use of large, computational fluid dynamics flow-solver codes for studying the internal fluid behavior of aerospace propulsion systems. This paper discusses the requirements, design, and implementation of an intelligent interface to Proteus, a general purpose, three-dimensional, Navier-Stokes flow solver. The interface is called PROTAIS to denote its introduction of artificial intelligence (AI) concepts to the Proteus code.
A 3D-CFD code for accurate prediction of fluid flows and fluid forces in seals
NASA Technical Reports Server (NTRS)
Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.
1994-01-01
Current and future turbomachinery requires advanced seal configurations to control leakage, inhibit mixing of incompatible fluids and to control the rotodynamic response. In recognition of a deficiency in the existing predictive methodology for seals, a seven year effort was established in 1990 by NASA's Office of Aeronautics Exploration and Technology, under the Earth-to-Orbit Propulsion program, to develop validated Computational Fluid Dynamics (CFD) concepts, codes and analyses for seals. The effort will provide NASA and the U.S. Aerospace Industry with advanced CFD scientific codes and industrial codes for analyzing and designing turbomachinery seals. An advanced 3D CFD cylindrical seal code has been developed, incorporating state-of-the-art computational methodology for flow analysis in straight, tapered and stepped seals. Relevant computational features of the code include: stationary/rotating coordinates, cylindrical and general Body Fitted Coordinates (BFC) systems, high order differencing schemes, colocated variable arrangement, advanced turbulence models, incompressible/compressible flows, and moving grids. This paper presents the current status of code development, code demonstration for predicting rotordynamic coefficients, numerical parametric study of entrance loss coefficients for generic annular seals, and plans for code extensions to labyrinth, damping, and other seal configurations.
NASA Astrophysics Data System (ADS)
Kim, Ho Jun; Lee, Hae June
2016-06-01
The wide applicability of capacitively coupled plasma (CCP) deposition has increased the interest in developing comprehensive numerical models, but CCP imposes a tremendous computational cost when conducting a transient analysis in a three-dimensional (3D) model which reflects the real geometry of reactors. In particular, the detailed flow features of reactive gases induced by 3D geometric effects need to be considered for the precise calculation of radical distribution of reactive species. Thus, an alternative inclusive method for the numerical simulation of CCP deposition is proposed to simulate a two-dimensional (2D) CCP model based on the 3D gas flow results by simulating flow, temperature, and species fields in a 3D space at first without calculating the plasma chemistry. A numerical study of a cylindrical showerhead-electrode CCP reactor was conducted for particular cases of SiH4/NH3/N2/He gas mixture to deposit a hydrogenated silicon nitride (SiN x H y ) film. The proposed methodology produces numerical results for a 300 mm wafer deposition reactor which agree very well with the deposition rate profile measured experimentally along the wafer radius.
NASA Astrophysics Data System (ADS)
Maneva, Yana; Alvarez Laguna, Alejandro; Lani, Andrea; Poedts, Stefaan
2017-04-01
Partial ionization effects related to electron-neutral and ion-neutral interactions play an important role in the weakly ionized solar chromosphere, where the number density of neutrals vastly exceeds the number density of protons. The interactions between the magnetized plasma and the neutral particles can significantly change the resistivity of the plasma and lead to additional heating. Such multi-species interactions cannot be described within the simple MHD single fluid models and the non-equilibrium partial ionization effects cannot be properly captured even when generalized MHD models including Ambipolar diffusion terms are taken into account. A more detailed approach to describe these processes in the solar chromosphere is to use multi-fluid numerical simulations where the neutrals and the plasma species are described as separate fluids, coupled through the chemical reactions, additional currents, friction and resistivity terms. In this study we have elaborate on our previous results and perform 2D two-fluid simulations with an electron-proton fluid and a separate neutral fluid using an improved model where the density and temperature dependence of the plasma viscosities and heat conduction for the neutrals is assumed. Previously we have investigated the chromospheric propagation of fast and slow waves generated by a fixed photospheric foot-point velocity driver. In this study we have varied the velocity driver's frequency and location. We have also distinguished between the types of drivers which excite pure slow/Alfvén waves or a mixture of slow and fast waves. Finally, we have studied the non-uniform heating caused by the waves.
Two-Phase Acto-Cytosolic Fluid Flow in a Moving Keratocyte: A 2D Continuum Model.
Nikmaneshi, M R; Firoozabadi, B; Saidi, M S
2015-09-01
The F-actin network and cytosol in the lamellipodia of crawling cells flow in a centripetal pattern and spout-like form, respectively. We have numerically studied this two-phase flow in the realistic geometry of a moving keratocyte. Cytosol has been treated as a low viscosity Newtonian fluid flowing through the high viscosity porous medium of F-actin network. Other involved phenomena including myosin activity, adhesion friction, and interphase interaction are also discussed to provide an overall view of this problem. Adopting a two-phase coupled model by myosin concentration, we have found new accurate perspectives of acto-cytosolic flow and pressure fields, myosin distribution, as well as the distribution of effective forces across the lamellipodia of a keratocyte with stationary shape. The order of magnitude method is also used to determine the contribution of forces in the internal dynamics of lamellipodia.
Icarus: A 2D direct simulation Monte Carlo (DSMC) code for parallel computers. User`s manual - V.3.0
Bartel, T.; Plimpton, S.; Johannes, J.; Payne, J.
1996-10-01
Icarus is a 2D Direct Simulation Monte Carlo (DSMC) code which has been optimized for the parallel computing environment. The code is based on the DSMC method of Bird and models from free-molecular to continuum flowfields in either cartesian (x, y) or axisymmetric (z, r) coordinates. Computational particles, representing a given number of molecules or atoms, are tracked as they have collisions with other particles or surfaces. Multiple species, internal energy modes (rotation and vibration), chemistry, and ion transport are modelled. A new trace species methodology for collisions and chemistry is used to obtain statistics for small species concentrations. Gas phase chemistry is modelled using steric factors derived from Arrhenius reaction rates. Surface chemistry is modelled with surface reaction probabilities. The electron number density is either a fixed external generated field or determined using a local charge neutrality assumption. Ion chemistry is modelled with electron impact chemistry rates and charge exchange reactions. Coulomb collision cross-sections are used instead of Variable Hard Sphere values for ion-ion interactions. The electrostatic fields can either be externally input or internally generated using a Langmuir-Tonks model. The Icarus software package includes the grid generation, parallel processor decomposition, postprocessing, and restart software. The commercial graphics package, Tecplot, is used for graphics display. The majority of the software packages are written in standard Fortran.
Massimo, F.; Atzeni, S.; Marocchino, A.
2016-12-15
Architect, a time explicit hybrid code designed to perform quick simulations for electron driven plasma wakefield acceleration, is described. In order to obtain beam quality acceptable for applications, control of the beam-plasma-dynamics is necessary. Particle in Cell (PIC) codes represent the state-of-the-art technique to investigate the underlying physics and possible experimental scenarios; however PIC codes demand the necessity of heavy computational resources. Architect code substantially reduces the need for computational resources by using a hybrid approach: relativistic electron bunches are treated kinetically as in a PIC code and the background plasma as a fluid. Cylindrical symmetry is assumed for the solution of the electromagnetic fields and fluid equations. In this paper both the underlying algorithms as well as a comparison with a fully three dimensional particle in cell code are reported. The comparison highlights the good agreement between the two models up to the weakly non-linear regimes. In highly non-linear regimes the two models only disagree in a localized region, where the plasma electrons expelled by the bunch close up at the end of the first plasma oscillation.
NASA Astrophysics Data System (ADS)
Massimo, F.; Atzeni, S.; Marocchino, A.
2016-12-01
Architect, a time explicit hybrid code designed to perform quick simulations for electron driven plasma wakefield acceleration, is described. In order to obtain beam quality acceptable for applications, control of the beam-plasma-dynamics is necessary. Particle in Cell (PIC) codes represent the state-of-the-art technique to investigate the underlying physics and possible experimental scenarios; however PIC codes demand the necessity of heavy computational resources. Architect code substantially reduces the need for computational resources by using a hybrid approach: relativistic electron bunches are treated kinetically as in a PIC code and the background plasma as a fluid. Cylindrical symmetry is assumed for the solution of the electromagnetic fields and fluid equations. In this paper both the underlying algorithms as well as a comparison with a fully three dimensional particle in cell code are reported. The comparison highlights the good agreement between the two models up to the weakly non-linear regimes. In highly non-linear regimes the two models only disagree in a localized region, where the plasma electrons expelled by the bunch close up at the end of the first plasma oscillation.
LOOPREF: A Fluid Code for the Simulation of Coronal Loops
NASA Technical Reports Server (NTRS)
deFainchtein, Rosalinda; Antiochos, Spiro; Spicer, Daniel
1998-01-01
This report documents the code LOOPREF. LOOPREF is a semi-one dimensional finite element code that is especially well suited to simulate coronal-loop phenomena. It has a full implementation of adaptive mesh refinement (AMR), which is crucial for this type of simulation. The AMR routines are an improved version of AMR1D. LOOPREF's versatility makes is suitable to simulate a wide variety of problems. In addition to efficiently providing very high resolution in rapidly changing regions of the domain, it is equipped to treat loops of variable cross section, any non-linear form of heat conduction, shocks, gravitational effects, and radiative loss.
NASA Astrophysics Data System (ADS)
Mitsui, Y.; Hirahara, K.
2006-12-01
There have been a lot of studies that simulate large earthquakes occurring quasi-periodically at a subduction zone, based on the laboratory-derived rate-and-state friction law [eg. Kato and Hirasawa (1997), Hirose and Hirahara (2002)]. All of them assume that pore fluid pressure in the fault zone is constant. However, in the fault zone, pore fluid pressure changes suddenly, due to coseismic pore dilatation [Marone (1990)] and thermal pressurization [Mase and Smith (1987)]. If pore fluid pressure drops and effective normal stress rises, fault slip is decelerated. Inversely, if pore fluid pressure rises and effective normal stress drops, fault slip is accelerated. The effect of pore fluid may cause slow slip events and low-frequency tremor [Kodaira et al. (2004), Shelly et al. (2006)]. For a simple spring model, how pore dilatation affects slip instability was investigated [Segall and Rice (1995), Sleep (1995)]. When the rate of the slip becomes high, pore dilatation occurs and pore pressure drops, and the rate of the slip is restrained. Then the inflow of pore fluid recovers the pore pressure. We execute 2D earthquake cycle simulations at a subduction zone, taking into account such changes of pore fluid pressure following Segall and Rice (1995), in addition to the numerical scheme in Kato and Hirasawa (1997). We do not adopt hydrostatic pore pressure but excess pore pressure for initial condition, because upflow of dehydrated water seems to exist at a subduction zone. In our model, pore fluid is confined to the fault damage zone and flows along the plate interface. The smaller the flow rate is, the later pore pressure recovers. Since effective normal stress keeps larger, the fault slip is decelerated and stress drop becomes smaller. Therefore the smaller flow rate along the fault zone leads to the shorter earthquake recurrence time. Thus, not only the frictional parameters and the subduction rate but also the fault zone permeability affects the recurrence time of
NASA Astrophysics Data System (ADS)
Zhang, Yanhua; Clennell, Michael B.; Delle Piane, Claudio; Ahmed, Shakil; Sarout, Joel
2016-12-01
This generic 2D elastic-plastic modelling investigated the reactivation of a small isolated and critically-stressed fault in carbonate rocks at a reservoir depth level for fluid depletion and normal-faulting stress conditions. The model properties and boundary conditions are based on field and laboratory experimental data from a carbonate reservoir. The results show that a pore pressure perturbation of -25 MPa by depletion can lead to the reactivation of the fault and parts of the surrounding damage zones, producing normal-faulting downthrows and strain localization. The mechanism triggering fault reactivation in a carbonate field is the increase of shear stresses with pore-pressure reduction, due to the decrease of the absolute horizontal stress, which leads to an expanded Mohr's circle and mechanical failure, consistent with the predictions of previous poroelastic models. Two scenarios for fault and damage-zone permeability development are explored: (1) large permeability enhancement of a sealing fault upon reactivation, and (2) fault and damage zone permeability development governed by effective mean stress. In the first scenario, the fault becomes highly permeable to across- and along-fault fluid transport, removing local pore pressure highs/lows arising from the presence of the initially sealing fault. In the second scenario, reactivation induces small permeability enhancement in the fault and parts of damage zones, followed by small post-reactivation permeability reduction. Such permeability changes do not appear to change the original flow capacity of the fault or modify the fluid flow velocity fields dramatically.
Issues in computational fluid dynamics code verification and validation
Oberkampf, W.L.; Blottner, F.G.
1997-09-01
A broad range of mathematical modeling errors of fluid flow physics and numerical approximation errors are addressed in computational fluid dynamics (CFD). It is strongly believed that if CFD is to have a major impact on the design of engineering hardware and flight systems, the level of confidence in complex simulations must substantially improve. To better understand the present limitations of CFD simulations, a wide variety of physical modeling, discretization, and solution errors are identified and discussed. Here, discretization and solution errors refer to all errors caused by conversion of the original partial differential, or integral, conservation equations representing the physical process, to algebraic equations and their solution on a computer. The impact of boundary conditions on the solution of the partial differential equations and their discrete representation will also be discussed. Throughout the article, clear distinctions are made between the analytical mathematical models of fluid dynamics and the numerical models. Lax`s Equivalence Theorem and its frailties in practical CFD solutions are pointed out. Distinctions are also made between the existence and uniqueness of solutions to the partial differential equations as opposed to the discrete equations. Two techniques are briefly discussed for the detection and quantification of certain types of discretization and grid resolution errors.
NASA Astrophysics Data System (ADS)
Demcenko, Andriejus; Mazilu, Michael; Wilson, Rab; Cooper, Jonathan M.
2017-04-01
Non-collinear ultrasonic wave mixing for nonlinear ultrasonics is used for various NDT&E applications to characterize structure/material state. Experiments are frequently conducted using immersion ultrasonic techniques. In this configuration various wave modes are generated at the fluid-solid interface. We have characterised this scenario experimentally and developed a 2D numerical model to analyse the influence of the interface on the possible second-order interactions of the ultrasonic waves. The model is based on the decomposition of the ultrasonic wave into a superposition of monochromatic plane waves. As these waves propagate through the interface and solid, their nonlinear interaction defines a flow of energy between the different modes. Using the Murnaghan's nonlinear interaction potential, we have studied the efficiency of this energy transfer as a function different geometrical parameters.
Rae, W. J.
1981-12-01
A gasdynamic heater, capable of producing contamination-free gas streams at temperatures up to 9000/sup 0/K, is being developed by the Vulcan project. The design of a cooling system for the case parts and the associated thermal analysis are a critical part of a successful design. The purpose of the present work was to perform a preliminary cooling passage design and complete thermal analysis for the center body liner, end plate liners and exit nozzle. The approach envisioned for this work was the use of a set of LLNL finite-element codes, called MAZE and TACO2D. These were to be used at LLNL in a series of visits by the Calspan principal investigator. The project was cancelled shortly after the first of these visits; this report contains a summary of the work accomplished during the abbreviated contract period, and a review of the items that will need to be considered when the work is resumed at some future date.
Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code
Banas, A.O.; Carver, M.B.; Unrau, D.
1995-09-01
This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the {open_quotes}standard{close_quotes} {kappa}-{epsilon} transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels.
NASA Astrophysics Data System (ADS)
De Landro, Grazia; Gammaldi, Sergio; Serlenga, Vincenzo; Amoroso, Ortensia; Russo, Guido; Festa, Gaetano; D'Auria, Luca; Bruno, Pier Paolo; Gresse, Marceau; Vandemeulebrouck, Jean; Zollo, Aldo
2017-04-01
Seismic tomography can be used to image the spatial variation of rock properties within complex geological media such as volcanoes. Solfatara is a volcano located within the Campi Flegrei still active caldera, characterized by periodic episodes of extended, low-rate ground subsidence and uplift called bradyseism accompanied by intense seismic and geochemical activities. In particular, Solfatara is characterized by an impressive magnitude diffuse degassing, which underlines the relevance of fluid and heat transport at the crater and prompted further research to improve the understanding of the hydrothermal system feeding the surface phenomenon. In this line, an active seismic experiment, Repeated Induced Earthquake and Noise (RICEN) (EU Project MEDSUV), was carried out between September 2013 and November 2014 to provide time-varying high-resolution images of the structure of Solfatara. In this study we used the datasets provided by two different acquisition geometries: a) A 2D array cover an area of 90 x 115 m ^ 2 sampled by a regular grid of 240 vertical sensors deployed at the crater surface; b) two 1D orthogonal seismic arrays deployed along NE-SW and NW-SE directions crossing the 400 m crater surface. The arrays are sampled with a regular line of 240 receiver and 116 shots. We present 2D and 3D tomographic high-resolution P-wave velocity images obtained using two different tomographic methods adopting a multiscale strategy. The 3D image of the shallow (30-35 m) central part of Solfatara crater is performed through the iterative, linearized, tomographic inversion of the P-wave first arrival times. 2D P-wave velocity sections (60-70 m) are obtained using a non-linear travel-time tomography method based on the evaluation of a posteriori probability density with a Bayesian approach. The 3D retrieved images integrated with resistivity section and temperature and CO2 flux measurements , define the following characteristics: 1. A depth dependent P-wave velocity layer
Development of a cryogenic mixed fluid J-T cooling computer code, 'JTMIX'
NASA Technical Reports Server (NTRS)
Jones, Jack A.
1991-01-01
An initial study was performed for analyzing and predicting the temperatures and cooling capacities when mixtures of fluids are used in Joule-Thomson coolers and in heat pipes. A computer code, JTMIX, was developed for mixed gas J-T analysis for any fluid combination of neon, nitrogen, various hydrocarbons, argon, oxygen, carbon monoxide, carbon dioxide, and hydrogen sulfide. When used in conjunction with the NIST computer code, DDMIX, it has accurately predicted order-of-magnitude increases in J-T cooling capacities when various hydrocarbons are added to nitrogen, and it predicts nitrogen normal boiling point depressions to as low as 60 K when neon is added.
Benchmark studies of the gyro-Landau-fluid code and gyro-kinetic codes on kinetic ballooning modes
NASA Astrophysics Data System (ADS)
Tang, T. F.; Xu, X. Q.; Ma, C. H.; Bass, E. M.; Holland, C.; Candy, J.
2016-03-01
A Gyro-Landau-Fluid (GLF) 3 + 1 model has been recently implemented in BOUT++ framework, which contains full Finite-Larmor-Radius effects, Landau damping, and toroidal resonance [Ma et al., Phys. Plasmas 22, 055903 (2015)]. A linear global beta scan has been conducted using the JET-like circular equilibria (cbm18 series), showing that the unstable modes are kinetic ballooning modes (KBMs). In this work, we use the GYRO code, which is a gyrokinetic continuum code widely used for simulation of the plasma microturbulence, to benchmark with GLF 3 + 1 code on KBMs. To verify our code on the KBM case, we first perform the beta scan based on "Cyclone base case parameter set." We find that the growth rate is almost the same for two codes, and the KBM mode is further destabilized as beta increases. For JET-like global circular equilibria, as the modes localize in peak pressure gradient region, a linear local beta scan using the same set of equilibria has been performed at this position for comparison. With the drift kinetic electron module in the GYRO code by including small electron-electron collision to damp electron modes, GYRO generated mode structures and parity suggest that they are kinetic ballooning modes, and the growth rate is comparable to the GLF results. However, a radial scan of the pedestal for a particular set of cbm18 equilibria, using GYRO code, shows different trends for the low-n and high-n modes. The low-n modes show that the linear growth rate peaks at peak pressure gradient position as GLF results. However, for high-n modes, the growth rate of the most unstable mode shifts outward to the bottom of pedestal and the real frequency of what was originally the KBMs in ion diamagnetic drift direction steadily approaches and crosses over to the electron diamagnetic drift direction.
Benchmark studies of the gyro-Landau-fluid code and gyro-kinetic codes on kinetic ballooning modes
Tang, T. F.; Xu, X. Q.; Ma, C. H.; Bass, E. M.; Candy, J.; Holland, C.
2016-03-15
A Gyro-Landau-Fluid (GLF) 3 + 1 model has been recently implemented in BOUT++ framework, which contains full Finite-Larmor-Radius effects, Landau damping, and toroidal resonance [Ma et al., Phys. Plasmas 22, 055903 (2015)]. A linear global beta scan has been conducted using the JET-like circular equilibria (cbm18 series), showing that the unstable modes are kinetic ballooning modes (KBMs). In this work, we use the GYRO code, which is a gyrokinetic continuum code widely used for simulation of the plasma microturbulence, to benchmark with GLF 3 + 1 code on KBMs. To verify our code on the KBM case, we first perform the beta scan based on “Cyclone base case parameter set.” We find that the growth rate is almost the same for two codes, and the KBM mode is further destabilized as beta increases. For JET-like global circular equilibria, as the modes localize in peak pressure gradient region, a linear local beta scan using the same set of equilibria has been performed at this position for comparison. With the drift kinetic electron module in the GYRO code by including small electron-electron collision to damp electron modes, GYRO generated mode structures and parity suggest that they are kinetic ballooning modes, and the growth rate is comparable to the GLF results. However, a radial scan of the pedestal for a particular set of cbm18 equilibria, using GYRO code, shows different trends for the low-n and high-n modes. The low-n modes show that the linear growth rate peaks at peak pressure gradient position as GLF results. However, for high-n modes, the growth rate of the most unstable mode shifts outward to the bottom of pedestal and the real frequency of what was originally the KBMs in ion diamagnetic drift direction steadily approaches and crosses over to the electron diamagnetic drift direction.
Benchmark Studies of the Gyro-Landau-Fluid code and Gyro-kinetic Codes on Kinetic Ballooning Modes
NASA Astrophysics Data System (ADS)
Tang, Tengfei; Xu, Xueqiao; Ma, Chenhao; Holland, Chris; Candy, Jeff
2015-11-01
A Gyro-Landau-Fluid (GLF) 3 +1 model has been implemented in BOUT + + framework recently, which contains full Finite-Larmor-Radius (FLR) effects, Landau damping and toroidal resonance. A linear global beta scan has been done using the cbm18 series equilibriums, showing that the unstable modes are kinetic ballooning modes (KBMs). In this work, we use the GYRO code, which is a gyrokinetic continuum code widely used for simulation of the plasma microturbulence, to benchmark with GLF 3 +1 code on KBMs. As the modes locate in peak pressure gradient region, a linear local beta scan using the same set of equilibriums has been done at this position for comparison. With the drift kinetic electron module in the GYRO code by including small electron-ion collision to damp electron modes, GYRO generated mode structures and parity suggest that they are kinetic ballooning modes, and the growth rate is comparable to the GLF results. However, a radial scan of the pedestal for a particular cbm18 equilibrium shows that the growth rate of the most unstable mode shifts outward to the bottom of pedestal and the real frequency of what was originally the KBMs steadily approaches and crosses over to the electron diamagnetic drift direction. Prepared by LLNL under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Zhang, Shuai; Morita, Koji; Shirakawa, Noriyuki; Yamamoto, Yuichi
The COMPASS code is designed based on the moving particle semi-implicit method to simulate various complex mesoscale phenomena relevant to core disruptive accidents of sodium-cooled fast reactors. In this study, a computational framework for fluid-solid mixture flow simulations was developed for the COMPASS code. The passively moving solid model was used to simulate hydrodynamic interactions between fluid and solids. Mechanical interactions between solids were modeled by the distinct element method. A multi-time-step algorithm was introduced to couple these two calculations. The proposed computational framework for fluid-solid mixture flow simulations was verified by the comparison between experimental and numerical studies on the water-dam break with multiple solid rods.
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Held, Eric D.
2015-09-01
Neoclassical tearing modes are macroscopic (L ∼ 1 m) instabilities in magnetic fusion experiments; if unchecked, these modes degrade plasma performance and may catastrophically destroy plasma confinement by inducing a disruption. Fortunately, the use of properly tuned and directed radiofrequency waves (λ ∼ 1 mm) can eliminate these modes. Numerical modeling of this difficult multiscale problem requires the integration of separate mathematical models for each length and time scale (Jenkins and Kruger, 2012 [21]); the extended MHD model captures macroscopic plasma evolution while the RF model tracks the flow and deposition of injected RF power through the evolving plasma profiles. The scale separation enables use of the eikonal (ray-tracing) approximation to model the RF wave propagation. In this work we demonstrate a technique, based on methods of computational geometry, for mapping the ensuing RF data (associated with discrete ray trajectories) onto the finite-element/pseudospectral grid that is used to model the extended MHD physics. In the new representation, the RF data can then be used to construct source terms in the equations of the extended MHD model, enabling quantitative modeling of RF-induced tearing mode stabilization. Though our specific implementation uses the NIMROD extended MHD (Sovinec et al., 2004 [22]) and GENRAY RF (Smirnov et al., 1994 [23]) codes, the approach presented can be applied more generally to any code coupling requiring the mapping of ray tracing data onto Eulerian grids.
Maniwa, Jiro; Izumi, Shunsuke; Isobe, Naoki; Terada, Takato
2005-01-01
Background The objective of this study was to identify substantially increased proteins in bovine cystic follicular fluid (FF) in order to clarify the pathology and etiology of bovine ovarian follicular cysts (BOFC). Methods Proteins in normal and cystic FF samples were subjected to two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and were compared using silver stained gel images with PDQuest image analysis software. Peptides from these increased spots were analyzed by matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), and were identified based on the NCBI database by a peptide mass fingerprinting method. Results Comparative proteomic analysis showed 8 increased protein spots present in cystic FF. MS analysis and database searching revealed that the increased proteins in cystic FF were bovine mitochondrial f1-atpase (BMFA), erythroid associated factor (EAF), methionine synthase (MeS), VEGF-receptor, glyceraldehydes 3-phosphate dehydrogenase (GAPDH), heat shock protein 70 (HSP70), β-lactoglobulin (BLG) and succinate dehydrogenase Ip subunit (SD). Conclusion Our results suggest that these proteins are overexpressed in BOFC, and that they may play important roles in the pathogenesis of BOFC. Furthermore, these proteins in the FF could be useful biomarkers for BOFC. PMID:15941490
NASA Astrophysics Data System (ADS)
Aeschliman, D. P.; Oberkampf, W. L.; Blottner, F. G.
Verification, calibration, and validation (VCV) of Computational Fluid Dynamics (CFD) codes is an essential element of the code development process. The exact manner in which code VCV activities are planned and conducted, however, is critically important. It is suggested that the way in which code validation, in particular, is often conducted--by comparison to published experimental data obtained for other purposes--is in general difficult and unsatisfactory, and that a different approach is required. This paper describes a proposed methodology for CFD code VCV that meets the technical requirements and is philosophically consistent with code development needs. The proposed methodology stresses teamwork and cooperation between code developers and experimentalists throughout the VCV process, and takes advantage of certain synergisms between CFD and experiment. A novel approach to uncertainty analysis is described which can both distinguish between and quantify various types of experimental error, and whose attributes are used to help define an appropriate experimental design for code VCV experiments. The methodology is demonstrated with an example of laminar, hypersonic, near perfect gas, 3-dimensional flow over a sliced sphere/cone of varying geometrical complexity.
Aeschliman, D.P.; Oberkampf, W.L.; Blottner, F.G.
1995-07-01
Verification, calibration, and validation (VCV) of Computational Fluid Dynamics (CFD) codes is an essential element of the code development process. The exact manner in which code VCV activities are planned and conducted, however, is critically important. It is suggested that the way in which code validation, in particular, is often conducted--by comparison to published experimental data obtained for other purposes--is in general difficult and unsatisfactory, and that a different approach is required. This paper describes a proposed methodology for CFD code VCV that meets the technical requirements and is philosophically consistent with code development needs. The proposed methodology stresses teamwork and cooperation between code developers and experimentalists throughout the VCV process, and takes advantage of certain synergisms between CFD and experiment. A novel approach to uncertainty analysis is described which can both distinguish between and quantify various types of experimental error, and whose attributes are used to help define an appropriate experimental design for code VCV experiments. The methodology is demonstrated with an example of laminar, hypersonic, near perfect gas, 3-dimensional flow over a sliced sphere/cone of varying geometrical complexity.
NASA Astrophysics Data System (ADS)
Baudon, Catherine; Gillet, Hervé; Cremer, Michel
2013-04-01
High-quality bathymetric, 2D seismic and Chirp data located in the southern parts of the Bay of Biscay, France, collected by the University of Bordeaux 1 (Cruises ITSAS 2, 2001; PROSECAN 3, 2006 and SARGASS, 2010) have recently been compiled. The survey area widely covers the Capbreton Canyon, which lies on the boundary between two major structural zones: the Aquitanian passive margin to the North, and the Basque-Cantabrian margin to the South which corresponds to the offshore Pyrenean front. The dataset revealed a large number of key seafloor features potentially associated with focused fluid-flow processes and subsurface sediment-remobilization. Focused fluid migration through sub-seabed sediments is a common phenomenon on continental margins worldwide and has widespread implications from both industrial and fundamental perspectives, from seafloor marine environmental issues to petroleum exploration and hazard assessments. Our study analyses the relationships between seafloor features, deeper structures and fluid migration through the Plio-Quaternary sedimentary pile. The geometrical characteristics, mechanisms of formation and kinematics of four main groups of seabed features have been investigated. (i) A 150km2 field of pockmarks can be observed on the Basque margin. These features are cone-shaped circular or elliptical depressions that are either randomly distributed as small pockmarks (diameter < 20m) or aligned in trains of large pockmarks (ranging from 200 to 600m in diameter) along shallow troughs leading downstream to the Capbreton Canyon. Seismic data show that most pockmarks reach the seabed through vertically staked V-shaped features but some are buried and show evidence of lateral migration through time. (ii) A second field of widely-spaced groups of pockmarks pierce the upper slope of the Aquitanian margin. These depressions are typically a few hundred meters in diameter and seem to be preferentially located in the troughs or on the stoss sides of
Sandia National Laboratories environmental fluid dynamics code : sediment transport user manual.
Grace, Matthew D.; Thanh, Phi Hung X.; James, Scott Carlton
2008-09-01
This document describes the sediment transport subroutines and input files for the Sandia National Laboratories Environmental Fluid Dynamics Code (SNL-EFDC). Detailed descriptions of the input files containing data from Sediment Erosion at Depth flume (SEDflume) measurements are provided along with the description of the source code implementing sediment transport. Both the theoretical description of sediment transport employed in SNL-EFDC and the source code are described. This user manual is meant to be used in conjunction with the EFDC manual (Hamrick 1996) because there will be no reference to the hydrodynamics in EFDC. Through this document, the authors aim to provide the necessary information for new users who wish to implement sediment transport in EFDC and obtain a clear understanding of the source code.
A Parallel Two-fluid Code for Global Magnetic Reconnection Studies
J.A. Breslau; S.C. Jardin
2001-08-09
This paper describes a new algorithm for the computation of two-dimensional resistive magnetohydrodynamic (MHD) and two-fluid studies of magnetic reconnection in plasmas. It has been implemented on several parallel platforms and shows good scalability up to 32 CPUs for reasonable problem sizes. A fixed, nonuniform rectangular mesh is used to resolve the different spatial scales in the reconnection problem. The resistive MHD version of the code uses an implicit/explicit hybrid method, while the two-fluid version uses an alternating-direction implicit (ADI) method. The technique has proven useful for comparing several different theories of collisional and collisionless reconnection.
A computational fluid dynamics code for the investigation of ramjet-in-tube concepts
NASA Astrophysics Data System (ADS)
Bogdanoff, D. W.; Brackett, D. C.
1987-06-01
An inviscid computational fluid dynamics (CFD) code is presented which can handle multiple component species, simple chemical reactions, a completely general equation of state and velocities up to hundreds of km/sec. The code can also handle mutilple moving zones containing different media. Radiation effects are not included. The code uses third order spatial extrapolation/interpolation of the primitive variables to determine cell boundary values, applies limiting procedures to these values to maintain code stability and accuracy, and then uses Godunov procedures to calculate the cell boundary fluxes. The code numerical methods are presented in some detail and the results of benchmark test cases used to proof out the code are given. The agreement between the CFD and exact analytical calculations is found to be excellent. The code is used to investigate a ramjet-in-tube concept. In this concept, a projectile flies down a tube filled with combustible gas mixtures. The mixtures studied are H2 plus O2 plus excess H2 or N2 or CO2 as diluent. The projectile velocity range is 4 to 10 km/sec. Efficiencies up to 0.26 and ratios of effective projectile thrust pressure to maximum cycle pressure up to 0.12 are obtained. Plots of the pressure field around the projectile are presented.
A proposed framework for computational fluid dynamics code calibration/validation
Oberkampf, W.L.
1993-12-31
The paper reviews the terminology and methodology that have been introduced during the last several years for building confidence n the predictions from Computational Fluid Dynamics (CID) codes. Code validation terminology developed for nuclear reactor analyses and aerospace applications is reviewed and evaluated. Currently used terminology such as ``calibrated code,`` ``validated code,`` and a ``validation experiment`` is discussed along with the shortcomings and criticisms of these terms. A new framework is proposed for building confidence in CFD code predictions that overcomes some of the difficulties of past procedures and delineates the causes of uncertainty in CFD predictions. Building on previous work, new definitions of code verification and calibration are proposed. These definitions provide more specific requirements for the knowledge level of the flow physics involved and the solution accuracy of the given partial differential equations. As part of the proposed framework, categories are also proposed for flow physics research, flow modeling research, and the application of numerical predictions. The contributions of physical experiments, analytical solutions, and other numerical solutions are discussed, showing that each should be designed to achieve a distinctively separate purpose in building confidence in accuracy of CFD predictions. A number of examples are given for each approach to suggest methods for obtaining the highest value for CFD code quality assurance.
Adaptive Mesh Computations with the PLUTO Code for Astrophysical Fluid Dynamics
NASA Astrophysics Data System (ADS)
Mignone, A.; Zanni, C.
2012-07-01
We present an overview of the current version of the PLUTO code for numerical simulations of astrophysical fluid flows over block-structured adaptive grids. The code preserves its modular framework for the solution of the classical or relativistic magnetohydrodynamics (MHD) equations while exploiting the distributed infrastructure of the Chombo library for multidimensional adaptive mesh refinement (AMR) parallel computations. Equations are evolved in time using an explicit second-order, dimensionally unsplit time stepping scheme based on a cell-centered discretization of the flow variables. Efficiency and robustness are shown through multidimensional benchmarks and applications to problems of astrophysical relevance.
NASA Astrophysics Data System (ADS)
Frette, O. I.; Helland, J. O.
2010-08-01
A novel semi-analytical model for computation of capillary entry pressures and associated fluid configurations in arbitrary, potentially non-convex, 2D pore space geometries at uniform wettability is developed. The model computes all possible centre positions of circular arcs, and physically sound criteria are implemented to determine the set of these arcs that correspond to geometrically allowed interfaces. Interfaces and pore boundary segments are connected to form closed boundaries of identified geometrical regions. These regions are classified as either oil regions, located in the wider parts of the pore space, or as water regions located in pore space constrictions. All possible region combinations are identified and evaluated for each radius value in an iterative procedure to determine the favourable entry radius and corresponding configuration based on minimisation of free energy. The model has been validated by comparison with known analytical solutions in idealised pore geometries. In cases where different analytical solutions are geometrically possible, the model generates several oil and water regions, and the valid solution is determined by the region combination that corresponds to the most favourable entry pressure, consistent with the analytical solution. Entry pressure radii and configurations are computed in strongly non-convex pore spaces extracted from an image of Bentheimer sandstone, which demonstrates that the model captures successfully well-known characteristics of capillary behaviour at different wetting conditions. The computations also demonstrate the importance of selecting the fluid configuration of minimum change in free energy. In some cases, a merged region formed by a combination of oil and water regions corresponds to the favourable entry configuration of oil, whereas in other cases, an individual oil region may correspond to the favourable oil entry configuration. It is also demonstrated that oil entry configurations may
NRMC - A GPU code for N-Reverse Monte Carlo modeling of fluids in confined media
NASA Astrophysics Data System (ADS)
Sánchez-Gil, Vicente; Noya, Eva G.; Lomba, Enrique
2017-08-01
NRMC is a parallel code for performing N-Reverse Monte Carlo modeling of fluids in confined media [V. Sánchez-Gil, E.G. Noya, E. Lomba, J. Chem. Phys. 140 (2014) 024504]. This method is an extension of the usual Reverse Monte Carlo method to obtain structural models of confined fluids compatible with experimental diffraction patterns, specifically designed to overcome the problem of slow diffusion that can appear under conditions of tight confinement. Most of the computational time in N-Reverse Monte Carlo modeling is spent in the evaluation of the structure factor for each trial configuration, a calculation that can be easily parallelized. Implementation of the structure factor evaluation in NVIDIA® CUDA so that the code can be run on GPUs leads to a speed up of up to two orders of magnitude.
CAVEAT: a computer code for fluid dynamics problems with large distortion and internal slip
Addessio, F.L.; Carroll, D.E.; Dukowicz, J.K.; Harlow, F.H.; Johnson, J.N.; Kashiwa, B.A.; Maltrud, M.E.; Ruppel, H.M.
1986-02-01
This report describes the CAVEAT computer code, which numerically solves the equations of transient, multimaterial, compressible fluid dynamics. General material equations of state are allowed by the use of the SESAME library. Of particular interest is the general capability to handle material interfaces, including slip, cavitation, or void closure. Also included is the capability to treat material strength and plasticity, high explosive (HE) detonations, and a k-epsilon model of turbulence. 62 refs., 60 figs., 6 tabs.
Magnetic reconnection in multispecies plasmas investigated by a kinetic fluid code
NASA Astrophysics Data System (ADS)
Dong, Chuanfei; Wang, Liang; Bhattacharjee, Amitava; Hakim, Ammar; Huang, Yi-Min; Germaschewski, Kai
2016-10-01
We first study the reconnection process in multispecies plasmas by using Gkeyll, which is a kinetic fluid code solving the continuity, momentum and energy equations of each species, and the full Maxwell equations. Thus, there is no assumption by solving the generalized ohm's law in Gkeyll. We studied the reconnection processes in the plasma consisting of electrons, protons and oxygen ions. If time allows, we also plan to show some preliminary results of magnetic reconnection in dusty plasmas with negatively charged dust.
Development Of Sputtering Models For Fluids-Based Plasma Simulation Codes
NASA Astrophysics Data System (ADS)
Veitzer, Seth; Beckwith, Kristian; Stoltz, Peter
2015-09-01
Rf-driven plasma devices such as ion sources and plasma processing devices for many industrial and research applications benefit from detailed numerical modeling. Simulation of these devices using explicit PIC codes is difficult due to inherent separations of time and spatial scales. One alternative type of model is fluid-based codes coupled with electromagnetics, that are applicable to modeling higher-density plasmas in the time domain, but can relax time step requirements. To accurately model plasma-surface processes, such as physical sputtering and secondary electron emission, kinetic particle models have been developed, where particles are emitted from a material surface due to plasma ion bombardment. In fluid models plasma properties are defined on a cell-by-cell basis, and distributions for individual particle properties are assumed. This adds a complexity to surface process modeling, which we describe here. We describe the implementation of sputtering models into the hydrodynamic plasma simulation code USim, as well as methods to improve the accuracy of fluids-based simulation of plasmas-surface interactions by better modeling of heat fluxes. This work was performed under the auspices of the Department of Energy, Office of Basic Energy Sciences Award #DE-SC0009585.
CENTORI: A global toroidal electromagnetic two-fluid plasma turbulence code
NASA Astrophysics Data System (ADS)
Knight, P. J.; Thyagaraja, A.; Edwards, T. D.; Hein, J.; Romanelli, M.; McClements, K. G.
2012-11-01
A new global two-fluid electromagnetic turbulence code, CENTORI, has been developed for the purpose of studying magnetically-confined fusion plasmas on energy confinement timescales. This code is used to evolve the combined system of electron and ion fluid equations and Maxwell equations in toroidal configurations with axisymmetric equilibria. Uniquely, the equilibrium is co-evolved with the turbulence, and is thus modified by it. CENTORI is applicable to tokamaks of arbitrary aspect ratio and high plasma beta. A predictor-corrector, semi-implicit finite difference scheme is used to compute the time evolution of fluid quantities and fields. Vector operations and the evaluation of flux surface averages are speeded up by choosing the Jacobian of the transformation from laboratory to plasma coordinates to be a function of the equilibrium poloidal magnetic flux. A subroutine, GRASS, is used to co-evolve the plasma equilibrium by computing the steady-state solutions of a diffusion equation with a pseudo-time derivative. The code is written in Fortran 95 and is efficiently parallelised using Message Passing Interface (MPI). Illustrative examples of output from simulations of a tearing mode in a large aspect ratio tokamak plasma and of turbulence in an elongated conventional aspect ratio tokamak plasma are provided.
Two-fluid modeling of magnetic nozzle and FRC confined plasmas with the NIMROD code
NASA Astrophysics Data System (ADS)
Tarditi, Alfonso
2000-10-01
MHD and two-fluid simulations with the NIMROD code [1] for studying plasma detachment in a magnetic nozzle and field reversed configuration (FRC) confined plasmas are reported. A new version of the code is used, featuring an improved finite element formulation that provides better spatial accuracy for a given grid resolution [2]. The code is also upgraded by adding the density equation, removing this way the assumption of incompressible plasma, and a provision for “open end” boundary conditions. The simulations of the plasma in a magnetic nozzle are performed in cylindrical geometry with an asymmetric magnetic mirror field along the axis, modeling the VASIMR (Variable Specific Impulse Magnetoplasma Rocket) experiment [3]. The goals are to assess critical problems like exhaust plasma detachment, the temperature spatial dependence in the plasma plume and the magnetic nozzle parameter optimization. The possible application of a FRC as a source for plasma propulsion is considered: FRC runs are first addressing the two-fluid stability against tilt modes [4]. Simulations are also tailored to model the integration of the FRC with a magnetic nozzle. [1] A. H. Glasser, et al., Plasma Phys. Control. Fusion , 41, A74 (1999). [2] C. R. Sovinec, Int. Sherwood Fusion Theory Conf., Los Angeles, CA (USA), March 2000. [3] F. R. Chang Diaz, Trans. Fus. Tech., 35, 87 (1999). [4] Ishida, et al., Phys. Fluids, 31, 3024 (1988).
A Mathematical Model and MATLAB Code for Muscle-Fluid-Structure Simulations.
Battista, Nicholas A; Baird, Austin J; Miller, Laura A
2015-11-01
This article provides models and code for numerically simulating muscle-fluid-structure interactions (FSIs). This work was presented as part of the symposium on Leading Students and Faculty to Quantitative Biology through Active Learning at the society-wide meeting of the Society for Integrative and Comparative Biology in 2015. Muscle mechanics and simple mathematical models to describe the forces generated by muscular contractions are introduced in most biomechanics and physiology courses. Often, however, the models are derived for simplifying cases such as isometric or isotonic contractions. In this article, we present a simple model of the force generated through active contraction of muscles. The muscles' forces are then used to drive the motion of flexible structures immersed in a viscous fluid. An example of an elastic band immersed in a fluid is first presented to illustrate a fully-coupled FSI in the absence of any external driving forces. In the second example, we present a valveless tube with model muscles that drive the contraction of the tube. We provide a brief overview of the numerical method used to generate these results. We also include as Supplementary Material a MATLAB code to generate these results. The code was written for flexibility so as to be easily modified to many other biological applications for educational purposes.
Fiantini, Rosalina; Umar, Efrizon
2010-06-22
Common energy crisis has modified the national energy policy which is in the beginning based on natural resources becoming based on technology, therefore the capability to understanding the basic and applied science is needed to supporting those policies. National energy policy which aims at new energy exploitation, such as nuclear energy is including many efforts to increase the safety reactor core condition and optimize the related aspects and the ability to build new research reactor with properly design. The previous analysis of the modification TRIGA 2000 Reactor design indicates that forced convection of the primary coolant system put on an effect to the flow characteristic in the reactor core, but relatively insignificant effect to the flow velocity in the reactor core. In this analysis, the lid of reactor core is closed. However the forced convection effect is still presented. This analysis shows the fluid flow velocity vector in the model area without exception. Result of this analysis indicates that in the original design of TRIGA 2000 reactor, there is still forced convection effects occur but less than in the modified TRIGA 2000 design.
James, Scott Carlton; Roberts, Jesse D.
2014-03-01
This document describes the marine hydrokinetic (MHK) input file and subroutines for the Sandia National Laboratories Environmental Fluid Dynamics Code (SNL-EFDC), which is a combined hydrodynamic, sediment transport, and water quality model based on the Environmental Fluid Dynamics Code (EFDC) developed by John Hamrick [1], formerly sponsored by the U.S. Environmental Protection Agency, and now maintained by Tetra Tech, Inc. SNL-EFDC has been previously enhanced with the incorporation of the SEDZLJ sediment dynamics model developed by Ziegler, Lick, and Jones [2-4]. SNL-EFDC has also been upgraded to more accurately simulate algae growth with specific application to optimizing biomass in an open-channel raceway for biofuels production [5]. A detailed description of the input file containing data describing the MHK device/array is provided, along with a description of the MHK FORTRAN routine. Both a theoretical description of the MHK dynamics as incorporated into SNL-EFDC and an explanation of the source code are provided. This user manual is meant to be used in conjunction with the original EFDC [6] and sediment dynamics SNL-EFDC manuals [7]. Through this document, the authors provide information for users who wish to model the effects of an MHK device (or array of devices) on a flow system with EFDC and who also seek a clear understanding of the source code, which is available from staff in the Water Power Technologies Department at Sandia National Laboratories, Albuquerque, New Mexico.
NASA Astrophysics Data System (ADS)
Caballero, L.; Capra, L.
2014-07-01
Lahar modelling represents an excellent tool to design hazard maps. It allows the definition of potential inundation zones for different lahar magnitude scenarios and sediment concentrations. Here we present the results obtained for the 2001 syneruptive lahar at Popocatépetl volcano, based on simulations performed with FLO2D software. An accurate delineation of this event is needed since it is one of the possible scenarios considered during a volcanic crisis. One of the main issues for lahar simulation using FLO2D is the calibration of the input hydrograph and rheologic flow properties. Here we verified that geophone data can be properly calibrated by means of peak discharge calculations obtained by superelevation method. Simulation results clearly show the influence of concentration and rheologic properties on lahar depth and distribution. Modifying rheologic properties during lahar simulation strongly affect lahar distribution. More viscous lahars have a more restricted aerial distribution, thicker depths, and resulting velocities are noticeable smaller. FLO2D proved to be a very successful tool to delimitate lahar inundation zones as well as to generate different lahar scenarios not only related to lahar volume or magnitude but also to take into account different sediment concentrations and rheologies widely documented to influence lahar prone areas.
NASA Astrophysics Data System (ADS)
Caballero, L.; Capra, L.
2014-12-01
Lahar modeling represents an excellent tool for designing hazard maps. It allows the definition of potential inundation zones for different lahar magnitude scenarios and sediment concentrations. Here, we present the results obtained for the 2001 syneruptive lahar at Popocatépetl volcano, based on simulations performed with FLO2D software. An accurate delineation of this event is needed, since it is one of the possible scenarios considered if magmatic activity increases its magnitude. One of the main issues for lahar simulation using FLO2D is the calibration of the input hydrograph and rheological flow properties. Here, we verified that geophone data can be properly calibrated by means of peak discharge calculations obtained by the superelevation method. Digital elevation model resolution also resulted as an important factor in defining the reliability of the simulated flows. Simulation results clearly show the influence of sediment concentrations and rheological properties on lahar depth and distribution. Modifying rheological properties during lahar simulation strongly affects lahar distribution. More viscous lahars have a more restricted aerial distribution and thicker depths, and resulting velocities are noticeably smaller. FLO2D proved to be a very successful tool for delimitating lahar inundation zones as well as generating different lahar scenarios not only related to lahar volume or magnitude, but also taking into account different sediment concentrations and rheologies widely documented as influencing lahar-prone areas.
Sandia National Laboratories environmental fluid dynamics code : pH effects user manual.
Janardhanam, Vijay; James, Scott Carlton
2012-02-01
This document describes the implementation level changes in the source code and input files of Sandia National Laboratories Environmental Fluid Dynamics Code (SNL-EFDC) that are necessary for including pH effects into algae-growth dynamics. The document also gives a brief introduction to how pH effects are modeled into the algae-growth model. The document assumes that the reader is aware of the existing algae-growth model in SNL-EFDC. The existing model is described by James, Jarardhanam and more theoretical considerations behind modeling pH effects are presented therein. This document should be used in conjunction with the original EFDC manual and the original water-quality manual.
Sandia National Laboratories Environmental Fluid Dynamics Code V. 1 0.0 (Beta)
2015-10-20
The DOE has funded Sandia National Labs (SNL) to develop an open-source modeling tool to guide the design and layout of marine hydrokinetic (MHK) arrays to maximize power production while minimizing environmental effects. This modeling framework simulates flows through and around MHK arrays while quantifying environmental responses. As an augmented version of US EPA's Environmental Fluid Dynamics Code (EFDC), SNL-EFDC includes: (1) a new module that simulates energy conversion (momentum withdrawal) by MHK devices with commensurate changes in the turbulent kinetic energy and its dissipation rate, (2) new, advanced sediment dynamics routines, and (3) augmented water quality modules.
On the application of computational fluid dynamics codes for liquefied natural gas dispersion.
Luketa-Hanlin, Anay; Koopman, Ronald P; Ermak, Donald L
2007-02-20
Computational fluid dynamics (CFD) codes are increasingly being used in the liquefied natural gas (LNG) industry to predict natural gas dispersion distances. This paper addresses several issues regarding the use of CFD for LNG dispersion such as specification of the domain, grid, boundary and initial conditions. A description of the k-epsilon model is presented, along with modifications required for atmospheric flows. Validation issues pertaining to the experimental data from the Burro, Coyote, and Falcon series of LNG dispersion experiments are also discussed. A description of the atmosphere is provided as well as discussion on the inclusion of the Coriolis force to model very large LNG spills.
On the application of computational fluid dynamics codes for liquefied natural gas dispersion.
Luketa-Hanlin, Anay Josephine; Koopman, Ronald P.; Ermak, Donald
2006-02-01
Computational fluid dynamics (CFD) codes are increasingly being used in the liquefied natural gas (LNG) industry to predict natural gas dispersion distances. This paper addresses several issues regarding the use of CFD for LNG dispersion such as specification of the domain, grid, boundary and initial conditions. A description of the k-{var_epsilon} model is presented, along with modifications required for atmospheric flows. Validation issues pertaining to the experimental data from the Burro, Coyote, and Falcon series of LNG dispersion experiments are also discussed. A description of the atmosphere is provided as well as discussion on the inclusion of the Coriolis force to model very large LNG spills.
Hager, Robert; Lang, Jianying; Chang, C. S.; ...
2017-05-24
As an alternative option to kinetic electrons, the gyrokinetic total-f particle-in-cell (PIC) code XGC1 has been extended to the MHD/fluid type electromagnetic regime by combining gyrokinetic PIC ions with massless drift-fluid electrons. Here, two representative long wavelength modes, shear Alfven waves and resistive tearing modes, are verified in cylindrical and toroidal magnetic field geometries.
NASA Astrophysics Data System (ADS)
Rodríguez-Sánchez, Rafael; Martínez, José Luis; Cock, Jan De; Fernández-Escribano, Gerardo; Pieters, Bart; Sánchez, José L.; Claver, José M.; de Walle, Rik Van
2013-12-01
The H.264/AVC video coding standard introduces some improved tools in order to increase compression efficiency. Moreover, the multi-view extension of H.264/AVC, called H.264/MVC, adopts many of them. Among the new features, variable block-size motion estimation is one which contributes to high coding efficiency. Furthermore, it defines a different prediction structure that includes hierarchical bidirectional pictures, outperforming traditional Group of Pictures patterns in both scenarios: single-view and multi-view. However, these video coding techniques have high computational complexity. Several techniques have been proposed in the literature over the last few years which are aimed at accelerating the inter prediction process, but there are no works focusing on bidirectional prediction or hierarchical prediction. In this article, with the emergence of many-core processors or accelerators, a step forward is taken towards an implementation of an H.264/AVC and H.264/MVC inter prediction algorithm on a graphics processing unit. The results show a negligible rate distortion drop with a time reduction of up to 98% for the complete H.264/AVC encoder.
Winters, W.S.
1984-01-01
An overview of the computer code TOPAZ (Transient-One-Dimensional Pipe Flow Analyzer) is presented. TOPAZ models the flow of compressible and incompressible fluids through complex and arbitrary arrangements of pipes, valves, flow branches and vessels. Heat transfer to and from the fluid containment structures (i.e. vessel and pipe walls) can also be modeled. This document includes discussions of the fluid flow equations and containment heat conduction equations. The modeling philosophy, numerical integration technique, code architecture, and methods for generating the computational mesh are also discussed.
Müller, C.; Hughes, E. D.; Niederauer, G. F.; Wilkening, H.; Travis, J. R.; Spore, J. W.; Royl, P.; Baumann, W.
1998-10-01
Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best- estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume
Nichols, B. D.; Mueller, C.; Necker, G. A.; Travis, J. R.; Spore, J. W.; Lam, K. L.; Royl, P.; Wilson, T. L.
1998-10-01
Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III
NASA Astrophysics Data System (ADS)
Magri, Fabien; Cacace, Mauro; Fischer, Thomas; Kolditz, Olaf; Wang, Wenqing; Watanabe, Norihiro
2017-04-01
In contrast to simple homogeneous 1D and 2D systems, no appropriate analytical solutions exist to test onset of thermal convection against numerical models of complex 3D systems that account for variable fluid density and viscosity as well as permeability heterogeneity (e.g. presence of faults). Owing to the importance of thermal convection for the transport of energy and minerals, the development of a benchmark test for density/viscosity driven flow is crucial to ensure that the applied numerical models accurately simulate the physical processes at hands. The presented study proposes a 3D test case for the simulation of thermal convection in a faulted system that accounts for temperature dependent fluid density and viscosity. The linear stability analysis recently developed by Malkovsky and Magri (2016) is used to estimate the critical Rayleigh number above which thermal convection of viscous fluids is triggered. The numerical simulations are carried out using the finite element technique. OpenGeoSys (Kolditz et al., 2012) and Moose (Gaston et al., 2009) results are compared to those obtained using the commercial software FEFLOW (Diersch, 2014) to test the ability of widely applied codes in matching both the critical Rayleigh number and the dynamical features of convective processes. The methodology and Rayleigh expressions given in this study can be applied to any numerical model that deals with 3D geothermal processes in faulted basins as by example the Tiberas Basin (Magri et al., 2016). References Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J. O., Fischer, T., U. J. Görke, T. Kalbacher, G. Kosakowski, McDermott, C. I., Park, C. H., Radu, F., Rink, K., Shao, H., Shao, H.B., Sun, F., Sun, Y., Sun, A., Singh, K., Taron, J., Walther, M., Wang,W., Watanabe, N., Wu, Y., Xie, M., Xu, W., Zehner, B., 2012. OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environmental
High-performance computational fluid dynamics: a custom-code approach
NASA Astrophysics Data System (ADS)
Fannon, James; Loiseau, Jean-Christophe; Valluri, Prashant; Bethune, Iain; Náraigh, Lennon Ó.
2016-07-01
We introduce a modified and simplified version of the pre-existing fully parallelized three-dimensional Navier-Stokes flow solver known as TPLS. We demonstrate how the simplified version can be used as a pedagogical tool for the study of computational fluid dynamics (CFDs) and parallel computing. TPLS is at its heart a two-phase flow solver, and uses calls to a range of external libraries to accelerate its performance. However, in the present context we narrow the focus of the study to basic hydrodynamics and parallel computing techniques, and the code is therefore simplified and modified to simulate pressure-driven single-phase flow in a channel, using only relatively simple Fortran 90 code with MPI parallelization, but no calls to any other external libraries. The modified code is analysed in order to both validate its accuracy and investigate its scalability up to 1000 CPU cores. Simulations are performed for several benchmark cases in pressure-driven channel flow, including a turbulent simulation, wherein the turbulence is incorporated via the large-eddy simulation technique. The work may be of use to advanced undergraduate and graduate students as an introductory study in CFDs, while also providing insight for those interested in more general aspects of high-performance computing.
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan
2003-01-01
During the past two decades, our understanding of laminar-turbulent transition flow physics has advanced significantly owing to, in a large part, the NASA program support such as the National Aerospace Plane (NASP), High-speed Civil Transport (HSCT), and Advanced Subsonic Technology (AST). Experimental, theoretical, as well as computational efforts on various issues such as receptivity and linear and nonlinear evolution of instability waves take part in broadening our knowledge base for this intricate flow phenomenon. Despite all these advances, transition prediction remains a nontrivial task for engineers due to the lack of a widely available, robust, and efficient prediction tool. The design and development of the LASTRAC code is aimed at providing one such engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. LASTRAC was written from scratch based on the state-of-the-art numerical methods for stability analysis and modem software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory (LST) or linear parabolized stability equations (LPSE) method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. Coupled with the built-in receptivity model that is currently under development, the nonlinear PSE method offers a synergistic approach to predict transition onset for a given disturbance environment based on first principles. This paper describes the governing equations, numerical methods, code development, and case studies for the current release of LASTRAC. Practical applications of LASTRAC are demonstrated for linear stability calculations, N-factor transition correlation, non-linear breakdown simulations, and controls of stationary crossflow instability in supersonic swept wing boundary
NASA Astrophysics Data System (ADS)
Sun, Yao-Chong; Zhang, Wei; Xu, Jian-Kuan; Chen, Xiaofei
2017-09-01
This study simulates seismic wave propagation across a 2-D topographic fluid (acoustic) and solid (elastic) interface at the sea bottom by the finite-difference method (FDM). In this method, seismic waves in sea water are governed by acoustic wave equations, whereas seismic waves in solid earth are governed by elastic wave equations. The fluid-solid interface condition is implemented on the interface. Body-conforming grids are used to fit the topographic fluid-solid interface which naturally avoids spurious diffractions due to staircase approximation. A collocated-grid MacCormack FDM is utilized to update the wavefields in the fluid and solid media. The fluid-solid interface condition is explicitly implemented by decomposing the velocity and stress components to the normal and tangential directions with respect to the interface within a fourth-order Runge-Kutta time-marching scheme. The algorithm solutions for both flat and topographic fluid-solid interface models are compared with analytical solutions and spectral element solutions to validate the proposed method. Results show a suitable agreement with the reference solutions and hence confirms the validity of this method. The proposed FDM enforces the numerical solutions to satisfy the exact interface condition and it is more accurate than the conventional FDM that uses effective media parameters to approximate the interface condition.
Boyarinov, V. F.; Davidenko, V. D.; Nevinitsa, V. A.; Tsibulsky, V. F.
2006-07-01
Verification of the SUHAM-U code has been carried out by the calculation of two-dimensional benchmark-experiment on critical light-water facility VENUS-2. Comparisons with experimental data and calculations by Monte-Carlo code UNK with the same nuclear data library B645 for basic isotopes have been fulfilled. Calculations of two-dimensional facility were carried out with using experimentally measured buckling values. Possibility of SUHAM code application for computations of PWR reactor with uranium and MOX fuel has been demonstrated. (authors)
GANDALF: Graphical Astrophysics code for N-body Dynamics And Lagrangian Fluids
NASA Astrophysics Data System (ADS)
Hubber, David; Rosotti, Giovanni
2016-02-01
GANDALF, a successor to SEREN (ascl:1102.010), is a hybrid self-gravitating fluid dynamics and collisional N-body code primarily designed for investigating star formation and planet formation problems. GANDALF uses various implementations of Smoothed Particle Hydrodynamics (SPH) to perform hydrodynamical simulations of gas clouds undergoing gravitational collapse to form new stars (or other objects), and can perform simulations of pure N-body dynamics using high accuracy N-body integrators, model the intermediate phase of cluster evolution, and provide visualizations via its python interface as well as interactive simulations. Although based on many of the SEREN routines, GANDALF has been largely re-written from scratch in C++ using more optimal algorithms and data structures.
Simulating Magnetic Reconnection Experiment (MRX) with a Guide Field using Fluid Code, HiFi
NASA Astrophysics Data System (ADS)
Budner, Tamas; Chen, Yangao; Meier, Eric; Ji, Hantao; MRX Team
2015-11-01
Magnetic reconnection is a phenomenon that occurs in plasmas when magnetic field lines effectively ``break'' and reconnect resulting in a different topological configuration. In this process, energy that was once stored in the magnetic field is transfered into the thermal velocity of the particles, effectively heating the plasma. MRX at the Princeton Plasma Physics Laboratory creates the conditions under which reconnection can occur by initially ramping the current in two adjacent coils and then rapidly decreasing with and without a guide magnetic field along the reconnecting current. We simulate this experiment using a fluid code called HiFi, an implicit and adaptive high order spectral element modeling framework, and compare our results to experimental data from MRX. The purpose is to identify physics behind the observed reconnection process for the field line break and the resultant plasma heating.
Automatic Generation of OpenMP Directives and Its Application to Computational Fluid Dynamics Codes
NASA Technical Reports Server (NTRS)
Yan, Jerry; Jin, Haoqiang; Frumkin, Michael; Yan, Jerry (Technical Monitor)
2000-01-01
The shared-memory programming model is a very effective way to achieve parallelism on shared memory parallel computers. As great progress was made in hardware and software technologies, performance of parallel programs with compiler directives has demonstrated large improvement. The introduction of OpenMP directives, the industrial standard for shared-memory programming, has minimized the issue of portability. In this study, we have extended CAPTools, a computer-aided parallelization toolkit, to automatically generate OpenMP-based parallel programs with nominal user assistance. We outline techniques used in the implementation of the tool and discuss the application of this tool on the NAS Parallel Benchmarks and several computational fluid dynamics codes. This work demonstrates the great potential of using the tool to quickly port parallel programs and also achieve good performance that exceeds some of the commercial tools.
Mu, Zhiping; Dobrucki, Lawrence W; Liu, Yi-Hwa
The imaging of distributed sources with near-field coded aperture (CA) remains extremely challenging and is broadly considered unsuitable for single-photon emission computerized tomography (SPECT). This study proposes a novel CA SPECT reconstruction approach and evaluates the feasibilities of imaging and reconstructing distributed hot sources and cold lesions using near-field CA collimation and iterative image reconstruction. Computer simulations were designed to compare CA and pinhole collimations in two-dimensional radionuclide imaging. Digital phantoms were created and CA images of the phantoms were reconstructed using maximum likelihood expectation maximization (MLEM). Errors and the contrast-to-noise ratio (CNR) were calculated and image resolution was evaluated. An ex vivo rat heart with myocardial infarction was imaged using a micro-SPECT system equipped with a custom-made CA module and a commercial 5-pinhole collimator. Rat CA images were reconstructed via the three-dimensional (3-D) MLEM algorithm developed for CA SPECT with and without correction for a large projection angle, and 5-pinhole images were reconstructed using the commercial software provided by the SPECT system. Phantom images of CA were markedly improved in terms of image quality, quantitative root-mean-squared error, and CNR, as compared to pinhole images. CA and pinhole images yielded similar image resolution, while CA collimation resulted in fewer noise artifacts. CA and pinhole images of the rat heart were well reconstructed and the myocardial perfusion defects could be clearly discerned from 3-D CA and 5-pinhole SPECT images, whereas 5-pinhole SPECT images suffered from severe noise artifacts. Image contrast of CA SPECT was further improved after correction for the large projection angle used in the rat heart imaging. The computer simulations and small-animal imaging study presented herein indicate that the proposed 3-D CA SPECT imaging and reconstruction approaches worked reasonably
Development and application of a multi-fluid simulation code for modeling interpenetrating plasmas
NASA Astrophysics Data System (ADS)
Khodak, M.; Berger, R. L.; Chapman, T.; Hittinger, J. A. F.
2015-11-01
A multi-fluid model, with independent velocities for all species, is developed and implemented for the numerical simulation of the interpenetration of colliding plasmas. The Euler equations for fluid flow, coupled through electron-ion and ion-ion collisional drag terms, thermal equilibration terms, and the electric field, are solved for each ion species with the electrons treated under a quasineutrality assumption. Fourth-order spatial convergence in smooth regions is achieved using flux-conservative iterative time integration and a Weighted Essentially Non-Oscillatory (WENO) finite volume scheme employing an approximate Riemann solver. Analytic solutions of well-known shock tube tests and spectral solutions of the linearized coupled system are used to test the implementation, and the model is further numerically compared to interpenetration experiments such as those of J.S. Ross et al. [Phys. Rev. Lett. 110 145005 (2013)]. This work has applications to laser-plasma interactions, specifically to hohlraum physics, as well as to modeling laboratory experiments of collisionless shocks important in astrophysical plasmas. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project code 15-ERD-038.
NASA Astrophysics Data System (ADS)
Hager, Robert; Lang, Jianying; Chang, C. S.; Ku, S.; Chen, Y.; Parker, S. E.; Adams, M. F.
2017-05-01
As an alternative option to kinetic electrons, the gyrokinetic total-f particle-in-cell (PIC) code XGC1 has been extended to the MHD/fluid type electromagnetic regime by combining gyrokinetic PIC ions with massless drift-fluid electrons analogous to Chen and Parker [Phys. Plasmas 8, 441 (2001)]. Two representative long wavelength modes, shear Alfvén waves and resistive tearing modes, are verified in cylindrical and toroidal magnetic field geometries.
NASA Technical Reports Server (NTRS)
Shapiro, Wilbur; Chupp, Raymond; Holle, Glenn; Scott, Thomas
2004-01-01
The objectives of the program were to develop computational fluid dynamics (CFD) codes and simpler industrial codes for analyzing and designing advanced seals for air-breathing and space propulsion engines. The CFD code SCISEAL is capable of producing full three-dimensional flow field information for a variety of cylindrical configurations. An implicit multidomain capability allow the division of complex flow domains to allow optimum use of computational cells. SCISEAL also has the unique capability to produce cross-coupled stiffness and damping coefficients for rotordynamic computations. The industrial codes consist of a series of separate stand-alone modules designed for expeditious parametric analyses and optimization of a wide variety of cylindrical and face seals. Coupled through a Knowledge-Based System (KBS) that provides a user-friendly Graphical User Interface (GUI), the industrial codes are PC based using an OS/2 operating system. These codes were designed to treat film seals where a clearance exists between the rotating and stationary components. Leakage is inhibited by surface roughness, small but stiff clearance films, and viscous pumping devices. The codes have demonstrated to be a valuable resource for seal development of future air-breathing and space propulsion engines
NASA Astrophysics Data System (ADS)
Massimo, F.; Marocchino, A.; Rossi, A. R.
2016-09-01
The realization of Plasma Wakefield Acceleration experiments with high quality of the accelerated bunches requires an increasing number of numerical simulations to perform first-order assessments for the experimental design and online-analysis of the experimental results. Particle in Cell codes are the state-of-the-art tools to study the beam-plasma interaction mechanism, but due to their requirements in terms of number of cores and computational time makes them unsuitable for quick parametric scans. Considerable interest has been shown thus in methods which reduce the computational time needed for the simulation of plasma acceleration. Such methods include the use of hybrid kinetic-fluid models, which treat the relativistic bunches as in a PIC code and the background plasma electrons as a fluid. A technique to properly initialize the bunch electromagnetic fields in the time explicit hybrid kinetic-fluid code Architect is presented, as well the implementation of the Flux Corrected Transport scheme for the fluid equations integrated in the code.
NASA Technical Reports Server (NTRS)
Liang, Anita D. (Technical Monitor); Artiles, Antonio
2004-01-01
The objectives of the program were to develop computational fluid dynamics (CFD) codes and simpler industrial codes for analyzing and designing advanced seals for air-breathing and space propulsion engines. The CFD code SCISEAL is capable of producing full three-dimensional flow field information for a variety of cylindrical configurations. An implicit multidomain capability allow the division of complex flow domains to allow optimum use of computational cells. SCISEAL also has the unique capability to produce cross-coupled stiffness and damping coefficients for rotordynamic computations. The industrial codes consist of a series of separate stand-alone modules designed for expeditious parametric analyses and optimization of a wide variety of cylindrical and face seals. Coupled through a Knowledge-Based System (KBS) that provides a user-friendly Graphical User Interface (GUI), the industrial codes are PC based using an OS/2 operating system. These codes were designed to treat film seals where a clearance exists between the rotating and stationary components. Leakage is inhibited by surface roughness, small but stiff clearance films, and viscous pumping devices. The codes have demonstrated to be a valuable resource for seal development of future air-breathing and space propulsion engines.
Anglesio, P.; Negreanu, G.P.
1998-07-01
The purpose of this paper is to investigate by the means of numerical simulation the performance of the MSW incinerator with of Vercelli (Italy). FLUENT, a finite-volumes commercial code for Fluid Dynamics has been used to predict the 3-D reacting flows (gaseous phase) within the incinerator geometry, in order to estimate if the three conditions settled by the Italian law (P.D. 915 / 82) are respected: (a) Flue gas temperature at the input of the secondary combustion chamber must exceed 950 C. (b) Oxygen concentration in the same section must exceed 6 %. (c) Residence time for the flue gas in the secondary combustion chamber must exceed 2 seconds. The model of the incinerator has been created using the software pre-processing facilities (wall, input, outlet and live cells), together with the set-up of boundary conditions. There are also imposed the combustion constants (stoichiometry, heat of combustion, air excess). The solving procedure transforms at the level of each live cell the partial derivative equations in algebraic equations, computing the velocities field, the temperatures, gases concentration, etc. These predicted values were compared with the design properties, and the conclusion was that the conditions (a), (b), (c), are respected in normal operation. The powerful graphic interface helps the user to visualize the magnitude of the computed parameters. These results may be successfully used for the design and operation improvements for MSW incinerators. This fact will substantially increase the efficiency, reduce pollutant emissions and optimize the plant overall performance.
Aceves, S M; Flowers, D L; Chen, J; Babaimopoulos, A
2006-08-29
We have developed an artificial neural network (ANN) based combustion model and have integrated it into a fluid mechanics code (KIVA3V) to produce a new analysis tool (titled KIVA3V-ANN) that can yield accurate HCCI predictions at very low computational cost. The neural network predicts ignition delay as a function of operating parameters (temperature, pressure, equivalence ratio and residual gas fraction). KIVA3V-ANN keeps track of the time history of the ignition delay during the engine cycle to evaluate the ignition integral and predict ignition for each computational cell. After a cell ignites, chemistry becomes active, and a two-step chemical kinetic mechanism predicts composition and heat generation in the ignited cells. KIVA3V-ANN has been validated by comparison with isooctane HCCI experiments in two different engines. The neural network provides reasonable predictions for HCCI combustion and emissions that, although typically not as good as obtained with the more physically representative multi-zone model, are obtained at a much reduced computational cost. KIVA3V-ANN can perform reasonably accurate HCCI calculations while requiring only 10% more computational effort than a motored KIVA3V run. It is therefore considered a valuable tool for evaluation of engine maps or other performance analysis tasks requiring multiple individual runs.
Viriato: a Fourier-Hermite spectral code for strongly magnetised fluid-kinetic plasma dynamics
NASA Astrophysics Data System (ADS)
Loureiro, Nuno; Dorland, William; Fazendeiro, Luis; Kanekar, Anjor; Mallet, Alfred; Zocco, Alessandro
2015-11-01
We report on the algorithms and numerical methods used in Viriato, a novel fluid-kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model equations [Zocco & Schekochihin, 2011] and (ii) the kinetic reduced MHD (KRMHD) equations [Schekochihin et al., 2009]. Two main applications of these equations are magnetised (Alfvnénic) plasma turbulence and magnetic reconnection. Viriato uses operator splitting to separate the dynamics parallel and perpendicular to the ambient magnetic field (assumed strong). Along the magnetic field, Viriato allows for either a second-order accurate MacCormack method or, for higher accuracy, a spectral-like scheme. Perpendicular to the field Viriato is pseudo-spectral, and the time integration is performed by means of an iterative predictor-corrector scheme. In addition, a distinctive feature of Viriato is its spectral representation of the parallel velocity-space dependence, achieved by means of a Hermite representation of the perturbed distribution function. A series of linear and nonlinear benchmarks and tests are presented, with focus on 3D decaying kinetic turbulence. Work partially supported by Fundação para a Ciência e Tecnologia via Grants UID/FIS/50010/2013 and IF/00530/2013.
NASA Technical Reports Server (NTRS)
Athavale, Mahesh; Przekwas, Andrzej
2004-01-01
The objectives of the program were to develop computational fluid dynamics (CFD) codes and simpler industrial codes for analyzing and designing advanced seals for air-breathing and space propulsion engines. The CFD code SCISEAL is capable of producing full three-dimensional flow field information for a variety of cylindrical configurations. An implicit multidomain capability allow the division of complex flow domains to allow optimum use of computational cells. SCISEAL also has the unique capability to produce cross-coupled stiffness and damping coefficients for rotordynamic computations. The industrial codes consist of a series of separate stand-alone modules designed for expeditious parametric analyses and optimization of a wide variety of cylindrical and face seals. Coupled through a Knowledge-Based System (KBS) that provides a user-friendly Graphical User Interface (GUI), the industrial codes are PC based using an OS/2 operating system. These codes were designed to treat film seals where a clearance exists between the rotating and stationary components. Leakage is inhibited by surface roughness, small but stiff clearance films, and viscous pumping devices. The codes have demonstrated to be a valuable resource for seal development of future air-breathing and space propulsion engines.
NASA Technical Reports Server (NTRS)
Liang, Anita D. (Technical Monitor); Shapiro, Wilbur
2004-01-01
The objectives of the program were to develop computational fluid dynamics (CFD) codes and simpler industrial codes for analyzing and designing advanced seals for air-breathing and space propulsion engines. The CFD code SCISEAL is capable of producing full three-dimensional flow field information for a variety of cylindrical configurations. An implicit multidomain capability allow the division of complex flow domains to allow optimum use of computational cells. SCISEAL also has the unique capability to produce cross-coupled stiffness and damping coefficients for rotordynamic computations. The industrial codes consist of a series of separate stand-alone modules designed for expeditious parametric analyses and optimization of a wide variety of cylindrical and face seals. Coupled through a Knowledge-Based System (KBS) that provides a user-friendly Graphical User Interface (GUI), the industrial codes are PC based using an OS/2 operating system. These codes were designed to treat film seals where a clearance exists between the rotating and stationary components. Leakage is inhibited by surface roughness, small but stiff clearance films, and viscous pumping devices. The codes have demonstrated to be a valuable resource for seal development of future air-breathing and space propulsion engines.
CAVEAT: A computer code for fluid dynamics problems with large distortion and internal slip
NASA Astrophysics Data System (ADS)
Addessio, F. L.; Baumgardner, J. R.; Dukowicz, J. K.; Johnson, N. L.; Kashiwa, B. A.; Rauenzahn, R. M.; Zemach, C.
1992-05-01
This report is a description of the two-dimensional version of CAVEAT, a computer code which solves numerically the equations of transient, multimaterial, compressible fluid dynamics. CAVEAT is written to treat a wide variety of problems. It has the ability, for example, to describe material interfaces and the large slip along interfaces, to describe complex geometries without sacrificing vector processing, and to apply tabular equations of state. Its numerical methods were chosen to minimize numerical diffusion, achieve a high degree of vectorization, and facilitate extension to three dimensions. CAVEAT uses an explicit time-marching, conservative finite-volume numerical technique in which all state variables, including velocity, are cell centered; values at vertices and cell faces are derived. The technique is a variation of the Godunov method that uses an approximate Riemann solver and accommodates arbitrary equations of state. Spatial differencing may either be first order or second order with a choice of limiters of the gradient in an attempt to preserve monotonicity. The formulation is spatially two-dimensional with options for Cartesian and curvilinear geometries. Discretization is achieved with a mesh of arbitrary quadrilateral cells whose vertices can move with time. Arbitrary mesh motion is supported by allowing transport of material between cells according to the Arbitrary Lagrangian-Eulerian technique. This report is a second edition of an earlier report on CAVEAT. Because of the maturity and expanded use of CAVEAT, this report includes new sections directed toward first-time users. We have chosen to document in this report only the hydrodynamics part of the much larger version of CAVEAT.
Multi-fluid transport code modeling of time-dependent recycling in ELMy H-mode
Pigarov, A. Yu.; Krasheninnikov, S. I.; Rognlien, T. D.; Hollmann, E. M.; Lasnier, C. J.; Unterberg, Ezekial A
2014-01-01
Simulations of a high-confinement-mode (H-mode) tokamak discharge with infrequent giant type-I ELMs are performed by the multi-fluid, multi-species, two-dimensional transport code UEDGE-MB, which incorporates the Macro-Blob approach for intermittent non-diffusive transport due to filamentary coherent structures observed during the Edge Localized Modes (ELMs) and simple time-dependent multi-parametric models for cross-field plasma transport coefficients and working gas inventory in material surfaces. Temporal evolutions of pedestal plasma profiles, divertor recycling, and wall inventory in a sequence of ELMs are studied and compared to the experimental time-dependent data. Short- and long-time-scale variations of the pedestal and divertor plasmas where the ELM is described as a sequence of macro-blobs are discussed. It is shown that the ELM recovery includes the phase of relatively dense and cold post-ELM divertor plasma evolving on a several ms scale, which is set by the transport properties of H-mode barrier. The global gas balance in the discharge is also analyzed. The calculated rates of working gas deposition during each ELM and wall outgassing between ELMs are compared to the ELM particle losses from the pedestal and neutral-beam-injection fueling rate, correspondingly. A sensitivity study of the pedestal and divertor plasmas to model assumptions for gas deposition and release on material surfaces is presented. The performed simulations show that the dynamics of pedestal particle inventory is dominated by the transient intense gas deposition into the wall during each ELM followed by continuous gas release between ELMs at roughly a constant rate.
Multi-fluid transport code modeling of time-dependent recycling in ELMy H-mode
Pigarov, A. Yu.; Krasheninnikov, S. I.; Hollmann, E. M.; Rognlien, T. D.; Lasnier, C. J.; Unterberg, E.
2014-06-15
Simulations of a high-confinement-mode (H-mode) tokamak discharge with infrequent giant type-I ELMs are performed by the multi-fluid, multi-species, two-dimensional transport code UEDGE-MB, which incorporates the Macro-Blob approach for intermittent non-diffusive transport due to filamentary coherent structures observed during the Edge Localized Modes (ELMs) and simple time-dependent multi-parametric models for cross-field plasma transport coefficients and working gas inventory in material surfaces. Temporal evolutions of pedestal plasma profiles, divertor recycling, and wall inventory in a sequence of ELMs are studied and compared to the experimental time-dependent data. Short- and long-time-scale variations of the pedestal and divertor plasmas where the ELM is described as a sequence of macro-blobs are discussed. It is shown that the ELM recovery includes the phase of relatively dense and cold post-ELM divertor plasma evolving on a several ms scale, which is set by the transport properties of H-mode barrier. The global gas balance in the discharge is also analyzed. The calculated rates of working gas deposition during each ELM and wall outgassing between ELMs are compared to the ELM particle losses from the pedestal and neutral-beam-injection fueling rate, correspondingly. A sensitivity study of the pedestal and divertor plasmas to model assumptions for gas deposition and release on material surfaces is presented. The performed simulations show that the dynamics of pedestal particle inventory is dominated by the transient intense gas deposition into the wall during each ELM followed by continuous gas release between ELMs at roughly a constant rate.
Ramshaw, J D
2000-10-01
A simple model was recently described for predicting the time evolution of the width of the mixing layer at an unstable fluid interface [J. D. Ramshaw, Phys. Rev. E 58, 5834 (1998); ibid. 61, 5339 (2000)]. The ordinary differential equations of this model have been heuristically generalized into partial differential equations suitable for implementation in multicomponent hydrodynamics codes. The central ingredient in this generalization is a nun-diffusional expression for the species mass fluxes. These fluxes describe the relative motion of the species, and thereby determine the local mixing rate and spatial distribution of mixed fluid as a function of time. The generalized model has been implemented in a two-dimensional hydrodynamics code. The model equations and implementation procedure are summarized, and comparisons with experimental mixing data are presented.
Huang, Yuan; Teng, Zhongzhao; Sadat, Umar; Graves, Martin J; Bennett, Martin R; Gillard, Jonathan H
2014-04-11
Compositional and morphological features of carotid atherosclerotic plaques provide complementary information to luminal stenosis in predicting clinical presentations. However, they alone cannot predict cerebrovascular risk. Mechanical stress within the plaque induced by cyclical changes in blood pressure has potential to assess plaque vulnerability. Various modeling strategies have been employed to predict stress, including 2D and 3D structure-only, 3D one-way and fully coupled fluid-structure interaction (FSI) simulations. However, differences in stress predictions using different strategies have not been assessed. Maximum principal stress (Stress-P1) within 8 human carotid atherosclerotic plaques was calculated based on geometry reconstructed from in vivo computerized tomography and high resolution, multi-sequence magnetic resonance images. Stress-P1 within the diseased region predicted by 2D and 3D structure-only, and 3D one-way FSI simulations were compared to 3D fully coupled FSI analysis. Compared to 3D fully coupled FSI, 2D structure-only simulation significantly overestimated stress level (94.1 kPa [65.2, 117.3] vs. 85.5 kPa [64.4, 113.6]; median [inter-quartile range], p=0.0004). However, when slices around the bifurcation region were excluded, stresses predicted by 2D structure-only simulations showed a good correlation (R(2)=0.69) with values obtained from 3D fully coupled FSI analysis. 3D structure-only model produced a small yet statistically significant stress overestimation compared to 3D fully coupled FSI (86.8 kPa [66.3, 115.8] vs. 85.5 kPa [64.4, 113.6]; p<0.0001). In contrast, one-way FSI underestimated stress compared to 3D fully coupled FSI (78.8 kPa [61.1, 100.4] vs. 85.5 kPa [64.4, 113.7]; p<0.0001). A 3D structure-only model seems to be a computationally inexpensive yet reasonably accurate approximation for stress within carotid atherosclerotic plaques with mild to moderate luminal stenosis as compared to fully coupled FSI analysis
Joseph, Ilon
2014-05-27
Jacobian-free Newton-Krylov (JFNK) algorithms are a potentially powerful class of methods for solving the problem of coupling codes that address dfferent physics models. As communication capability between individual submodules varies, different choices of coupling algorithms are required. The more communication that is available, the more possible it becomes to exploit the simple sparsity pattern of the Jacobian, albeit of a large system. The less communication that is available, the more dense the Jacobian matrices become and new types of preconditioners must be sought to efficiently take large time steps. In general, methods that use constrained or reduced subsystems can offer a compromise in complexity. The specific problem of coupling a fluid plasma code to a kinetic neutrals code is discussed as an example.
Rosen, Lisa M; Liu, Tao; Merchant, Roland C
2012-06-01
Blood and body fluid exposures are frequently evaluated in emergency departments (EDs). However, efficient and effective methods for estimating their incidence are not yet established. Evaluate the efficiency and accuracy of estimating statewide ED visits for blood or body fluid exposures using International Classification of Diseases, Ninth Revision (ICD-9), code searches. Secondary analysis of a database of ED visits for blood or body fluid exposure. EDs of 11 civilian hospitals throughout Rhode Island from January 1, 1995, through June 30, 2001. Patients presenting to the ED for possible blood or body fluid exposure were included, as determined by prespecified ICD-9 codes. Positive predictive values (PPVs) were estimated to determine the ability of 10 ICD-9 codes to distinguish ED visits for blood or body fluid exposure from ED visits that were not for blood or body fluid exposure. Recursive partitioning was used to identify an optimal subset of ICD-9 codes for this purpose. Random-effects logistic regression modeling was used to examine variations in ICD-9 coding practices and styles across hospitals. Cluster analysis was used to assess whether the choice of ICD-9 codes was similar across hospitals. The PPV for the original 10 ICD-9 codes was 74.4% (95% confidence interval [CI], 73.2%-75.7%), whereas the recursive partitioning analysis identified a subset of 5 ICD-9 codes with a PPV of 89.9% (95% CI, 88.9%-90.8%) and a misclassification rate of 10.1%. The ability, efficiency, and use of the ICD-9 codes to distinguish types of ED visits varied across hospitals. Although an accurate subset of ICD-9 codes could be identified, variations across hospitals related to hospital coding style, efficiency, and accuracy greatly affected estimates of the number of ED visits for blood or body fluid exposure.
Xia, Yidong; Andrs, David; Martineau, Richard Charles
2016-08-01
This document presents the theoretical background for a hybrid finite-element / finite-volume fluid flow solver, namely BIGHORN, based on the Multiphysics Object Oriented Simulation Environment (MOOSE) computational framework developed at the Idaho National Laboratory (INL). An overview of the numerical methods used in BIGHORN are discussed and followed by a presentation of the formulation details. The document begins with the governing equations for the compressible fluid flow, with an outline of the requisite constitutive relations. A second-order finite volume method used for solving the compressible fluid flow problems is presented next. A Pressure-Corrected Implicit Continuous-fluid Eulerian (PCICE) formulation for time integration is also presented. The multi-fluid formulation is being developed. Although multi-fluid is not fully-developed, BIGHORN has been designed to handle multi-fluid problems. Due to the flexibility in the underlying MOOSE framework, BIGHORN is quite extensible, and can accommodate both multi-species and multi-phase formulations. This document also presents a suite of verification & validation benchmark test problems for BIGHORN. The intent for this suite of problems is to provide baseline comparison data that demonstrates the performance of the BIGHORN solution methods on problems that vary in complexity from laminar to turbulent flows. Wherever possible, some form of solution verification has been attempted to identify sensitivities in the solution methods, and suggest best practices when using BIGHORN.
Friedel, Michael J.
2001-01-01
This report describes a model for simulating transient, Variably Saturated, coupled water-heatsolute Transport in heterogeneous, anisotropic, 2-Dimensional, ground-water systems with variable fluid density (VST2D). VST2D was developed to help understand the effects of natural and anthropogenic factors on quantity and quality of variably saturated ground-water systems. The model solves simultaneously for one or more dependent variables (pressure, temperature, and concentration) at nodes in a horizontal or vertical mesh using a quasi-linearized general minimum residual method. This approach enhances computational speed beyond the speed of a sequential approach. Heterogeneous and anisotropic conditions are implemented locally using individual element property descriptions. This implementation allows local principal directions to differ among elements and from the global solution domain coordinates. Boundary conditions can include time-varying pressure head (or moisture content), heat, and/or concentration; fluxes distributed along domain boundaries and/or at internal node points; and/or convective moisture, heat, and solute fluxes along the domain boundaries; and/or unit hydraulic gradient along domain boundaries. Other model features include temperature and concentration dependent density (liquid and vapor) and viscosity, sorption and/or decay of a solute, and capability to determine moisture content beyond residual to zero. These features are described in the documentation together with development of the governing equations, application of the finite-element formulation (using the Galerkin approach), solution procedure, mass and energy balance considerations, input requirements, and output options. The VST2D model was verified, and results included solutions for problems of water transport under isohaline and isothermal conditions, heat transport under isobaric and isohaline conditions, solute transport under isobaric and isothermal conditions, and coupled water
Taylor, J. Bryce; Yavuzkurt, Savas; Baratta, Anthony J.
2002-07-01
The Pebble Bed Modular Reactor (PBMR), a promising Generation IV nuclear reactor design, raises many novel technological issues for which new experience and techniques must be developed. This brief study explores a few of these issues, utilizes a computational fluid dynamics code to model some simple phenomena, and points out deficiencies in current knowledge that should be addressed by future research and experimentation. A highly simplified representation of the PBMR core is analyzed with FLUENT, a commercial computational fluid dynamics code. The applied models examine laminar and turbulent flow in the vicinity of a single spherical fuel pebble near the center of the core, accounting for the effects of the immediately adjacent fuel pebbles. Several important fluid flow and heat transfer parameters are examined, including heat transfer coefficient, Nusselt number, and pressure drop, as well as the temperature, pressure, and velocity profiles near the fuel pebble. The results of these 'unit cell' calculations are also compared to empirical correlations available in the literature. As FLUENT is especially sensitive to geometry during the generation of a computational mesh, the sensitivity of code results to pebble spacing is also examined. The results of this study show that while a PBMR presents a novel and complex geometry, a code such as FLUENT is suitable for calculation of both local and global flow characteristics, and can be a valuable tool for the thermal-hydraulic study of this new reactor design. FLUENT results for pressure drop deviate from the Darcy correlation by several orders of magnitude in all cases. When determining the heat transfer coefficient, FLUENT is again much lower than Robinson's correlation. Results for Nusselt number show better agreement, with FLUENT predicting results that are 10 or 20 times as large as those from the Robinson and Lancashire correlations. These differences may arise because the empirical correlations concern mainly
Users manual for CAFE-3D : a computational fluid dynamics fire code.
Khalil, Imane; Lopez, Carlos; Suo-Anttila, Ahti Jorma
2005-03-01
The Container Analysis Fire Environment (CAFE) computer code has been developed to model all relevant fire physics for predicting the thermal response of massive objects engulfed in large fires. It provides realistic fire thermal boundary conditions for use in design of radioactive material packages and in risk-based transportation studies. The CAFE code can be coupled to commercial finite-element codes such as MSC PATRAN/THERMAL and ANSYS. This coupled system of codes can be used to determine the internal thermal response of finite element models of packages to a range of fire environments. This document is a user manual describing how to use the three-dimensional version of CAFE, as well as a description of CAFE input and output parameters. Since this is a user manual, only a brief theoretical description of the equations and physical models is included.
Gupta, S.K.; Kincaid, C.T.; Meyer, P.R.; Newbill, C.A.; Cole, C.R.
1982-08-01
The Seasonal Thermal Energy Storage Program is being conducted for the Department of Energy by Pacific Northwest Laboratory. A major thrust of this program has been the study of natural aquifers as hosts for thermal energy storage and retrieval. Numerical simulation of the nonisothermal response of the host media is fundamental to the evaluation of proposed experimental designs and field test results. This report represents the primary documentation for the coupled fluid, energy and solute transport (CFEST) code. Sections of this document are devoted to the conservation equations and their numerical analogues, the input data requirements, and the verification studies completed to date.
A fluid-particle hybrid framework for the PLUTO code: applications to non-thermal emission in jets.
NASA Astrophysics Data System (ADS)
Vaidya, B.; Mignone, A.; Bodo, G.; Massaglia, S.
2016-05-01
We present an implementation of a fully parallel hybrid framework for the evolution of Lagrangian particles coupled to a MHD fluid for the PLUTO code. For the applications of interest, particles represent ensembles of electrons whose spectral energy distribution is governed by a kinetic transport equation that takes into account different physical processes such as diffusive shock acceleration, synchrotron emission and adiabatic expansion. An application to model non-thermal emission from extragalactic jets shows the effectiveness and strength of the approach in describing not only the dynamics but also the radiation properties of jets and, in general, of high-energy astrophysical plasma environments.
Verification of fluid-dynamic codes in the presence of shocks and other discontinuities
NASA Astrophysics Data System (ADS)
Nathan Woods, C.; Starkey, Ryan P.
2015-08-01
The verification that computer codes correctly solve their model equations is critical to the continued success of numerical simulation. The method of manufactured solutions (MMS) is the best method currently available for this kind of verification for differential equations. However, it cannot be used directly with discontinuous solutions, as is required for the verification of high-speed aerodynamic codes with shocks. An integrative approach can extend the applicability of MMS to both discontinuous solutions such as shocks or material interfaces, as well as integral equations. We present an implementation of integrative MMS based on intelligent subdivision of integration domains that is both highly accurate and fast, and results in a rigorous, one-step verification procedure for shock-capturing codes. Numerical integration is found to be accurate to machine precision when tested on exact solutions of the linear heat equation and the Euler equations, even in the presence of discontinuous flow features. Intelligent subdivision of integration domains also improves computational performance by approximately 60× compared to the same algorithm without intelligent subdivisions. We demonstrate the use of MMS in the verification of the BACL-Streamer inviscid gas dynamics code. Integral MMS is found to compute convergence rates that are equivalent to those computed using differential MMS, and comparable to those computed using discontinuous, exact solutions, suggesting integral MMS is a valid method for verification of both integral and shock-capturing codes.
NASA Astrophysics Data System (ADS)
Lotsch, Bettina V.
2015-07-01
Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.
SCISEAL: A CFD code for analysis of fluid dynamic forces in seals
NASA Technical Reports Server (NTRS)
Athavale, Mahesh; Przekwas, Andrzej
1994-01-01
A viewgraph presentation is made of the objectives, capabilities, and test results of the computer code SCISEAL. Currently, the seal code has: a finite volume, pressure-based integration scheme; colocated variables with strong conservation approach; high-order spatial differencing, up to third-order; up to second-order temporal differencing; a comprehensive set of boundary conditions; a variety of turbulence models and surface roughness treatment; moving grid formulation for arbitrary rotor whirl; rotor dynamic coefficients calculated by the circular whirl and numerical shaker methods; and small perturbation capabilities to handle centered and eccentric seals.
The Proteus Navier-Stokes code. [two and three dimensional computational fluid dynamics
NASA Technical Reports Server (NTRS)
Towne, Charles E.; Schwab, John R.
1992-01-01
An effort is currently underway at NASA Lewis to develop two and three dimensional Navier-Stokes codes, called Proteus, for aerospace propulsion applications. Proteus solves the Reynolds-averaged, unsteady, compressible Navier-Stokes equations in strong conservation law form. Turbulence is modeled using a Baldwin-Lomax based algebraic eddy viscosity model. In addition, options are available to solve thin layer or Euler equations, and to eliminate the energy equation by assuming constant stagnation enthalpy. An extensive series of validation cases have been run, primarily using the two dimensional planar/axisymmetric version of the code. Several flows were computed that have exact solution such as: fully developed channel and pipe flow; Couette flow with and without pressure gradients; unsteady Couette flow formation; flow near a suddenly accelerated flat plate; flow between concentric rotating cylinders; and flow near a rotating disk. The two dimensional version of the Proteus code has been released, and the three dimensional code is scheduled for release in late 1991.
The Proteus Navier-Stokes code. [two and three dimensional computational fluid dynamics
NASA Technical Reports Server (NTRS)
Towne, Charles E.; Schwab, John R.
1992-01-01
An effort is currently underway at NASA Lewis to develop two and three dimensional Navier-Stokes codes, called Proteus, for aerospace propulsion applications. Proteus solves the Reynolds-averaged, unsteady, compressible Navier-Stokes equations in strong conservation law form. Turbulence is modeled using a Baldwin-Lomax based algebraic eddy viscosity model. In addition, options are available to solve thin layer or Euler equations, and to eliminate the energy equation by assuming constant stagnation enthalpy. An extensive series of validation cases have been run, primarily using the two dimensional planar/axisymmetric version of the code. Several flows were computed that have exact solution such as: fully developed channel and pipe flow; Couette flow with and without pressure gradients; unsteady Couette flow formation; flow near a suddenly accelerated flat plate; flow between concentric rotating cylinders; and flow near a rotating disk. The two dimensional version of the Proteus code has been released, and the three dimensional code is scheduled for release in late 1991.
NASA Astrophysics Data System (ADS)
Marx, Alain; Lütjens, Hinrich
2017-03-01
A hybrid MPI/OpenMP parallel version of the XTOR-2F code [Lütjens and Luciani, J. Comput. Phys. 229 (2010) 8130] solving the two-fluid MHD equations in full tokamak geometry by means of an iterative Newton-Krylov matrix-free method has been developed. The present work shows that the code has been parallelized significantly despite the numerical profile of the problem solved by XTOR-2F, i.e. a discretization with pseudo-spectral representations in all angular directions, the stiffness of the two-fluid stability problem in tokamaks, and the use of a direct LU decomposition to invert the physical pre-conditioner at every Krylov iteration of the solver. The execution time of the parallelized version is an order of magnitude smaller than the sequential one for low resolution cases, with an increasing speedup when the discretization mesh is refined. Moreover, it allows to perform simulations with higher resolutions, previously forbidden because of memory limitations.
2D semiconductor optoelectronics
NASA Astrophysics Data System (ADS)
Novoselov, Kostya
The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.
MPI implementation of PHOENICS: A general purpose computational fluid dynamics code
Simunovic, S.; Zacharia, T.; Baltas, N.; Spalding, D.B.
1995-04-01
PHOENICS is a suite of computational analysis programs that are used for simulation of fluid flow, heat transfer, and dynamical reaction processes. The parallel version of the solver EARTH for the Computational Fluid Dynamics (CFD) program PHOENICS has been implemented using Message Passing Interface (MPI) standard. Implementation of MPI version of PHOENICS makes this computational tool portable to a wide range of parallel machines and enables the use of high performance computing for large scale computational simulations. MPI libraries are available on several parallel architectures making the program usable across different architectures as well as on heterogeneous computer networks. The Intel Paragon NX and MPI versions of the program have been developed and tested on massively parallel supercomputers Intel Paragon XP/S 5, XP/S 35, and Kendall Square Research, and on the multiprocessor SGI Onyx computer at Oak Ridge National Laboratory. The preliminary testing results of the developed program have shown scalable performance for reasonably sized computational domains.
MPI implementation of PHOENICS: A general purpose computational fluid dynamics code
NASA Astrophysics Data System (ADS)
Simunovic, S.; Zacharia, T.; Baltas, N.; Spalding, D. B.
1995-03-01
PHOENICS is a suite of computational analysis programs that are used for simulation of fluid flow, heat transfer, and dynamical reaction processes. The parallel version of the solver EARTH for the Computational Fluid Dynamics (CFD) program PHOENICS has been implemented using Message Passing Interface (MPI) standard. Implementation of MPI version of PHOENICS makes this computational tool portable to a wide range of parallel machines and enables the use of high performance computing for large scale computational simulations. MPI libraries are available on several parallel architectures making the program usable across different architectures as well as on heterogeneous computer networks. The Intel Paragon NX and MPI versions of the program have been developed and tested on massively parallel supercomputers Intel Paragon XP/S 5, XP/S 35, and Kendall Square Research, and on the multiprocessor SGI Onyx computer at Oak Ridge National Laboratory. The preliminary testing results of the developed program have shown scalable performance for reasonably sized computational domains.
Brittle damage models in DYNA2D
Faux, D.R.
1997-09-01
DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.
GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System
James Menart
2013-06-07
This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..
Three-dimensional two-fluid code for U-tube steam generator thermal design analysis
Lee, J.Y.; No, H.C.
1986-11-01
A computer code, FAUST (Flow Analysis of U-tube Steam generators), for U-tube steam generator design analysis is developed on the basis of the pressurized water reactor core transient analysis code, THERMIT. The original (x,y,z) coordinates used in THERMIT are transformed into the cylindrical (r,theta,z) coordinates for FAUST, which are better fitted in the geometry of steam generators. To couple the primary side with the secondary side, a one-dimensional tube representative of a computational cell in the heat transfer model is developed with a geometrical mapping between the primary and secondary sides. The special unitary group SU(2) is used to treat the complex geometry of the U-bend region for frictional wall force. A form loss model for tube support plates in two-phase flow is implemented in the code. The steam dome model developed here enables us to consider the different amounts of feedwater distributed into the hot and cold sides of the downcomer.
A Supersonic Argon/Air Coaxial Jet Experiment for Computational Fluid Dynamics Code Validation
NASA Technical Reports Server (NTRS)
Clifton, Chandler W.; Cutler, Andrew D.
2007-01-01
A non-reacting experiment is described in which data has been acquired for the validation of CFD codes used to design high-speed air-breathing engines. A coaxial jet-nozzle has been designed to produce pressure-matched exit flows of Mach 1.8 at 1 atm in both a center jet of argon and a coflow jet of air, creating a supersonic, incompressible mixing layer. The flowfield was surveyed using total temperature, gas composition, and Pitot probes. The data set was compared to CFD code predictions made using Vulcan, a structured grid Navier-Stokes code, as well as to data from a previous experiment in which a He-O2 mixture was used instead of argon in the center jet of the same coaxial jet assembly. Comparison of experimental data from the argon flowfield and its computational prediction shows that the CFD produces an accurate solution for most of the measured flowfield. However, the CFD prediction deviates from the experimental data in the region downstream of x/D = 4, underpredicting the mixing-layer growth rate.
Numerical investigation of 3D effects on a 2D-dominated shocked mixing layer
NASA Astrophysics Data System (ADS)
Reese, Daniel; Weber, Christopher
2016-11-01
A nominally two-dimensional interface, unstable to the Rayleigh-Taylor or Richtmyer-Meshkov instability, will become three-dimensional at high Reynolds numbers due to the growth of background noise and 3D effects like vortex stretching. This three-dimensionality changes macroscopic features, such as the perturbation growth rate and mixing, as it enhances turbulent dissipation. In this study, a 2D perturbation with small-scale, 3D fluctuations is modeled using the hydrodynamics code Miranda. A Mach 1.95 shockwave accelerates a helium-over-SF6 interface, similar to the experiments of Motl et al. ["Experimental validation of a Richtmyer-Meshkov scaling law over large density ratio and shock strength ranges," Phys. Fluids 21(12), 126102 (2009)], to explore the regime where a 2D dominated flow will experience 3D effects. We report on the structure, growth, and mixing of the post-shocked interface in 2D and 3D.
Computational astrophysical fluid dynamics
NASA Technical Reports Server (NTRS)
Norman, Michael L.; Clarke, David A.; Stone, James M.
1991-01-01
The field of astrophysical fluid dynamics (AFD) is described as an emerging discipline which derives historically from both the theory of stellar evolution and space plasma physics. The fundamental physical assumption behind AFD is that fluid equations of motion accurately describe the evolution of plasmas on scales that are large in comparison with particle interaction length scales. Particular attention is given to purely fluid models of large-scale astrophysical plasmas. The role of computer simulation in AFD research is also highlighted and a suite of general-purpose application codes for AFD research is discussed. The codes are called ZEUS-2D and ZEUS-3D and solve the equations of AFD in two and three dimensions, respectively, in several coordinate geometries for general initial and boundary conditions. The topics of bipolar outflows from protostars, galactic superbubbles and supershells, and extragalactic radio sources are addressed.
Validation of a Computational Fluid Dynamics (CFD) Code for Supersonic Axisymmetric Base Flow
NASA Technical Reports Server (NTRS)
Tucker, P. Kevin
1993-01-01
The ability to accurately and efficiently calculate the flow structure in the base region of bodies of revolution in supersonic flight is a significant step in CFD code validation for applications ranging from base heating for rockets to drag for protectives. The FDNS code is used to compute such a flow and the results are compared to benchmark quality experimental data. Flowfield calculations are presented for a cylindrical afterbody at M = 2.46 and angle of attack a = O. Grid independent solutions are compared to mean velocity profiles in the separated wake area and downstream of the reattachment point. Additionally, quantities such as turbulent kinetic energy and shear layer growth rates are compared to the data. Finally, the computed base pressures are compared to the measured values. An effort is made to elucidate the role of turbulence models in the flowfield predictions. The level of turbulent eddy viscosity, and its origin, are used to contrast the various turbulence models and compare the results to the experimental data.
THE PLUTO CODE FOR ADAPTIVE MESH COMPUTATIONS IN ASTROPHYSICAL FLUID DYNAMICS
Mignone, A.; Tzeferacos, P.; Zanni, C.; Bodo, G.; Van Straalen, B.; Colella, P.
2012-01-01
We present a description of the adaptive mesh refinement (AMR) implementation of the PLUTO code for solving the equations of classical and special relativistic magnetohydrodynamics (MHD and RMHD). The current release exploits, in addition to the static grid version of the code, the distributed infrastructure of the CHOMBO library for multidimensional parallel computations over block-structured, adaptively refined grids. We employ a conservative finite-volume approach where primary flow quantities are discretized at the cell center in a dimensionally unsplit fashion using the Corner Transport Upwind method. Time stepping relies on a characteristic tracing step where piecewise parabolic method, weighted essentially non-oscillatory, or slope-limited linear interpolation schemes can be handily adopted. A characteristic decomposition-free version of the scheme is also illustrated. The solenoidal condition of the magnetic field is enforced by augmenting the equations with a generalized Lagrange multiplier providing propagation and damping of divergence errors through a mixed hyperbolic/parabolic explicit cleaning step. Among the novel features, we describe an extension of the scheme to include non-ideal dissipative processes, such as viscosity, resistivity, and anisotropic thermal conduction without operator splitting. Finally, we illustrate an efficient treatment of point-local, potentially stiff source terms over hierarchical nested grids by taking advantage of the adaptivity in time. Several multidimensional benchmarks and applications to problems of astrophysical relevance assess the potentiality of the AMR version of PLUTO in resolving flow features separated by large spatial and temporal disparities.
The PLUTO Code for Adaptive Mesh Computations in Astrophysical Fluid Dynamics
NASA Astrophysics Data System (ADS)
Mignone, A.; Zanni, C.; Tzeferacos, P.; van Straalen, B.; Colella, P.; Bodo, G.
2012-01-01
We present a description of the adaptive mesh refinement (AMR) implementation of the PLUTO code for solving the equations of classical and special relativistic magnetohydrodynamics (MHD and RMHD). The current release exploits, in addition to the static grid version of the code, the distributed infrastructure of the CHOMBO library for multidimensional parallel computations over block-structured, adaptively refined grids. We employ a conservative finite-volume approach where primary flow quantities are discretized at the cell center in a dimensionally unsplit fashion using the Corner Transport Upwind method. Time stepping relies on a characteristic tracing step where piecewise parabolic method, weighted essentially non-oscillatory, or slope-limited linear interpolation schemes can be handily adopted. A characteristic decomposition-free version of the scheme is also illustrated. The solenoidal condition of the magnetic field is enforced by augmenting the equations with a generalized Lagrange multiplier providing propagation and damping of divergence errors through a mixed hyperbolic/parabolic explicit cleaning step. Among the novel features, we describe an extension of the scheme to include non-ideal dissipative processes, such as viscosity, resistivity, and anisotropic thermal conduction without operator splitting. Finally, we illustrate an efficient treatment of point-local, potentially stiff source terms over hierarchical nested grids by taking advantage of the adaptivity in time. Several multidimensional benchmarks and applications to problems of astrophysical relevance assess the potentiality of the AMR version of PLUTO in resolving flow features separated by large spatial and temporal disparities.
MAGNUM2D. Radionuclide Transport Porous Media
Langford, D.W.; Baca, R.G.
1989-03-01
MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculations assume local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.
MAGNUM2D. Radionuclide Transport Porous Media
Langford, D.W.; Baca, R.G.
1988-08-01
MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculation assumes local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.
NASA Technical Reports Server (NTRS)
Beutner, Thomas John
1993-01-01
Porous wall wind tunnels have been used for several decades and have proven effective in reducing wall interference effects in both low speed and transonic testing. They allow for testing through Mach 1, reduce blockage effects and reduce shock wave reflections in the test section. Their usefulness in developing computational fluid dynamics (CFD) codes has been limited, however, by the difficulties associated with modelling the effect of a porous wall in CFD codes. Previous approaches to modelling porous wall effects have depended either upon a simplified linear boundary condition, which has proven inadequate, or upon detailed measurements of the normal velocity near the wall, which require extensive wind tunnel time. The current work was initiated in an effort to find a simple, accurate method of modelling a porous wall boundary condition in CFD codes. The development of such a method would allow data from porous wall wind tunnels to be used more readily in validating CFD codes. This would be beneficial when transonic validations are desired, or when large models are used to achieve high Reynolds numbers in testing. A computational and experimental study was undertaken to investigate a new method of modelling solid and porous wall boundary conditions in CFD codes. The method utilized experimental measurements at the walls to develop a flow field solution based on the method of singularities. This flow field solution was then imposed as a pressure boundary condition in a CFD simulation of the internal flow field. The effectiveness of this method in describing the effect of porosity changes on the wall was investigated. Also, the effectiveness of this method when only sparse experimental measurements were available has been investigated. The current work demonstrated this approach for low speed flows and compared the results with experimental data obtained from a heavily instrumented variable porosity test section. The approach developed was simple, computationally
Nichols, B.D.; Mueller, C.; Necker, G.A.; Travis, J.R.; Spore, J.W.; Lam, K.L.; Royl, P.; Redlinger, R.; Wilson, T.L.
1998-10-01
Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior (1) in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and (2) during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included
PORTHOS - A computer code for solving general three-dimensional, time-dependent two-fluid equations
Chan, R.K.C.; Masiello, P.J.; Srikantiah, G.S.
1987-01-01
PORTHOS is a computer code for calculating three-dimensional steady-state or time dependent two-phase flow in porous or non-porous media. It was developed with the initial goal of simulating two-phase flows in steam generators of PWR nuclear power plants. However, the modular code design and the generality of approach allow application to a wide variety of problems in single phase or two-phase flow. The present method employs a finite difference technique to solve the complete set of two-fluid equations, i.e., the ''six-equation'' model which includes tow mass conservation equations, two momentum equations, two energy equations, as well as constitutive equations to effect closure of the system. The use of volume porosity and surface permeability allows the treatment of complex geometry. This paper describes the mathematical basis, the numerical solution procedure employed, and the results of comparisons with two sources of experimental data: the 8MW FRIGG loop experiment and the Electricite de France (EdF) Bugey 4 steam generator test. Calculations of the FRIGG experiment by PORTHOS, in terms of void fraction distribution, are in good agreement with measurements. Verification against the EdF data is also quite satisfactory.
Wang, C.Y.
1993-06-01
This paper describes fluid-structure-interaction and structure response analyses of a reactor vessel subjected to loadings associated with postulated accidents, using the hybrid Lagrangian-Eulerian code ALICE-II. This code has been improved recently to accommodate many features associated with innovative designs of reactor vessels. Calculational capabilities have been developed to treat water in the reactor cavity outside the vessel, internal shield structures and internal thin shells. The objective of the present analyses is to study the cover response and potential for missile generation in response to a fuel-coolant interaction in the core region. Three calculations were performed using the cover weight as a parameter. To study the effect of the cavity water, vessel response calculations for both wet- and dry-cavity designs are compared. Results indicate that for all cases studied and for the design parameters assumed, the calculated cover displacements are all smaller than the bolts` ultimate displacement and no missile generation of the closure head is predicted. Also, solutions reveal that the cavity water of the wet-cavity design plays an important role of restraining the downward displacement of the bottom head. Based on these studies, the analyses predict that the structure integrity is maintained throughout the postulated accident for the wet-cavity design.
Wang, C.Y.
1993-01-01
This paper describes fluid-structure-interaction and structure response analyses of a reactor vessel subjected to loadings associated with postulated accidents, using the hybrid Lagrangian-Eulerian code ALICE-II. This code has been improved recently to accommodate many features associated with innovative designs of reactor vessels. Calculational capabilities have been developed to treat water in the reactor cavity outside the vessel, internal shield structures and internal thin shells. The objective of the present analyses is to study the cover response and potential for missile generation in response to a fuel-coolant interaction in the core region. Three calculations were performed using the cover weight as a parameter. To study the effect of the cavity water, vessel response calculations for both wet- and dry-cavity designs are compared. Results indicate that for all cases studied and for the design parameters assumed, the calculated cover displacements are all smaller than the bolts' ultimate displacement and no missile generation of the closure head is predicted. Also, solutions reveal that the cavity water of the wet-cavity design plays an important role of restraining the downward displacement of the bottom head. Based on these studies, the analyses predict that the structure integrity is maintained throughout the postulated accident for the wet-cavity design.
NASA Astrophysics Data System (ADS)
Wang, C. Y.
This paper describes fluid-structure-interaction and structure response analyses of a reactor vessel subjected to loadings associated with postulated accidents, using the hybrid Lagrangian-Eulerian code ALICE-II. This code has been improved recently to accommodate many features associated with innovative designs of reactor vessels. Calculational capabilities have been developed to treat water in the reactor cavity outside the vessel, internal shield structures and internal thin shells. The objective of the present analyses is to study the cover response and potential for missile generation in response to a fuel-coolant interaction in the core region. Three calculations were performed using the cover weight as a parameter. To study the effect of the cavity water, vessel response calculations for both wet- and dry-cavity designs are compared. Results indicate that for all cases studied and for the design parameters assumed, the calculated cover displacements are all smaller than the bolts' ultimate displacement and no missile generation of the closure head is predicted. Also, solutions reveal that the cavity water of the wet-cavity design plays an important role of restraining the downward displacement of the bottom head. Based on these studies, the analyses predict that the structure integrity is maintained throughout the postulated accident for the wet-cavity design.
Validating kinetic models in a fluid code using data from high-Knudsen-number capsule implosions
NASA Astrophysics Data System (ADS)
Hoffman, N.; Molvig, K.; Dodd, E.; Albright, B.; Simakov, A.; Zimmerman, G.; Rosenberg, M.; Rinderknecht, H.; Sio, H.; Zylstra, A.; Sinenian, N.; Gatu Johnson, M.; Seguin, F.; Frenje, J.; Li, C. K.; Petrasso, R.; Glebov, V.; Stoeckl, C.; Seka, W.; Sangster, C.
2013-10-01
We validate models of (a) ion diffusion and (b) fusion reactivity decrease from modified ion-distribution tails, implemented in a rad-hydro code, using data for five quantities (DD-n yield, D3He-p yield, DD burn temperature, bang time, and absorbed energy) from recent thin-shell D3He-filled capsules at OMEGA. Four inputs (laser source fraction, electron thermal flux limiter, Knudsen number multiplier, and ion flux multiplier) are varied to find the best fit to the ten observables from two implosions (8-atm fill and 23-atm fill). The calibrated input values can explain the data from a set of other D3He implosions with fill pressures from 1 atm to 17 atm (Knudsen numbers from 0.5 to ~6). Using a new transport model for ion loss, we will develop a model of wide validity for OMEGA direct-drive implosions. Funded by USDOE under contract DE-AC52-06NA25396.
Formulation, Implementation and Validation of a Two-Fluid model in a Fuel Cell CFD Code
Jain, Kunal; Cole, J. Vernon; Kumar, Sanjiv; Gidwani, Ashok; Vaidya, N.
2008-12-01
Water management is one of the main challenges in PEM Fuel Cells. While water is essential for membrane electrical conductivity, excess liquid water leads to flooding of catalyst layers. Despite the fact that accurate prediction of two-phase transport is key for optimal water management, understanding of the two-phase transport in fuel cells is relatively poor. Wang et. al. have studied the two-phase transport in the channel and diffusion layer separately using a multiphase mixture model. The model fails to accurately predict saturation values for high humidity inlet streams. Nguyen et. al. developed a two-dimensional, two-phase, isothermal, isobaric, steady state model of the catalyst and gas diffusion layers. The model neglects any liquid in the channel. Djilali et. al. developed a three-dimensional two-phase multicomponent model. The model is an improvement over previous models, but neglects drag between the liquid and the gas phases in the channel. In this work, we present a comprehensive two-fluid model relevant to fuel cells. Models for two-phase transport through Channel, Gas Diffusion Layer (GDL) and Channel-GDL interface, are discussed. In the channel, the gas and liquid pressures are assumed to be same. The surface tension effects in the channel are incorporated using the continuum surface force (CSF) model. The force at the surface is expressed as a volumetric body force and added as a source to the momentum equation. In the GDL, the gas and liquid are assumed to be at different pressures. The difference in the pressures (capillary pressure) is calculated using an empirical correlations. At the Channel-GDL interface, the wall adhesion affects need to be taken into account. SIMPLE-type methods recast the continuity equation into a pressure-correction equation, the solution of which then provides corrections for velocities and pressures. However, in the two-fluid model, the presence of two phasic continuity equations gives more freedom and more
Static & Dynamic Response of 2D Solids
Lin, Jerry
1996-07-15
NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.
Compact 2-D graphical representation of DNA
NASA Astrophysics Data System (ADS)
Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana
2003-05-01
We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.
Akcay, Cihan; Victor, Brian S.; Jarboe, Thomas R.; Kim, Charlson C.
2013-08-15
We present a comparison study of 3-D pressureless resistive MHD (rMHD) and 3-D presureless two-fluid MHD models of the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI). HIT-SI is a current drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The comparable size of the collisionless ion skin depth d{sub i} to the resistive skin depth predicates the importance of the Hall term for HIT-SI. The simulations are run with NIMROD, an initial-value, 3-D extended MHD code. The modeled plasma density and temperature are assumed uniform and constant. The helicity injectors are modeled as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification (I{sub tor}/I{sub inj}) and formation time τ{sub f} demonstrated by HIT-SI with similar internal magnetic fields. rMHD underestimates (I{sub tor}/I{sub inj}) and exhibits much a longer τ{sub f}. Biorthogonal decomposition (BD), a powerful mathematical tool for reducing large data sets, is employed to quantify how well the simulations reproduce the measured surface magnetic fields without resorting to a probe-by-probe comparison. BD shows that 2fl-MHD captures the dominant surface magnetic structures and the temporal behavior of these features better than rMHD.
NASA Astrophysics Data System (ADS)
Akcay, Cihan; Kim, Charlson C.; Victor, Brian S.; Jarboe, Thomas R.
2013-08-01
We present a comparison study of 3-D pressureless resistive MHD (rMHD) and 3-D presureless two-fluid MHD models of the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI). HIT-SI is a current drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The comparable size of the collisionless ion skin depth di to the resistive skin depth predicates the importance of the Hall term for HIT-SI. The simulations are run with NIMROD, an initial-value, 3-D extended MHD code. The modeled plasma density and temperature are assumed uniform and constant. The helicity injectors are modeled as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification Itor/Iinj and formation time τf demonstrated by HIT-SI with similar internal magnetic fields. rMHD underestimates Itor/Iinj and exhibits much a longer τf. Biorthogonal decomposition (BD), a powerful mathematical tool for reducing large data sets, is employed to quantify how well the simulations reproduce the measured surface magnetic fields without resorting to a probe-by-probe comparison. BD shows that 2fl-MHD captures the dominant surface magnetic structures and the temporal behavior of these features better than rMHD.
Bullock, James H.; Youchison, Dennis Lee; Ulrickson, Michael Andrew
2009-08-01
Enhanced radial transport in the plasma and the effect of ELMS may increase the ITER first wall heat loads to as much as 4 to 5 MW/m{sup 2} over localized areas. One proposed heatsink that can handle these higher loads is a CuCrZr hypervapotron. One concept for a first wall panel consists of 20 hypervapotron channels, each measuring 1400 mm long and 48.5 mm wide. The nominal cooling conditions anticipated for each channel are 400 g/s of water at 3 MPa and 100 C. This will result in boiling over a portion of the total length. A two-phase thermalhydraulic analysis is required to predict accurately the thermal performance. Existing heat transfer correlations used for nucleate boiling are not appropriate here because the flow does not reach fully developed conditions in the multi-segmented channels. Our design-by-analysis approach used two commercial codes, Fluent and Star-CCM+, to perform computational fluid dynamics analyses with conjugate heat transfer. Both codes use the Rensselear (RPI) model for wall heat flux partitioning to model nucleate boiling as implemented in user-defined functions. We present a comparison between the two codes for this Eulerian multiphase problem that relies on temperature dependent materials properties. The analyses optimized the hypervapotron geometry, including teeth height and pitch, as well as the depth of the back channel to permit highly effective boiling heat transfer in the grooves between the teeth while ensuring that no boiling could occur at the back channel exit. The analysis used a representative heat flux profile with the peak heat flux of 5 MW/m{sup 2} limited to a 50 mm length. The maximum surface temperature of the heatsink is 415 C. The baseline design uses 2 mm for the teeth height, a 3 mm width and 6 mm pitch, and a back channel depth of 8 mm. The teeth are detached from the sidewall by a 2-mm-wide slot on both sides that aids in sweep-out and quenching of the vapor bubbles.
General Dynamics' perspective on CFD code calibration/validation
NASA Technical Reports Server (NTRS)
Bhateley, I. C.; Hull, Gene H.
1987-01-01
Information is given in viewgraph form on General Dynamics' perspective on computational fluid dynamics (CFD) code calibration and validation. Topics covered include a hypersonic blunted cone, a hypersonic wedge/cylinder, a wing vortex defined by Mach contours, pressure distributions, and 3D turbulent flow behind a 2D flat plate as measured in a water tunnel with a laser Doppler velocimeter.
Pigarov, A Y; West, W; Soukhanovskii, V; Rognlien, T; Maingi, R; Lipschultz, B; Krasheninnikov, S; LaBombard, B
2003-11-25
Fast intermittent transport has been observed in the scrape-off layer (SOL) of major tokamaks including Alcator C-Mod, DIII-D, and NSTX. This kind of transport is not diffusive but rather convective. It strongly increases plasma flux to the chamber walls and enhances the recycling of neutral particles in the main chamber. We discuss anomalous cross-field convection (ACFC) model for impurity and main plasma ions and its relation to intermittent transport events, i.e. plasma density blobs and holes in the SOL. Along with plasma diffusivity coefficients, our transport model introduces time-independent anomalous cross-field convective velocity. In the discharge modelling, diffusivity coefficients and ACFC velocity profiles are adjusted to match a set of representative experimental data. We use this model in the edge plasma physics code UEDGE to simulate the multi-fluid two-dimensional transport for these three tokamaks. We present simulation results suggesting the dominance of anomalous convection in the far SOL transport. These results are consistent with the hypothesis that the chamber wall is an important source of impurities and that different impurity charge states have different directions of anomalous convective velocity.
NASA Astrophysics Data System (ADS)
Xin, Shihe; Le Quéré, Patrick
2012-06-01
Following our previous two-dimensional (2D) studies of flows in differentially heated cavities filled with air, we studied the stability of 2D natural convection flows in these cavities with respect to 3D periodic perturbations. The basis of the numerical methods is a time-stepping code using the Chebyshev spectral collocation method and the direct Uzawa method for velocity-pressure coupling. Newton's iteration, Arnoldi's method and the continuation method have been used in order to, respectively, compute the 2D steady-state base solution, estimate the leading eigenmodes of the Jacobian and perform linear stability analysis. Differentially heated air-filled cavities of aspect ratios from 1 to 7 were investigated. Neutral curves (Rayleigh number versus wave number) have been obtained. It turned out that only for aspect ratio 7, 3D stationary instability occurs at slightly higher Rayleigh numbers than the onset of 2D time-dependent flow and that for other aspect ratios 3D instability always takes place before 2D time-dependent flows. 3D unstable modes are stationary and anti-centro-symmetric. 3D nonlinear simulations revealed that the corresponding pitchfork bifurcations are supercritical and that 3D instability leads only to weak flow in the third direction. Further 3D computations are also performed at higher Rayleigh number in order to understand the effects of the weak 3D fluid motion on the onset of time-dependent flow. 3D flow structures are responsible for the onset of time-dependent flow for aspect ratios 1, 2 and 3, while for larger aspect ratios they do not alter the transition scenario, which was observed in the 2D cases and that vertical boundary layers become unstable to traveling waves.
Castro-Chavez, Fernando
2012-01-01
Background Three binary representations of the genetic code according to the ancient I Ching of Fu-Xi will be presented, depending on their defragging capabilities by pairing based on three biochemical properties of the nucleic acids: H-bonds, Purine/Pyrimidine rings, and the Keto-enol/Amino-imino tautomerism, yielding the last pair a 32/32 single-strand self-annealed genetic code and I Ching tables. Methods Our working tool is the ancient binary I Ching's resulting genetic code chromosomes defragged by vertical and by horizontal pairing, reverse engineered into non-binaries of 2D rotating 4×4×4 circles and 8×8 squares and into one 3D 100% symmetrical 16×4 tetrahedron coupled to a functional tetrahedron with apical signaling and central hydrophobicity (codon formula: 4[1(1)+1(3)+1(4)+4(2)]; 5:5, 6:6 in man) forming a stella octangula, and compared to Nirenberg's 16×4 codon table (1965) pairing the first two nucleotides of the 64 codons in axis y. Results One horizontal and one vertical defragging had the start Met at the center. Two, both horizontal and vertical pairings produced two pairs of 2×8×4 genetic code chromosomes naturally arranged (M and I), rearranged by semi-introversion of central purines or pyrimidines (M' and I') and by clustering hydrophobic amino acids; their quasi-identity was disrupted by amino acids with odd codons (Met and Tyr pairing to Ile and TGA Stop); in all instances, the 64-grid 90° rotational ability was restored. Conclusions We defragged three I Ching representations of the genetic code while emphasizing Nirenberg's historical finding. The synthetic genetic code chromosomes obtained reflect the protective strategy of enzymes with a similar function, having both humans and mammals a biased G-C dominance of three H-bonds in the third nucleotide of their most used codons per amino acid, as seen in one chromosome of the i, M and M' genetic codes, while a two H-bond A-T dominance was found in their complementary chromosome, as seen
Castro-Chavez, Fernando
2012-01-01
BACKGROUND: Three binary representations of the genetic code according to the ancient I Ching of Fu-Xi will be presented, depending on their defragging capabilities by pairing based on three biochemical properties of the nucleic acids: H-bonds, Purine/Pyrimidine rings, and the Keto-enol/Amino-imino tautomerism, yielding the last pair a 32/32 single-strand self-annealed genetic code and I Ching tables. METHODS: Our working tool is the ancient binary I Ching's resulting genetic code chromosomes defragged by vertical and by horizontal pairing, reverse engineered into non-binaries of 2D rotating 4×4×4 circles and 8×8 squares and into one 3D 100% symmetrical 16×4 tetrahedron coupled to a functional tetrahedron with apical signaling and central hydrophobicity (codon formula: 4[1(1)+1(3)+1(4)+4(2)]; 5:5, 6:6 in man) forming a stella octangula, and compared to Nirenberg's 16×4 codon table (1965) pairing the first two nucleotides of the 64 codons in axis y. RESULTS: One horizontal and one vertical defragging had the start Met at the center. Two, both horizontal and vertical pairings produced two pairs of 2×8×4 genetic code chromosomes naturally arranged (M and I), rearranged by semi-introversion of central purines or pyrimidines (M' and I') and by clustering hydrophobic amino acids; their quasi-identity was disrupted by amino acids with odd codons (Met and Tyr pairing to Ile and TGA Stop); in all instances, the 64-grid 90° rotational ability was restored. CONCLUSIONS: We defragged three I Ching representations of the genetic code while emphasizing Nirenberg's historical finding. The synthetic genetic code chromosomes obtained reflect the protective strategy of enzymes with a similar function, having both humans and mammals a biased G-C dominance of three H-bonds in the third nucleotide of their most used codons per amino acid, as seen in one chromosome of the i, M and M' genetic codes, while a two H-bond A-T dominance was found in their complementary chromosome, as
NASA Technical Reports Server (NTRS)
Liang, Anita D. (Technical Monitor); Walowit, Jed; Shapiro, Wilbur
2004-01-01
The objectives of the program were to develop computational fluid dynamics (CFD) codes and simpler industrial codes for analyzing and designing advanced seals for air-breathing and space propulsion engines. The CFD code SCISEAL is capable of producing full three-dimensional flow field information for a variety of cylindrical configurations. An implicit multidomain capability allow the division of complex flow domains to allow optimum use of computational cells. SCISEAL also has the unique capability to produce cross-coupled stiffness and damping coefficients for rotordynamic computations. The industrial codes consist of a series of separate stand-alone modules designed for expeditious parametric analyses and optimization of a wide variety of cylindrical and face seals. Coupled through a Knowledge-Based System (KBS) that provides a user-friendly Graphical User Interface (GUI), the industrial codes are PC based using an OS/2 operating system. These codes were designed to treat film seals where a clearance exists between the rotating and stationary components. Leakage is inhibited by surface roughness, small but stiff clearance films, and viscous pumping devices. The codes have demonstrated to be a valuable resource for seal development of future air-breathing and space propulsion engines.
Simulation of Ionospheric E-Region Plasma Turbulence with a Massively Parallel Hybrid PIC/Fluid Code
NASA Astrophysics Data System (ADS)
Young, M.; Oppenheim, M. M.; Dimant, Y. S.
2015-12-01
The Farley-Buneman (FB) and gradient drift (GD) instabilities are plasma instabilities that occur at roughly 100 km in the equatorial E-region ionosphere. They develop when ion-neutral collisions dominate ion motion while electron motion is affected by both electron-neutral collisions and the background magnetic field. GD drift waves grow when the background density gradient and electric field are aligned; FB waves grow when the background electric field causes electrons to E × B drift with a speed slightly larger than the ion acoustic speed. Theory predicts that FB and GD turbulence should develop in the same plasma volume when GD waves create a perturbation electric field that exceeds the threshold value for FB turbulence. However, ionospheric radars, which regularly observe meter-scale irregularities associated with FB turbulence, must infer kilometer-scale GD dynamics rather than observe them directly. Numerical simulations have been unable to simultaneously resolve GD and FB structure. We present results from a parallelized hybrid simulation that uses a particle-in-cell (PIC) method for ions while modeling electrons as an inertialess, quasi-neutral fluid. This approach allows us to reach length scales of hundreds of meters to kilometers with sub-meter resolution, but requires solving a large linear system derived from an elliptic PDE that depends on plasma density, ion flux, and electron parameters. We solve the resultant linear system at each time step via the Portable Extensible Toolkit for Scientific Computing (PETSc). We compare results of simulated FB turbulence from this model to results from a thoroughly tested PIC code and describe progress toward the first simultaneous simulations of FB and GD instabilities. This model has immediate applications to radar observations of the E-region ionosphere, as well as potential applications to the F-region ionosphere and the chromosphere of the Sun.
Gil, Bomi; Hwang, Eo-Jin; Lee, Song; Jang, Jinhee; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-soo
2016-01-01
Introduction To compare the diagnostic accuracy of contrast-enhanced 3D(dimensional) T1-weighted sampling perfection with application-optimized contrasts by using different flip angle evolutions (T1-SPACE), 2D fluid attenuated inversion recovery (FLAIR) images and 2D contrast-enhanced T1-weighted image in detection of leptomeningeal metastasis except for invasive procedures such as a CSF tapping. Materials and Methods Three groups of patients were included retrospectively for 9 months (from 2013-04-01 to 2013-12-31). Group 1 patients with positive malignant cells in CSF cytology (n = 22); group 2, stroke patients with steno-occlusion in ICA or MCA (n = 16); and group 3, patients with negative results on MRI, whose symptom were dizziness or headache (n = 25). A total of 63 sets of MR images are separately collected and randomly arranged: (1) CE 3D T1-SPACE; (2) 2D FLAIR; and (3) CE T1-GRE using a 3-Tesla MR system. A faculty neuroradiologist with 8-year-experience and another 2nd grade trainee in radiology reviewed each MR image- blinded by the results of CSF cytology and coded their observations as positives or negatives of leptomeningeal metastasis. The CSF cytology result was considered as a gold standard. Sensitivity and specificity of each MR images were calculated. Diagnostic accuracy was compared using a McNemar’s test. A Cohen's kappa analysis was performed to assess inter-observer agreements. Results Diagnostic accuracy was not different between 3D T1-SPACE and CSF cytology by both raters. However, the accuracy test of 2D FLAIR and 2D contrast-enhanced T1-weighted GRE was inconsistent by the two raters. The Kappa statistic results were 0.657 (3D T1-SPACE), 0.420 (2D FLAIR), and 0.160 (2D contrast-enhanced T1-weighted GRE). The 3D T1-SPACE images showed the highest inter-observer agreements between the raters. Conclusions Compared to 2D FLAIR and 2D contrast-enhanced T1-weighted GRE, contrast-enhanced 3D T1 SPACE showed a better detection rate of
NIKE2D96. Static & Dynamic Response of 2D Solids
Raboin, P.; Engelmann, B.; Halquist, J.O.
1992-01-24
NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.
IB2d: a Python and MATLAB implementation of the immersed boundary method.
Battista, Nicholas A; Strickland, W Christopher; Miller, Laura A
2017-03-29
The development of fluid-structure interaction (FSI) software involves trade-offs between ease of use, generality, performance, and cost. Typically there are large learning curves when using low-level software to model the interaction of an elastic structure immersed in a uniform density fluid. Many existing codes are not publicly available, and the commercial software that exists usually requires expensive licenses and may not be as robust or allow the necessary flexibility that in house codes can provide. We present an open source immersed boundary software package, IB2d, with full implementations in both MATLAB and Python, that is capable of running a vast range of biomechanics models and is accessible to scientists who have experience in high-level programming environments. IB2d contains multiple options for constructing material properties of the fiber structure, as well as the advection-diffusion of a chemical gradient, muscle mechanics models, and artificial forcing to drive boundaries with a preferred motion.
WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation
NASA Astrophysics Data System (ADS)
Shen, Yanfeng; Giurgiutiu, Victor
2014-03-01
This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.
2D-simulation of stationary MHD flows in the ducts of rectangular cross-section
NASA Astrophysics Data System (ADS)
Khalzov, Ivan; Ilgisonis, Victor
2005-10-01
The numerical code for a calculation of 2D stationary MHD flows of incompressible conducting viscous fluids (liquid metals) in straight and circular ducts of rectangular cross-section is developed. The flows are driven by the electrical current perpendicular both to the duct axis and to the external magnetic field. The code generalizes the well-known iterative Gauss-Seidel method for the case of systems of elliptic equations. The algorithm developed allows us to carry out the calculations of stationary flows in a wide range of Hartmann (Ha=110^3) and Reynolds (Re=110^6) numbers. The numerical results are presented for the experimental device, which is under construction in Russia.
FDNS CFD Code Benchmark for RBCC Ejector Mode Operation
NASA Technical Reports Server (NTRS)
Holt, James B.; Ruf, Joe
1999-01-01
Computational Fluid Dynamics (CFD) analysis results are compared with benchmark quality test data from the Propulsion Engineering Research Center's (PERC) Rocket Based Combined Cycle (RBCC) experiments to verify fluid dynamic code and application procedures. RBCC engine flowpath development will rely on CFD applications to capture the multi-dimensional fluid dynamic interactions and to quantify their effect on the RBCC system performance. Therefore, the accuracy of these CFD codes must be determined through detailed comparisons with test data. The PERC experiments build upon the well-known 1968 rocket-ejector experiments of Odegaard and Stroup by employing advanced optical and laser based diagnostics to evaluate mixing and secondary combustion. The Finite Difference Navier Stokes (FDNS) code was used to model the fluid dynamics of the PERC RBCC ejector mode configuration. Analyses were performed for both Diffusion and Afterburning (DAB) and Simultaneous Mixing and Combustion (SMC) test conditions. Results from both the 2D and the 3D models are presented.
NASA Astrophysics Data System (ADS)
Zaghi, S.
2014-07-01
OFF, an open source (free software) code for performing fluid dynamics simulations, is presented. The aim of OFF is to solve, numerically, the unsteady (and steady) compressible Navier-Stokes equations of fluid dynamics by means of finite volume techniques: the research background is mainly focused on high-order (WENO) schemes for multi-fluids, multi-phase flows over complex geometries. To this purpose a highly modular, object-oriented application program interface (API) has been developed. In particular, the concepts of data encapsulation and inheritance available within Fortran language (from standard 2003) have been stressed in order to represent each fluid dynamics "entity" (e.g. the conservative variables of a finite volume, its geometry, etc…) by a single object so that a large variety of computational libraries can be easily (and efficiently) developed upon these objects. The main features of OFF can be summarized as follows: Programming LanguageOFF is written in standard (compliant) Fortran 2003; its design is highly modular in order to enhance simplicity of use and maintenance without compromising the efficiency; Parallel Frameworks Supported the development of OFF has been also targeted to maximize the computational efficiency: the code is designed to run on shared-memory multi-cores workstations and distributed-memory clusters of shared-memory nodes (supercomputers); the code's parallelization is based on Open Multiprocessing (OpenMP) and Message Passing Interface (MPI) paradigms; Usability, Maintenance and Enhancement in order to improve the usability, maintenance and enhancement of the code also the documentation has been carefully taken into account; the documentation is built upon comprehensive comments placed directly into the source files (no external documentation files needed): these comments are parsed by means of doxygen free software producing high quality html and latex documentation pages; the distributed versioning system referred as git
Optoelectronics with 2D semiconductors
NASA Astrophysics Data System (ADS)
Mueller, Thomas
2015-03-01
Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.
The 2005 Vazcun Valley Lahar: Evaluation of the TITAN2D Two-Phase Flow Model Using an Actual Event.
NASA Astrophysics Data System (ADS)
Williams, R.; Stinton, A. J.; Sheridan, M. F.
2005-12-01
TITAN2D is a depth-averaged, thin-layer computational fluid dynamics (CFD) code, suitable for simulating a variety of geophysical mass flows. TITAN2D output data include pile thickness and flow momentum at each time step for all cells traversed by the flow during the simulation. From this the flow limit, run-out path, pile velocity, deposit thickness, and travel time can be calculated. Results can be visualized in the open source GRASS GIS software or with the built-in TITAN2D viewer. A new two-phase TITAN2D version allows simulation of flows containing various mixtures of water and solids. The purpose of this study is to compare simulations by the two-phase flow version of TITAN2D with an actual event. The chosen natural flow is a small ash-rich lahar (volume approximately 60,000 m3) that occurred on 12 February 2005 in the Vazcún Valley, located on the north-east flank of Volcán Tungurahua, Ecuador. Lahars and pyroclastic flows along this valley could potentially threaten the 20,000 inhabitants living in and near the city of Baños. A variety of data sources exist for this lahar, including: pre- and post-event meter-scale topography, and photographic, video, seismic and acoustic flow monitoring (AFM) records from during the event. These data permit detailed comparisons between the dynamics of the actual lahar and those of the TITAN2D simulated flow. In particular, detailed comparisons are made between run-up heights, flow velocity, inundation area, and deposit area and thickness. Simulations utilize a variety of data derived from field observations such as lahar volume, solid to pore-fluid ratio and pre-event topography. TITAN2D is important in modeling lahars because it allows assessment of the impact of the flows on buildings and infrastructure lifelines located near drainages that descend from volcanoes.
phase_space_cosmo_fisher: Fisher matrix 2D contours
NASA Astrophysics Data System (ADS)
Stark, Alejo
2016-11-01
phase_space_cosmo_fisher produces Fisher matrix 2D contours from which the constraints on cosmological parameters can be derived. Given a specified redshift array and cosmological case, 2D marginalized contours of cosmological parameters are generated; the code can also plot the derivatives used in the Fisher matrix. In addition, this package can generate 3D plots of qH^2 and other cosmological quantities as a function of redshift and cosmology.
Sevrin, A.
1993-06-01
After reviewing some aspects of gravity in two dimensions, I show that non-trivial embeddings of sl(2) in a semi-simple (super) Lie algebra give rise to a very large class of extensions of 2D gravity. The induced action is constructed as a gauged WZW model and an exact expression for the effective action is given.
Highly crystalline 2D superconductors
NASA Astrophysics Data System (ADS)
Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro
2017-02-01
Recent advances in materials fabrication have enabled the manufacturing of ordered 2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more than an order of magnitude lower than that of conventional amorphous or granular thin films. In this Review, we explore recent developments in the field of highly crystalline 2D superconductors and highlight the unprecedented physical properties of these systems. In particular, we explore the quantum metallic state (or possible metallic ground state), the quantum Griffiths phase observed in out-of-plane magnetic fields and the superconducting state maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a discussion of how these unconventional properties make highly crystalline 2D systems promising platforms for the exploration of new quantum physics and high-temperature superconductors.
Highly crystalline 2D superconductors
NASA Astrophysics Data System (ADS)
Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro
2016-12-01
Recent advances in materials fabrication have enabled the manufacturing of ordered 2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more than an order of magnitude lower than that of conventional amorphous or granular thin films. In this Review, we explore recent developments in the field of highly crystalline 2D superconductors and highlight the unprecedented physical properties of these systems. In particular, we explore the quantum metallic state (or possible metallic ground state), the quantum Griffiths phase observed in out-of-plane magnetic fields and the superconducting state maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a discussion of how these unconventional properties make highly crystalline 2D systems promising platforms for the exploration of new quantum physics and high-temperature superconductors.
NASA Astrophysics Data System (ADS)
Viridi, S.; Latief, FDE; Khotimah, SN
2017-07-01
Tortuosity is an important physical property in porous materials since it describes path length of fluid through the materials, which means how much the loss of kinetic energy. The simplest definition of tortuosity T is λ/L with λ is length of the path and L is the distance between two ends of the path. System is discretized using grid to limit number of possible paths, which could be infinity for continuous system. Porosity of the system is also constrained. Variable T is chosen as macrostates in statistical physics point of view, while all possible paths within this T are the microstates. It is found that some macrostates (more appropriately is its maximum value) have larger thermodynamics probability than the others. It should be a relation between this probability and reported tortuosity.
Fernandez-Mercado, Marta; Manterola, Lorea; Larrea, Erika; Goicoechea, Ibai; Arestin, María; Armesto, María; Otaegui, David; Lawrie, Charles H
2015-01-01
The gold standard for cancer diagnosis remains the histological examination of affected tissue, obtained either by surgical excision, or radiologically guided biopsy. Such procedures however are expensive, not without risk to the patient, and require consistent evaluation by expert pathologists. Consequently, the search for non-invasive tools for the diagnosis and management of cancer has led to great interest in the field of circulating nucleic acids in plasma and serum. An additional benefit of blood-based testing is the ability to carry out screening and repeat sampling on patients undergoing therapy, or monitoring disease progression allowing for the development of a personalized approach to cancer patient management. Despite having been discovered over 60 years ago, the clear clinical potential of circulating nucleic acids, with the notable exception of prenatal diagnostic testing, has yet to translate into the clinic. The recent discovery of non-coding (nc) RNA (in particular micro(mi)RNAs) in the blood has provided fresh impetuous for the field. In this review, we discuss the potential of the circulating transcriptome (coding and ncRNA), as novel cancer biomarkers, the controversy surrounding their origin and biology, and most importantly the hurdles that remain to be overcome if they are really to become part of future clinical practice. PMID:26119132
E-2D Advanced Hawkeye Aircraft (E-2D AHE)
2015-12-01
and Homeland Defense. As a part of the E-2D AHE radar modernization effort, the Navy also invested in integrating a full glass cockpit and full...Communication Navigation Surveillance/Air Traffic Management capability. The glass cockpit will also provide the capability for the pilot or co-pilot to...hours at a station distance of 200nm Flat Turn Service Ceiling =>25,000 feet above MSL at mission profile =>25,000 feet above MSL at mission
Roy, C.; Ohana, M.; Host, Ph.; Alemann, G.; Labani, A.; Wattiez, A.; Lang, H.
2014-01-01
Objective The goal of this prospective study was to compare the efficiency of two types of MRU after diuretic administration to identify the non-dilated ureter. Methods MR pelvic examinations were performed in 126 patients after receiving furosemide. Each patient underwent in addition to their protocol for context, two types of MRU: 2D T2-weighted FSE (T2w-MRU) and 3D Gd T1-weighted GE (CE-MRU). Four segments were checked for each ureter. For the first part of the analysis, readers evaluated the whole image quality using a four points subjective scale and for the second part, they were asked to score separately each ureteral segment as present or absent. Results 1008 ureteral segments were checked. For the image quality, readers did not find any significant difference (3.8 ± 0.5 vs 3.6 ± 0.7, p value: 0.13) between MRU methods. The interobserver agreement was excellent with a κ correlation coefficient as high as 0.89 for T2w-MRU and 0.92 for CE-MRU, respectively. For the detection of the segments and considering the 9 rotations for the T2W MRU, there were no statistically significant differences between the two groups. Conclusion T2-weighted MRU with multiple orientations and diuretic is sufficient to identify the non-dilated ureter. It offers information on ureteral peristaltism. It can be suggested that this sequence is able to detect an initial obstruction before hydronephrosis occurs. PMID:26937423
Roy, C; Ohana, M; Host, Ph; Alemann, G; Labani, A; Wattiez, A; Lang, H
2014-01-01
The goal of this prospective study was to compare the efficiency of two types of MRU after diuretic administration to identify the non-dilated ureter. MR pelvic examinations were performed in 126 patients after receiving furosemide. Each patient underwent in addition to their protocol for context, two types of MRU: 2D T2-weighted FSE (T2w-MRU) and 3D Gd T1-weighted GE (CE-MRU). Four segments were checked for each ureter. For the first part of the analysis, readers evaluated the whole image quality using a four points subjective scale and for the second part, they were asked to score separately each ureteral segment as present or absent. 1008 ureteral segments were checked. For the image quality, readers did not find any significant difference (3.8 ± 0.5 vs 3.6 ± 0.7, p value: 0.13) between MRU methods. The interobserver agreement was excellent with a κ correlation coefficient as high as 0.89 for T2w-MRU and 0.92 for CE-MRU, respectively. For the detection of the segments and considering the 9 rotations for the T2W MRU, there were no statistically significant differences between the two groups. T2-weighted MRU with multiple orientations and diuretic is sufficient to identify the non-dilated ureter. It offers information on ureteral peristaltism. It can be suggested that this sequence is able to detect an initial obstruction before hydronephrosis occurs.
Moridis, George; Freeman, Craig
2013-09-30
We developed two new EOS additions to the TOUGH+ family of codes, the RealGasH2O and RealGas . The RealGasH2O EOS option describes the non-isothermal two-phase flow of water and a real gas mixture in gas reservoirs, with a particular focus in ultra-tight (such as tight-sand and shale gas) reservoirs. The gas mixture is treated as either a single-pseudo-component having a fixed composition, or as a multicomponent system composed of up to 9 individual real gases. The RealGas option has the same general capabilities, but does not include water, thus describing a single-phase, dry-gas system. In addition to the standard capabilities of all members of the TOUGH+ family of codes (fully-implicit, compositional simulators using both structured and unstructured grids), the capabilities of the two codes include: coupled flow and thermal effects in porous and/or fractured media, real gas behavior, inertial (Klinkenberg) effects, full micro-flow treatment, Darcy and non-Darcy flow through the matrix and fractures of fractured media, single- and multi-component gas sorption onto the grains of the porous media following several isotherm options, discrete and fracture representation, complex matrix-fracture relationships, and porosity-permeability dependence on pressure changes. The two options allow the study of flow and transport of fluids and heat over a wide range of time frames and spatial scales not only in gas reservoirs, but also in problems of geologic storage of greenhouse gas mixtures, and of geothermal reservoirs with multi-component condensable (H2O and CH4) and non-condensable gas mixtures. The codes are verified against available analytical and semi-analytical solutions. Their capabilities are demonstrated in a series of problems of increasing complexity, ranging from isothermal flow in simpler 1D and 2D conventional gas reservoirs, to non-isothermal gas flow in 3D fractured shale gas reservoirs involving 4 types of fractures, micro-flow, non-Darcy flow and gas
NASA Astrophysics Data System (ADS)
Moridis, George J.; Freeman, Craig M.
2014-04-01
We developed two new EOS additions to the TOUGH+ family of codes, the RealGasH2O and RealGas. The RealGasH2O EOS option describes the non-isothermal two-phase flow of water and a real gas mixture in gas reservoirs, with a particular focus in ultra-tight (such as tight-sand and shale gas) reservoirs. The gas mixture is treated as either a single-pseudo-component having a fixed composition, or as a multicomponent system composed of up to 9 individual real gases. The RealGas option has the same general capabilities, but does not include water, thus describing a single-phase, dry-gas system. In addition to the standard capabilities of all members of the TOUGH+ family of codes (fully-implicit, compositional simulators using both structured and unstructured grids), the capabilities of the two codes include coupled flow and thermal effects in porous and/or fractured media, real gas behavior, inertial (Klinkenberg) effects, full micro-flow treatment, Darcy and non-Darcy flow through the matrix and fractures of fractured media, single- and multi-component gas sorption onto the grains of the porous media following several isotherm options, discrete and fracture representation, complex matrix-fracture relationships, and porosity-permeability dependence on pressure changes. The two options allow the study of flow and transport of fluids and heat over a wide range of time frames and spatial scales not only in gas reservoirs, but also in problems of geologic storage of greenhouse gas mixtures, and of geothermal reservoirs with multi-component condensable (H2O and CH4) and non-condensable gas mixtures. The codes are verified against available analytical and semi-analytical solutions. Their capabilities are demonstrated in a series of problems of increasing complexity, ranging from isothermal flow in simpler 1D and 2D conventional gas reservoirs, to non-isothermal gas flow in 3D fractured shale gas reservoirs involving 4 types of fractures, micro-flow, non-Darcy flow and gas
Faudot, E.; Heuraux, S.; Colas, L.
2005-09-26
Understanding DC potential generation in front of ICRF antennas is crucial for long pulse high RF power systems. DC potentials are produced by sheath rectification of these RF potentials. To reach this goal, near RF parallel electric fields have to be computed in 3D and integrated along open magnetic field lines to yield a 2D RF potential map in a transverse plane. DC potentials are produced by sheath rectification of these RF potentials. As RF potentials are spatially inhomogeneous, transverse polarization currents are created, modifying RF and DC maps. Such modifications are quantified on a 'test map' having initially a Gaussian shape and assuming that the map remains Gaussian near its summit,the time behavior of the peak can be estimated analytically in presence of polarization current as a function of its width r0 and amplitude {phi}0 (normalized to a characteristic length for transverse transport and to the local temperature). A 'peaking factor' is built from the DC peak potential normalized to {phi}0, and validated with a 2D fluid code and a 2D PIC code (XOOPIC). In an unexpected way transverse currents can increase this factor. Realistic situations of a Tore Supra antenna are also studied, with self-consistent near fields provided by ICANT code. Basic processes will be detailed and an evaluation of the 'peaking factor' for ITER will be presented for a given configuration.
NASA Astrophysics Data System (ADS)
Smirnov, E. M.; Smirnovsky, A. A.; Schur, N. A.; Zaitsev, D. K.; Smirnov, P. E.
2016-09-01
The contribution covers results of numerical study of air flow and heat transfer past a backward-facing step at the Reynolds number of 28,000. The numerical simulation was carried out under conditions of the experiments of Vogel&Eaton (1985), where nominally 2D fluid dynamics and heat transfer in a channel with expansion ratio of 1.25 was investigated. Two approaches were used for turbulence modelling. First, the Menter SST turbulence model was used to perform refined 2D and 3D RANS steady-state computations. The 3D analysis was undertaken to evaluate effects of boundary layers developing on the sidewalls of the experimental channel. Then, 3D time-dependent computations were carried out using the vortex-resolving IDDES method and applying the spanwise-periodicity conditions. Comparative computations were performed using an in-house finite-volume code SINF/Flag-S and the ANSYS Fluent. The codes produced practically identical RANS solutions, showing in particular a difference of 4% in the central-line peak Stanton number calculated in 2D and 3D cases. The IDDES results obtained with two codes are in a satisfactory agreement. Comparing with the experimental data, the IDDES produces the best agreement for the wall friction, whereas the RANS solutions show superiority in predictions of the local Stanton number distribution.
NASA Astrophysics Data System (ADS)
Restrepo, Louis Fernando
The close location of most DOE non-reactor nuclear facilities to site boundaries and the potential for having receptors in the proximity of such facilities makes it extremely important to accurately address the impact of plume rise and building wake effects on the consequences to such individuals. Unfortunately, there is no current single computer code or model that adequately address the consequences to receptors postulated to be located within the building wake of such facilities. Existing state-of-the-art models have relied on over- simplistic plume rise and parametric wake models that were developed based on very limited amount of data or assumptions, thus potentially leading to large errors in calculations. Building wake and plume rise models implemented in existing consequence computer codes have been identified and evaluated. These models come from an extensive literature review of dispersion, transport, and consequence modeling of airborne radioactive material releases that extends over 25 years. This dissertation focuses on the evaluation of existing state-of-the-art parametric building wake dispersion models by the use of computational fluid dynamic (CFD) codes, developing potential improvements to such models, and comparing the results of such improvements to those generated by CFD models and models implemented in state- of-the-art computer codes. This dissertation also presents new dispersion models and a new analytical parametric model to deal with transient releases that decay or transform during transport.
Modifications to the XBR-2D Heat Conduction Code
1994-04-01
for & 25-me barrel (750 Shots/min) is A mbient Tm 4R), Pr fpsi), gas vel (in/s) z : -....-.. -... .... : 530.0 14.70 0.00 b Sarrel Gemetry : ; zchrom...Ausomotive Command U.S. Army Maeiel Cummand ATTN: AMSTA-JSK (Armor Eeg . Br.) ATII: AMCAM Wre, MI 4897.5000 5001 Eisenhower Ave. Alexandria, VA 22333.001 1...and Engeering Center A er Prving ATTN.4 SMCAR- TDC Picauinny Arsenal l 07806-5000 2 Dir, USAMSAA ATTN: AMXSY-D Direcior AMXSY-MP, IL Cohe DenK Weapomn
2-D Finite Element Cable and Box IEMP Analysis
Scivner, G.J.; Turner, C.D.
1998-12-17
A 2-D finite element code has been developed for the solution of arbitrary geometry cable SGEMP and box IEMP problems. The quasi- static electric field equations with radiation- induced charge deposition and radiation-induced conductivity y are numerically solved on a triangular mesh. Multiple regions of different dielectric materials and multiple conductors are permitted.
Recovering 3D particle size distributions from 2D sections
NASA Astrophysics Data System (ADS)
Cuzzi, Jeffrey N.; Olson, Daniel M.
2017-03-01
We discuss different ways to convert observed, apparent particle size distributions from 2D sections (thin sections, SEM maps on planar surfaces, etc.) into true 3D particle size distributions. We give a simple, flexible, and practical method to do this; show which of these techniques gives the most faithful conversions; and provide (online) short computer codes to calculate both 2D-3D recoveries and simulations of 2D observations by random sectioning. The most important systematic bias of 2D sectioning, from the standpoint of most chondrite studies, is an overestimate of the abundance of the larger particles. We show that fairly good recoveries can be achieved from observed size distributions containing 100-300 individual measurements of apparent particle diameter.
NASA Technical Reports Server (NTRS)
Mcbeath, Giorgio; Ghorashi, Bahman; Chun, Kue
1993-01-01
A thermal NO(x) prediction model is developed to interface with a CFD, k-epsilon based code. A converged solution from the CFD code is the input to the postprocessing model for prediction of thermal NO(x). The model uses a decoupled analysis to estimate the equilibrium level of (NO(x))e which is the constant rate limit. This value is used to estimate the flame (NO(x)) and in turn predict the rate of formation at each node using a two-step Zeldovich mechanism. The rate is fixed on the NO(x) production rate plot by estimating the time to reach equilibrium by a differential analysis based on the reaction: O + N2 = NO + N. The rate is integrated in the nonequilibrium time space based on the residence time at each node in the computational domain. The sum of all nodal predictions yields the total NO(x) level.
Rozanas, Christine R; Loyland, Stacey M
2008-01-01
The use of two-dimensional gel electrophoresis for differential analysis in proteomics was revolutionized by the introduction of 2-D fluorescence difference gel electrophoresis (2-D DIGE). This fluorescence-based technique allows the use of multiplexed samples and an internal standard that virtually eliminates gel-to-gel variability, resulting in increased confidence that differences found between samples are due to real induced changes, rather than inherent biological variation or experimental variability. 2-D DIGE has quickly become the "gold standard" for gel-based proteomics for studying tissues, as well as cell culture and bodily fluids such as serum or plasma. This chapter will describe the basic 2-D DIGE technique using minimal labeling, image acquisition using high-quality fluorescence scanners, and software capable of analyzing the multiplexed images and normalizing the data using the internal standard.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2012-01-01
This paper presents the implementation of gust modeling capability in the CFD code FUN3D. The gust capability is verified by computing the response of an airfoil to a sharp edged gust. This result is compared with the theoretical result. The present simulations will be compared with other CFD gust simulations. This paper also serves as a users manual for FUN3D gust analyses using a variety of gust profiles. Finally, the development of an Auto-Regressive Moving-Average (ARMA) reduced order gust model using a gust with a Gaussian profile in the FUN3D code is presented. ARMA simulated results of a sequence of one-minus-cosine gusts is shown to compare well with the same gust profile computed with FUN3D. Proper Orthogonal Decomposition (POD) is combined with the ARMA modeling technique to predict the time varying pressure coefficient increment distribution due to a novel gust profile. The aeroelastic response of a pitch/plunge airfoil to a gust environment is computed with a reduced order model, and compared with a direct simulation of the system in the FUN3D code. The two results are found to agree very well.
FPCAS2D user's guide, version 1.0
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.
1994-01-01
The FPCAS2D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady two-dimensional full potential equation which is solved for a cascade of blades. The structural analysis is based on a two degree-of-freedom rigid typical section model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS2D code. A complete description of the input data is provided in this report. In addition, four test cases, including inputs and outputs, are provided.
2D quasiperiodic plasmonic crystals
Bauer, Christina; Kobiela, Georg; Giessen, Harald
2012-01-01
Nanophotonic structures with irregular symmetry, such as quasiperiodic plasmonic crystals, have gained an increasing amount of attention, in particular as potential candidates to enhance the absorption of solar cells in an angular insensitive fashion. To examine the photonic bandstructure of such systems that determines their optical properties, it is necessary to measure and model normal and oblique light interaction with plasmonic crystals. We determine the different propagation vectors and consider the interaction of all possible waveguide modes and particle plasmons in a 2D metallic photonic quasicrystal, in conjunction with the dispersion relations of a slab waveguide. Using a Fano model, we calculate the optical properties for normal and inclined light incidence. Comparing measurements of a quasiperiodic lattice to the modelled spectra for angle of incidence variation in both azimuthal and polar direction of the sample gives excellent agreement and confirms the predictive power of our model. PMID:23209871
NASA Astrophysics Data System (ADS)
Schaibley, John R.; Yu, Hongyi; Clark, Genevieve; Rivera, Pasqual; Ross, Jason S.; Seyler, Kyle L.; Yao, Wang; Xu, Xiaodong
2016-11-01
Semiconductor technology is currently based on the manipulation of electronic charge; however, electrons have additional degrees of freedom, such as spin and valley, that can be used to encode and process information. Over the past several decades, there has been significant progress in manipulating electron spin for semiconductor spintronic devices, motivated by potential spin-based information processing and storage applications. However, experimental progress towards manipulating the valley degree of freedom for potential valleytronic devices has been limited until very recently. We review the latest advances in valleytronics, which have largely been enabled by the isolation of 2D materials (such as graphene and semiconducting transition metal dichalcogenides) that host an easily accessible electronic valley degree of freedom, allowing for dynamic control.
Georgi, Howard; Kats, Yevgeny
2008-09-26
We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.
2D quasiperiodic plasmonic crystals.
Bauer, Christina; Kobiela, Georg; Giessen, Harald
2012-01-01
Nanophotonic structures with irregular symmetry, such as quasiperiodic plasmonic crystals, have gained an increasing amount of attention, in particular as potential candidates to enhance the absorption of solar cells in an angular insensitive fashion. To examine the photonic bandstructure of such systems that determines their optical properties, it is necessary to measure and model normal and oblique light interaction with plasmonic crystals. We determine the different propagation vectors and consider the interaction of all possible waveguide modes and particle plasmons in a 2D metallic photonic quasicrystal, in conjunction with the dispersion relations of a slab waveguide. Using a Fano model, we calculate the optical properties for normal and inclined light incidence. Comparing measurements of a quasiperiodic lattice to the modelled spectra for angle of incidence variation in both azimuthal and polar direction of the sample gives excellent agreement and confirms the predictive power of our model.
Quantum coherence selective 2D Raman-2D electronic spectroscopy
NASA Astrophysics Data System (ADS)
Spencer, Austin P.; Hutson, William O.; Harel, Elad
2017-03-01
Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.
Quantum coherence selective 2D Raman–2D electronic spectroscopy
Spencer, Austin P.; Hutson, William O.; Harel, Elad
2017-01-01
Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541
Quantum coherence selective 2D Raman-2D electronic spectroscopy.
Spencer, Austin P; Hutson, William O; Harel, Elad
2017-03-10
Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.
Anderson, Jonas T.
2013-03-15
In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev's toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev's toric code or to the topological color codes. - Highlights: Black-Right-Pointing-Pointer We show that Kitaev's toric codes are equivalent to homological stabilizer codes on 4-valent graphs. Black-Right-Pointing-Pointer We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. Black-Right-Pointing-Pointer We find and classify all 2D homological stabilizer codes. Black-Right-Pointing-Pointer We find optimal codes among the homological stabilizer codes.
NASA Astrophysics Data System (ADS)
Shima, Eiji; Yoshida, Kenji; Amano, Kanichi
1987-11-01
An automatic grid generator for multiple element airfoils was developed and the existing implicit Total Variation Diminishing (TVD) finite volume code was improved in both accuracy and efficiency, in order to make the Navier-Stokes solver a practical design tool for high lift devices. Utilizing these codes, Navier-Stokes analysis of the single slotted flap was carried out. The automatic grid generator utilizes the elliptic equation solver using the finite difference method combined with the panel method. The flow field is divided into subregions by the dividing stream lines which are calculated by the panel method and the computational grid in each subregion is generated by solving the elliptic equations (Thompson's method). Since the panel method can solve the potential flow around any number of arbitrary shaped bodies, this grid generator can generate a H-type computational grid around such bodies automatically. To obtain a high accuracy on a rapidly stretching grid, the flow solver uses the TVD formulation containing an explicit treatment of nonuniform grid spacing. Converging rate and numerical stability of the flow solver is augmented by the relaxation approach using Symmetric Point Gauss Seidel method in matrix inversion process which is necessary for an implicit scheme.
NASA Astrophysics Data System (ADS)
Misawa, Takeharu; Yoshida, Hiroyuki; Tamai, Hidesada; Takase, Kazuyuki
The three-dimensional two-fluid model analysis code ACE-3D is developed in Japan Atomic Energy Agency for the thermal design procedure on two-phase flow thermal-hydraulics of light water-cooled reactors. In order to perform thermal hydraulic analysis of SCWR, ACE-3D is enhanced to supercritical pressure region. As a result, it is confirmed that transient change in subcritical and supercritical pressure region can be simulated smoothly using ACE-3D, that ACE-3D can predict the results of the past heat transfer experiment in the supercritical pressure condition, and that introduction of thermal conductivity effect of the wall restrains fluctuation of wall temperature.
Rheological Properties of Quasi-2D Fluids in Microgravity
NASA Technical Reports Server (NTRS)
Trittel, Torsten; Stannarius, Ralf; Eremin, Alexey; Harth, Kirsten; Clark, Noel A.; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha
2016-01-01
Freely suspended smectic films of sub-micrometer thickness and lateral extensions of several millimeters are used to study thermally driven convection and diffusion in the film plane. The experiments were performed during a six minute microgravity phase of a TEXUS suborbital rocket flight (Texus 52, launched April 27, 2015). The project served as a preliminary test for a planned ISS Experiment with liquid crystal films (OASIS), and in addition it provided new experimental data on smectic films exposed to in-plane thermal gradients.We find an attraction of the smectic material towards the cold edge of the film in a temperature gradient, similar to a Soret effect. This process is reversed when this edge is heated up again. Thermal convection driven by two thermocontacts in the film is practically absent, even at temperature gradients up to 10 Kmm, thermally driven convection sets in when the hot post reaches the transition temperature to the nematic phase.An additional experiment was performed under microgravity conditions to test the stability of liquid crystal bridges in different smectic phases.
Quasi-2D Unsteady Flow Procedure for Real Fluids
2006-05-17
flow in system lines, networks , and volumes. This new procedure has been implemented in both Matlab/Simulink® and Fortran95 . A variety of...as well as Fortran95 to allow for application on a wide variety of computer platforms. The computational efficiency of the various numerical... network are presented to demonstrate the capability of the current techniques and the unsteady flow physics that can occur in system lines. 15. SUBJECT
Experimental validation of equations for 2D DIC uncertainty quantification.
Reu, Phillip L.; Miller, Timothy J.
2010-03-01
Uncertainty quantification (UQ) equations have been derived for predicting matching uncertainty in two-dimensional image correlation a priori. These equations include terms that represent the image noise and image contrast. Researchers at the University of South Carolina have extended previous 1D work to calculate matching errors in 2D. These 2D equations have been coded into a Sandia National Laboratories UQ software package to predict the uncertainty for DIC images. This paper presents those equations and the resulting error surfaces for trial speckle images. Comparison of the UQ results with experimentally subpixel-shifted images is also discussed.
2D transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Manzeli, Sajedeh; Ovchinnikov, Dmitry; Pasquier, Diego; Yazyev, Oleg V.; Kis, Andras
2017-08-01
Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), provide a promising alternative. Because of its robustness, MoS2 is the most studied material in this family. TMDCs exhibit a unique combination of atomic-scale thickness, direct bandgap, strong spin-orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. In this Review, the methods used to synthesize TMDCs are examined and their properties are discussed, with particular attention to their charge density wave, superconductive and topological phases. The use of TMCDs in nanoelectronic devices is also explored, along with strategies to improve charge carrier mobility, high frequency operation and the use of strain engineering to tailor their properties.
NASA Astrophysics Data System (ADS)
Misawa, Takeharu; Yoshida, Hiroyuki; Akimoto, Hajime
In Japan Atomic Energy Agency (JAEA), the Innovative Water Reactor for Flexible Fuel Cycle (FLWR) has been developed. For thermal design of FLWR, it is necessary to develop analytical method to predict boiling transition of FLWR. Japan Atomic Energy Agency (JAEA) has been developing three-dimensional two-fluid model analysis code ACE-3D, which adopts boundary fitted coordinate system to simulate complex shape channel flow. In this paper, as a part of development of ACE-3D to apply to rod bundle analysis, introduction of parallelization to ACE-3D and assessments of ACE-3D are shown. In analysis of large-scale domain such as a rod bundle, even two-fluid model requires large number of computational cost, which exceeds upper limit of memory amount of 1 CPU. Therefore, parallelization was introduced to ACE-3D to divide data amount for analysis of large-scale domain among large number of CPUs, and it is confirmed that analysis of large-scale domain such as a rod bundle can be performed by parallel computation with keeping parallel computation performance even using large number of CPUs. ACE-3D adopts two-phase flow models, some of which are dependent upon channel geometry. Therefore, analyses in the domains, which simulate individual subchannel and 37 rod bundle, are performed, and compared with experiments. It is confirmed that the results obtained by both analyses using ACE-3D show agreement with past experimental result qualitatively.
Xia, T. Y.; Xu, X. Q.
2015-09-01
In order to study the distribution and evolution of the transient particle and heat fluxes during edge-localized mode (ELM) bursts, a BOUT++ six-field two-fluid model based on the Braginskii equations with non-ideal physics effects is used to simulate pedestal collapse in divertor geometry. We used the profiles from the DIII-D H-mode discharge #144382 with fast target heat flux measurements as the initial conditions for the simulations. Moreover, a flux-limited parallel thermal conduction is used with three values of the flux-limiting coefficientmore » $${{\\alpha}_{j}}$$ , free streaming model with $${{\\alpha}_{j}}=1$$ , sheath-limit with $${{\\alpha}_{j}}=0.05$$ , and one value in between. The studies show that a 20 times increase in $${{\\alpha}_{j}}$$ leads to ~6 times increase in the heat flux amplitude to both the inner and outer targets, and the widths of the fluxes are also expanded. The sheath-limit model of flux-limiting coefficient is found to be the most appropriate one, which shows ELM sizes close to the measurements. The evolution of the density profile during the burst of ELMs of DIII-D discharge #144382 is simulated, and the collapse in width and depth of $${{n}_{\\text{e}}}$$ are reproduced at different time steps. The growing process of the profiles for the heat flux at divertor targets during the burst of ELMs measured by IRTV (infrared television) is also reproduced by this model. The widths of heat fluxes towards targets are a little narrower, and the peak amplitudes are twice the measurements possibly due to the lack of a model of divertor radiation which can effectively reduce the heat fluxes. The magnetic flutter combined with parallel thermal conduction is found to be able to increase the total heat loss by around 33% since the magnetic flutter terms provide the additional conductive heat transport in the radial direction. Finally, the heat flux profile at both the inner and outer targets is obviously broadened by magnetic flutter. The
Xia, T. Y.; Xu, X. Q.
2015-09-01
In order to study the distribution and evolution of the transient particle and heat fluxes during edge-localized mode (ELM) bursts, a BOUT++ six-field two-fluid model based on the Braginskii equations with non-ideal physics effects is used to simulate pedestal collapse in divertor geometry. We used the profiles from the DIII-D H-mode discharge #144382 with fast target heat flux measurements as the initial conditions for the simulations. Moreover, a flux-limited parallel thermal conduction is used with three values of the flux-limiting coefficient ${{\\alpha}_{j}}$ , free streaming model with ${{\\alpha}_{j}}=1$ , sheath-limit with ${{\\alpha}_{j}}=0.05$ , and one value in between. The studies show that a 20 times increase in ${{\\alpha}_{j}}$ leads to ~6 times increase in the heat flux amplitude to both the inner and outer targets, and the widths of the fluxes are also expanded. The sheath-limit model of flux-limiting coefficient is found to be the most appropriate one, which shows ELM sizes close to the measurements. The evolution of the density profile during the burst of ELMs of DIII-D discharge #144382 is simulated, and the collapse in width and depth of ${{n}_{\\text{e}}}$ are reproduced at different time steps. The growing process of the profiles for the heat flux at divertor targets during the burst of ELMs measured by IRTV (infrared television) is also reproduced by this model. The widths of heat fluxes towards targets are a little narrower, and the peak amplitudes are twice the measurements possibly due to the lack of a model of divertor radiation which can effectively reduce the heat fluxes. The magnetic flutter combined with parallel thermal conduction is found to be able to increase the total heat loss by around 33% since the magnetic flutter terms provide the additional conductive heat transport in the radial direction. Finally, the heat flux profile at both the inner and outer targets is obviously broadened by magnetic flutter. The lobe structures
RNA folding pathways and kinetics using 2D energy landscapes.
Senter, Evan; Dotu, Ivan; Clote, Peter
2015-01-01
RNA folding pathways play an important role in various biological processes, such as (i) the hok/sok (host-killing/suppression of killing) system in E. coli to check for sufficient plasmid copy number, (ii) the conformational switch in spliced leader (SL) RNA from Leptomonas collosoma, which controls trans splicing of a portion of the '5 exon, and (iii) riboswitches--portions of the 5' untranslated region of messenger RNA that regulate genes by allostery. Since RNA folding pathways are determined by the energy landscape, we describe a novel algorithm, FFTbor2D, which computes the 2D projection of the energy landscape for a given RNA sequence. Given two metastable secondary structures A, B for a given RNA sequence, FFTbor2D computes the Boltzmann probability p(x, y) = Z(x,y)/Z that a secondary structure has base pair distance x from A and distance y from B. Using polynomial interpolationwith the fast Fourier transform,we compute p(x, y) in O(n(5)) time and O(n(2)) space, which is an improvement over an earlier method, which runs in O(n(7)) time and O(n(4)) space. FFTbor2D has potential applications in synthetic biology, where one might wish to design bistable switches having target metastable structures A, B with favorable pathway kinetics. By inverting the transition probability matrix determined from FFTbor2D output, we show that L. collosoma spliced leader RNA has larger mean first passage time from A to B on the 2D energy landscape, than 97.145% of 20,000 sequences, each having metastable structures A, B. Source code and binaries are freely available for download at http://bioinformatics.bc.edu/clotelab/FFTbor2D. The program FFTbor2D is implemented in C++, with optional OpenMP parallelization primitives.
Applications of Doppler Tomography in 2D and 3D
NASA Astrophysics Data System (ADS)
Richards, M.; Budaj, J.; Agafonov, M.; Sharova, O.
2010-12-01
Over the past few years, the applications of Doppler tomography have been extended beyond the usual calculation of 2D velocity images of circumstellar gas flows. This technique has now been used with the new Shellspec spectrum synthesis code to demonstrate the effective modeling of the accretion disk and gas stream in the TT Hya Algol binary. The 2D tomography procedure projects all sources of emission onto a single central (Vx, Vy) velocity plane even though the gas is expected to flow beyond that plane. So, new 3D velocity images were derived with the Radioastronomical Approach method by assuming a grid of Vz values transverse to the central 2D plane. The 3D approach has been applied to the U CrB and RS Vul Algol-type binaries to reveal substantial flow structures beyond the central velocity plane.
Flow transitions in a 2D directional solidification model
NASA Technical Reports Server (NTRS)
Larroude, Philippe; Ouazzani, Jalil; Alexander, J. Iwan D.
1992-01-01
Flow transitions in a Two Dimensional (2D) model of crystal growth were examined using the Bridgman-Stockbarger me thod. Using a pseudo-spectral Chebyshev collocation method, the governing equations yield solutions which exhibit a symmetry breaking flow tansition and oscillatory behavior indicative of a Hopf bifurcation at higher values of Ra. The results are discussed from fluid dynamic viewpoint, and broader implications for process models are also addressed.
NASA Astrophysics Data System (ADS)
Ball, J. L.; Stauffer, P. H.; Calder, E. S.
2012-12-01
Lava domes have been well-characterized in terms of their surface structure and activity, but there is much to be learned about their internal structure and geothermal systems. Even when a lava dome is no longer actively erupting, subsurface studies are often difficult to conduct; lava domes are highly complex structures, but their rugged nature often precludes systematic drilling and/or geophysical surveys. Because of this, we know little about the internal geothermal activity that may still contribute to both hazards and opportunities for exploitation of mineral deposits and hot groundwater. Despite the difficulty of studying the interior of lava domes directly, numerical modeling can still provide insights into the behavior of their geothermal systems. Lava domes have the potential to be highly transmissive structures, and the presence of hot springs in the vicinity of lava domes (Santiaguito in Guatemala, La Soufriere on Guadeloupe) suggests that water circulation may be an important process in post-eruptive dome evolution. FEHM, a heat and mass transfer modeling code developed at Los Alamos National Laboratory (fehm.lanl.gov) is an ideal tool to study fluid and gas circulation in geologic structures. FEHM was developed for subsurface reservoir modeling (originally for the Hot Dry Rock geothermal project) and is capable of dealing with both high- (magmatic) and low-temperature fluids. In this study, FEHM has been used in combination with a LANL-developed grid-generating utility (LaGriT) to create an idealized model of water circulation in a saturated lava dome. Multiple material regions are used to represent the dome core, outer talus layer, conduit, and volcanic substrate. Material properties (such as permeability, porosity, density, etc.) were chosen from a combination of literature review and sensitivity testing using a simplified dome geometry and a continuum modeling approach that accounts for fractures (Equivalent Porous Medium) was used when applying
Calculation of wakefields in 2D rectangular structures
Zagorodnov, I.; Bane, K. L. F.; Stupakov, G.
2015-10-19
We consider the calculation of electromagnetic fields generated by an electron bunch passing through a vacuum chamber structure that, in general, consists of an entry pipe, followed by some kind of transition or cavity, and ending in an exit pipe. We limit our study to structures having rectangular cross section, where the height can vary as function of longitudinal coordinate but the width and side walls remain fixed. For such structures, we derive a Fourier representation of the wake potentials through one-dimensional functions. A new numerical approach for calculating the wakes in such structures is proposed and implemented in themore » computer code echo(2d). The computation resource requirements for this approach are moderate and comparable to those for finding the wakes in 2D rotationally symmetric structures. Finally, we present numerical examples obtained with the new numerical code.« less
FRANC2D: A two-dimensional crack propagation simulator. Version 2.7: User's guide
NASA Technical Reports Server (NTRS)
Wawrzynek, Paul; Ingraffea, Anthony
1994-01-01
FRANC 2D (FRacture ANalysis Code, 2 Dimensions) is a menu driven, interactive finite element computer code that performs fracture mechanics analyses of 2-D structures. The code has an automatic mesh generator for triangular and quadrilateral elements. FRANC2D calculates the stress intensity factor using linear elastic fracture mechanics and evaluates crack extension using several methods that may be selected by the user. The code features a mesh refinement and adaptive mesh generation capability that is automatically developed according to the predicted crack extension direction and length. The code also has unique features that permit the analysis of layered structure with load transfer through simulated mechanical fasteners or bonded joints. The code was written for UNIX workstations with X-windows graphics and may be executed on the following computers: DEC DecStation 3000 and 5000 series, IBM RS/6000 series, Hewlitt-Packard 9000/700 series, SUN Sparc stations, and most Silicon Graphics models.
NKG2D ligands as therapeutic targets
Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.
2013-01-01
The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565
An algorithm for computing the 2D structure of fast rotating stars
Rieutord, Michel; Espinosa Lara, Francisco; Putigny, Bertrand
2016-08-01
Stars may be understood as self-gravitating masses of a compressible fluid whose radiative cooling is compensated by nuclear reactions or gravitational contraction. The understanding of their time evolution requires the use of detailed models that account for a complex microphysics including that of opacities, equation of state and nuclear reactions. The present stellar models are essentially one-dimensional, namely spherically symmetric. However, the interpretation of recent data like the surface abundances of elements or the distribution of internal rotation have reached the limits of validity of one-dimensional models because of their very simplified representation of large-scale fluid flows. In this article, we describe the ESTER code, which is the first code able to compute in a consistent way a two-dimensional model of a fast rotating star including its large-scale flows. Compared to classical 1D stellar evolution codes, many numerical innovations have been introduced to deal with this complex problem. First, the spectral discretization based on spherical harmonics and Chebyshev polynomials is used to represent the 2D axisymmetric fields. A nonlinear mapping maps the spheroidal star and allows a smooth spectral representation of the fields. The properties of Picard and Newton iterations for solving the nonlinear partial differential equations of the problem are discussed. It turns out that the Picard scheme is efficient on the computation of the simple polytropic stars, but Newton algorithm is unsurpassed when stellar models include complex microphysics. Finally, we discuss the numerical efficiency of our solver of Newton iterations. This linear solver combines the iterative Conjugate Gradient Squared algorithm together with an LU-factorization serving as a preconditioner of the Jacobian matrix.
2010-02-01
Neutron transport, calculation of multiplication factor and neutron fluxes in 2-D configurations: cell calculations, 2-D diffusion and transport, and burnup. Preparation of a cross section library for the code BOXER from a basic library in ENDF/B format (ETOBOX).
Laboratory Experiments On Continually Forced 2d Turbulence
NASA Astrophysics Data System (ADS)
Wells, M. G.; Clercx, H. J. H.; Van Heijst, G. J. F.
. Quantitative experimental study of the free decay of quasi-two-dimensional turbulence Phys. Rev. E 49, 454 (1994) Maassen, S.R., H.J.H. Clercx &G.J.F. van Heijst - Decaying quasi-2D turbulence in a stratified fluid with circular boundaries. Europhys. Lett. 46, 339-345 (1999). Konijnenberg, J.A. van de, J.B. Flor &G.J.F. van Heijst - Decaying quasi-two- dimensional viscous flow on a square domain. Phys. Fluids 10, 595-606 (1998).
Sensitivity calculations for a 2D, inviscid, supersonic forebody problem
NASA Technical Reports Server (NTRS)
Borggaard, Jeff; Burns, John A.; Cliff, Eugene; Gunzburger, Max
1993-01-01
The use of a sensitivity equation method to computer derivatives for optimization based design algorithms are discussed. The problem of designing an optimal forebody simulator is used to motivate the algorithm and to illustrate the basic ideas. Finally, how an existing computational fluid dynamics (CFD) code can be modified to compute sensitivities and a numerical example is presented.
Numerical, analytical, experimental study of fluid dynamic forces in seals
NASA Technical Reports Server (NTRS)
Shapiro, William; Artiles, Antonio; Aggarwal, Bharat; Walowit, Jed; Athavale, Mahesh M.; Preskwas, Andrzej J.
1992-01-01
NASA/Lewis Research Center is sponsoring a program for providing computer codes for analyzing and designing turbomachinery seals for future aerospace and engine systems. The program is made up of three principal components: (1) the development of advanced three dimensional (3-D) computational fluid dynamics codes, (2) the production of simpler two dimensional (2-D) industrial codes, and (3) the development of a knowledge based system (KBS) that contains an expert system to assist in seal selection and design. The first task has been to concentrate on cylindrical geometries with straight, tapered, and stepped bores. Improvements have been made by adoption of a colocated grid formulation, incorporation of higher order, time accurate schemes for transient analysis and high order discretization schemes for spatial derivatives. This report describes the mathematical formulations and presents a variety of 2-D results, including labyrinth and brush seal flows. Extensions of 3-D are presently in progress.
Manish Kumar; Santi Gopal Sahu . man_manna@yahoo.com
2007-12-15
Computer models for coal combustion are not sufficiently accurate to enable the design of pulverized coal fired furnaces or the selection of coal based on combustion behavior. Most comprehensive combustion models can predict with reasonable accuracy flow fields and heat transfer but usually with a much lesser degree of accuracy than the combustion of coal particles through char burnout. Computational fluid dynamics (CFD) modeling is recognized widely to be a cost-effective, advanced tool for optimizing the design and operating condition of the pulverized coal-fired furnaces for achieving cleaner and efficient power generation. Technologists and researchers are paying remarkable attention to CFD because of its value in the pulverized fuel fired furnace technology and its nonintrusiveness, sophistication, and ability to significantly reduce the time and expense involved in the design, optimization, trouble-shooting, and repair of power generation equipment. An attempt to study the effect of one of the operating conditions, i.e., burner tilts on coal combustion mechanisms, furnace exit gas temperature (FEGT), and heat flux distribution pattern, within the furnace has been made in this paper by modeling a 210 MW boiler using commercial CFD code FLUENT. 5 refs., 8 figs.
Quantitative 2D liquid-state NMR.
Giraudeau, Patrick
2014-06-01
Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.
M2Di: Concise and efficient MATLAB 2-D Stokes solvers using the Finite Difference Method
NASA Astrophysics Data System (ADS)
Räss, Ludovic; Duretz, Thibault; Podladchikov, Yury Y.; Schmalholz, Stefan M.
2017-02-01
Recent development of many multiphysics modeling tools reflects the currently growing interest for studying coupled processes in Earth Sciences. The core of such tools should rely on fast and robust mechanical solvers. Here we provide M2Di, a set of routines for 2-D linear and power law incompressible viscous flow based on Finite Difference discretizations. The 2-D codes are written in a concise vectorized MATLAB fashion and can achieve a time to solution of 22 s for linear viscous flow on 10002 grid points using a standard personal computer. We provide application examples spanning from finely resolved crystal-melt dynamics, deformation of heterogeneous power law viscous fluids to instantaneous models of mantle flow in cylindrical coordinates. The routines are validated against analytical solution for linear viscous flow with highly variable viscosity and compared against analytical and numerical solutions of power law viscous folding and necking. In the power law case, both Picard and Newton iterations schemes are implemented. For linear Stokes flow and Picard linearization, the discretization results in symmetric positive-definite matrix operators on Cartesian grids with either regular or variable grid spacing allowing for an optimized solving procedure. For Newton linearization, the matrix operator is no longer symmetric and an adequate solving procedure is provided. The reported performance of linear and power law Stokes flow is finally analyzed in terms of wall time. All MATLAB codes are provided and can readily be used for educational as well as research purposes. The M2Di routines are available from Bitbucket and the University of Lausanne Scientific Computing Group website, and are also supplementary material to this article.
Code Validation Study for Base Flows
NASA Technical Reports Server (NTRS)
Ascoli, Edward P.; Heiba, Adel H.; Lagnado, Ronald R.; Ungewitter, Ronald J.; Williams, Morgan
1993-01-01
New and old rocket launch concepts recommend the clustering of motors for improved lift capability. The flowfield of the base region of the rocket is very complex and can contain high temperature plume gases. These hot gases can cause catastrophic problems if not adequately designed for. To assess the base region characteristics, advanced computational fluid dynamics (CFD) is being used. As a precursor to these calculations the CFD code requires validation on base flows. The primary objective of this code validation study was to establish a high level of confidence in predicting base flows with the USA CFD code. USA has been extensively validated for fundamental flows and other applications. However, base heating flows have a number of unique characteristics so it was necessary to extend the existing validation for this class of problems. In preparation for the planned NLS 1.5 Stage base heating analysis, six case sets were studied to extend the USA code validation data base. This presentation gives a cursive review of three of these cases. The cases presented include a 2D axi-symmetric study, a 3D real nozzle study, and a 3D multi-species study. The results of all the studies show good general agreement with data with no adjustments to the base numerical algorithms or physical models in the code. The study proved the capability of the USA code for modeling base flows within the accuracy of available data.
Code validation study for base flows
NASA Astrophysics Data System (ADS)
Ascoli, Edward P.; Heiba, Adel H.; Lagnado, Ronald R.; Ungewitter, Ronald J.; Williams, Morgan
1993-07-01
New and old rocket launch concepts recommend the clustering of motors for improved lift capability. The flowfield of the base region of the rocket is very complex and can contain high temperature plume gases. These hot gases can cause catastrophic problems if not adequately designed for. To assess the base region characteristics, advanced computational fluid dynamics (CFD) is being used. As a precursor to these calculations the CFD code requires validation on base flows. The primary objective of this code validation study was to establish a high level of confidence in predicting base flows with the USA CFD code. USA has been extensively validated for fundamental flows and other applications. However, base heating flows have a number of unique characteristics so it was necessary to extend the existing validation for this class of problems. In preparation for the planned NLS 1.5 Stage base heating analysis, six case sets were studied to extend the USA code validation data base. This presentation gives a cursive review of three of these cases. The cases presented include a 2D axi-symmetric study, a 3D real nozzle study, and a 3D multi-species study. The results of all the studies show good general agreement with data with no adjustments to the base numerical algorithms or physical models in the code. The study proved the capability of the USA code for modeling base flows within the accuracy of available data.
2D Radiation MHD K-shell Modeling of Single Wire Array Stainless Steel Experiments on the Z Machine
Thornhill, J. W.; Giuliani, J. L.; Apruzese, J. P.; Chong, Y. K.; Davis, J.; Dasgupta, A.; Whitney, K. G.; Clark, R. W.; Jones, B.; Coverdale, C. A.; Ampleford, D. J.; Cuneo, M. E.; Deeney, C.
2009-01-21
Many physical effects can produce unstable plasma behavior that affect K-shell emission from arrays. Such effects include: asymmetry in the initial density profile, asymmetry in power flow, thermal conduction at the boundaries, and non-uniform wire ablation. Here we consider how asymmetry in the radiation field also contributes to the generation of multidimensional plasma behavior that affects K-shell power and yield. To model this radiation asymmetry, we have incorporated into the MACH2 r-z MHD code a self-consistent calculation of the non-LTE population kinetics based on radiation transport using multi-dimensional ray tracing. Such methodology is necessary for modeling the enhanced radiative cooling that occurs at the anode and cathode ends of the pinch during the run-in phase of the implosion. This enhanced radiative cooling is due to reduced optical depth at these locations producing an asymmetric flow of radiative energy that leads to substantial disruption of large initial diameter (>5 cm) pinches and drives 1D into 2D fluid (i.e., Rayleigh-Taylor like) flows. The impact of this 2D behavior on K-shell power and yield is investigated by comparing 1D and 2D model results with data obtained from a series of single wire array stainless steel experiments performed on the Z generator.
Staring 2-D hadamard transform spectral imager
Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.
2006-02-07
A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.
Annotated Bibliography of EDGE2D Use
J.D. Strachan and G. Corrigan
2005-06-24
This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.
NASA Astrophysics Data System (ADS)
Eichhorn, M.; Doujak, E.; Waldner, L.
2016-11-01
The increasing energy consumption and highly stressed power grids influence the operating conditions of turbines and pump turbines in the present situation. To provide or use energy as quick as possible, hydraulic turbines are operated more frequent and over longer periods of time in lower part load at off-design conditions. This leads to a more turbulent behavior and to higher requirements of the strength of stressed components (e.g. runner, guide or stay vanes). The modern advantages of computational capabilities regarding numerical investigations allow a precise prediction of appearing flow conditions and thereby induced strains in hydraulic machines. This paper focuses on the calculation of the unsteady pressure field of a high head Francis turbine with a specific speed of nq ≈ 24 min-1 and its impact on the structure at different operating conditions. In the first step, unsteady numerical flow simulations are performed with the open-source CFD software OpenFOAM. To obtain the appearing dynamic flow phenomena, the entire machine, consisting of the spiral casing, the stay vanes, the wicket gate, the runner and the draft tube, is taken into account. Additionally, a reduced model without the spiral casing and with a simplified inlet boundary is used. To evaluate the accuracy of the CFD simulations, operating parameters such as head and torque are compared with the results of site measurements carried out on the corresponding prototype machine. In the second part, the obtained pressure fields are used for a fluid-structure analysis with the open-source Finite Element software Code_Aster, to predict the static loads on the runner.
Bárcena-Panero, Ana; Echevarría, Juan E; Van Ghelue, Marijke; Fedele, Giovanni; Royuela, Enrique; Gerits, Nancy; Moens, Ugo
2012-08-01
BK polyomavirus (BKPyV) has recently been postulated as an emerging opportunistic pathogen of the human central nervous system (CNS), but it is not known whether specific strains are associated with the neurotropic character of BKPyV. The presence of BKPyV large T-antigen DNA was examined in 2406 cerebrospinal fluid (CSF) samples from neurological patients with suspected JC polyomavirus infection. Twenty patients had a large T-antigen DNA-positive specimen. The non-coding control region (NCCR) of the BKPyV strains amplified from CSF from these 20 patients, strains circulating in renal and bone marrow transplant recipients and from healthy pregnant women was sequenced. The archetypal conformation was the most prevalent in all groups and 14 of the neurological patients harboured archetypal strains, while the remaining six patients possessed BKPyV with rearranged NCCR similar to previously reported variants from non-neurological patients. Transfection studies in Vero cells revealed that five of six early and four of six late rearranged promoters of these CSF isolates showed significantly higher activity than the corresponding archetypal promoter. From seven of the neurological patients with BKPyV DNA-positive CSF, paired serum samples were available. Five of them were negative for BKPyV DNA, while serum from the remaining two patients harboured BKPyV strains with archetypal NCCR that differed from those present in their CSF. Our results suggest that NCCR rearrangements are not a hallmark for BKPyV neurotropism and the dissemination of a rearranged NCCR from the blood may not be the origin of BKPyV CNS infection.
Transition to chaos in an open unforced 2D flow
NASA Technical Reports Server (NTRS)
Pulliam, Thomas H.; Vastano, John A.
1993-01-01
The present numerical study of unsteady, low Reynolds number flow past a 2D airfoil attempts to ascertain the bifurcation sequence leading from simple periodic to complex aperiodic flow with rising Reynolds number, as well as to characterize the degree of chaos present in the aperiodic flow and assess the role of numerics in the modification and control of the observed bifurcation scenario. The ARC2D Navier-Stokes code is used in an unsteady time-accurate mode for most of these computations. The system undergoes a period-doubling bifurcation to chaos as the Reynolds number is increased from 800 to 1600; its chaotic attractors are characterized by estimates of the fractal dimension and partial Liapunov exponent spectra.
Transition to chaos in an open unforced 2D flow
NASA Technical Reports Server (NTRS)
Pulliam, Thomas H.; Vastano, John A.
1993-01-01
The present numerical study of unsteady, low Reynolds number flow past a 2D airfoil attempts to ascertain the bifurcation sequence leading from simple periodic to complex aperiodic flow with rising Reynolds number, as well as to characterize the degree of chaos present in the aperiodic flow and assess the role of numerics in the modification and control of the observed bifurcation scenario. The ARC2D Navier-Stokes code is used in an unsteady time-accurate mode for most of these computations. The system undergoes a period-doubling bifurcation to chaos as the Reynolds number is increased from 800 to 1600; its chaotic attractors are characterized by estimates of the fractal dimension and partial Liapunov exponent spectra.
2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.
Featured Image: Tests of an MHD Code
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-09-01
Creating the codes that are used to numerically model astrophysical systems takes a lot of work and a lot of testing! A new, publicly available moving-mesh magnetohydrodynamics (MHD) code, DISCO, is designed to model 2D and 3D orbital fluid motion, such as that of astrophysical disks. In a recent article, DISCO creator Paul Duffell (University of California, Berkeley) presents the code and the outcomes from a series of standard tests of DISCOs stability, accuracy, and scalability.From left to right and top to bottom, the test outputs shown above are: a cylindrical Kelvin-Helmholtz flow (showing off DISCOs numerical grid in 2D), a passive scalar in a smooth vortex (can DISCO maintain contact discontinuities?), a global look at the cylindrical Kelvin-Helmholtz flow, a Jupiter-mass planet opening a gap in a viscous disk, an MHD flywheel (a test of DISCOs stability), an MHD explosion revealing shock structures, an MHD rotor (a more challenging version of the explosion), a Flock 3D MRI test (can DISCO study linear growth of the magnetorotational instability in disks?), and a nonlinear 3D MRI test.Check out the gif below for a closer look at each of these images, or follow the link to the original article to see even more!CitationPaul C. Duffell 2016 ApJS 226 2. doi:10.3847/0067-0049/226/1/2
Bombin, H.
2010-03-15
We introduce a family of two-dimensional (2D) topological subsystem quantum error-correcting codes. The gauge group is generated by two-local Pauli operators, so that two-local measurements are enough to recover the error syndrome. We study the computational power of code deformation in these codes and show that boundaries cannot be introduced in the usual way. In addition, we give a general mapping connecting suitable classical statistical mechanical models to optimal error correction in subsystem stabilizer codes that suffer from depolarizing noise.
2d-LCA - an alternative to x-wires
NASA Astrophysics Data System (ADS)
Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim
2014-11-01
The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.
Liquid-like 2D plasmonic waves (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zhang, Baile
2017-05-01
We predict some novel 2D plasmonic waves as analogues of corresponding hydrodynamic wave phenomena, including plasmonic splashing and V-shaped ship-wakes excited by a swift electron perpendicularly impacting upon and moving parallel above a graphene monolayer, respectively. 2D plasmons have fueled substantial research efforts in the past few years. Recent studies have identified that 2D plasmons exhibit peculiar dispersion that is formally analogous to hydrodynamic deep-water-waves on a 2D liquid surface. Logically, many intricate and intriguing hydrodynamic wave phenomena, such as the splashing stimulated by a droplet or stone impacting a calm liquid surface and the V-shaped ship-wakes generated behind a ship when it travels over a water surface, should have counterparts in 2D plasmons, but have not been studied. We fill this gap by investigating dynamic excitation of graphene plasmons when a monolayer graphene is perpendicularly impacted by a swift electron, as an analogue of hydrodynamic splashing. A central jet-like rise, called "Rayleigh jet" or "Worthington jet" as a hallmark in hydrodynamic splashing, is demonstrated as an excessive concentration of graphene plasmons, followed by plasmonic ripples dispersing like concentric ripples of deep-water waves. This plasmonic jet, serving as a monopole antenna, can generate radiation as analogue of splashing sound. This is also the first discussion on the space-time limitation on surface plasmon generation. We then demonstrate a V-shaped plasmonic wave pattern when a swift electron moves parallel above a graphene monolayer, as an analogue of hydrodynamic ship-wakes. The plasmonic wake angle is found to be the same with the Kelvin angle and thus insensitive to the electron velocity when the electron velocity is small. However, the wake angle gradually decreases by increasing the electron's velocity when the electron velocity is large, and thus transits into the Mach angle, being similar to recent development in fluid
Test Problem: Tilted Rayleigh-Taylor for 2-D Mixing Studies
Andrews, Malcolm J.; Livescu, Daniel; Youngs, David L.
2012-08-14
reasonable quality photographic data. The photographs in Figure 2 also reveal the appearance of a boundary layer at the left and right walls; this boundary layer has not been included in the test problem as preliminary calculations suggested it had a negligible effect on plume penetration and RT mixing. The significance of this test problem is that, unlike planar RT experiments such as the Rocket-Rig (Youngs, 1984), Linear Electric Motor - LEM (Dimonte, 1990), or the Water Tunnel (Andrews, 1992), the Tilted-Rig is a unique two-dimensional RT mixing experiment that has experimental data and now (in this TP) Direct Numerical Simulation data from Livescu and Wei. The availability of DNS data for the tilted-rig has made this TP viable as it provides detailed results for comparison purposes. The purpose of the test problem is to provide 3D simulation results, validated by comparison with experiment, which can be used for the development and validation of 2D RANS models. When such models are applied to 2D flows, various physics issues are raised such as double counting, combined buoyancy and shear, and 2-D strain, which have not yet been adequately addressed. The current objective of the test problem is to compare key results, which are needed for RANS model validation, obtained from high-Reynolds number DNS, high-resolution ILES or LES with explicit sub-grid-scale models. The experiment is incompressible and so is directly suitable for algorithms that are designed for incompressible flows (e.g. pressure correction algorithms with multi-grid); however, we have extended the TP so that compressible algorithms, run at low Mach number, may also be used if careful consideration is given to initial pressure fields. Thus, this TP serves as a useful tool for incompressible and compressible simulation codes, and mathematical models. In the remainder of this TP we provide a detailed specification; the next section provides the underlying assumptions for the TP, fluids, geometry details
Ginsparg, P.
1991-01-01
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Ginsparg, P.
1991-12-31
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
NASA Astrophysics Data System (ADS)
Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.
2006-02-01
A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.
Preliminary 2D numerical modeling of common granular problems
NASA Astrophysics Data System (ADS)
Wyser, Emmanuel; Jaboyedoff, Michel
2017-04-01
for large assemblies for which many iterations are needed. Nevertheless, our 2D granular code shows good performance when compared to previous numerical studies.
Chemical Approaches to 2D Materials.
Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang
2016-08-01
Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology.
Quantifying Therapeutic and Diagnostic Efficacy in 2D Microvascular Images
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia; Vickerman, Mary B.; Keith, Patricia A.
2009-01-01
VESGEN is a newly automated, user-interactive program that maps and quantifies the effects of vascular therapeutics and regulators on microvascular form and function. VESGEN analyzes two-dimensional, black and white vascular images by measuring important vessel morphology parameters. This software guides the user through each required step of the analysis process via a concise graphical user interface (GUI). Primary applications of the VESGEN code are 2D vascular images acquired as clinical diagnostic images of the human retina and as experimental studies of the effects of vascular regulators and therapeutics on vessel remodeling.
MHD instabilities in accretion mounds - I. 2D axisymmetric simulations
NASA Astrophysics Data System (ADS)
Mukherjee, Dipanjan; Bhattacharya, Dipankar; Mignone, Andrea
2013-04-01
We have performed stability analysis of axisymmetric accretion mounds on neutron stars in high-mass X-ray binaries by 2D magnetohydrodynamic (MHD) simulations with the PLUTO MHD code. We find that the mounds are stable with respect to interchange instabilities, but the addition of excess mass destabilizes the equilibria. Our simulations confirm that accretion mounds are unstable with respect to MHD instabilities beyond a threshold mass. We investigate both filled and hollow mounds and for the latter also compute the expected profile of cyclotron resonance scattering features (CRSF). In comparison to the CRSF from filled mounds reported in our earlier work, hollow mounds display wider and more complex line profiles.
Aerodynamic shape optimization of Airfoils in 2-D incompressible flow
NASA Astrophysics Data System (ADS)
Rangasamy, Srinivethan; Upadhyay, Harshal; Somasekaran, Sandeep; Raghunath, Sreekanth
2010-11-01
An optimization framework was developed for maximizing the region of 2-D airfoil immersed in laminar flow with enhanced aerodynamic performance. It uses genetic algorithm over a population of 125, across 1000 generations, to optimize the airfoil. On a stand-alone computer, a run takes about an hour to obtain a converged solution. The airfoil geometry was generated using two Bezier curves; one to represent the thickness and the other the camber of the airfoil. The airfoil profile was generated by adding and subtracting the thickness curve from the camber curve. The coefficient of lift and drag was computed using potential velocity distribution obtained from panel code, and boundary layer transition prediction code was used to predict the location of onset of transition. The objective function of a particular design is evaluated as the weighted-average of aerodynamic characteristics at various angles of attacks. Optimization was carried out for several objective functions and the airfoil designs obtained were analyzed.
VIEWNET: a neural architecture for learning to recognize 3D objects from multiple 2D views
NASA Astrophysics Data System (ADS)
Grossberg, Stephen; Bradski, Gary
1994-10-01
A self-organizing neural network is developed for recognition of 3-D objects from sequences of their 2-D views. Called VIEWNET because it uses view information encoded with networks, the model processes 2-D views of 3-D objects using the CORT-X 2 filter, which discounts the illuminant, regularizes and completes figural boundaries, and removes noise from the images. A log-polar transform is taken with respect to the centroid of the resulting figure and then re-centered to achieve 2-D scale and rotation invariance. The invariant images are coarse coded to further reduce noise, reduce foreshortening effects, and increase generalization. These compressed codes are input into a supervised learning system based on the Fuzzy ARTMAP algorithm which learns 2-D view categories. Evidence from sequences of 2-D view categories is stored in a working memory. Voting based on the unordered set of stored categories determines object recognition. Recognition is studied with noisy and clean images using slow and fast learning. VIEWNET is demonstrated on an MIT Lincoln Laboratory database of 2-D views of aircraft with and without additive noise. A recognition rate of up to 90% is achieved with one 2-D view category and of up to 98.5% correct with three 2-D view categories.
NASA Astrophysics Data System (ADS)
Kononenko, O.; Lopes, N. C.; Cole, J. M.; Kamperidis, C.; Mangles, S. P. D.; Najmudin, Z.; Osterhoff, J.; Poder, K.; Rusby, D.; Symes, D. R.; Warwick, J.; Wood, J. C.; Palmer, C. A. J.
2016-09-01
In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.
Digit ratio (2D:4D) in newborns: influences of prenatal testosterone and maternal environment.
Ventura, T; Gomes, M C; Pita, A; Neto, M T; Taylor, A
2013-02-01
The 2D:4D digit ratio is sexually-dimorphic, probably due to testosterone action through the perinatal period. We characterize the 2D:4D ratio in newborn (NB) infants, in between the pre- and postnatal surges of testosterone, and relate it to the mother's 2D:4D and to testosterone levels in the amniotic fluid (AF). Testosterone was assayed in samples of maternal plasma and AF collected at amniocentesis. Shortly after birth, 106 NBs and their mothers were measured for 2D:4D ratio. NB males had lower mean 2D:4D ratios than females but this dimorphism was significant only for the left hand (males: 0.927; females: 0.950; p=0.004). Mothers who had sons had lower 2D:4D ratios than those who had daughters and the mother's 2D:4D were higher than those of NBs regardless of sex. Both hands of NB females were negatively correlated with AF testosterone and positively correlated with the mother's 2D:4D, but males showed no significant associations. Maternal plasma testosterone also showed a negative weak correlation with NB's digit ratio in both sexes. Sexual dimorphism at birth was only significant for the left hand, in contrast with reports of greater right hand dimorphism, suggesting that postnatal testosterone is determinant for 2D:4D stabilization. The lower 2D:4D ratios in mothers who had sons support claims that hormone levels in parents are influential for determining their children's sex. NB female's digit ratio, but not males', was associated to the level of AF testosterone. The mother's 2D:4D ratios were positively correlated with their daughters' 2D:4D, but the same was not observed for male NBs, suggesting that prenatal testosterone levels in male fetus lead their 2D:4D ratios to stray from their mothers' with high individual variability. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hall-Effect Thruster Simulations with 2-D Electron Transport and Hydrodynamic Ions
NASA Technical Reports Server (NTRS)
Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard H.; Goebel, Dan M.
2009-01-01
A computational approach that has been used extensively in the last two decades for Hall thruster simulations is to solve a diffusion equation and energy conservation law for the electrons in a direction that is perpendicular to the magnetic field, and use discrete-particle methods for the heavy species. This "hybrid" approach has allowed for the capture of bulk plasma phenomena inside these thrusters within reasonable computational times. Regions of the thruster with complex magnetic field arrangements (such as those near eroded walls and magnets) and/or reduced Hall parameter (such as those near the anode and the cathode plume) challenge the validity of the quasi-one-dimensional assumption for the electrons. This paper reports on the development of a computer code that solves numerically the 2-D axisymmetric vector form of Ohm's law, with no assumptions regarding the rate of electron transport in the parallel and perpendicular directions. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations in a computational mesh that is aligned with the magnetic field. The fully-2D approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction, and encompasses the cathode boundary. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for charge-exchange and multiple-ionization collisions in the momentum equations. A first series of simulations of two Hall thrusters, namely the BPT-4000 and a 6-kW laboratory thruster, quantifies the significance of ion diffusion in the anode region and the importance of the extended physical domain on studies related to the impact of the transport coefficients on the electron flow field.
Hall-Effect Thruster Simulations with 2-D Electron Transport and Hydrodynamic Ions
NASA Technical Reports Server (NTRS)
Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard H.; Goebel, Dan M.
2009-01-01
A computational approach that has been used extensively in the last two decades for Hall thruster simulations is to solve a diffusion equation and energy conservation law for the electrons in a direction that is perpendicular to the magnetic field, and use discrete-particle methods for the heavy species. This "hybrid" approach has allowed for the capture of bulk plasma phenomena inside these thrusters within reasonable computational times. Regions of the thruster with complex magnetic field arrangements (such as those near eroded walls and magnets) and/or reduced Hall parameter (such as those near the anode and the cathode plume) challenge the validity of the quasi-one-dimensional assumption for the electrons. This paper reports on the development of a computer code that solves numerically the 2-D axisymmetric vector form of Ohm's law, with no assumptions regarding the rate of electron transport in the parallel and perpendicular directions. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations in a computational mesh that is aligned with the magnetic field. The fully-2D approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction, and encompasses the cathode boundary. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for charge-exchange and multiple-ionization collisions in the momentum equations. A first series of simulations of two Hall thrusters, namely the BPT-4000 and a 6-kW laboratory thruster, quantifies the significance of ion diffusion in the anode region and the importance of the extended physical domain on studies related to the impact of the transport coefficients on the electron flow field.
2D microwave imaging reflectometer electronics
Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.
2014-11-15
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
Large Area Synthesis of 2D Materials
NASA Astrophysics Data System (ADS)
Vogel, Eric
Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.
Orthotropic Piezoelectricity in 2D Nanocellulose
NASA Astrophysics Data System (ADS)
García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.
2016-10-01
The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.
Orthotropic Piezoelectricity in 2D Nanocellulose
García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.
2016-01-01
The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V−1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies. PMID:27708364
Orthotropic Piezoelectricity in 2D Nanocellulose.
García, Y; Ruiz-Blanco, Yasser B; Marrero-Ponce, Yovani; Sotomayor-Torres, C M
2016-10-06
The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V(-1), ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.
2D microwave imaging reflectometer electronics.
Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
Assessing 2D electrophoretic mobility spectroscopy (2D MOSY) for analytical applications.
Fang, Yuan; Yushmanov, Pavel V; Furó, István
2016-12-08
Electrophoretic displacement of charged entity phase modulates the spectrum acquired in electrophoretic NMR experiments, and this modulation can be presented via 2D FT as 2D mobility spectroscopy (MOSY) spectra. We compare in various mixed solutions the chemical selectivity provided by 2D MOSY spectra with that provided by 2D diffusion-ordered spectroscopy (DOSY) spectra and demonstrate, under the conditions explored, a superior performance of the former method. 2D MOSY compares also favourably with closely related LC-NMR methods. The shape of 2D MOSY spectra in complex mixtures is strongly modulated by the pH of the sample, a feature that has potential for areas such as in drug discovery and metabolomics. Copyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. StartCopTextCopyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.
2D Distributed Sensing Via TDR
2007-11-02
plate VEGF CompositeSensor Experimental Setup Air 279 mm 61 78 VARTM profile: slope RTM profile: rectangle 22 1 Jul 2003© 2003 University of Delaware...2003 University of Delaware All rights reserved Vision: Non-contact 2D sensing ü VARTM setup constructed within TL can be sensed by its EM field: 2D...300.0 mm/ns. 1 2 1 Jul 2003© 2003 University of Delaware All rights reserved Model Validation “ RTM Flow” TDR Response to 139 mm VEGC
Inkjet printing of 2D layered materials.
Li, Jiantong; Lemme, Max C; Östling, Mikael
2014-11-10
Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials.
Coded Apertures in Mass Spectrometry.
Amsden, Jason J; Gehm, Michael E; Russell, Zachary E; Chen, Evan X; Di Dona, Shane T; Wolter, Scott D; Danell, Ryan M; Kibelka, Gottfried; Parker, Charles B; Stoner, Brian R; Brady, David J; Glass, Jeffrey T
2017-06-12
The use of coded apertures in mass spectrometry can break the trade-off between throughput and resolution that has historically plagued conventional instruments. Despite their very early stage of development, coded apertures have been shown to increase throughput by more than one order of magnitude, with no loss in resolution in a simple 90-degree magnetic sector. This enhanced throughput can increase the signal level with respect to the underlying noise, thereby significantly improving sensitivity to low concentrations of analyte. Simultaneous resolution can be maintained, preventing any decrease in selectivity. Both one- and two-dimensional (2D) codes have been demonstrated. A 2D code can provide increased measurement diversity and therefore improved numerical conditioning of the mass spectrum that is reconstructed from the coded signal. This review discusses the state of development, the applications where coding is expected to provide added value, and the various instrument modifications necessary to implement coded apertures in mass spectrometers.
NASA Astrophysics Data System (ADS)
Sarakorn, Weerachai
2017-04-01
In this research, the finite element (FE) method incorporating quadrilateral elements for solving 2-D MT modeling was presented. The finite element software was developed, employing a paving algorithm to generate the unstructured quadrilateral mesh. The accuracy, efficiency, reliability, and flexibility of our FE forward modeling are presented, compared and discussed. The numerical results indicate that our FE codes using an unstructured quadrilateral mesh provide good accuracy when the local mesh refinement is applied around sites and in the area of interest, with superior results when compared to other FE methods. The reliability of the developed codes was also confirmed when comparing both analytical solutions and COMMEMI2D model. Furthermore, our developed FE codes incorporating an unstructured quadrilateral mesh showed useful and powerful features such as handling irregular and complex subregions and providing local refinement of the mesh for a 2-D domain as closely as unstructured triangular mesh but it requires less number of elements in a mesh.
Thermocapillary bubble dynamics in a 2D axis swirl domain
NASA Astrophysics Data System (ADS)
Alhendal, Yousuf; Turan, Ali
2014-09-01
The lack of significant buoyancy effects in zero-gravity conditions poses an issue with fluid transfer in a stagnant liquid. In this paper, bubble movement in a stagnant liquid is analysed and presented numerically using a computational fluid dynamics approach. The governing continuum and conservation equations for two-phase flow are solved using the commercial software package Ansys-Fluent v.13. The volume of fluid method is used to track the liquid/gas interface in 2D and 3D domains, which has been found to be a valuable tool for studying the phenomenon of gas-liquid interaction, and the validation results are in reasonable agreement with earlier experimental observations. The flow is driven via Marangoni influence induced by the temperature difference, which in turn drives the bubble from the cold to the hot region. The results indicate that the inherent velocity of bubbles decreases with an increase in Marangoni number; this is in agreement with the results of previous experiments conducted in Kang et al. (Microgravity Sci Technol 20:67-71, 2008). Some three-dimensional simulations will also be performed to compare and examine the results with two-dimensional simulations. The thermocapillary bubble flow in a 2D swirl axisymmetry driven by the rotation of the walls was also carried out for different angular velocities in zero gravity. The bubble migration speed was found to decrease with increasing angular velocity. This occurrence is due to an increase in the pressure gradient between the cylinder's outer wall and the axis of rotation, which forces the lowest pressure region to shift from the sides of the bubble to the axis of rotation. A deformation of the bubble and the formation of the two vortices inside the bubble are also observed. These new and original findings aim to help support research into space applications.
Thermocapillary bubble dynamics in a 2D axis swirl domain
NASA Astrophysics Data System (ADS)
Alhendal, Yousuf; Turan, Ali
2015-04-01
The lack of significant buoyancy effects in zero-gravity conditions poses an issue with fluid transfer in a stagnant liquid. In this paper, bubble movement in a stagnant liquid is analysed and presented numerically using a computational fluid dynamics approach. The governing continuum and conservation equations for two-phase flow are solved using the commercial software package Ansys-Fluent v.13. The volume of fluid method is used to track the liquid/gas interface in 2D and 3D domains, which has been found to be a valuable tool for studying the phenomenon of gas-liquid interaction, and the validation results are in reasonable agreement with earlier experimental observations. The flow is driven via Marangoni influence induced by the temperature difference, which in turn drives the bubble from the cold to the hot region. The results indicate that the inherent velocity of bubbles decreases with an increase in Marangoni number; this is in agreement with the results of previous experiments conducted in Kang et al. (Microgravity Sci Technol 20:67-71, 2008). Some three-dimensional simulations will also be performed to compare and examine the results with two-dimensional simulations. The thermocapillary bubble flow in a 2D swirl axisymmetry driven by the rotation of the walls was also carried out for different angular velocities in zero gravity. The bubble migration speed was found to decrease with increasing angular velocity. This occurrence is due to an increase in the pressure gradient between the cylinder's outer wall and the axis of rotation, which forces the lowest pressure region to shift from the sides of the bubble to the axis of rotation. A deformation of the bubble and the formation of the two vortices inside the bubble are also observed. These new and original findings aim to help support research into space applications.
Quantum-Carnot engine for particle confined to 2D symmetric potential well
Belfaqih, Idrus Husin Sutantyo, Trengginas Eka Putra Prayitno, T. B.; Sulaksono, Anto
2015-09-30
Carnot model of heat engine is the most efficient cycle consisting of isothermal and adiabatic processes which are reversible. Although ideal gas usually used as a working fluid in the Carnot engine, Bender used quantum particle confined in 1D potential well as a working fluid. In this paper, by following Bender we generalize the situation to 2D symmetric potential well. The efficiency is express as the ratio of the initial length of the system to the final length of the compressed system. The result then is shown that for the same ratio, 2D potential well is more efficient than 1D potential well.
Quantum-Carnot engine for particle confined to 2D symmetric potential well
NASA Astrophysics Data System (ADS)
Belfaqih, Idrus Husin; Sutantyo, Trengginas Eka Putra; Prayitno, T. B.; Sulaksono, Anto
2015-09-01
Carnot model of heat engine is the most efficient cycle consisting of isothermal and adiabatic processes which are reversible. Although ideal gas usually used as a working fluid in the Carnot engine, Bender used quantum particle confined in 1D potential well as a working fluid. In this paper, by following Bender we generalize the situation to 2D symmetric potential well. The efficiency is express as the ratio of the initial length of the system to the final length of the compressed system. The result then is shown that for the same ratio, 2D potential well is more efficient than 1D potential well.
NASA Astrophysics Data System (ADS)
Jellali, Nabiha; Najjar, Monia; Ferchichi, Moez; Rezig, Houria
2017-07-01
In this paper, a new two-dimensional spectral/spatial codes family, named two dimensional dynamic cyclic shift codes (2D-DCS) is introduced. The 2D-DCS codes are derived from the dynamic cyclic shift code for the spectral and spatial coding. The proposed system can fully eliminate the multiple access interference (MAI) by using the MAI cancellation property. The effect of shot noise, phase-induced intensity noise and thermal noise are used to analyze the code performance. In comparison with existing two dimensional (2D) codes, such as 2D perfect difference (2D-PD), 2D Extended Enhanced Double Weight (2D-Extended-EDW) and 2D hybrid (2D-FCC/MDW) codes, the numerical results show that our proposed codes have the best performance. By keeping the same code length and increasing the spatial code, the performance of our 2D-DCS system is enhanced: it provides higher data rates while using lower transmitted power and a smaller spectral width.
A Specification for a Godunov-type Eulerian 2-D Hydrocode, Revision 0
Nystrom, William D; Robey, Jonathan M
2012-05-01
The purpose of this code specification is to describe an algorithm for solving the Euler equations of hydrodynamics in a 2D rectangular region in sufficient detail to allow a software developer to produce an implementation on their target platform using their programming language of choice without requiring detailed knowledge and experience in the field of computational fluid dynamics. It should be possible for a software developer who is proficient in the programming language of choice and is knowledgable of the target hardware to produce an efficient implementation of this specification if they also possess a thorough working knowledge of parallel programming and have some experience in scientific programming using fields and meshes. On modern architectures, it will be important to focus on issues related to the exploitation of the fine grain parallelism and data locality present in this algorithm. This specification aims to make that task easier by presenting the essential details of the algorithm in a systematic and language neutral manner while also avoiding the inclusion of implementation details that would likely be specific to a particular type of programming paradigm or platform architecture.
M2Di: MATLAB 2D Stokes solvers using the Finite Difference method
NASA Astrophysics Data System (ADS)
Räss, Ludovic; Duretz, Thibault; Schmalholz, Stefan; Podladchikov, Yury
2017-04-01
The study of coupled processes in Earth Sciences leads to the development of multiphysics modelling tools. Mechanical solvers represent the essential ingredient of any of these tools such that their performance and robustness is generally dictated by that of the mechanical solver. Here, we present M2Di, a collection of MATLAB routines designed for studying 2D linear and power law incompressible viscous flow using Finite Difference discretisation. The scripts are written in a concise vectorised MATLAB fashion and rely on fast and robust linear and non-linear solvers (Picard and Newton iterations). As a result, time to solution of 22 seconds for linear viscous flow with 104 viscosity jump on 10002 grid points can be achieved on a standard personal computer. We will present a numerous example of applications that span from high resolution crystal-melt dynamics, deformation of heterogeneous power law viscous fluids, instantaneous mantle flow patterns in cylindrical coordinates, and calculation of pressure gradients around inclusions using variable grid spacing. We use analytical solution for linear viscous flow with highly variable viscosity to validate the linear flow solver. Validation of the non-linear solver is achieved by comparing numerical solution to analytic and benchmark solutions of power law viscous folding and necking. The M2Di codes are open source and can hence be used for research or educational purposes.
Simulation of bootstrap current in 2D and 3D ideal magnetic fields in tokamaks
NASA Astrophysics Data System (ADS)
Raghunathan, M.; Graves, J. P.; Cooper, W. A.; Pedro, M.; Sauter, O.
2016-09-01
We aim to simulate the bootstrap current for a MAST-like spherical tokamak using two approaches for magnetic equilibria including externally caused 3D effects such as resonant magnetic perturbations (RMPs), the effect of toroidal ripple, and intrinsic 3D effects such as non-resonant internal kink modes. The first approach relies on known neoclassical coefficients in ideal MHD equilibria, using the Sauter (Sauter et al 1999 Phys. Plasmas 6 2834) expression valid for all collisionalities in axisymmetry, and the second approach being the quasi-analytic Shaing-Callen (Shaing and Callen 1983 Phys. Fluids 26 3315) model in the collisionless regime for 3D. Using the ideal free-boundary magnetohydrodynamic code VMEC, we compute the flux-surface averaged bootstrap current density, with the Sauter and Shaing-Callen expressions for 2D and 3D ideal MHD equilibria including an edge pressure barrier with the application of resonant magnetic perturbations, and equilibria possessing a saturated non-resonant 1/1 internal kink mode with a weak internal pressure barrier. We compare the applicability of the self-consistent iterative model on the 3D applications and discuss the limitations and advantages of each bootstrap current model for each type of equilibrium.
Parallel Stitching of 2D Materials.
Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing
2016-03-23
Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.
Parallel stitching of 2D materials
Ling, Xi; Wu, Lijun; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L.; Bie, Yaqing; Lee, Yi -Hsien; Zhu, Yimei; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomas; Kong, Jing
2016-01-27
Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.
Beckett, Phil
2012-01-01
The technique of two-dimensional (2D) gel electrophoresis is a powerful tool for separating complex mixtures of proteins, but since its inception in the mid 1970s, it acquired the stigma of being a very difficult application to master and was generally used to its best effect by experts. The introduction of commercially available immobilized pH gradients in the early 1990s provided enhanced reproducibility and easier protocols, leading to a pronounced increase in popularity of the technique. However gel-to-gel variation was still difficult to control without the use of technical replicates. In the mid 1990s (at the same time as the birth of "proteomics"), the concept of multiplexing fluorescently labeled proteins for 2D gel separation was realized by Jon Minden's group and has led to the ability to design experiments to virtually eliminate gel-to-gel variation, resulting in biological replicates being used for statistical analysis with the ability to detect very small changes in relative protein abundance. This technology is referred to as 2D difference gel electrophoresis (2D DIGE).
Parallel stitching of 2D materials
Ling, Xi; Wu, Lijun; Lin, Yuxuan; ...
2016-01-27
Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.
ARC2D - EFFICIENT SOLUTION METHODS FOR THE NAVIER-STOKES EQUATIONS (CRAY VERSION)
NASA Technical Reports Server (NTRS)
Pulliam, T. H.
1994-01-01
ARC2D is a computational fluid dynamics program developed at the NASA Ames Research Center specifically for airfoil computations. The program uses implicit finite-difference techniques to solve two-dimensional Euler equations and thin layer Navier-Stokes equations. It is based on the Beam and Warming implicit approximate factorization algorithm in generalized coordinates. The methods are either time accurate or accelerated non-time accurate steady state schemes. The evolution of the solution through time is physically realistic; good solution accuracy is dependent on mesh spacing and boundary conditions. The mathematical development of ARC2D begins with the strong conservation law form of the two-dimensional Navier-Stokes equations in Cartesian coordinates, which admits shock capturing. The Navier-Stokes equations can be transformed from Cartesian coordinates to generalized curvilinear coordinates in a manner that permits one computational code to serve a wide variety of physical geometries and grid systems. ARC2D includes an algebraic mixing length model to approximate the effect of turbulence. In cases of high Reynolds number viscous flows, thin layer approximation can be applied. ARC2D allows for a variety of solutions to stability boundaries, such as those encountered in flows with shocks. The user has considerable flexibility in assigning geometry and developing grid patterns, as well as in assigning boundary conditions. However, the ARC2D model is most appropriate for attached and mildly separated boundary layers; no attempt is made to model wake regions and widely separated flows. The techniques have been successfully used for a variety of inviscid and viscous flowfield calculations. The Cray version of ARC2D is written in FORTRAN 77 for use on Cray series computers and requires approximately 5Mb memory. The program is fully vectorized. The tape includes variations for the COS and UNICOS operating systems. Also included is a sample routine for CONVEX
ARC2D - EFFICIENT SOLUTION METHODS FOR THE NAVIER-STOKES EQUATIONS (DEC RISC ULTRIX VERSION)
NASA Technical Reports Server (NTRS)
Biyabani, S. R.
1994-01-01
ARC2D is a computational fluid dynamics program developed at the NASA Ames Research Center specifically for airfoil computations. The program uses implicit finite-difference techniques to solve two-dimensional Euler equations and thin layer Navier-Stokes equations. It is based on the Beam and Warming implicit approximate factorization algorithm in generalized coordinates. The methods are either time accurate or accelerated non-time accurate steady state schemes. The evolution of the solution through time is physically realistic; good solution accuracy is dependent on mesh spacing and boundary conditions. The mathematical development of ARC2D begins with the strong conservation law form of the two-dimensional Navier-Stokes equations in Cartesian coordinates, which admits shock capturing. The Navier-Stokes equations can be transformed from Cartesian coordinates to generalized curvilinear coordinates in a manner that permits one computational code to serve a wide variety of physical geometries and grid systems. ARC2D includes an algebraic mixing length model to approximate the effect of turbulence. In cases of high Reynolds number viscous flows, thin layer approximation can be applied. ARC2D allows for a variety of solutions to stability boundaries, such as those encountered in flows with shocks. The user has considerable flexibility in assigning geometry and developing grid patterns, as well as in assigning boundary conditions. However, the ARC2D model is most appropriate for attached and mildly separated boundary layers; no attempt is made to model wake regions and widely separated flows. The techniques have been successfully used for a variety of inviscid and viscous flowfield calculations. The Cray version of ARC2D is written in FORTRAN 77 for use on Cray series computers and requires approximately 5Mb memory. The program is fully vectorized. The tape includes variations for the COS and UNICOS operating systems. Also included is a sample routine for CONVEX
ARC2D - EFFICIENT SOLUTION METHODS FOR THE NAVIER-STOKES EQUATIONS (CRAY VERSION)
NASA Technical Reports Server (NTRS)
Pulliam, T. H.
1994-01-01
ARC2D is a computational fluid dynamics program developed at the NASA Ames Research Center specifically for airfoil computations. The program uses implicit finite-difference techniques to solve two-dimensional Euler equations and thin layer Navier-Stokes equations. It is based on the Beam and Warming implicit approximate factorization algorithm in generalized coordinates. The methods are either time accurate or accelerated non-time accurate steady state schemes. The evolution of the solution through time is physically realistic; good solution accuracy is dependent on mesh spacing and boundary conditions. The mathematical development of ARC2D begins with the strong conservation law form of the two-dimensional Navier-Stokes equations in Cartesian coordinates, which admits shock capturing. The Navier-Stokes equations can be transformed from Cartesian coordinates to generalized curvilinear coordinates in a manner that permits one computational code to serve a wide variety of physical geometries and grid systems. ARC2D includes an algebraic mixing length model to approximate the effect of turbulence. In cases of high Reynolds number viscous flows, thin layer approximation can be applied. ARC2D allows for a variety of solutions to stability boundaries, such as those encountered in flows with shocks. The user has considerable flexibility in assigning geometry and developing grid patterns, as well as in assigning boundary conditions. However, the ARC2D model is most appropriate for attached and mildly separated boundary layers; no attempt is made to model wake regions and widely separated flows. The techniques have been successfully used for a variety of inviscid and viscous flowfield calculations. The Cray version of ARC2D is written in FORTRAN 77 for use on Cray series computers and requires approximately 5Mb memory. The program is fully vectorized. The tape includes variations for the COS and UNICOS operating systems. Also included is a sample routine for CONVEX
ARC2D - EFFICIENT SOLUTION METHODS FOR THE NAVIER-STOKES EQUATIONS (DEC RISC ULTRIX VERSION)
NASA Technical Reports Server (NTRS)
Biyabani, S. R.
1994-01-01
ARC2D is a computational fluid dynamics program developed at the NASA Ames Research Center specifically for airfoil computations. The program uses implicit finite-difference techniques to solve two-dimensional Euler equations and thin layer Navier-Stokes equations. It is based on the Beam and Warming implicit approximate factorization algorithm in generalized coordinates. The methods are either time accurate or accelerated non-time accurate steady state schemes. The evolution of the solution through time is physically realistic; good solution accuracy is dependent on mesh spacing and boundary conditions. The mathematical development of ARC2D begins with the strong conservation law form of the two-dimensional Navier-Stokes equations in Cartesian coordinates, which admits shock capturing. The Navier-Stokes equations can be transformed from Cartesian coordinates to generalized curvilinear coordinates in a manner that permits one computational code to serve a wide variety of physical geometries and grid systems. ARC2D includes an algebraic mixing length model to approximate the effect of turbulence. In cases of high Reynolds number viscous flows, thin layer approximation can be applied. ARC2D allows for a variety of solutions to stability boundaries, such as those encountered in flows with shocks. The user has considerable flexibility in assigning geometry and developing grid patterns, as well as in assigning boundary conditions. However, the ARC2D model is most appropriate for attached and mildly separated boundary layers; no attempt is made to model wake regions and widely separated flows. The techniques have been successfully used for a variety of inviscid and viscous flowfield calculations. The Cray version of ARC2D is written in FORTRAN 77 for use on Cray series computers and requires approximately 5Mb memory. The program is fully vectorized. The tape includes variations for the COS and UNICOS operating systems. Also included is a sample routine for CONVEX
Steady propagation of Bingham plugs in 2D channels
NASA Astrophysics Data System (ADS)
Zamankhan, Parsa; Takayama, Shuichi; Grotberg, James
2009-11-01
The displacement of the yield-stress liquid plugs in channels and tubes occur in many biological systems and industrial processes. Among them is the propagation of mucus plugs in the respiratory tracts as may occur in asthma, cystic fibrosis, or emphysema. In this work the steady propagation of mucus plugs in a 2D channel is studied numerically, assuming that the mucus is a pure Bingham fluid. The governing equations are solved by a mixed-discontinuous finite element formulation and the free surface is resolved with the method of spines. The constitutive equation for a pure Bingham fluid is modeled by a regularization method. Fluid inertia is neglected, so the controlling parameters in a steady displacement are; the capillary number, Ca, Bingham number ,Bn, and the plug length. According to the numerical results, the yield stress behavior of the plug modifies the plug shape, the pattern of the streamlines and the distribution of stresses in the plug domain and along the walls in a significant way. The distribution along the walls is a major factor in studying cell injuries. This work is supported through the grant NIH HL84370.
Turbulence modeling for subsonic separated flows over 2-D airfoils and 3-D wings
NASA Astrophysics Data System (ADS)
Rosen, Aaron M.
Accurate predictions of turbulent boundary layers and flow separation through computational fluid dynamics (CFD) are becoming more and more essential for the prediction of loads in the design of aerodynamic flight components. Standard eddy viscosity models used in many commercial codes today do not capture the nonequilibrium effects seen in a separated flow and thus do not generally make accurate separation predictions. Part of the reason for this is that under nonequilibrium conditions such as a strong adverse pressure gradient, the history effects of the flow play an important role in the growth and decay of turbulence. More recent turbulence models such as Olsen and Coakley's Lag model and Lillard's lagRST model seek to simulate these effects by lagging the turbulent variables when nonequilibrium effects become important. The purpose of the current research is to assess how these nonequilibrium turbulence models capture the separated regions on various 2-D airfoils and 3-D wings. Nonequilibrium models including the Lag model and the lagRST model are evaluated in comparison with three baseline models (Spalart-Allmaras, Wilcox's k-omega, and Menter's SST) using a modified version of the OVERFLOW code. Tuning the model coefficients of the Lag and lagRST models is also explored. Results show that the various lagRST formulations display an improvement in velocity profile predictions over the standard RANS models, but have trouble capturing the edge of the boundary layer. Experimental separation location measurements were not available, but several trends are noted which may be useful to tuning the model coefficients in the future.
Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology
Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr
2016-01-01
The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346
Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.
Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr
2016-02-06
The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.
MicroRNAs 9 and 370 Association with Biochemical Markers in T2D and CAD Complication of T2D.
Motawae, Tarek M; Ismail, Manal F; Shabayek, Marwa I; Seleem, Mae M
2015-01-01
MicroRNAs (miRNAs) are small non coding RNAs with essential roles, of which any alteration leads to several conditions. Their roles in diabetes (DM) and its vascular complications have not been completely assessed. to study the association of two miRNAs; 9 and 370, with biochemical parameters of type 2 diabetic (T2D), dyslipidemia and coronary artery disease (CAD). Blood samples were taken from 200 subjects of both genders, in the Outpatient clinic of Al Qasr El-Einy teaching hospitals, in which levels of both miRNAs (using real time PCR) and routine parameters were measured. Subjects were divided over four groups, 50 in each group as follows; patients with T2D, patients with CAD, patients with T2D and CAD, and healthy control subjects. miRNA 9 levels were expected to be over expressed in diabetic patients, while miRNA 370 levels were expected to be over expressed in those suffering from CAD and their association with CAD complication of T2D. miRNA 9 levels were significantly higher in T2D patients and T2D patients with CAD, (1.18±0.07, and 1.31±0.08 respectively), while miRNA 370 levels were significantly higher in T2D patients, CAD patients, and T2D patients with CAD (0.59±0.05, 1.00±0.05, and 1.20±0.06 respectively), compared to control group at p = 0.000. In addition both miRNAs were still significantly associated with each other even after conducting multiple regression analysis. This study associates the possible role of miRNAs in the diagnosis/prognosis of CAD complication of T2D.
Extrinsic Cation Selectivity of 2D Membranes
2017-01-01
From a systematic study of the concentration driven diffusion of positive and negative ions across porous 2D membranes of graphene and hexagonal boron nitride (h-BN), we prove their cation selectivity. Using the current–voltage characteristics of graphene and h-BN monolayers separating reservoirs of different salt concentrations, we calculate the reversal potential as a measure of selectivity. We tune the Debye screening length by exchanging the salt concentrations and demonstrate that negative surface charge gives rise to cation selectivity. Surprisingly, h-BN and graphene membranes show similar characteristics, strongly suggesting a common origin of selectivity in aqueous solvents. For the first time, we demonstrate that the cation flux can be increased by using ozone to create additional pores in graphene while maintaining excellent selectivity. We discuss opportunities to exploit our scalable method to use 2D membranes for applications including osmotic power conversion. PMID:28157333
Schottky diodes from 2D germanane
NASA Astrophysics Data System (ADS)
Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.
2016-07-01
We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.
Schottky diodes from 2D germanane
Sahoo, Nanda Gopal; Punetha, Vinay Deep; Esteves, Richard J; Arachchige, Indika U.; Pestov, Dmitry; McLeskey, James T.
2016-07-11
We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe{sub 2} framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.
Compatible embedding for 2D shape animation.
Baxter, William V; Barla, Pascal; Anjyo, Ken-Ichi
2009-01-01
We present new algorithms for the compatible embedding of 2D shapes. Such embeddings offer a convenient way to interpolate shapes having complex, detailed features. Compared to existing techniques, our approach requires less user input, and is faster, more robust, and simpler to implement, making it ideal for interactive use in practical applications. Our new approach consists of three parts. First, our boundary matching algorithm locates salient features using the perceptually motivated principles of scale-space and uses these as automatic correspondences to guide an elastic curve matching algorithm. Second, we simplify boundaries while maintaining their parametric correspondence and the embedding of the original shapes. Finally, we extend the mapping to shapes' interiors via a new compatible triangulation algorithm. The combination of our algorithms allows us to demonstrate 2D shape interpolation with instant feedback. The proposed algorithms exhibit a combination of simplicity, speed, and accuracy that has not been achieved in previous work.
Stochastic Inversion of 2D Magnetotelluric Data
Chen, Jinsong
2010-07-01
The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows
Explicit 2-D Hydrodynamic FEM Program
Lin, Jerry
1996-08-07
DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.
Domino, Stefan; Luketa-Hanlin, Anay; Gallegos, Carlos
2006-10-27
FAA Smoke Transport Code, a physics-based Computational Fluid Dynamics tool, which couples heat, mass, and momentum transfer, has been developed to provide information on smoke transport in cargo compartments with various geometries and flight conditions. The software package contains a graphical user interface for specification of geometry and boundary conditions, analysis module for solving the governing equations, and a post-processing tool. The current code was produced by making substantial improvements and additions to a code obtained from a university. The original code was able to compute steady, uniform, isothermal turbulent pressurization. In addition, a preprocessor and postprocessor were added to arrive at the current software package.
2D Metals by Repeated Size Reduction.
Liu, Hanwen; Tang, Hao; Fang, Minghao; Si, Wenjie; Zhang, Qinghua; Huang, Zhaohui; Gu, Lin; Pan, Wei; Yao, Jie; Nan, Cewen; Wu, Hui
2016-10-01
A general and convenient strategy for manufacturing freestanding metal nanolayers is developed on large scale. By the simple process of repeatedly folding and calendering stacked metal sheets followed by chemical etching, free-standing 2D metal (e.g., Ag, Au, Fe, Cu, and Ni) nanosheets are obtained with thicknesses as small as 1 nm and with sizes of the order of several micrometers.
Realistic and efficient 2D crack simulation
NASA Astrophysics Data System (ADS)
Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek
2010-04-01
Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.
Quasiparticle interference in unconventional 2D systems
NASA Astrophysics Data System (ADS)
Chen, Lan; Cheng, Peng; Wu, Kehui
2017-03-01
At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe2), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.
2D materials: Graphene and others
Bansal, Suneev Anil Singh, Amrinder Pal; Kumar, Suresh
2016-05-06
Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.
NASA Astrophysics Data System (ADS)
Smith, Greg; Lankshear, Allan
1998-07-01
2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.
Engineering light outcoupling in 2D materials.
Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali
2015-02-11
When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.
Irreversibility-inversions in 2D turbulence
NASA Astrophysics Data System (ADS)
Bragg, Andrew; de Lillo, Filippo; Boffetta, Guido
2016-11-01
We consider a recent theoretical prediction that for inertial particles in 2D turbulence, the nature of the irreversibility of their pair dispersion inverts when the particle inertia exceeds a certain value. In particular, when the particle Stokes number, St , is below a certain value, the forward-in-time (FIT) dispersion should be faster than the backward-in-time (BIT) dispersion, but for St above this value, this should invert so that BIT becomes faster than FIT dispersion. This non-trivial behavior arises because of the competition between two physically distinct irreversibility mechanisms that operate in different regimes of St . In 3D turbulence, both mechanisms act to produce faster BIT than FIT dispersion, but in 2D, the two mechanisms have opposite effects because of the inverse energy cascade in the turbulent velocity field. We supplement the qualitative argument given by Bragg et al. by deriving quantitative predictions of this effect in the short-time dispersion limit. These predictions are then confirmed by results of inertial particle dispersion in a direct numerical simulation of 2D turbulence.
2D superconductivity by ionic gating
NASA Astrophysics Data System (ADS)
Iwasa, Yoshi
2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially
Advecting Procedural Textures for 2D Flow Animation
NASA Technical Reports Server (NTRS)
Kao, David; Pang, Alex; Moran, Pat (Technical Monitor)
2001-01-01
This paper proposes the use of specially generated 3D procedural textures for visualizing steady state 2D flow fields. We use the flow field to advect and animate the texture over time. However, using standard texture advection techniques and arbitrary textures will introduce some undesirable effects such as: (a) expanding texture from a critical source point, (b) streaking pattern from the boundary of the flowfield, (c) crowding of advected textures near an attracting spiral or sink, and (d) absent or lack of textures in some regions of the flow. This paper proposes a number of strategies to solve these problems. We demonstrate how the technique works using both synthetic data and computational fluid dynamics data.
Drumhead model of 2D wetting, filling and wedge covariance
NASA Astrophysics Data System (ADS)
Abraham, D. B.; Parry, A. O.; Wood, A. J.
2002-10-01
Recent work has demonstrated novel fluid interfacial behaviour occurring at filling or wedge-wetting transitions in two- and three-dimensional systems. In particular, in two dimensions (2D) studies of filling in shallow wedges, for both pure and impure systems, reveal simple covariance relations which relate criticality at filling to strong-fluctuation regime wetting and restrict the allowed critical singularities. Here we introduce a drumhead interfacial model of filling in acute wedges which can be adapted to include an orientation-dependent surface tension. We calculate the excess wedge free energy and scaling form of the mid-point height probability distribution function (PDF) and demonstrate that the covariance relations are the same as found in the shallow wedge approximation. Connections with exact Ising model results and a bubble model interpretation of the interfacial height PDF at wetting are made.
Improved constructions for quantum maximum distance separable codes
NASA Astrophysics Data System (ADS)
Qian, Jianfa; Zhang, Lina
2017-01-01
In this work, we further improve the distance of the quantum maximum distance separable (MDS) codes of length n=q^2+1/10. This yields new families of quantum MDS codes. We also construct a family of new quantum MDS codes with parameters [[q^2-1/3, q^2-1/3-2d+2, d
... up in the body. This is called fluid overload (volume overload). This can lead to edema (excess fluid in ... Water imbalance; Fluid imbalance - dehydration; Fluid buildup; Fluid overload; Volume overload; Loss of fluids; Edema - fluid imbalance; ...
Predicting abnormal pressure from 2-D seismic velocity modeling
Grauls, D.; Dunand, J.P.; Beaufort, D.
1995-12-01
Seismic velocities are the only data available, before drilling, on which to base a quantitative, present-day estimate of abnormal pressure. Recent advances in seismic velocity processing have enabled them to obtain, using an in-house approach, an optimized 2-D interval velocity field and consequently to better define the lateral extension of pressure regimes. The methodology, interpretation and quantification of overpressure-related anomalies are supported by case studies, selected in sand-shale dominated Tertiary basins, offshore West Africa. Another advantage of this approach is that it can also account for the presence of reservoir-potential intervals at great depth and thus provide significant insight, from a prospective standpoint, into very poorly explored areas. Although at the outset the 2-D seismic tool legitimately merits being favored, optimization of the final predictive pressure model, prior to drilling, will depend upon the success of its combined use with other concepts and approaches, pertaining to structural geology, sedimentology, rock mechanics and fluid dynamics.
areaDetector: Software for 2-D Detectors in EPICS
Rivers, M.
2011-09-23
areaDetector is a new EPICS module designed to support 2-D detectors. It is modular C++ code that greatly simplifies the task of writing support for a new detector. It also supports plugins, which receive detector data from the driver and process it in some way. Existing plugins perform Region-Of-Interest extraction and analysis, file saving (in netCDF, HDF, TIFF and JPEG formats), color conversion, and export to EPICS records for image display in clients like ImageJ and IDL. Drivers have now been written for many of the detectors commonly used at synchrotron beamlines, including CCDs, pixel array and amorphous silicon detectors, and online image plates.
Adaptive superplastic forming using NIKE2D with ISLAND
Engelmann, B.E.; Whirley, R.G.; Raboin, P.J.
1992-07-30
Superplastic forming has emerged as an important manufacturing process for producing near-net-shape parts. The design of a superplastic forming process is more difficult than conventional manufacturing operations, and is less amenable to trial and error approaches. This paper describes a superplastic forming process design capability incorporating nonlinear finite element analysis. The material constraints to allow superplastic behavior are integrated into an external constraint equation which is solved concurrently with the nonlinear finite element equations. The implementation of this approach using the ISLAND solution control language with the nonlinear finite element code NIKE2D is discussed in detail. Superplastic forming process design problems with one and two control parameters are presented as examples.
areaDetector: Software for 2-D Detectors in EPICS
Rivers, Mark L.
2010-06-23
areaDetector is a new EPICS module designed to support 2-D detectors. It is modular C++ code that greatly simplifies the task of writing support for a new detector. It also supports plugins, which receive detector data from the driver and process it in some way. Existing plugins perform Region-Of-Interest extraction and analysis, file saving (in netCDF, HDF, TIFF and JPEG formats), color conversion, and export to EPICS records for image display in clients like ImageJ and IDL. Drivers have now been written for many of the detectors commonly used at synchrotron beamlines, including CCDs, pixel array and amorphous silicon detectors, and online image plates.
A 2D histogram representation of images for pooling
NASA Astrophysics Data System (ADS)
Yu, Xinnan; Zhang, Yu-Jin
2011-03-01
Designing a suitable image representation is one of the most fundamental issues of computer vision. There are three steps in the popular Bag of Words based image representation: feature extraction, coding and pooling. In the final step, current methods make an M x K encoded feature matrix degraded to a K-dimensional vector (histogram), where M is the number of features, and K is the size of the codebook: information is lost dramatically here. In this paper, a novel pooling method, based on 2-D histogram representation, is proposed to retain more information from the encoded image features. This pooling method can be easily incorporated into state-of- the-art computer vision system frameworks. Experiments show that our approach improves current pooling methods, and can achieve satisfactory performance of image classification and image reranking even when using a small codebook and costless linear SVM.
TOPAZ2D validation status report, August 1990
Davis, B.
1990-08-01
Analytic solutions to two heat transfer problems were used to partially evaluate the performance TOPAZ, and LLNL finite element heat transfer code. The two benchmark analytic solutions were for: 2D steady state slab, with constant properties, constant uniform temperature boundary conditions on three sides, and constant temperature distribution according to a sine function on the fourth side; 1D transient non-linear, with temperature dependent conductivity and specific heat (varying such that the thermal diffusivity remained constant), constant heat flux on the front face and adiabatic conditions on the other face. The TOPAZ solution converged to the analytic solution in both the transient and the steady state problem. Consistent mass matrix type of analysis yielded best performance for the transient problem, in the late-time response; but notable unnatural anomalies were observed in the early-time temperature response at nodal locations near the front face. 5 refs., 22 figs.
A MODIFIED LIGHT TRANSMISSION VISUALIZATION METHOD FOR DNAPL SATURATION MEASUREMENTS IN 2-D MODELS
In this research, a light transmission visualization (LTV) method was used to quantify dense non-aqueous phase liquids (DNAPL) saturation in two-dimensional (2-D), two fluid phase systems. The method is an expansion of earlier LTV methods and takes into account both absorption an...
A MODIFIED LIGHT TRANSMISSION VISUALIZATION METHOD FOR DNAPL SATURATION MEASUREMENTS IN 2-D MODELS
In this research, a light transmission visualization (LTV) method was used to quantify dense non-aqueous phase liquids (DNAPL) saturation in two-dimensional (2-D), two fluid phase systems. The method is an expansion of earlier LTV methods and takes into account both absorption an...
Realization of hydrodynamic experiments on quasi-2D liquid crystal films in microgravity
NASA Astrophysics Data System (ADS)
Clark, Noel A.; Eremin, Alexey; Glaser, Matthew A.; Hall, Nancy; Harth, Kirsten; Klopp, Christoph; Maclennan, Joseph E.; Park, Cheol S.; Stannarius, Ralf; Tin, Padetha; Thurmes, William N.; Trittel, Torsten
2017-08-01
Freely suspended films of smectic liquid crystals are unique examples of quasi two-dimensional fluids. Mechanically stable and with quantized thickness of the order of only a few molecular layers, smectic films are ideal systems for studying fundamental fluid physics, such as collective molecular ordering, defect and fluctuation phenomena, hydrodynamics, and nonequilibrium behavior in two dimensions (2D), including serving as models of complex biological membranes. Smectic films can be drawn across openings in planar supports resulting in thin, meniscus-bounded membranes, and can also be prepared as bubbles, either supported on an inflation tube or floating freely. The quantized layering renders smectic films uniquely useful in 2D fluid physics. The OASIS team has pursued a variety of ground-based and microgravity applications of thin liquid crystal films to fluid structure and hydrodynamic problems in 2D and quasi-2D systems. Parabolic flights and sounding rocket experiments were carried out in order to explore the shape evolution of free floating smectic bubbles, and to probe Marangoni effects in flat films. The dynamics of emulsions of smectic islands (thicker regions on thin background films) and of microdroplet inclusions in spherical films, as well as thermocapillary effects, were studied over extended periods within the OASIS (Observation and Analysis of Smectic Islands in Space) project on the International Space Station. We summarize the technical details of the OASIS hardware and give preliminary examples of key observations.
2D Quantum Transport Modeling in Nanoscale MOSFETs
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.
2001-01-01
We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on an equal footing. Electron bandstructure is treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are consistent with 1D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller leakage current than the longer gate length device without a significant trade-off in on-current.
2D Quantum Transport Modeling in Nanoscale MOSFETs
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.
2001-01-01
We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on an equal footing. Electron bandstructure is treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are consistent with 1D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller leakage current than the longer gate length device without a significant trade-off in on-current.
Mass loss in 2D rotating stellar models
Lovekin, Caterine; Deupree, Bob
2010-10-05
Radiatively driven mass loss is an important factor in the evolution of massive stars . The mass loss rates depend on a number of stellar parameters, including the effective temperature and luminosity. Massive stars are also often rapidly rotating, which affects their structure and evolution. In sufficiently rapidly rotating stars, both the effective temperature and radius vary significantly as a function of latitude, and hence mass loss rates can vary appreciably between the poles and the equator. In this work, we discuss the addition of mass loss to a 2D stellar evolution code (ROTORC) and compare evolution sequences with and without mass loss. Preliminary results indicate that a full 2D calculation of mass loss using the local effective temperature and luminosity can significantly affect the distribution of mass loss in rotating main sequence stars. More mass is lost from the pole than predicted by 1D models, while less mass is lost at the equator. This change in the distribution of mass loss will affect the angular momentum loss, the surface temperature and luminosity, and even the interior structure of the star. After a single mass loss event, these effects are small, but can be expected to accumulate over the course of the main sequence evolution.
2D non-separable linear canonical transform (2D-NS-LCT) based cryptography
NASA Astrophysics Data System (ADS)
Zhao, Liang; Muniraj, Inbarasan; Healy, John J.; Malallah, Ra'ed; Cui, Xiao-Guang; Ryle, James P.; Sheridan, John T.
2017-05-01
The 2D non-separable linear canonical transform (2D-NS-LCT) can describe a variety of paraxial optical systems. Digital algorithms to numerically evaluate the 2D-NS-LCTs are not only important in modeling the light field propagations but also of interest in various signal processing based applications, for instance optical encryption. Therefore, in this paper, for the first time, a 2D-NS-LCT based optical Double-random- Phase-Encryption (DRPE) system is proposed which offers encrypting information in multiple degrees of freedom. Compared with the traditional systems, i.e. (i) Fourier transform (FT); (ii) Fresnel transform (FST); (iii) Fractional Fourier transform (FRT); and (iv) Linear Canonical transform (LCT), based DRPE systems, the proposed system is more secure and robust as it encrypts the data with more degrees of freedom with an augmented key-space.
Alfvén ionization in an MHD-gas interactions code
NASA Astrophysics Data System (ADS)
Wilson, A. D.; Diver, D. A.
2016-07-01
A numerical model of partially ionized plasmas is developed in order to capture their evolving ionization fractions as a result of Alfvén ionization (AI). The mechanism of, and the parameter regime necessary for, AI is discussed and an expression for the AI rate based on fluid parameters, from a gas-MHD model, is derived. This AI term is added to an existing MHD-gas interactions' code, and the result is a linear, 2D, two-fluid model that includes momentum transfer between charged and neutral species as well as an ionization rate that depends on the velocity fields of both fluids. The dynamics of waves propagating through such a partially ionized plasma are investigated, and it is found that AI has a significant influence on the fluid dynamics as well as both the local and global ionization fraction.
Alfvén ionization in an MHD-gas interactions code
Wilson, A. D.; Diver, D. A.
2016-07-15
A numerical model of partially ionized plasmas is developed in order to capture their evolving ionization fractions as a result of Alfvén ionization (AI). The mechanism of, and the parameter regime necessary for, AI is discussed and an expression for the AI rate based on fluid parameters, from a gas-MHD model, is derived. This AI term is added to an existing MHD-gas interactions' code, and the result is a linear, 2D, two-fluid model that includes momentum transfer between charged and neutral species as well as an ionization rate that depends on the velocity fields of both fluids. The dynamics of waves propagating through such a partially ionized plasma are investigated, and it is found that AI has a significant influence on the fluid dynamics as well as both the local and global ionization fraction.
Comparative Results from a CFD Challenge Over a 2D Three-Element High-Lift Airfoil
NASA Technical Reports Server (NTRS)
Klausmeyer, Steven M.; Lin, John C.
1997-01-01
A high-lift workshop was held in May of 1993 at NASA Langley Research Center. A major part of the workshop centered on a blind test of various computational fluid dynamics (CFD) methods in which the flow about a two- dimensional (2D) three-element airfoil was computed without prior knowledge of the experimental data. The results of this 'blind' test revealed: (1) The Reynolds Averaged Navier-Stokes (RANS) methods generally showed less variability among codes than did potential/Euler solvers coupled with boundary-layer solution techniques. However, some of the coupled methods still provided excellent predictions. (2) Drag prediction using coupled methods agreed more closely with experiment than the RANS methods. Lift was more accurately predicted than drag for both methods. (3) The CFD methods did well in predicting lift and drag changes due to changes in Reynolds number, however, they did not perform as well when predicting lift and drag increments due to changing flap gap, (4) Pressures and skin friction compared favorably with experiment for most of the codes. (5) There was a large variability in most of the velocity profile predictions. Computational results predict a stronger siat wake than measured suggesting a missing component in turbulence modeling, perhaps curvature effects.
Dynamical modeling of sub-grid scales in 2D turbulence
NASA Astrophysics Data System (ADS)
Laval, Jean-Philippe; Dubrulle, Bérengère; Nazarenko, Sergey
2000-08-01
We develop a new numerical method which treats resolved and sub-grid scales as two different fluid components evolving according to their own dynamical equations. These two fluids are nonlinearly interacting and can be transformed one into another when their scale becomes comparable to the grid size. Equations describing the two-fluid dynamics were rigorously derived from Euler equations [B. Dubrulle, S. Nazarenko, Physica D 110 (1997) 123-138] and they do not involve any adjustable parameters. The main assumption of such a derivation is that the large-scale vortices are so strong that they advect the sub-grid scales as a passive scalar, and the interactions of small scales with small and intermediate scales can be neglected. As a test for our numerical method, we performed numerical simulations of 2D turbulence with a spectral gap, and we found a good agreement with analytical results obtained for this case by Nazarenko and Laval [Non-local 2D turbulence and passive scalars in Batchelor’s regime, J. Fluid Mech., in press]. We used the two-fluid method to study three typical problems in 2D dynamics of incompressible fluids: decaying turbulence, vortex merger and forced turbulence. The two-fluid simulations performed on at 128 2 and 256 2 resolution were compared with pseudo-spectral simulations using hyperviscosity performed at the same and at much higher resolution. This comparison shows that performance of the two-fluid method is much better than one of the pseudo-spectral method at the same resolution and comparable computational cost. The most significant improvement is observed in modeling of the small-scale component, so that effective inertial interval increases by about two decades compared to the high-resolution pseudo-spectral method. Using the two-fluid method, we demonstrated that the k-3 tail always exists for the energy spectrum, although its amplitude is slowly decreasing in decaying turbulence.
Codon Constraints on Closed 2D Shapes,
2014-09-26
19843$ CODON CONSTRAINTS ON CLOSED 2D SHAPES Go Whitman Richards "I Donald D. Hoffman’ D T 18 Abstract: Codons are simple primitives for describing plane...RSONAL AUT"ORtIS) Richards, Whitman & Hoffman, Donald D. 13&. TYPE OF REPORT 13b. TIME COVERED N/A P8 AT F RRrT t~r. Ago..D,) is, PlE COUNT Reprint...outlines, if figure and ground are ignored. Later, we will address the problem of indexing identical codon descriptors that have different figure
Periodically sheared 2D Yukawa systems
Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán
2015-10-15
We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.
ELRIS2D: A MATLAB Package for the 2D Inversion of DC Resistivity/IP Data
NASA Astrophysics Data System (ADS)
Akca, Irfan
2016-04-01
ELRIS2D is an open source code written in MATLAB for the two-dimensional inversion of direct current resistivity (DCR) and time domain induced polarization (IP) data. The user interface of the program is designed for functionality and ease of use. All available settings of the program can be reached from the main window. The subsurface is discre-tized using a hybrid mesh generated by the combination of structured and unstructured meshes, which reduces the computational cost of the whole inversion procedure. The inversion routine is based on the smoothness constrained least squares method. In order to verify the program, responses of two test models and field data sets were inverted. The models inverted from the synthetic data sets are consistent with the original test models in both DC resistivity and IP cases. A field data set acquired in an archaeological site is also used for the verification of outcomes of the program in comparison with the excavation results.
A gridless technique for fluid/structural dynamic coupling on flexible membranes
Wolfe, W.P.; Nelsen, J.M.; Baty, R.S.; Laguna, G.A.; Mello, F.J.; Hailey, C.E.; Snyder, N.T.
1996-01-01
A gridless method has been developed for the simulation of coupled fluid/structural interactions over arbitrary bodies. This method uses Eulerian-based points arbitrarily distributed over the computational domain with no formal connectivity as typically required for a traditional grid. Comparisons are made with known exact solutions for simple two-dimensional model problems. Methods of improving the accuracy of the current implementation by using higher order approximations have been implemented. Accuracy improvement by using point adaption has been investigated. Plane strain and axisymmetric shells have been added to the code structural code PRONTO2D for future fluid/structural calculations. To date, coupled fluid/structure calculations have not been made.
2D Vortex Motion Driven by a Background Vorticity Gradient.
NASA Astrophysics Data System (ADS)
Schecter, D. A.; Dubin, D. H. E.
1999-11-01
A background vorticity gradient can strongly influence the motion of vortices in 2D fluids. Examples are vortex motion in magnetized electron plasmas and hurricane tracks in planetary atmospheres.(See for example Huang, Fine and Driscoll, Phys. Rev. Lett. 74), 4424 (1995); C.G. Rossby, J. Mar. Res. 7, 175 (1948). Here, the vortex motion is examined numerically and analytically for the case of a point-like vortex in a background shear flow that is initially axisymmetric. The vortex acts to level the local background vorticity gradient. Conservation of angular momentum dictates that positive vortices (``clumps'') and negative vortices (``holes'') react oppositely: clumps move up the gradient, whereas holes move down the gradient. Both clumps and holes can be classified as either prograde or retrograde, depending on whether they rotate with or against the local background shear. An analysis, in which the background response to the vortex is linearized, gives the trajectory of a small retrograde vortex. When the vortex is prograde, the background response is nonlinear. A prograde vortex moves along the gradient at a slower rate that is given by a simple ``mix-and-move'' estimate. This rate vanishes when the local shear is sufficiently large, due to the trapping of background fluid around the vortex.
2D Vortex Motion Driven by a Background Vorticity Gradient.
NASA Astrophysics Data System (ADS)
Schecter, D. A.; Dubin, D. H. E.
1999-11-01
A background vorticity gradient can strongly influence the motion of vortices in 2D fluids. Examples are vortex motion in magnetized electron plasmas and hurricane tracks in planetary atmospheres. Here, the vortex motion is examined numerically and analytically for the case of a point-like vortex in a background shear flow that is initially axisymmetric.(Schecter and Dubin, to appear in Phys. Rev. Lett. (1999).) The vortex acts to level the local background vorticity gradient. Conservation of angular momentum dictates that positive vortices (``clumps'') and negative vortices (``holes'') react oppositely: clumps move up the gradient, whereas holes move down the gradient. Both clumps and holes can be classified as either prograde or retrograde, depending on whether they rotate with or against the local background shear. An analysis, in which the background response to the vortex is linearized, gives the trajectory of a small retrograde vortex. When the vortex is prograde, the background response is nonlinear. A prograde vortex moves along the gradient at a slower rate that is given by a simple ``mix-and-move'' estimate. This rate vanishes when the local shear is sufficiently large, due to the trapping of background fluid around the vortex.
Measurements of Shear Reduction of 2D Vortex Diffusion.
NASA Astrophysics Data System (ADS)
Driscoll, C. F.; Anderegg, F.; Dubin, D. H. E.
2001-11-01
Experiments with magnetized ion columns in the 2-dimensional regime demonstrate shear reduction of vortex diffusion, in close correspondence with recent theory.(D.H.E. Dubin, Phys. Lett. A 284), 112 (2001). Here, the ions move in ( r, θ ) as point vortices, and we can accurately control the vorticity ζ (r), fluid rotation Ω (r), and shear S (r) ≡ r ; partial Ω / partial r. Moreover, individual ions can be ``tagged,'' so that the vortex diffusion rate D can be measured directly. For flows with low shear, i.e. S / Ω <= 10-3, the measured diffusion is close to the Taylor-McNamara prediction for a homogeneous gas of N point vortices.(J.B. Taylor and B. McNamara, Phys. Fluids 14), 1492 (1971). As the shear is increased, the measured diffusion decreases by up to 100×, in factor-of-three correspondence with the predicted D ∝ S-1. For very large shear, the ions can no longer be treated as 2D point vortices, since their shear separation is faster than their axial transversal of the trap. In this limit, the measured diffusion agrees quantitatively with the theory of long-range 3D Coulomb collisions.
Remarks on thermalization in 2D CFT
NASA Astrophysics Data System (ADS)
de Boer, Jan; Engelhardt, Dalit
2016-12-01
We revisit certain aspects of thermalization in 2D conformal field theory (CFT). In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a Banados-Teitelboim-Zanelli black hole. The extra conserved charges, while rendering c <1 theories essentially integrable, therefore seem to have little effect on large-c conformal field theories.
NASA Astrophysics Data System (ADS)
Yang, Shengxue; Jiang, Chengbao; Wei, Su-huai
2017-06-01
Two-dimensional (2D) layered inorganic nanomaterials have attracted huge attention due to their unique electronic structures, as well as extraordinary physical and chemical properties for use in electronics, optoelectronics, spintronics, catalysts, energy generation and storage, and chemical sensors. Graphene and related layered inorganic analogues have shown great potential for gas-sensing applications because of their large specific surface areas and strong surface activities. This review aims to discuss the latest advancements in the 2D layered inorganic materials for gas sensors. We first elaborate the gas-sensing mechanisms and introduce various types of gas-sensing devices. Then, we describe the basic parameters and influence factors of the gas sensors to further enhance their performance. Moreover, we systematically present the current gas-sensing applications based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), functionalized GO or rGO, transition metal dichalcogenides, layered III-VI semiconductors, layered metal oxides, phosphorene, hexagonal boron nitride, etc. Finally, we conclude the future prospects of these layered inorganic materials in gas-sensing applications.
2D packing using the Myriad framework
NASA Astrophysics Data System (ADS)
Chatburn, Luke T.; Batchelor, Bruce G.
2004-02-01
Myriad is a framework for building networked and distributed vision systems and is described in a companion paper in this conference. Myriad allows the components of a multi-camera, multi-user vision system (web-cameras, image processing engines, intelligent device controllers, databases and the user interface terminals) to be interconnected and operated together, even if they are physically separated by many hundreds, or thousands, of kilometres. This is achieved by operating them as Internet services. The principal objective in this article is to illustrate the simplicity of harmonising visual control with an existing system using Myriad. However, packing of 2-dimensional blob-like objects is of considerable commercial importance in some industries and involves robotic handling and/or cutting. The shapes to be packed may be cut from sheet metal, glass, cloth, leather, wood, card, paper, composite board, or flat food materials. In addition, many 3D packing applications can realistically be tackled only by regarding them as multi-layer 2D applications. Using Myriad to perform 2D packing, a set of blob-like input objects ("shapes") can be digitised using a standard camera (e.g. a "webcam"). The resulting digital images are then analysed, using a separate processing engine, perhaps located on a different continent. The packing is planned by another processing system, perhaps on a third continent. Finally, the assembly is performed using a robot, usually but not necessarily, located close to the camera.
Microwave Assisted 2D Materials Exfoliation
NASA Astrophysics Data System (ADS)
Wang, Yanbin
Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.
CASTOR3D: linear stability studies for 2D and 3D tokamak equilibria
NASA Astrophysics Data System (ADS)
Strumberger, E.; Günter, S.
2017-01-01
The CASTOR3D code, which is currently under development, is able to perform linear stability studies for 2D and 3D, ideal and resistive tokamak equilibria in the presence of ideal and resistive wall structures and coils. For these computations ideal equilibria represented by concentric nested flux surfaces serve as input (e.g. computed with the NEMEC code). Solving an extended eigenvalue problem, the CASTOR3D code takes simultaneously plasma inertia and wall resistivity into account. The code is a hybrid of the CASTOR_3DW stability code and the STARWALL code. The former is an extended version of the CASTOR and CASTOR_FLOW code, respectively. The latter is a linear 3D code computing the growth rates of resistive wall modes in the presence of multiply-connected wall structures. The CASTOR_3DW code, and some parts of the STARWALL code have been reformulated in a general 3D flux coordinate representation that allows to choose between various types of flux coordinates. Furthermore, the implemented many-valued current potentials in the STARWALL part allow a correct treatment of the m = 0, n = 0 perturbation. In this paper, we outline the theoretical concept, and present some numerical results which illustrate the present status of the code and demonstrate its numerous application possibilities.
Experiments on 2D Vortex Patterns with a Photoinjected Pure Electron Plasma
NASA Astrophysics Data System (ADS)
Durkin, Daniel; Fajans, Joel
1998-11-01
The equations governing the evolution of a strongly magnetized pure electron plasma are analogous to those of an ideal 2D fluid; plasma density is analogous to fluid vorticity. Therefore, we can study vortex dynamics with pure electron plasmas. We generate our electron plasma with a photocathode electron source. The photocathode provides greater control over the initial profile than previous thermionic sources and allows us to create complicated initial density distributions, corresponding to complicated vorticity distributions in a fluid. Results on the stability of 2D vortex patterns will be presented: 1) The stability of N vortices arranged in a ring; 2) The stability of N vortices arranged in a ring with a central vortex; 3) The stability of more complicated vortex patterns.(http://socrates.berkeley.edu/ )fajans/
NASA Technical Reports Server (NTRS)
1991-01-01
In recognition of a deficiency in the current modeling capability for seals, an effort was established by NASA to develop verified computational fluid dynamic concepts, codes, and analyses for seals. The objectives were to develop advanced concepts for the design and analysis of seals, to effectively disseminate the information to potential users by way of annual workshops, and to provide experimental verification for the models and codes under a wide range of operating conditions.
Clinical coding. Code breakers.
Mathieson, Steve
2005-02-24
--The advent of payment by results has seen the role of the clinical coder pushed to the fore in England. --Examinations for a clinical coding qualification began in 1999. In 2004, approximately 200 people took the qualification. --Trusts are attracting people to the role by offering training from scratch or through modern apprenticeships.
An Integrated Solution for Performing Thermo-fluid Conjugate Analysis
NASA Technical Reports Server (NTRS)
Kornberg, Oren
2009-01-01
A method has been developed which integrates a fluid flow analyzer and a thermal analyzer to produce both steady state and transient results of 1-D, 2-D, and 3-D analysis models. The Generalized Fluid System Simulation Program (GFSSP) is a one dimensional, general purpose fluid analysis code which computes pressures and flow distributions in complex fluid networks. The MSC Systems Improved Numerical Differencing Analyzer (MSC.SINDA) is a one dimensional general purpose thermal analyzer that solves network representations of thermal systems. Both GFSSP and MSC.SINDA have graphical user interfaces which are used to build the respective model and prepare it for analysis. The SINDA/GFSSP Conjugate Integrator (SGCI) is a formbase graphical integration program used to set input parameters for the conjugate analyses and run the models. The contents of this paper describes SGCI and its thermo-fluids conjugate analysis techniques and capabilities by presenting results from some example models including the cryogenic chill down of a copper pipe, a bar between two walls in a fluid stream, and a solid plate creating a phase change in a flowing fluid.
An Integrated Solution for Performing Thermo-fluid Conjugate Analysis
NASA Technical Reports Server (NTRS)
Kornberg, Oren
2009-01-01
A method has been developed which integrates a fluid flow analyzer and a thermal analyzer to produce both steady state and transient results of 1-D, 2-D, and 3-D analysis models. The Generalized Fluid System Simulation Program (GFSSP) is a one dimensional, general purpose fluid analysis code which computes pressures and flow distributions in complex fluid networks. The MSC Systems Improved Numerical Differencing Analyzer (MSC.SINDA) is a one dimensional general purpose thermal analyzer that solves network representations of thermal systems. Both GFSSP and MSC.SINDA have graphical user interfaces which are used to build the respective model and prepare it for analysis. The SINDA/GFSSP Conjugate Integrator (SGCI) is a formbase graphical integration program used to set input parameters for the conjugate analyses and run the models. The contents of this paper describes SGCI and its thermo-fluids conjugate analysis techniques and capabilities by presenting results from some example models including the cryogenic chill down of a copper pipe, a bar between two walls in a fluid stream, and a solid plate creating a phase change in a flowing fluid.
Code development for ITER edge modelling - SOLPS5.1
NASA Astrophysics Data System (ADS)
Bonnin, X.; Kukushkin, A. S.; Coster, D. P.
2009-06-01
Most ITER divertor modelling work to date used the B2-EIRENE (SOLPS4) code package, coupling a 2D fluid description of the charged plasma species (B2) to a Monte-Carlo kinetic description of the neutrals (EIRENE). In recent years, the emphasis at ITER has been on completing the neutral model, including neutral-neutral collisions, opacity effects, radiation transport, etc. Elsewhere, new physics, numerics, and algorithmic improvements, such as E × B and diamagnetic drifts, electric currents, ion and neutral heat and particle flux limits, wall material mixing and surface temperature evolution, and bundling of heavy ions species, as well as switching to cell-centred velocities and using an internal energy instead of a total energy equation, gave birth to the B2.5 code, combined with EIRENE as SOLPS5. We report on work in progress to merge these advances with the ITER-specific model of the edge and divertor.
2-D or not 2-D, that is the question: A Northern California test
Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D
2005-06-06
Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2
Multifunctional Nanofluids with 2D Nanosheets for thermal management and tribological applications
NASA Astrophysics Data System (ADS)
Taha Tijerina, Jose Jaime
Conventional heat-transfer fluids such as water, ethylene glycol, standard oils and other lubricants are typically low-efficiency heat-transfer fluids. Thermal management plays a critical factor in many applications where these fluids can be used, such as in motors/engines, solar cells, biopharmaceuticals, fuel cells, high voltage power transmission systems, micro/nanoelectronics mechanical systems (MEMS/NEMS), and nuclear cooling among others. These insulating fluids require superb filler dispersion, high thermal conduction, and for certain applications as in electrical/electronic devices also electrical insulation. The miniaturization and high efficiency of electrical/electronic devices in these fields demand successful heat management and energy-efficient fluid-based heat-transfer systems. Recent advances in layered materials enable large scale synthesis of various two-dimensional (2D) structures. Some of these 2D materials are good choices as nanofillers in heat transfer fluids; mainly due to their inherent high thermal conductivity (TC) and high surface area available for thermal energy transport. Among various 2D-nanostructures, hexagonal boron nitride (h-BN) and graphene (G) exhibit versatile properties such as outstanding TC, excellent mechanical stability, and remarkable chemical inertness. The following research, even though investigate various conventional fluids, will focus on dielectric insulating nanofluids (mineral oil -- MO) with significant thermal performance. It is presented the plan for synthesis and characterization of stable high-thermal conductivity nanofluids using 2D-nanostructures of h-BN, which will be further incorporated at diverse filler concentrations to conventional fluids for cooling applications, without compromising its electrical insulating property. For comparison, properties of h-BN based fluids are compared with conductive fillers such as graphene; where graphene has similar crystal structure of h-BN and also has similar bulk
Preliminary Assessment of Turbomachinery Codes
NASA Technical Reports Server (NTRS)
Mazumder, Quamrul H.
2007-01-01
This report assesses different CFD codes developed and currently being used at Glenn Research Center to predict turbomachinery fluid flow and heat transfer behavior. This report will consider the following codes: APNASA, TURBO, GlennHT, H3D, and SWIFT. Each code will be described separately in the following section with their current modeling capabilities, level of validation, pre/post processing, and future development and validation requirements. This report addresses only previously published and validations of the codes. However, the codes have been further developed to extend the capabilities of the codes.
Mach number validation of a new zonal CFD method (ZAP2D) for airfoil simulations
NASA Technical Reports Server (NTRS)
Strash, Daniel J.; Summa, Michael; Yoo, Sungyul
1991-01-01
A closed-loop overlapped velocity coupling procedure has been utilized to combine a two-dimensional potential-flow panel code and a Navier-Stokes code. The fully coupled two-zone code (ZAP2D) has been used to compute the flow past a NACA 0012 airfoil at Mach numbers ranging from 0.3 to 0.84 near the two-dimensional airfoil C(lmax) point for a Reynolds number of 3 million. For these cases, the grid domain size can be reduced to 3 chord lengths with less than 3-percent loss in accuracy for freestream Mach numbers through 0.8. Earlier validation work with ZAP2D has demonstrated a reduction in the required Navier-Stokes computation time by a factor of 4 for subsonic Mach numbers. For this more challenging condition of high lift and Mach number, the saving in CPU time is reduced to a factor of 2.
Mach number validation of a new zonal CFD method (ZAP2D) for airfoil simulations
NASA Technical Reports Server (NTRS)
Strash, Daniel J.; Summa, Michael; Yoo, Sungyul
1991-01-01
A closed-loop overlapped velocity coupling procedure has been utilized to combine a two-dimensional potential-flow panel code and a Navier-Stokes code. The fully coupled two-zone code (ZAP2D) has been used to compute the flow past a NACA 0012 airfoil at Mach numbers ranging from 0.3 to 0.84 near the two-dimensional airfoil C(lmax) point for a Reynolds number of 3 million. For these cases, the grid domain size can be reduced to 3 chord lengths with less than 3-percent loss in accuracy for freestream Mach numbers through 0.8. Earlier validation work with ZAP2D has demonstrated a reduction in the required Navier-Stokes computation time by a factor of 4 for subsonic Mach numbers. For this more challenging condition of high lift and Mach number, the saving in CPU time is reduced to a factor of 2.
Simulation of Yeast Cooperation in 2D.
Wang, M; Huang, Y; Wu, Z
2016-03-01
Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse.
Variational regularized 2-D nonnegative matrix factorization.
Gao, Bin; Woo, W L; Dlay, S S
2012-05-01
A novel approach for adaptive regularization of 2-D nonnegative matrix factorization is presented. The proposed matrix factorization is developed under the framework of maximum a posteriori probability and is adaptively fine-tuned using the variational approach. The method enables: (1) a generalized criterion for variable sparseness to be imposed onto the solution; and (2) prior information to be explicitly incorporated into the basis features. The method is computationally efficient and has been demonstrated on two applications, that is, extracting features from image and separating single channel source mixture. In addition, it is shown that the basis features of an information-bearing matrix can be extracted more efficiently using the proposed regularized priors. Experimental tests have been rigorously conducted to verify the efficacy of the proposed method.
Graphene suspensions for 2D printing
NASA Astrophysics Data System (ADS)
Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.
2016-04-01
It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).
2D quantum gravity from quantum entanglement.
Gliozzi, F
2011-01-21
In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.
2D Electrostatic Actuation of Microshutter Arrays
NASA Technical Reports Server (NTRS)
Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.
2015-01-01
An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.
Canard configured aircraft with 2-D nozzle
NASA Technical Reports Server (NTRS)
Child, R. D.; Henderson, W. P.
1978-01-01
A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.
Transition to turbulence: 2D directed percolation
NASA Astrophysics Data System (ADS)
Chantry, Matthew; Tuckerman, Laurette; Barkley, Dwight
2016-11-01
The transition to turbulence in simple shear flows has been studied for well over a century, yet in the last few years has seen major leaps forward. In pipe flow, this transition shows the hallmarks of (1 + 1) D directed percolation, a universality class of continuous phase transitions. In spanwisely confined Taylor-Couette flow the same class is found, suggesting the phenomenon is generic to shear flows. However in plane Couette flow the largest simulations and experiments to-date find evidence for a discrete transition. Here we study a planar shear flow, called Waleffe flow, devoid of walls yet showing the fundamentals of planar transition to turbulence. Working with a quasi-2D yet Navier-Stokes derived model of this flow we are able to attack the (2 + 1) D transition problem. Going beyond the system sizes previously possible we find all of the required scalings of directed percolation and thus establish planar shears flow in this class.
Jamming in 2D Prolate Granular Materials
NASA Astrophysics Data System (ADS)
Franklin, Scott
2003-11-01
We have been looking at how 2D piles of prolate (L/D>1) granular materials respond when disturbed. A test object is pushed slowly through a horizontal network of particles; the packing fraction and particle aspect ratio can be varied independently. Particles are cut from square brass rods; the square cross-section reduces the chances of a particle rolling on top of another and keeps the pile two-dimensinal. The initial condition of the pile is quantified with an orientational order parameter which measures the inter-particle alignment. At a critical packing fraction the pile jams and the force needed to push the test object through the pile increases. The jammed state also corresponds to an increase in the number of particles undergoing large-scale motion. This is revealed both in video analysis, which measures particle rearrangments within the pile, and in the number of particles that are pushed off the end of the table.
2D Electrostatic Actuation of Microshutter Arrays
NASA Technical Reports Server (NTRS)
Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.
2015-01-01
Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.
Canard configured aircraft with 2-D nozzle
NASA Technical Reports Server (NTRS)
Child, R. D.; Henderson, W. P.
1978-01-01
A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.
Numerical Evaluation of 2D Ground States
NASA Astrophysics Data System (ADS)
Kolkovska, Natalia
2016-02-01
A ground state is defined as the positive radial solution of the multidimensional nonlinear problem
NASA Astrophysics Data System (ADS)
Bombardelli, F. A.; Zamani, K.
2014-12-01
We introduce and discuss an open-source, user friendly, numerical post-processing piece of software to assess reliability of the modeling results of environmental fluid mechanics' codes. Verification and Validation, Uncertainty Quantification (VAVUQ) is a toolkit developed in Matlab© for general V&V proposes. In this work, The VAVUQ implementation of V&V techniques and user interfaces would be discussed. VAVUQ is able to read Excel, Matlab, ASCII, and binary files and it produces a log of the results in txt format. Next, each capability of the code is discussed through an example: The first example is the code verification of a sediment transport code, developed with the Finite Volume Method, with MES. Second example is a solution verification of a code for groundwater flow, developed with the Boundary Element Method, via MES. Third example is a solution verification of a mixed order, Compact Difference Method code of heat transfer via MMS. Fourth example is a solution verification of a 2-D, Finite Difference Method code of floodplain analysis via Complete Richardson Extrapolation. In turn, application of VAVUQ in quantitative model skill assessment studies (validation) of environmental codes is given through two examples: validation of a two-phase flow computational modeling of air entrainment in a free surface flow versus lab measurements and heat transfer modeling in the earth surface versus field measurement. At the end, we discuss practical considerations and common pitfalls in interpretation of V&V results.
Metrology for graphene and 2D materials
NASA Astrophysics Data System (ADS)
Pollard, Andrew J.
2016-09-01
The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the
Soap film as a 2D system: Diffusion and flow fields
NASA Astrophysics Data System (ADS)
Vivek, Skanda; Weeks, Eric
2014-03-01
We use microrheology to measure the 2D (interfacial) viscosity of soap films. Microrheology uses the diffusivity of tracer particles suspended in the soap film to infer viscosity. Our tracer particles are colloids of diameters d = 0.10 and 0.18 microns. We measure the interfacial viscosity of soap films ranging in thickness from 0.1 to 3 microns. The thickness of these films is measured using the infrared absorbance of the water based soap films. From film thickness, viscosity of the fluid used to make the film and particle diffusivity, we can infer the interfacial viscosity due to the surfactant layers at the film/air interfaces. We find positive constant interfacial viscosities for thin films (h/d < 5), within error. For thicker films, we find negative viscosities, indicating 3D effects begin to play a role, as air stresses become less important. The transition from 2D to 3D properties as a function of h/d is sharp at about h/d=6. Additionally, we measure larger length scale flow fields from correlated particle motions and find good agreement with what is expected from the theory of 2D fluids for all our films. In conclusion, single particle diffusion shows a sharp transition away from 2D like behavior as h/d increases, but the long-range flow fields still act as 2D.
NASA Astrophysics Data System (ADS)
LeVeque, R. J.; Motley, M. R.
2015-12-01
A series of tsunami wave basin experiments of flow through a scale model of Seaside, Oregon have been used as validation data for a 2015 benchmarking workshop hosted by the National Tsunami Mitigation Program, which focused on better understanding the ability of tsunami models to predict flow velocities and inundation depths following a coastal inundation event. As researchers begin to assess the safety of coastal infrastructures, proper assessment of tsunami-induced forces on coastal structures is critical. Hydrodynamic forces on these structures are fundamentally proportional to the local momentum flux of the fluid, and experimental data included momentum flux measurements at many instrumented gauge locations. The GeoClaw tsunami model, which solves the two-dimensional shallow water equations, was compared against other codes during the benchmarking workshop, and more recently a three-dimensional computational fluid dynamics model using the open-source OpenFOAM software has been developed and results from this model are being compared with both the experimental data and the 2D GeoClaw results. In addition, the 3D model allows for computation of fluid forces on the faces of structures, permitting an investigation of the common use of momentum flux as a proxy for these forces. This work aims to assess the potential to apply these momentum flux predictions locally within the model to determine tsunami-induced forces on critical structures. Difficulties in working with these data sets and cross-model comparisons will be discussed. Ultimately, application of the more computationally efficient GeoClaw model, informed by the 3D OpenFOAM models, to predict forces on structures at the community scale can be expected to improve the safety and resilience of coastal communities.
Hirobe, Tomohisa; Ito, Shosuke; Wakamatsu, Kazumasa
2013-09-01
The novel mutation named ru2(d) /Hps5(ru2-d) , characterized by light-colored coats and ruby-eyes, prohibits differentiation of melanocytes by inhibiting tyrosinase (Tyr) activity, expression of Tyr, Tyr-related protein 1 (Tyrp1), Tyrp2, and Kit. However, it is not known whether the ru2(d) allele affects pheomelanin synthesis in recessive yellow (e/Mc1r(e) ) or in pheomelanic stage in agouti (A) mice. In this study, effects of the ru2(d) allele on pheomelanin synthesis were investigated by chemical analysis of melanin present in dorsal hairs of 5-week-old mice from F2 generation between C57BL/10JHir (B10)-co-isogenic ruby-eye 2(d) and B10-congenic recessive yellow or agouti. Eumelanin content was decreased in ruby-eye 2(d) and ruby-eye 2(d) agouti mice, whereas pheomelanin content in ruby-eye 2(d) recessive yellow and ruby-eye 2(d) agouti mice did not differ from the corresponding Ru2(d) /- mice, suggesting that the ru2(d) allele inhibits eumelanin but not pheomelanin synthesis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Cytochrome P450 2D6 and Parkinson's Disease: Polymorphism, Metabolic Role, Risk and Protection.
Ur Rasheed, Mohd Sami; Mishra, Abhishek Kumar; Singh, Mahendra Pratap
2017-09-04
Cytochrome P450 (CYP) 2D6 is one of the most highly active, oxidative and polymorphic enzymes known to metabolize Parkinsonian toxins and clinically established anti-Parkinson's disease (PD) drugs. Albeit CYP2D6 gene is not present in rodents, its orthologs perform almost the similar function with imprecise substrate and inhibitor specificity. CYP2D6 expression and catalytic activity are found to be regulated at every stage of the central dogma except replication as well as at the epigenetic level. CYP2D6 gene codes for a set of alternate splice variants that give rise to a range of enzymes possessing variable catalytic activity. Case-control studies, meta-analysis and systemic reviews covering CYP2D6 polymorphism and PD risk have demonstrated that poor metabolizer phenotype possesses a considerable genetic susceptibility. Besides, ultra-rapid metabolizer offers protection against the risk in some populations while lack of positive or inverse association is also reported in other inhabitants. CYP2D6 polymorphisms resulting into deviant protein products with differing catalytic activity could lead to inter-individual variations, which could be explained to certain extent on the basis of sample size, life style factors, food habits, ethnicity and tools used for statistical analysis across various studies. Current article describes the role played by polymorphic CYP2D6 in the metabolism of anti-PD drugs/Parkinsonian toxins and how polymorphisms determine PD risk or protection. Moreover, CYP2D6 orthologs and their roles in rodent models of Parkinsonism have also been mentioned. Finally, a perspective on inconsistency in the findings and futuristic relevance of CYP2D6 polymorphisms in disease diagnosis and treatment has also been highlighted.
Subplane-based Control Rod Decusping Techniques for the 2D/1D Method in MPACT
Graham, Aaron M; Collins, Benjamin S; Downar, Thomas
2017-01-01
The MPACT transport code is being jointly developed by Oak Ridge National Laboratory and the University of Michigan to serve as the primary neutron transport code for the Virtual Environment for Reactor Applications Core Simulator. MPACT uses the 2D/1D method to solve the transport equation by decomposing the reactor model into a stack of 2D planes. A fine mesh flux distribution is calculated in each 2D plane using the Method of Characteristics (MOC), then the planes are coupled axially through a 1D NEM-P$_3$ calculation. This iterative calculation is then accelerated using the Coarse Mesh Finite Difference method. One problem that arises frequently when using the 2D/1D method is that of control rod cusping. This occurs when the tip of a control rod falls between the boundaries of an MOC plane, requiring that the rodded and unrodded regions be axially homogenized for the 2D MOC calculations. Performing a volume homogenization does not properly preserve the reaction rates, causing an error known as cusping. The most straightforward way of resolving this problem is by refining the axial mesh, but this can significantly increase the computational expense of the calculation. The other way of resolving the partially inserted rod is through the use of a decusping method. This paper presents new decusping methods implemented in MPACT that can dynamically correct the rod cusping behavior for a variety of problems.
FWM behavior in 2-D time-spreading wavelength-hopping OCDMA systems
NASA Astrophysics Data System (ADS)
Bazan, Taher M.
2017-03-01
A new formula for the signal-to-four-wave mixing (FWM) crosstalk in 2-D time-spreading wavelength-hopping (TW) optical code division multiple access (OCDMA) systems is derived. The influence of several system parameters on the signal-to-FWM crosstalk ratio (SXR) is analyzed, including transmitted power per chip, code length, the number of active users, code weight, wavelength spacing, and transmission distance. Furthermore, for the first time, a closed-form expression for the total number of possible FWM products employing symmetric TW codes with equal wavelength spacing is investigated. The results show that SXR is sensitive to minor variations in system parameters, especially the launched power level and the code length while the wavelength spacing has a less impact on the level of the generated FWM power.
Sachse, C.; Brockmoeller, J.; Bauer, S.; Roots, I.
1997-02-01
Cytochrome P450 2D6 (CYP2D6) metabolizes many important drugs. CYP2D6 activity ranges from complete deficiency to ultrafast metabolism, depending on at least 16 different known alleles. Their frequencies were determined in 589 unrelated German volunteers and correlated with enzyme activity measured by phenotyping with dextromethorphan or debrisoquine. For genotyping, nested PCR-RFLP tests from a PCR amplificate of the entire CYP2D6 gene were developed. The frequency of the CYP2D6*1 allele coding for extensive metabolizer (EM) phenotype was .364. The alleles coding for slightly (CYP2D6*2) or moderately (*9 and *10) reduced activity (intermediate metabolizer phenotype [IM]) showed frequencies of .324, .018, and .015, respectively. By use of novel PCR tests for discrimination, CYP2D6 gene duplication alleles were found with frequencies of.005 (*1 x 2), .013 (* 2 x 2), and .001 (*4 x 2). Frequencies of alleles with complete deficiency (poor metabolizer phenotype [PM]) were .207 (*4), .020 (*3 and *5), .009 (*6), and .001 (*7, *15, and *16). The defective CYP2D6 alleles *8, *11, *12, *13, and *14 were not found. All 41 PMs (7.0%) in this sample were explained by five mutations detected by four PCR-RFLP tests, which may suffice, together with the gene duplication test, for clinical prediction of CYP2D6 capacity. Three novel variants of known CYP2D6 alleles were discovered: *1C (T{sub 1957}C), *2B (additional C{sub 2558}T), and *4E (additional C{sub 2938}T). Analysis of variance showed significant differences in enzymatic activity measured by the dextromethorphan metabolic ratio (MR) between carriers of EN/PM (mean MR = .006) and IM/PM (mean MR = .014) alleles and between carriers of one (mean MR = .009) and two (mean MR = .003) functional alleles. The results of this study provide a solid basis for prediction of CYP2D6 capacity, as required in drug research and routine drug treatment. 35 refs., 4 figs., 5 tabs.
A 2-D Piston Effect Solution for the Relaxation in the MISTE Cell
NASA Technical Reports Server (NTRS)
Weilert, Mark
2003-01-01
When a large density stratification is no longer a problem in a microgravity environment, one would like to increase the sample size in order to increase the signal-to-noise ratio for a specific heat measurement. To reduce the equilibration time associated with the large sample size, we designed a cylindrical cell containing a stack of plates that separate the bulk fluid into 60 equally thin layers. To understand the thermal behavior of the whole cell, we analyzed the thermal behavior of a 2-D composite system of a cylindrical near-critical fluid layer in contact with a cylindrical copper plate. In this 2-D analysis, the circumference boundary of the two cylindrical layers is subjected to a step temperature change. The solution of this 2-D composite system includes the piston effect that speeds up the equilibration in the near-critical fluid layer and the pure diffusion in the copper plate. The results of this analysis indicate that the characteristic length for the equilibration of the stacked cell is determined by an effective thickness of a single fluid layer instead of the total height of the cylindrical cell.
2D Quantum Mechanical Study of Nanoscale MOSFETs
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.; Kwak, Dochan (Technical Monitor)
2000-01-01
With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density-gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25, 50 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. Surprisingly, the self-consistent potential profile shows lower injection barrier in the channel in quantum case. These results are qualitatively consistent with ID Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.
2D Quantum Transport Modeling in Nanoscale MOSFETs
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan
2001-01-01
With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density- gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Quantum simulations are focused on MIT 25, 50 and 90 nm "well- tempered" MOSFETs and compared to classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are quantitatively consistent with I D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and sub-threshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.
2D Quantum Transport Modeling in Nanoscale MOSFETs
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan
2001-01-01
With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density- gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Quantum simulations are focused on MIT 25, 50 and 90 nm "well- tempered" MOSFETs and compared to classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are quantitatively consistent with I D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and sub-threshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.
2D Quantum Mechanical Study of Nanoscale MOSFETs
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.; Kwak, Dochan (Technical Monitor)
2000-01-01
With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density-gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25, 50 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. Surprisingly, the self-consistent potential profile shows lower injection barrier in the channel in quantum case. These results are qualitatively consistent with ID Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.
Soft Decoding of Integer Codes and Their Application to Coded Modulation
NASA Astrophysics Data System (ADS)
Kostadinov, Hristo; Morita, Hiroyoshi; Iijima, Noboru; Han Vinck, A. J.; Manev, Nikolai
Integer codes are very flexible and can be applied in different modulation schemes. A soft decoding algorithm for integer codes will be introduced. Comparison of symbol error probability (SEP) versus signal-to-noise ratio (SNR) between soft and hard decoding using integer coded modulation shows us that we can obtain at least 2dB coding gain. Also, we shall compare our results with trellis coded modulation (TCM) because of their similar decoding schemes and complexity.
Descriptive statistics and regressions of 2D:4D and educational attainment based on RLMS data.
Nye, John V C; Bryukhanov, Maksym; Polyachenko, Sergiy
2017-06-01
We document the descriptive statistics and detailed regression outputs for educational attainment and measured 2D:4D ratios, based on the RLMS data (20th round, conducted in 2011-2012). Regression analysis is conducted using STATA 13, gologit2 which is a special code for the generalized ordered logit regression in STATA environment. We provide graphs of differences in means of 2D:4D ratios by educational attainment. Information about the distribution of self-identified nationalities and fields of university degrees of respondents is presented.
Multiresolution image representation using combined 2-D and 1-D directional filter banks.
Tanaka, Yuichi; Ikehara, Masaaki; Nguyen, Truong Q
2009-02-01
In this paper, effective multiresolution image representations using a combination of 2-D filter bank (FB) and directional wavelet transform (WT) are presented. The proposed methods yield simple implementation and low computation costs compared to previous 1-D and 2-D FB combinations or adaptive directional WT methods. Furthermore, they are nonredundant transforms and realize quad-tree like multiresolution representations. In applications on nonlinear approximation, image coding, and denoising, the proposed filter banks show visual quality improvements and have higher PSNR than the conventional separable WT or the contourlet.
2-D simulation of a waveguide free electron laser having a helical undulator
Kim, S.K.; Lee, B.C.; Jeong, Y.U.
1995-12-31
We have developed a 2-D simulation code for the calculation of output power from an FEL oscillator having a helical undulator and a cylindrical waveguide. In the simulation, the current and the energy of the electron beam is 2 A and 400 keV, respectively. The parameters of the permanent-magnet helical undulator are : period = 32 mm, number of periods = 20, magnetic field = 1.3 kG. The gain per pass is 10 and the output power is calculated to be higher than 10 kW The results of the 2-D simulation are compared with those of 1-D simulation.
Comparative metabolic capabilities and inhibitory profiles of CYP2D6.1, CYP2D6.10, and CYP2D6.17.
Shen, Hongwu; He, Minxia M; Liu, Houfu; Wrighton, Steven A; Wang, Li; Guo, Bin; Li, Chuan
2007-08-01
Polymorphisms in the cytochrome P450 2D6 (CYP2D6) gene are a major cause of pharmacokinetic variability in human. Although the poor metabolizer phenotype is known to be caused by two null alleles leading to absence of functional CYP2D6 protein, the large variability among individuals with functional alleles remains mostly unexplained. Thus, the goal of this study was to examine the intrinsic enzymatic differences that exist among the several active CYP2D6 allelic variants. The relative catalytic activities (enzyme kinetics) of three functionally active human CYP2D6 allelic variants, CYP2D6.1, CYP2D6.10, and CYP2D6.17, were systematically investigated for their ability to metabolize a structurally diverse set of clinically important CYP2D6-metabolized drugs [atomoxetine, bufuralol, codeine, debrisoquine, dextromethorphan, (S)-fluoxetine, nortriptyline, and tramadol] and the effects of various CYP2D6-inhibitors [cocaine, (S)-fluoxetine, (S)-norfluoxetine, imipramine, quinidine, and thioridazine] on these three variants. The most significant difference observed was a consistent but substrate-dependent decease in the catalytic efficiencies of cDNA-expressed CYP2D6.10 and CYP2D6.17 compared with CYP2D6.1, yielding 1.32 to 27.9 and 7.33 to 80.4% of the efficiency of CYP2D6.1, respectively. The most important finding from this study is that there are mixed effects on the functionally reduced allelic variants in enzyme-substrate affinity or enzyme-inhibitor affinity, which is lower, higher, or comparable to that for CYP2D6.1. Considering the rather high frequencies of CYP2D6*10 and CYP2D6*17 alleles for Asians and African Americans, respectively, these data provide further insight into ethnic differences in CYP2D6-mediated drug metabolism. However, as with all in vitro to in vivo extrapolations, caution should be applied to the clinical consequences.
Observation of Vortex Crystals in Freely Relaxing 2D Turbulence.*
NASA Astrophysics Data System (ADS)
Driscoll, C. Fred
1998-03-01
Magnetically confined electron columns evolve as near-ideal incompressible 2D fluids, allowing quantitative study of vortices and self-organization in freely relaxing turbulence. The electron density is proportional to the vorticity ζ (r,θ , t) of the flow, and can be accurately measured at any given time using a phosphor screen and a high-resolution camera. Initially turbulent states are observed to relax through the processes of vortex advection, merger, and filamentation. Initial conditions with Nv = 50 - 100 vortices typically relax as Nv ∝ t^- ξ, with 0.4 <= ξ <= 1.1, in general agreement with dynamic scaling theories. However, for some initial conditions, we observe this turbulent relaxation to be halted by the formation of ordered patterns of vortices (``vortex crystals'') rotating as a rigid pattern within a weaker background of vorticity.^1 After a crystal forms, the random vortex motions damp with time, and we measure ``cooling'' of the crystal pattern. Although vortex crystals have been observed in dissipative systems such as rotating liquid helium, here the flow is essentially inviscid on the cooling timescale. We find that total circulation, angular momentum, and energy are conserved to within a few percent during the initial relaxation. The vortex crystal state persists until weak diffusive or viscous processes dissipate the vortices after thousands of turnover times. Recent 2D vortex-in-cell simulations have reproduced the vortex crystal states and cooling rates; this supports the belief that the cooling occurs in incompressible, inviscid fluid flow. Other experiments and theory have studied the dynamics of various types of vortex patches moving through a background of vorticity: enhanced vorticity ``clumps'' move up a background vorticity gradient, whereas decreased vorticity ``holes'' move down a gradient. Surprisingly, many characteristics of the final vortex crystal states can be predicted by maximization of entropy subject to integral
Competing coexisting phases in 2D water
NASA Astrophysics Data System (ADS)
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-05-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.
SEM signal emulation for 2D patterns
NASA Astrophysics Data System (ADS)
Sukhov, Evgenii; Muelders, Thomas; Klostermann, Ulrich; Gao, Weimin; Braylovska, Mariya
2016-03-01
The application of accurate and predictive physical resist simulation is seen as one important use model for fast and efficient exploration of new patterning technology options, especially if fully qualified OPC models are not yet available at an early pre-production stage. The methodology of using a top-down CD-SEM metrology to extract the 3D resist profile information, such as the critical dimension (CD) at various resist heights, has to be associated with a series of presumptions which may introduce such small, but systematic CD errors. Ideally, the metrology effects should be carefully minimized during measurement process, or if possible be taken into account through proper metrology modeling. In this paper we discuss the application of a fast SEM signal emulation describing the SEM image formation. The algorithm is applied to simulated resist 3D profiles and produces emulated SEM image results for 1D and 2D patterns. It allows estimating resist simulation quality by comparing CDs which were extracted from the emulated and from the measured SEM images. Moreover, SEM emulation is applied for resist model calibration to capture subtle error signatures through dose and defocus. Finally, it should be noted that our SEM emulation methodology is based on the approximation of physical phenomena which are taking place in real SEM image formation. This approximation allows achieving better speed performance compared to a fully physical model.
Competing coexisting phases in 2D water
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-01-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018
Persistence Measures for 2d Soap Froth
NASA Astrophysics Data System (ADS)
Feng, Y.; Ruskin, H. J.; Zhu, B.
Soap froths as typical disordered cellular structures, exhibiting spatial and temporal evolution, have been studied through their distributions and topological properties. Recently, persistence measures, which permit representation of the froth as a two-phase system, have been introduced to study froth dynamics at different length scales. Several aspects of the dynamics may be considered and cluster persistence has been observed through froth experiment. Using a direct simulation method, we have investigated persistent properties in 2D froth both by monitoring the persistence of survivor cells, a topologically independent measure, and in terms of cluster persistence. It appears that the area fraction behavior for both survivor and cluster persistence is similar for Voronoi froth and uniform froth (with defects). Survivor and cluster persistent fractions are also similar for a uniform froth, particularly when geometries are constrained, but differences observed for the Voronoi case appear to be attributable to the strong topological dependency inherent in cluster persistence. Survivor persistence, on the other hand, depends on the number rather than size and position of remaining bubbles and does not exhibit the characteristic decay to zero.
2D Radiative Processes Near Cloud Edges
NASA Technical Reports Server (NTRS)
Varnai, T.
2012-01-01
Because of the importance and complexity of dynamical, microphysical, and radiative processes taking place near cloud edges, the transition zone between clouds and cloud free air has been the subject of intense research both in the ASR program and in the wider community. One challenge in this research is that the one-dimensional (1D) radiative models widely used in both remote sensing and dynamical simulations become less accurate near cloud edges: The large horizontal gradients in particle concentrations imply that accurate radiative calculations need to consider multi-dimensional radiative interactions among areas that have widely different optical properties. This study examines the way the importance of multidimensional shortwave radiative interactions changes as we approach cloud edges. For this, the study relies on radiative simulations performed for a multiyear dataset of clouds observed over the NSA, SGP, and TWP sites. This dataset is based on Microbase cloud profiles as well as wind measurements and ARM cloud classification products. The study analyzes the way the difference between 1D and 2D simulation results increases near cloud edges. It considers both monochromatic radiances and broadband radiative heating, and it also examines the influence of factors such as cloud type and height, and solar elevation. The results provide insights into the workings of radiative processes and may help better interpret radiance measurements and better estimate the radiative impacts of this critical region.
Ion Transport in 2-D Graphene Nanochannels
NASA Astrophysics Data System (ADS)
Xie, Quan; Foo, Elbert; Duan, Chuanhua
2015-11-01
Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).
New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters.
Zhang, Fan; Song, Kaijun; Fan, Yong
2017-02-09
A two-dimensional (2D) diffraction model for the calculation of the diffraction field in 2D space and its applications to terahertz parallel-plate waveguide power splitters are proposed in this paper. Compared with the Huygens-Fresnel principle in three-dimensional (3D) space, the proposed model provides an approximate analytical expression to calculate the diffraction field in 2D space. The diffraction filed is regarded as the superposition integral in 2D space. The calculated results obtained from the proposed diffraction model agree well with the ones by software HFSS based on the element method (FEM). Based on the proposed 2D diffraction model, two parallel-plate waveguide power splitters are presented. The splitters consist of a transmitting horn antenna, reflectors, and a receiving antenna array. The reflector is cylindrical parabolic with superimposed surface relief to efficiently couple the transmitted wave into the receiving antenna array. The reflector is applied as computer-generated holograms to match the transformed field to the receiving antenna aperture field. The power splitters were optimized by a modified real-coded genetic algorithm. The computed results of the splitters agreed well with the ones obtained by software HFSS verify the novel design method for power splitter, which shows good applied prospects of the proposed 2D diffraction model.
New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters
NASA Astrophysics Data System (ADS)
Zhang, Fan; Song, Kaijun; Fan, Yong
2017-02-01
A two-dimensional (2D) diffraction model for the calculation of the diffraction field in 2D space and its applica