Numerical simulation of ( T 2, T 1) 2D NMR and fluid responses
NASA Astrophysics Data System (ADS)
Tan, Mao-Jin; Zou, You-Long; Zhang, Jin-Yan; Zhao, Xin
2012-12-01
One-dimensional nuclear magnetic resonance (1D NMR) logging technology is limited for fluid typing, while two-dimensional nuclear magnetic resonance (2D NMR) logging can provide more parameters including longitudinal relaxation time ( T 1) and transverse relaxation time ( T 2) relative to fluid types in porous media. Based on the 2D NMR relaxation mechanism in a gradient magnetic field, echo train simulation and 2D NMR inversion are discussed in detail. For 2D NMR inversion, a hybrid inversion method is proposed based on the damping least squares method (LSQR) and an improved truncated singular value decomposition (TSVD) algorithm. A series of spin echoes are first simulated with multiple waiting times ( T W s) in a gradient magnetic field for given fluid models and these synthesized echo trains are inverted by the hybrid method. The inversion results are consistent with given models. Moreover, the numerical simulation of various fluid models such as the gas-water, light oil-water, and vicious oil-water models were carried out with different echo spacings ( T E s) and T W s by this hybrid method. Finally, the influences of different signal-to-noise ratios (SNRs) on inversion results in various fluid models are studied. The numerical simulations show that the hybrid method and optimized observation parameters are applicable to fluid typing of gas-water and oil-water models.
2-D Three Fluid Simulation of Upstreaming Ions Above Auroral Precipitation
NASA Astrophysics Data System (ADS)
Danielides, M. A.; Lummerzheim, D.; Otto, A.; Stevens, R. J.
2006-12-01
The ionosphere is a rich reservoir of charged particles from which a variable fraction is transported to the magnetosphere. An important transport phenomena is the formation of upward ion flow above auroral structure. A primary region of the outflow is not known, but contributions come from polar cap, dayside cusp/cleft region, auroral oval, or even from mid-latitudes. In the past global magnetospheric models and fluid codes were used to simulate large scale ion outflow above, e.g., the polar-cap aurora. However, satellites orbiting at low- altitudes have repeatingly detected localized ion outflow above the auroral oval. Ionosphere-magnetosphere coupling simulations gave first insides into the small-scale dynamics of aurora. The aim of this study is the investigation of coupled plasma and neutral dynamics in smaller scale aurora to explain the generation, structure, and dynamics of vertical ion upstream. We consider auroral electron precipitation at ionospheric heights in a 2-D three fluid ionospheric-magnetospheric coupling code (Otto and Zhu, 2003). Specially we examine the effects of the electron precipitation, heat conduction and heating in field- aligned current through coulomb collisions or turbulence causing: i) electron heating, ii) electron pressure gradients, and iii) upstreaming of ions through a resulting ambipolar electric field. Our first case studies are performed for different boundary conditions and for different auroral electron precipitation parameters (variation in characteristic auroral energy, auroral energy flux and horizontal scale). The results shall clarify how auroral precipitation can drive ions upwards. Finally we discuss the effect of ion drag and the interaction of the upstreaming ions with a stable neutral constituent. Otto, O. and H. Zhu, Fluid plasma simulation of coupled systems: Ionosphere and magnetosphere, Space Plasma Simulation. Edited by J. Buechner, C. Dum, and M. Scholer., Lecture Notes in Physics, vol. 615, p.193
NASA Astrophysics Data System (ADS)
Kawamura, E.; Lieberman, M. A.; Graves, D. B.
2014-12-01
A fast 2D axisymmetric fluid-analytical plasma reactor model using the finite elements simulation tool COMSOL is interfaced with a 1D particle-in-cell (PIC) code to study ion energy distributions (IEDs) in multi-frequency capacitive argon discharges. A bulk fluid plasma model, which solves the time-dependent plasma fluid equations for the ion continuity and electron energy balance, is coupled with an analytical sheath model, which solves for the sheath parameters. The time-independent Helmholtz equation is used to solve for the fields and a gas flow model solves for the steady-state pressure, temperature and velocity of the neutrals. The results of the fluid-analytical model are used as inputs to a PIC simulation of the sheath region of the discharge to obtain the IEDs at the target electrode. Each 2D fluid-analytical-PIC simulation on a moderate 2.2 GHz CPU workstation with 8 GB of memory took about 15-20 min. The multi-frequency 2D fluid-analytical model was compared to 1D PIC simulations of a symmetric parallel-plate discharge, showing good agreement. We also conducted fluid-analytical simulations of a multi-frequency argon capacitively coupled plasma (CCP) with a typical asymmetric reactor geometry at 2/60/162 MHz. The low frequency 2 MHz power controlled the sheath width and sheath voltage while the high frequencies controlled the plasma production. A standing wave was observable at the highest frequency of 162 MHz. We noticed that adding 2 MHz power to a 60 MHz discharge or 162 MHz to a dual frequency 2 MHz/60 MHz discharge can enhance the plasma uniformity. We found that multiple frequencies were not only useful for controlling IEDs but also plasma uniformity in CCP reactors.
2D fluid simulations of discharges at atmospheric pressure in reactive gas mixtures
NASA Astrophysics Data System (ADS)
Bourdon, Anne
2015-09-01
Since a few years, low-temperature atmospheric pressure discharges have received a considerable interest as they efficiently produce many reactive chemical species at a low energy cost. This potential is of great interest for a wide range of applications as plasma assisted combustion or biomedical applications. Then, in current simulations of atmospheric pressure discharges, there is the need to take into account detailed kinetic schemes. It is interesting to note that in some conditions, the kinetics of the discharge may play a role on the discharge dynamics itself. To illustrate this, we consider the case of the propagation of He-N2 discharges in long capillary tubes, studied for the development of medical devices for endoscopic applications. Simulation results put forward that the discharge dynamics and structure depend on the amount of N2 in the He-N2 mixture. In particular, as the amount of N2 admixture increases, the discharge propagation velocity in the tube increases, reaches a maximum for about 0 . 1 % of N2 and then decreases, in agreement with experiments. For applications as plasma assisted combustion with nanosecond repetitively pulsed discharges, there is the need to handle the very different timescales of the nanosecond discharge with the much longer (micro to millisecond) timescales of combustion processes. This is challenging from a computational point of view. It is also important to better understand the coupling of the plasma induced chemistry and the gas heating. To illustrate this, we present the simulation of the flame ignition in lean mixtures by a nanosecond pulsed discharge between two point electrodes. In particular, among the different discharge regimes of nanosecond repetitively pulsed discharges, a ``spark'' regime has been put forward in the experiments, with an ultra-fast local heating of the gas. For other discharge regimes, the gas heating is much weaker. We have simulated the nanosecond spark regime and have observed shock waves
A new inversion method for (T2, D) 2D NMR logging and fluid typing
NASA Astrophysics Data System (ADS)
Tan, Maojin; Zou, Youlong; Zhou, Cancan
2013-02-01
One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.
ENERGY LANDSCAPE OF 2D FLUID FORMS
Y. JIANG; ET AL
2000-04-01
The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.
NASA Astrophysics Data System (ADS)
Mitsui, Y.; Hirahara, K.
2006-12-01
There have been a lot of studies that simulate large earthquakes occurring quasi-periodically at a subduction zone, based on the laboratory-derived rate-and-state friction law [eg. Kato and Hirasawa (1997), Hirose and Hirahara (2002)]. All of them assume that pore fluid pressure in the fault zone is constant. However, in the fault zone, pore fluid pressure changes suddenly, due to coseismic pore dilatation [Marone (1990)] and thermal pressurization [Mase and Smith (1987)]. If pore fluid pressure drops and effective normal stress rises, fault slip is decelerated. Inversely, if pore fluid pressure rises and effective normal stress drops, fault slip is accelerated. The effect of pore fluid may cause slow slip events and low-frequency tremor [Kodaira et al. (2004), Shelly et al. (2006)]. For a simple spring model, how pore dilatation affects slip instability was investigated [Segall and Rice (1995), Sleep (1995)]. When the rate of the slip becomes high, pore dilatation occurs and pore pressure drops, and the rate of the slip is restrained. Then the inflow of pore fluid recovers the pore pressure. We execute 2D earthquake cycle simulations at a subduction zone, taking into account such changes of pore fluid pressure following Segall and Rice (1995), in addition to the numerical scheme in Kato and Hirasawa (1997). We do not adopt hydrostatic pore pressure but excess pore pressure for initial condition, because upflow of dehydrated water seems to exist at a subduction zone. In our model, pore fluid is confined to the fault damage zone and flows along the plate interface. The smaller the flow rate is, the later pore pressure recovers. Since effective normal stress keeps larger, the fault slip is decelerated and stress drop becomes smaller. Therefore the smaller flow rate along the fault zone leads to the shorter earthquake recurrence time. Thus, not only the frictional parameters and the subduction rate but also the fault zone permeability affects the recurrence time of
Realistic and efficient 2D crack simulation
NASA Astrophysics Data System (ADS)
Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek
2010-04-01
Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.
Rheological Properties of Quasi-2D Fluids in Microgravity
NASA Technical Reports Server (NTRS)
Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha
2015-01-01
In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.
Friedel, Michael J.
2001-01-01
This report describes a model for simulating transient, Variably Saturated, coupled water-heatsolute Transport in heterogeneous, anisotropic, 2-Dimensional, ground-water systems with variable fluid density (VST2D). VST2D was developed to help understand the effects of natural and anthropogenic factors on quantity and quality of variably saturated ground-water systems. The model solves simultaneously for one or more dependent variables (pressure, temperature, and concentration) at nodes in a horizontal or vertical mesh using a quasi-linearized general minimum residual method. This approach enhances computational speed beyond the speed of a sequential approach. Heterogeneous and anisotropic conditions are implemented locally using individual element property descriptions. This implementation allows local principal directions to differ among elements and from the global solution domain coordinates. Boundary conditions can include time-varying pressure head (or moisture content), heat, and/or concentration; fluxes distributed along domain boundaries and/or at internal node points; and/or convective moisture, heat, and solute fluxes along the domain boundaries; and/or unit hydraulic gradient along domain boundaries. Other model features include temperature and concentration dependent density (liquid and vapor) and viscosity, sorption and/or decay of a solute, and capability to determine moisture content beyond residual to zero. These features are described in the documentation together with development of the governing equations, application of the finite-element formulation (using the Galerkin approach), solution procedure, mass and energy balance considerations, input requirements, and output options. The VST2D model was verified, and results included solutions for problems of water transport under isohaline and isothermal conditions, heat transport under isobaric and isohaline conditions, solute transport under isobaric and isothermal conditions, and coupled water
An Integrative Model of Excitation Driven Fluid Flow in a 2D Uterine Channel
NASA Astrophysics Data System (ADS)
Maggio, Charles; Fauci, Lisa; Chrispell, John
2009-11-01
We present a model of intra-uterine fluid flow in a sagittal cross-section of the uterus by inducing peristalsis in a 2D channel. This is an integrative multiscale computational model that takes as input fluid viscosity, passive tissue properties of the uterine channel and a prescribed wave of membrane depolarization. This voltage pulse is coupled to a model of calcium dynamics inside a uterine smooth muscle cell, which in turn drives a kinetic model of myosin phosphorylation governing contractile muscle forces. Using the immersed boundary method, these muscle forces are communicated to a fluid domain to simulate the contractions which occur in a human uterus. An analysis of the effects of model parameters on the flow properties and emergent geometry of the peristaltic channel will be presented.
Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials
NASA Astrophysics Data System (ADS)
Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna
2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.
Simulation of 2D Fields of Raindrop Size Distributions
NASA Astrophysics Data System (ADS)
Berne, A.; Schleiss, M.; Uijlenhoet, R.
2008-12-01
The raindrop size distribution (DSD hereafter) is of primary importance for quantitative applications of weather radar measurements. The radar reflectivity~Z (directly measured by radar) is related to the power backscattered by the ensemble of hydrometeors within the radar sampling volume. However, the rain rate~R (the flux of water to the surface) is the variable of interest for many applications (hydrology, weather forecasting, air traffic for example). Usually, radar reflectivity is converted into rain rate using a power law such as Z=aRb. The coefficients a and b of the Z-R relationship depend on the DSD. The variability of the DSD in space and time has to be taken into account to improve radar rain rate estimates. Therefore, the ability to generate a large number of 2D fields of DSD which are statistically homogeneous provides a very useful simulation framework that nicely complements experimental approaches based on DSD data, in order to investigate radar beam propagation through rain as well as radar retrieval techniques. The proposed approach is based on geostatistics for structural analysis and stochastic simulation. First, the DSD is assumed to follow a gamma distribution. Hence a 2D field of DSDs can be adequately described as a 2D field of a multivariate random function consisting of the three DSD parameters. Such fields are simulated by combining a Gaussian anamorphosis and a multivariate Gaussian random field simulation algorithm. Using the (cross-)variogram models fitted on data guaranties that the spatial structure of the simulated fields is consistent with the observed one. To assess its validity, the proposed method is applied to data collected during intense Mediterranean rainfall. As only time series are available, Taylor's hypothesis is assumed to convert time series in 1D range profile. Moreover, DSD fields are assumed to be isotropic so that the 1D structure can be used to simulate 2D fields. A large number of 2D fields of DSD parameters are
2-D traveling-wave patterns in binary fluid convection
Surko, C.M.; Porta, A.L.
1996-12-31
An overview is presented of recent experiments designed to study two-dimensional traveling-wave convection in binary fluid convection in a large aspect ratio container. Disordered patterns are observed when convection is initiated. As time proceeds, they evolve to more ordered patterns, consisting of several domains of traveling-waves separated by well-defined domain boundaries. The detailed character of the patterns depends sensitively on the Rayleigh number. Numerical techniques are described which were developed to provide a quantitative characterization of the traveling-wave patterns. Applications of complex demodulation techniques are also described, which make a detailed study of the structure and dynamics of the domain boundaries possible.
NATRAN2. Fluid Hammer Analysis 1D & 2D Systems
Shin, Y.W.; Valentin, R.A.
1992-03-03
NATRAN2 analyzes short-term pressure-pulse transients in a closed hydraulic system consisting of a two-dimensional axisymmetric domain connected to a one-dimensional piping network. The one-dimensional network may consist of series or parallel piping, pipe junctions, diameter discontinuities, junctions of three to six branches, closed ends, surge tanks, far ends, dummy junctions, acoustic impedance discontinuities, and rupture disks. By default, the working fluid is assumed to be liquid sodium without cavitation; but another working fluid can be specified in terms of its density, sonic speed, and viscosity. The source pressure pulse can arise from one of the following: a pressure-time function specified at some point in the two-dimensional domain, a pressure-time function or a sodium-water reaction specified at some point in the one-dimensional domain. The pressure pulse from a sodium-water reaction is assumed to be generated according to the dynamic model of Zaker and Salmon.
In situ fluid typing and quantification with 1D and 2D NMR logging.
Sun, Boqin
2007-05-01
In situ nuclear magnetic resonance (NMR) fluid typing has recently gained momentum due to data acquisition and inversion algorithm enhancement of NMR logging tools. T(2) distributions derived from NMR logging contain information on bulk fluids and pore size distributions. However, the accuracy of fluid typing is greatly overshadowed by the overlap between T(2) peaks arising from different fluids with similar apparent T(2) relaxation times. Nevertheless, the shapes of T(2) distributions from different fluid components are often different and can be predetermined. Inversion with predetermined T(2) distributions allows us to perform fluid component decomposition to yield individual fluid volume ratios. Another effective method for in situ fluid typing is two-dimensional (2D) NMR logging, which results in proton population distribution as a function of T(2) relaxation time and fluid diffusion coefficient (or T(1) relaxation time). Since diffusion coefficients (or T(1) relaxation time) for different fluid components can be very different, it is relatively easy to separate oil (especially heavy oil) from water signal in a 2D NMR map and to perform accurate fluid typing. Combining NMR logging with resistivity and/or neutron/density logs provides a third method for in situ fluid typing. We shall describe these techniques with field examples. PMID:17466778
Development of models for the two-dimensional, two-fluid code for sodium boiling NATOF-2D. [LMFBR
Zielinski, R.G.; Kazimi, M.S.
1981-09-01
Several features were incorporated into NATOF-2D, a two-dimensional, two fluid code developed at MIT for the purpose of analysis of sodium boiling transients under LMFBR conditions. They include improved interfacial mass, momentum and energy exchange rate models, and a cell-to-cell radial heat conduction mechanism which was calibrated by simulation of Westinghouse Blanket Heat Transfer Test Program Runs 544 and 545. Finally, a direct method of pressure field solution was implemented into a direct method of pressure field solution was implemented into NATOF-2D, replacing the iterative technique previously available, and resulted in substantially reduced computational costs.
Numerical simulation of rock cutting using 2D AUTODYN
NASA Astrophysics Data System (ADS)
Woldemichael, D. E.; Rani, A. M. Abdul; Lemma, T. A.; Altaf, K.
2015-12-01
In a drilling process for oil and gas exploration, understanding of the interaction between the cutting tool and the rock is important for optimization of the drilling process using polycrystalline diamond compact (PDC) cutters. In this study the finite element method in ANSYS AUTODYN-2D is used to simulate the dynamics of cutter rock interaction, rock failure, and fragmentation. A two-dimensional single PDC cutter and rock model were used to simulate the orthogonal cutting process and to investigate the effect of different parameters such as depth of cut, and back rake angle on two types of rocks (sandstone and limestone). In the simulation, the cutting tool was dragged against stationary rock at predetermined linear velocity and the depth of cut (1,2, and 3 mm) and the back rake angles(-10°, 0°, and +10°) were varied. The simulation result shows that the +10° back rake angle results in higher rate of penetration (ROP). Increasing depth of cut leads to higher ROP at the cost of higher cutting force.
Quantum Simulation with 2D Arrays of Trapped Ions
NASA Astrophysics Data System (ADS)
Richerme, Philip
2016-05-01
The computational difficulty of solving fully quantum many-body spin problems is a significant obstacle to understanding the behavior of strongly correlated quantum matter. This work proposes the design and construction of a 2D quantum spin simulator to investigate the physics of frustrated materials, highly entangled states, mechanisms potentially underpinning high-temperature superconductivity, and other topics inaccessible to current 1D systems. The effective quantum spins will be encoded within the well-isolated electronic levels of trapped ions, confined in a two-dimensional planar geometry, and made to interact using phonon-mediated optical dipole forces. The system will be scalable to 100+ quantum particles, far beyond the realm of classical intractability, while maintaining individual-ion control, long quantum coherence times, and site-resolved projective spin measurements. Once constructed, the two-dimensional quantum simulator will implement a broad range of spin models on a variety of reconfigurable lattices and characterize their behavior through measurements of spin-spin correlations and entanglement. This versatile tool will serve as an important experimental resource for exploring difficult quantum many-body problems in a regime where classical methods fail.
A 2D simulation model for urban flood management
NASA Astrophysics Data System (ADS)
Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo
2014-05-01
The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and
2D and 3D Numerical Simulations of Flux Cancellation
NASA Technical Reports Server (NTRS)
Karpen, Judith T.; DeVore, C.; Antiochos, S. K.; Linton, M. G.
2009-01-01
Cancellation of magnetic flux in the solar photosphere and chromosphere has been linked observationally and theoretically to a broad range of solar activity, from filament channel formation to CME initiation. Because this phenomenon is typically measured at only a single layer in the atmosphere, in the radial (line of sight) component of the magnetic field, the actual processes behind this observational signature are ambiguous. It is clear that reconnection is involved in some way, but the location of the reconnection sites and associated connectivity changes remain uncertain in most cases. We are using numerical modeling to demystify flux cancellation, beginning with the simplest possible configuration: a subphotospheric Lundquist flux tube surrounded by a potential field, immersed in a gravitationally stratified atmosphere, spanning many orders of magnitude in plasma beta. In this system, cancellation is driven slowly by a 2-cell circulation pattern imposed in the convection zone, such that the tops of the cells are located around the beta=1 level (i.e., the photosphere) and the flows converge and form a downdraft at the polarity inversion line; note however that no flow is imposed along the neutral line. We will present the results of 2D and 3D MHD-AMR simulations of flux cancellation, in which the flux at the photosphere begins in either an unsheared or sheared state. In all cases, a low-lying flux rope is formed by reconnection at the polarity inversion line within a few thousand seconds. The flux rope remains stable and does not rise, however, in contrast to models which do not include the presence of significant mass loading.
A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds
Li, Tingwen; Zhang, Yongmin
2013-10-11
Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.
A 2D simulation model for urban flood management
NASA Astrophysics Data System (ADS)
Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo
2014-05-01
The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and
Chang, F.H.; Santee, G.E. Jr.; Mortensen, G.A.; Brockett, G.F.; Gross, M.B.; Silling, S.A.; Belytschko, T.
1981-03-01
This report, the second in a series of reports for RP-1065, describes the second step in the stepwise approach for developing the three-dimensional, nonlinear, fluid/structure interaction methodology to assess the hydroloads on a large PWR during the subcooled portions of a hypothetical LOCA. The second step in the methodology considers enhancements and special modifications to the 2D STEALTH-HYDRO computer program and the 2D WHAMSE computer program. The 2D STEALTH-HYDRO enhancements consist of a fluid-fluid coupling control-volume model and an orifice control-volume model. The enhancements to 2D WHAMSE include elimination of the implicit integration routines, material models, and structural elements not required for the hydroloads application. In addition the logic for coupling the 2D STEALTH-HYDRO computer program to the 2D WHAMSE computer program is discussed.
Roton Excitations and the Fluid-Solid Phase Transition in Superfluid 2D Yukawa Bosons
NASA Astrophysics Data System (ADS)
Molinelli, S.; Galli, D. E.; Reatto, L.; Motta, M.
2016-10-01
We compute several ground-state properties and the dynamical structure factor of a zero-temperature system of Bosons interacting with the 2D screened Coulomb (2D-SC) potential. We resort to the exact shadow path integral ground state (SPIGS) quantum Monte Carlo method to compute the imaginary-time correlation function of the model, and to the genetic algorithm via falsification of theories (GIFT) to retrieve the dynamical structure factor. We provide a detailed comparison of ground-state properties and collective excitations of 2D-SC and ^4He atoms. The roton energy of the 2D-SC system is an increasing function of density, and not a decreasing one as in ^4He. This result is in contrast with the view that the roton is the soft mode of the fluid-solid transition. We uncover a remarkable quasi-universality of backflow and of other properties when expressed in terms of the amount of short-range order as quantified by the height of the first peak of the static structure factor.
Roton Excitations and the Fluid-Solid Phase Transition in Superfluid 2D Yukawa Bosons
NASA Astrophysics Data System (ADS)
Molinelli, S.; Galli, D. E.; Reatto, L.; Motta, M.
2016-05-01
We compute several ground-state properties and the dynamical structure factor of a zero-temperature system of Bosons interacting with the 2D screened Coulomb (2D-SC) potential. We resort to the exact shadow path integral ground state (SPIGS) quantum Monte Carlo method to compute the imaginary-time correlation function of the model, and to the genetic algorithm via falsification of theories (GIFT) to retrieve the dynamical structure factor. We provide a detailed comparison of ground-state properties and collective excitations of 2D-SC and ^4 He atoms. The roton energy of the 2D-SC system is an increasing function of density, and not a decreasing one as in ^4 He. This result is in contrast with the view that the roton is the soft mode of the fluid-solid transition. We uncover a remarkable quasi-universality of backflow and of other properties when expressed in terms of the amount of short-range order as quantified by the height of the first peak of the static structure factor.
Simulation of abrasive flow machining process for 2D and 3D mixture models
NASA Astrophysics Data System (ADS)
Dash, Rupalika; Maity, Kalipada
2015-12-01
Improvement of surface finish and material removal has been quite a challenge in a finishing operation such as abrasive flow machining (AFM). Factors that affect the surface finish and material removal are media viscosity, extrusion pressure, piston velocity, and particle size in abrasive flow machining process. Performing experiments for all the parameters and accurately obtaining an optimized parameter in a short time are difficult to accomplish because the operation requires a precise finish. Computational fluid dynamics (CFD) simulation was employed to accurately determine optimum parameters. In the current work, a 2D model was designed, and the flow analysis, force calculation, and material removal prediction were performed and compared with the available experimental data. Another 3D model for a swaging die finishing using AFM was simulated at different viscosities of the media to study the effects on the controlling parameters. A CFD simulation was performed by using commercially available ANSYS FLUENT. Two phases were considered for the flow analysis, and multiphase mixture model was taken into account. The fluid was considered to be a
Pattern formation in 2D flow of non-Newtonian fluids
NASA Astrophysics Data System (ADS)
Shelley, Michael; Ljubinko; Kondic; Palffy-Muhoray, Peter
1997-03-01
We explore the dynamics of the interface between a gas and a non-Newtonian fluid in a Hele-Shaw cell. If gas expands into fluid, the interface is unstable (Saffman-Taylor instability). This instability leads to viscous fingering for Newtonian fluids, but can produce dendritic morphology for non-Newtonian ones. Our analysis is based on the formulation of modified Darcy's law (Kondic, Palffy-Muhoray, and Shelley, Phys. Rev. E 54), 4536 R, 1996., where the problem reduces to nonlinear boundary value problem for pressure field in the fluid. We perform full numerical simulation of the time evolution of the interface. In the flow regime where elastic effects are negligible, it is found that shear-thinning character of the fluid considerably influences the morphology of the interface. We hope to understand experimentally observed dendritic structure, which also appears in many related physical problems, such as directional solidification.
Reactor2D: A tool for simulation of shock deformation
NASA Astrophysics Data System (ADS)
Kraus, Eugeny I.; Shabalin, Ivan I.
2016-10-01
The basic steps for creating a numerical tool to simulate the deformation and failure processes of complex technical objects (CTO) are presented. Calculations of shock loading of CTO both at low and high speeds, showing the efficiency of the numerical tools created are carried out.
Rise characteristics of gas bubbles in a 2D rectangular column: VOF simulations vs experiments
Krishna, R.; Baten, J.M. van
1999-10-01
About five centuries ago, Leonardo da Vinci described the sinuous motion of gas bubbles rising in water. The authors have attempted to simulate the rise trajectories of bubbles of 4, 5, 7, 8, 9, 12, and 20 mm in diameter rising in a 2D rectangular column filled with water. The simulations were carried out using the volume-of-fluid (VOF) technique developed by Hirt and Nichols (J. Computational Physics, 39, 201--225 (1981)). To solve the Navier-Stokes equations of motion the authors used a commercial solver, CFX 4.1c of AEA Technology, UK. They developed their own bubble-tracking algorithm to capture sinuous bubble motions. The 4 and 5 mm bubbles show large lateral motions observed by Da Vinci. The 7, 8 and 9 mm bubble behave like jellyfish. The 12 mm bubble flaps its wings like a bird. The extent of lateral motion of the bubbles decreases with increasing bubble size. Bubbles larger than 20 mm in size assume a spherical cap form and simulations of the rise characteristics match experiments exactly. VOF simulations are powerful tools for a priori determination of the morphology and rise characteristics of bubbles rising in a liquid. Bubble-bubble interactions are also properly modeled by the VOF technique.
Three Dimensional Multi-Fluid Simulation of Comet Halley
NASA Technical Reports Server (NTRS)
Benna, M.; Mahaffy, P. R.
2005-01-01
The Cometary Atmosphere Simulator (CASIM) is designed to simulate in 2-D and 3-D the complex interaction between the cometary atmosphere and the hypersonic solar wind using a multi-fluid approach. Our simulator is based on the solution of multi-fluid equations using an efficient adaptive Cartesian mesh. It is designed to use the capabilities of highly parallel super-cluster computers.
COYOTE: A computer program for 2-D reactive flow simulations
Cloutman, L.D.
1990-04-01
We describe the numerical algorithm used in the COYOTE two- dimensional, transient, Eulerian hydrodynamics program for reactive flows. The program has a variety of options that provide capabilities for a wide range of applications, and it is designed to be robust and relatively easy to use while maintaining adequate accuracy and efficiency to solve realistic problems. It is based on the ICE method, and it includes a general species and chemical reaction network for simulating reactive flows. It also includes swirl, turbulence transport models, and a nonuniform mesh capability. We describe several applications of the program. 33 refs., 4 figs.
Simulation of subgrid orographic precipitation with an embedded 2-D cloud-resolving model
NASA Astrophysics Data System (ADS)
Jung, Joon-Hee; Arakawa, Akio
2016-03-01
By explicitly resolving cloud-scale processes with embedded two-dimensional (2-D) cloud-resolving models (CRMs), superparameterized global atmospheric models have successfully simulated various atmospheric events over a wide range of time scales. Up to now, however, such models have not included the effects of topography on the CRM grid scale. We have used both 3-D and 2-D CRMs to simulate the effects of topography with prescribed "large-scale" winds. The 3-D CRM is used as a benchmark. The results show that the mean precipitation can be simulated reasonably well by using a 2-D representation of topography as long as the statistics of the topography such as the mean and standard deviation are closely represented. It is also shown that the use of a set of two perpendicular 2-D grids can significantly reduce the error due to a 2-D representation of topography.
Simulations of Quantum Spin Models on 2D Frustrated Lattices
NASA Astrophysics Data System (ADS)
Melko, Roger
2006-03-01
Algorithmic advances in quantum Monte Carlo techniques have opened up the possibility of studying models in the general class of the S=1/2 XXZ model (equivalent to hard-core bosons) on frustrated lattices. With an antiferromagnetic diagonal interaction (Jz), these models can be solved exactly with QMC, albeit with some effort required to retain ergodicity in the near-degenerate manifold of states that exists for large Jz. The application of the quantum (ferromagnetic off-diagonal) interaction to this classically degenerate manifold produces a variety of intriguing physics, including an order-by-disorder supersolid phase, novel insulating states, and possible exotic quantum critical phenomena. We discuss numerical results for the triangular and kagome lattices with nearest and next-nearest neighbor exchange interactions, and focus on the relevance of the simulations to related areas of physics, such as experiments of cold trapped atomic gasses and the recent theory of deconfined quantum criticality.
NASA Astrophysics Data System (ADS)
Meienberg, Kyle; Papaioannou, John; Park, Cheol; Glaser, Matt; Maclennan, Joe; Clark, Noel; Kuriabova, Tatiana; Powers, Thomas
2015-03-01
We observe directly the diffusion and aggregation of nanoparticles (buckyballs) embedded in thin, freely suspended smectic A liquid crystal films of 8CB using reflected light microscopy Individual buckyballs, initially homogeneously dispersed in the film, are too small to see but after some hours form nanoscale clusters. These, in turn, aggregate to form extended, micron-scale objects which diffuse in the film, enabling the measurement of 2D rotational and translational mobilities of inclusions with a wide variety of different shapes. The experimental mobilities are compared with predictions of the extended Saffman-Delbrück (SD) model used successfully to describe the diffusion of micron-sized objects in thin fluid membranes in a variety of experimental systems. This work was supported by NASA Grant No. NNX-13AQ81G, NSF MRSEC Grant No. DMR-0820579, and by NSF Grant No. CBET-0854108.
Thin soap films are quasi-2D fluids and thick soap films are not
NASA Astrophysics Data System (ADS)
Vivek, Skanda; Weeks, Eric R.
2012-11-01
We use microrheology to measure the 2D (interfacial) viscosity of soap films. Microrheology uses the diffusive motion of tracer particles suspended in the soap film to infer the viscosity. Our particles are colloids of diameter d = 0 . 5 μm. We measure the interfacial viscosity of soap films ranging in thickness from h = 0 . 5 μm to 2.0 μm. The thickness of these films is measured using the infrared absorbance of the water based soap films, based on a previous setup [X. L. Wu, R. Levine, M. A. Rutgers, H. Kellay, W.I. Goldburg, Rev. Sci. Inst. 72, 2467 (2001)]. From the knowledge of the film thickness and the viscosity of the fluid used to make the film, we can infer the interfacial viscosity due to the surfactant layers at the film/air interfaces. Consistent results are found for thin films (h / d < 3) whereas for thicker films inconsistent and unphysical results are found indicating 3D effects begin to play a role. The transition from 2D to 3D properties as a function of h / d is sharp.
Hall-Effect Thruster Simulations with 2-D Electron Transport and Hydrodynamic Ions
NASA Technical Reports Server (NTRS)
Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard H.; Goebel, Dan M.
2009-01-01
A computational approach that has been used extensively in the last two decades for Hall thruster simulations is to solve a diffusion equation and energy conservation law for the electrons in a direction that is perpendicular to the magnetic field, and use discrete-particle methods for the heavy species. This "hybrid" approach has allowed for the capture of bulk plasma phenomena inside these thrusters within reasonable computational times. Regions of the thruster with complex magnetic field arrangements (such as those near eroded walls and magnets) and/or reduced Hall parameter (such as those near the anode and the cathode plume) challenge the validity of the quasi-one-dimensional assumption for the electrons. This paper reports on the development of a computer code that solves numerically the 2-D axisymmetric vector form of Ohm's law, with no assumptions regarding the rate of electron transport in the parallel and perpendicular directions. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations in a computational mesh that is aligned with the magnetic field. The fully-2D approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction, and encompasses the cathode boundary. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for charge-exchange and multiple-ionization collisions in the momentum equations. A first series of simulations of two Hall thrusters, namely the BPT-4000 and a 6-kW laboratory thruster, quantifies the significance of ion diffusion in the anode region and the importance of the extended physical domain on studies related to the impact of the transport coefficients on the electron flow field.
2D numerical simulation of passive autocatalytic recombiner for hydrogen mitigation
NASA Astrophysics Data System (ADS)
Gera, B.; Sharma, P. K.; Singh, R. K.
2012-04-01
Resolving hydrogen related safety issues, pertaining to nuclear reactor safety has been an important area of research world over for the past decade. The studies on hydrogen transport behavior and development of hydrogen mitigation systems are still being pursued actively in various research labs, including Bhabha Atomic Research Centre (BARC), in India. The passive autocatalytic recombiner (PAR) is one of such hydrogen mitigating device consisting of catalyst surfaces arranged in an open-ended enclosure. In the plate type recombiner design sheets made of stainless steel and coated with platinum catalyst material are arranged in parallel inside a flow channel. The catalyst elements are exposed to a constant flow of a mixture of air, hydrogen and steam, a catalytic reaction occurs spontaneously at the catalyst surfaces and the heat of reaction produces natural convection flow through the enclosure. Numerical simulation and experiments are required for an in-depth knowledge of such plate type PAR. Specific finite volume based in-house 2D computational fluid dynamics (CFD) code has been developed to model and analyse the working of these recombiners and has been used to simulate one literature quoted experiment. The validation results were in good agreement against literature quoted German REKO experiments. Parametric study has been performed for particular recombiner geometry for various inlet conditions. Salient features of the simplified CFD model developed at BARC and results of the present model calculations are presented in this paper.
2-D simulation of a waveguide free electron laser having a helical undulator
Kim, S.K.; Lee, B.C.; Jeong, Y.U.
1995-12-31
We have developed a 2-D simulation code for the calculation of output power from an FEL oscillator having a helical undulator and a cylindrical waveguide. In the simulation, the current and the energy of the electron beam is 2 A and 400 keV, respectively. The parameters of the permanent-magnet helical undulator are : period = 32 mm, number of periods = 20, magnetic field = 1.3 kG. The gain per pass is 10 and the output power is calculated to be higher than 10 kW The results of the 2-D simulation are compared with those of 1-D simulation.
Fluid simulation with articulated bodies.
Kwatra, Nipun; Wojtan, Chris; Carlson, Mark; Essa, Irfan; Mucha, Peter J; Turk, Greg
2010-01-01
We present an algorithm for creating realistic animations of characters that are swimming through fluids. Our approach combines dynamic simulation with data-driven kinematic motions (motion capture data) to produce realistic animation in a fluid. The interaction of the articulated body with the fluid is performed by incorporating joint constraints with rigid animation and by extending a solid/fluid coupling method to handle articulated chains. Our solver takes as input the current state of the simulation and calculates the angular and linear accelerations of the connected bodies needed to match a particular motion sequence for the articulated body. These accelerations are used to estimate the forces and torques that are then applied to each joint. Based on this approach, we demonstrate simulated swimming results for a variety of different strokes, including crawl, backstroke, breaststroke, and butterfly. The ability to have articulated bodies interact with fluids also allows us to generate simulations of simple water creatures that are driven by simple controllers. PMID:19910662
2D numerical simulation of the MEP energy-transport model with a finite difference scheme
Romano, V. . E-mail: romano@dmi.unict.it
2007-02-10
A finite difference scheme of Scharfetter-Gummel type is used to simulate a consistent energy-transport model for electron transport in semiconductors devices, free of any fitting parameters, formulated on the basis of the maximum entropy principle. Simulations of silicon n{sup +}-n-n{sup +} diodes, 2D-MESFET and 2D-MOSFET and comparisons with the results obtained by a direct simulation of the Boltzmann transport equation and with other energy-transport models, known in the literature, show the validity of the model and the robustness of the numerical scheme.
Simulation of bootstrap current in 2D and 3D ideal magnetic fields in tokamaks
NASA Astrophysics Data System (ADS)
Raghunathan, M.; Graves, J. P.; Cooper, W. A.; Pedro, M.; Sauter, O.
2016-09-01
We aim to simulate the bootstrap current for a MAST-like spherical tokamak using two approaches for magnetic equilibria including externally caused 3D effects such as resonant magnetic perturbations (RMPs), the effect of toroidal ripple, and intrinsic 3D effects such as non-resonant internal kink modes. The first approach relies on known neoclassical coefficients in ideal MHD equilibria, using the Sauter (Sauter et al 1999 Phys. Plasmas 6 2834) expression valid for all collisionalities in axisymmetry, and the second approach being the quasi-analytic Shaing–Callen (Shaing and Callen 1983 Phys. Fluids 26 3315) model in the collisionless regime for 3D. Using the ideal free-boundary magnetohydrodynamic code VMEC, we compute the flux-surface averaged bootstrap current density, with the Sauter and Shaing–Callen expressions for 2D and 3D ideal MHD equilibria including an edge pressure barrier with the application of resonant magnetic perturbations, and equilibria possessing a saturated non-resonant 1/1 internal kink mode with a weak internal pressure barrier. We compare the applicability of the self-consistent iterative model on the 3D applications and discuss the limitations and advantages of each bootstrap current model for each type of equilibrium.
Simulation of bootstrap current in 2D and 3D ideal magnetic fields in tokamaks
NASA Astrophysics Data System (ADS)
Raghunathan, M.; Graves, J. P.; Cooper, W. A.; Pedro, M.; Sauter, O.
2016-09-01
We aim to simulate the bootstrap current for a MAST-like spherical tokamak using two approaches for magnetic equilibria including externally caused 3D effects such as resonant magnetic perturbations (RMPs), the effect of toroidal ripple, and intrinsic 3D effects such as non-resonant internal kink modes. The first approach relies on known neoclassical coefficients in ideal MHD equilibria, using the Sauter (Sauter et al 1999 Phys. Plasmas 6 2834) expression valid for all collisionalities in axisymmetry, and the second approach being the quasi-analytic Shaing-Callen (Shaing and Callen 1983 Phys. Fluids 26 3315) model in the collisionless regime for 3D. Using the ideal free-boundary magnetohydrodynamic code VMEC, we compute the flux-surface averaged bootstrap current density, with the Sauter and Shaing-Callen expressions for 2D and 3D ideal MHD equilibria including an edge pressure barrier with the application of resonant magnetic perturbations, and equilibria possessing a saturated non-resonant 1/1 internal kink mode with a weak internal pressure barrier. We compare the applicability of the self-consistent iterative model on the 3D applications and discuss the limitations and advantages of each bootstrap current model for each type of equilibrium.
Masoumi, Nafiseh; Framanzad, F; Zamanian, Behnam; Seddighi, A S; Moosavi, M H; Najarian, S; Bastani, Dariush
2013-01-01
Many diseases are related to cerebrospinal fluid (CSF) hydrodynamics. Therefore, understanding the hydrodynamics of CSF flow and intracranial pressure is helpful for obtaining deeper knowledge of pathological processes and providing better treatments. Furthermore, engineering a reliable computational method is promising approach for fabricating in vitro models which is essential for inventing generic medicines. A Fluid-Solid Interaction (FSI)model was constructed to simulate CSF flow. An important problem in modeling the CSF flow is the diastolic back flow. In this article, using both rigid and flexible conditions for ventricular system allowed us to evaluate the effect of surrounding brain tissue. Our model assumed an elastic wall for the ventricles and a pulsatile CSF input as its boundary conditions. A comparison of the results and the experimental data was done. The flexible model gave better results because it could reproduce the diastolic back flow mentioned in clinical research studies. The previous rigid models have ignored the brain parenchyma interaction with CSF and so had not reported the back flow during the diastolic time. In this computational fluid dynamic (CFD) analysis, the CSF pressure and flow velocity in different areas were concordant with the experimental data.
Masoumi, Nafiseh; Framanzad, F; Zamanian, Behnam; Seddighi, A S; Moosavi, M H; Najarian, S; Bastani, Dariush
2013-01-01
Many diseases are related to cerebrospinal fluid (CSF) hydrodynamics. Therefore, understanding the hydrodynamics of CSF flow and intracranial pressure is helpful for obtaining deeper knowledge of pathological processes and providing better treatments. Furthermore, engineering a reliable computational method is promising approach for fabricating in vitro models which is essential for inventing generic medicines. A Fluid-Solid Interaction (FSI)model was constructed to simulate CSF flow. An important problem in modeling the CSF flow is the diastolic back flow. In this article, using both rigid and flexible conditions for ventricular system allowed us to evaluate the effect of surrounding brain tissue. Our model assumed an elastic wall for the ventricles and a pulsatile CSF input as its boundary conditions. A comparison of the results and the experimental data was done. The flexible model gave better results because it could reproduce the diastolic back flow mentioned in clinical research studies. The previous rigid models have ignored the brain parenchyma interaction with CSF and so had not reported the back flow during the diastolic time. In this computational fluid dynamic (CFD) analysis, the CSF pressure and flow velocity in different areas were concordant with the experimental data. PMID:25337330
Linking 3D and 2D binding kinetics of membrane proteins by multiscale simulations
Xie, Zhong-Ru; Chen, Jiawen; Wu, Yinghao
2014-01-01
Membrane proteins are among the most functionally important proteins in cells. Unlike soluble proteins, they only possess two translational degrees of freedom on cell surfaces, and experience significant constraints on their rotations. As a result, it is currently challenging to characterize the in situ binding of membrane proteins. Using the membrane receptors CD2 and CD58 as a testing system, we developed a multiscale simulation framework to study the differences of protein binding kinetics between 3D and 2D environments. The association and dissociation processes were implemented by a coarse-grained Monte-Carlo algorithm, while the dynamic properties of proteins diffusing on lipid bilayer were captured from all-atom molecular dynamic simulations. Our simulations show that molecular diffusion, linker flexibility and membrane fluctuations are important factors in adjusting binding kinetics. Moreover, by calibrating simulation parameters to the measurements of 3D binding, we derived the 2D binding constant which is quantitatively consistent with the experimental data, indicating that the method is able to capture the difference between 3D and 2D binding environments. Finally, we found that the 2D dissociation between CD2 and CD58 is about 100-fold slower than the 3D dissociation. In summary, our simulation framework offered a generic approach to study binding mechanisms of membrane proteins. PMID:25271078
The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis
Shaheen, Eman; Van Ongeval, Chantal; Zanca, Federica; Cockmartin, Lesley; Marshall, Nicholas; Jacobs, Jurgen; Young, Kenneth C.; Dance, David R.; Bosmans, Hilde
2011-12-15
Purpose: This work proposes a new method of building 3D models of microcalcification clusters and describes the validation of their realistic appearance when simulated into 2D digital mammograms and into breast tomosynthesis images. Methods: A micro-CT unit was used to scan 23 breast biopsy specimens of microcalcification clusters with malignant and benign characteristics and their 3D reconstructed datasets were segmented to obtain 3D models of microcalcification clusters. These models were then adjusted for the x-ray spectrum used and for the system resolution and simulated into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. Six radiologists were asked to distinguish between 40 real and 40 simulated clusters of microcalcifications in two separate studies on 2D mammography and tomosynthesis datasets. Receiver operating characteristic (ROC) analysis was used to test the ability of each observer to distinguish between simulated and real microcalcification clusters. The kappa statistic was applied to assess how often the individual simulated and real microcalcification clusters had received similar scores (''agreement'') on their realistic appearance in both modalities. This analysis was performed for all readers and for the real and the simulated group of microcalcification clusters separately. ''Poor'' agreement would reflect radiologists' confusion between simulated and real clusters, i.e., lesions not systematically evaluated in both modalities as either simulated or real, and would therefore be interpreted as a success of the present models. Results: The area under the ROC curve, averaged over the observers, was 0.55 (95% confidence interval [0.44, 0.66]) for the 2D study, and 0.46 (95% confidence interval [0.29, 0.64]) for the tomosynthesis study, indicating no statistically significant difference between real and simulated
An efficient simulation method of a cyclotron sector-focusing magnet using 2D Poisson code
NASA Astrophysics Data System (ADS)
Gad Elmowla, Khaled Mohamed M.; Chai, Jong Seo; Yeon, Yeong H.; Kim, Sangbum; Ghergherehchi, Mitra
2016-10-01
In this paper we discuss design simulations of a spiral magnet using 2D Poisson code. The Independent Layers Method (ILM) is a new technique that was developed to enable the use of two-dimensional simulation code to calculate a non-symmetric 3-dimensional magnetic field. In ILM, the magnet pole is divided into successive independent layers, and the hill and valley shape around the azimuthal direction is implemented using a reference magnet. The normalization of the magnetic field in the reference magnet produces a profile that can be multiplied by the maximum magnetic field in the hill magnet, which is a dipole magnet made of the hills at the same radius. Both magnets are then calculated using the 2D Poisson SUPERFISH code. Then a fully three-dimensional magnetic field is produced using TOSCA for the original spiral magnet, and the comparison of the 2D and 3D results shows a good agreement between both.
Low frequency 2D Raman-THz spectroscopy of ionic solution: A simulation study
NASA Astrophysics Data System (ADS)
Pan, Zhijun; Wu, Tianmin; Jin, Tan; Liu, Yong; Nagata, Yuki; Zhang, Ruiting; Zhuang, Wei
2015-06-01
The 2D Raman-THz spectrum of the MgCl2 solution was simulated using the molecular dynamics simulation and the stability matrix method and compared with that of the pure water. The 2D Raman-THz signal provides more information on the ion effects on the collective water motion than the conventional 1D signal. The presence of MgCl2 suppresses the cross peak of water between the hydrogen bond bending and the other intermolecular vibrational mode, which clearly illustrates that the water hydrogen bending motion is affected by the confining effect of the ions. Our theoretical work thus demonstrates that the 2D Raman-THz technique can become a valuable nonlinear vibrational probe for the molecular dynamics in the ionic solutions.
NASA Astrophysics Data System (ADS)
Sirait, S. H.; Edison, R. E.; Baidillah, M. R.; Taruno, W. P.; Haryanto, F.
2016-08-01
The aim of this study is to simulate the potential distribution of 2D brain geometry based on two electrodes ECVT. ECVT (electrical capacitance tomography) is a tomography modality which produces dielectric distribution image of a subject from several capacitance electrodes measurements. This study begins by producing the geometry of 2D brain based on MRI image and then setting the boundary conditions on the boundaries of the geometry. The values of boundary conditions follow the potential values used in two electrodes brain ECVT, and for this reason the first boundary is set to 20 volt and 2.5 MHz signal and another boundary is set to ground. Poisson equation is implemented as the governing equation in the 2D brain geometry and finite element method is used to solve the equation. Simulated Hodgkin-Huxley action potential is applied as disturbance potential in the geometry. We divide this study into two which comprises simulation without disturbance potential and simulation with disturbance potential. From this study, each of time dependent potential distributions from non-disturbance and disturbance potential of the 2D brain geometry has been generated.
2-D MHD numerical simulations of EML plasma armatures with ablation
NASA Astrophysics Data System (ADS)
Boynton, G. C.; Huerta, M. A.; Thio, Y. C.
1993-01-01
We use a 2-D) resistive MHD code to simulate an EML plasma armature. The energy equation includes Ohmic heating, radiation heat transport and the ideal gas equation of state, allowing for variable ionization using the Saha equations. We calculate rail ablation taking into account the flow of heat into the interior of the rails. Our simulations show the development of internal convective flows and secondary arcs. We use an explicit Flux Corrected Transport algorithm to advance all quantities in time.
The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis
Shaheen, Eman De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van; Dance, David R.; Young, Kenneth C.
2014-08-15
Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly
2D-3D hybrid stabilized finite element method for tsunami runup simulations
NASA Astrophysics Data System (ADS)
Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.
2016-09-01
This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.
2D and 3D simulations of damage in 5-grain copper gas gun samples
Tonks, Davis L; Cerreta, Ellen K; Dennis - Koller, Darcie; Escobedo - Diaz, Juan P; Trujillo, Carl P; Luo, Shengian; Bingert, John F
2010-12-16
2D and 3D Hydrocode simulations were done of a gas gun damage experiment involving a 5 grain sample with a polycrystalline flyer with a velocity of about 140 m/s. The simulations were done with the Flag hydrocode and involved explicit meshing of the 5 grains with a single crystal plasticity model and a pressure based damage model. The calculated fields were compared with two cross sections from the recovered sample. The sample exhibited grain boundary cracks at high angle and tilt grain boundaries in the sample but not at a sigma 3 twin boundary. However, the calculation showed large gradients in stress and strain at only the twin boundary, contrary to expectation. This indicates that the twin boundary is quite strong to resist the predicted high gradients and that the calculation needs the addition of a grain boundary fracture mode. The 2D and 3D simulations were compared.
2D MHD test-particle simulations in modeling geomagnetic storms
NASA Astrophysics Data System (ADS)
Li, Z.; Elkington, S. R.; Hudson, M. K.; Murphy, J. J.; Schmitt, P.; Wiltberger, M. J.
2012-12-01
The effects of magnetic storms on the evolution of the electron radiation belts are studied using MHD test-particle simulations. The 2D guiding center code developed by Elkington et al. (2002) has been used to simulate particle motion in the Solar Magnetic equatorial plane in the MHD fields calculated from the Lyon-Fedder-Mobarry global MHD code. However, our study shows that the B-minimum plane is well off the SM equatorial plane during solstice events. Since 3D test-particle simulation is computationally expensive, we improve the 2D model by pushing particles in the B-minimum surface instead of the SM equatorial plane. Paraview software is used to visualize the LFM data file and to find the B-minimum surface. Magnetic and electric fields on B-minimum surface are projected to the equatorial plane for particle pushing.
FRANC2D: A two-dimensional crack propagation simulator. Version 2.7: User's guide
NASA Technical Reports Server (NTRS)
Wawrzynek, Paul; Ingraffea, Anthony
1994-01-01
FRANC 2D (FRacture ANalysis Code, 2 Dimensions) is a menu driven, interactive finite element computer code that performs fracture mechanics analyses of 2-D structures. The code has an automatic mesh generator for triangular and quadrilateral elements. FRANC2D calculates the stress intensity factor using linear elastic fracture mechanics and evaluates crack extension using several methods that may be selected by the user. The code features a mesh refinement and adaptive mesh generation capability that is automatically developed according to the predicted crack extension direction and length. The code also has unique features that permit the analysis of layered structure with load transfer through simulated mechanical fasteners or bonded joints. The code was written for UNIX workstations with X-windows graphics and may be executed on the following computers: DEC DecStation 3000 and 5000 series, IBM RS/6000 series, Hewlitt-Packard 9000/700 series, SUN Sparc stations, and most Silicon Graphics models.
Simulation of Cardiac Arrhythmias Using a 2D Heterogeneous Whole Heart Model.
Balakrishnan, Minimol; Chakravarthy, V Srinivasa; Guhathakurta, Soma
2015-01-01
Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG) gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D) which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC), excitability, action potential duration (APD) and frequency of oscillations of the auto-rhythmic cell in WHM2D a large variety of cardiac arrhythmias can be generated including sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinus pause, junctional rhythm, Wolf Parkinson White syndrome and all types of AV conduction blocks. WHM2D includes key components of the electrical conduction system of the heart like the SA (Sino atrial) node cells, fast conducting intranodal pathways, slow conducting atriovenctricular (AV) node, bundle of His cells, Purkinje network, atrial, and ventricular myocardial cells. SA nodal cells, AV nodal cells, bundle of His cells, and Purkinje cells are represented by the Fitzhugh-Nagumo (FN) model which is a reduced model of the Hodgkin-Huxley neuron model. The atrial and ventricular myocardial cells are modeled by the Aliev-Panfilov (AP) two-variable model proposed for cardiac excitation. WHM2D can prove to be a valuable clinical tool for understanding cardiac arrhythmias.
Simulation of Cardiac Arrhythmias Using a 2D Heterogeneous Whole Heart Model
Balakrishnan, Minimol; Chakravarthy, V. Srinivasa; Guhathakurta, Soma
2015-01-01
Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG) gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D) which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC), excitability, action potential duration (APD) and frequency of oscillations of the auto-rhythmic cell in WHM2D a large variety of cardiac arrhythmias can be generated including sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinus pause, junctional rhythm, Wolf Parkinson White syndrome and all types of AV conduction blocks. WHM2D includes key components of the electrical conduction system of the heart like the SA (Sino atrial) node cells, fast conducting intranodal pathways, slow conducting atriovenctricular (AV) node, bundle of His cells, Purkinje network, atrial, and ventricular myocardial cells. SA nodal cells, AV nodal cells, bundle of His cells, and Purkinje cells are represented by the Fitzhugh-Nagumo (FN) model which is a reduced model of the Hodgkin-Huxley neuron model. The atrial and ventricular myocardial cells are modeled by the Aliev-Panfilov (AP) two-variable model proposed for cardiac excitation. WHM2D can prove to be a valuable clinical tool for understanding cardiac arrhythmias. PMID:26733873
NASA Technical Reports Server (NTRS)
Tang, H. T.; Hofmann, R.; Yee, G.; Vaughan, D. K.
1980-01-01
Transient, nonlinear soil-structure interaction simulations of an Electric Power Research Institute, SIMQUAKE experiment were performed using the large strain, time domain STEALTH 2D code and a cyclic, kinematically hardening cap soil model. Results from the STEALTH simulations were compared to identical simulations performed with the TRANAL code and indicate relatively good agreement between all the STEALTH and TRANAL calculations. The differences that are seen can probably be attributed to: (1) large (STEALTH) vs. small (TRANAL) strain formulation and/or (2) grid discretization differences.
Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores
Burris, Paul C.; Laage, Damien; Thompson, Ward H.
2016-05-20
Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this Paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is usedmore » to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. Lastly, the simulated spectra indicate that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra.« less
Momentum Transport: 2D and 3D Cloud Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2001-01-01
The major objective of this study is to investigate the momentum budgets associated with several convective systems that developed during the TOGA COARE IOP (west Pacific warm pool region) and GATE (east Atlantic region). The tool for this study is the improved Goddard Cumulas Ensemble (GCE) model which includes a 3-class ice-phase microphysical scheme, explicit cloud radiative interactive processes and air-sea interactive surface processes. The model domain contains 256 x 256 grid points (with 2 km resolution) in the horizontal and 38 grid points (to a depth of 22 km) in the vertical. The 2D domain has 1024 grid points. The simulations were performed over a 7-day time period (December 19-26, 1992, for TOGA COARE and September 1-7, 1994 for GATE). Cyclic literal boundary conditions are required for this type of long-term integration. Two well organized squall systems (TOGA, COARE February 22, 1993, and GATE September 12, 1994) were also simulated using the 3D GCE model. Only 9 h simulations were required to cover the life time of the squall systems. the lateral boundary conditions were open for these two squall systems simulations. the following will be examined: (1) the momentum budgets in the convective and stratiform regions, (2) the relationship between momentum transport and cloud organization (i.e., well organized squall lines versus less organized convective), (3) the differences and similarities in momentum transport between 2D and 3D simulated convective systems, and (4) the differences and similarities in momentum budgets between cloud systems simulated with open and cyclic lateral boundary conditions. Preliminary results indicate that there are only small differences between 2D and 3D simulated momentum budgets. Major differences occur, however, between momentum budgets associated with squall systems simulated using different lateral boundary conditions.
NASA Astrophysics Data System (ADS)
Pan, Li-Hua; Hou, Peng-Fei; Chen, Jia-Yun
2016-08-01
The 2D steady-state solutions regarding the expressions of stress and strain for fluid-saturated, orthotropic, poroelastic plane are derived in this paper. For this object, the general solutions of the corresponding governing equation are first obtained and expressed in harmonic functions. Based on these compact general solutions, the suitable harmonic functions with undetermined constants for line fluid source in the interior of infinite poroelastic body and a line fluid source on the surface of semi-infinite poroelastic body are presented, respectively. The fundamental solutions can be obtained by substituting these functions into the general solution, and the undetermined constants can be obtained by the continuous conditions, equilibrium conditions and boundary conditions.
Penetration of tungsten-alloy rods into composite ceramic targets: Experiments and 2-D simulations
Rosenberg, Z.; Dekel, E.; Hohler, V.; Stilp, A. J.; Weber, K.
1998-07-10
A series of terminal ballistics experiments, with scaled tungsten-alloy penetrators, was performed on composite targets consisting of ceramic tiles glued to thick steel backing plates. Tiles of silicon-carbide, aluminum nitride, titanium-dibroide and boron-carbide were 20-80 mm thick, and impact velocity was 1.7 km/s. 2-D numerical simulations, using the PISCES code, were performed in order to simulate these shots. It is shown that a simplified version of the Johnson-Holmquist failure model can account for the penetration depths of the rods but is not enough to capture the effect of lateral release waves on these penetrations.
NASA Astrophysics Data System (ADS)
Pérez-Corona, M.; García, J. A.; Taller, G.; Polgár, D.; Bustos, E.; Plank, Z.
2016-02-01
The purpose of geophysical electrical surveys is to determine the subsurface resistivity distribution by making measurements on the ground surface. From these measurements, the true resistivity of the subsurface can be estimated. The ground resistivity is related to various geological parameters, such as the mineral and fluid content, porosity and degree of water saturation in the rock. Electrical resistivity surveys have been used for many decades in hydrogeological, mining and geotechnical investigations. More recently, they have been used for environmental surveys. To obtain a more accurate subsurface model than is possible with a simple 1-D model, a more complex model must be used. In a 2-D model, the resistivity values are allowed to vary in one horizontal direction (usually referred to as the x direction) but are assumed to be constant in the other horizontal (the y) direction. A more realistic model would be a fully 3-D model where the resistivity values are allowed to change in all three directions. In this research, a simulation of the cone penetration test and 2D imaging resistivity are used as tools to simulate the distribution of hydrocarbons in soil.
Quantum simulation of 2D topological physics in a 1D array of optical cavities.
Luo, Xi-Wang; Zhou, Xingxiang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei
2015-07-06
Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration.
Vlasov Fluid stability of a 2-D plasma with a linear magnetic field null
Kim, J.S.
1984-01-01
Vlasov Fluid stability of a 2-dimensional plasma near an O type magnetic null is investigated. Specifically, an elongated Z-pinch is considered, and applied to Field Reversed Configurations at Los Alamos National Laboratory by making a cylindrical approximation of the compact torus. The orbits near an elliptical O type null are found to be very complicated; the orbits are large and some are stochastic. The kinetic corrections to magnetohydrodynamics (MHD) are investigated by evaluating the expectation values of the growth rates of a Vlasov Fluid dispersion functional by using a set of trial functions based on ideal MHD. The dispersion functional involves fluid parts and orbit dependent parts. The latter involves phase integral of two time correlations. The phase integral is replaced by the time integral both for the regular and for the stochastic orbits. Two trial functions are used; one has a large displacement near the null and the other away from the null.
Comparison between 2D and 3D Numerical Modelling of a hot forging simulative test
Croin, M.; Ghiotti, A.; Bruschi, S.
2007-04-07
The paper presents the comparative analysis between 2D and 3D modelling of a simulative experiment, performed in laboratory environment, in which operating conditions approximate hot forging of a turbine aerofoil section. The plane strain deformation was chosen as an ideal case to analyze the process because of the thickness variations in the final section and the consequent distributions of contact pressure and sliding velocity at the interface that are closed to the conditions of the real industrial process. In order to compare the performances of 2D and 3D approaches, two different analyses were performed and compared with the experiments in terms of loads and temperatures peaks at the interface between the dies and the workpiece.
Spatially Resolved Synthetic Spectra from 2D Simulations of Stainless Steel Wire Array Implosions
Clark, R. W.; Giuliani, J. L.; Thornhill, J. W.; Chong, Y. K.; Dasgupta, A.; Davis, J.
2009-01-21
A 2D radiation MHD model has been developed to investigate stainless steel wire array implosion experiments on the Z and refurbished Z machines. This model incorporates within the Mach2 MHD code a self-consistent calculation of the non-LTE kinetics and ray trace based radiation transport. Such a method is necessary in order to account for opacity effects in conjunction with ionization kinetics of K-shell emitting plasmas. Here the model is used to investigate multi-dimensional effects of stainless steel wire implosions. In particular, we are developing techniques to produce non-LTE, axially and/or radially resolved synthetic spectra based upon snapshots of our 2D simulations. Comparisons between experimental spectra and these synthetic spectra will allow us to better determine the state of the experimental pinches.
Simulation of the flow and mass transfer for KDP crystals undergoing 2D translation during growth
NASA Astrophysics Data System (ADS)
Zhou, Chuan; Li, Mingwei; Hu, Zhitao; Yin, Huawei; Wang, Bangguo; Cui, Qidong
2016-09-01
In this study, a novel motion mode for crystals during growth, i.e., 2D translation, is proposed. Numerical simulations of flow and mass transfer are conducted for the growth of large-scale potassium dihydrogen phosphate (KDP) crystals subjected to the new motion mode. Surface supersaturation and shear stress are obtained as functions of the translational velocity, distance, size, orientation of crystals. The dependence of these two parameters on the flow fields around the crystals is also discussed. The thicknesses of the solute boundary layer varied with translational velocity are described. The characteristics of solution flow and surface supersaturation distribution are summarized, where it suggests that the morphological stability of a crystal surface can be enhanced if the proposed 2D translation is applied to crystal growth.
2D radiation-magnetohydrodynamic simulations of SATURN imploding Z-pinches
Hammer, J.H.; Eddleman, J.L.; Springer, P.T.
1995-11-06
Z-pinch implosions driven by the SATURN device at Sandia National Laboratory are modeled with a 2D radiation magnetohydrodynamic (MHD) code, showing strong growth of magneto-Rayleigh Taylor (MRT) instability. Modeling of the linear and nonlinear development of MRT modes predicts growth of bubble-spike structures that increase the time span of stagnation and the resulting x-ray pulse width. Radiation is important in the pinch dynamics keeping the sheath relatively cool during the run-in and releasing most of the stagnation energy. The calculations give x-ray pulse widths and magnitudes in reasonable agreement with experiments, but predict a radiating region that is too dense and radially localized at stagnation. We also consider peaked initial density profiles with constant imploding sheath velocity that should reduce MRT instability and improve performance. 2D krypton simulations show an output x-ray power > 80 TW for the peaked profile.
Application of 2-D simulations to hollow z-pinch implosions
Peterson, D.L.; Bowers, R.L.; Brownell, J.H.
1997-12-01
The application of simulations of z-pinch implosions should have at least two goals: first, to properly model the most important physical processes occurring in the pinch allowing for a better understanding of the experiments and second, provide a design capability for future experiments. Beginning with experiments fielded at Los Alamos on the Pegasus 1 and Pegasus 2 capacitor banks, the authors have developed a methodology for simulating hollow z-pinches in two dimensions which has reproduced important features of the measured experimental current drive, spectrum, radiation pulse shape, peak power and total radiated energy. This methodology employs essentially one free parameter, the initial level of the random density perturbations imposed at the beginning of the 2-D simulation, but in general no adjustments to other parameters are required. Currently the authors are applying this capability to the analysis of recent Saturn and PBFA-Z experiments. The code results provide insight into the nature of the pinch plasma prior to arrival on-axis, during thermalization and development after peak pinch time. Among other things, the simulation results provide an explanation for the production of larger amounts of radiated energy than would be expected from a simple slug-model kinetic energy analysis and the appearance of multiple peaks in the radiation power. The 2-D modeling has also been applied to the analysis of Saturn dynamic hohlraum experiments and is being used in the design of this and other Z-Pinch applications on PBFA-Z.
NASA Astrophysics Data System (ADS)
Zheng, Liang; May, Dave; Gerya, Taras; Bostock, Michael
2016-08-01
Shear deformation, accompanied with fluid activity inside the subduction interface, is related to many tectonic energy-releasing events, including regular and slow earthquakes. We have numerically examined the fluid-rock interactions inside a deforming subduction interface using state-of-the-art 2-D hydromechanical numerical models, which incorporate the rock fracturing behavior as a plastic rheology which is dependent on the pore fluid pressure. Our modeling results suggest that two typical dynamical regimes of the deforming subduction interface exist, namely, a "coupled" and a "decoupled" regime. In the coupled regime the subduction interface is subdivided into multiple rigid blocks, each separated by a narrow shear zone inclined at an angle of 15-20° with respect to the slab surface. In contrast, in the decoupled regime the subduction interface is divided into two distinct layers moving relative to each other along a pervasive slab surface-parallel shear zone. Through a systematic parameter study, we observe that the tensile strength (cohesion) of the material within the subduction interface dictates the resulting style of deformation within the interface: high cohesion (~60 MPa) results in the coupled regime, while low cohesion (~10 MPa) leads to the decoupled regime. We also demonstrate that the lithostatic pressure and inflow/outflow fluid fluxes (i.e., fluid-fluxed boundary condition) influence the location and orientation of faults. Predictions from our numerical models are supported by experimental laboratory studies, geological data, and geophysical observations from modern subduction settings.
A Numerical Analysis of Sloshing Fluid in 2D Tanks with Baffles
NASA Astrophysics Data System (ADS)
Wu, C. H.; Chen, B. F.
2011-09-01
A tuned liquid damper (TLD) is one possible damping device of tall buildings under wind and earthquake excitations. A 2D tank with a vertically tank bottom-mounted baffle under horizontal excitation is studied in this work. The combination of time-independent finite difference method [1-3] and one-dimensional ghost cell approach was implemented to solve liquid sloshing in the baffled tank. The correlation between the movement of baffles and flow field due to liquid sloshing might to the clue to investigate the evolution of vortices around the baffle tip. We categorize the interaction process of vortices evolution into three phases: (1) Formation of separated shear layer and generation of vortices; (2) Formation of a vertical jet and shedding of vortices; (3) Interaction between shedding vortices and sloshing flow: the generation of snaky flow.
Fast acceleration of 2D wave propagation simulations using modern computational accelerators.
Wang, Wei; Xu, Lifan; Cavazos, John; Huang, Howie H; Kay, Matthew
2014-01-01
Recent developments in modern computational accelerators like Graphics Processing Units (GPUs) and coprocessors provide great opportunities for making scientific applications run faster than ever before. However, efficient parallelization of scientific code using new programming tools like CUDA requires a high level of expertise that is not available to many scientists. This, plus the fact that parallelized code is usually not portable to different architectures, creates major challenges for exploiting the full capabilities of modern computational accelerators. In this work, we sought to overcome these challenges by studying how to achieve both automated parallelization using OpenACC and enhanced portability using OpenCL. We applied our parallelization schemes using GPUs as well as Intel Many Integrated Core (MIC) coprocessor to reduce the run time of wave propagation simulations. We used a well-established 2D cardiac action potential model as a specific case-study. To the best of our knowledge, we are the first to study auto-parallelization of 2D cardiac wave propagation simulations using OpenACC. Our results identify several approaches that provide substantial speedups. The OpenACC-generated GPU code achieved more than 150x speedup above the sequential implementation and required the addition of only a few OpenACC pragmas to the code. An OpenCL implementation provided speedups on GPUs of at least 200x faster than the sequential implementation and 30x faster than a parallelized OpenMP implementation. An implementation of OpenMP on Intel MIC coprocessor provided speedups of 120x with only a few code changes to the sequential implementation. We highlight that OpenACC provides an automatic, efficient, and portable approach to achieve parallelization of 2D cardiac wave simulations on GPUs. Our approach of using OpenACC, OpenCL, and OpenMP to parallelize this particular model on modern computational accelerators should be applicable to other computational models of
NASA Astrophysics Data System (ADS)
Mendoza-Torres, F.; Diaz-Viera, M. A.
2015-12-01
In many natural fractured porous media, such as aquifers, soils, oil and geothermal reservoirs, fractures play a crucial role in their flow and transport properties. An approach that has recently gained popularity for modeling fracture systems is the Discrete Fracture Network (DFN) model. This approach consists in applying a stochastic boolean simulation method, also known as object simulation method, where fractures are represented as simplified geometric objects (line segments in 2D and polygons in 3D). One of the shortcomings of this approach is that it usually does not consider the dependency relationships that may exist between the geometric properties of fractures (direction, length, aperture, etc), that is, each property is simulated independently. In this work a method for modeling such dependencies by copula theory is introduced. In particular, a nonparametric model using Bernstein copulas for direction-length fracture dependency in 2D is presented. The application of this method is illustrated in a case study for a fractured rock sample from a carbonate reservoir outcrop.
A 2-D FEM thermal model to simulate water flow in a porous media: Campi Flegrei caldera case study
NASA Astrophysics Data System (ADS)
Romano, V.; Tammaro, U.; Capuano, P.
2012-05-01
Volcanic and geothermal aspects both exist in many geologically young areas. In these areas the heat transfer process is of fundamental importance, so that the thermal and fluid-dynamic processes characterizing a viscous fluid in a porous medium are very important to understand the complex dynamics of the these areas. The Campi Flegrei caldera, located west of the city of Naples, within the central-southern sector of the large graben of Campanian plain, is a region where both volcanic and geothermal phenomena are present. The upper part of the geothermal system can be considered roughly as a succession of volcanic porous material (tuff) saturated by a mixture formed mainly by water and carbon dioxide. We have implemented a finite elements approach in transient conditions to simulate water flow in a 2-D porous medium to model the changes of temperature in the geothermal system due to magmatic fluid inflow, accounting for a transient phase, not considered in the analytical solutions and fluid compressibility. The thermal model is described by means of conductive/convective equations, in which we propose a thermal source represented by a parabolic shape function to better simulate an increase of temperature in the central part (magma chamber) of a box, simulating the Campi Flegrei caldera and using more recent evaluations, from literature, for the medium's parameters (specific heat capacity, density, thermal conductivity, permeability). A best-fit velocity for the permeant is evaluated by comparing the simulated temperatures with those measured in wells drilled by Agip (Italian Oil Agency) in the 1980s in the framework of geothermal exploration. A few tens of days are enough to reach the thermal steady state, showing the quick response of the system to heat injection. The increase in the pressure due to the heat transport is then used to compute ground deformation, in particular the vertical displacements characteristics of the Campi Flegrei caldera behaviour. The
Simulations of two-particle interactions with 2D quantum walks in time
Schreiber, A.; Laiho, K.; Silberhorn, C.; Rohde, P. P.; Štefaňak, M.; Potoček, V.; Hamilton, C.; Jex, I.
2014-12-04
We present the experimental implementation of a quantum walk on a two-dimensional lattice and show how to employ the optical system to simulate the quantum propagation of two interacting particles. Our quantum walk in time transfers the spatial spread of a quantum walk into the time domain, which guarantees a high stability and scalability of the setup. We present with our device quantum walks over 12 steps on a 2D lattice. By changing the properties of the driving quantum coin, we investigate different kinds of two-particle interactions and reveal their impact on the occurring quantum propagation.
Multipacting Simulation Study for 56 MHz Quarter Wave Resonator using 2D Code
Naik,D.; Ben-Zvi, I.
2009-01-02
A beam excited 56 MHz Radio Frequency (RF) Niobium Quarter Wave Resonator (QWR) has been proposed to enhance RHIC beam luminosity and bunching. Being a RF cavity, multipacting is expected; therefore an extensive study was carried out with the Multipac 2.1 2D simulation code. The study revealed that multipacting occurs in various bands up to peak surface electric field 50 kV/m and is concentrated mostly above the beam gap and on the outer conductor. To suppress multipacting, a ripple structure was introduced to the outer conductor and the phenomenon was successfully eliminated from the cavity.
Tuning and simulating a 193-nm resist for 2D applications
NASA Astrophysics Data System (ADS)
Howard, William B.; Wiaux, Vincent; Ercken, Monique; Bui, Bang; Byers, Jeff D.; Pochkowski, Mike
2002-07-01
For some applications, the usefulness of lithography simulation results depends strongly on the matching between experimental conditions and the simulation input parameters. If this matching is optimized and other sources of error are minimized, then the lithography model can be used to explain printed wafer experimental results. Further, simulation can be useful in predicting the results or in choosing the correct set of experiments. In this paper, PROLITH and ProDATA AutoTune were used to systematically vary simulation input parameters to match measured results on printed wafers used in a 193 nm process. The validity of the simulation parameters was then checked using 3D simulation compared to 2D top-down SEM images. The quality of matching was evaluated using the 1D metrics of average gate CD and Line End Shortening (LES). To ensure the most accurate simulation, a new approach was taken to create a compound mask from GDSII contextual information surrounding an accurate SEM image of the reticle region of interest. Corrections were made to account for all metrology offsets.
GMC COLLISIONS AS TRIGGERS OF STAR FORMATION. I. PARAMETER SPACE EXPLORATION WITH 2D SIMULATIONS
Wu, Benjamin; Loo, Sven Van; Tan, Jonathan C.; Bruderer, Simon
2015-09-20
We utilize magnetohydrodynamic (MHD) simulations to develop a numerical model for giant molecular cloud (GMC)–GMC collisions between nearly magnetically critical clouds. The goal is to determine if, and under what circumstances, cloud collisions can cause pre-existing magnetically subcritical clumps to become supercritical and undergo gravitational collapse. We first develop and implement new photodissociation region based heating and cooling functions that span the atomic to molecular transition, creating a multiphase ISM and allowing modeling of non-equilibrium temperature structures. Then in 2D and with ideal MHD, we explore a wide parameter space of magnetic field strength, magnetic field geometry, collision velocity, and impact parameter and compare isolated versus colliding clouds. We find factors of ∼2–3 increase in mean clump density from typical collisions, with strong dependence on collision velocity and magnetic field strength, but ultimately limited by flux-freezing in 2D geometries. For geometries enabling flow along magnetic field lines, greater degrees of collapse are seen. We discuss observational diagnostics of cloud collisions, focussing on {sup 13}CO(J = 2–1), {sup 13}CO(J = 3–2), and {sup 12}CO(J = 8–7) integrated intensity maps and spectra, which we synthesize from our simulation outputs. We find that the ratio of J = 8–7 to lower-J emission is a powerful diagnostic probe of GMC collisions.
Strain hardening in 2D discrete dislocation dynamics simulations: A new '2.5D' algorithm
NASA Astrophysics Data System (ADS)
Keralavarma, S. M.; Curtin, W. A.
2016-10-01
The two-dimensional discrete dislocation dynamics (2D DD) method, consisting of parallel straight edge dislocations gliding on independent slip systems in a plane strain model of a crystal, is often used to study complicated boundary value problems in crystal plasticity. However, the absence of truly three dimensional mechanisms such as junction formation means that forest hardening cannot be modeled, unless additional so-called '2.5D' constitutive rules are prescribed for short-range dislocation interactions. Here, results from three dimensional dislocation dynamics (3D DD) simulations in an FCC material are used to define new constitutive rules for short-range interactions and junction formation between dislocations on intersecting slip systems in 2D. The mutual strengthening effect of junctions on preexisting obstacles, such as precipitates or grain boundaries, is also accounted for in the model. The new '2.5D' DD model, with no arbitrary adjustable parameters beyond those obtained from lower scale simulation methods, is shown to predict athermal hardening rates, differences in flow behavior for single and multiple slip, and latent hardening ratios. All these phenomena are well-established in the plasticity of crystals and quantitative results predicted by the model are in good agreement with experimental observations.
2D PIC simulations for an EN discharge with magnetized electrons and unmagnetized ions
NASA Astrophysics Data System (ADS)
Lieberman, Michael A.; Kawamura, Emi; Lichtenberg, Allan J.
2009-10-01
We conducted 2D particle-in-cell (PIC) simulations for an electronegative (EN) discharge with magnetized electrons and unmagnetized ions, and compared the results to a previously developed 1D (radial) analytical model of an EN plasma with strongly magnetized electrons and weakly magnetized ions [1]. In both cases, there is a static uniform applied magnetic field in the axial direction. The 1D radial model mimics the wall losses of the particles in the axial direction by introducing a bulk loss frequency term νL. A special (desired) solution was found in which only positive and negative ions but no electrons escaped radially. The 2D PIC results show good agreement with the 1D model over a range of parameters and indicate that the analytical form of νL employed in [1] is reasonably accurate. However, for the PIC simulations, there is always a finite flux of electrons to the radial wall which is about 10 to 30% of the negative ion flux.[4pt] [1] G. Leray, P. Chabert, A.J. Lichtenberg and M.A. Lieberman, J. Phys. D, accepted for publication 2009.
Ion acoustic wave collapse via two-ion wave decay: 2D Vlasov simulation and theory
NASA Astrophysics Data System (ADS)
Chapman, Thomas; Berger, Richard; Banks, Jeffrey; Brunner, Stephan
2015-11-01
The decay of ion acoustic waves (IAWs) via two-ion wave decay may transfer energy from the electric field of the IAWs to the particles, resulting in a significant heating of resonant particles. This process has previously been shown in numerical simulations to decrease the plasma reflectivity due to stimulated Brillouin scattering. Two-ion wave decay is a fundamental property of ion acoustic waves that occurs over most if not all of the parameter space of relevance to inertial confinement fusion experiments, and can lead to a sudden collapse of IAWs. The treatment of all species kinetically, and in particular the electrons, is required to describe the decay process correctly. We present fully kinetic 2D+2V Vlasov simulations of IAWs undergoing decay to a highly nonlinear turbulent state using the code LOKI. The scaling of the decay rate with characteristic plasma parameters and wave amplitude is shown. A new theory describing two-ion wave decay in 2D, that incorporates key kinetic properties of the electrons, is presented and used to explain quantitatively for the first time the observed decay of IAWs. Work performed under auspices of U.S. DoE by LLNL, Contract DE-AC52-07NA2734. Funded by LDRD 15-ERD-038 and supported by LLNL Grand Challenge allocation.
Calibration and simulation of ASM2d at different temperatures in a phosphorus removal pilot plant.
García-Usach, F; Ferrer, J; Bouzas, A; Seco, A
2006-01-01
In this work, an organic and nutrient removal pilot plant was used to study the temperature influence on phosphorus accumulating organisms. Three experiments were carried out at 13, 20 and 24.5 degrees C, achieving a high phosphorus removal percentage in all cases. The ASM2d model was calibrated at 13 and 20 degrees C and the Arrhenius equation constant was obtained for phosphorus removal processes showing that the temperature influences on the biological phosphorus removal subprocesses in a different degree. The 24.5 degrees C experiment was simulated using the model parameters obtained by means of the Arrhenius equation. The simulation results for the three experiments showed good correspondence with the experimental data, demonstrating that the model and the calibrated parameters were able to predict the pilot plant behaviour.
Superclusters of galaxies from the 2dF redshift survey. 2. Comparison with simulations
Einasto, Jaan; Einasto, M.; Saar, E.; Tago, E.; Liivamagi, L.J.; Joeveer, M.J; Suhhonenko, I.; Hutsi, G.; Jaaniste, J.; Heinamaki, P.; Muller, V.; Knebe, A.; Tucker, D.; /Fermilab
2006-04-01
We investigate properties of superclusters of galaxies found on the basis of the 2dF Galaxy Redshift Survey, and compare them with properties of superclusters from the Millennium Simulation.We study the dependence of various characteristics of superclusters on their distance from the observer, on their total luminosity, and on their multiplicity. The multiplicity is defined by the number of Density Field (DF) clusters in superclusters. Using the multiplicity we divide superclusters into four richness classes: poor, medium, rich and extremely rich.We show that superclusters are asymmetrical and have multi-branching filamentary structure, with the degree of asymmetry and filamentarity being higher for the more luminous and richer superclusters. The comparison of real superclusters with Millennium superclusters shows that most properties of simulated superclusters agree very well with real data, the main differences being in the luminosity and multiplicity distributions.
NASA Astrophysics Data System (ADS)
Bezzeccheri, E.; Colasanti, S.; Falco, A.; Liguori, R.; Rubino, A.; Lugli, P.
2016-05-01
Vertical Organic Transistors and Phototransistors have been proven to be promising technologies due to the advantages of reduced channel length and larger sensitive area with respect to planar devices. Nevertheless, a real improvement of their performance is subordinate to the quantitative description of their operation mechanisms. In this work, we present a comparative study on the modeling of vertical and planar Organic Phototransistor (OPT) structures. Computer-based simulations of the devices have been carried out with Synopsys Sentaurus TCAD in a 2D Drift-Diffusion framework. The photoactive semiconductor material has been modeled using the virtual semiconductor approach as the archetypal P3HT:PC61BM bulk heterojunction. It has been found that both simulated devices have comparable electrical and optical characteristics, accordingly to recent experimental reports on the subject.
Anomalous diffusion of an ellipsoid in quasi-2D active fluids
NASA Astrophysics Data System (ADS)
Peng, Yi; Yang, Ou; Tang, Chao; Cheng, Xiang
Enhanced diffusion of a tracer particle is a unique feature in active fluids. Here, we studied the diffusion of an ellipsoid in a free-standing film of E. coli. Particle diffusion is linearly enhanced at low bacterial concentrations, whereas a non-linear enhancement is observed at high bacterial concentrations due to the giant fluctuation. More importantly, we uncover an anomalous coupling between the translational and rotational degrees of freedom that is strictly prohibited in the classical Brownian diffusion. Combining experiments with theoretical modeling, we show that such an anomaly arises from the stretching flow induced by the force dipole of swimming bacteria. Our work illustrates a novel universal feature of active matter and transforms the understanding of fundamental transport processes in microbiological systems. ACS Petroleum Research Fund #54168-DNI9, NSF Faculty Early Career Development Program, DMR-1452180.
Highly-resolved 2D HYDRA simulations of Double-Shell Ignition Designs
Milovich, J L; Amendt, P; Hamza, A; Marinak, M; Robey, H
2006-06-30
Double-shell (DS) targets (Amendt, P. A. et al., 2002) offer a complementary approach to the cryogenic baseline design (Lindl, J. et al., 2004) for achieving ignition on the National Ignition Facility (NIF). Among the expected benefits are the ease of room temperature preparation and fielding, the potential for lower laser backscatter and the reduced need for careful shock timing. These benefits are offset, however, by demanding fabrication tolerances, e.g., shell concentricity and shell surface smoothness. In particular, the latter is of paramount importance since DS targets are susceptible to the growth of interface perturbations from impulsive and time-dependent accelerations. Previous work (Milovich, J. L. et al., 2004) has indicated that the growth of perturbations on the outer surface of the inner shell is potentially disruptive. To control this instability new designs have been proposed requiring bimetallic inner shells and material-matching mid-Z nanoporous foam. The challenges in manufacturing such exotic foams have led to a further evaluation of the densities and pore sizes needed to reduce the seeding of perturbations on the outer surface of the inner shell, thereby guiding the ongoing material science research efforts. Highly-resolved 2D simulations of porous foams have been performed to establish an upper limit on the allowable pore sizes for instability growth. Simulations indicate that foams with higher densities than previously thought are now possible. Moreover, while at the present time we are only able to simulate foams with average pore sizes larger than 1 micron (due to computational limitations), we can conclude that these pore sizes are potentially problematic. Furthermore, the effect of low-order hohlraum radiation asymmetries on the growth of intrinsic surface perturbations is also addressed. Highly-resolved 2D simulations indicate that the transverse flows that are set up by these low-order mode features (which can excite Kelvin
Modeling and Simulation of Fluid Mixing Laser Experiments and Supernova
James Glimm
2009-06-04
The three year plan for this project was to develop novel theories and advanced simulation methods leading to a systematic understanding of turbulent mixing. A primary focus is the comparison of simulation models (Direct Numerical Simulation (DNS), Large Eddy Simulations (LES), full two fluid simulations and subgrid averaged models) to experiments. The comprehension and reduction of experimental and simulation data are central goals of this proposal. We model 2D and 3D perturbations of planar or circular interfaces. We compare these tests with models derived from averaged equations (our own and those of others). As a second focus, we develop physics based subgrid simulation models of diffusion across an interface, with physical but no numerical mass diffusion. Multiple layers and reshock are considered here.
Reynolds-Averaged Navier-Stokes Simulation of a 2D Circulation Control Wind Tunnel Experiment
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Jones, Greg; Lin, John C.
2011-01-01
Numerical simulations are performed using a Reynolds-averaged Navier-Stokes (RANS) flow solver for a circulation control airfoil. 2D and 3D simulation results are compared to a circulation control wind tunnel test conducted at the NASA Langley Basic Aerodynamics Research Tunnel (BART). The RANS simulations are compared to a low blowing case with a jet momentum coefficient, C(sub u), of 0:047 and a higher blowing case of 0.115. Three dimensional simulations of the model and tunnel walls show wall effects on the lift and airfoil surface pressures. These wall effects include a 4% decrease of the midspan sectional lift for the C(sub u) 0.115 blowing condition. Simulations comparing the performance of the Spalart Allmaras (SA) and Shear Stress Transport (SST) turbulence models are also made, showing the SST model compares best to the experimental data. A Rotational/Curvature Correction (RCC) to the turbulence model is also evaluated demonstrating an improvement in the CFD predictions.
Spot size variation FCS in simulations of the 2D Ising model
NASA Astrophysics Data System (ADS)
Burns, Margaret C.; Nouri, Mariam; Veatch, Sarah L.
2016-06-01
Spot variation fluorescence correlation spectroscopy (svFCS) was developed to study the movement and organization of single molecules in plasma membranes. This experimental technique varies the size of an illumination area while measuring correlations in time using standard fluorescence correlation methods. Frequently, this data is interpreted using the assumption that correlation measurements reflect the dynamics of single molecule motions, and not motions of the average composition. Here, we explore how svFCS measurements report on the dynamics of components diffusing within simulations of a 2D Ising model with a conserved order parameter. Simulated correlation functions report on both the fast dynamics of single component mobility and the slower dynamics of the average composition. Over a range of simulation conditions, a conventional svFCS analysis suggests the presence of anomalous diffusion even though single molecule motions are nearly Brownian in these simulations. This misinterpretation is most significant when the surface density of the fluorescent label is elevated, therefore we suggest future measurements be made over a range of tracer densities. Some simulation conditions reproduce qualitative features of published svFCS experimental data. Overall, this work emphasizes the need to probe membranes using multiple complimentary experimental methodologies in order to draw conclusions regarding the nature of spatial and dynamical heterogeneity in these systems.
CGL and Landau fluid simulations of turbulence
NASA Astrophysics Data System (ADS)
Hunana, P.; Zank, G. P.; Goldstein, M. L.
2015-12-01
We will present 3 dimensional freely decaying and forced simulations of turbulence with different fluid models such as CGL (double adiabatic) model and Landau fluid models. Simulations will be aimed at the modeling of the spectral break around the proton gyroscale. We will also discuss thresholds and damping rates of firehose and mirror instabilieties.
Tropical Oceanic Precipitation Processes over Warm Pool: 2D and 3D Cloud Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, W.- K.; Johnson, D.
1998-01-01
Rainfall is a key link in the hydrologic cycle as well as the primary heat source for the atmosphere, The vertical distribution of convective latent-heat release modulates the large-scale circulations of the tropics, Furthermore, changes in the moisture distribution at middle and upper levels of the troposphere can affect cloud distributions and cloud liquid water and ice contents. How the incoming solar and outgoing longwave radiation respond to these changes in clouds is a major factor in assessing climate change. Present large-scale weather and climate models simulate cloud processes only crudely, reducing confidence in their predictions on both global and regional scales. One of the most promising methods to test physical parameterizations used in General Circulation Models (GCMS) and climate models is to use field observations together with Cloud Resolving Models (CRMs). The CRMs use more sophisticated and physically realistic parameterizations of cloud microphysical processes, and allow for their complex interactions with solar and infrared radiative transfer processes. The CRMs can reasonably well resolve the evolution, structure, and life cycles of individual clouds and cloud systems, The major objective of this paper is to investigate the latent heating, moisture and momenti,im budgets associated with several convective systems developed during the TOGA COARE IFA - westerly wind burst event (late December, 1992). The tool for this study is the Goddard Cumulus Ensemble (CCE) model which includes a 3-class ice-phase microphysical scheme, The model domain contains 256 x 256 grid points (using 2 km resolution) in the horizontal and 38 grid points (to a depth of 22 km depth) in the vertical, The 2D domain has 1024 grid points. The simulations are performed over a 7 day time period. We will examine (1) the precipitation processes (i.e., condensation/evaporation) and their interaction with warm pool; (2) the heating and moisture budgets in the convective and
Numerical simulation of 2D buoyant jets in ice-covered and temperature-stratified water
NASA Astrophysics Data System (ADS)
Gu, Ruochuan
A two-dimensional (2D) unsteady simulation model is applied to the problem of a submerged warm water discharge into a stratified lake or reservoir with an ice cover. Numerical simulations and analyses are conducted to gain insight into large-scale convective recirculation and flow processes in a cold waterbody induced by a buoyant jet. Jet behaviors under various discharge temperatures are captured by directly modeling flow and thermal fields. Flow structures and processes are described by the simulated spatial and temporal distributions of velocity and temperature in various regions: deflection, recirculation, attachment, and impingement. Some peculiar hydrothermal and dynamic features, e.g. reversal of buoyancy due to the dilution of a warm jet by entraining cold ambient water, are identified and examined. Simulation results show that buoyancy is the most important factor controlling jet behavior and mixing processes. The inflow boundary is treated as a liquid wall from which the jet is offset. Similarity and difference in effects of boundaries perpendicular and parallel to flow, and of buoyancy on jet attachment and impingement, are discussed. Symmetric flow configuration is used to de-emphasize the Coanda effect caused by offset.
Simulation of growth normal fault sandbox tests using the 2D discrete element method
NASA Astrophysics Data System (ADS)
Chu, Sheng-Shin; Lin, Ming-Lang; Huang, Wen-Chao; Nien, Wei-Tung; Liu, Huan-Chi; Chan, Pei-Chen
2015-01-01
A fault slip can cause the deformation of shallow soil layers and destroy infrastructures. The Shanchiao Fault on the west side of the Taipei Basin is one such fault. The activities of the Shanchiao Fault have caused the quaternary sediment beneath the Taipei Basin to become deformed, damaging structures, traffic construction, and utility lines in the area. Data on geological drilling and dating have been used to determine that a growth fault exists in the Shanchiao Fault. In an experiment, a sandbox model was built using noncohesive sandy soil to simulate the existence of a growth fault in the Shanchiao Fault and forecast the effect of the growth fault on shear-band development and ground differential deformation. The experimental results indicated that when a normal fault contains a growth fault at the offset of the base rock, the shear band develops upward beside the weak side of the shear band of the original-topped soil layer, and surfaces considerably faster than that of the single-topped layer. The offset ratio required is approximately one-third that of the single-cover soil layer. In this study, a numerical simulation of the sandbox experiment was conducted using a discrete element method program, PFC2D, to simulate the upper-covering sand layer shear-band development pace and the scope of a growth normal fault slip. The simulation results indicated an outcome similar to that of the sandbox experiment, which can be applied to the design of construction projects near fault zones.
2-D LSP Simulations of the Self Magnetic Pinch Radiographic Diode
NASA Astrophysics Data System (ADS)
Threadgold, J.; Crotch, I.; Rose, D. V.
2003-10-01
The Atomic Weapons Establishment (AWE) UK has a number of Pulsed Power driven flash X-ray machines which are used to take transmission radiographs of hydrodynamic experiments. Some of the lower voltage x-ray machines (< 2 MV) use the Self Magnetic (SM) Pinch diode for their source. The SM pinch diode has proved to be a reliable source for providing small diameter radiographic spot sizes. With an emphasis on reduction of the x-ray spot size at higher voltages, one part of the diode research project has been to field SM pinch diodes at higher voltages. The SM pinch diode relies upon the magnitude of its own electron current (> 50 kA) to pinch the electron beam to a small diameter onto a high Z converter target. An electromagnetic PIC code, LSP, has been used to carry out 2-D simulations of the diode to support this project. The code has been used to investigate the effect of different target materials within the diode and to investigate the resultant electron trajectories onto the target. Results of these code simulations will be compared to experimental data The simulations show good agreement with measured experimental data on diode performance. The simulations suggest further improvements in spot size reduction could be achieved with changes in the diode geometry.
2D/3D Monte Carlo Feature Profile Simulator FPS-3D
NASA Astrophysics Data System (ADS)
Moroz, Paul
2010-11-01
Numerical simulation of etching/deposition profiles is important for semiconductor industry, as it allows analysis and prediction of the outcome of materials processing on a micron and sub-micron scale. The difficulty, however, is in making such a simulator a reliable, general, and easy to use tool applicable to different situations, for example, with different ratios of ion to neutral fluxes, different chemistries, different energies of incoming particles, and different angular and energy dependencies for surface reactions, without recompiling the code each time when the parameters change. The FPS-3D simulator [1] does not need recompilation when the features, materials, gases, or plasma are changed -- modifications to input, chemistry, and flux files are enough. The code allows interaction of neutral low-energy species with the surface mono-layer, while considering finite penetration depth into the volume for fast particles and ions. The FPS-3D code can simulate etching and deposition processes, both for 2D and 3D geometries. FPS-3D is using an advanced graphics package from HFS for presenting real-time process and profile evolution. The presentation will discuss the FPS-3D code with examples for different process conditions. The author is thankful to Drs. S.-Y. Kang of TEL TDC and P. Miller of HFS for valuable discussions. [4pt] [1] P. Moroz, URP.00101, GEC, Saratoga, NY, 2009.
NASA Astrophysics Data System (ADS)
Dessart, L.; Owocki, S. P.
2005-07-01
We present initial attempts to include the multi-dimensional nature of radiation transport in hydrodynamical simulations of the small-scale structure that arises from the line-driven instability in hot-star winds. Compared to previous 1D or 2D models that assume a purely radial radiation force, we seek additionally to treat the lateral momentum and transport of diffuse line-radiation, initially here within a 2D context. A key incentive is to study the damping effect of the associated diffuse line-drag on the dynamical properties of the flow, focusing particularly on whether this might prevent lateral break-up of shell structures at scales near the lateral Sobolev angle of ca. 1^o. Based on 3D linear perturbation analyses that show a viscous diffusion character for the damping at these scales, we first explore nonlinear simulations that cast the lateral diffuse force in the simple, local form of a parallel viscosity. We find, however, that the resulting strong damping of lateral velocity fluctuations only further isolates azimuthal zones, leading again to azimuthal incoherence down to the grid scale. To account then for the further effect of lateral mixing of radiation associated with the radial driving, we next explore models in which the radial force is azimuthally smoothed over a chosen scale, and thereby show that this does indeed translate to a similar scale for the resulting density and velocity structure. Accounting for both the lateral line-drag and the lateral mixing in a more self-consistent way thus requires a multi-ray computation of the radiation transport. As a first attempt, we explore further a method first proposed by Owocki (1999), which uses a restricted 3-ray approach that combines a radial ray with two oblique rays set to have an impact parameter p < Rast within the stellar core. From numerical simulations with various grid resolutions (and p), we find that, compared to equivalent 1-ray simulations, the high-resolution 3-ray models show
NASA Astrophysics Data System (ADS)
Li, Jinghe; Song, Linping; Liu, Qing Huo
2016-02-01
A simultaneous multiple frequency contrast source inversion (CSI) method is applied to reconstructing hydrocarbon reservoir targets in a complex multilayered medium in two dimensions. It simulates the effects of a salt dome sedimentary formation in the context of reservoir monitoring. In this method, the stabilized biconjugate-gradient fast Fourier transform (BCGS-FFT) algorithm is applied as a fast solver for the 2D volume integral equation for the forward computation. The inversion technique with CSI combines the efficient FFT algorithm to speed up the matrix-vector multiplication and the stable convergence of the simultaneous multiple frequency CSI in the iteration process. As a result, this method is capable of making quantitative conductivity image reconstruction effectively for large-scale electromagnetic oil exploration problems, including the vertical electromagnetic profiling (VEP) survey investigated here. A number of numerical examples have been demonstrated to validate the effectiveness and capacity of the simultaneous multiple frequency CSI method for a limited array view in VEP.
Catalog of velocity distributions around a reconnection site in 2D PIC simulations
NASA Astrophysics Data System (ADS)
Lechner, Lukas; Bourdin, Philippe-A.; Nakamura, Takuma K. M.; Nakamura, Rumi; Narita, Yasuhito
2016-04-01
The velocity distribution of electrons and ions are known to be a marker for regions where magnetic reconnection develops. Past theoretical and computational works demonstrated that non-gyrotropic and anisotropic distributions depending on particle meandering motions and accelerations are seen around the reconnection point. The Magnetospheric Multiscale (MMS) mission is expected to resolve such kinetic scale reconnection regions. We present a catalog of velocity distribution functions that can give hints on the location within the current sheet relative to the reconnection point, which is sometimes unclear from pure spacecraft observations. We use 2D PIC simulations of anti-parallel magnetic reconnection to obtain velocity distributions at different locations, like in the center of the reconnection site, the ion and electron diffusion regions, or the reconnection inflow and outflow regions. With sufficiently large number of particles we resolve the distribution functions also in rather small regions. Such catalog may be compared with future MMS observations of the Earth's magnetotail.
Relaxation of ferroelectric states in 2D distributions of quantum dots: EELS simulation
NASA Astrophysics Data System (ADS)
Cortés, C. M.; Meza-Montes, L.; Moctezuma, R. E.; Carrillo, J. L.
2016-06-01
The relaxation time of collective electronic states in a 2D distribution of quantum dots is investigated theoretically by simulating EELS experiments. From the numerical calculation of the probability of energy loss of an electron beam, traveling parallel to the distribution, it is possible to estimate the damping time of ferroelectric-like states. We generate this collective response of the distribution by introducing a mean field interaction among the quantum dots, and then, the model is extended incorporating effects of long-range correlations through a Bragg-Williams approximation. The behavior of the dielectric function, the energy loss function, and the relaxation time of ferroelectric-like states is then investigated as a function of the temperature of the distribution and the damping constant of the electronic states in the single quantum dots. The robustness of the trends and tendencies of our results indicate that this scheme of analysis can guide experimentalists to develop tailored quantum dots distributions for specific applications.
NASA Astrophysics Data System (ADS)
Khuat Duy, B.; Archambeau, P.; Dewals, B. J.; Erpicum, S.; Pirotton, M.
2009-04-01
Following recurrent inundation problems on the Berwinne catchment, in Belgium, a combined hydrologic and hydrodynamic study has been carried out in order to find adequate solutions for the floods mitigation. Thanks to detailed 2D simulations, the effectiveness of the solutions can be assessed not only in terms of discharge and height reductions in the river, but also with other aspects such as the inundated surfaces reduction and the decrease of inundated buildings and roads. The study is carried out in successive phases. First, the hydrological runoffs are generated using a physically based and spatially distributed multi-layer model solving depth-integrated equations for overland flow, subsurface flow and baseflow. Real floods events are simulated using rainfall series collected at 8 stations (over 20 years of available data). The hydrological inputs are routed through the river network (and through the sewage network if relevant) with the 1D component of the modelling system, which solves the Saint-Venant equations for both free-surface and pressurized flows in a unified way. On the main part of the river, the measured river cross-sections are included in the modelling, and existing structures along the river (such as bridges, sluices or pipes) are modelled explicitely with specific cross sections. Two gauging stations with over 15 years of continuous measurements allow the calibration of both the hydrologic and hydrodynamic models. Second, the flood mitigation solutions are tested in the simulations in the case of an extreme flooding event, and their effects are assessed using detailed 2D simulations on a few selected sensitive areas. The digital elevation model comes from an airborne laser survey with a spatial resolution of 1 point per square metre and is completed in the river bed with a bathymetry interpolated from cross-section data. The upstream discharge is extracted from the 1D simulation for the selected rainfall event. The study carried out with this
Simulation of Pyroclastic Flows of Colima Volcano, Mexico, Using the TITAN2D Program
NASA Astrophysics Data System (ADS)
Rupp, B.; Bursik, M.; Patra, A.; Pitman, B.; Bauer, A.; Nichita, C.; Saucedo, R.; Macias, J.
2003-04-01
A new numerical code for simulating granular avalanches, TITAN2D, was used to model block-and-ash flows from the 1991-1999 eruptions of Colima Volcano, Mexico. The block-and-ash flows were simulated on a gridded Digital Elevation Model(DEM), which was prepared and imported using a standard GIS function library (GRASS). The TITAN2D program is based upon a model for an incompressible Coulomb continuum, a 'shallow-water' granular flow. The conservation equations for mass and momentum are solved with a Coulomb-type friction term at the interface between the granular material and the basal surface. It is assumed that conservation of energy can be neglected to first order because the coarse grain size typical of the basal avalanche results in minimal thermal effects on avalanche propagation. The resulting hyperbolic system of equations is solved using a parallel, adaptive mesh, Godunov scheme. The Message Passing Interface (MPI) API allows for computing on multiple processors, which increases computational power, decreases computing time, and allows the use of large data sets. Adaptive gridding allows for the concentration of computing power on regions of special interest. Mesh refinement captures the leading edge of the avalanche, as well as locations where the topography changes rapidly. Mesh unrefinement is applied where solution values are relatively constant or small. There were thousands of rockfalls and numerous block-and-ash flows during the 1991-1999 eruptions of Colima Volcano, with volumes ranging from a few cubic meters to 10^6 m^3. We have records of numerous flows, which include volume, run out distance, deposit area, and in some cases a videotape record of flow propagation. The flows originated from a vent plugging dome, lava flows or minor column collapse. All flows followed cross-slope concavities on the upper edifice, and channels or relative topographic lows on the lower edifice. The flows propagated for distances up to 4 km from the source. We are
NASA Astrophysics Data System (ADS)
Meqbel, Naser; Weckmann, Ute; Muñoz, Gerard; Ritter, Oliver
2016-09-01
We report on a study to explore the deep electrical conductivity structure of the Dead Sea Basin (DSB) using magnetotelluric (MT) data collected along a transect across the DSB where the left lateral strike slip Dead Sea transform fault (DST) splits into two fault strands forming one of the largest pull-apart basins of the world. A very pronounced feature of our 2D inversion model is a deep, sub-vertical conductive zone beneath the DSB. The conductor extends through the entire crust and is sandwiched between highly resistive structures associated with Precambrian rocks of the basin flanks. The high electrical conductivity could be attributed to fluids released by dehydration of the uppermost mantle beneath the DSB, possibly in combination with fluids released by mid to low grade metamorphism in the lower crust and generation of hydrous minerals in the middle crust through retrograde metamorphism. Similar high conductivity zones associated with fluids have been reported from other large fault systems. The presence of fluids and hydrous minerals in the middle and lower crust could explain the required low friction coefficient of the DST along the eastern boundary of the Dead Sea basin and the high subsidence rate of basin sediments. 3D inversion models confirm the existence of a sub-vertical high conductivity structure underneath the DSB but its expression is far less pronounced. Instead, the 3D inversion model suggests a deepening of the conductive DSB sediments off-profile towards the south, reaching a maximum depth of approximately 12 km, which is consistent with other geophysical observations. At shallower levels, the 3D inversion model reveals salt diapirism as an upwelling of highly resistive structures, localized underneath the Al-Lisan Peninsula. The 3D model furthermore contains an E-W elongated conductive structure to the north-east of the Dead Sea basin. More MT data with better spatial coverage are required, however, to fully constrain the robustness of
NASA Astrophysics Data System (ADS)
Simmons, Daniel; Cools, Kristof; Sewell, Phillip
2016-11-01
Time domain electromagnetic simulation tools have the ability to model transient, wide-band applications, and non-linear problems. The Boundary Element Method (BEM) and the Transmission Line Modeling (TLM) method are both well established numerical techniques for simulating time-varying electromagnetic fields. The former surface based method can accurately describe outwardly radiating fields from piecewise uniform objects and efficiently deals with large domains filled with homogeneous media. The latter volume based method can describe inhomogeneous and non-linear media and has been proven to be unconditionally stable. Furthermore, the Unstructured TLM (UTLM) enables modelling of geometrically complex objects by using triangular meshes which removes staircasing and unnecessary extensions of the simulation domain. The hybridization of BEM and UTLM which is described in this paper is named the Boundary Element Unstructured Transmission-line (BEUT) method. It incorporates the advantages of both methods. The theory and derivation of the 2D BEUT method is described in this paper, along with any relevant implementation details. The method is corroborated by studying its correctness and efficiency compared to the traditional UTLM method when applied to complex problems such as the transmission through a system of Luneburg lenses and the modelling of antenna radomes for use in wireless communications.
NASA Astrophysics Data System (ADS)
Kononenko, O.; Lopes, N. C.; Cole, J. M.; Kamperidis, C.; Mangles, S. P. D.; Najmudin, Z.; Osterhoff, J.; Poder, K.; Rusby, D.; Symes, D. R.; Warwick, J.; Wood, J. C.; Palmer, C. A. J.
2016-09-01
In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.
NASA Astrophysics Data System (ADS)
Yamada, Susumu; Kitamura, Akihiro; Kurikami, Hiroshi; Machida, Masahiko
2015-04-01
Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on March 2011 released significant quantities of radionuclides to atmosphere. The most significant nuclide is radioactive cesium isotopes. Therefore, the movement of the cesium is one of the critical issues for the environmental assessment. Since the cesium is strongly sorbed by soil particles, the cesium transport can be regarded as the sediment transport which is mainly brought about by the aquatic system such as a river and a lake. In this research, our target is the sediment transport on Ogaki dam reservoir which is located in about 16 km northwest from FDNPP. The reservoir is one of the principal irrigation dam reservoirs in Fukushima Prefecture and its upstream river basin was heavily contaminated by radioactivity. We simulate the sediment transport on the reservoir using 2-D river simulation code named Nays2D originally developed by Shimizu et al. (The latest version of Nays2D is available as a code included in iRIC (http://i-ric.org/en/), which is a river flow and riverbed variation analysis software package). In general, a 2-D simulation code requires a huge amount of calculation time. Therefore, we parallelize the code and execute it on a parallel computer. We examine the relationship between the behavior of the sediment transport and the height of the reservoir exit. The simulation result shows that almost all the sand that enter into the reservoir deposit close to the entrance of the reservoir for any height of the exit. The amounts of silt depositing within the reservoir slightly increase by raising the height of the exit. However, that of the clay dramatically increases. Especially, more than half of the clay deposits, if the exit is sufficiently high. These results demonstrate that the water level of the reservoir has a strong influence on the amount of the clay discharged from the reservoir. As a result, we conclude that the tuning of the water level has a possibility for controlling the
NASA Astrophysics Data System (ADS)
Simão Ferreira, C. J.; Bijl, H.; van Bussel, G.; van Kuik, G.
2007-07-01
The implementation of wind energy conversion systems in the built environment renewed the interest and the research on Vertical Axis Wind Turbines (VAWT), which in this application present several advantages over Horizontal Axis Wind Turbines (HAWT). The VAWT has an inherent unsteady aerodynamic behavior due to the variation of angle of attack with the angle of rotation, perceived velocity and consequentially Reynolds number. The phenomenon of dynamic stall is then an intrinsic effect of the operation of a Vertical Axis Wind Turbine at low tip speed ratios, having a significant impact in both loads and power. The complexity of the unsteady aerodynamics of the VAWT makes it extremely attractive to be analyzed using Computational Fluid Dynamics (CFD) models, where an approximation of the continuity and momentum equations of the Navier-Stokes equations set is solved. The complexity of the problem and the need for new design approaches for VAWT for the built environment has driven the authors of this work to focus the research of CFD modeling of VAWT on: •comparing the results between commonly used turbulence models: URANS (Spalart-Allmaras and k-epsilon) and large eddy models (Large Eddy Simulation and Detached Eddy Simulation) •verifying the sensitivity of the model to its grid refinement (space and time), •evaluating the suitability of using Particle Image Velocimetry (PIV) experimental data for model validation. The 2D model created represents the middle section of a single bladed VAWT with infinite aspect ratio. The model simulates the experimental work of flow field measurement using Particle Image Velocimetry by Simão Ferreira et al for a single bladed VAWT. The results show the suitability of the PIV data for the validation of the model, the need for accurate simulation of the large eddies and the sensitivity of the model to grid refinement.
Immersed Boundary Simulations of Active Fluid Droplets
Hawkins, Rhoda J.
2016-01-01
We present numerical simulations of active fluid droplets immersed in an external fluid in 2-dimensions using an Immersed Boundary method to simulate the fluid droplet interface as a Lagrangian mesh. We present results from two example systems, firstly an active isotropic fluid boundary consisting of particles that can bind and unbind from the interface and generate surface tension gradients through active contractility. Secondly, a droplet filled with an active polar fluid with homeotropic anchoring at the droplet interface. These two systems demonstrate spontaneous symmetry breaking and steady state dynamics resembling cell motility and division and show complex feedback mechanisms with minimal degrees of freedom. The simulations outlined here will be useful for quantifying the wide range of dynamics observable in these active systems and modelling the effects of confinement in a consistent and adaptable way. PMID:27606609
Immersed Boundary Simulations of Active Fluid Droplets.
Whitfield, Carl A; Hawkins, Rhoda J
2016-01-01
We present numerical simulations of active fluid droplets immersed in an external fluid in 2-dimensions using an Immersed Boundary method to simulate the fluid droplet interface as a Lagrangian mesh. We present results from two example systems, firstly an active isotropic fluid boundary consisting of particles that can bind and unbind from the interface and generate surface tension gradients through active contractility. Secondly, a droplet filled with an active polar fluid with homeotropic anchoring at the droplet interface. These two systems demonstrate spontaneous symmetry breaking and steady state dynamics resembling cell motility and division and show complex feedback mechanisms with minimal degrees of freedom. The simulations outlined here will be useful for quantifying the wide range of dynamics observable in these active systems and modelling the effects of confinement in a consistent and adaptable way. PMID:27606609
Resistive MHD and kinetic simulations of 2D magnetotail equilibria leading to reconnection onset
NASA Astrophysics Data System (ADS)
Merkin, V. G.; Sitnov, M. I.; Lyon, J.; Cassak, P.
2013-12-01
Recent progress in theory and fully kinetic particle-in-cell simulations of 2D magnetotail-like configurations has revealed an important class of equilibria, which can be unstable to ion tearing instability and eventually result in explosive dissipation of energy, fast plasma sheet flows, dipolarizations and changes in initial magnetic topology (reconnection). Such configurations are characterized by an increase of magnetic flux at the tailward end of the equilibrium state. While the instability and subsequent reconfiguration of the initial state exhibit kinetic signatures, the question remains, which parts of the process can be reproduced using reduced plasma models, e.g., resistive and Hall MHD. In this presentation we explore the stability of the new class of magnetotail equilibria to the resistive tearing mode and investigate its properties as a function of equilibrium parameters, e.g., the current sheet thickness and the amount of flux accumulation at the tailward end of the equilibrium, as well as other system parameters, e.g., resistivity and Lundquist number. We discuss comparative aspects of the system behavior in kinetic and resistive MHD simulations, in particular, what, if any, parameters of the MHD system lead to similar growth rates of the instability. Since the theoretical onset condition of the kinetic tearing mode can be expressed fully in MHD terms, we also investigate the effects of including this criterion as an additional constraint on the tearing onset in our resistive MHD simulations. This work is a first step toward inclusion of a kinetically-motivated description of reconnection onset in global MHD simulations of the magnetosphere.
Simulation and analysis of solute transport in 2D fracture/pipe networks: the SOLFRAC program.
Bodin, Jacques; Porel, Gilles; Delay, Fred; Ubertosi, Fabrice; Bernard, Stéphane; de Dreuzy, Jean-Raynald
2007-01-01
The Time Domain Random Walk (TDRW) method has been recently developed by Delay and Bodin [Delay, F. and Bodin, J., 2001. Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in fracture networks. Geophys. Res. Lett., 28(21): 4051-4054.] and Bodin et al. [Bodin, J., Porel, G. and Delay, F., 2003c. Simulation of solute transport in discrete fracture networks using the time domain random walk method. Earth Planet. Sci. Lett., 6566: 1-8.] for simulating solute transport in discrete fracture networks. It is assumed that the fracture network can reasonably be represented by a network of interconnected one-dimensional pipes (i.e. flow channels). Processes accounted for are: (1) advection and hydrodynamic dispersion in the channels, (2) matrix diffusion, (3) diffusion into stagnant zones within the fracture planes, (4) sorption reactions onto the fracture walls and in the matrix, (5) linear decay, and (6) mass sharing at fracture intersections. The TDRW method is handy and very efficient in terms of computation costs since it allows for the one-step calculation of the particle residence time in each bond of the network. This method has been programmed in C++, and efforts have been made to develop an efficient and user-friendly software, called SOLFRAC. This program is freely downloadable at the URL (labo.univ-poitiers.fr/hydrasa/intranet/telechargement.htm). It calculates solute transport into 2D pipe networks, while considering different types of injections and different concepts of local dispersion within each flow channel. Post-simulation analyses are also available, such as the mean velocity or the macroscopic dispersion at the scale of the entire network. The program may be used to evaluate how a given transport mechanism influences the macroscopic transport behaviour of fracture networks. It may also be used, as is the case, e.g., with analytical solutions, to interpret laboratory or field tracer test experiments performed
2D IR spectra of cyanide in water investigated by molecular dynamics simulations
Lee, Myung Won; Carr, Joshua K.; Göllner, Michael; Hamm, Peter; Meuwly, Markus
2013-01-01
Using classical molecular dynamics simulations, the 2D infrared (IR) spectroscopy of CN− solvated in D2O is investigated. Depending on the force field parametrizations, most of which are based on multipolar interactions for the CN− molecule, the frequency-frequency correlation function and observables computed from it differ. Most notably, models based on multipoles for CN− and TIP3P for water yield quantitatively correct results when compared with experiments. Furthermore, the recent finding that T 1 times are sensitive to the van der Waals ranges on the CN− is confirmed in the present study. For the linear IR spectrum, the best model reproduces the full widths at half maximum almost quantitatively (13.0 cm−1 vs. 14.9 cm−1) if the rotational contribution to the linewidth is included. Without the rotational contribution, the lines are too narrow by about a factor of two, which agrees with Raman and IR experiments. The computed and experimental tilt angles (or nodal slopes) α as a function of the 2D IR waiting time compare favorably with the measured ones and the frequency fluctuation correlation function is invariably found to contain three time scales: a sub-ps, 1 ps, and one on the 10-ps time scale. These time scales are discussed in terms of the structural dynamics of the surrounding solvent and it is found that the longest time scale (≈10 ps) most likely corresponds to solvent exchange between the first and second solvation shell, in agreement with interpretations from nuclear magnetic resonance measurements.
Observed and simulated power spectra of kinetic and magnetic energy retrieved with 2D inversions
NASA Astrophysics Data System (ADS)
Danilovic, S.; Rempel, M.; van Noort, M.; Cameron, R.
2016-10-01
Context. Information on the origin of internetwork magnetic field is hidden at the smallest spatial scales. Aims: We try to retrieve the power spectra with certainty to the highest spatial frequencies allowed by current instrumentation. Methods: To accomplish this, we use a 2D inversion code that is able to recover information up to the instrumental diffraction limit. Results: The retrieved power spectra have shallow slopes that extend further down to much smaller scales than has been found before. They do not seem to show any power law. The observed slopes at subgranular scales agree with those obtained from recent local dynamo simulations. Small differences are found for the vertical component of kinetic energy that suggest that observations suffer from an instrumental effect that is not taken into account. Conclusions: Local dynamo simulations quantitatively reproduce the observed magnetic energy power spectra on the scales of granulation down to the resolution limit of Hinode/SP, within the error bars inflicted by the method used and the instrumental effects replicated.
Some features of auroral electric fields as seen in 2D numerical simulations
NASA Technical Reports Server (NTRS)
Thiemann, H.; Singh, N.; Schunk, R. W.
1984-01-01
Results of 2D plasma simulations are presented and related to auroral observations. The formation of V-shaped potentials is studied with a 2 1/2 dimensional electrostatic particle-in-cell code for a magnetized plasma. It is shown that amplitudes for perpendicular electric fields are larger than for parallel electric fields, and for Te less than 100 eV, the amplitudes are comparable to the electric fields associated with the electrostatic shocks observed from the S3-3 satellite. The excitation of electrostatic ion-cyclotron EIC waves which occurs in the region below the parallel potential drop is discussed. In auroral plasmas EIC waves are observed above the V-shaped double layers in association with ion beams and field-aligned currents. The results also show that oppositely directed electric fields in the center and at the edges of the simulation region produce oppositely directed currents. Precipitating auroral ions in association with electron inverted-V events are seen by the DMSP-F6 satellite.
2D simulation of transport and degradation in the River Rhine.
Teichmann, L; Reuschenbach, P; Müller, B; Horn, H
2002-01-01
A simple 2D model has been developed for the simulation of mass transport and degradation of substances in the river Rhine. The model describes mass transport in the flow direction with a convective and a dispersive term. Transversal transport is described by segmenting the river and formulating a transversal exchange coefficient between the segments. Degradation can be formulated with any kinetics from first order to complex enzyme kinetics. The model was verified with monitoring data from the river Rhine. The hydrodynamic parameters such as dispersion coefficients and exchange coefficients were fitted to the conductivity, which was assumed to be non-degradable. The degradation term was fitted to ammonia values. The model was used to simulate measured concentrations of a readily (Aniline) and a poorly biodegradable substance (1,4-Dioxan) 10 m from the left river bank. It was the objective of this research program to develop a model which allows a realistic estimation of the locally and regionally predicted environmental concentration of chemical substances in the EU risk assessment scheme.
A Comparison of 2D to 3D Hydro Simulations of Asteroid Mitigation by a Strong Surface Explosion
NASA Astrophysics Data System (ADS)
Weaver, R.; Dearholdt, W.
2011-12-01
Disruption of a potentially hazardous object (PHO) by an energetic surface or subsurface burst is considered as one possible method of impact-hazard mitigation. This technique of employing surface or subsurface explosions has been popularized in the media but is probably one of the lower priority deflection/disruption methods, unless the warning time is short. In all of our current simulation we use realistic RADAR shape models for the initial geometry, not merely spherical objects. The non-sphericity of the geometry is very important in the resultant shock hydrodynamic evolution. This work is a follow-on to previous 2D simulations with the RAGE hydrocode to simulate the imparted momentum as a function of depth-of-burial (DOB) on a non-spherical "rubble pile" composition. Specifically, here, we have started a full 3D simulation of a 1 Mt surface explosion on a porous (~40% porosity) "rubble pile" model in the shape of asteroid 25143 Itokawa. This simulation has progressed far enough to start comparisons between the 2D and 3D runs of this model. There are significant changes in the 3D geometry that reduce the momentum imparted to the asteroid in these RAGE simulations. I will discuss this set of simulations, give some background results from previous 2D simulations and indicate the differences between 2D and 3D simulations.
2-D spectral element simulations of destructive ground shaking in Catania (Italy)
NASA Astrophysics Data System (ADS)
Priolo, Enrico
This study wants to estimate the strong ground motion in the municipal area of Catania (Italy) for a catastrophic earthquake scenario. It is part of a larger research program funded by the National Research Council - National Group for the Defence Against Earthquakes (CNR-GNDT), The Catania Project, devoted to evaluating the seismic risk of a highly urbanised area, such as that of Catania, located in a seismically active region. The reference earthquake simulates the catastrophic event (M 7.2) of 1693. The ground shaking is computed solving the 2-D full-wave equation by the Chebyshev spectral element method (SPEM). Particular emphasis is given to the construction of realistic structural models, also including the finest local detail, obtained from the geophysical, geological and geotechnical data available. Simulations are performed for several sources, to account for both a change in source position and orientation, and the finite extension of the fault along its dip. Synthetic seismograms and peak ground acceleration (PGA) envelopes, calculated at the surface for four transects across the Catania area, constitute the main result of this study which can be used for practical purposes. Simulations show that ground motion is strongly influenced by both source characteristics and crustal structure. We have found that PGA values range between 0.1 g and 0.5 g, although particular site conditions strongly affect these values locally. For example, the frequencies of maximum interest in civil engineering (1.5-4 Hz) are enhanced selectively by a thick portion of surface sediments (i.e., 30-100 m for an average shear wave velocity of 500-600 m/s). An unexpected feature is the appreciable increase of PGA at large epicentral distances, which contradicts classical attenuation relations. All the results are examined through an analysis of the propagating wavefield.
Using high resolution bathymetric lidar data for a Telemac2D simulation
NASA Astrophysics Data System (ADS)
Dobler, Wolfgang; Baran, Ramona; Steinbacher, Frank; Ritter, Marcel; Aufleger, Markus
2014-05-01
Knowledge about the hydraulic situation in a mountain torrent is relevant to quantify flood risks, to study sediment transport and to assess the waterbodies' ecology. To conduct reliable calculations, high-quality terrain data of riverbeds, riverbanks and floodplains are required. Typically, digital terrain models (DTMs) of floodplains are derived from classical airborne laserscanning (red wavelength) together with terrestrial surveys along riverbeds and riverbanks. Usually, these are restricted to a limited number of cross sections. Terrestrial surveys are required since laser measurement systems cannot penetrate the water column of the observed waterbodies. Consequently, data describing the geometry of riverbeds and bank structures are hardly available at high spatial resolutions and extents, comparable to the airborne-laser scanning derived data for river floodplains. In this study, a newly available, water-penetrating airborne laser system (green wavelength, FFG research project between the University of Innsbruck and Riegl LMS) was used to survey a mountain torrent. Detailed and extensive data (~30 points/m² on topo-bathy side) of the riverbed and the riverbanks were acquired with this single sensor. In order to construct a 2D-Telemac simulation, the point cloud was down-sampled to an appropriate resolution required for the simulation. The creation of the mesh was carried out with the Software HydroVish and imported into Blue Kenue for further boundary treatment. On one hand the calibration of the numerical model was based on a known water discharge-rate and on the other on abundant data points of the water surface. The green laser system demonstrates its great potential for such an analysis. The final results of the numerical simulation show clearly the supremacy of using such a high resolution data basis in contrast to the traditional way of terrestrial surveying of cross sections along riverbeds.
NASA Astrophysics Data System (ADS)
Wu, C.; Chang, T.
2010-12-01
A new method in describing the multifractal characteristics of intermittent events was introduced by Cheng and Wu [Chang T. and Wu C.C., Physical Rev, E77, 045401(R), 2008]. The procedure provides a natural connection between the rank-ordered spectrum and the idea of one-parameter scaling for monofractals. This technique has been demonstrated using results obtained from a 2D MHD simulation. It has also been successfully applied to in-situ solar wind observations [Chang T., Wu, C.C. and Podesta, J., AIP Conf Proc. 1039, 75, 2008], and the broadband electric field oscillations from the auroral zone [Tam, S.W.Y. et al., Physical Rev, E81, 036414, 2010]. We take the next step in this procedure. By using the ROMA spectra and the scaled probability distribution functions (PDFs), raw PDFs can be calculated, which can be compared directly with PDFs from observations or simulation results. In addition to 2D MHD simulation results and in-situ solar wind observation, we show clearly using the ROMA analysis the multifractal character of the 3D fluid simulation data obtained from the JHU turbulence database cluster at http://turbulence.pha.jhu.edu. In particular, we show the scaling of the non-symmetrical PDF for the parallel-velocity fluctuations of this 3D fluid data.
Towards Simulating the Transverse Ising Model in a 2D Array of Trapped Ions
NASA Astrophysics Data System (ADS)
Sawyer, Brian
2013-05-01
Two-dimensional Coulomb crystals provide a useful platform for large-scale quantum simulation. Penning traps enable confinement of large numbers of ions (>100) and allow for the tunable-range spin-spin interactions demonstrated in linear ion strings, facilitating simulation of quantum magnetism at a scale that is currently intractable on classical computers. We readily confine hundreds of Doppler laser-cooled 9Be+ within a Penning trap, producing a planar array of ions with self-assembled triangular order. The transverse ``drumhead'' modes of our 2D crystal along with the valence electron spin of Be+ serve as a resource for generating spin-motion and spin-spin entanglement. Applying a spin-dependent optical dipole force (ODF) to the ion array, we perform spectroscopy and thermometry of individual drumhead modes. This ODF also allows us to engineer long-range Ising spin couplings of either ferromagnetic or anti-ferromagnetic character whose approximate power-law scaling with inter-ion distance, d, may be varied continuously from 1 /d0 to 1 /d3. An effective transverse magnetic field is applied via microwave radiation at the ~124-GHz spin-flip frequency, and ground states of the effective Ising Hamiltonian may in principle be prepared adiabatically by slowly decreasing this transverse field in the presence of the induced Ising coupling. Long-range anti-ferromagnetic interactions are of particular interest due to their inherent spin frustration and resulting large, near-degenerate manifold of ground states. We acknowledge support from NIST and the DARPA-OLE program.
Icarus: A 2-D Direct Simulation Monte Carlo (DSMC) Code for Multi-Processor Computers
BARTEL, TIMOTHY J.; PLIMPTON, STEVEN J.; GALLIS, MICHAIL A.
2001-10-01
Icarus is a 2D Direct Simulation Monte Carlo (DSMC) code which has been optimized for the parallel computing environment. The code is based on the DSMC method of Bird[11.1] and models from free-molecular to continuum flowfields in either cartesian (x, y) or axisymmetric (z, r) coordinates. Computational particles, representing a given number of molecules or atoms, are tracked as they have collisions with other particles or surfaces. Multiple species, internal energy modes (rotation and vibration), chemistry, and ion transport are modeled. A new trace species methodology for collisions and chemistry is used to obtain statistics for small species concentrations. Gas phase chemistry is modeled using steric factors derived from Arrhenius reaction rates or in a manner similar to continuum modeling. Surface chemistry is modeled with surface reaction probabilities; an optional site density, energy dependent, coverage model is included. Electrons are modeled by either a local charge neutrality assumption or as discrete simulational particles. Ion chemistry is modeled with electron impact chemistry rates and charge exchange reactions. Coulomb collision cross-sections are used instead of Variable Hard Sphere values for ion-ion interactions. The electro-static fields can either be: externally input, a Langmuir-Tonks model or from a Green's Function (Boundary Element) based Poison Solver. Icarus has been used for subsonic to hypersonic, chemically reacting, and plasma flows. The Icarus software package includes the grid generation, parallel processor decomposition, post-processing, and restart software. The commercial graphics package, Tecplot, is used for graphics display. All of the software packages are written in standard Fortran.
Debris Flow Hazard Map Simulation using FLO-2D For Selected Areas in the Philippines
NASA Astrophysics Data System (ADS)
Khallil Ferrer, Peter; Llanes, Francesca; dela Resma, Marvee; Realino, Victoriano, II; Obrique, Julius; Ortiz, Iris Jill; Aquino, Dakila; Narod Eco, Rodrigo; Mahar Francisco Lagmay, Alfredo
2014-05-01
On December 4, 2012, Super Typhoon Bopha wreaked havoc in the southern region of Mindanao, leaving 1,067 people dead and causing USD 800 million worth of damage. Classified as a Category 5 typhoon by the Joint Typhoon Warning Center (JTWC), Bopha brought intense rainfall and strong winds that triggered landslides and debris flows, particularly in Barangay (village) Andap, New Bataan municipality, in the southern Philippine province of Compostela Valley. The debris flow destroyed school buildings and covered courts and an evacuation center. Compostela Valley also suffered the most casualties of any province: 612 out of a total of 1,067. In light of the disaster in Compostela, measures were immediately devised to improve available geohazard maps to raise public awareness about landslides and debris flows. A debris flow is a very rapid to extremely rapid flow of saturated non-plastic debris in a steep channel. They are generated when heavy rainfall saturates sediments, causing them to flow down river channels within an alluvial fan situated at the base of the slope of a mountain drainage network. Many rural communities in the Philippines, such as Barangay Andap, are situated at the apex of alluvial fans and in the path of potential debris flows. In this study, we conducted simulations of debris flows to assess the risks in inhabited areas throughout the Philippines and validated the results in the field, focusing on the provinces of Pangasinan and Aurora as primary examples. Watersheds that drain in an alluvial fan using a 10-m resolution Synthetic Aperture Radar (SAR)-derived Digital Elevation Model (DEM) was first delineated, and then a 1 in 100-year rain return rainfall scenario for the watershed was used to simulate debris flows using FLO-2D, a flood-routing software. The resulting simulations were used to generate debris flow hazard maps which are consistent with danger zones in alluvial fans delineated previously from satellite imagery and available DEMs. The
NASA Astrophysics Data System (ADS)
Kim, Ho Jun; Lee, Hae June
2016-06-01
The wide applicability of capacitively coupled plasma (CCP) deposition has increased the interest in developing comprehensive numerical models, but CCP imposes a tremendous computational cost when conducting a transient analysis in a three-dimensional (3D) model which reflects the real geometry of reactors. In particular, the detailed flow features of reactive gases induced by 3D geometric effects need to be considered for the precise calculation of radical distribution of reactive species. Thus, an alternative inclusive method for the numerical simulation of CCP deposition is proposed to simulate a two-dimensional (2D) CCP model based on the 3D gas flow results by simulating flow, temperature, and species fields in a 3D space at first without calculating the plasma chemistry. A numerical study of a cylindrical showerhead-electrode CCP reactor was conducted for particular cases of SiH4/NH3/N2/He gas mixture to deposit a hydrogenated silicon nitride (SiN x H y ) film. The proposed methodology produces numerical results for a 300 mm wafer deposition reactor which agree very well with the deposition rate profile measured experimentally along the wafer radius.
Extension of Generalized Fluid System Simulation Program's Fluid Property Database
NASA Technical Reports Server (NTRS)
Patel, Kishan
2011-01-01
This internship focused on the development of additional capabilities for the General Fluid Systems Simulation Program (GFSSP). GFSSP is a thermo-fluid code used to evaluate system performance by a finite volume-based network analysis method. The program was developed primarily to analyze the complex internal flow of propulsion systems and is capable of solving many problems related to thermodynamics and fluid mechanics. GFSSP is integrated with thermodynamic programs that provide fluid properties for sub-cooled, superheated, and saturation states. For fluids that are not included in the thermodynamic property program, look-up property tables can be provided. The look-up property tables of the current release version can only handle sub-cooled and superheated states. The primary purpose of the internship was to extend the look-up tables to handle saturated states. This involves a) generation of a property table using REFPROP, a thermodynamic property program that is widely used, and b) modifications of the Fortran source code to read in an additional property table containing saturation data for both saturated liquid and saturated vapor states. Also, a method was implemented to calculate the thermodynamic properties of user-fluids within the saturation region, given values of pressure and enthalpy. These additions required new code to be written, and older code had to be adjusted to accommodate the new capabilities. Ultimately, the changes will lead to the incorporation of this new capability in future versions of GFSSP. This paper describes the development and validation of the new capability.
Engineering Fracking Fluids with Computer Simulation
NASA Astrophysics Data System (ADS)
Shaqfeh, Eric
2015-11-01
There are no comprehensive simulation-based tools for engineering the flows of viscoelastic fluid-particle suspensions in fully three-dimensional geometries. On the other hand, the need for such a tool in engineering applications is immense. Suspensions of rigid particles in viscoelastic fluids play key roles in many energy applications. For example, in oil drilling the ``drilling mud'' is a very viscous, viscoelastic fluid designed to shear-thin during drilling, but thicken at stoppage so that the ``cuttings'' can remain suspended. In a related application known as hydraulic fracturing suspensions of solids called ``proppant'' are used to prop open the fracture by pumping them into the well. It is well-known that particle flow and settling in a viscoelastic fluid can be quite different from that which is observed in Newtonian fluids. First, it is now well known that the ``fluid particle split'' at bifurcation cracks is controlled by fluid rheology in a manner that is not understood. Second, in Newtonian fluids, the presence of an imposed shear flow in the direction perpendicular to gravity (which we term a cross or orthogonal shear flow) has no effect on the settling of a spherical particle in Stokes flow (i.e. at vanishingly small Reynolds number). By contrast, in a non-Newtonian liquid, the complex rheological properties induce a nonlinear coupling between the sedimentation and shear flow. Recent experimental data have shown both the shear thinning and the elasticity of the suspending polymeric solutions significantly affects the fluid-particle split at bifurcations, as well as the settling rate of the solids. In the present work, we use the Immersed Boundary Method to develop computer simulations of viscoelastic flow in suspensions of spheres to study these problems. These simulations allow us to understand the detailed physical mechanisms for the remarkable physical behavior seen in practice, and actually suggest design rules for creating new fluid recipes.
NASA Technical Reports Server (NTRS)
Shie, Chung-Lin; Tao, Wei-Kuo; Simpson, Joanne
2003-01-01
The 1999 Kwajalein Atoll field experiment (KWAJEX), one of several major TRMM (Tropical Rainfall Measuring Mission) field experiments, has successfully obtained a wealth of information and observation data on tropical convective systems over the western Central Pacific region. In this paper, clouds and convective systems that developed during three active periods (Aug 7-12, Aug 17-21, and Aug 29-Sep 13) around Kwajalein Atoll site are simulated using both 2D and 3D Goddard Cumulus Ensemble (GCE) models. Based on numerical results, the clouds and cloud systems are generally unorganized and short lived. These features are validated by radar observations that support the model results. Both the 2D and 3D simulated rainfall amounts and their stratiform contribution as well as the heat, water vapor, and moist static energy budgets are examined for the three convective episodes. Rainfall amounts are quantitatively similar between the two simulations, but the stratiform contribution is considerably larger in the 2D simulation. Regardless of dimension, fo all three cases, the large-scale forcing and net condensation are the two major physical processes that account for the evolution of the budgets with surface latent heat flux and net radiation solar and long-wave radiation)being secondary processes. Quantitative budget differences between 2D and 3D as well as between various episodes will be detailed.Morover, simulated radar signatures and Q1/Q2 fields from the three simulations are compared to each other and with radar and sounding observations.
2D simulations of transport dynamics during tokamak fuelling by supersonic molecular beam injection
NASA Astrophysics Data System (ADS)
Wang, Z. H.; Xu, X. Q.; Xia, T. Y.; Rognlien, T. D.
2014-04-01
Time-dependent transport of both plasma and neutrals is simulated during supersonic molecular beam injection (SMBI) yielding the evolution of edge plasma and neutral profiles. The SMBI model is included as a module, called trans-neut, within the original BOUT++ boundary plasma turbulence code. Results of calculations are reported for the realistic divertor geometry of the HL-2A tokamak. The model can also be used to study the effect of gas puffing. A seven-field fluid model couples plasma density, heat, and momentum transport equations together with neutral density and momentum transport equations for both molecules and atoms. Collisional interactions between molecules, atoms, and plasma include dissociation, ionization, recombination and charge-exchange effects. Sheath boundary conditions and particle recycling are applied at both the wall and the divertor plates. A localized boundary condition of constant molecular flux (product of density times speed) is applied at the outermost flux surface to model the SMBI. Steady state profiles with and without particle recycling are achieved before SMBI. During SMBI, the simulation shows that neutrals can penetrate several centimetres inside the last closed (magnetic) flux surface (LCFS). Along the SMBI path, plasma density increases while plasma temperature decreases. The molecule penetration depth depends on both the SMBI flux and the initial plasma density and temperature along its path. As the local plasma density increases substantially, molecule and atom penetration depths decrease due to their higher dissociation and ionization rates if the electron temperature does not drop too low. Dynamic poloidal spreading of the enhanced plasma density region is observed due to rapid ion flow along the magnetic field (parallel) driven by a parallel pressure asymmetry during SMBI. Profile relaxation in the radial and poloidal directions is simulated after SMBI termination, showing that the plasma returns to pre-SMBI conditions on
NASA Technical Reports Server (NTRS)
Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.
1994-01-01
A two-dimensional computational code, PRLUS2D, which was developed for the reactive propulsive flows of ramjets and scramjets, was validated for two-dimensional shock-wave/turbulent-boundary-layer interactions. The problem of compression corners at supersonic speeds was solved using the RPLUS2D code. To validate the RPLUS2D code for hypersonic speeds, it was applied to a realistic hypersonic inlet geometry. Both the Baldwin-Lomax and the Chien two-equation turbulence models were used. Computational results showed that the RPLUS2D code compared very well with experimentally obtained data for supersonic compression corner flows, except in the case of large separated flows resulting from the interactions between the shock wave and turbulent boundary layer. The computational results compared well with the experiment results in a hypersonic NASA P8 inlet case, with the Chien two-equation turbulence model performing better than the Baldwin-Lomax model.
Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT
Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T. H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew
2016-08-25
We derived a consistent “2D/1D” neutron transport method from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. Our paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. We also performed several applications on both leadership-class and industry-classmore » computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.« less
NASA Astrophysics Data System (ADS)
Polukhin, V. A.; Kurbanova, E. D.
2016-02-01
Molecular dynamics simulation is used to study the thermal stability of the interfacial states of metallic Al, Ag, Sn, Pb, and Hg films (i.e., the structural elements of superconductor composites and conducting electrodes) reinforced by 2D graphene and silicene crystals upon heating up to disordering and to analyze the formation of nonautonomous fluid pseudophases in interfaces. The effect of perforation defects in reinforcing 2D-C and 2D-Si planes with passivated edge covalent bonds on the atomic dynamics is investigated. As compared to Al and Ag, the diffusion coefficients in Pd and Hg films increase monotonically with temperature during thermally activated disordering processes, the interatomic distances decrease, the sizes decrease, drops form, and their density profile grows along the normal. The coagulation of Pb and Hg drops is accompanied by a decrease in the contact angle, the reduction of the interface contact with graphene, and the enhancement of its corrugation (waviness).
NASA Astrophysics Data System (ADS)
Suzuki, Y.; KOYAGUCHI, T.; OGAWA, M.; Hachisu, I.
2001-05-01
Mixing of eruption cloud and air is one of the most important processes for eruption cloud dynamics. The critical condition of eruption types (eruption column or pyroclastic flow) depends on efficiency of mixing of eruption cloud and the ambient air. However, in most of the previous models (e.g., Sparks,1986; Woods, 1988), the rate of mixing between cloud and air is taken into account by introducing empirical parameters such as entrainment coefficient or turbulent diffusion coefficient. We developed a numerical model of 2-D (axisymmetrical) eruption columns in order to simulate the turbulent mixing between eruption column and air. We calculated the motion of an eruption column from a circular vent on the flat surface of the earth. Supposing that relative velocity of gas and ash particles is sufficiently small, we can treat eruption cloud as a single gas. Equation of state (EOS) for the mixture of the magmatic component (i.e. volcanic gas plus pyroclasts) and air can be expressed by EOS for an ideal gas, because volume fraction of the gas phase is very large. The density change as a function of mixing ratio between air and the magmatic component has a strong non-linear feature, because the density of the mixture drastically decreases as entrained air expands by heating. This non-linear feature can be reproduced by changing the gas constant and the ratio of specific heat in EOS for ideal gases; the molecular weight increases and the ratio of specific heat approaches 1 as the magmatic component increases. It is assumed that the dynamics of eruption column follows the Euler equation, so that no viscous effect except for the numerical viscosity is taken into account. Roe scheme (a general TVD scheme for compressible flow) is used in order to simulate the generation of shock waves inside and around the eruption column. The results show that many vortexes are generated around the boundary between eruption cloud and air, which results in violent mixing. When the size of
NASA Astrophysics Data System (ADS)
Wang, X.; Cai, M.
2016-11-01
A nonlinear velocity model that considers the influence of confinement and rock mass failure on wave velocity is developed. A numerical method, which couples FLAC and SPECFEM2D, is developed for ground motion modeling near excavation boundaries in underground mines. The motivation of developing the FLAC/SPECFEM2D coupled approach is to take merits of each code, such as the stress analysis capability in FLAC and the powerful wave propagation analysis capability in SPECFEM2D. Because stress redistribution and failure of the rock mass around an excavation are considered, realistic non-uniform velocity fields for the SPECFEM2D model can be obtained, and this is a notable feature of this study. Very large differences in wavefields and ground motion are observed between the results from the non-uniform and the uniform velocity models. If the non-uniform velocity model is used, the ground motion around a stope can be amplified up to five times larger than that given by the design scaling law. If a uniform velocity model is used, the amplification factor is only about three. Using the FLAC/SPECFEM2D coupled modeling approach, accurate velocity models can be constructed and this in turn will assist in predicting ground motions accurately around underground excavations.
Physically-Based Modelling and Real-Time Simulation of Fluids.
NASA Astrophysics Data System (ADS)
Chen, Jim Xiong
1995-01-01
Simulating physically realistic complex fluid behaviors presents an extremely challenging problem for computer graphics researchers. Such behaviors include the effects of driving boats through water, blending differently colored fluids, rain falling and flowing on a terrain, fluids interacting in a Distributed Interactive Simulation (DIS), etc. Such capabilities are useful in computer art, advertising, education, entertainment, and training. We present a new method for physically-based modeling and real-time simulation of fluids in computer graphics and dynamic virtual environments. By solving the 2D Navier -Stokes equations using a CFD method, we map the surface into 3D using the corresponding pressures in the fluid flow field. This achieves realistic real-time fluid surface behaviors by employing the physical governing laws of fluids but avoiding extensive 3D fluid dynamics computations. To complement the surface behaviors, we calculate fluid volume and external boundary changes separately to achieve full 3D general fluid flow. To simulate physical activities in a DIS, we introduce a mechanism which uses a uniform time scale proportional to the clock-time and variable time-slicing to synchronize physical models such as fluids in the networked environment. Our approach can simulate many different fluid behaviors by changing the internal or external boundary conditions. It can model different kinds of fluids by varying the Reynolds number. It can simulate objects moving or floating in fluids. It can also produce synchronized general fluid flows in a DIS. Our model can serve as a testbed to simulate many other fluid phenomena which have never been successfully modeled previously.
2-D and 3-D numerical simulation of a supersonic inlet flowfield
NASA Astrophysics Data System (ADS)
Enomoto, Shunji; Arakawa, Chuichi
The 2-D and 3-D steady, Reynolds-averaged Navier-Stokes equations were numerically solved for the flowfields in an experimentally tested inlet model with bleed through a cavity. In the 2-D analysis, a normal shock was located at diffuser inlet instead of the position below the cavity. The normal shock in the middle of the diffuser caused a massive separation of the boundary layer and a large total pressure loss. In the 3-D analysis, the shock wave was distorted by the side wall boundary layer separation, and the complex flow structure was established. The result of the 3-D analysis agreed well with the experiment.
Geophysical Fluid Flow Cell (GFFC) Simulation
NASA Technical Reports Server (NTRS)
1999-01-01
These simulations of atmospheric flow use the same experimental parameters but started with slightly different initial conditions in the model. The simulations were part of data analysis for the Geophysical Fluid Flow Cell (GFFC), a planet in a test tube apparatus flown on Spacelab to mimic the atmospheres on gas giant planets and stars. (Credit: Dr. Tim Miller of Global Hydrology and Climate Center at the Marshall Space Flight Center)
Monte Carlo simulations of fluid vesicles.
Sreeja, K K; Ipsen, John H; Sunil Kumar, P B
2015-07-15
Lipid vesicles are closed two dimensional fluid surfaces that are studied extensively as model systems for understanding the physical properties of biological membranes. Here we review the recent developments in the Monte Carlo techniques for simulating fluid vesicles and discuss some of their applications. The technique, which treats the membrane as an elastic sheet, is most suitable for the study of large scale conformations of membranes. The model can be used to study vesicles with fixed and varying topologies. Here we focus on the case of multi-component membranes with the local lipid and protein composition coupled to the membrane curvature leading to a variety of shapes. The phase diagram is more intriguing in the case of fluid vesicles having an in-plane orientational order that induce anisotropic directional curvatures. Methods to explore the steady state morphological structures due to active flux of materials have also been described in the context of Monte Carlo simulations. PMID:26087479
Monte Carlo simulations of fluid vesicles
NASA Astrophysics Data System (ADS)
Sreeja, K. K.; Ipsen, John H.; Kumar, P. B. Sunil
2015-07-01
Lipid vesicles are closed two dimensional fluid surfaces that are studied extensively as model systems for understanding the physical properties of biological membranes. Here we review the recent developments in the Monte Carlo techniques for simulating fluid vesicles and discuss some of their applications. The technique, which treats the membrane as an elastic sheet, is most suitable for the study of large scale conformations of membranes. The model can be used to study vesicles with fixed and varying topologies. Here we focus on the case of multi-component membranes with the local lipid and protein composition coupled to the membrane curvature leading to a variety of shapes. The phase diagram is more intriguing in the case of fluid vesicles having an in-plane orientational order that induce anisotropic directional curvatures. Methods to explore the steady state morphological structures due to active flux of materials have also been described in the context of Monte Carlo simulations.
Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems
1994-06-20
FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors, gasifiers, and FCC (Fluid Catalytic Cracker) reactors.
Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems
1994-06-20
FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors,more » gasifiers, and FCC (Fluid Catalytic Cracker) reactors.« less
NASA Technical Reports Server (NTRS)
Proffitt, M. H.; Solomon, S.; Loewenstein, M.
1992-01-01
A linear reference relationship between O3 and N2O has been used to estimate polar winter O3 loss from aircraft data taken in the lower stratosphere. Here, this relationship is evaluated at high latitudes by comparing it with a 2D model simulation and with NIMBUS 7 satellite measurements. Although comparisons with satellite measurements are limited to January through May, the model simulations are compared during other seasons. The model simulations and the satellite data are found to be consistent with the winter O3 loss analysis. It is shown that such analyses are likely to be inappropriate during other seasons.
Justification for a 2D versus 3D fingertip finite element model during static contact simulations.
Harih, Gregor; Tada, Mitsunori; Dolšak, Bojan
2016-10-01
The biomechanical response of a human hand during contact with various products has not been investigated in details yet. It has been shown that excessive contact pressure on the soft tissue can result in discomfort, pain and also cumulative traumatic disorders. This manuscript explores the benefits and limitations of a simplified two-dimensional vs. an anatomically correct three-dimensional finite element model of a human fingertip. Most authors still use 2D FE fingertip models due to their simplicity and reduced computational costs. However we show that an anatomically correct 3D FE fingertip model can provide additional insight into the biomechanical behaviour. The use of 2D fingertip FE models is justified when observing peak contact pressure values as well as displacement during the contact for the given studied cross-section. On the other hand, an anatomically correct 3D FE fingertip model provides a contact pressure distribution, which reflects the fingertip's anatomy.
Simulation of multi-steps thermal transition in 2D spin-crossover nanoparticles
NASA Astrophysics Data System (ADS)
Jureschi, Catalin-Maricel; Pottier, Benjamin-Louis; Linares, Jorge; Richard Dahoo, Pierre; Alayli, Yasser; Rotaru, Aurelian
2016-04-01
We have used an Ising like model to study the thermal behavior of a 2D spin crossover (SCO) system embedded in a matrix. The interaction parameter between edge SCO molecules and its local environment was included in the standard Ising like model as an additional term. The influence of the system's size and the ratio between the number of edge molecules and the other molecules were also discussed.
EDGE2D Simulations of JET{sup 13}C Migration Experiments
J.D. Strachan; J.P. Coad; G. Corrigan; G.F. Matthews; J. Spence
2004-06-16
Material migration has received renewed interest due to tritium retention associated with carbon transport to remote vessel locations. Those results influence the desirability of carbon usage on ITER. Subsequently, additional experiments have been performed, including tracer experiments attempting to identify material migration from specific locations. In this paper, EDGE2D models a well-diagnosed JET{sup 13}C tracer migration experiment. The role of SOL flows upon the migration patterns is identified.
Geomechanical Simulation of Fluid-Driven Fractures
Makhnenko, R.; Nikolskiy, D.; Mogilevskaya, S.; Labuz, J.
2012-11-30
The project supported graduate students working on experimental and numerical modeling of rock fracture, with the following objectives: (a) perform laboratory testing of fluid-saturated rock; (b) develop predictive models for simulation of fracture; and (c) establish educational frameworks for geologic sequestration issues related to rock fracture. These objectives were achieved through (i) using a novel apparatus to produce faulting in a fluid-saturated rock; (ii) modeling fracture with a boundary element method; and (iii) developing curricula for training geoengineers in experimental mechanics, numerical modeling of fracture, and poroelasticity.
Sidler, Rolf; Carcione, José M.; Holliger, Klaus
2013-02-15
We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge–Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid–solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently benchmarked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.
A 2D finite element simulation of liquid coupled ultrasonic NDT system
NASA Astrophysics Data System (ADS)
Bilgunde, Prathamesh N.; Bond, Leonard J.
2015-03-01
The aim of this work is to improve modelling capabilities and reliability of wave propagation models using a commercial finite element package (COMSOL). The current model focusses on investigating the error and accuracy with the change in spatial and temporal discretization. To increase the reliability and inclusiveness of the finite element method, wave propagation has been modelled in solid medium with a cylindrical defect (side drilled hole), in a fluid medium and in a fluid-solid immersion model. The numerical predictions are validated through comparisons with available analytical solutions and experimental data. The model is being developed to incorporate additional complexity and ranges of properties, including operation at elevated temperature.
NASA Astrophysics Data System (ADS)
Elangovan, Premkumar; Warren, Lucy M.; Mackenzie, Alistair; Rashidnasab, Alaleh; Diaz, Oliver; Dance, David R.; Young, Kenneth C.; Bosmans, Hilde; Strudley, Celia J.; Wells, Kevin
2014-08-01
Planar 2D x-ray mammography is generally accepted as the preferred screening technique used for breast cancer detection. Recently, digital breast tomosynthesis (DBT) has been introduced to overcome some of the inherent limitations of conventional planar imaging, and future technological enhancements are expected to result in the introduction of further innovative modalities. However, it is crucial to understand the impact of any new imaging technology or methodology on cancer detection rates and patient recall. Any such assessment conventionally requires large scale clinical trials demanding significant investment in time and resources. The concept of virtual clinical trials and virtual performance assessment may offer a viable alternative to this approach. However, virtual approaches require a collection of specialized modelling tools which can be used to emulate the image acquisition process and simulate images of a quality indistinguishable from their real clinical counterparts. In this paper, we present two image simulation chains constructed using modelling tools that can be used for the evaluation of 2D-mammography and DBT systems. We validate both approaches by comparing simulated images with real images acquired using the system being simulated. A comparison of the contrast-to-noise ratios and image blurring for real and simulated images of test objects shows good agreement ( < 9% error). This suggests that our simulation approach is a promising alternative to conventional physical performance assessment followed by large scale clinical trials.
Elangovan, Premkumar; Warren, Lucy M; Mackenzie, Alistair; Rashidnasab, Alaleh; Diaz, Oliver; Dance, David R; Young, Kenneth C; Bosmans, Hilde; Strudley, Celia J; Wells, Kevin
2014-08-01
Planar 2D x-ray mammography is generally accepted as the preferred screening technique used for breast cancer detection. Recently, digital breast tomosynthesis (DBT) has been introduced to overcome some of the inherent limitations of conventional planar imaging, and future technological enhancements are expected to result in the introduction of further innovative modalities. However, it is crucial to understand the impact of any new imaging technology or methodology on cancer detection rates and patient recall. Any such assessment conventionally requires large scale clinical trials demanding significant investment in time and resources. The concept of virtual clinical trials and virtual performance assessment may offer a viable alternative to this approach. However, virtual approaches require a collection of specialized modelling tools which can be used to emulate the image acquisition process and simulate images of a quality indistinguishable from their real clinical counterparts. In this paper, we present two image simulation chains constructed using modelling tools that can be used for the evaluation of 2D-mammography and DBT systems. We validate both approaches by comparing simulated images with real images acquired using the system being simulated. A comparison of the contrast-to-noise ratios and image blurring for real and simulated images of test objects shows good agreement ( < 9% error). This suggests that our simulation approach is a promising alternative to conventional physical performance assessment followed by large scale clinical trials.
Automated Fluid Feature Extraction from Transient Simulations
NASA Technical Reports Server (NTRS)
Haimes, Robert; Lovely, David
1999-01-01
In the past, feature extraction and identification were interesting concepts, but not required to understand the underlying physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of much interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snap-shot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense. The following is a list of the important physical phenomena found in transient (and steady-state) fluid flow: (1) Shocks, (2) Vortex cores, (3) Regions of recirculation, (4) Boundary layers, (5) Wakes. Three papers and an initial specification for the (The Fluid eXtraction tool kit) FX Programmer's guide were included. The papers, submitted to the AIAA Computational Fluid Dynamics Conference, are entitled : (1) Using Residence Time for the Extraction of Recirculation Regions, (2) Shock Detection from Computational Fluid Dynamics results and (3) On the Velocity Gradient Tensor and Fluid Feature Extraction.
Multi-layered coarse grid modelling in 2D urban flood simulations
NASA Astrophysics Data System (ADS)
Chen, Albert S.; Evans, Barry; Djordjević, Slobodan; Savić, Dragan A.
2012-11-01
SummaryRegular grids are commonly used in 2D flood modelling due to wide availability of terrain models and low pre-processing required for input preparation. Despite advances in both computing software and hardware, high resolution flood modelling remains computationally demanding when applied to a large study area when the available time and resources are limited. Traditional grid coarsening approach may reduce not only the computing demands, but also the accuracy of results due to the loss of detailed information. To keep key features that affect flow propagation within coarse grid, the approach proposed and tested in this paper adopts multiple layers in flood modelling to reflect individual flow paths separated by buildings within a coarse grid cell. The cell in each layer has its own parameters (elevation, roughness, building coverage ratio, and conveyance reduction factors) to describe itself and the conditions at boundaries with neighbourhood cells. Results of tests on the synthetic case study and the real world urban area show that the proposed multi-layered approach greatly improves the accuracy of coarse grid modelling with an insignificant additional computing cost. The proposed approach has been tested in conjunction with the UIM model by taking the high resolution results as the benchmark. The implementation of the proposed multi-layered methodology to any regular grid based 2D model would be straightforward.
Karavitis, G.A.
1984-01-01
The SIMSYS2D two-dimensional water-quality simulation system is a large-scale digital modeling software system used to simulate flow and transport of solutes in freshwater and estuarine environments. Due to the size, processing requirements, and complexity of the system, there is a need to easily move the system and its associated files between computer sites when required. A series of job control language (JCL) procedures was written to allow transferability between IBM and IBM-compatible computers. (USGS)
SEM simulation for 2D and 3D inspection metrology and defect review
NASA Astrophysics Data System (ADS)
Levi, Shimon; Schwartsband, Ishai; Khristo, Sergey; Ivanchenko, Yan; Adan, Ofer
2014-03-01
Advanced SEM simulation has become a key element in the ability of SEM inspection, metrology and defect review to meet the challenges of advanced technologies. It grants additional capabilities to the end user, such as 3D height measurements, accurate virtual metrology, and supports Design Based Metrology to bridge the gap between design layout and SEM image. In this paper we present SEM simulations capabilities, which take into consideration all parts of the SEM physical and electronic path, interaction between Electron beam and material, multi perspective SEM imaging and shadowing derived from proximity effects caused by the interaction of the Secondary Electrons signal with neighboring pattern edges. Optimizing trade-off between simulation accuracy, calibration procedures and computational complexity, the simulation is running in real-time with minimum impact on throughput. Experiment results demonstrate Height measurement capacities, and CAD based simulated pattern is compared with SEM image to evaluate simulated pattern fidelity.
Simulation of Ultra-Small MOSFETs Using a 2-D Quantum-Corrected Drift-Diffusion Model
NASA Technical Reports Server (NTRS)
Biegal, Bryan A.; Rafferty, Connor S.; Yu, Zhiping; Ancona, Mario G.; Dutton, Robert W.; Saini, Subhash (Technical Monitor)
1998-01-01
The continued down-scaling of electronic devices, in particular the commercially dominant MOSFET, will force a fundamental change in the process of new electronics technology development in the next five to ten years. The cost of developing new technology generations is soaring along with the price of new fabrication facilities, even as competitive pressure intensifies to bring this new technology to market faster than ever before. To reduce cost and time to market, device simulation must become a more fundamental, indeed dominant, part of the technology development cycle. In order to produce these benefits, simulation accuracy must improve markedly. At the same time, device physics will become more complex, with the rapid increase in various small-geometry and quantum effects. This work describes both an approach to device simulator development and a physical model which advance the effort to meet the tremendous electronic device simulation challenge described above. The device simulation approach is to specify the physical model at a high level to a general-purpose (but highly efficient) partial differential equation solver (in this case PROPHET, developed by Lucent Technologies), which then simulates the model in 1-D, 2-D, or 3-D for a specified device and test regime. This approach allows for the rapid investigation of a wide range of device models and effects, which is certainly essential for device simulation to catch up with, and then stay ahead of, electronic device technology of the present and future. The physical device model used in this work is the density-gradient (DG) quantum correction to the drift-diffusion model [Ancona, Phys. Rev. B 35(5), 7959 (1987)]. This model adds tunneling and quantum smoothing of carrier density profiles to the drift-diffusion model. We used the DG model in 1-D and 2-D (for the first time) to simulate both bipolar and unipolar devices. Simulations of heavily-doped, short-base diodes indicated that the DG quantum
Direct MD Simulations of Terahertz Absorption and 2D Spectroscopy Applied to Explosive Crystals.
Katz, G; Zybin, S; Goddard, W A; Zeiri, Y; Kosloff, R
2014-03-01
A direct molecular dynamics simulation of the THz spectrum of a molecular crystal is presented. A time-dependent electric field is added to a molecular dynamics simulation of a crystal slab. The absorption spectrum is composed from the energy dissipated calculated from a series of applied pulses characterized by a carrier frequency. The spectrum of crystalline cyclotrimethylenetrinitramine (RDX) and triacetone triperoxide (TATP) were simulated with the ReaxFF force field. The proposed direct method avoids the linear response and harmonic approximations. A multidimensional extension of the spectroscopy is suggested and simulated based on the nonlinear response to a single polarized pulse of radiation in the perpendicular polarization direction. PMID:26274066
This study is a part of an ongoing research project that aims at assessing the environmental benefits of DNAPL removal. The laboratory part of the research project is to examine the functional relationship between DNAPL architecture, mass removal and contaminant mass flux in 2-D ...
Numerical Simulations of 2-D Phase-Field Model with Convection
NASA Astrophysics Data System (ADS)
Xu, Ying; McDonough, J. M.; Tagavi, K. A.
2003-11-01
We present a 2-D isotropic phase-field model with convection induced by a flow field applied to freezing into a supercooled melt of pure substance, nickle. Numerical procedures and details of numerical parameters employed are provided, and the convergence of the numerical method is demonstrated by conducting grid-function convergence tests. Dendrite structures, temperature fields, pressure fields, streamlines and velocity vector fields are presented at several different times during the dendrite growth process. Comparisons of dendrites and temperature fields with and without convection indicate that the flow field has a significant effect on the growth rate of the dendrites; in particular, it inhibits the growth. In addition, the flow field influences the dendritic structural morphologies and thickness of the interface. Moreover, the dendrites behave as a solid body in the flow leading to stagnation points and other interesting flow features.
2D Quantum Simulation of MOSFET Using the Non Equilibrium Green's Function Method
NASA Technical Reports Server (NTRS)
Svizhenko, Alexel; Anantram, M. P.; Govindan, T. R.; Yan, Jerry (Technical Monitor)
2000-01-01
The objectives this viewgraph presentation summarizes include: (1) the development of a quantum mechanical simulator for ultra short channel MOSFET simulation, including theory, physical approximations, and computer code; (2) explore physics that is not accessible by semiclassical methods; (3) benchmarking of semiclassical and classical methods; and (4) study other two-dimensional devices and molecular structure, from discretized Hamiltonian to tight-binding Hamiltonian.
NASA Astrophysics Data System (ADS)
Ocłoń, Paweł; Łopata, Stanisław; Nowak, Marzena
2014-09-01
This study presents a novel, simplified model for the time-efficient simulation of transient conjugate heat transfer in round tubes. The flow domain and the tube wall are modeled in 1D and 2D, respectively and empirical correlations are used to model the flow domain in 1D. The model is particularly useful when dealing with complex physics, such as flow boiling, which is the main focus of this study. The tube wall is assumed to have external fins. The flow is vertical upwards. Note that straightforward computational fluid dynamics (CFD) analysis of conjugate heat transfer in a system of tubes, leads to 3D modeling of fluid and solid domains. Because correlation is used and dimensionality reduced, the model is numerically more stable and computationally more time-efficient compared to the CFD approach. The benefit of the proposed approach is that it can be applied to large systems of tubes as encountered in many practical applications. The modeled equations are discretized in space using the finite volume method, with central differencing for the heat conduction equation in the solid domain, and upwind differencing of the convective term of the enthalpy transport equation in the flow domain. An explicit time discretization with forward differencing was applied to the enthalpy transport equation in the fluid domain. The conduction equation in the solid domain was time discretized using the Crank-Nicholson scheme. The model is applied in different boundary conditions and the predicted boiling patterns and temperature fields are discussed.
NASA Astrophysics Data System (ADS)
Ocłoń, Paweł; Łopata, Stanisław; Nowak, Marzena
2015-04-01
This study presents a novel, simplified model for the time-efficient simulation of transient conjugate heat transfer in round tubes. The flow domain and the tube wall are modeled in 1D and 2D, respectively and empirical correlations are used to model the flow domain in 1D. The model is particularly useful when dealing with complex physics, such as flow boiling, which is the main focus of this study. The tube wall is assumed to have external fins. The flow is vertical upwards. Note that straightforward computational fluid dynamics (CFD) analysis of conjugate heat transfer in a system of tubes, leads to 3D modeling of fluid and solid domains. Because correlation is used and dimensionality reduced, the model is numerically more stable and computationally more time-efficient compared to the CFD approach. The benefit of the proposed approach is that it can be applied to large systems of tubes as encountered in many practical applications. The modeled equations are discretized in space using the finite volume method, with central differencing for the heat conduction equation in the solid domain, and upwind differencing of the convective term of the enthalpy transport equation in the flow domain. An explicit time discretization with forward differencing was applied to the enthalpy transport equation in the fluid domain. The conduction equation in the solid domain was time discretized using the Crank-Nicholson scheme. The model is applied in different boundary conditions and the predicted boiling patterns and temperature fields are discussed.
Radar Reflectivity Simulated by a 2-D Spectra Bin Model: Sensitivity of Cloud-aerosol Interaction
NASA Technical Reports Server (NTRS)
Li, Kiaowen; Tao, Wei-Kuo; Khain, Alexander; Simpson, Joanne; Johnson, Daniel
2003-01-01
The Goddard Cumulus Ensemble (GCE) model with bin spectra microphysics is used to simulate mesoscale convective systems.The model uses explicit bins to represent size spectra of cloud nuclei, water drops, ice crystals, snow and graupel. Each hydrometeorite category is described by 33 mass bins. The simulations provide a unique data set of simulated raindrop size distribution in a realistic dynamic frame. Calculations of radar parameters using simulated drop size distribution serve as an evaluation of numerical model performance. In addition, the GCE bin spectra modes is a very useful tool to study uncertainties related to radar observations; all the environmental parameters are precisely known. In this presentation, we concentrate on the discussion of Z-R (ZDR-R) relation in the simulated systems. Due to computational limitations, the spectra bin model has been run in two dimensions with 31 stretched vertical layers and 1026 horizontal grid points (1 km resolution). Two different cases, one in midlatitude continent, the other in tropical ocean, have been simulated. The continental case is a strong convection which lasted for two hours. The oceanic case is a persistent system with more than 10 hours' life span. It is shown that the simulated Z-R (ZDR-R) relations generally agree with observations using radar and rain gauge data. The spatial and temporal variations of Z-R relation in different locations are also analyzed. Impact of aerosols on cloud formation and raindrop size distribution was studied. Both clean (low CCN) and dirty (high CCN) cases are simulated. The Z-R relation is shown to vary considerable in the initial CCN concentrations.
In vitro construction of 2D and 3D simulations of the murine hematopoietic niche.
Chitteti, Brahmananda Reddy; Bethel, Monique; Voytik-Harbin, Sherry L; Kacena, Melissa A; Srour, Edward F
2013-01-01
Hematopoietic stem cells (HSC) undergo multilineage differentiation or self-renewal to maintain normal hematopoiesis and to sustain the size of the HSC pool throughout life. These processes are determined by a complex interplay of molecular signals between HSC and other cellular components such as osteoblasts (OB), stromal cells, endothelial cells, and a number of extracellular matrix (ECM) proteins. Through changes in its physical properties within the bone marrow (BM) microenvironment, collagen, which is one of the most critical ECM proteins, can modulate HSC function and maintenance of the competence of the hematopoietic niche (HN). At present, there is no consensus as to how different cellular elements of the niche collaborate and interact to promote HSC self-renewal or differentiation to maintain hematopoiesis. Deciphering these interactions and the impact of mechanical properties of the collagen microstructures within the HN has critical clinical implications in the areas of stem cell homing, engraftment, and maintenance of HSC function. In this chapter, we describe several of the in vitro methodologies for establishing and maintaining HSC in vitro including the isolation of OB, stromal cells, and hematopoietic progenitor cells, as well as the establishment of both two-dimensional (2D) and three-dimensional (3D) coculture systems.
Fourier based methodology for simulating 2D-random shapes in heterogeneous materials
NASA Astrophysics Data System (ADS)
Mattrand, C.; Béakou, A.; Charlet, K.
2015-08-01
Gaining insights into the effects of microstructural details on materials behavior may be achieved by incorporating their attributes into numerical modeling. This requires us to make considerable efforts to feature heterogeneity morphology distributions and their spatial arrangement. This paper focuses on modeling the scatter observed in materials heterogeneity geometry. The proposed strategy is based on the development of a 1D-shape signature function representing the 2D-section of a given shape, on Fourier basis functions. The Fourier coefficients are then considered as random variables. This methodology has been applied to flax fibers which are gradually introduced into composite materials as a potential alternative to synthetic reinforcements. In this contribution, the influence of some underlying assumptions regarding the choice of one 1D-shape signature function, its discretization scheme and truncation level, and the best way of modeling the associated random variables is also investigated. Some configurations coming from the combination of these tuning parameters are found to be sufficiently relevant to render efficiently the morphometric factors of the observed fibers statistically speaking.
Monte Carlo simulations of a novel Micromegas 2D array for proton dosimetry.
Dolney, D; Ainsley, C; Hollebeek, R; Maughan, R
2016-02-21
Modern proton therapy affords control of the delivery of radiotherapeutic dose on fine length and temporal scales. The authors have developed a novel detector technology based on Micromesh Gaseous Structure (Micromegas) that is uniquely tailored for applications using therapeutic proton beams. An implementation of a prototype Micromegas detector for Monte Carlo using Geant4 is presented here. Comparison of simulation results with measurements demonstrates agreement in relative dose along the proton longitudinal dose profile to be 1%. The effect of a radioactive calibration source embedded in the chamber gas is demonstrated by measurements and reproduced by simulations, also at the 1% level. Our Monte Carlo simulations are shown to reproduce the time structure of ionization pulses produced by a double-scattering delivery system.
Monte Carlo simulations of a novel Micromegas 2D array for proton dosimetry
NASA Astrophysics Data System (ADS)
Dolney, D.; Ainsley, C.; Hollebeek, R.; Maughan, R.
2016-02-01
Modern proton therapy affords control of the delivery of radiotherapeutic dose on fine length and temporal scales. The authors have developed a novel detector technology based on Micromesh Gaseous Structure (Micromegas) that is uniquely tailored for applications using therapeutic proton beams. An implementation of a prototype Micromegas detector for Monte Carlo using Geant4 is presented here. Comparison of simulation results with measurements demonstrates agreement in relative dose along the proton longitudinal dose profile to be 1%. The effect of a radioactive calibration source embedded in the chamber gas is demonstrated by measurements and reproduced by simulations, also at the 1% level. Our Monte Carlo simulations are shown to reproduce the time structure of ionization pulses produced by a double-scattering delivery system.
NASA Astrophysics Data System (ADS)
Michelson, Sara; Bao, Jian-Wen; Grell, Evelyn
2016-04-01
In this study, numerical model simulations of an idealized 2-D squall line are investigated using microphysics budget analysis. Four commonly-used microphysics schemes of various complexity are used in the simulations. Diagnoses of the source and sink terms of the hydrometeor budget equations reveal that the differences related to the assumptions of hydrometeor size-distributions between the schemes lead to the differences in the simulations due to the net effect of various microphysical processes on the interaction between latent heating/evaporative cooling and flow dynamics as the squall line develops. Results from this study also highlight the possibility that the advantage of double-moment formulations can be overshadowed by the uncertainties in the spectral definition of individual hydrometeor categories and spectrum-dependent microphysical processes.
NASA Astrophysics Data System (ADS)
Darvini, G.; Salandin, P.
2009-12-01
To analyze the impact of the hydraulic conductivity K spatial variability in a real field case (as an example to delimitate a well catchment), numerical simulations can be reasonably developed in a two-dimensional vertical average context. Nevertheless the plume evolution is a consequence of a more complex three-dimensional heterogeneous structure whose vertical variability dominates the dispersion phenomena at local scale. In larger domains, the effect of the vertical heterogeneity combines itself with that one due to the horizontal variability of K, and only when the plume has travelled a large number of (horizontal) integral scales, its evolution can be analyzed in a regional context, under the hypothesis that the transmissivity spatial distribution prevails. Until this limit is reached, the vertical and horizontal variability of K are combined to give a fully 3-D dispersion process. In all these situations, to successfully accomplish the 3-D heterogeneous structure of the aquifer in 2-D simulations, more than the planimetric depth-averaged variability of K must be accounted for. To define the uncertainty related to the use of different planimetric schematizations of the real hydraulic conductivity spatial distribution, we present here the results of some numerical experiments that compare the 3-D plume evolution with 2-D simulations developed by tacking into account different hydraulic conductivity distribution schematization, by considering a hierarchical architecture of media also. This description of a sedimentary formation combined with the finite size of the plume requires theoretical and numerical tools able to take into account the flow field inhomogeneity and the ergodicity lack that characterize the transport phenomena. Following this way it will be possible to quantify / reduce the uncertainty related to a 2-D schematization in a large number of real cases where the domain spans between the local and the regional scale and whose dimension may lead to
Kaiglová, Jana; Langhammer, Jakub; Jiřinec, Petr; Janský, Bohumír; Chalupová, Dagmar
2015-03-01
This article used various hydrodynamic and sediment transport models to analyze the potential and the limits of different channel schematizations. The main aim was to select and evaluate the most suitable simulation method for fine-grained sediment remobilization assessment. Three types of channel schematization were selected to study the flow potential for remobilizing fine-grained sediment in artificially modified channels. Schematization with a 1D cross-sectional horizontal plan, a 1D+ approach, splitting the riverbed into different functional zones, and full 2D mesh, adopted in MIKE by the DHI modeling suite, was applied to the study. For the case study, a 55-km stretch of the Bílina River, in the Czech Republic, Central Europe, which has been heavily polluted by the chemical and coal mining industry since the mid-twentieth century, was selected. Long-term exposure to direct emissions of toxic pollutants including heavy metals and persistent organic pollutants (POPs) resulted in deposits of pollutants in fine-grained sediments in the riverbed. Simulations, based on three hydrodynamic model schematizations, proved that for events not exceeding the extent of the riverbed profile, the 1D schematization can provide comparable results to a 2D model. The 1D+ schematization can improve accuracy while keeping the benefits of high-speed simulation and low requirements of input DEM data, but the method's suitability is limited by the channel properties. PMID:25687259
Simulations of chemotaxis and random motility in 2D random porous domains.
Jabbarzadeh, Ehsan; Abrams, Cameron F
2007-02-01
We discuss a generic computational model of eukariotic chemotaxis in 2D random porous domains. The model couples the fully time-dependent finite-difference solution of a reaction-diffusion equation for the concentration field of a chemoattractant to biased random walks representing individual chemotactic cells. We focus in particular on the influence of consumption of chemoattractant by the boundaries of obstacles with irregular shapes which are distributed randomly in the domain on the chemotactic response of the cells. Cells are stimulated to traverse a field of obstacles by a line source of chemoattractant. We find that the reactivity of the obstacle boundaries with respect to the chemoattractant strongly determines the transit time of cells through two primary mechanisms. The channeling effect arises because cells are effectively repelled from surfaces which consume chemoattractant, and opposing surfaces therefore act to keep cells in the middle of channels. This reduces traversal times relative to the case with unreactive boundaries, provided that the appropriate Péclet number relating the strength of reactivity to diffusion in governing chemoattractant transport is neither too low nor too high. The dead-zone effect arises due to a realistic threshold on the chemotactic response, which at steady state results in portions of the domain having no detectable gradient. Of these two, the channeling effect is responsible for 90% of the sensitivity of transit times to boundary reactivity. Based on these results, we speculate that it may be possible to tune the rates of cellular penetration into porous domains by engineering the reactivity of the internal surfaces to cytokines.
Treatment of LBCs in 2D simulation of convection over hills
NASA Astrophysics Data System (ADS)
Tian, Wenshou; Guo, Zhenhai; Yu, Rucong
2004-08-01
A series of idealized model simulations are analyzed to determine the sensitivity of model results to different configurations of the lateral boundary conditions (LBCs) in simulating mesoscale shallow convection over hilly terrain. In the simulations with steady thermal forcing at the model surface, a radiation condition at both boundaries is the best choice under high wind conditions, and the best results are produced when both the normal velocities and the temperature are treated with the radiation scheme in which the phase speed is the same for different variables. When the background wind speed is reasonably small, the LBC configuration with either the radiation or the zero gradient condition at both boundaries tends to make the numerical solution unstable. The choice of a constant condition at the inflow boundary and a radiation outflow boundary condition is appropriate in most cases. In the simulations with diurnal thermal forcing at the model surface, different LBC schemes are combined together to reduce spurious signals induced by the outflow boundary. A specification inflow boundary condition, in which the velocity fields at the inflow boundary are provided using the time-dependent results of a simulation with periodic LBCs over a flat domain, is tested and the results indicate that the specification condition at the inflow boundary makes it possible to use a smaller model domain to obtain reasonable results. The model horizontal domain length should be greater than a critical length, which depends on the domain depth H and the angle between gravity wave phase lines and the vertical. An estimate of minimum domain length is given by[(H - z_i )/π U]sqrt {N^2 L_x^2 - 4π ^2 U^2 } , where N and U are the background stability and wind speed, respectively, L x is the typical gravity wavelength scale, and z i is the convective boundary layer (CBL) depth.
NASA Astrophysics Data System (ADS)
Lopes Filho, Milton C.; Nussenzveig Lopes, Helena J.; Titi, Edriss S.; Zang, Aibin
2015-06-01
The second-grade fluid equations are a model for viscoelastic fluids, with two parameters: α > 0, corresponding to the elastic response, and , corresponding to viscosity. Formally setting these parameters to 0 reduces the equations to the incompressible Euler equations of ideal fluid flow. In this article we study the limits of solutions of the second-grade fluid system, in a smooth, bounded, two-dimensional domain with no-slip boundary conditions. This class of problems interpolates between the Euler- α model (), for which the authors recently proved convergence to the solution of the incompressible Euler equations, and the Navier-Stokes case ( α = 0), for which the vanishing viscosity limit is an important open problem. We prove three results. First, we establish convergence of the solutions of the second-grade model to those of the Euler equations provided , as α → 0, extending the main result in (Lopes Filho et al., Physica D 292(293):51-61, 2015). Second, we prove equivalence between convergence (of the second-grade fluid equations to the Euler equations) and vanishing of the energy dissipation in a suitably thin region near the boundary, in the asymptotic regime , as α → 0. This amounts to a convergence criterion similar to the well-known Kato criterion for the vanishing viscosity limit of the Navier-Stokes equations to the Euler equations. Finally, we obtain an extension of Kato's classical criterion to the second-grade fluid model, valid if , as . The proof of all these results relies on energy estimates and boundary correctors, following the original idea by Kato.
A mathematical model for a didactic device able to simulate a 2D Newtonian gravitational field
NASA Astrophysics Data System (ADS)
De Marchi, Fabrizio
2015-01-01
In this paper we propose a mathematical model to describe a theoretical device able to simulate an inverse-square force on a test mass moving on a horizontal plane. We use two pulleys, a counterweight, a wire and a smooth rail, in addition to the test mass. The tension of the wire (i.e. the attractive force on the test mass) is determined by the position of a counterweight free to move on a rail placed under the plane. The profile of the rail is calculated in order to obtain the required Newtonian force. Details of this calculation are reported in the paper, and numerical simulations are provided in order to investigate the stability of the orbits under the effect of the main friction forces and other perturbative effects. This work points out that there are some criticalities intrinsic to the apparatus and gives some suggestions about how to minimize their impact.
Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation
Chen, Zhangxin; Cockburn, Bernardo; Jerome, Joseph W.; Shu, Chi-Wang
1995-01-01
In this paper we introduce a new method for numerically solving the equations of the hydrodynamic model for semiconductor devices in two space dimensions. The method combines a standard mixed finite element method, used to obtain directly an approximation to the electric field, with the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method, originally devised for numerically solving multi-dimensional hyperbolic systems of conservation laws, which is applied here to the convective part of the equations. Numerical simulations showing the performance of the new method are displayed, and the results compared with those obtained by using Essentially Nonoscillatory (ENO) finite difference schemes. Frommore » the perspective of device modeling, these methods are robust, since they are capable of encompassing broad parameter ranges, including those for which shock formation is possible. The simulations presented here are for Gallium Arsenide at room temperature, but we have tested them much more generally with considerable success.« less
2D simulations based on general time-dependent reciprocal relation for LFEIT.
Karadas, Mursel; Gencer, Nevzat Guneri
2015-08-01
Lorentz field electrical impedance tomography (LFEIT) is a newly proposed technique for imaging the conductivity of the tissues by measuring the electromagnetic induction under the ultrasound pressure field. In this paper, the theory and numerical simulations of the LFEIT are reported based on the general time dependent formulation. In LFEIT, a phased array ultrasound probe is used to introduce a current distribution inside a conductive body. The velocity current occurs, due to the movement of the conductive particles under a static magnetic field. In order to sense this current, a receiver coil configuration that surrounds the volume conductor is utilized. Finite Element Method (FEM) is used to carry out the simulations of LFEIT. It is shown that, LFEIT can be used to reconstruct the conductivity even up to 50% perturbation in the initial conductivity distribution. PMID:26736569
The ideal tearing mode: 2D MHD simulations in the linear and nonlinear regimes
NASA Astrophysics Data System (ADS)
Landi, Simone; Del Zanna, Luca; Pucci, Fulvia; Velli, Marco; Papini, Emanuele
2015-04-01
We present compressible, resistive MHD numerical simulations of the linear and nonlinear evolution of the tearing instability, for both Harris sheet and force-free initial equilibrium configurations. We analyze the behavior of a current sheet with aspect ratio S1/3, where S is the Lundquist number. This scaling has been recently recognized to be the threshold for fast reconnection occurring on the ideal Alfvenic timescale, with a maximum growth rate that becomes asymptotically independent on S. Our simulations clearly confirm that the tearing instability maximum growth rate and the full dispersion relation are exactly those predicted by the linear theory, at least for the values of S explored here. In the nonlinear stage, we notice the rapid onset and subsequent coalescence of plasmoids, as observed in previous simulations of the Sweet-Parker reconnection scenario. These findings strongly support the idea that in a fully dynamic regime, as soon as current sheets develop and reach the critical threshold in their aspect ratio of S1/3 (occurring well before the Sweet-Parker configuration is able to form), the tearing mode is able to trigger fast reconnection and plasmoids formation on Alfvenic timescales, as required to explain the violent flare activity often observed in solar and astrophysical plasmas.
Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.; Li, H. D.; Feng, H.; Sun, W. G.
2015-01-15
Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density, heat and momentum transport equations along with neutral density, and momentum transport equations. Transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. It is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.
Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.; Li, H. D.; Feng, H.; Sun, W. G.
2015-01-09
Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Furthermore, two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density, heat and momentum transport equations along with neutral density, and momentum transport equations. In transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. Moreover, it is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.
Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.; Li, H. D.; Feng, H.; Sun, W. G.
2015-01-09
Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Furthermore, two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density,more » heat and momentum transport equations along with neutral density, and momentum transport equations. In transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. Moreover, it is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.« less
A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging
Gallio, Elena; Rampado, Osvaldo; Gianaria, Elena; Bianchi, Silvio Diego; Ropolo, Roberto
2015-01-01
Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies. PMID:26545097
A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging.
Gallio, Elena; Rampado, Osvaldo; Gianaria, Elena; Bianchi, Silvio Diego; Ropolo, Roberto
2015-01-01
Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies. PMID:26545097
A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging.
Gallio, Elena; Rampado, Osvaldo; Gianaria, Elena; Bianchi, Silvio Diego; Ropolo, Roberto
2015-01-01
Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies.
Real-time 2D floating-point fast Fourier transforms for seeker simulation
NASA Astrophysics Data System (ADS)
Chamberlain, Richard; Lord, Eric; Shand, David J.
2002-07-01
The floating point Fast Fourier Transform (FFT) is one of the most useful basic functions available to the image and signal processing engineer allowing many complex and detailed special functions to be implemented more simply in the frequency domain. In the Hardware-in-the-Loop field an image transformed using FFT would allow the designer to think about accurate frequency based simulation of seeker lens effects, motion blur, detector transfer functions and much more. Unfortunately, the transform requires many hundreds of thousands or millions of floating point operations on a single modest sized image making it impractical for realtime Hardware-in-the-Loop systems. .until now. This paper outlines the development, by Nallatech, of an FPGA based IEEE floating point core. It traces the subsequent use of this core to develop a full 256 X 256 FFT and filter process implemented on COTS hardware at frame rates up to 150Hz. This transform can be demonstrated to model optical transfer functions at a far greater accuracy than the current spatial models. Other applications and extensions of this technique will be discussed such as filtering for image tracking algorithms and in the simulation of radar processing in the frequency domain.
Yielding in a strongly aggregated colloidal gel: 2D simulations and theory
NASA Astrophysics Data System (ADS)
Roy, Saikat; Tirumkudulu, Mahesh
2015-11-01
We investigated the micro-structural details and the mechanical response under uniaxial compression of the strongly aggregating gel starting from low to high packing fraction.The numerical simulations account for short-range inter-particle attractions, normal and tangential deformation at particle contacts,sliding and rolling friction, and preparation history. It is observed that in the absence of rolling resistance(RR),the average coordination number varies only slightly with compaction whereas it is significant in the presence of RR. The particle contact distribution is isotropic throughout the consolidation process. In both cases, the yield strain is constant with the volume fraction. The modulus values are very similar at different attraction, and with and without RR implying that the elastic modulus does not scale with attraction.The modulus was found to be a weak function of the preparation history. The increase in yield stress with volume fraction is a consequence of the increased elastic modulus of the network. However, the yield stress scales similarly both with and without RR. The power law exponent of 5.4 is in good agreement with previous simulation results. A micromechanical theory is also proposed to describe the stress versus strain relation for the gelled network.
NASA Astrophysics Data System (ADS)
Cao, Jiang; Cresti, Alessandro; Esseni, David; Pala, Marco
2016-02-01
We simulate a band-to-band tunneling field-effect transistor based on a vertical heterojunction of single-layer MoS2 and WTe2, by exploiting the non-equilibrium Green's function method and including electron-phonon scattering. For both in-plane and out-of-plane transport, we attempt to calibrate out models to the few available experimental results. We focus on the role of chemical doping and back-gate biasing, and investigate the off-state physics of this device by analyzing the influence of the top-gate geometrical alignment on the device performance. The device scalability as a function of gate length is also studied. Finally, we present two metrics for the switching delay and energy of the device. Our simulations indicate that vertical field-effect transistors based on transition metal dichalcogenides can provide very small values of sub-threshold swing when properly designed in terms of doping concentration and top-gate extension length.
Carozzi, S; Nasini, M G; Schelotto, C; Caviglia, P M; Barocci, S; Cantaluppi, A; Salit, M
1990-01-01
Previous in vitro studies showed that Ca++ and 1,25(OH)2D3 modulate peritoneal macrophage (PM0) antimicrobial activity in CAPD patients. Twenty-four CAPD patients were evaluated in vivo (12 who had never had peritonitis, and 12 with an overall peritonitis incidence of more than one episode per 8 patient/months), for the effects of different peritoneal dialysis fluids (PDF) and Ca++ concentrations (1.25, 1.75, and 2.25 mmol/L) on PM0: cytoplasmic Ca++ concentration; superoxide generation; leukotriene B4 (LTB4) release; and bacterial killing for Staphylococcus epidermidis. The same parameters were also evaluated after adding 1,25(OH)2D3 (0.25 microgram/L) to the PDF. Results showed a direct correlation between the PDF Ca++ concentration and PM0 Ca++ levels, superoxide and LTB4 generation, and bacterial killing such that, with 2.25 mmol/L of Ca++, these values were significantly higher than those seen with 1.75 mmol/L. The addition of 1,25(OH)2D3 potentiated the Ca(++)-induced effects. On the other hand, with PDF Ca++ levels of 1,25 mmol/L, an inhibition of the aforementioned parameters was seen. However, this effect was reversed by the addition of 1,25(OH)2D3. These in vivo results confirm the importance of Ca++ and 1,25(OH)2D3 in PM0 antibacterial function in CAPD patients, and may be useful in determining the prophylaxis and therapy of peritonitis.
A hierarchical lattice spring model to simulate the mechanics of 2-D materials-based composites
NASA Astrophysics Data System (ADS)
Brely, Lucas; Bosia, Federico; Pugno, Nicola
2015-07-01
In the field of engineering materials, strength and toughness are typically two mutually exclusive properties. Structural biological materials such as bone, tendon or dentin have resolved this conflict and show unprecedented damage tolerance, toughness and strength levels. The common feature of these materials is their hierarchical heterogeneous structure, which contributes to increased energy dissipation before failure occurring at different scale levels. These structural properties are the key to exceptional bioinspired material mechanical properties, in particular for nanocomposites. Here, we develop a numerical model in order to simulate the mechanisms involved in damage progression and energy dissipation at different size scales in nano- and macro-composites, which depend both on the heterogeneity of the material and on the type of hierarchical structure. Both these aspects have been incorporated into a 2-dimensional model based on a Lattice Spring Model, accounting for geometrical nonlinearities and including statistically-based fracture phenomena. The model has been validated by comparing numerical results to continuum and fracture mechanics results as well as finite elements simulations, and then employed to study how structural aspects impact on hierarchical composite material properties. Results obtained with the numerical code highlight the dependence of stress distributions on matrix properties and reinforcement dispersion, geometry and properties, and how failure of sacrificial elements is directly involved in the damage tolerance of the material. Thanks to the rapidly developing field of nanocomposite manufacture, it is already possible to artificially create materials with multi-scale hierarchical reinforcements. The developed code could be a valuable support in the design and optimization of these advanced materials, drawing inspiration and going beyond biological materials with exceptional mechanical properties.
A second order volume of fluid (VOF) scheme for numerical simulation of 2-D breaking waves
NASA Astrophysics Data System (ADS)
Zhang, Zhao-De; Chen, Shuai
2007-09-01
Structural cracks can change the frequency response function (FRF) of an offshore platform. Thus, FRF shifts can be used to detect cracks. When a crack at a specific location and magnitude occurs in an offshore structure, changes in the FRF can be measured. In this way, shifts in FRF can be used to detect cracks. An experimental model was constructed to verify the FRF method. The relationship between FRF and cracks was found to be non-linear. The effect of multiple cracks on FRF was analyzed, and the shift due to multiple cracks was found to be much more than the summation of FRF shifts due to each of the cracks. Then the effects of noise and changes in the mass of the jacket on FRF were evaluated. The results show that significant damage to a beam can be detected by dramatic changes in the FRF, even when 10% random noise exists. FRF can also be used to approximately locate the breakage, but it can neither be efficiently used to predict the location of breakage nor the existence of small hairline cracks. The FRF shift caused by a 7% mass change is much less than the FRF shift caused by the breakage of any beam, but is larger than that caused by any early cracks.
KEEN and KEEPN wave simulations from 2D to 4D
NASA Astrophysics Data System (ADS)
Mehrenberger, Michel; Afeyan, Bedros; Larson, David; Crouseilles, Nicolas; Casas, Fernando; Faou, Erwan; Dodhy, Adila; Sonnendrucker, Eric; Shoucri, Magdi
2015-11-01
We show for well-driven KEEN (Kinetic Electrostatic Electron Nonlinear) waves and their analogs in pair plasmas KEEPN (Positron) waves, how the dynamics is captured in a variety of complimentary numerical approaches. Symplectic integration and quadrature node based techniques are deployed to achieve satisfactory results in the long time evolution of highly nonlinear, kinetic, non-stationary, self-organized structures in phase space. Fixed and composite velocity grid arbitrary-order interpolation approaches have advantages we highlight. Adaptivity to local phase space density morphological structures will be discussed starting within the framework of the Shape Function Kinetics (SFK) approach. Fine resolution in velocity only in the range affected by KEEN waves makes for more efficient simulations, especially in higher dimensions. We explore the parameter space of unequal electron and positron temperatures as well as the effects of a relative drift velocity in their initial conditions. Ponderomotively driven KEEPN waves have many novelties when compared to KEEN waves, such as double, staggered, vortex structures, which we highlight. Work supported by the AFOSR and OFES.
NASA Technical Reports Server (NTRS)
Zimmerman, Michael I.; Farrell, W. M.; Snubbs, T. J.; Halekas, J. S.
2011-01-01
Anticipating the plasma and electrical environments in permanently shadowed regions (PSRs) of the moon is critical in understanding local processes of space weathering, surface charging, surface chemistry, volatile production and trapping, exo-ion sputtering, and charged dust transport. In the present study, we have employed the open-source XOOPIC code [I] to investigate the effects of solar wind conditions and plasma-surface interactions on the electrical environment in PSRs through fully two-dimensional pattic1e-in-cell simulations. By direct analogy with current understanding of the global lunar wake (e.g., references) deep, near-terminator, shadowed craters are expected to produce plasma "mini-wakes" just leeward of the crater wall. The present results (e.g., Figure I) are in agreement with previous claims that hot electrons rush into the crater void ahead of the heavier ions, fanning a negative cloud of charge. Charge separation along the initial plasma-vacuum interface gives rise to an ambipolar electric field that subsequently accelerates ions into the void. However, the situation is complicated by the presence of the dynamic lunar surface, which develops an electric potential in response to local plasma currents (e.g., Figure Ia). In some regimes, wake structure is clearly affected by the presence of the charged crater floor as it seeks to achieve current balance (i.e. zero net current to the surface).
Ion Dynamics at a Rippled Quasi-parallel Shock: 2D Hybrid Simulations
NASA Astrophysics Data System (ADS)
Hao, Yufei; Lu, Quanming; Gao, Xinliang; Wang, Shui
2016-05-01
In this paper, two-dimensional hybrid simulations are performed to investigate ion dynamics at a rippled quasi-parallel shock. The results show that the ripples around the shock front are inherent structures of a quasi-parallel shock, and the re-formation of the shock is not synchronous along the surface of the shock front. By following the trajectories of the upstream ions, we find that these ions behave differently when they interact with the shock front at different positions along the shock surface. The upstream particles are transmitted more easily through the upper part of a ripple, and the corresponding bulk velocity downstream is larger, where a high-speed jet is formed. In the lower part of the ripple, the upstream particles tend to be reflected by the shock. Ions reflected by the shock may suffer multiple-stage acceleration when moving along the shock surface or trapped between the upstream waves and the shock front. Finally, these ions may escape further upstream or move downstream; therefore, superthermal ions can be found both upstream and downstream.
Kelly, Sinead; O'Rourke, Malachy
2012-04-01
This article describes the use of fluid, solid and fluid-structure interaction simulations on three patient-based abdominal aortic aneurysm geometries. All simulations were carried out using OpenFOAM, which uses the finite volume method to solve both fluid and solid equations. Initially a fluid-only simulation was carried out on a single patient-based geometry and results from this simulation were compared with experimental results. There was good qualitative and quantitative agreement between the experimental and numerical results, suggesting that OpenFOAM is capable of predicting the main features of unsteady flow through a complex patient-based abdominal aortic aneurysm geometry. The intraluminal thrombus and arterial wall were then included, and solid stress and fluid-structure interaction simulations were performed on this, and two other patient-based abdominal aortic aneurysm geometries. It was found that the solid stress simulations resulted in an under-estimation of the maximum stress by up to 5.9% when compared with the fluid-structure interaction simulations. In the fluid-structure interaction simulations, flow induced pressure within the aneurysm was found to be up to 4.8% higher than the value of peak systolic pressure imposed in the solid stress simulations, which is likely to be the cause of the variation in the stress results. In comparing the results from the initial fluid-only simulation with results from the fluid-structure interaction simulation on the same patient, it was found that wall shear stress values varied by up to 35% between the two simulation methods. It was concluded that solid stress simulations are adequate to predict the maximum stress in an aneurysm wall, while fluid-structure interaction simulations should be performed if accurate prediction of the fluid wall shear stress is necessary. Therefore, the decision to perform fluid-structure interaction simulations should be based on the particular variables of interest in a given
Origin of energetic ions observed in the terrestrial ion foreshock : 2D full-particle simulations
NASA Astrophysics Data System (ADS)
Savoini, Philippe; Lembege, bertrand
2016-04-01
Collisionless shocks are well-known structures in astrophysical environments which dissipate bulk flow kinetic energy and accelerate large fraction of particle. Spacecrafts have firmly established the existence of the so-called terrestrial foreshock region magnetically connected to the shock and filled by two distinct populations in the quasi-perpendicular shock region (i.e. for 45r{ } ≤ quad θ Bn quad ≤ 90r{ }, where θ Bn is the angle between the shock normal and the upstream magnetic field) : (i) the field-aligned ion beams or `` FAB '' characterized by a gyrotropic distributionsout{,} and (ii) the gyro-phase bunched ions or `` GPB '' characterized by a NON gyrotropic distribution. The present work is based on the use of two dimensional PIC simulation of a curved shock and associated foreshock region where full curvature effects, time of flight effects and both electrons and ions dynamics are fully described by a self consistent approach. Our previous analysis (Savoini et Lembège, 2015) has evidenced that these two types of backstreaming populations can originate from the shock front itself without invoking any local diffusion by ion beam instabilities. Present results are focussed on individual ion trajectories and evidence that "FAB" population is injected into the foreshock mainly along the shock front whereas the "GPB" population penetrates more deeply the shock front. Such differences explain why the "FAB" population loses their gyro-phase coherency and become gyrotropic which is not the case for the "GPB". The impact of these different injection features on the energy gain for each ion population will be presented in détails. Savoini, P. and B. Lembège (2015), `` Production of nongyrotropic and gyrotropic backstreaming ion distributions in the quasi-perpendicular ion foreshock région '', J. Geophys. Res., 120, pp 7154-7171, doi = 10.1002/2015JA021018.
2D conditional simulation of channels on wells using a random walk approach
NASA Astrophysics Data System (ADS)
Wang, Jiahua; Wang, Xiangbo; Ren, Changlin
2009-03-01
Channel modeling is one of the popular topics in the application of geostatistics to fluvial reservoir modeling. This paper presents an approach to designing channels which have a general flow direction through sand well locations and which avoid shale well locations. This approach is named the random walk on graphs of well locations, and is applied to model channel reservoirs. This modeling process consists of two parts: one direction walk modeling and two direction walk modeling. The first model aims to determine each channel location by the use of a transition probability with a random walk essentially in the main flow direction, say the north-south direction, while the second model simulates different channels that can be oriented in both directions, either from north to south or from south to north. In both parts of the model, the transition probability is estimated based on two coefficients: one is the correlation coefficient of channel observations; the other is the obstacle coefficient of non-channel observations. A case study with a dense array of 332 wells is presented using the proposed random walk model. For the purpose of model verification, channel maps created by the random walk are compared to the hand-drawn channel maps made by geologists. The results show a good agreement in both types of maps, but in contrast to the single map supplied by geologists, the random walk model is capable of generating many realizations of channel configuration, hence allowing for uncertainty evaluation. A limitation of this approach, related to the influence of the number of wells, is discussed.
NASA Astrophysics Data System (ADS)
Dages, Cecile; Samouelian, Anatja; Lanoix, Marthe; Dollinger, Jeanne; Chakkour, Sara; Chovelon, Gabrielle; Trabelsi, Khouloud; Voltz, Marc
2015-04-01
Ditches are involved in the transfer of pesticide to surface and groundwaters (e.g. Louchart et al., 2001). Soil horizons underlying ditch beds may present specific soil characteristics compared to neighbouring field soils due to erosion/deposition processes, to the specific biological activities (rooting dynamic and animal habitat) in the ditches (e.g. Vaughan et al., 2008) and to management practices (burning, dredging, mowing,...). Moreover, in contrast to percolation processes in field soils that can be assumed to be mainly 1D vertical, those occurring in the ditch beds are by essence 2D or even 3D. Nevertheless, due to a lake of knowledge, these specific aspects of transfer within ditch beds are generally omitted for hydrological simulation at the catchment scale (Mottes et al., 2014). Accordingly, the aims of this study were i) to characterize subsurface solute transfer through ditch beds and ii) to determine equivalent hydraulic parameters of the ditch beds for use in catchment scale hydrological simulations. A complementary aim was to evaluate the error in predictions performed when percolation in ditches is assumed to be similar to that in the neighbouring field soil. First, bromide transfer experiments were performed on undisturbed soil column (15 cm long with a 15 cm inner-diameter), horizontally and vertically sampled within each soil horizon underlying a ditch bed and within the neighboring field. Columns were sampled at the Roujan catchment (Hérault, France), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). Second, for each column, a set of parameters was determined by inverse optimization with mobile-immobile or dual permeability models, with CXTFIT (Toride et al., 1999) or with HYDRUS (Simunek et al., 1998). Third, infiltration and percolation in the ditch was simulated by a 2D flow domain approach considering the 2D variation in hydraulic properties of the cross section of a ditch bed. Last
Thermal and Fluid Flow Brazing Simulations
HOSKING, FLOYD MICHAEL; GIANOULAKIS,STEVEN E.; GIVLER,RICHARD C.; SCHUNK,P. RANDALL
1999-12-15
The thermal response of fixtured parts in a batch-type brazing furnace can require numerous, time-consuming development runs before an acceptable furnace schedule or joint design is established. Powerful computational simulation tools are being developed to minimize the required number of verification experiments, improve furnace throughput, and increase product yields. Typical furnace simulations are based on thermal, fluid flow, and structural codes that incorporate the fundamental physics of the brazing process. The use of massively parallel computing to predict furnace and joint-level responses is presented. Measured and computed data are compared. Temperature values are within 1-270 of the expected peak brazing temperature for different loading conditions. Sensitivity studies reveal that the thermal response is more sensitive to the thermal boundary conditions of the heating enclosure than variability y in the materials data. Braze flow simulations predict fillet geometry and free surface joint defects. Dynamic wetting conditions, interfacial reactions, and solidification structure add a high degree of uncertainty to the flow results.
NASA Astrophysics Data System (ADS)
Campforts, Benjamin; Vanacker, Veerle; Vanderborght, Jan; Baken, Stijn; Smolders, Erik; Govers, Gerard
2016-04-01
Meteoric 10Be allows for the quantification of vertical and lateral soil fluxes over long time scales (103-105 yr). However, the mobility of meteoric 10Be in the soil system makes a translation of meteoric 10Be inventories into erosion and deposition rates complex. Here, we present a spatially explicit 2D model simulating the behaviour of meteoric 10Be on a hillslope. The model consists of two parts. The first component deals with advective and diffusive mobility of meteoric 10Be within the soil profile, and the second component describes lateral soil and meteoric 10Be fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering as well as downslope fluxes of soil due to creep, water and tillage erosion. Synthetic model simulations show that meteoric 10Be inventories can be related to erosion and deposition across a wide range of geomorphological and pedological settings. Our results also show that meteoric 10Be can be used as a tracer to detect human impact on soil fluxes for soils with a high affinity for meteoric 10Be. However, the quantification of vertical mobility is essential for a correct interpretation of the observed variations in meteoric 10Be profiles and inventories. Application of the Be2D model to natural conditions using data sets from the Southern Piedmont (Bacon et al., 2012) and Appalachian Mountains (Jungers et al., 2009; West et al., 2013) allows to reliably constrain parameter values. Good agreement between simulated and observed meteoric 10Be concentrations and inventories is obtained with realistic parameter values. Furthermore, our results provide detailed insights into the processes redistributing meteoric 10Be at the soil-hillslope scale.
NMR Mechanisms and Fluid Typing Based on Numerical Simulation in Gas-Bearing Shale
NASA Astrophysics Data System (ADS)
Tan, M.; Xu, J.; Wang, X.
2013-12-01
In Nuclear Magnetic Resonance (NMR) survey of oil- or gas-bearing shales, the relaxation is so fast and the diffusion is so low, and oil or gas typing is difficult to distinguish from each other using the previous analysis method. To study the NMR responses in gas-bearing shale, we supposed an ideal shale model including incredible water, free and adsorbed gas, and kerogen. Firstly, we supposed a series of ideal shale models with incredible water, free and adsorbed gas, and kerogen. Then, some simulations are performed for two-dimensional T2-D plots, and NMR characteristics are summarized successfully. Then, a series of simulations of different models with different adsorbed gas fractions are made, and the NMR responses are analyzed, from which we can identify the adsorbed gas and free gas. In inversion, a hybrid method with LSQR and TSVD is proved suitable for D-T2 NMR of gas shale with slow and fast diffusion, and short and long relaxation. It is noticed that the activation sequence of NMR is also important for accurate fluid typing in gas-bearing shale. We design a series of activation sequences, and simulate the corresponding NMR echo decays, and invert the fluid properties to search for an optimal activation sequence for fluid typing purpose. Figure 1 SEM picture and petrophysical model of organic shale. (a) 2D SEM shows pore and kerogen within shale. Black deposits pore, and dark gray is kerogen, light grey is matrix including clay and silica; (b) Petrophysical model Figure 2 Comparison of 2D-NMR simulations with different adsorbed gas fractions, (a) ɛ =0.0, (b) ɛ =0.2, (c) ɛ=0.4, t (d) ɛ =0.6, (e) ɛ =0.8, and (f) ɛ=1.0. From D-T2 plots, the position and amplitude of signals in T2-D plots indicate the fluid typing and fraction of the gas or adsorbed gas.
Simulations of the C-2/C-2U Field Reversed Configurations with the Q2D code
NASA Astrophysics Data System (ADS)
Onofri, Marco; Dettrick, Sean; Barnes, Daniel; Tajima, Toshiki; TAE Team
2015-11-01
C-2U was built to sustain advanced beam-driven FRCs for 5 + ms. The Q2D transport code is used to simulate the evolution of C-2U discharges and to study sustainment via fast ion current and pressure, with the latter comparable to the thermal plasma pressure. The code solves the MHD equations together with source terms due to neutral beams, which are calculated by a Monte Carlo method. We compare simulations with experimental results obtained in the HPF14 regime of C-2 (6 neutral beams with energy of 20 keV and total power of 4.2 MW). All simulations start from an initial equilibrium and transport coefficients are chosen to match experimental data. The best agreement is obtained when utilizing an enhanced energy transfer between fast ions and the plasma, which may be an indication of anomalous heating due to beneficial beam-plasma instabilities. Similar simulations of C-2U (neutral beam power increased to 10 + MW and angled beam injection) are compared with experimental results, where a steady state has been obtained for 5 + ms, correlated with the neutral beam pulse and limited by engineering constraints.
FireStem2D--a two-dimensional heat transfer model for simulating tree stem injury in fires.
Chatziefstratiou, Efthalia K; Bohrer, Gil; Bova, Anthony S; Subramanian, Ravishankar; Frasson, Renato P M; Scherzer, Amy; Butler, Bret W; Dickinson, Matthew B
2013-01-01
FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by resolving stem moisture loss, temperatures through the stem, degree of bark charring, and necrotic depth around the stem. We present the results of numerical parameterization and model evaluation experiments for FireStem2D that simulate laboratory stem-heating experiments of 52 tree sections from 25 trees. We also conducted a set of virtual sensitivity analysis experiments to test the effects of unevenness of heating around the stem and with aboveground height using data from two studies: a low-intensity surface fire and a more intense crown fire. The model allows for improved understanding and prediction of the effects of wildland fire on injury and mortality of trees of different species and sizes.
FireStem2D – A Two-Dimensional Heat Transfer Model for Simulating Tree Stem Injury in Fires
Chatziefstratiou, Efthalia K.; Bohrer, Gil; Bova, Anthony S.; Subramanian, Ravishankar; Frasson, Renato P. M.; Scherzer, Amy; Butler, Bret W.; Dickinson, Matthew B.
2013-01-01
FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by resolving stem moisture loss, temperatures through the stem, degree of bark charring, and necrotic depth around the stem. We present the results of numerical parameterization and model evaluation experiments for FireStem2D that simulate laboratory stem-heating experiments of 52 tree sections from 25 trees. We also conducted a set of virtual sensitivity analysis experiments to test the effects of unevenness of heating around the stem and with aboveground height using data from two studies: a low-intensity surface fire and a more intense crown fire. The model allows for improved understanding and prediction of the effects of wildland fire on injury and mortality of trees of different species and sizes. PMID:23894599
A New Simulation Algorithm Combining Fluid and Kinetic Properties
NASA Astrophysics Data System (ADS)
Larson, David; Hewett, Dennis
2007-11-01
Complex Particle Kinetics (CPK) [1,2] uses particles with internal degrees of freedom in an effort to simulate the transition between continuum and kinetic dynamics. Recent work [3] has provided a new path towards extending the adaptive particle capabilities of CPK. The resulting algorithm bridges the gap between fluid and kinetic regimes. The method uses an ensemble of macro-particles with a Gaussian spatial profile and a Mawellian velocity distribution to represent particle distributions in phase space. In addition to the standard PIC quantities of location, drift velocity, mass, and charge, the macro-particles also carry width, thermal velocity, and an internal velocity. The particle shape, internal velocity, and drift velocity respond to internal and eternal forces. The particles can contract, expand, rotate, and pass through one another. The algorithm allows arbitrary collisionality and functions effectively in the collision-dominated limit. We will present details of the algorithm as well as the results from several simulations. [1] D. W. Hewett, J. Comp. Phys. 189 (2003). [2] D. J. Larson, J. Comp. Phys. 188 (2003). [3] C. Gauger, et.al., SIAM J. Numer. Anal. 37 (2000).
NASA Astrophysics Data System (ADS)
Humair, F.; Matasci, B.; Carrea, D.; Pedrazzini, A.; Loye, A.; Pedrozzi, G.; Nicolet, P.; Jaboyedoff, M.
2012-04-01
account the results of the experimental testing are performed and compared with the a-priori simulations. 3D simulations were performed using a software that takes into account the effect of the forest cover in the blocky trajectory (RockyFor 3D) and an other that neglects this aspect (Rotomap; geo&soft international). 2D simulation (RocFall; Rocscience) profiles were located in the blocks paths deduced from 3D simulations. The preliminary results show that: (1) high speed movies are promising and allow us to track the blocks using video software, (2) the a-priori simulations tend to overestimate the runout distance which is certainly due to an underestimation of the obstacles as well as the breaking of the failing rocks which is not taken into account in the models, (3) the trajectories deduced from both a-priori simulation and real size experiment highlights the major influence of the channelized slope morphology on rock paths as it tends to follow the flow direction. This indicates that the 2D simulation have to be performed along the line of flow direction.
Analysis of Highly-Resolved Simulations of 2-D Humps Toward Improvement of Second-Moment Closures
NASA Technical Reports Server (NTRS)
Jeyapaul, Elbert; Rumsey Christopher
2013-01-01
Fully resolved simulation data of flow separation over 2-D humps has been used to analyze the modeling terms in second-moment closures of the Reynolds-averaged Navier- Stokes equations. Existing models for the pressure-strain and dissipation terms have been analyzed using a priori calculations. All pressure-strain models are incorrect in the high-strain region near separation, although a better match is observed downstream, well into the separated-flow region. Near-wall inhomogeneity causes pressure-strain models to predict incorrect signs for the normal components close to the wall. In a posteriori computations, full Reynolds stress and explicit algebraic Reynolds stress models predict the separation point with varying degrees of success. However, as with one- and two-equation models, the separation bubble size is invariably over-predicted.
Molecular dynamics simulations of microscale fluid transport
Wong, C.C.; Lopez, A.R.; Stevens, M.J.; Plimpton, S.J.
1998-02-01
Recent advances in micro-science and technology, like Micro-Electro-Mechanical Systems (MEMS), have generated a group of unique liquid flow problems that involve characteristic length scales of a Micron. Also, in manufacturing processes such as coatings, current continuum models are unable to predict microscale physical phenomena that appear in these non-equilibrium systems. It is suspected that in these systems, molecular-level processes can control the interfacial energy and viscoelastic properties at the liquid/solid boundary. A massively parallel molecular dynamics (MD) code has been developed to better understand microscale transport mechanisms, fluid-structure interactions, and scale effects in micro-domains. Specifically, this MD code has been used to analyze liquid channel flow problems for a variety of channel widths, e.g. 0.005-0.05 microns. This report presents results from MD simulations of Poiseuille flow and Couette flow problems and addresses both scaling and modeling issues. For Poiseuille flow, the numerical predictions are compared with existing data to investigate the variation of the friction factor with channel width. For Couette flow, the numerical predictions are used to determine the degree of slip at the liquid/solid boundary. Finally, the results also indicate that shear direction with respect to the wall lattice orientation can be very important. Simulation results of microscale Couette flow and microscale Poiseuille flow for two different surface structures and two different shear directions will be presented.
NASA Astrophysics Data System (ADS)
Pang, Liping; Close, Murray E.; Watt, James P. C.; Vincent, Keith W.
2000-06-01
Two 15 m×15 m field plots, a Te Awa silt loam and a Twyford fine sandy loam, located in Hawkes Bay, New Zealand, were applied with bromide, picloram, atrazine, and simazine. The Te Awa subsoil was a heterogeneous coarse sand and sandy gravel, and the Twyford subsoil was a more homogenous fine sandy loam. The underlying aquifers were composed of alluvial gravels at both sites with the water tables generally between 4-5 m below ground level. The sites were monitored for 2.2-3.5 years at approximately monthly intervals using suction cups in the unsaturated zone and monitoring wells in groundwater. HYDRUS-2D was used to simulate water movement and solute transport in soil and groundwater in a domain with a depth of 10 m and length of 68 m, including a 4.5-m unsaturated zone. The model simulated well the general trend of field observations for soil water content ( θ) and potential ( ψs), and the values matched better for the soils with less heterogeneity. For the soils with significant surface cracks, the simulated θ values were overestimated. On the other hand, for the soil layer perching on top of a less permeable layer, the simulated θ values were underestimated. Simulated pesticide concentrations using the "best available literature values" (BALVs) of organic carbon distribution coefficient ( Koc) and half-life ( T1/2) were generally lower than those observed. At early times in the trails, most simulations using BALVs were still within the same order of magnitude as observed concentrations for the shallow depths. However, at greater depths and later times, there were major differences between observed and simulated concentrations. The model was then calibrated for Koc and T1/2 values using observed data with an aid of the PEST optimisation package. Despite higher organic contents found in the topsoil, optimised Koc values for pesticides were consistently lower for the topsoil than for the subsoil, and were also lower than the BALVs except for picloram, possibly
A volume of fluid method for simulating fluid/fluid interfaces in contact with solid boundaries
NASA Astrophysics Data System (ADS)
Mahady, Kyle; Afkhami, Shahriar; Kondic, Lou
2015-08-01
In this paper, we present a novel approach to model the fluid/solid interaction forces in a direct solver of the Navier-Stokes equations based on the volume of fluid interface tracking method. The key ingredient of the model is the explicit inclusion of the fluid/solid interaction forces into the governing equations. We show that the interaction forces lead to a partial wetting condition and in particular to a natural definition of the equilibrium contact angle. We present two numerical methods to discretize the interaction forces that enter the model; these two approaches differ in complexity and convergence. To validate the computational framework, we consider the application of these models to simulate two-dimensional drops at equilibrium, as well as drop spreading. We demonstrate that the model, by including the underlying physics, captures contact line dynamics for arbitrary contact angles. More generally, the approach permits novel means to study contact lines, as well as a diverse range of phenomena that previously could not be addressed in direct simulations.
NASA Astrophysics Data System (ADS)
Chen, K.; You, Y.; Noblesse, F.
2016-07-01
Experiments are conducted in a linear stratified fluid with a momentum source modeled via a nozzle jet moving horizontally. The generation mechanism of the quasi-two-dimensional dipolar vortex streets is investigated and their evolution characteristics are analyzed. Observation shows that the formation of a dipolar vortex street requires a nonzero motion of the nozzle in addition to conditions of the Reynolds and Froude number (Re, Fr). The (Re, Fr) condition that the dipolar vortex streets can be generated is determined via experimental measurements. The explanation for the absence of such a vortex street can be the low energy of the jet and the strong body-effect disturbance of the solid nozzle. The dependence of the vortex street dimensionless formation time τ and the Strouhal number St on the Froude number Fr or the Reynolds number Re is analyzed. This analysis shows that τ and St appear to be independent of Re and approximately have power-law relations with Fr via data fitting. The exponents of Fr in the two power-law functions are -0.27 for τ and -0.21 for St, while the constant coefficients are 65 and 0.21.
NASA Astrophysics Data System (ADS)
Jia, Xiaojie; Ai, Bin; Deng, Youjun; Xu, Xinxiang; Peng, Hua; Shen, Hui
2015-08-01
On the basis of perfect PC2D simulation to the measured current density vs voltage (J-V) curve of the best selective emitter (SE) solar cell fabricated by the CSG Company using the screen printing phosphoric paste method, we systematically investigated the effect of the parameters of gridline, base, selective emitter, back surface field (BSF) layer and surface recombination rate on performance of the SE solar cell. Among these parameters, we identified that the base minority carrier lifetime, the front and back surface recombination rate and the ratio of the sheet-resistance of heavily and lightly doped region are the four largest efficiency-affecting factors. If all the parameters have ideal values, the SE solar cell fabricated on a p-type monocrystalline silicon wafer can even obtain the efficiency of 20.45%. In addition, the simulation also shows that fine gridline combining dense gridline and increasing bus bar number while keeping the lower area ratio can offer the other ways to improve the efficiency.
2D simulation of active species and ozone production in a multi-tip DC air corona discharge
NASA Astrophysics Data System (ADS)
Meziane, M.; Eichwald, O.; Sarrette, J. P.; Ducasse, O.; Yousfi, M.
2011-11-01
The present paper shows for the first time in the literature a complete 2D simulation of the ozone production in a DC positive multi-tip to plane corona discharge reactor crossed by a dry air flow at atmospheric pressure. The simulation is undertaken until 1 ms and involves tens of successive discharge and post-discharge phases. The air flow is stressed by several monofilament corona discharges generated by a maximum of four anodic tips distributed along the reactor. The nonstationary hydrodynamics model for reactive gas mixture is solved using the commercial FLUENT software. During each discharge phase, thermal and vibrational energies as well as densities of radical and metastable excited species are locally injected as source terms in the gas medium surrounding each tip. The chosen chemical model involves 10 neutral species reacting following 24 reactions. The obtained results allow us to follow the cartography of the temperature and the ozone production inside the corona reactor as a function of the number of high voltage anodic tips.
Automated Fluid Feature Extraction from Transient Simulations
NASA Technical Reports Server (NTRS)
Haimes, Robert
1998-01-01
In the past, feature extraction and identification were interesting concepts, but not required to understand the underlying physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of much interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one 'snap-shot' of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense. The following is a list of the important physical phenomena found in transient (and steady-state) fluid flow: Shocks; Vortex ores; Regions of Recirculation; Boundary Layers; Wakes.
Lappala, E.G.; Healy, R.W.; Weeks, E.P.
1987-01-01
This report documents FORTRAN computer code for solving problems involving variably saturated single-phase flow in porous media. The flow equation is written with total hydraulic potential as the dependent variable, which allows straightforward treatment of both saturated and unsaturated conditions. The spatial derivatives in the flow equation are approximated by central differences, and time derivatives are approximated either by a fully implicit backward or by a centered-difference scheme. Nonlinear conductance and storage terms may be linearized using either an explicit method or an implicit Newton-Raphson method. Relative hydraulic conductivity is evaluated at cell boundaries by using either full upstream weighting, the arithmetic mean, or the geometric mean of values from adjacent cells. Nonlinear boundary conditions treated by the code include infiltration, evaporation, and seepage faces. Extraction by plant roots that is caused by atmospheric demand is included as a nonlinear sink term. These nonlinear boundary and sink terms are linearized implicitly. The code has been verified for several one-dimensional linear problems for which analytical solutions exist and against two nonlinear problems that have been simulated with other numerical models. A complete listing of data-entry requirements and data entry and results for three example problems are provided. (USGS)
Fully nonlinear simulation for fluid/structure impact: A review
NASA Astrophysics Data System (ADS)
Sun, Shili; Wu, Guoxiong
2014-09-01
This paper presents a review of the work on fluid/structure impact based on inviscid and imcompressible liquid and irrotational flow. The focus is on the velocity potential theory together with boundary element method (BEM). Fully nonlinear boundary conditions are imposed on the unknown free surface and the wetted surface of the moving body. The review includes (1) vertical and oblique water entry of a body at constant or a prescribed varying speed, as well as free fall motion, (2) liquid droplets or column impact as well as wave impact on a body, (3) similarity solution of an expanding body. It covers two dimensional (2D), axisymmetric and three dimensional (3D) cases. Key techniques used in the numerical simulation are outlined, including mesh generation on the multivalued free surface, the stretched coordinate system for expanding domain, the auxiliary function method for decoupling the mutual dependence of the pressure and the body motion, and treatment for the jet or the thin liquid film developed during impact.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Ye, S.; Wu, J.
2013-12-01
Immiscible two-phase flows in fractured media are encountered in many engineering processes such as recovery of oil and gas, exploitation of geothermal energy, and groundwater contamination by immiscible chemicals. A two-dimensional rough wall parallel plate fracture model was set up and light transmission method (LTM) was applied to study two-phase flow system in fractured media. The fracture model stood with up and bottom flow and no flow on other two sides. A charge-coupled device (CCD) camera was used to monitor the migration of DNAPL and gas bubbles in the fracture model. To simulate two-phase system in fracture media, air was injected into the water saturated cell (C1) through the middle of the bottom and NAPL was injected into another water saturated cell (C2) through the middle of the top of the cell. The results show LTM was an effective way in monitoring the migration of DNAPL and gas bubbles in the fracture models. Gas moved upwards quickly to the top of C1 in the way of air bubbles generated at the injection position and formed a continuous distribution. The migration of TCE was controlled by its own weight and fracture aperture. TCE migrated to large aperture firstly when moving downwards, and intruded into smaller one with accumulation of TCE. Light Intensity-Saturation Models (LISMs) were developed to estimate the gas or NAPL saturation in two-phase system. The volume amount of infiltration of gas bubbles or NAPL could be estimated from light intensities by LISMs. There were strong correlations between the added and calculated amounts of gas or TCE. It is feasible to use the light transmission method to characterize the movement and spatial distribution of gas or NAPL in fractured media.
Fluid spray simulation with two-fluid nozzles
NASA Technical Reports Server (NTRS)
Ingebo, Robert D.
1988-01-01
Two-phase interacting flow inside a two-fluid fuel atomizer was investigated and a correction of aerodynamic and liquid-surface forces with characteristic drop diameter was obtained for liquid-jet breakup in Mach 1 gas flow. Nitrogen gas mass-flux was varied from 6 to 50 g/sq cm sec by using four differently sized two-fluid atomizers with nozzle diameters varyig from 0.32 to 0.56 cm. The correlation was derived by using the acoustic gas velocity, V sub c, as a basic parameter in defining and evaluating the dimensionless product of the Weber (We) and Reynolds (Re) numbers. By using the definition of WeRe, it was found that the ratio of orifice diameter to Sauter mean drop diameter could be correlated with the dimensionless ratio WeRe and the gas to liquid density ratio.
Fluid Flow Patterns Derived from Bottom Simulating Reflections Offshore Southwestern Taiwan
NASA Astrophysics Data System (ADS)
Chen, L.; Wu, S.; Chi, W.; Liu, C.; Wang, Y.
2012-12-01
Fluid migration pattern is important for understanding the structural characteristics of a mountain belt and for hydrocarbon exploration. However, these patterns are difficult to measure on the seafloor. Using phase properties of the gas hydrates, we studied the fluid flow patterns offshore Southwestern Taiwan. Seismic explorations in this region show a wide-spread bottom-simulating-reflector (BSR), which is interpreted as the bottom of the gas hydrate stability zone. It provides us an opportunity to study possible fluid flow patterns at several hundred meters sub-bottom depths of the marine sediments. We used BSR-based geothermal gradient patterns to derive 1D vertical fluid flow models by analyzing the Péclet numbers. We found the regional fluid flow rates ranges from 6 cm/yr to 43 cm/yr and also discovered two prospect sites: Yung-An Ridge and Formosa Ridge in active and passive margins respectively. Next, we forward-modeled 2D steady-state temperature fields of these two sites to account for the topographic effects to compare with the BSR-based temperature. The discrepancy between the 2D conductive thermal model and the BSR-based temperature was interpreted as a result of fluid migration. We discovered our interpreted fluid migration patterns are pretty consistent with the regional structure, and the BSR-based temperatures are about 2~3oC higher than the conduction model near faults and chimney zones. We interpret that it is possible active dewatering inside the accretionary prism to allow fluid to migrate upward here. For Formosa Ridge in the passive margin, the BSR-based temperatures are about 4-5oC colder than the theoretical model, especially on the flanks. We interpret that cold seawater is moving into the ridge from the flanks, cooling the ridge, and then some of the fluid is expelled at the ridge top. The shallow temperature fields are strongly affected by 2D or even 3D topographic effects, but we can still gain much information regarding fluid flow
NASA Astrophysics Data System (ADS)
Vanzo, Davide; Siviglia, Annunziato; Zolezzi, Guido
2014-05-01
In last decades, pushed by an increasing interest in environmental problems and supported by an exponential growth of computational capability, novel numerical methods and models have been developed. Despite the progress in parallel computing, computational time is still one of the main bottlenecks when dealing with long term environmental simulations. To overcome such time constraint in morphodynamic models, artificial acceleration of bed evolution has been implemented with different strategies (e.g. Roelvink 2006). The key idea is to accelerate the morphological evolution increasing the discrete bottom variations of a given "morphological factor" during numerical integration thus considerably speeding up computational time. On the other hand, an artificial alteration of the governing equations is put forward, for which related numerical and physical consequences are not completely known. The present work investigates the role of the morphological factor in numerical simulations of a well-defined, 2D reach-scale process in river morphodynamics, which can be taken as a benchmark for the established knowledge made available from theoretical and physical scale models developed in the past decades. The chosen process is the evolution of free migrating bars in a straight channel. The numerical morphodynamic model used in this work is GIAMT2D (Siviglia et al. 2013), which solves the governing system of shallow water and Exner equations following a fully coupled approach with a finite volume method on unstructured triangular grids. By processing numerical outcomes also through Continuous Wavelet Transform, the differences in free migrating bars properties (temporal evolution and equilibrium values of wavelength, amplitude, celerity) are investigated in simple test cases with different values of the morphological factor. Numerical results are compared with available analytical theories for free bars. The outcomes highlight the consequences of using the morphological
Falvo, Cyril; Zhuang, Wei; Kim, Yung Sam; Axelsen, Paul H.; Hochstrasser, Robin M.; Mukamel, Shaul
2012-01-01
The infrared optical response of Amyloid Fibrils Aβ1–40 is investigated. Simulations of two models corresponding to different protonation states are compared with experiment. The simulations reveal that vibrational frequency distributions inside the fibrils are dominated by sidechain fluctuations. We further confirm earlier suggestions based on 2D-IR measurements that water molecules can be trapped inside the fibrils. PMID:22338639
User`s guide for the casting process simulator software CaPS-2D, Version 1.0
Domanus, H.M.; Schmitt, R.C.; Ahuja, S.
1993-07-01
Most casting defects occur during initial pouring and therefore the design of the running system, which guides the metal from the ladle into the mold, is crucial. Traditionally, the running system and mold filling are designed by trial and error, which is tedious, time consuming. and expensive. The uncertainties that remain can be overcome by a computer simulation that demonstrates the actual process of mold filling and subsequent solidification. Computer simulation of various processes has become more and more common in recent years. The cost-effectiveness of making flawless castings has made the foundry worker more aware of the process of mold filling, identification of hot spots, etc. The macroscopic Casting Process Simulator (CaPS) software combines heat transfer and fluid flow aspects and can describe a variety of solidification aspects, including mold filling. CaPS is a two-dimensional time-dependent computer code involving a finite-volume formulation for the mass, momentum. and energy equations. CaPS has the following characteristics: CaPS uses the PATRAN geometric modeling package for constructing the geometry, generating a neutral file consisting of a list of named components, and post-processing of the simulation results; building the geometry independently of the mesh is a time-saving procedure. A structured mesh generator of structured regular cells is included and is interfaced with the neutral-file output of the solid geometric package. Visual user interfaces have been developed on the basis of the HOOPS package, which contains a hierarchical database of geometric information. The CaPS shell scripts interactively provide a step-by-step procedure to simulate the solidification process, thus making the software very user-friendly.
2D hybrid simulations of super-diffusion at the magnetopause driven by Kelvin-Helmholtz instability
Cowee, Misa M; Winske, Dan; Gary, S Peter
2009-01-01
This manuscript describes the self-consistent simulation of diffusion at the magnetopause driven by Kelvin-Helmholtz (KH) instability. Two-dimensional hybrid (kinetic ions, fluid electrons) simulations of the most KH-unstable configuration where the shear flow is oriented perpendicular to the uniform magnetic field are carried out. The motion of the simulation particles are tracked during the run and their mean-square displacement normal to the magnetopause is calculated from which diffusion coefficients are determined. The diffusion coefficients are found to be time dependent, with D{sub x} {proportional_to} t{sup {alpha}}, where {alpha} > 1. Additionally, the probability distribution functions (PDF) of the 'jump lengths' the particles make over time are found to be non-gaussian. Such time-dependent diffusion coefficients and non-gaussian PDF's have been associated with so-called 'super-diffusion', in which diffusive mixing of particles is enhanced over classical diffusion. The results indicate that while turbulence associated with the break-down of vortices contributes to this enhanced diffusion, it is the growth of large-scale, coherent vortices is the more important process in facilitating it.
NASA Technical Reports Server (NTRS)
Li, Xiaofan; Sui, C.-H.; Lau, K.-M.
1999-01-01
The phase relation between the perturbation kinetic energy (K') associated with the tropical convection and the horizontal-mean moist available potential energy (bar-P) associated with environmental conditions is investigated by an energetics analysis of a numerical experiment. This experiment is performed using a 2-D cloud resolving model forced by the TOGA-COARE derived vertical velocity. The imposed upward motion leads to a decrease of bar-P directly through the associated vertical advective cooling, and to an increase of K' directly through cloud related processes, feeding the convection. The maximum K' and its maximum growth rate lags and leads, respectively, the maximum imposed large-scale upward motion by about 1-2 hours, indicating that convection is phase locked with large-scale forcing. The dominant life cycle of the simulated convection is about 9 hours, whereas the time scales of the imposed large-scale forcing are longer than the diurnal cycle. In the convective events, maximum growth of K' leads maximum decay of the perturbation moist available potential energy (P') by about 3 hours through vertical heat transport by perturbation circulation, and perturbation cloud heating. Maximum decay of P' leads maximum decay of bar-P by about one hour through the perturbation radiative, processes, the horizontal-mean cloud heating, and the large-scale vertical advective cooling. Therefore, maximum gain of K' occurs about 4-5 hours before maximum decay of bar-P.
TITAN2D simulations of pyroclastic flows at Cerro Machín Volcano, Colombia: Hazard implications
NASA Astrophysics Data System (ADS)
Murcia, H. F.; Sheridan, M. F.; Macías, J. L.; Cortés, G. P.
2010-03-01
Cerro Machín is a dacitic tuff ring located in the central part of the Colombian Andes. It lies at the southern end of the Cerro Bravo-Cerro Machín volcanic belt. This volcano has experienced at least six major explosive eruptions during the last 5000 years. These eruptions have generated pyroclastic flows associated with Plinian activity that have traveled up to 8 km from the crater, and pyroclastic flows associated with Vulcanian activity with shorter runouts of 5 km from the source. Today, some 21,000 people live within a 8 km radius of Cerro Machín. The volcano is active with fumaroles and has shown increasing seismic activity since 2004, and therefore represents a potentially increasing threat to the local population. To evaluate the possible effects of future eruptions that may generate pyroclastic density currents controlled by granular flow dynamics we performed flow simulations with the TITAN2D code. These simulations were run in all directions around the volcano, using the input parameters of the largest eruption reported. The results show that an eruption of 0.3 km 3 of pyroclastic flows from a collapsing Plinian column would travel up to 9 km from the vent, emplacing a deposit thicker than 60 m within the Toche River valley. Deposits >45 m thick can be expected in the valleys of San Juan, Santa Marta, and Azufral creeks, while 30 m thick deposits could accumulate within the drainages of the Tochecito, Bermellón, and Coello Rivers. A minimum area of 56 km 2 could be affected directly by this kind of eruption. In comparison, Vulcanian column-collapse pyroclastic flows of 0.1 km 3 would travel up to 6 km from the vent depositing >45 m thick debris inside the Toche River valley and more than 30 m inside the valleys of San Juan, Santa Marta, and Azufral creeks. The minimum area that could be affected directly by this kind of eruption is 33 km 2. The distribution and thickness of the deposits obtained by these simulations are consistent with the hazard
Geochemical simulations on CO2-fluid-rock interactions in EGS reservoirs
NASA Astrophysics Data System (ADS)
Pan, F.; McPherson, B. J.; Lichtner, P. C.; Kaszuba, J. P.; Lo Re, C.; Karra, S.; Lu, C.; Xu, T.
2012-12-01
Supercritical CO2 has been suggested as a heat transmission fluid in Enhanced Geothermal Systems (EGS) reservoirs to improve energy extraction. Understanding the geochemical processes of CO2-fluid-rock interactions in EGS reservoirs is significant important to investigate the performance of energy extraction with CO2 instead of water as a working fluid, carbon sequestration and risk assessment. The objectives of this study: (1) to calibrate and evaluate the kinetic rate constants and specific reactive surface areas of minerals based on the batch experimental data conducted by other researchers (collaborators Kaszuba and Lo Ré at the University of Wyoming); (2) to investigate the effects of CO2-fluid-rock geochemical interactions on the energy extraction efficiency, carbon sequestration, and risk assessment. A series of laboratory experiments were conducted (Lo Ré et al., 2012) to investigate the geochemical reactions among water, fractured granite rocks, and injected supercritical CO2 at elevated temperatures of 250 oC, and pressures of 250-450 bars. The batch simulations were firstly conducted to mimic the laboratory experiments with the calibration of mineral reactive surface areas using TOUGHREACT model and parameter estimation software (PEST). Then, we performed 2-D geochemical modeling to simulate the chemical interactions among CO2, fluids, and rocks at high temperatures and pressures of EGS reservoirs. We further investigated the effects of fluid-rock interactions on the energy extraction, carbon sequestration, and risk assessment with CO2 as a heat transmission fluid instead of water for EGS reservoirs. Results of carbonate mineral precipitations suggested that the CO2 as a working fluid instead of water was favorable for EGS reservoirs on the CO2 sequestration. Our simulations also suggested that the energy extraction could be enhanced using CO2 as the transmission fluid compared to water.
Zhong, Lirong; Oostrom, Martinus; Wietsma, Thomas W.; Covert, Matthew A.
2008-07-29
Abstract Heterogeneity is often encountered in subsurface contamination characterization and remediation. Low-permeability zones are typically bypassed when remedial fluids are injected into subsurface heterogeneous aquifer systems. Therefore, contaminants in the bypassed areas may not be contacted by the amendments in the remedial fluid, which may significantly prolong the remediation operations. Laboratory experiments and numerical studies have been conducted to develop the Mobility-Controlled Flood (MCF) technology for subsurface remediation and to demonstrate the capability of this technology in enhancing the remedial amendments delivery to the lower permeability zones in heterogeneous systems. Xanthan gum, a bio-polymer, was used to modify the viscosity of the amendment-containing remedial solutions. Sodium mono-phosphate and surfactant were the remedial amendment used in this work. The enhanced delivery of the amendments was demonstrated in two-dimensional (2-D) flow cell experiments, packed with heterogeneous systems. The impact of polymer concentration, fluid injection rate, and permeability contract in the heterogeneous systems has been studied. The Subsurface Transport over Multiple Phases (STOMP) simulator was modified to include polymer-induced shear thinning effects. Shear rates of polymer solutions were computed from pore-water velocities using a relationship proposed in the literature. Viscosity data were subsequently obtained from empirical viscosity-shear rate relationships derived from laboratory data. The experimental and simulation results clearly show that the MCF technology is capable of enhancing the delivery of remedial amendments to subsurface lower permeability zones. The enhanced delivery significantly improved the NAPL removal from these zones and the sweeping efficiency on a heterogeneous system was remarkably increased when a polymer fluid was applied. MCF technology is also able to stabilize the fluid displacing front when there is a
NASA Astrophysics Data System (ADS)
Fediai, Artem; Ryndyk, Dmitry A.; Cuniberti, Gianaurelio
2016-10-01
Up to now, the electrical properties of the contacts between 3D metals and 2D materials have never been computed at a fully ab initio level due to the huge number of atomic orbitals involved in a current path from an electrode to a pristine 2D material. As a result, there are still numerous open questions and controversial theories on the electrical properties of systems with 3D/2D interfaces—for example, the current path and the contact length scalability. Our work provides a first-principles solution to this long-standing problem with the use of the modular approach, a method which rigorously combines a Green function formalism with the density functional theory (DFT) for this particular contact type. The modular approach is a general approach valid for any 3D/2D contact. As an example, we apply it to the most investigated among 3D/2D contacts—metal/graphene contacts—and show its abilities and consistency by comparison with existing experimental data. As it is applicable to any 3D/2D interface, the modular approach allows the engineering of 3D/2D contacts with the pre-defined electrical properties.
Fediai, Artem; Ryndyk, Dmitry A; Cuniberti, Gianaurelio
2016-10-01
Up to now, the electrical properties of the contacts between 3D metals and 2D materials have never been computed at a fully ab initio level due to the huge number of atomic orbitals involved in a current path from an electrode to a pristine 2D material. As a result, there are still numerous open questions and controversial theories on the electrical properties of systems with 3D/2D interfaces-for example, the current path and the contact length scalability. Our work provides a first-principles solution to this long-standing problem with the use of the modular approach, a method which rigorously combines a Green function formalism with the density functional theory (DFT) for this particular contact type. The modular approach is a general approach valid for any 3D/2D contact. As an example, we apply it to the most investigated among 3D/2D contacts-metal/graphene contacts-and show its abilities and consistency by comparison with existing experimental data. As it is applicable to any 3D/2D interface, the modular approach allows the engineering of 3D/2D contacts with the pre-defined electrical properties.
NASA Astrophysics Data System (ADS)
López-Venegas, Alberto M.; Horrillo, Juan; Pampell-Manis, Alyssa; Huérfano, Victor; Mercado, Aurelio
2015-06-01
The most recent tsunami observed along the coast of the island of Puerto Rico occurred on October 11, 1918, after a magnitude 7.2 earthquake in the Mona Passage. The earthquake was responsible for initiating a tsunami that mostly affected the northwestern coast of the island. Runup values from a post-tsunami survey indicated the waves reached up to 6 m. A controversy regarding the source of the tsunami has resulted in several numerical simulations involving either fault rupture or a submarine landslide as the most probable cause of the tsunami. Here we follow up on previous simulations of the tsunami from a submarine landslide source off the western coast of Puerto Rico as initiated by the earthquake. Improvements on our previous study include: (1) higher-resolution bathymetry; (2) a 3D-2D coupled numerical model specifically developed for the tsunami; (3) use of the non-hydrostatic numerical model NEOWAVE (non-hydrostatic evolution of ocean WAVE) featuring two-way nesting capabilities; and (4) comprehensive energy analysis to determine the time of full tsunami wave development. The three-dimensional Navier-Stokes model tsunami solution using the Navier-Stokes algorithm with multiple interfaces for two fluids (water and landslide) was used to determine the initial wave characteristic generated by the submarine landslide. Use of NEOWAVE enabled us to solve for coastal inundation, wave propagation, and detailed runup. Our results were in agreement with previous work in which a submarine landslide is favored as the most probable source of the tsunami, and improvement in the resolution of the bathymetry yielded inundation of the coastal areas that compare well with values from a post-tsunami survey. Our unique energy analysis indicates that most of the wave energy is isolated in the wave generation region, particularly at depths near the landslide, and once the initial wave propagates from the generation region its energy begins to stabilize.
NASA Astrophysics Data System (ADS)
Sato, Haruo; Fehler, Michael C.
2016-10-01
The envelope broadening and the peak delay of the S-wavelet of a small earthquake with increasing travel distance are results of scattering by random velocity inhomogeneities in the earth medium. As a simple mathematical model, Sato proposed a new stochastic synthesis of the scalar wavelet envelope in 3-D von Kármán type random media when the centre wavenumber of the wavelet is in the power-law spectral range of the random velocity fluctuation. The essential idea is to split the random medium spectrum into two components using the centre wavenumber as a reference: the long-scale (low-wavenumber spectral) component produces the peak delay and the envelope broadening by multiple scattering around the forward direction; the short-scale (high-wavenumber spectral) component attenuates wave amplitude by wide angle scattering. The former is calculated by the Markov approximation based on the parabolic approximation and the latter is calculated by the Born approximation. Here, we extend the theory for the envelope synthesis of a wavelet in 2-D random media, which makes it easy to compare with finite difference (FD) simulation results. The synthetic wavelet envelope is analytically written by using the random medium parameters in the angular frequency domain. For the case that the power spectral density function of the random velocity fluctuation has a steep roll-off at large wavenumbers, the envelope broadening is small and frequency independent, and scattering attenuation is weak. For the case of a small roll-off, however, the envelope broadening is large and increases with frequency, and the scattering attenuation is strong and increases with frequency. As a preliminary study, we compare synthetic wavelet envelopes with the average of FD simulation wavelet envelopes in 50 synthesized random media, which are characterized by the RMS fractional velocity fluctuation ε = 0.05, correlation scale a = 5 km and the background wave velocity V0 = 4 km s-1. We use the radiation
NASA Astrophysics Data System (ADS)
Sato, Haruo; Fehler, Michael C.
2016-07-01
The envelope broadening and the peak delay of the S-wavelet of a small earthquake with increasing travel distance are results of scattering by random velocity inhomogeneities in the earth medium. As a simple mathematical model, Sato (2016) proposed a new stochastic synthesis of the scalar wavelet envelope in 3-D von Kármán type random media when the center wavenumber of the wavelet is in the power-law spectral range of the random velocity fluctuation. The essential idea is to split the random medium spectrum into two components using the center wavenumber as a reference: the long-scale (low-wavenumber spectral) component produces the peak delay and the envelope broadening by multiple scattering around the forward direction; the short-scale (high-wavenumber spectral) component attenuates wave amplitude by wide angle scattering. The former is calculated by the Markov approximation based on the parabolic approximation and the latter is calculated by the Born approximation. Here, we extend the theory for the envelope synthesis of a wavelet in 2-D random media, which makes it easy to compare with finite difference (FD) simulation results. The synthetic wavelet envelope is analytically written by using the random medium parameters in the angular frequency domain. For the case that the power spectral density function of the random velocity fluctuation has a steep roll-off at large wavenumbers, the envelope broadening is small and frequency independent, and scattering attenuation is weak. For the case of a small roll-off, however, the envelope broadening is large and increases with frequency, and the scattering attenuation is strong and increases with frequency. As a preliminary study, we compare synthetic wavelet envelopes with the average of FD simulation wavelet envelopes in 50 synthesized random media, which are characterized by the RMS fractional velocity fluctuation ε=0.05, correlation scale a =5 km and the background wave velocity V0=4 km/s. We use the radiation
NASA Technical Reports Server (NTRS)
Fleming, Eric L.; Jackman, Charles H.; Considine, David B.; Stolarski, Richard S.
1999-01-01
In this study, we examine the sensitivity of long lived tracers to changes in the base transport components in our 2-D model. Changes to the strength of the residual circulation in the upper troposphere and stratosphere and changes to the lower stratospheric K(sub zz) had similar effects in that increasing the transport rates decreased the overall stratospheric mean age, and increased the rate of removal of material from the stratosphere. Increasing the stratospheric K(sub yy) increased the mean age due to the greater recycling of air parcels through the middle atmosphere, via the residual circulation, before returning to the troposphere. However, increasing K(sub yy) along with self-consistent increases in the corresponding planetary wave drive, which leads to a stronger residual circulation, more than compensates for the K(sub yy)-effect, and produces significantly younger ages throughout the stratosphere. Simulations with very small tropical stratospheric K(sub yy) decreased the globally averaged age of air by as much as 25% in the middle and upper stratosphere, and resulted in substantially weaker vertical age gradients above 20 km in the extratropics. We found only very small stratospheric tracer sensitivity to the magnitude of the horizontal mixing across the tropopause, and to the strength of the mesospheric gravity wave drag and diffusion used in the model. We also investigated the transport influence on chemically active tracers and found a strong age-tracer correlation, both in concentration and calculated lifetimes. The base model transport gives the most favorable overall comparison with a variety of inert tracer observations, and provides a significant improvement over our previous 1995 model transport. Moderate changes to the base transport were found to provide modest agreement with some of the measurements. Transport scenarios with residence times ranging from moderately shorter to slightly longer relative to the base case simulated N2O lifetimes
Mitri, F G
2015-09-01
The classical Resonance Scattering Theory (RST) for plane waves in acoustics is generalized for the case of a 2D arbitrarily-shaped beam incident upon an elastic cylinder with arbitrary location that is immersed in a nonviscous fluid. The formulation is valid for an elastic (or viscoelastic) cylinder (or a cylindrical shell, a layered cylinder/shell, or a multilayered cylindrical shell, etc.) of any size and material. Partial-wave series expansions (PWSEs) for the incident, internal and scattered fields are derived, and numerical examples illustrate the theory. The wave-fields are expressed using a generalized PWSE involving the beam-shape coefficients (BSCs) and the scattering coefficients of the cylinder. When the beam is shifted off the center of the cylinder, the off-axial BSCs are evaluated by performing standard numerical integration. Acoustic resonance scattering directivity diagrams are calculated by subtracting an appropriate background from the expression of the scattered pressure field. The properties related to the arbitrary scattering of a zeroth-order quasi-Gaussian cylindrical beam (chosen as an example) by an elastic brass cylinder centered on the axis of wave propagation of the beam, and shifted off-axially are analyzed and discussed. Moreover, the total and resonance backscattering form function moduli are numerically computed, and the results discussed with emphasis on the contribution of the surface waves circumnavigating the cylinder circular surface to the resonance backscattering. Furthermore, the analysis is extended to derive general expressions for the axial and transverse acoustic radiation force functions for the cylinder in any 2D beam of arbitrary shape. Examples are provided for a zeroth-order quasi Gaussian cylindrical beam with different waist. Potential applications are in underwater and physical acoustics, however, ongoing research in biomedical ultrasound, non-destructive evaluation, imaging, manufacturing, instrumentation, and
A Method of Simulating Fluid Structure Interactions for Deformable Decelerators
NASA Astrophysics Data System (ADS)
Gidzak, Vladimyr Mykhalo
A method is developed for performing simulations that contain fluid-structure interactions between deployable decelerators and a high speed compressible flow. The problem of coupling together multiple physical systems is examined with discussion of the strength of coupling for various methods. A non-monolithic strongly coupled option is presented for fluid-structure systems based on grid deformation. A class of algebraic grid deformation methods is then presented with examples of increasing complexity. The strength of the fluid-structure coupling is validated against two analytic problems, chosen to test the time dependent behavior of structure on fluid interactions, and of fluid on structure interruptions. A one-dimentional material heating model is also validated against experimental data. Results are provided for simulations of a wind tunnel scale disk-gap-band parachute with comparison to experimental data. Finally, a simulation is performed on a flight scale tension cone decelerator, with examination of time-dependent material stress, and heating.
NASA Astrophysics Data System (ADS)
Fernández-Pato, Javier; Caviedes-Voullième, Daniel; García-Navarro, Pilar
2016-05-01
One of the most difficult issues in the development of hydrologic models is to find a rigorous source of data and specific parameters to a given problem, on a given location that enable reliable calibration. In this paper, a distributed and physically based model (2D Shallow Water Equations) is used for surface flow and runoff calculations in combination with two infiltration laws (Horton and Green-Ampt) for estimating infiltration in a watershed. This technique offers the capability of assigning a local and time-dependent infiltration rate to each computational cell depending on the available surface water, soil type or vegetation. We investigate how the calibration of parameters is affected by transient distributed Shallow Water model and the complexity of the problem. In the first part of this work, we calibrate the infiltration parameters for both Horton and Green-Ampt models under flat ponded soil conditions. Then, by means of synthetic test cases, we perform a space-distributed sensitivity analysis in order to show that this calibration can be significantly affected by the introduction of topography or rainfall. In the second part, parameter calibration for a real catchment is addressed by comparing the numerical simulations with two different sets of experimental data, corresponding to very different events in terms of the rainfall volume. We show that the initial conditions of the catchment and the rainfall pattern have a special relevance in the quality of the adjustment. Hence, it is shown that the topography of the catchment and the storm characteristics affect the calibration of infiltration parameters.
NASA Astrophysics Data System (ADS)
Kangliang, Wei; Xiaoyan, Liu; Gang, Du; Ruqi, Han
2010-08-01
We demonstrate a two-dimensional (2D) full-band ensemble Monte-Carlo simulator for heterostructures, which deals with carrier transport in two different semiconductor materials simultaneously as well as at the boundary by solving self-consistently the 2D Poisson and Boltzmann transport equations (BTE). The infrastructure of this simulator, including the energy bands obtained from the empirical pseudo potential method, various scattering mechanics employed, and the appropriate treatment of the carrier transport at the boundary between two different semiconductor materials, is also described. As verification and calibration, we have performed a simulation on two types of silicon-germanium (Si-Ge) heterojunctions with different doping profiles—the p-p homogeneous type and the n-p inhomogeneous type. The current-voltage characteristics are simulated, and the distributions of potential and carrier density are also plotted, which show the validity of our simulator.
FLUFIXMOD2. Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems
Lyczkowski, R.W.; Bouillard, J.X.; Folga, S.M.
1992-04-01
FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors, gasifiers, and FCC (Fluid Catalytic Cracker) reactors.
NASA Astrophysics Data System (ADS)
Lee, T.; Kim, K.; Lee, K.; Lee, H.; Lee, W.
2015-12-01
Natural fractures have an effect on the fluid flow and heat transfer in the naturally fractured geothermal reservoir. However, most of the previous works in this area assumed that reservoir systems are continuum model whether it is single continuum or dual continuum. Moreover, some people have studied without continuum model but, it was just pipeline model. In this paper, we developed a generalized discrete fracture network (DFN) geothermal reservoir simulator. In the model, 2D flow is possible within a rectangular fracture, which is important in thick naturally fractured reservoirs. The DFN model developed in this study was validated for two synthetic fracture systems using a commercial thermal model, TETRAD. Comparison results showed an excellent matching between both models. However, this model is only fracture model and it can't calculate simulation of fluid flow and heat transfer in matrix. Therefore, matrix flow model will be added to this model.
NASA Technical Reports Server (NTRS)
Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)
2013-01-01
Fluid-flow simulation over a computer-generated aircraft surface is generated using inviscid and viscous simulations. A fluid-flow mesh of fluid cells is obtained. At least one inviscid fluid property for the fluid cells is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. A set of intersecting fluid cells that intersects the aircraft surface are identified. One surface mesh polygon of the surface mesh is identified for each intersecting fluid cell. A boundary-layer prediction point for each identified surface mesh polygon is determined. At least one boundary-layer fluid property for each boundary-layer prediction point is determined using the at least one inviscid fluid property of the corresponding intersecting fluid cell and a boundary-layer simulation that simulates fluid viscous effects. At least one updated fluid property for at least one fluid cell is determined using the at least one boundary-layer fluid property and the inviscid fluid simulation.
NASA Astrophysics Data System (ADS)
Lee, Khil-Ha; Kim, Sung-Wook; Kim, Sang-Hyun
2014-05-01
model, called FLO-2D runs to simulate channel routing downstream to give the maximum water level. Once probable inundation areas are identified by the huge volume of water in the caldera lake, the unique geography, and the limited control capability, a potential hazard assessment can be represented. The study will contribute to build a geohazard map for the decision-makers and practitioners. Keywords: Volcanic flood, Caldera lake, Hazard assessment, Magma effusion Acknowledgement This research was supported by a grant [NEMA-BAEKDUSAN-2012-1-2] from the Volcanic Disaster Preparedness Research Center sponsored by National Emergency Management Agency of Korea.
Allain, Ariane; Chauvot de Beauchêne, Isaure; Langenfeld, Florent; Guarracino, Yann; Laine, Elodie; Tchertanov, Luba
2014-01-01
Allostery is a universal phenomenon that couples the information induced by a local perturbation (effector) in a protein to spatially distant regulated sites. Such an event can be described in terms of a large scale transmission of information (communication) through a dynamic coupling between structurally rigid (minimally frustrated) and plastic (locally frustrated) clusters of residues. To elaborate a rational description of allosteric coupling, we propose an original approach - MOdular NETwork Analysis (MONETA) - based on the analysis of inter-residue dynamical correlations to localize the propagation of both structural and dynamical effects of a perturbation throughout a protein structure. MONETA uses inter-residue cross-correlations and commute times computed from molecular dynamics simulations and a topological description of a protein to build a modular network representation composed of clusters of residues (dynamic segments) linked together by chains of residues (communication pathways). MONETA provides a brand new direct and simple visualization of protein allosteric communication. A GEPHI module implemented in the MONETA package allows the generation of 2D graphs of the communication network. An interactive PyMOL plugin permits drawing of the communication pathways between chosen protein fragments or residues on a 3D representation. MONETA is a powerful tool for on-the-fly display of communication networks in proteins. We applied MONETA for the analysis of communication pathways (i) between the main regulatory fragments of receptors tyrosine kinases (RTKs), KIT and CSF-1R, in the native and mutated states and (ii) in proteins STAT5 (STAT5a and STAT5b) in the phosphorylated and the unphosphorylated forms. The description of the physical support for allosteric coupling by MONETA allowed a comparison of the mechanisms of (a) constitutive activation induced by equivalent mutations in two RTKs and (b) allosteric regulation in the activated and non
Yang, Chao; Mao, Zai-Sha
2005-03-01
The mirror fluid method is proposed for simulating solid-fluid two-phase flow. The whole computational domain is modeled as an Eulerian one for the fluid with a Lagrangian subdomain embedded in it. The boundary condition is enforced implicitly on solid-fluid surface segments by mirror relations. Thus, the total flow is solved in the one domain, in which the solid particle region is replaced with the virtual flow as the mirror image of outside flow. The mirror fluid method is implemented to compute the motion of a rigid spherical or elliptic particle in a Newtonian fluid for the purpose of method validation. The control volume formulation with the SIMPLE algorithm incorporated is used to solve the governing equations on a staggered grid in a two-dimensional coordinate system. A number of numerical experiments on falling particles are performed and the computational results are in good agreement with the reported experimental data.
Neutral Buoyancy Simulator - Fluid line repair kit development
NASA Technical Reports Server (NTRS)
1997-01-01
Marshall's Neutral Buoyancy Simulator (NBS) is used to simulate the gravitational fields and buoyancy effects outer space has on astronauts and their ability to perform tasks in this environment. In this example, a diver performs a temporary fluid line repair task using a repair kit developed by Marshall engineers. The analysis will determine the value of this repair kit and its feasibility.
SIMULATIONS OF 2D AND 3D THERMOCAPILLARY FLOWS BY A LEAST-SQUARES FINITE ELEMENT METHOD. (R825200)
Numerical results for time-dependent 2D and 3D thermocapillary flows are presented in this work. The numerical algorithm is based on the Crank-Nicolson scheme for time integration, Newton's method for linearization, and a least-squares finite element method, together with a matri...
Pore scale simulations for the extension of the Darcy-Forchheimer law to shear thinning fluids
NASA Astrophysics Data System (ADS)
Tosco, Tiziana; Marchisio, Daniele; Lince, Federica; Boccardo, Gianluca; Sethi, Rajandrea
2014-05-01
Flow of non-Newtonian fluids through porous media at high Reynolds numbers is often encountered in chemical, pharmaceutical and food as well as petroleum and groundwater engineering and in many other industrial applications (1 - 2). In particular, the use of shear thinning polymeric solutions has been recently proposed to improve colloidal stability of micro- and nanoscale zerovalent iron particles (MZVI and NZVI) for groundwater remediation. In all abovementioned applications, it is of paramount importance to correctly predict the pressure drop resulting from non-Newtonian fluid flow through the porous medium. For small Reynolds numbers, usually up to 1, typical of laboratory column tests, the extended Darcy law is known to be applicable also to non Newtonian fluids, provided that all non-Newtonian effects are lumped together into a proper viscosity parameter (1,3). For higher Reynolds numbers (eg. close to the injection wells) non linearities between pressure drop and flow rate arise, and the Darcy-Forchheimer law holds for Newtonian fluids, while for non-Newtonian fluids, it has been demonstrated that, at least for simple rheological models (eg. power law fluids) a generalized Forchheimer law can be applied, even if the determination of the flow parameters (permeability K, inertial coefficient β, and equivalent viscosity) is not straightforward. This work (co-funded by European Union project AQUAREHAB FP7 - Grant Agreement Nr. 226565) aims at proposing an extended formulation of the Darcy-Forchheimer law also for shear-thinning fluids, and validating it against results of pore-scale simulations via computational fluid dynamics (4). Flow simulations were performed using Fluent 12.0 on four different 2D porous domains for Newtonian and non-Newtonian fluids (Cross, Ellis and Carreau models). The micro-scale flow simulation results are analyzed in terms of 'macroscale' pressure drop between inlet and outlet of the model domain as a function of flow rate. The
Image analysis for Validation of Simulations of Fluid Mix Problem
Kamath, C; Miller, P
2007-01-10
As computer simulations gain acceptance for the modeling of complex physical phenomena, there is an increasing need to validate these simulation codes by comparing them to experiments. Currently, this is done qualitatively, using a visual approach. This is obviously very subjective and more quantitative metrics are needed, especially to identify simulations which are closer to experiments than other simulations. In this paper, we show how image processing techniques can be effectively used in such comparisons. Using an example from the problem of mixing of two fluids, we show that we can quantitatively compare experimental and simulation images by extracting higher level features to characterize the objects in the images.
Local fluid shifts and edema in humans during simulated microgravity
NASA Technical Reports Server (NTRS)
Hargens, Alan R.
1991-01-01
Local fluid shifts and edema in humans during simulated microgravity is studied. Recent results and significance and future plans on the following research topics are discussed: mechanisms of headward edema formation during head-down tilt; postural responses of head and foot microcirculations and their sensitivity to bed rest; and transcapillary fluid transport associated with lower body negative pressure (LBNP) with and without saline ingestion.
Diffuse interface simulation of ternary fluids in contact with solid
NASA Astrophysics Data System (ADS)
Zhang, Chun-Yu; Ding, Hang; Gao, Peng; Wu, Yan-Ling
2016-03-01
In this article we developed a geometrical wetting condition for diffuse-interface simulation of ternary fluid flows with moving contact lines. The wettability of the substrate in the presence of ternary fluid flows is represented by multiple contact angles, corresponding to the different material properties between the respective fluid and the substrate. Displacement of ternary fluid flows on the substrate leads to the occurrence of moving contact point, at which three moving contact lines meet. We proposed a weighted contact angle model, to replace the jump in contact angle at the contact point by a relatively smooth transition of contact angle over a region of 'diffuse contact point' of finite size. Based on this model, we extended the geometrical formulation of wetting condition for two-phase flows with moving contact lines to ternary flows with moving contact lines. Combining this wetting condition, a Navier-Stokes solver and a ternary-fluid model, we simulated two-dimensional spreading of a compound droplet on a substrate, and validated the numerical results of the drop shape at equilibrium by comparing against the analytical solution. We also checked the convergence rate of the simulation by investigating the axisymmetric drop spreading in a capillary tube. Finally, we applied the model to a variety of applications of practical importance, including impact of a circular cylinder into a pool of two layers of different fluids and sliding of a three-dimensional compound droplet in shear flows.
Molecular Dynamics Simulation of Binary Fluid in a Nanochannel
Mullick, Shanta; Ahluwalia, P. K.; Pathania, Y.
2011-12-12
This paper presents the results from a molecular dynamics simulation of binary fluid (mixture of argon and krypton) in the nanochannel flow. The computational software LAMMPS is used for carrying out the molecular dynamics simulations. Binary fluids of argon and krypton with varying concentration of atom species were taken for two densities 0.65 and 0.45. The fluid flow takes place between two parallel plates and is bounded by horizontal walls in one direction and periodic boundary conditions are imposed in the other two directions. To drive the flow, a constant force is applied in one direction. Each fluid atom interacts with other fluid atoms and wall atoms through Week-Chandler-Anderson (WCA) potential. The velocity profile has been looked at for three nanochannel widths i.e for 12{sigma}, 14{sigma} and 16{sigma} and also for the different concentration of two species. The velocity profile of the binary fluid predicted by the simulations agrees with the quadratic shape of the analytical solution of a Poiseuille flow in continuum theory.
Modeling and Simulation of Fluid Mixing Laser Experiments and Supernova
Glimm, James
2008-06-24
The three year plan for this project is to develop novel theories and advanced simulation methods leading to a systematic understanding of turbulent mixing. A primary focus is the comparison of simulation models (both Direct Numerical Simulation and subgrid averaged models) to experiments. The comprehension and reduction of experimental and simulation data are central goals of this proposal. We will model 2D and 3D perturbations of planar interfaces. We will compare these tests with models derived from averaged equations (our own and those of others). As a second focus, we will develop physics based subgrid simulation models of diffusion across an interface, with physical but no numerical mass diffusion. We will conduct analytic studies of mix, in support of these objectives. Advanced issues, including multiple layers and reshock, will be considered.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Shie, C.-H.; Simpson, J.; Starr, D.; Johnson, D.; Sud, Y.
2003-01-01
Real clouds and clouds systems are inherently three dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D). A few 3D CRMs have been used to study the response of clouds to large-scale forcing. In these 3D simulations, the model domain was small, and the integration time was 6 hours. Only recently have 3D experiments been performed for multi-day periods for tropical cloud system with large horizontal domains at the National Center for Atmospheric Research. The results indicate that surface precipitation and latent heating profiles are very similar between the 2D and 3D simulations of these same cases. The reason for the strong similarity between the 2D and 3D CRM simulations is that the observed large-scale advective tendencies of potential temperature, water vapor mixing ratio, and horizontal momentum were used as the main forcing in both the 2D and 3D models. Interestingly, the 2D and 3D versions of the CRM used in CSU and U.K. Met Office showed significant differences in the rainfall and cloud statistics for three ARM cases. The major objectives of this project are to calculate and axamine: (1)the surface energy and water budgets, (2) the precipitation processes in the convective and stratiform regions, (3) the cloud upward and downward mass fluxes in the convective and stratiform regions; (4) cloud characteristics such as size, updraft intensity and lifetime, and (5) the entrainment and detrainment rates associated with clouds and cloud systems that developed in TOGA COARE, GATE, SCSMEX, ARM and KWAJEX. Of special note is that the analyzed (model generated) data sets are all produced by the same current version of the GCE model, i.e. consistent model physics and configurations. Trajectory analyse and inert tracer calculation will be conducted to identify the differences and similarities in the organization of convection between simulated 2D and 3D cloud systems.
NASA Astrophysics Data System (ADS)
Bilski, Bartosz; Frenner, Karsten; Osten, Wolfgang
2010-05-01
Scatterometry is a method commonly used in semiconductor metrology for measuring critical dimension (CD). It relies on measurement of light diffracted on a periodic structure and using it to derive the actual profile by running complex simulations. As CD is getting smaller with next lithography nodes, the Line-Edge Roughness/Line Width Roughness (LER/LWR) are becoming significant fraction of its overall size - therefore there is a need to include them in the simulations. Simulation of the LER/LWR's influence, in its random nature, calls for simulating relatively large fields. These large fields, if treated with rigorous electromagnetic simulations, are either very time-extensive or impossible to conduct, therefore computationally bearable, approximate approach needs to be applied. Our approximate method is "Field-Stitching Method" (FSM). We present its 2D version with varying parameter called "overlap region". We simulate the line grating structure with CD disturbed by LER/LWR and apply Rigorous Coupled Wave Analysis (RCWA) supported by the 2D FSM. We also generate the results obtained exclusively by RCWA, to which we compare the results of the approximate approach. Based on the comparison we discuss the benefits FSM brings and its limitations.
Three dimensional simulation of fluid flow in X-ray CT images of porous media
NASA Astrophysics Data System (ADS)
Al-Omari, A.; Masad, E.
2004-11-01
A numerical scheme is developed in order to simulate fluid flow in three dimensional (3-D) microstructures. The governing equations for steady incompressible flow are solved using the semi-implicit method for pressure-linked equations (SIMPLE) finite difference scheme within a non-staggered grid system that represents the 3-D microstructure. This system allows solving the governing equations using only one computational cell. The numerical scheme is verified through simulating fluid flow in idealized 3-D microstructures with known closed form solutions for permeability. The numerical factors affecting the solution in terms of convergence and accuracy are also discussed. These factors include the resolution of the analysed microstructure and the truncation criterion. Fluid flow in 2-D X-ray computed tomography (CT) images of real porous media microstructure is also simulated using this numerical model. These real microstructures include field cores of asphalt mixes, laboratory linear kneading compactor (LKC) specimens, and laboratory Superpave gyratory compactor (SGC) specimens. The numerical results for the permeability of the real microstructures are compared with the results from closed form solutions. Copyright
Executive Summary: Special Section on Credible Computational Fluid Dynamics Simulations
NASA Technical Reports Server (NTRS)
Mehta, Unmeel B.
1998-01-01
This summary presents the motivation for the Special Section on the credibility of computational fluid dynamics (CFD) simulations, its objective, its background and context, its content, and its major conclusions. Verification and validation (V&V) are the processes for establishing the credibility of CFD simulations. Validation assesses whether correct things are performed and verification assesses whether they are performed correctly. Various aspects of V&V are discussed. Progress is made in verification of simulation models. Considerable effort is still needed for developing a systematic validation method that can assess the credibility of simulated reality.
Final report [Molecular simulations of complex fluids in confined geometrics
Gehrke, Stevin H.; Jiang, Shaoyi
2002-07-22
This award supports collaborative research between Kansas State University and Sandia National Laboratories on the topic ''Molecular simulations of complex fluids in confined geometries.'' The objectives of this work are to develop new methodologies for fast and accurate simulations, and to apply simulations to various problems of interest to DOE. The success of this work will address several deficiencies in Sandia's capabilities in the area of molecular simulations. In addition, it provides educational opportunities for students and will enhance the science and technology capabilities at Kansas State through partnership with the national laboratories.
Automated Fluid Feature Extraction from Transient Simulations
NASA Technical Reports Server (NTRS)
Haimes, Robert
2000-01-01
In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one 'snap-shot' of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense.
A heterogeneous computing environment for simulating astrophysical fluid flows
NASA Technical Reports Server (NTRS)
Cazes, J.
1994-01-01
In the Concurrent Computing Laboratory in the Department of Physics and Astronomy at Louisiana State University we have constructed a heterogeneous computing environment that permits us to routinely simulate complicated three-dimensional fluid flows and to readily visualize the results of each simulation via three-dimensional animation sequences. An 8192-node MasPar MP-1 computer with 0.5 GBytes of RAM provides 250 MFlops of execution speed for our fluid flow simulations. Utilizing the parallel virtual machine (PVM) language, at periodic intervals data is automatically transferred from the MP-1 to a cluster of workstations where individual three-dimensional images are rendered for inclusion in a single animation sequence. Work is underway to replace executions on the MP-1 with simulations performed on the 512-node CM-5 at NCSA and to simultaneously gain access to more potent volume rendering workstations.
NASA Astrophysics Data System (ADS)
Ito, Y.; Noborio, K.
2015-12-01
In Japan, soil disinfection with hot water has been popular since the use of methyl bromide was restricted in 2005. Decreasing the amount of hot water applied may make farmers reduce the operation cost. To determine the appropriate amount of hot water needed for soil disinfection, HYDRUS-2D was evaluated. A field experiment was conducted and soil water content and soil temperature were measured at 5, 10, 20, 40, 60, 80 and 100 cm deep when 95oC hot water was applied. Irrigation tubing equipped with drippers every 30 cm were laid at the soil surface, z=0 cm. An irrigation rate for each dripper was 0.83 cm min-1 between t=0 and 120 min, and thereafter it was zero. Temperature of irrigation water was 95oC. Total simulation time with HYDRUS-2D was 720 min for a homogeneous soil. A simulating domain was selected as x=60 cm and z=100 cm. A potential evaporation rate was assumed to be 0 cm min-1 because the soil surface was covered with a plastic sheet. The boundary condition at the bottom was free drainage and those of both sides were no-flux conditions. Hydraulic properties and bulk densities measured at each depth were used for simulation. It was assumed that there was no organic matter contained. Soil thermal properties were adopted from previous study and HYDRUS 2D. Simulated temperatures at 5, 10, 20 and 40 cm deep agreed well with those measured although simulated temperatures at 60, 80, and 100 cm deep were overly estimated. Estimates of volumetric water content at 5 cm deep agreed well with measured values. Simulated values at 10 to 100 cm deep were overly estimated by 0.1 to 0.3 (m3 m-3). The deeper the soil became, the more the simulated wetting front lagged behind the measured one. It was speculated that water viscosity estimated smaller at high temperature might attributed to the slower advances of wetting front simulated with HYDRUS 2-D.
NASA Astrophysics Data System (ADS)
Kim, Kyeong-Hyeon; Kim, Dong-Su; Kim, Tae-Ho; Kang, Seong-Hee; Cho, Min-Seok; Suh, Tae Suk
2015-11-01
The phantom-alignment error is one of the factors affecting delivery quality assurance (QA) accuracy in intensity-modulated radiation therapy (IMRT). Accordingly, a possibility of inadequate use of spatial information in gamma evaluation may exist for patient-specific IMRT QA. The influence of the phantom-alignment error on gamma evaluation can be demonstrated experimentally by using the gamma passing rate and the gamma value. However, such experimental methods have a limitation regarding the intrinsic verification of the influence of the phantom set-up error because experimentally measuring the phantom-alignment error accurately is impossible. To overcome this limitation, we aimed to verify the effect of the phantom set-up error within the gamma evaluation formula by using a Monte Carlo simulation. Artificial phantom set-up errors were simulated, and the concept of the true point (TP) was used to represent the actual coordinates of the measurement point for the mathematical modeling of these effects on the gamma. Using dose distributions acquired from the Monte Carlo simulation, performed gamma evaluations in 2D and 3D. The results of the gamma evaluations and the dose difference at the TP were classified to verify the degrees of dose reflection at the TP. The 2D and the 3D gamma errors were defined by comparing gamma values between the case of the imposed phantom set-up error and the TP in order to investigate the effect of the set-up error on the gamma value. According to the results for gamma errors, the 3D gamma evaluation reflected the dose at the TP better than the 2D one. Moreover, the gamma passing rates were higher for 3D than for 2D, as is widely known. Thus, the 3D gamma evaluation can increase the precision of patient-specific IMRT QA by applying stringent acceptance criteria and setting a reasonable action level for the 3D gamma passing rate.
Generalized Fluid System Simulation Program (GFSSP) - Version 6
NASA Technical Reports Server (NTRS)
Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul
2015-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.
Generalized Fluid System Simulation Program, Version 6.0
NASA Technical Reports Server (NTRS)
Majumdar, A. K.; LeClair, A. C.; Moore, A.; Schallhorn, P. A.
2013-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependant flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 25 demonstrated example problems.
NASA Technical Reports Server (NTRS)
Sturdza, Peter (Inventor); Martins-Rivas, Herve (Inventor); Suzuki, Yoshifumi (Inventor)
2014-01-01
A fluid-flow simulation over a computer-generated surface is generated using a quasi-simultaneous technique. The simulation includes a fluid-flow mesh of inviscid and boundary-layer fluid cells. An initial fluid property for an inviscid fluid cell is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. An initial boundary-layer fluid property a boundary-layer fluid cell is determined using the initial fluid property and a viscous fluid simulation that simulates fluid viscous effects. An updated boundary-layer fluid property is determined for the boundary-layer fluid cell using the initial fluid property, initial boundary-layer fluid property, and an interaction law. The interaction law approximates the inviscid fluid simulation using a matrix of aerodynamic influence coefficients computed using a two-dimensional surface panel technique and a fluid-property vector. An updated fluid property is determined for the inviscid fluid cell using the updated boundary-layer fluid property.
Fluid Structure Interaction Simulations of Pediatric Ventricular Assist Device Operation
NASA Astrophysics Data System (ADS)
Long, Chris; Marsden, Alison; Bazilevs, Yuri
2011-11-01
Pediatric ventricular assist devices (PVADs) are used for mechanical circulatory support in children with failing hearts. They can be used to allow the heart to heal naturally or to extend the life of the patient until transplant. A PVAD has two chambers, blood and air, separated by a flexible membrane. The air chamber is pressurized, which drives the membrane and pumps the blood. The primary risk associated with these devices is stroke or embolism from thrombogenesis. Simulation of these devices is difficult due to a complex coupling of two fluid domains and a thin membrane, requiring fluid-structure interaction modeling. The goal of this work is to accurately simulate the hemodynamics of a PVAD. We perform FSI simulations using an Arbitrary Lagrangian-Eulerian (ALE) finite element framework to account for large motions of the membrane and the fluid domains. The air, blood, and membrane are meshed as distinct subdomains, and a method for non-matched discretizations at the fluid-structure interface is presented. The use of isogeometric analysis to model the membrane mechanics is also discussed, and the results of simulations are presented.
NASA Astrophysics Data System (ADS)
Wang, Jin; Ma, Jianyong; Zhou, Changhe
2014-11-01
A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.
Simulation of fluid flow inside a continuous slab-casting machine
NASA Astrophysics Data System (ADS)
Thomas, B. G.; Mika, L. J.; Najjar, F. M.
1990-04-01
A finite element model has been developed and applied to compute the fluid flow distribution inside the shell in the mold region of a continuous, steel slab-casting machine. The model was produced with the commercial program FIDAP, which allows this nonlinear, highly turbulent problem to be simulated using the K- ɛ turbulence model. It consists of separate two-dimensional (2-D) models of the nozzle and a section through the mold, facing the broad face. The predicted flow patterns and velocity fields show reasonable agreement with experimental observations and measurements conducted using a transparent plastic water model. The effects of nozzle angle, casting speed, mold width, and turbulence simulation parameters on the flow pattern have been investigated. The overall flow field is relatively insensitive to process parameters.
Gyro-fluid and two-fluid theory and simulations of edge-localized-modesa)
NASA Astrophysics Data System (ADS)
Xu, X. Q.; Xi, P. W.; Dimits, A.; Joseph, I.; Umansky, M. V.; Xia, T. Y.; Gui, B.; Kim, S. S.; Park, G. Y.; Rhee, T.; Jhang, H.; Diamond, P. H.; Dudson, B.; Snyder, P. B.
2013-05-01
This paper reports on the theoretical and simulation results of a gyro-Landau-fluid extension of the BOUT++ code, which contributes to increasing the physics understanding of edge-localized-modes (ELMs). Large ELMs with low-to-intermediate-n peeling-ballooning (P-B) modes are significantly suppressed due to finite Larmor radius (FLR) effects when the ion temperature increases. For type-I ELMs, it is found from linear simulations that retaining complete first order FLR corrections as resulting from the incomplete "gyroviscous cancellation" in Braginskii's two-fluid model is necessary to obtain good agreement with gyro-fluid results for high ion temperature cases (Ti≽3 keV) when the ion density has a strong radial variation, which goes beyond the simple local model of ion diamagnetic stabilization of ideal ballooning modes. The maximum growth rate is inversely proportional to Ti because the FLR effect is proportional to Ti. The FLR effect is also proportional to toroidal mode number n, so for high n cases, the P-B mode is stabilized by FLR effects. Nonlinear gyro-fluid simulations show results that are similar to those from the two-fluid model, namely that the P-B modes trigger magnetic reconnection, which drives the collapse of the pedestal pressure. Due to the additional FLR-corrected nonlinear E × B convection of the ion gyro-center density, for a ballooning-dominated equilibrium the gyro-fluid model further limits the radial spreading of ELMs. In six-field two fluid simulations, the parallel thermal diffusivity is found to prevent the ELM encroachment further into core plasmas and therefore leads to steady state L-mode profiles. The simulation results show that most energy is lost via ion channel during an ELM event, followed by particle loss and electron energy loss. Because edge plasmas have significant spatial inhomogeneities and complicated boundary conditions, we have developed a fast non-Fourier method for the computation of Landau-fluid closure terms
NASA Astrophysics Data System (ADS)
Caillol, Jean-Michel
2015-04-01
We present two methods for solving the electrostatics of point charges and multipoles on the surface of a sphere, i.e., in the space S 2 , with applications to numerical simulations of two-dimensional (2D) polar fluids. In the first approach, point charges are associated with uniform neutralizing backgrounds to form neutral pseudo-charges, while in the second, one instead considers bi-charges, i.e., dumbells of antipodal point charges of opposite signs. We establish the expressions of the electric potentials of pseudo- and bi-charges as isotropic solutions of the Laplace-Beltrami equation in S 2 . A multipolar expansion of pseudo- and bi-charge potentials leads to the electric potentials of mono- and bi-multipoles, respectively. These potentials constitute non-isotropic solutions of the Laplace-Beltrami equation, the general solution of which in spherical coordinates is recast under a new appealing form. We then focus on the case of mono- and bi-dipoles and build the theory of dielectric media in S 2 . We notably obtain the expression of the static dielectric constant of a uniform isotropic polar fluid living in S 2 in terms of the polarization fluctuations of subdomains of S 2 . We also derive the long range behavior of the equilibrium pair correlation function under the assumption that it is governed by macroscopic electrostatics. These theoretical developments find their application in Monte Carlo simulations of the 2D fluid of dipolar hard spheres. Some preliminary numerical experiments are discussed with a special emphasis on finite size effects, a careful study of the thermodynamic limit, and a check of the theoretical predictions for the asymptotic behavior of the pair correlation function.
Caillol, Jean-Michel
2015-04-21
We present two methods for solving the electrostatics of point charges and multipoles on the surface of a sphere, i.e., in the space S{sub 2}, with applications to numerical simulations of two-dimensional (2D) polar fluids. In the first approach, point charges are associated with uniform neutralizing backgrounds to form neutral pseudo-charges, while in the second, one instead considers bi-charges, i.e., dumbells of antipodal point charges of opposite signs. We establish the expressions of the electric potentials of pseudo- and bi-charges as isotropic solutions of the Laplace-Beltrami equation in S{sub 2}. A multipolar expansion of pseudo- and bi-charge potentials leads to the electric potentials of mono- and bi-multipoles, respectively. These potentials constitute non-isotropic solutions of the Laplace-Beltrami equation, the general solution of which in spherical coordinates is recast under a new appealing form. We then focus on the case of mono- and bi-dipoles and build the theory of dielectric media in S{sub 2}. We notably obtain the expression of the static dielectric constant of a uniform isotropic polar fluid living in S{sub 2} in terms of the polarization fluctuations of subdomains of S{sub 2}. We also derive the long range behavior of the equilibrium pair correlation function under the assumption that it is governed by macroscopic electrostatics. These theoretical developments find their application in Monte Carlo simulations of the 2D fluid of dipolar hard spheres. Some preliminary numerical experiments are discussed with a special emphasis on finite size effects, a careful study of the thermodynamic limit, and a check of the theoretical predictions for the asymptotic behavior of the pair correlation function.
Generalized Fluid System Simulation Program, Version 5.0-Educational
NASA Technical Reports Server (NTRS)
Majumdar, A. K.
2011-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems.
SPH numerical simulation of fluid flow through a porous media
NASA Astrophysics Data System (ADS)
Klapp-Escribano, Jaime; Mayoral-Villa, Estela; Rodriguez-Meza, Mario Alberto; de La Cruz-Sanchez, Eduardo; di G Sigalotti, Leonardo; Inin-Abacus Collaboration; Ivic Collaboration
2013-11-01
We have tested an improved a method for 3D SPH simulations of fluid flow through a porous media using an implementation of this method with the Dual-Physics code. This improvement makes it possible to simulate many particles (of the order of several million) in reasonable computer times because its execution on GPUs processors makes it possible to reduce considerably the simulation cost for large systems. Modifications in the initial configuration have been implemented in order to simulate different arrays and geometries for the porous media. The basic tests were reproduced and the performance was analyzed. Our 3D simulations of fluid flow through a saturated homogeneous porous media shows a discharge velocity proportional to the hydraulic gradient reproducing Darcy's law at small body forces. The results are comparable with values obtained in previous work and published in the literature for simulations of flow through periodic porous media. Our simulations for a non saturated porous media produce adequate qualitative results showing that a non steady state is generated. The relaxation time for these systems were obtained. Work partially supported by Cinvestav-ABACUS, CONACyT grant EDOMEX-2011-C01-165873.
NASA Astrophysics Data System (ADS)
Wendling, A.; Daniel, J. L.; Hivet, G.; Vidal-Sallé, E.; Boisse, P.
2015-12-01
Numerical simulation is a powerful tool to predict the mechanical behavior and the feasibility of composite parts. Among the available numerical approaches, as far as woven reinforced composites are concerned, 3D finite element simulation at the mesoscopic scale leads to a good compromise between realism and complexity. At this scale, the fibrous reinforcement is modeled by an interlacement of yarns assumed to be homogeneous that have to be accurately represented. Among the numerous issues induced by these simulations, the first one consists in providing a representative meshed geometrical model of the unit cell at the mesoscopic scale. The second one consists in enabling a fast data input in the finite element software (contacts definition, boundary conditions, elements reorientation, etc.) so as to obtain results within reasonable time. Based on parameterized 3D CAD modeling tool of unit-cells of dry fabrics already developed, this paper presents an efficient strategy which permits an automated meshing of the models with 3D hexahedral elements and to accelerate of several orders of magnitude the simulation data input. Finally, the overall modeling strategy is illustrated by examples of finite element simulation of the mechanical behavior of fabrics.
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Leclair, Andre; Moore, Ric; Schallhorn, Paul
2011-01-01
GFSSP stands for Generalized Fluid System Simulation Program. It is a general-purpose computer program to compute pressure, temperature and flow distribution in a flow network. GFSSP calculates pressure, temperature, and concentrations at nodes and calculates flow rates through branches. It was primarily developed to analyze Internal Flow Analysis of a Turbopump Transient Flow Analysis of a Propulsion System. GFSSP development started in 1994 with an objective to provide a generalized and easy to use flow analysis tool for thermo-fluid systems.
NASA Technical Reports Server (NTRS)
Scalapino, D. J.; Sugar, R. L.; White, S. R.; Bickers, N. E.; Scalettar, R. T.
1989-01-01
Numerical simulations on the half-filled three-dimensional Hubbard model clearly show the onset of Neel order. Simulations of the two-dimensional electron-phonon Holstein model show the competition between the formation of a Peierls-CDW state and a superconducting state. However, the behavior of the partly filled two-dimensional Hubbard model is more difficult to determine. At half-filling, the antiferromagnetic correlations grow as T is reduced. Doping away from half-filling suppresses these correlations, and it is found that there is a weak attractive pairing interaction in the d-wave channel. However, the strength of the pair field susceptibility is weak at the temperatures and lattice sizes that have been simulated, and the nature of the low-temperature state of the nearly half-filled Hubbard model remains open.
NASA Astrophysics Data System (ADS)
Suzuki, Akihiro; Maeda, Keiichi; Shigeyama, Toshikazu
2016-07-01
A two-dimensional special relativistic radiation-hydrodynamics code is developed and applied to numerical simulations of supernova shock breakout in bipolar explosions of a blue supergiant. Our calculations successfully simulate the dynamical evolution of a blast wave in the star and its emergence from the surface. Results of the model with spherical energy deposition show a good agreement with previous simulations. Furthermore, we calculate several models with bipolar energy deposition and compare their results with the spherically symmetric model. The bolometric light curves of the shock breakout emission are calculated by a ray-tracing method. Our radiation-hydrodynamic models indicate that the early part of the shock breakout emission can be used to probe the geometry of the blast wave produced as a result of the gravitational collapse of the iron core.
NASA Astrophysics Data System (ADS)
Chen, J.-C.; Chuang, M.-R.; Jeng, C.-J.; Wang, J.-S.
2012-04-01
Taiwan is an island located in the subtropical zone where typhoons often bring heavy rainfall. Heavy rainfall, stream having steep slope, and weak geological condition resulted in a high susceptibility to debris flow. Especially, Typhoon Morakot struck southern Taiwan on August 8, 2009 with high rainfall intensity and accumulated rainfall as high as 2860 mm for 72 hours. Severe landslides and debris flow hazards were induced. In this work, debris-flow events caused by Typhoon Morakot in Shinfa Village of Liouguei District, where resulted in severe impacts to local communities, in southern Taiwan were selected for case study. A two-dimensional model (FLO-2D software) was used to simulate a debris flow, and the accuracy of the simulation, including flow depth, velocity, sediment, and inundation area, was analyzed in the case study. This study consists of three phases. In the first phase, debris flow data, including information on topography, rainfall and rheological parameters were compiled to establish a database of factors that influence debris flow. For the second phase, a numerical simulation was performed using FLO-2D with the results presented as area of debris-flow inundation, maximum deposit depth, and deposit volume. The simulation results were then compared with the aerial photos and the micro geomorphological study. Finally, suitable conditions for using this model and reasonable parameters needed for simulation are presented. In this study, parameters and processes needed for a numerical simulation method for debris flow routing and depositions are formulated to provide a reference for hazard zone mapping or debris-flow hazard mitigation.
Chukalovsky, A. A.; Rakhimova, T. V.; Klopovsky, K. S.; Mankelevich, Yu. A.; Proshina, O. V.
2011-03-15
The kinetic processes occurring in an electric-discharge oxygen-iodine laser are analyzed with the help of a 2D (r, z) gasdynamic model taking into account transport of excited oxygen, singlet oxygen, and radicals from the electric discharge and their mixing with the iodine-containing gas. The main processes affecting the dynamics of the gas temperature and gain are revealed. The simulation results obtained using the 2D model agree well with the experimental data on the mixture gain. A subsonic oxygen-iodine laser in which singlet oxygen is generated by a 350 W transverse RF discharge excited in an oxygen flow at a pressure P = 10 Torr and the discharge tube wall is covered with mercury oxide is simulated. The simulated mixing system is optimized in terms of the flow rate and the degree of preliminary dissociation of the iodine flow. The optimal regime of continuous operation of a subsonic electric-discharge oxygen-iodine laser is found.
Fan, D.; Geng, C.; Chen, L.Q.
1997-03-01
The local kinetics and topological phenomena during normal grain growth were studied in two dimensions by computer simulations employing a continuum diffuse-interface field model. The relationships between topological class and individual grain growth kinetics were examined, and compared with results obtained previously from analytical theories, experimental results and Monte Carlo simulations. It was shown that both the grain-size and grain-shape (side) distributions are time-invariant and the linear relationship between the mean radii of individual grains and topological class n was reproduced. The moments of the shape distribution were determined, and the differences among the data from soap froth. Potts model and the present simulation were discussed. In the limit when the grain size goes to zero, the average number of grain edges per grain is shown to be between 4 and 5, implying the direct vanishing of 4- and 5-sided grains, which seems to be consistent with recent experimental observations on thin films. Based on the simulation results, the conditions for the applicability of the familiar Mullins-Von Neumann law and the Hillert`s equation were discussed.
3D numerical simulation of laser-generated Lamb waves propagation in 2D acoustic black holes
NASA Astrophysics Data System (ADS)
Yan, Shiling; Lomonosov, Alexey M.; Shen, Zhonghua; Han, Bing
2015-05-01
Acoustic black holes have been widely used in damping structural vibration. In this work, the Lamb waves are utilized to evaluate the specified structure. The three-dimensional numerical model of acoustic black holes with parabolic profile was established. The propagation of laser-generated Lamb wave in two-dimensional acoustic black holes was numerically simulated using the finite element method. The results indicated that the incident wave was trapped by the structure obviously.
NASA Astrophysics Data System (ADS)
Amaya-Ventura, Gilberto; Rodríguez-Romo, Suemi
2011-09-01
This paper deals with the computational simulation of the reaction-diffusion-advection phenomena emerging in Rayleigh-Bénard (RB) and Poiseuille-Bénard reactive convection systems. We use the Boussinesq's approximation for buoyancy forces and the Lattice Boltzmann method (LBM). The first kinetic mesoscopic model proposed here is based on the discrete Boltzmann equation needed to solve the momentum balance coupled with buoyancy forces. Then, a second lattice Boltzmann algorithm is applied to solve the reaction-diffusion-advection equation to calculate the evolution of the chemical species concentration. We use a reactive system composed by nitrous oxide (so call laughing gas) in air as an example; its spatio-temporal decomposition is calculated. Two cases are considered, a rectangular enclosed cavity and an open channel. The simulations are performed at low Reynolds numbers and in a steady state between the first and second thermo-hydrodynamic instabilities. The results presented here, for the thermo-hydrodynamic behavior, are in good agreement with experimental data; while our| chemical kinetics simulation yields expected results. Some applications of our approach are related to chemical reactors and atmospheric phenomena, among others.
NASA Astrophysics Data System (ADS)
Uchino, H.; Machida, S.
2012-12-01
A physical process of the substorm triggering in the Earth's Magnetotail is thought to be closely related to the magnetic reconnection and the tearing instability. Recently we proposed a new scheme of the substorm onset called "Catapult Current Sheet Relaxation (CCSR) Model " to physically understand the results from GEOTAIL and THEMIS data. The CCSR Model has characters that are the decrease of the total pressure and thinning of the current sheet at the distance about -12Re in the magnetotail a few minutes before the substorm onset, and the simultaneous occurrence of the dipolarization at X~-10Re and the magnetic reconnection at X~-20Re at the time of the onset. In this study, we investigate a stability of the current sheet and the particle acceleration via particle simulation in order to assess the validity of the CCSR model and to clarify the mechanism of substorm onset. We give an initial magnetic field structure which is akin to the Earth's dipole magnetic field together with a stretched magnetic field by thin current sheet, and further add a weak northward magnetic field at the place where Near-Earth Neutral Line is expected to be formed. The results of simulation contain similar features that characterize the CCSR Model. A physically interpretation of the simulation result with the linear instability theory as well as comparison with observations will be given.
NASA Astrophysics Data System (ADS)
Matos, J. R.; Welty, C.; Packman, A.
2005-12-01
The main purpose of the simulations in this research is the analysis of three-dimensional surface-groundwater interchange in heterogeneous systems. The effects of channel pattern, bed forms and aquifer heterogeneity on flow interactions between stream and groundwater systems are examined in order to contribute for a better understanding of the hyporheic process. A two-dimensional approach was also adopted to allow comparisons with the three-dimensional results. The grid was designed using the correlation scales of the heterogeneous fields and the scale of the stream meanders. MODFLOW and MODPATH were used to evaluate magnitude, direction and spatial distribution of the exchange flow. PMWIN and PMPATH were used as pre and post-processors during the construction of the models and analysis of results. Gaining and losing streams as well as parallel flow and flow across streams were simulated as idealized cases intended to describe how properties of the streambed and aquifer in low-gradient lowland streams contribute to hyporheic exchange. At first a straight river was analyzed then meandering streams were created with a sine curve and variations on wavelength and amplitude. Bed forms were simulated assuming a sinusoidal distribution of pressure head in the bed surface. Aspects of the influence of bedforms on mechanisms such as "pumping" and "turnover" are expected to be addressed with simulations. Flow velocities between 20 and 40 cm/s in the channel were tested with the objective of showing the influence of river morphology and natural bed forms on the flow exchange in the hyporheic zone. Several meander cycles and four levels of hydraulic conductivity variance were analyzed. Results of flow variances along the cross-sections and wetted perimeter show the increasing on hyporheic exchange as the degree of heterogeneity increases. Particle tracking was performed to define hyporheic residence time distributions. When comparing the homogeneous fields with all degrees of
NASA Astrophysics Data System (ADS)
Alvarado, M. J.; Prinn, R. G.
2007-12-01
The growth of aerosol particles and production of ozone in young smoke plumes is the result of a complex interaction between the mean flow in the smoke plume, turbulent diffusion, gas-phase oxidation, coagulation, and mass transfer between phases. Models allow us to separate the effects of these processes and predict their impact on the global environment. We present the results of two and three-dimensional Eulerian simulations of the dynamics and chemistry of the smoke plume formed by the Timbavati savannah fire studied during SAFARI 2000 (Hobbs et al., 2003, JGR, doi:10.1029/2002JD002352). The dynamical model is an extension of an Eulerian cloud-resolving model that has previously been used to study the role of deep convective clouds on tropospheric chemistry (Wang and Prinn, 2000, JGR, 105(D17) 22,269-22,297). The model includes a source of sensible heat, gases, and particles at the surface to simulate the savannah fire. The new gas and aerosol chemistry model includes heterogeneous chemistry, kinetic mass transfer, coagulation and the formation of secondary organic and inorganic aerosol. Photolysis rates are calculated based on the solution of the radiative transfer equation within the plume, including the scattering and absorption of radiation by the smoke aerosols. Our preliminary 2D Eulerian results using standard chemistry and UV fluxes show that the model can simulate the lower but not the higher levels of O3 observed. Also, the simulated 2D O3 field shows a wave-like pattern in the downwind direction, even though the emissions from the fire are held constant. This suggests that plume heterogeneity in the downwind direction may account for some of the observed variability in O3. We will present results of runs incorporating higher resolution calculation of photolysis rates, heterogeneous HONO formation, and gas phase reactions involving the uncharacterized organic compounds observed in the gas phase of the Timbavati plume in order to better simulate these
Quantum Simulator for Transport Phenomena in Fluid Flows.
Mezzacapo, A; Sanz, M; Lamata, L; Egusquiza, I L; Succi, S; Solano, E
2015-01-01
Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors. PMID:26278968
Quantum Simulator for Transport Phenomena in Fluid Flows.
Mezzacapo, A; Sanz, M; Lamata, L; Egusquiza, I L; Succi, S; Solano, E
2015-08-17
Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors.
Microcanonical ensemble simulation method applied to discrete potential fluids
NASA Astrophysics Data System (ADS)
Sastre, Francisco; Benavides, Ana Laura; Torres-Arenas, José; Gil-Villegas, Alejandro
2015-09-01
In this work we extend the applicability of the microcanonical ensemble simulation method, originally proposed to study the Ising model [A. Hüller and M. Pleimling, Int. J. Mod. Phys. C 13, 947 (2002), 10.1142/S0129183102003693], to the case of simple fluids. An algorithm is developed by measuring the transition rates probabilities between macroscopic states, that has as advantage with respect to conventional Monte Carlo NVT (MC-NVT) simulations that a continuous range of temperatures are covered in a single run. For a given density, this new algorithm provides the inverse temperature, that can be parametrized as a function of the internal energy, and the isochoric heat capacity is then evaluated through a numerical derivative. As an illustrative example we consider a fluid composed of particles interacting via a square-well (SW) pair potential of variable range. Equilibrium internal energies and isochoric heat capacities are obtained with very high accuracy compared with data obtained from MC-NVT simulations. These results are important in the context of the application of the Hüller-Pleimling method to discrete-potential systems, that are based on a generalization of the SW and square-shoulder fluids properties.
Schaffranek, Raymond W.
2004-01-01
A numerical model for simulation of surface-water integrated flow and transport in two (horizontal-space) dimensions is documented. The model solves vertically integrated forms of the equations of mass and momentum conservation and solute transport equations for heat, salt, and constituent fluxes. An equation of state for salt balance directly couples solution of the hydrodynamic and transport equations to account for the horizontal density gradient effects of salt concentrations on flow. The model can be used to simulate the hydrodynamics, transport, and water quality of well-mixed bodies of water, such as estuaries, coastal seas, harbors, lakes, rivers, and inland waterways. The finite-difference model can be applied to geographical areas bounded by any combination of closed land or open water boundaries. The simulation program accounts for sources of internal discharges (such as tributary rivers or hydraulic outfalls), tidal flats, islands, dams, and movable flow barriers or sluices. Water-quality computations can treat reactive and (or) conservative constituents simultaneously. Input requirements include bathymetric and topographic data defining land-surface elevations, time-varying water level or flow conditions at open boundaries, and hydraulic coefficients. Optional input includes the geometry of hydraulic barriers and constituent concentrations at open boundaries. Time-dependent water level, flow, and constituent-concentration data are required for model calibration and verification. Model output consists of printed reports and digital files of numerical results in forms suitable for postprocessing by graphical software programs and (or) scientific visualization packages. The model is compatible with most mainframe, workstation, mini- and micro-computer operating systems and FORTRAN compilers. This report defines the mathematical formulation and computational features of the model, explains the solution technique and related model constraints, describes the
2D/3D quench simulation using ANSYS for epoxy impregnated Nb3Sn high field magnets
Ryuji Yamada et al.
2002-09-19
A quench program using ANSYS is developed for the high field collider magnet for three-dimensional analysis. Its computational procedure is explained. The quench program is applied to a one meter Nb{sub 3}Sn high field model magnet, which is epoxy impregnated. The quench simulation program is used to estimate the temperature and mechanical stress inside the coil as well as over the whole magnet. It is concluded that for the one meter magnet with the presented cross section and configuration, the thermal effects due to the quench is tolerable. But we need much more quench study and improvements in the design for longer magnets.
Simulation of Ultra-Small MOSFETs Using a 2-D Quantum-Corrected Drift-Diffusion Model
NASA Technical Reports Server (NTRS)
Biegel, Bryan A.; Rafferty, Conor S.; Yu, Zhiping; Dutton, Robert W.; Ancona, Mario G.; Saini, Subhash (Technical Monitor)
1998-01-01
We describe an electronic transport model and an implementation approach that respond to the challenges of device modeling for gigascale integration. We use the density-gradient (DG) transport model, which adds tunneling and quantum smoothing of carrier density profiles to the drift-diffusion model. We present the current implementation of the DG model in PROPHET, a partial differential equation solver developed by Lucent Technologies. This implementation approach permits rapid development and enhancement of models, as well as run-time modifications and model switching. We show that even in typical bulk transport devices such as P-N diodes and BJTs, DG quantum effects can significantly modify the I-V characteristics. Quantum effects are shown to be even more significant in small, surface transport devices, such as sub-0.1 micron MOSFETs. In thin-oxide MOS capacitors, we find that quantum effects may reduce gate capacitance by 25% or more. The inclusion of quantum effects in simulations dramatically improves the match between C-V simulations and measurements. Significant quantum corrections also occur in the I-V characteristics of short-channel MOSFETs due to the gate capacitance correction.
NASA Astrophysics Data System (ADS)
de Garis, Hugo; Korkin, Michael; Guttikonda, Padma; Cooley, Donald
2000-11-01
This paper presents some simulation results of the evolution of 2D visual pattern recognizers to be implemented very shortly on real hardware, namely the 'CAM-Brain Machine' (CBM), an FPGA based piece of evolvable hardware which implements a genetic algorithm (GA) to evolve a 3D cellular automata (CA) based neural network circuit module, of approximately 1,000 neurons, in about a second, i.e. a complete run of a GA, with 10,000s of circuit growths and performance evaluations. Up to 65,000 of these modules, each of which is evolved with a humanly specified function, can be downloaded into a large RAM space, and interconnected according to humanly specified gvdvips -o SPIE-2000.ps SPIE-2000 artificial brain architectures. This RAM, containing an artificial brain with up to 75 million neurons, is then updated by the CBM at a rate of 130 billion CA cells per second. Such speeds will enable real time control of robots and hopefully the birth of a new research field that we call 'brain building.' The first such artificial brain, to be built at STARLAB in 2000 and beyond, will be used to control the behaviors of a life sized kitten robot called 'Robokitty.' This kitten robot will need 2D pattern recognizers in the visual section of its artificial brain. This paper presents simulation results on the evolvability and generalization properties of such recognizers.
Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.
1995-09-01
Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.
Generalized Fluid System Simulation Program, Version 6.0
NASA Technical Reports Server (NTRS)
Majumdar, A. K.; LeClair, A. C.; Moore, R.; Schallhorn, P. A.
2016-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a general purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. Two thermodynamic property programs (GASP/WASP and GASPAK) provide required thermodynamic and thermophysical properties for 36 fluids: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutene, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride, ammonia, hydrogen peroxide, and air. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. The users can also supply property tables for fluids that are not in the library. Twenty-four different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include pipe flow, flow through a restriction, noncircular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; Berry, Scott A.; VanNorman, John W.
2011-01-01
This paper is one of a series of five papers in a special session organized by the NASA Fundamental Aeronautics Program that addresses uncertainty assessments for CFD simulations in hypersonic flow. Simulations of a shock emanating from a compression corner and interacting with a fully developed turbulent boundary layer are evaluated herein. Mission relevant conditions at Mach 7 and Mach 14 are defined for a pre-compression ramp of a scramjet powered vehicle. Three compression angles are defined, the smallest to avoid separation losses and the largest to force a separated flow engaging more complicated flow physics. The Baldwin-Lomax and the Cebeci-Smith algebraic models, the one-equation Spalart-Allmaras model with the Catrix-Aupoix compressibility modification and two-equation models including Menter SST, Wilcox k-omega 98, and Wilcox k-omega 06 turbulence models are evaluated. Each model is fully defined herein to preclude any ambiguity regarding model implementation. Comparisons are made to existing experimental data and Van Driest theory to provide preliminary assessment of model form uncertainty. A set of coarse grained uncertainty metrics are defined to capture essential differences among turbulence models. Except for the inability of algebraic models to converge for some separated flows there is no clearly superior model as judged by these metrics. A preliminary metric for the numerical component of uncertainty in shock-turbulent-boundary-layer interactions at compression corners sufficiently steep to cause separation is defined as 55%. This value is a median of differences with experimental data averaged for peak pressure and heating and for extent of separation captured in new, grid-converged solutions presented here. This value is consistent with existing results in a literature review of hypersonic shock-turbulent-boundary-layer interactions by Roy and Blottner and with more recent computations of MacLean.
2004-08-01
AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.
Bridging fluctuating hydrodynamics and molecular dynamics simulations of fluids.
Voulgarakis, Nikolaos K; Chu, Jhih-Wei
2009-04-01
A new multiscale coarse-graining (CG) methodology is developed to bridge molecular and hydrodynamic models of a fluid. The hydrodynamic representation considered in this work is based on the equations of fluctuating hydrodynamics (FH). The essence of this method is a mapping from the position and velocity vectors of a snapshot of a molecular dynamics (MD) simulation to the field variables on Eulerian cells of a hydrodynamic representation. By explicit consideration of the effective lengthscale d(mol) that characterizes the volume of a molecule, the computed density fluctuations from MD via our mapping procedure have volume dependence that corresponds to a grand canonical ensemble of a cold liquid even when a small cell length (5-10 A) is used in a hydrodynamic representation. For TIP3P water at 300 K and 1 atm, d(mol) is found to be 2.4 A, corresponding to the excluded radius of a water molecule as revealed by its center-of-mass radial distribution function. By matching the density fluctuations and autocorrelation functions of momentum fields computed from solving the FH equations with those computed from MD simulation, the sound velocity and shear and bulk viscosities of a CG hydrodynamic model can be determined directly from MD. Furthermore, a novel staggered discretization scheme is developed for solving the FH equations of an isothermal compressive fluid in a three dimensional space with a central difference method. This scheme demonstrates high accuracy in satisfying the fluctuation-dissipation theorem. Since the causative relationship between field variables and fluxes is captured, we demonstrate that the staggered discretization scheme also predicts correct physical behaviors in simulating transient fluid flows. The techniques presented in this work may also be employed to design multiscale strategies for modeling complex fluids and macromolecules in solution. PMID:19355721
A Generalized Fluid System Simulation Program to Model Flow Distribution in Fluid Networks
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Bailey, John W.; Schallhorn, Paul; Steadman, Todd
1998-01-01
This paper describes a general purpose computer program for analyzing steady state and transient flow in a complex network. The program is capable of modeling phase changes, compressibility, mixture thermodynamics and external body forces such as gravity and centrifugal. The program's preprocessor allows the user to interactively develop a fluid network simulation consisting of nodes and branches. Mass, energy and specie conservation equations are solved at the nodes; the momentum conservation equations are solved in the branches. The program contains subroutines for computing "real fluid" thermodynamic and thermophysical properties for 33 fluids. The fluids are: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutane, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride and ammonia. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. Seventeen different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include: pipe flow, flow through a restriction, non-circular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct, labyrinth seal, parallel plates, common fittings and valves, pump characteristics, pump power, valve with a given loss coefficient, and a Joule-Thompson device. The system of equations describing the fluid network is solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods. This paper also illustrates the application and verification of the code by comparison with Hardy Cross method for steady state flow and analytical solution for unsteady flow.
Techniques utilized in the simulated altitude testing of a 2D-CD vectoring and reversing nozzle
NASA Technical Reports Server (NTRS)
Block, H. Bruce; Bryant, Lively; Dicus, John H.; Moore, Allan S.; Burns, Maureen E.; Solomon, Robert F.; Sheer, Irving
1988-01-01
Simulated altitude testing of a two-dimensional, convergent-divergent, thrust vectoring and reversing exhaust nozzle was accomplished. An important objective of this test was to develop test hardware and techniques to properly operate a vectoring and reversing nozzle within the confines of an altitude test facility. This report presents detailed information on the major test support systems utilized, the operational performance of the systems and the problems encountered, and test equipment improvements recommended for future tests. The most challenging support systems included the multi-axis thrust measurement system, vectored and reverse exhaust gas collection systems, and infrared temperature measurement systems used to evaluate and monitor the nozzle. The feasibility of testing a vectoring and reversing nozzle of this type in an altitude chamber was successfully demonstrated. Supporting systems performed as required. During reverser operation, engine exhaust gases were successfully captured and turned downstream. However, a small amount of exhaust gas spilled out the collector ducts' inlet openings when the reverser was opened more than 60 percent. The spillage did not affect engine or nozzle performance. The three infrared systems which viewed the nozzle through the exhaust collection system worked remarkably well considering the harsh environment.
NASA Astrophysics Data System (ADS)
Westerhof, E.; de Blank, H. J.; Pratt, J.
2016-03-01
Two dimensional reduced MHD simulations of neoclassical tearing mode growth and suppression by ECCD are performed. The perturbation of the bootstrap current density and the EC drive current density perturbation are assumed to be functions of the perturbed flux surfaces. In the case of ECCD, this implies that the applied power is flux surface averaged to obtain the EC driven current density distribution. The results are consistent with predictions from the generalized Rutherford equation using common expressions for Δ \\text{bs}\\prime and Δ \\text{ECCD}\\prime . These expressions are commonly perceived to describe only the effect on the tearing mode growth of the helical component of the respective current perturbation acting through the modification of Ohm’s law. Our results show that they describe in addition the effect of the poloidally averaged current density perturbation which acts through modification of the tearing mode stability index. Except for modulated ECCD, the largest contribution to the mode growth comes from this poloidally averaged current density perturbation.
NASA Astrophysics Data System (ADS)
Nikitin, Sergey; Khokhlova, Tatiana; Pelivanov, Ivan
2012-02-01
Dependencies of the optoacoustic (OA) transformation efficiency on tissue temperature were obtained for the application in OA temperature monitoring during thermal therapies. Accurate measurement of the OA signal amplitude versus temperature was performed in different ex-vivo tissues in the temperature range 25°C - 80°C. The investigated tissues were selected to represent different structural components: chicken breast (skeletal muscle), porcine lard (fatty tissue) and porcine liver (richly perfused tissue). Backward mode of the OA signal detection and a narrow probe laser beam were used in the experiments to avoid the influence of changes in light scattering with tissue coagulation on the OA signal amplitude. Measurements were performed in heating and cooling regimes. Characteristic behavior of the OA signal amplitude temperature dependences in different temperature ranges were described in terms of changes in different structural components of the tissue samples. Finally, numerical simulation of the OA temperature monitoring with a linear transducers array was performed to demonstrate the possibility of real-time temperature mapping.
Arnal, B; Pinton, G; Garapon, P; Pernot, M; Fink, M; Tanter, M
2013-10-01
Shear wave imaging (SWI) maps soft tissue elasticity by measuring shear wave propagation with ultrafast ultrasound acquisitions (10 000 frames s(-1)). This spatiotemporal data can be used as an input for an inverse problem that determines a shear modulus map. Common inversion methods are local: the shear modulus at each point is calculated based on the values of its neighbour (e.g. time-of-flight, wave equation inversion). However, these approaches are sensitive to the information loss such as noise or the lack of the backscattered signal. In this paper, we evaluate the benefits of a global approach for elasticity inversion using a least-squares formulation, which is derived from full waveform inversion in geophysics known as the adjoint method. We simulate an acoustic waveform in a medium with a soft and a hard lesion. For this initial application, full elastic propagation and viscosity are ignored. We demonstrate that the reconstruction of the shear modulus map is robust with a non-uniform background or in the presence of noise with regularization. Compared to regular local inversions, the global approach leads to an increase of contrast (∼+3 dB) and a decrease of the quantification error (∼+2%). We demonstrate that the inversion is reliable in the case when there is no signal measured within the inclusions like hypoechoic lesions which could have an impact on medical diagnosis.
NASA Astrophysics Data System (ADS)
Zhao, Gaiping; Wu, Jie; Xu, Shixiong; Collins, M. W.; Long, Quan; König, Carola S.; Jiang, Yuping; Wang, Jian; Padhani, A. R.
2007-10-01
A coupled intravascular transvascular interstitial fluid flow model is developed to study the distributions of blood flow and interstitial fluid pressure in solid tumor microcirculation based on a tumor-induced microvascular network. This is generated from a 2D nine-point discrete mathematical model of tumor angiogenesis and contains two parent vessels. Blood flow through the microvascular network and interstitial fluid flow in tumor tissues are performed by the extended Poiseuille’s law and Darcy’s law, respectively, transvascular flow is described by Starling’s law; effects of the vascular permeability and the interstitial hydraulic conductivity are also considered. The simulation results predict the heterogeneous blood supply, interstitial hypertension and low convection on the inside of the tumor, which are consistent with physiological observed facts. These results may provide beneficial information for anti-angiogenesis treatment of tumor and further clinical research.
Simulating Pediatric Ventricular Assist Device Operation Using Fluid Structure Interaction
NASA Astrophysics Data System (ADS)
Long, Chris; Bazilevs, Yuri; Marsden, Alison
2012-11-01
Ventricular Assist Devices (VADs) provide mechanical circulatory support to patients in heart failure. They are primarily used to extend life until cardiac transplant, but also show promise as a ``bridge-to-recovery'' device in pediatric patients. Commercially available pediatric pumps are pulsatile displacement pumps, with two distinct chambers for air and blood separated by a thin, flexible membrane. The air chamber pneumatically drives the membrane, which drives blood through the other chamber via displacement. The primary risk factor associated with these devices is stroke or embolism due to thrombogenesis in the blood chamber, occurring in as many as 40% of patients. Our goal is to perform simulations that accurately model the hemodynamics of the device, as well as the non-linear membrane buckling. We apply a finite-element based fluid solver, with an Arbitrary Lagrangian-Eulerian (ALE) framework to account for mesh motion. Isogeometric Analysis with a Kirchhoff-Love shell formulation is used on the membrane, and two distinct fluid subdomains are used for the air and blood chambers. The Fluid Structure Interaction (FSI) problem is solved simultaneously, using a Matrix Free method to model the interactions at the fluid-structure boundary. Methods and results are presented.
Full Two-Fluid Collisionless Magnetic Reconnection Simulations
NASA Astrophysics Data System (ADS)
Gomez, D. O.; Andres, N.; Dmitruk, P.
2015-12-01
Magnetic reconnection is an important energy conversion process in space environments such as the solar corona or planetary magnetospheres. At the theoretical level of resistive one-fluid MHD, the Sweet-Parker model leads to extremely low reconnection rates for virtually all space physics applications. Kinetic plasma effects introduce new spatial and temporal scales into the theoretical description, which are expected to increase the reconnection rates. Within the theoretical framework of two-fluid MHD, we retain the effects of the Hall current and electron inertia and neglect dissipative effects such as viscosity and electric resistivity. This level of description brings two new spatial scales into play, namely, the ion and electron inertial scales. In absence of resistive dissipation, reconnection can only be attained by the action of electron inertia. We performed 2.5D two-fluid simulations using a pseudo-spectral code which yields exact conservation (to round-off errors) of the ideal invariants. Our simulations show that when the effects of electron inertia are retained, magnetic reconnection takes place. In a stationary regime, the reconnection rate is simply proportional to the ion inertial length, as also emerges from a scaling law derived from dimensional arguments.
NASA Astrophysics Data System (ADS)
Lyra, W.; Johansen, A.; Zsom, A.; Klahr, H.; Piskunov, N.
2009-04-01
Context: As accretion in protoplanetary disks is enabled by turbulent viscosity, the border between active and inactive (dead) zones constitutes a location where there is an abrupt change in the accretion flow. The gas accumulation that ensues triggers the Rossby wave instability, which in turn saturates into anticyclonic vortices. It has been suggested that the trapping of solids within them leads to a burst of planet formation on very short timescales. Aims: We study in the formation and evolution of the vortices in greater detail, focusing on the implications for the dynamics of embedded solid particles and planet formation. Methods: We performed two-dimensional global simulations of the dynamics of gas and solids in a non-magnetized thin protoplanetary disk with the Pencil code. We used multiple particle species of radius 1, 10, 30, and 100 cm. We computed the particles' gravitational interaction by a particle-mesh method, translating the particles' number density into surface density and computing the corresponding self-gravitational potential via fast Fourier transforms. The dead zone is modeled as a region of low viscosity. Adiabatic and locally isothermal equations of state are used. Results: The Rossby wave instability is triggered under a variety of conditions, thus making vortex formation a robust process. Inside the vortices, fast accumulation of solids occurs and the particles collapse into objects of planetary mass on timescales as short as five orbits. Because the drag force is size-dependent, aerodynamical sorting ensues within the vortical motion, and the first bound structures formed are composed primarily of similarly-sized particles. In addition to erosion due to ram pressure, we identify gas tides from the massive vortices as a disrupting agent of formed protoplanetary embryos. We find evidence that the backreaction of the drag force from the particles onto the gas modifies the evolution of the Rossby wave instability, with vortices being
Global two-fluid simulation of tokamak Scrape-Off-Layer turbulence
NASA Astrophysics Data System (ADS)
Mosetto, Annamaria; Halpern, Federico David; Jolliet, Sebastien; Ricci, Paolo
2012-03-01
We present non-linear self-consistent 3D global fluid simulations of the SOL plasma dynamics using the Global Braginskii Solver (GBS) code. The code solves the drift-reduced Braginkii equations in a collisional plasma, with cold ions. The GBS code, originally developed for an electrostatic, 2D configuration has been recently upgraded to describe the SOL turbulence with the introduction of the variable curvature along the magnetic field lines, the magnetic shear, and the electromagnetic effects. The code peculiarity lies in the capability of evolving self-consistently equilibrium and 3D fluctuations as a results of the interplay among the sources, the turbulent transport and the plasma losses at the limiter plates. The non-linear simulations have been interpreted by means of linear analysis of the fluid equations modeling the system. This points out the presence of two main instabilities driving turbulence: the Drift Wave and the Resistive Balloning instabilities. The dependence of the instabilities growth rate and of their properties on the physical parameters of the system, for example the characteristic length of the plasma density, the magnetic shear and the β ratio have been explained and the regions where each instability dominates have been identified.
Network Flow Simulation of Fluid Transients in Rocket Propulsion Systems
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Alak; Hamill, Brian; Ramachandran, Narayanan; Majumdar, Alok
2011-01-01
Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicle propulsion systems. These transients often occur at system activation and shutdown. The pressure rise due to sudden opening and closing of valves of propulsion feed lines can cause serious damage during activation and shutdown of propulsion systems. During activation (valve opening) and shutdown (valve closing), pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. In the current work, a network flow simulation software (Generalized Fluid System Simulation Program) based on Finite Volume Method has been used to predict the pressure surges in the feed line due to both valve closing and valve opening using two separate geometrical configurations. The valve opening pressure surge results are compared with experimental data available in the literature and the numerical results compared very well within reasonable accuracy (< 5%) for a wide range of inlet-to-initial pressure ratios. A Fast Fourier Transform is preformed on the pressure oscillations to predict the various modal frequencies of the pressure wave. The shutdown problem, i.e. valve closing problem, the simulation results are compared with the results of Method of Characteristics. Most rocket engines experience a longitudinal acceleration, known as "pogo" during the later stage of engine burn. In the shutdown example problem, an accumulator has been used in the feed system to demonstrate the "pogo" mitigation effects in the feed system of propellant. The simulation results using GFSSP compared very well with the results of Method of Characteristics.
Nibedita, R; Kumar, R A; Majumdar, A; Hosur, R V; Govil, G; Majumder, K; Chauhan, V S
1993-09-01
Solution conformation of a self-complementary 14-mer DNA duplex (d-GGATTGGCCAATCC) containing the GCCAAT recognition motif of several transcription factors has been investigated by NMR spectroscopy. Complete resonance assignment of all the protons (except H5',H5'' protons) has been obtained following standard procedures based on two-dimensional NMR techniques. Three-bond coupling constants have been determined by spectral simulation procedures. New strategies have been described and employed for quantifying NOE intensities from the structural point of view. Approximate ranges of gamma torsion angles have been obtained from a selective NOESY experiment, by estimating the J(4'-5'), J(4'-5''), or their sum in the H1'-H4' cross peaks of the spectrum. Likewise, ranges of epsilon torsion angles have been obtained by monitoring the H3' multiplicities in the H8/H6-H3' cross peaks in selective NOESY spectra. With the help of such a total of 73 coupling constraints, 79 NOE intensity constraints, and 108 H-bond constraints, model building has been carried out to obtain a structure which satisfies the constraints. Starting from such a structure, an expanded distance constraint set has been created which has been used for the distance geometry calculations using the program TANDY. In the best structure thus derived, interesting irregularities similar to a BI-BII transition have been observed in the center. The molecule exhibits a bend. The overall base stacking is different from that in either B- or A-DNA models. The base pairs are tilted with respect to the local helix axes. The observed structural features are likely to have important implications for the recognition mechanism of the GCCAAT motif.
Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models
Cook, Christopher B.; Richmond, Marshall C.
2001-05-01
This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields.
Gyrokinetic and global fluid simulations of tokamak microturbulence and transport
Dimits, A.M.; Byers, J.A.; Williams, T.J.; Cohen, B.I.; Xu, W.Q.; Cohen, R.H.; Crotinger, J.A.; Shestakov, A.I.
1994-08-30
Results are presented from the first systematic nonlinear kinetic simulation study of the swings and parameter dependences of toroidal ion-temperature-gradient (ITG) turbulence and transport, and from the first such study that includes sheared toroidal flows. Key results include the observation of clear gyroBohm scaling of the turbulent transport and of a surprisingly weak dependence of the transport on toroidal flow shear. Based on the simulation results, a parameterization of the transport is given that includes the dependence on all of the relevant physical parameters. The transition from local to nonlocal transport as a function of the profile scale length has been investigated using two-dimensional global fluid simulations of dissipative drift-wave turbulence. Local gyroBohm scaling is observed, except at very short profile scale lengths.
Fluid simulations of {nabla}T{sub e}-driven turbulence and transport in boundary plasmas
Xu, X.Q.
1992-12-15
It is clear that the edge plasma plays a crucial role in global tokamak confinement. This paper is a report on simulations of a new drift wave type instability driven by the electron temperature gradient in tokamak scrapeoff-layers (SOL). A 2d fluid code has been developed in order to explore the anomalous transport in the boundary plasmas. The simulation consists of a set of fluid equations for the vorticity {nabla}{sub {perpendicular}}{sup 2}{phi}, the electron density n{sub c} and the temperature T{sub c} in a shearless plasma slab confined by a uniform, straight magnetic field B{sub z} with two divertor (or limiter) plates intercepting the magnetic field. The model has two regions separated by a magnetic separatrix: in the edge region inside the separatrix, the model is periodic along the magnetic field while in the SOL region outside the separatrix, the magnetic field is taken to be of finite length with model boundary conditions at diverter plates. The simulation results show that the observed linear instability agrees well with theory, and that a saturated state of turbulence is reached. In saturated turbulence, clear evidence of the expected long-wavelength mode penetration into the edge is seen, an inverse cascade of wave energy is observed. The simulation results also show that amplitudes of potential and the electron temperature fluctuations are somewhat above and the heat flux are somewhat below those of the simplest mixing-length estimates, and furthermore the large-scale radial structures of fluctuation quantities indicate that the cross-field transport is not diffusive. After saturation, the electron density and temperature profiles are flattened. A self-consistent simulation to determine the microturbulent SOL electron temperature profile has been done, the results of which reasonably agree with the experimental measurements.
Two-fluid simulations of driven reconnection in the mega-ampere spherical tokamak
Stanier, A.; Browning, P.; Gordovskyy, M.; McClements, K. G.; Gryaznevich, M. P.
2013-12-15
In the merging-compression method of plasma start-up, two flux-ropes with parallel toroidal current are formed around in-vessel poloidal field coils, before merging to form a spherical tokamak plasma. This start-up method, used in the Mega-Ampere Spherical Tokamak (MAST), is studied as a high Lundquist number and low plasma-beta magnetic reconnection experiment. In this paper, 2D fluid simulations are presented of this merging process in order to understand the underlying physics, and better interpret the experimental data. These simulations examine the individual and combined effects of tight-aspect ratio geometry and two-fluid physics on the merging. The ideal self-driven flux-rope dynamics are coupled to the diffusion layer physics, resulting in a large range of phenomena. For resistive MHD simulations, the flux-ropes enter the sloshing regime for normalised resistivity η≲10{sup −5}. In Hall-MHD, three regimes are found for the qualitative behaviour of the current sheet, depending on the ratio of the current sheet width to the ion-sound radius. These are a stable collisional regime, an open X-point regime, and an intermediate regime that is highly unstable to tearing-type instabilities. In toroidal axisymmetric geometry, the final state after merging is a MAST-like spherical tokamak with nested flux-surfaces. It is also shown that the evolution of simulated 1D radial density profiles closely resembles the Thomson scattering electron density measurements in MAST. An intuitive explanation for the origin of the measured density structures is proposed, based upon the results of the toroidal Hall-MHD simulations.
Quantum molecular dynamics simulations of thermophysical properties of fluid ethane
NASA Astrophysics Data System (ADS)
Zhang, Yujuan; Wang, Cong; Zheng, Fawei; Zhang, Ping
2012-12-01
We have performed first-principles molecular-dynamics simulations based on density-functional theory to study the thermophysical properties of ethane under extreme conditions. We present results for the equation of state of fluid ethane in the warm dense region. The optical conductivity is calculated via the Kubo-Greenwood formula from which the dc conductivity and optical reflectivity are derived. The close correlation between the nonmetal-metal transition of ethane and its decomposition, that ethane dissociates significantly into molecular and/or atomic hydrogen and some long alkane chains, has been systematically studied by analyzing the optical conductivity spectra, pair correlation functions, electronic density of states, and charge density distribution of fluid ethane.
Lattice Boltzmann simulations of a viscoelastic shear-thinning fluid.
Papenkort, S; Voigtmann, Th
2015-07-28
We present a hybrid lattice Boltzmann algorithm for the simulation of flow glass-forming fluids, characterized by slow structural relaxation, at the level of the Navier-Stokes equation. The fluid is described in terms of a nonlinear integral constitutive equation, relating the stress tensor locally to the history of flow. As an application, we present results for an integral nonlinear Maxwell model that combines the effects of (linear) viscoelasticity and (nonlinear) shear thinning. We discuss the transient dynamics of velocities, shear stresses, and normal stress differences in planar pressure-driven channel flow, after switching on (startup) and off (cessation) of the driving pressure. This transient dynamics depends nontrivially on the channel width due to an interplay between hydrodynamic momentum diffusion and slow structural relaxation. PMID:26233150
Numerical Simulation of Low Mach Number Fluid - Phenomena.
NASA Astrophysics Data System (ADS)
Reitsma, Scott H.
A method for the numerical simulation of low Mach number (M) fluid-acoustic phenomena is developed. This computational fluid-acoustic (CFA) methodology is based upon a set of conservation equations, termed finite-compressible, derived from the unsteady Navier-Stokes equations. The finite-compressible and more familiar pseudo-compressible equations are compared. The impact of derivation assumptions are examined theoretically and through numerical experimentation. The error associated with these simplifications is shown to be of O(M) and proportional to the amplitude of unsteady phenomena. A computer code for the solution of the finite -compressible equations is developed from an existing pseudo -compressible code. Spatial and temporal discretization issues relevant in the context of near field fluid-acoustic simulations are discussed. The finite volume code employs a MUSCL based third order upwind biased flux difference splitting algorithm for the convective terms. An explicit, three stage, second order Runge-Kutta temporal integration is employed for time accurate simulations while an implicit, approximately factored time quadrature is available for steady state convergence acceleration. The CFA methodology is tested in a series of problems which examine the appropriateness of the governing equations, the exacerbation of spatial truncation errors and the degree of temporal accuracy. Characteristic based boundary conditions employing a spatial formulation are developed. An original non-reflective boundary condition based upon the generalization and extension of existing methods is derived and tested in a series of multi-dimensional problems including those involving viscous shear flows and propagating waves. The final numerical experiment is the simulation of boundary layer receptivity to acoustic disturbances. This represents the first simulation of receptivity at a surface inhomogeneity in which the acoustic phenomena is modeled using physically appropriate
Two-fluid electromagnetic simulations of plasma-jet acceleration with detailed equation-of-state
Thoma, C.; Welch, D. R.; Clark, R. E.; Bruner, N.; MacFarlane, J. J.; Golovkin, I. E.
2011-10-15
We describe a new particle-based two-fluid fully electromagnetic algorithm suitable for modeling high density (n{sub i} {approx} 10{sup 17} cm{sup -3}) and high Mach number laboratory plasma jets. In this parameter regime, traditional particle-in-cell (PIC) techniques are challenging due to electron timescale and lengthscale constraints. In this new approach, an implicit field solve allows the use of large timesteps while an Eulerian particle remap procedure allows simulations to be run with very few particles per cell. Hall physics and charge separation effects are included self-consistently. A detailed equation of state (EOS) model is used to evolve the ion charge state and introduce non-ideal gas behavior. Electron cooling due to radiation emission is included in the model as well. We demonstrate the use of these new algorithms in 1D and 2D Cartesian simulations of railgun (parallel plate) jet accelerators using He and Ar gases. The inclusion of EOS and radiation physics reduces the electron temperature, resulting in higher calculated jet Mach numbers in the simulations. We also introduce a surface physics model for jet accelerators in which a frictional drag along the walls leads to axial spreading of the emerging jet. The simulations demonstrate that high Mach number jets can be produced by railgun accelerators for a variety of applications, including high energy density physics experiments.
Numerical simulation of landfill aeration using computational fluid dynamics.
Fytanidis, Dimitrios K; Voudrias, Evangelos A
2014-04-01
The present study is an application of Computational Fluid Dynamics (CFD) to the numerical simulation of landfill aeration systems. Specifically, the CFD algorithms provided by the commercial solver ANSYS Fluent 14.0, combined with an in-house source code developed to modify the main solver, were used. The unsaturated multiphase flow of air and liquid phases and the biochemical processes for aerobic biodegradation of the organic fraction of municipal solid waste were simulated taking into consideration their temporal and spatial evolution, as well as complex effects, such as oxygen mass transfer across phases, unsaturated flow effects (capillary suction and unsaturated hydraulic conductivity), temperature variations due to biochemical processes and environmental correction factors for the applied kinetics (Monod and 1st order kinetics). The developed model results were compared with literature experimental data. Also, pilot scale simulations and sensitivity analysis were implemented. Moreover, simulation results of a hypothetical single aeration well were shown, while its zone of influence was estimated using both the pressure and oxygen distribution. Finally, a case study was simulated for a hypothetical landfill aeration system. Both a static (steadily positive or negative relative pressure with time) and a hybrid (following a square wave pattern of positive and negative values of relative pressure with time) scenarios for the aeration wells were examined. The results showed that the present model is capable of simulating landfill aeration and the obtained results were in good agreement with corresponding previous experimental and numerical investigations.
NASA Astrophysics Data System (ADS)
Constantinescu, R.; Thouret, J. C.; Sandri, L.; Irimus, I. A.; Stefanescu, R.
2012-04-01
Pyroclastic density currents, which include pyroclastic surges and pyroclastic flows (PFs), are among the most dangerous volcanic phenomena. We present a probabilistic hazard assessment of the PFs generated from eruptive column collapse at El Misti volcano (5822 m) in South Peru. The high relief of the cone, the location of the city of Arequipa (~1,000,000 people) on two large volcanoclastic fans and the H (3.5 km)/L (17 km) ratio (0.2) between the summit and the city center, make PFs a direct threat. We consider three eruption scenario sizes: small Vulcanian/Phreatomagmatic (VEI 2), medium Sub-Plinian (VEI 3-4), and large Plinian (VEI 4+). We use the Event-Tree approach in a Bayesian scheme with BET_VH (Bayesian Event Tree for Volcanic Hazard) software. Quantitative data that stem from numerical simulations from TITAN2D (termed prior models) and from stratigraphic record (termed past data) are input to BET_VH, which enables us to compute the probabilities (in a 1-year time window) of (i) having an eruption (ii) in a selected location/vent (iii) of a specific size, (iv) and that this eruption will produce PFs (v) that will reach a location of interest around El Misti. TITAN2D simulation runs, expressed as color-coded thicknesses of PDC deposits, fit well the extent of past PFs deposits, including thick confined deposits (0.5-7 m) in the Rio Chili canyon and its tributary ravines (Quebradas San Lazaro, Huarangal and Agua Salada).The unconfined, thinner (≤10cm) deposits, as displayed by simulation runs on the interfluves, is attributed to ash-cloud surges. Such thin, fine ash deposits have not been emphasized in geological maps either because they have been removed away or remain yet unrecognized. The simulated Vulcanian flows, restricted to the upper part of the cone, become confined (0.1-1m thick) in the ravines which converge towards each of the three Quebradas. The simulated Subplinian PF deposits reach 0.1 to 1 m thick in the Quebradas and 1-4 m WNW of El
Simulation of fluid, heat transport to estimate desert stream infiltration
Kulongoski, J.T.; Izbicki, J.A.
2008-01-01
In semiarid regions, the contribution of infiltration from intermittent streamflow to ground water recharge may be quantified by comparing simulations of fluid and heat transport beneath stream channels to observed ground temperatures. In addition to quantifying natural recharge, streamflow infiltration estimates provide a means to characterize the physical properties of stream channel sediments and to identify suitable locations for artificial recharge sites. Rates of winter streamflow infiltration along stream channels are estimated based on the cooling effect of infiltrated water on streambed sediments, combined with the simulation of two-dimensional fluid and heat transport using the computer program VS2DH. The cooling effect of ground water is determined by measuring ground temperatures at regular intervals beneath stream channels and nearby channel banks in order to calculate temperature-depth profiles. Additional data inputs included the physical, hydraulic, and thermal properties of unsaturated alluvium, and monthly ground temperatures measurements over an annual cycle. Observed temperatures and simulation results can provide estimates of the minimum threshold for deep infiltration, the variability of infiltration along stream channels, and also the frequency of infiltration events.
Computational Fluid Dynamics Simulation of Fluidized Bed Polymerization Reactors
Fan, Rong
2006-01-01
, monovariate population balance, bivariate population balance, aggregation and breakage equation and DQMOM-Multi-Fluid model are described. In the last section of Chapter 3, numerical methods involved in the multi-fluid model and time-splitting method are presented. Chapter 4 is based on a paper about application of DQMOM to polydisperse gas-solid fluidized beds. Results for a constant aggregation and breakage kernel and a kernel developed from kinetic theory are shown. The effect of the aggregation success factor and the fragment distribution function are investigated. Chapter 5 shows the work on validation of mixing and segregation phenomena in gas-solid fluidized beds with a binary mixture or a continuous size distribution. The simulation results are compared with available experiment data and discrete-particle simulation. Chapter 6 presents the project with Univation Technologies on CFD simulation of a Polyethylene pilot-scale FB reactor, The fluid dynamics, mass/heat transfer and particle size distribution are investigated through CFD simulation and validated with available experimental data. The conclusions of this study and future work are discussed in Chapter 7.
Modeling and Direct Numerical Simulation of Ternary Fluid Flows
NASA Astrophysics Data System (ADS)
Kim, Jun-Seok; Lowengrub, John; Longmire, Ellen
2001-06-01
In this talk, we will present a physically-based model of flows involving three liquid components. The components may exhibit preferential miscibility with one another. The flows we consider are characterized by the presence of interfaces separating immiscible flow components with pinchoff and reconnection of interfaces being important features of the flow. In our model, these topological transitions are handled smoothly without explicit interface reconstruction. In addition, we model the diffusion of miscible components in the bulk and across the interfaces. To illustrate the method, we present numerical simulations of remediation of a contaminant-laden fluid using liquid/liquid extraction.
Numerical simulation of fluid flow around a scramaccelerator projectile
NASA Technical Reports Server (NTRS)
Pepper, Darrell W.; Humphrey, Joseph W.; Sobota, Thomas H.
1991-01-01
Numerical simulations of the fluid motion and temperature distribution around a 'scramaccelerator' projectile are obtained for Mach numbers in the 5-10 range. A finite element method is used to solve the equations of motion for inviscid and viscous two-dimensional or axisymmetric compressible flow. The time-dependent equations are solved explicitly, using bilinear isoparametric quadrilateral elements, mass lumping, and a shock-capturing Petrov-Galerkin formulation. Computed results indicate that maintaining on-design performance for controlling and stabilizing oblique detonation waves is critically dependent on projectile shape and Mach number.
NASA Astrophysics Data System (ADS)
Gürleme, Beran; Tarık Meriç, Hakan; Ulutaş, Ergin; Anunziato, Alessandro
2016-04-01
The aim of this study is the simulation and visualization of the initial and maximum tsunami wave heights in 2D and 3D along the Mediterranean coasts inferred from the five largest earthquakes in history in this region. The earthquakes considered in the study are 21 July 365 Crete, 8 August 1303 Crete, 3 May 1481 Rhodes, 28 December Messina and 21 May 2003 Algeria. All these earthquakes spawned tsunamis and inflicted damage in coastal regions. The study was conducted to explain which could be the potential Tsunami consequences caused by similar earthquakes occurring in the region in the future. The methodology used for the calculation of tsunami wave heights from the earthquakes includes the determination of earthquake parameters, modeling of the initial wave height, simulation of the wave propagation and calculation of the maximum wave heights near coastal areas. The parameters of the earthquakes are based on previously published fault mechanism solutions and known tectonic features of the regions. Static dislocation algorithm for the initial wave height is used from the parameters of focal mechanism solutions. The study was conducted also to understand the reliability of the previously published focal mechanism solutions for the earthquakes by using the principal stress axis in the regions. The 2D and 3D visualized models of tsunamis from the earthquakes include isometric grid representing the sea surface for the purpose of a better understanding of the initial tsunami mechanism compared to 1D visualizations. In many studies, the earthquake locations, tectonic features of the regions, initial heights and tsunami simulations are shown on maps as bird's eye in 1D visualization. However these kinds of features are related in depths and bathymetric features. For that reason, our approaches will contribute to have better understanding where the uplift- subsidence of initial heights and crests-troughs of simulated wave heights and thus provide a better insight of the
NASA Astrophysics Data System (ADS)
Rank, Christopher M.; Heußer, Thorsten; Flach, Barbara; Brehm, Marcus; Kachelrieß, Marc
2015-03-01
We propose a new method for PET/MR respiratory motion compensation, which is based on a 3D-2D registration of strongly undersampled MR data and a) runs in parallel with the PET acquisition, b) can be interlaced with clinical MR sequences, and c) requires less than one minute of the total MR acquisition time per bed position. In our simulation study, we applied a 3D encoded radial stack-of-stars sampling scheme with 160 radial spokes per slice and an acquisition time of 38 s. Gated 4D MR images were reconstructed using a 4D iterative reconstruction algorithm. Based on these images, motion vector fields were estimated using our newly-developed 3D-2D registration framework. A 4D PET volume of a patient with eight hot lesions in the lungs and upper abdomen was simulated and MoCo 4D PET images were reconstructed based on the motion vector fields derived from MR. For evaluation, average SUVmean values of the artificial lesions were determined for a 3D, a gated 4D, a MoCo 4D and a reference (with ten-fold measurement time) gated 4D reconstruction. Compared to the reference, 3D reconstructions yielded an underestimation of SUVmean values due to motion blurring. In contrast, gated 4D reconstructions showed the highest variation of SUVmean due to low statistics. MoCo 4D reconstructions were only slightly affected by these two sources of uncertainty resulting in a significant visual and quantitative improvement in terms of SUVmean values. Whereas temporal resolution was comparable to the gated 4D images, signal-to-noise ratio and contrast-to-noise ratio were close to the 3D reconstructions.
2D Spinodal Decomposition in Forced Turbulence
NASA Astrophysics Data System (ADS)
Fan, Xiang; Diamond, Patrick; Chacon, Luis; Li, Hui
2015-11-01
Spinodal decomposition is a second order phase transition for binary fluid mixture, from one thermodynamic phase to form two coexisting phases. The governing equation for this coarsening process below critical temperature, Cahn-Hilliard Equation, is very similar to 2D MHD Equation, especially the conserved quantities have a close correspondence between each other, so theories for MHD turbulence are used to study spinodal decomposition in forced turbulence. Domain size is increased with time along with the inverse cascade, and the length scale can be arrested by a forced turbulence with direct cascade. The two competing mechanisms lead to a stabilized domain size length scale, which can be characterized by Hinze Scale. The 2D spinodal decomposition in forced turbulence is studied by both theory and simulation with ``pixie2d.'' This work focuses on the relation between Hinze scale and spectra and cascades. Similarities and differences between spinodal decomposition and MHD are investigated. Also some transport properties are studied following MHD theories. This work is supported by the Department of Energy under Award Number DE-FG02-04ER54738.
NASA Astrophysics Data System (ADS)
Orlić, Ivica; Mekterović, Darko; Mekterović, Igor; Ivošević, Tatjana
2015-11-01
VIBA-Lab is a computer program originally developed by the author and co-workers at the National University of Singapore (NUS) as an interactive software package for simulation of Particle Induced X-ray Emission and Rutherford Backscattering Spectra. The original program is redeveloped to a VIBA-Lab 3.0 in which the user can perform semi-quantitative analysis by comparing simulated and measured spectra as well as simulate 2D elemental maps for a given 3D sample composition. The latest version has a new and more versatile user interface. It also has the latest data set of fundamental parameters such as Coster-Kronig transition rates, fluorescence yields, mass absorption coefficients and ionization cross sections for K and L lines in a wider energy range than the original program. Our short-term plan is to introduce routine for quantitative analysis for multiple PIXE and XRF excitations. VIBA-Lab is an excellent teaching tool for students and researchers in using PIXE and RBS techniques. At the same time the program helps when planning an experiment and when optimizing experimental parameters such as incident ions, their energy, detector specifications, filters, geometry, etc. By "running" a virtual experiment the user can test various scenarios until the optimal PIXE and BS spectra are obtained and in this way save a lot of expensive machine time.
Simulation and modeling techniques for parachute fluid-structure interactions
NASA Astrophysics Data System (ADS)
Stein, Keith Robert
This thesis is on advanced flow simulation and modeling techniques for fluid-structure interactions (FSI) encountered in parachute systems. The main fluid dynamics solver is based on the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) finite element formulation of the Navier-Stokes equations of incompressible flows. The DSD/SST formulation, which was introduced earlier for flow computations involving moving boundaries and interfaces, gives us the capability to handle parachute structural deformations. The structural dynamics solver is based on a total Lagrangian finite element formulation of the equilibrium equations for a "tension structure" composed of membranes, cables, and concentrated masses. The fluid and structure are coupled iteratively within a nonlinear iteration loop, with multiple nonlinear iterations improving the convergence of the coupled system. Unstructured mesh generation and mesh moving techniques for handling of parachute deformations are developed and/or adapted to address the challenges posed by the coupled problem. The FSI methodology was originally implemented on the Thinking Machines CM-5 supercomputer and is now actively used on the CRAY T3E-1200. Applications to a variety of round and cross parachutes used by the US Army are presented, and different stages of the parachute operations, including inflation and terminal descent, are modeled.
Modelling cavitation erosion using fluid-material interaction simulations.
Chahine, Georges L; Hsiao, Chao-Tsung
2015-10-01
Material deformation and pitting from cavitation bubble collapse is investigated using fluid and material dynamics and their interaction. In the fluid, a novel hybrid approach, which links a boundary element method and a compressible finite difference method, is used to capture non-spherical bubble dynamics and resulting liquid pressures efficiently and accurately. The bubble dynamics is intimately coupled with a finite-element structure model to enable fluid/structure interaction simulations. Bubble collapse loads the material with high impulsive pressures, which result from shock waves and bubble re-entrant jet direct impact on the material surface. The shock wave loading can be from the re-entrant jet impact on the opposite side of the bubble, the fast primary collapse of the bubble, and/or the collapse of the remaining bubble ring. This produces high stress waves, which propagate inside the material, cause deformation, and eventually failure. A permanent deformation or pit is formed when the local equivalent stresses exceed the material yield stress. The pressure loading depends on bubble dynamics parameters such as the size of the bubble at its maximum volume, the bubble standoff distance from the material wall and the pressure driving the bubble collapse. The effects of standoff and material type on the pressure loading and resulting pit formation are highlighted and the effects of bubble interaction on pressure loading and material deformation are preliminarily discussed.
Hai Huang; Paul Meakin
2005-12-01
Complex fluid behavior in unsaturated fracture and fracture networks, such as film flow, the migration, fragmentation, and coalescence of droplets, and rivulet flow with or without meandering or pulsation, has been widely observed in laboratory experiments. In this study, a modified two-dimensional volume of fluid (VOF) method was used to simulate liquid motion in partially saturated fracture apertures under a variety of flow conditions. This modeling approach systematically incorporates the effects of inertial forces, viscosity, gravity acting on the fluid densities, fracture wall wetting, and the pressure drop across curved fluid-fluid interfaces due to surface tension. This allows us to obtain a better understanding of the fundamental physics governing unsaturated fluid flow in fracture apertures. The VOF method is able to handle the complex dynamics of fluid-fluid interfaces and free surfaces in unsaturated fractures by using a fixed Eulerian grid. Fragmentation and coalescence of the fluids are automatically handled without resorting to complex adaptive mesh refinement or interface repairing algorithms. The wetting of fracture walls was modeled by imposing contact angles near the contact lines (contact points in two-dimensional simulations), and different contact angles were automatically chosen depending on whether the liquid interface is advancing, receding, or essentially stationary. The qualitative agreements between the numerical simulations and complex multiphase fluid dynamics reported in laboratory experiments clearly demonstrate the potential value of the VOF method for the mechanistically based modeling of immiscible liquid motion in unsaturated fracture networks.
A THC Simulator for Modeling Fluid-Rock Interactions
NASA Astrophysics Data System (ADS)
Hamidi, Sahar; Galvan, Boris; Heinze, Thomas; Miller, Stephen
2014-05-01
Fluid-rock interactions play an essential role in many earth processes, from a likely influence on earthquake nucleation and aftershocks, to enhanced geothermal system, carbon capture and storage (CCS), and underground nuclear waste repositories. In THC models, two-way interactions between different processes (thermal, hydraulic and chemical) are present. Fluid flow influences the permeability of the rock especially if chemical reactions are taken into account. On one hand solute concentration influences fluid properties while, on the other hand, heat can affect further chemical reactions. Estimating heat production from a naturally fractured geothermal systems remains a complex problem. Previous works are typically based on a local thermal equilibrium assumption and rarely consider the salinity. The dissolved salt in fluid affects the hydro- and thermodynamical behavior of the system by changing the hydraulic properties of the circulating fluid. Coupled thermal-hydraulic-chemical models (THC) are important for investigating these processes, but what is needed is a coupling to mechanics to result in THMC models. Although similar models currently exist (e.g. PFLOTRAN), our objective here is to develop algorithms for implementation using the Graphics Processing Unit (GPU) computer architecture to be run on GPU clusters. To that aim, we present a two-dimensional numerical simulation of a fully coupled non-isothermal non-reactive solute flow. The thermal part of the simulation models heat transfer processes for either local thermal equilibrium or nonequilibrium cases, and coupled to a non-reactive mass transfer described by a non-linear diffusion/dispersion model. The flow process of the model includes a non-linear Darcian flow for either saturated or unsaturated scenarios. For the unsaturated case, we use the Richards' approximation for a mixture of liquid and gas phases. Relative permeability and capillary pressure are determined by the van Genuchten relations
What is modulating solubility in simulated intestinal fluids?
Ottaviani, Giorgio; Gosling, Daniel J; Patissier, Celine; Rodde, Stephane; Zhou, Liping; Faller, Bernard
2010-11-20
The aim of this study was to understand which parameters are responsible for the selective modulation of compounds solubility in simulated intestinal fluids. The solubility of 25 chemically diverse reference compounds was measured in simulated intestinal fluid (FaSSIF-V2) and in aqueous phosphate and maleate buffers. Electrostatic interactions between compounds and the bio-relevant medium components seem to explain the different solubility behavior observed for acids and bases. The solubility of ionized acids is not increased in FaSSIF-V2 probably due to electrostatic repulsions with the media components. Lipophilicity plays an important role but mainly for charged bases with a logP>4 (or logD(6.5)>1.9). When the aqueous solubility is mainly driven by lipophilicity, the FaSSIF-V2 components seem to improve the solubility of basic compounds to a greater extent than for compounds whose solubility is limited by crystal packing. These results suggest that ionization, lipophilicity and crystal packing play important but peculiar roles in controlling solubility in FaSSIF-V2 compared to that in aqueous buffer and this information could be useful to guide medicinal chemists and formulation scientists. PMID:20656026
Static dielectric properties of the Stockmayer fluid from computer simulation
NASA Astrophysics Data System (ADS)
Adams, D. J.; Adams, E. M.
A number of summation methods for simulating polar liquids are compared using the Stockmayer potential fluid. The nearest image convention is found to have thermodynamic properties dependent on the cell shape. Spherical truncation and a summation proposed by Smith and Perram give reasonable agreement with the thermodynamic properties found from other methods but are not suitable for determining dielectric properties. The reaction field and Ewald-Kornfeld summation methods are in close agreement on the thermodynamic properties and have some measure of agreement on dielectric properties. However, the correlation function hΔ(r) clearly shows the effect of the truncation of the direct dipole-dipole interaction. It is concluded that an Ewald summation is the most appropriate method for simulating polar liquids. Thermodynamic and static dielectric properties of the Stockmayer fluid, determined from Monte Carlo and molecular dynamics calculations using the Ewald-Kornfeld summation, are presented. Calculations with large applied fields have been made to study dielectric saturation. The local field is examined in some detail and a distinction is made between Onsager's analysis of the local field into two components, which is supported by the present results, and Onsager's model for polar liquids which provides values for these components that do not agree well with the present results.
Implementing Multiscale Fluid Simulations using Multiscale Universal Interface
NASA Astrophysics Data System (ADS)
Tang, Yu-Hang; Kudo, Shuhei; Bian, Xin; Li, Zhen; Karniadakis, George; Crunch Team
2015-11-01
The power of multiscale fluid simulations lies in its ability to recover a hierarchical levels of details by choreographing multiple solvers, thus extending the length and time scale accessible given a fixed amount of computing power. However, practical difficulties frequently arise when stitching together solvers which were not designed to be coupled, and would often result in tedious and unsustainable coding effort. The Multiscale Universal Interface (MUI) aims to solve this problem by exposing a small set of generalized programming interfaces that can be dropped into existing solvers with minimal intrusion. Three deployment cases will be given for demonstrating real-world applications of MUI. In the first case we used MUI to implement simulations of polymer-grafted surface in flow using Smoothed Particle Hydrodynamics/Dissipative Particle Dynamics (SPH/DPD) and state variable coupling. In the second case we constructed coupled DPD/Finite Element Method (FEM) simulation of conjugate heat transfer in heterogeneous coolant. In the third case we built hybrid DPD/molecular dynamics (MD) simulations by blending the forces on atoms at interface regions. Supported by the DOE Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4) and AFOSR FA9550-12-1-0463. Computer hours at ORNL allocated through INCITE BIP118 and DD102.
NASA Astrophysics Data System (ADS)
Tierz, Pablo; Ramona Stefanescu, Elena; Sandri, Laura; Patra, Abani; Marzocchi, Warner; Sulpizio, Roberto
2014-05-01
Probabilistic hazard assessments of Pyroclastic Density Currents (PDCs) are of great interest for decision-making purposes. However, there is a limited number of published works available on this topic. Recent advances in computation and statistical methods are offering new opportunities beyond the classical Monte Carlo (MC) sampling which is known as a simple and robust method but it usually turns out to be slow and computationally intractable. In this work, Titan2D numerical simulator has been coupled to Polynomial Chaos Quadrature (PCQ) to propagate the simulator parametric uncertainty and compute VEI-based probabilistic hazard maps of dense PDCs formed as a result of column collapse at Vesuvius volcano, Italy. Due to the lack of knowledge about the exact conditions under which these PDCs will form, Probability Distribution Functions (PDFs) are assigned to the simulator input parameters (Bed Friction Angle and Volume) according to three VEI sizes. Uniform distributions were used for both parameters since there is insufficient information to assume that any value in the range is more likely that any other value. Reasonable (and compatible) ranges for both variables were constrained according to past eruptions at Vesuvius volcanic system. On the basis of reasoning above a number of quadrature points were taken within those ranges, which resulted in one execution of the TITAN2D code at each quadrature point. With a computational cost several orders of magnitude smaller than MC, exceedance probabilities for a given threshold of flow depth (and conditional to the occurrence of VEI3, VEI4 and VEI5 eruptions) were calculated using PCQ. Moreover, PCQ can be run at different threshold values of the same output variable (flow depth, speed, kinetic energy, …) and, therefore, it can serve to compute Exceedance Probability curves (aka hazard curves) at singular points inside the hazard domain, representing the most important and useful scientific input to quantitative risk
NASA Astrophysics Data System (ADS)
Wyseure, Guido; Chou, Po-Yi
2010-05-01
All hydrological handbooks contain methods for direct runoff and base-flow separation. The semi-log separation method is the most classical one. One can, however, question the physical base for such method. In addition, the water fluxes in the riverbed are important for ecology and water quality. In our study an 2-D cross-section including the river and the surrounding aquifer was set-up in HYDRUS 2D/3D. Initial conditions were a steady-state subsurface flow feeding the river with a recharge from the soil surface. A surface runoff event was simulated by a rise and recession of the water level in the river. Differences between summer and winter situation were explored by given representative temperatures to the different components of the river-aquifer system. The simulations show that the fluxes are very different along the riverbed. Even during steady state baseflow we see that the fluxes through the bottom were 2 to 3 times smaller as compared to the side banks. During the hydrographs the proportion can become up to 5 times. Another interesting result is that within the time frame of the hydrograph and its immediate recession relatively little water, which pentetrated in the aquifer, returns to the river. Most of the water replenishes the aquifer and there is only a very small rise of baseflow. In our simulation we returned to the original level as before the hydrograph, so in reality even less or no rise in baseflow may occur immediately after a hydrograph. Of course, in a longer time-frame the recharge of the aquifer will give a rise to the actual subsurface drainage. The change in seasonal temperatures within the river-aquifer system has a substantial effect. For identical river stage hydrograph changes the hyporheic exchange fluxes are more intense in summer than in winter. If we define the hyporheic zone as the extedn to which the water fluxes from the river can penetrate, then we see that this zone is wider on the sides as compared to the bottom of the
NASA Technical Reports Server (NTRS)
Li, Xiaofan; Sui, C.-H.; Lau, K-M.; Adamec, D.
1999-01-01
A two-dimensional coupled ocean-cloud resolving atmosphere model is used to investigate possible roles of convective scale ocean disturbances induced by atmospheric precipitation on ocean mixed-layer heat and salt budgets. The model couples a cloud resolving model with an embedded mixed layer-ocean circulation model. Five experiment are performed under imposed large-scale atmospheric forcing in terms of vertical velocity derived from the TOGA COARE observations during a selected seven-day period. The dominant variability of mixed-layer temperature and salinity are simulated by the coupled model with imposed large-scale forcing. The mixed-layer temperatures in the coupled experiments with 1-D and 2-D ocean models show similar variations when salinity effects are not included. When salinity effects are included, however, differences in the domain-mean mixed-layer salinity and temperature between coupled experiments with 1-D and 2-D ocean models could be as large as 0.3 PSU and 0.4 C respectively. Without fresh water effects, the nocturnal heat loss over ocean surface causes deep mixed layers and weak cooling rates so that the nocturnal mixed-layer temperatures tend to be horizontally-uniform. The fresh water flux, however, causes shallow mixed layers over convective areas while the nocturnal heat loss causes deep mixed layer over convection-free areas so that the mixed-layer temperatures have large horizontal fluctuations. Furthermore, fresh water flux exhibits larger spatial fluctuations than surface heat flux because heavy rainfall occurs over convective areas embedded in broad non-convective or clear areas, whereas diurnal signals over whole model areas yield high spatial correlation of surface heat flux. As a result, mixed-layer salinities contribute more to the density differences than do mixed-layer temperatures.
Zhang, Y; Yang, J; Liu, H; Liu, D
2014-06-01
Purpose: The purpose of this work is to compare the verification results of three solutions (2D/3D ionization chamber arrays measurement and Monte Carlo simulation), the results will help make a clinical decision as how to do our cervical IMRT verification. Methods: Seven cervical cases were planned with Pinnacle 8.0m to meet the clinical acceptance criteria. The plans were recalculated in the Matrixx and Delta4 phantom with the accurate plans parameters. The plans were also recalculated by Monte Carlo using leaf sequences and MUs for individual plans of every patient, Matrixx and Delta4 phantom. All plans of Matrixx and Delta4 phantom were delivered and measured. The dose distribution of iso slice, dose profiles, gamma maps of every beam were used to evaluate the agreement. Dose-volume histograms were also compared. Results: The dose distribution of iso slice and dose profiles from Pinnacle calculation were in agreement with the Monte Carlo simulation, Matrixx and Delta4 measurement. A 95.2%/91.3% gamma pass ratio was obtained between the Matrixx/Delta4 measurement and Pinnacle distributions within 3mm/3% gamma criteria. A 96.4%/95.6% gamma pass ratio was obtained between the Matrixx/Delta4 measurement and Monte Carlo simulation within 2mm/2% gamma criteria, almost 100% gamma pass ratio within 3mm/3% gamma criteria. The DVH plot have slightly differences between Pinnacle and Delta4 measurement as well as Pinnacle and Monte Carlo simulation, but have excellent agreement between Delta4 measurement and Monte Carlo simulation. Conclusion: It was shown that Matrixx/Delta4 and Monte Carlo simulation can be used very efficiently to verify cervical IMRT delivery. In terms of Gamma value the pass ratio of Matrixx was little higher, however, Delta4 showed more problem fields. The primary advantage of Delta4 is the fact it can measure true 3D dosimetry while Monte Carlo can simulate in patients CT images but not in phantom.
Fukuyoshi, Shuichi; Kometani, Masaharu; Watanabe, Yurie; Hiratsuka, Masahiro; Yamaotsu, Noriyuki; Hirono, Shuichi; Manabe, Noriyoshi; Takahashi, Ohgi; Oda, Akifumi
2016-01-01
Many natural mutants of the drug metabolizing enzyme cytochrome P450 (CYP) 2D6 have been reported. Because the enzymatic activities of many mutants are different from that of the wild type, the genetic polymorphism of CYP2D6 plays an important role in drug metabolism. In this study, the molecular dynamics simulations of the wild type and mutants of CYP2D6, CYP2D6.1, 2, 10, 14A, 51, and 62 were performed, and the predictions of static and dynamic structures within them were conducted. In the mutant CYP2D6.10, 14A, and 61, dynamic properties of the F-G loop, which is one of the components of the active site access channel of CYP2D6, were different from that of the wild type. The F-G loop acted as the "hatch" of the channel, which was closed in those mutants. The structure of CYP2D6.51 was not converged by the simulation, which indicated that the three-dimensional structure of CYP2D6.51 was largely different from that of the wild type. In addition, the intramolecular interaction network of CYP2D6.10, 14A, and 61 was different from that of the wild type, and it is considered that these structural changes are the reason for the decrease or loss of enzymatic activities. On the other hand, the static and dynamic properties of CYP2D6.2, whose activity was normal, were not considerably different from those of the wild type.
Watanabe, Yurie; Hiratsuka, Masahiro; Yamaotsu, Noriyuki; Hirono, Shuichi; Manabe, Noriyoshi; Takahashi, Ohgi; Oda, Akifumi
2016-01-01
Many natural mutants of the drug metabolizing enzyme cytochrome P450 (CYP) 2D6 have been reported. Because the enzymatic activities of many mutants are different from that of the wild type, the genetic polymorphism of CYP2D6 plays an important role in drug metabolism. In this study, the molecular dynamics simulations of the wild type and mutants of CYP2D6, CYP2D6.1, 2, 10, 14A, 51, and 62 were performed, and the predictions of static and dynamic structures within them were conducted. In the mutant CYP2D6.10, 14A, and 61, dynamic properties of the F-G loop, which is one of the components of the active site access channel of CYP2D6, were different from that of the wild type. The F-G loop acted as the “hatch” of the channel, which was closed in those mutants. The structure of CYP2D6.51 was not converged by the simulation, which indicated that the three-dimensional structure of CYP2D6.51 was largely different from that of the wild type. In addition, the intramolecular interaction network of CYP2D6.10, 14A, and 61 was different from that of the wild type, and it is considered that these structural changes are the reason for the decrease or loss of enzymatic activities. On the other hand, the static and dynamic properties of CYP2D6.2, whose activity was normal, were not considerably different from those of the wild type. PMID:27046024
NASA Astrophysics Data System (ADS)
Martelloni, Gianluca; Bagnoli, Franco; Di Cintio, Pierfrancesco
2015-04-01
We integrate existing soil infiltration modeling with particle based methods in order to simulate two and three-dimensional setups of triggered landslides. Commonly, the infiltration models are based on continuum schemes (e.g. Eulerian approach) by means of which it is possible to define the field of the pore pressure within a soil. By contrast, the particle based methods follow a Lagrangian scheme that allows one to identify the particle trajectories and their dynamical properties. In this work, in order to simulate the triggering mechanism, we apply the classical, fractal and fractional Richards equations and the Mohr-Coulomb failure criterion, adapted to the molecular dynamics technique. In our scheme the (local) positive pore pressure is simply implemented as a perturbation of the rest state of each grain. Therefore, the pore pressure function can be interpreted as a time-space dependent scalar field acting on each particle. To initialize the system we generate, using a molecular dynamics based algorithm, a mechanically stable disk (2D) or sphere (3D) packing simulating the consolidated soil. In this way, we can built the micro and macro pore structure related to different infiltration time scales. The inter-particle interactions are modeled with a Lennard-Jones like potential. The particle positions are updated in time, after and during a rainfall, with standard molecular dynamics. We analyze the sensitivity of the model with respect to the variation of some parameters such as hydraulic conductivity, cohesion, slope and friction angle, soil depth and fractional order of the generalized infiltration model. In addition, we consider both regular and random particle configurations. The results of our simulations are found to be in agreement with real landslides. In particular, the mean velocity patterns of the simulated landslides appear extremely similar to the observed ones. Moreover, it is possible to apply the method of the inverse surface displacement
Benchmarking computational fluid dynamics models for lava flow simulation
NASA Astrophysics Data System (ADS)
Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi
2016-04-01
Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, and COMSOL. Using the new benchmark scenarios defined in Cordonnier et al. (Geol Soc SP, 2015) as a guide, we model viscous, cooling, and solidifying flows over horizontal and sloping surfaces, topographic obstacles, and digital elevation models of natural topography. We compare model results to analytical theory, analogue and molten basalt experiments, and measurements from natural lava flows. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We can apply these models to reconstruct past lava flows in Hawai'i and Saudi Arabia using parameters assembled from morphology, textural analysis, and eruption observations as natural test cases. Our study highlights the strengths and weaknesses of each code, including accuracy and computational costs, and provides insights regarding code selection.
Fluid Flow Simulation and Energetic Analysis of Anomalocarididae Locomotion
NASA Astrophysics Data System (ADS)
Mikel-Stites, Maxwell; Staples, Anne
2014-11-01
While an abundance of animal locomotion simulations have been performed modeling the motions of living arthropods and aquatic animals, little quantitative simulation and reconstruction of gait parameters has been done to model the locomotion of extinct animals, many of which bear little physical resemblance to their modern descendants. To that end, this project seeks to analyze potential swimming patterns used by the anomalocaridid family, (specifically Anomalocaris canadensis, a Cambrian Era aquatic predator), and determine the most probable modes of movement. This will serve to either verify or cast into question the current assumed movement patterns and properties of these animals and create a bridge between similar flexible-bodied swimmers and their robotic counterparts. This will be accomplished by particle-based fluid flow simulations of the flow around the fins of the animal, as well as an energy analysis of a variety of sample gaits. The energy analysis will then be compared to the extant information regarding speed/energy use curves in an attempt to determine which modes of swimming were most energy efficient for a given range of speeds. These results will provide a better understanding of how these long-extinct animals moved, possibly allowing an improved understanding of their behavioral patterns, and may also lead to a novel potential platform for bio-inspired underwater autonomous vehicles (UAVs).
NASA Astrophysics Data System (ADS)
Hao, Yufei; Lu, Quanming; Lembege, Bertrand; Huang, Can; Wu, Mingyu; Guo, Fan; Shan, Lican; Zheng, Jian; Wang, Shui
2015-04-01
Experimental observations from space missions (including Cluster more recently) have clearly revealed the existence of high speed jets (HSJ) in the downstream region of the quasi-parallel terrestrial bow shock. Presently, two-dimensional (2-D) hybrid simulations are performed to reproduce and investigate the formation of such HSJ through a rippled quasi-parallel shock front. The simulation results show (i) that such shock fronts are strongly nonstationary (self reformation) along the shock normal, and (ii) that ripples are evidenced along the shock front as the upstream ULF waves (excited by interaction between incoming and reflected ions) are convected back to the front by the solar wind and contribute to the rippling formation. Then, these ripples are inherent structures of a quasi-parallel shock and the self reformation of the shock is not synchronous along the surface of the shock front. As a consequence, new incoming solar wind ions interact differently at different locations along the shock surface, and some can be only deflected (instead of being decelerated) at locations where ripples are large enough to play the role of local « secondary » shock. Therefore, the ion bulk velocity is also different locally after ions are transmitted dowstream, and local high-speed jets patterns are formed somewhere downstream. After a short reminder of main quasi-parallel shock features, this presentation will focus (i) on experimental observations of HSJ, (ii) on our preliminary simulation results obtained on HSJ, (iii) on their relationship with local bursty patterns of (turbulent) magnetic field evidenced at the front, and (iv) on the spatial and time scales of HSJ to be compared later on with experimental observations. Such downstream HSJ are shown to be generated by the nonstationary shock front itself and do not require any upstream perturbations (such as tangential/rotational discontinuity, HFA, etc..) to be convected by the solar wind and to interact with the shock
Gargett, Maegan Rosenfeld, Anatoly; Oborn, Brad; Metcalfe, Peter
2015-02-15
Purpose: MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named “magic plate,” for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. Methods: GEANT4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-line and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm{sup 3}) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm{sup 2} area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm{sup 2} photon field size. Results: The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. Conclusions: A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI
NASA Astrophysics Data System (ADS)
Leterme, Bertrand; Beerten, Koen
2013-04-01
Climate, soils and vegetation are known to exert strong controls on the water balance in a given area. The role of geomorphological processes, however, is generally overlooked in hydrological studies. In this study, the impact of landscape evolution, including geomorphological processes, is being assessed using HYDRUS 2-D simulations. A realistic sequence of consecutive landscape development stages during the last millennium in the Campine area was taken to investigate the potential role of changing landscapes on the water balance. The sequence is based on a detailed landscape reconstruction of a small interfluve in the Nete basin (Campine area, northern Belgium), following a study of sediment-soil profiles using classical geomorphological techniques, optically stimulated luminescence dating, palynology and historical archives. At least four distinctive phases in the topography-soil-vegetation system have been identified: around ca. 1000 a BP, 500 a BP, 250 a BP and 150 a BP. The sequence is characterised by progressive destruction of the soil catena (podzol profile) and vegetation, and an overall increase in relief intensity due to heavy use of land, until the landscape became stabilized ca. 150 a BP. In parallel, soil hydraulic properties were measured and used for parameterization of the HYDRUS simulations. For each stage of the sequence, a two-dimensional landscape was drawn in HYDRUS-2D using the reconstructed information on vegetation, topography, soil horizons and soil hydraulic properties. The impact of changes in this geomorphological system on water balance was then evaluated by applying a 30-year time series of climate observations. Using the same recent climate data for the different stages allows to focus on the effect of geomorphological and land use changes on evapotranspiration, runoff and groundwater recharge. In general, the results show that soil development and/or erosion alone would have had only very limited impact on the water balance during
GEOSIM: A numerical model for geophysical fluid flow simulation
NASA Technical Reports Server (NTRS)
Butler, Karen A.; Miller, Timothy L.; Lu, Huei-Iin
1991-01-01
A numerical model which simulates geophysical fluid flow in a wide range of problems is described in detail, and comparisons of some of the model's results are made with previous experimental and numerical studies. The model is based upon the Boussinesq Navier-Stokes equations in spherical coordinates, which can be reduced to a cylindrical system when latitudinal walls are used near the pole and the ratio of latitudinal length to the radius of the sphere is small. The equations are approximated by finite differences in the meridional plane and spectral decomposition in the azimuthal direction. The user can specify a variety of boundary and initial conditions, and there are five different spectral truncation options. The results of five validation cases are presented: (1) the transition between axisymmetric flow and baroclinic wave flow in the side heated annulus; (2) the steady baroclinic wave of the side heated annulus; (3) the wave amplitude vacillation of the side heated annulus; (4) transition to baroclinic wave flow in a bottom heated annulus; and (5) the Spacelab Geophysical Fluid Flow Cell (spherical) experiment.
Phase portrait methods for verifying fluid dynamic simulations
Stewart, H.B.
1989-01-01
As computing resources become more powerful and accessible, engineers more frequently face the difficult and challenging engineering problem of accurately simulating nonlinear dynamic phenomena. Although mathematical models are usually available, in the form of initial value problems for differential equations, the behavior of the solutions of nonlinear models is often poorly understood. A notable example is fluid dynamics: while the Navier-Stokes equations are believed to correctly describe turbulent flow, no exact mathematical solution of these equations in the turbulent regime is known. Differential equations can of course be solved numerically, but how are we to assess numerical solutions of complex phenomena without some understanding of the mathematical problem and its solutions to guide us
MOLECULAR SIMULATION OF PHASE EQUILIBRIA FOR COMPLEX FLUIDS
Athanassios Z. Panagiotopoulos
2009-09-09
The general area of this project was the development and application of novel molecular simulation methods for prediction of thermodynamic and structural properties of complex polymeric, surfactant and ionic fluids. Over this project period, we have made considerable progress in developing novel algorithms to meet the computational challenges presented by the strong or long-range interactions in these systems and have generated data for well-defined mod-els that can be used to test theories and compare to experimental data. Overall, 42 archival papers and many invited and contributed presentations and lectures have been based on work supported by this project. 6 PhD, 1 M.S. and 2 postdoctoral students have been associated with this work, as listed in the body of the report.
Chemical vapor deposition fluid flow simulation modelling tool
NASA Technical Reports Server (NTRS)
Bullister, Edward T.
1992-01-01
Accurate numerical simulation of chemical vapor deposition (CVD) processes requires a general purpose computational fluid dynamics package combined with specialized capabilities for high temperature chemistry. In this report, we describe the implementation of these specialized capabilities in the spectral element code NEKTON. The thermal expansion of the gases involved is shown to be accurately approximated by the low Mach number perturbation expansion of the incompressible Navier-Stokes equations. The radiative heat transfer between multiple interacting radiating surfaces is shown to be tractable using the method of Gebhart. The disparate rates of reaction and diffusion in CVD processes are calculated via a point-implicit time integration scheme. We demonstrate the use above capabilities on prototypical CVD applications.
Molecular simulations of supercritical fluid permeation through disordered microporous carbons.
Boţan, Alexandru; Vermorel, Romain; Ulm, Franz-Josef; Pellenq, Roland J-M
2013-08-13
Fluid transport through microporous carbon-based materials is inherent in numerous applications, ranging from gas separation by carbon molecular sieves to natural gas production from coal seams and gas shales. The present study investigates the steady-state permeation of supercritical methane in response to a constant cross-membrane pressure drop. We performed dual control volume grand canonical molecular dynamics (DCV-GCMD) simulations to mimic the conditions of actual permeation experiments. To overcome arbitrary assumptions regarding the investigated porous structures, the membranes were modeled after the CS1000a and CS1000 molecular models, which are representative of real microporous carbon materials. When adsorption-induced molecular trapping (AIMT) mechanisms are negligible, we show that the permeability of the microporous material, although not significantly sensitive to the pressure gradient, monotonically decreases with temperature and reservoir pressures, consistent with diffusion theory. However, when AIMT occurs, the permeability increases with temperature in agreement with experimental data found in the literature. PMID:23886335
Theory and Fluid Simulations of Boundary Plasma Fluctuations
Cohen, R H; LaBombard, B; LoDestro, L L; Rognlien, T D; Ryutov, D D; Terry, J L; Umansky, M V; Xu, X Q; Zweben, S
2007-01-09
Theoretical and computational investigations are presented of boundary plasma microturbulence that take into account important effects of the geometry of diverted tokamaks--in particular, the effect of x-point magnetic shear and the termination of field lines on divertor plates. We first generalize our previous 'heuristic boundary condition' which describes, in a lumped model, the closure of currents in the vicinity of the x-point region to encompass three current-closure mechanisms. We then use this boundary condition to derive the dispersion relation for low-beta flute-like modes in the divertor-leg region under the combined drives of curvature, sheath impedance, and divertor tilt effects. The results indicate the possibility of strongly growing instabilities, driven by sheath boundary conditions, and localized in either the private or common flux region of the divertor leg depending on the radial tilt of divertor plates. We re-visit the issue of x-point effects on blobs, examining the transition from blobs terminated by x-point shear to blobs that extend over both the main SOL and divertor legs. We find that, for a main-SOL blob, this transition occurs without a free-acceleration period as previously thought, with x-point termination conditions applying until the blob has expanded to reach the divertor plate. We also derive propagation speeds for divertor-leg blobs. Finally, we present fluid simulations of the C-Mod tokamak from the BOUT edge fluid turbulence code, which show main-SOL blob structures with similar spatial characteristics to those observed in the experiment, and also simulations which illustrate the possibility of fluctuations confined to divertor legs.
NASA Astrophysics Data System (ADS)
Prins, Steven L.; Blatchford, James; Olubuyide, Oluwamuyiwa; Riley, Deborah; Chang, Simon; Hong, Qi-Zhong; Kim, T. S.; Borges, Ricardo; Lin, Li
2009-03-01
As design rules and corresponding logic standard cell layouts continue to shrink node-on-node in accordance with Moore's law, complex 2D interactions, both intra-cell and between cells, become much more prominent. For example, in lithography, lack of scaling of λ/NA implies aggressive use of resolution enhancement techniques to meet logic scaling requirements-resulting in adverse effects such as 'forbidden pitches'-and also implies an increasing range of optical influence relative to cell size. These adverse effects are therefore expected to extend well beyond the cell boundary, leading to lithographic marginalities that occur only when a given cell is placed "in context" with other neighboring cells in a variable design environment [1]. This context dependence is greatly exacerbated by increased use of strain engineering techniques such as SiGe and dual-stress liners (DSL) to enhance transistor performance, both of which also have interaction lengths on the order of microns. The use of these techniques also breaks the formerly straightforward connection between lithographic 'shapes' and end-of-line electrical performance, thus making the formulation of design rules that are robust to process variations and complex 2D interactions more difficult. To address these issues, we have developed a first-principles-based simulation flow to study contextdependent electrical effects in layout, arising not only from lithography, but also from stress and interconnect parasitic effects. This flow is novel in that it can be applied to relatively large layout clips- required for context-dependent analysis-without relying on semi-empirical or 'black-box' models for the fundamental electrical effects. The first-principles-based approach is ideal for understanding contextdependent effects early in the design phase, so that they can be mitigated through restrictive design rules. The lithographic simulations have been discussed elsewhere [1] and will not be presented in detail. The
Su, Kuo-Chih; Chuang, Shu-Fen; Ng, Eddie Yin-Kwee; Chang, Chih-Han
2014-06-01
This study uses fluid-structure interaction (FSI) simulation to investigate the relationship between the dentinal fluid flow in the dental pulp of a tooth and the elastic modulus of masticated food particles and to investigate the effects of chewing rate on fluid flow in the dental pulp. Three-dimensional simulation models of a premolar tooth (enamel, dentine, pulp, periodontal ligament, cortical bone, and cancellous bone) and food particle were created. Food particles with elastic modulus of 2,000 and 10,000 MPa were used, respectively. The external displacement loading (5 μm) was gradually directed to the food particle surface for 1 and 0.1 s, respectively, to simulate the chewing of food particles. The displacement and stress on tooth structure and fluid flow in the dental pulp were selected as evaluation indices. The results show that masticating food with a high elastic modulus results in high stress and deformation in the tooth structure, causing faster dentinal fluid flow in the pulp in comparison with that obtained with soft food. In addition, fast chewing of hard food particles can induce faster fluid flow in the pulp, which may result in dental pain. FSI analysis is shown to be a useful tool for investigating dental biomechanics during food mastication. FSI simulation can be used to predict intrapulpal fluid flow in dental pulp; this information may provide the clinician with important concept in dental biomechanics during food mastication.
Simulation of Fluid Flow and Collection Efficiency for an SEA Multi-element Probe
NASA Technical Reports Server (NTRS)
Rigby, David L.; Struk, Peter M.; Bidwell, Colin
2014-01-01
Numerical simulations of fluid flow and collection efficiency for a Science Engineering Associates (SEA) multi-element probe are presented. Simulation of the flow field was produced using the Glenn-HT Navier-Stokes solver. Three dimensional unsteady results were produced and then time averaged for the collection efficiency results. Three grid densities were investigated to enable an assessment of grid dependence. Collection efficiencies were generated for three spherical particle sizes, 100, 20, and 5 micron in diameter, using the codes LEWICE3D and LEWICE2D. The free stream Mach number was 0.27, representing a velocity of approximately 86 ms. It was observed that a reduction in velocity of about 15-20 occurred as the flow entered the shroud of the probe.Collection efficiency results indicate a reduction in collection efficiency as particle size is reduced. The reduction with particle size is expected, however, the results tended to be lower than previous results generated for isolated two-dimensional elements. The deviation from the two-dimensional results is more pronounced for the smaller particles and is likely due to the effect of the protective shroud.
Bavo, Alessandra M; Rocatello, Giorgia; Iannaccone, Francesco; Degroote, Joris; Vierendeels, Jan; Segers, Patrick
2016-01-01
In recent years the role of FSI (fluid-structure interaction) simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian) or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations' outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results.
NASA Astrophysics Data System (ADS)
Babbick, M.; Dijkstra, C.; Larkin, O. J.; Anthony, P.; Davey, M. R.; Power, J. B.; Lowe, K. C.; Cogoli-Greuter, M.; Hampp, R.
Gravity is an important environmental factor that controls plant growth and development. Studies have shown that the perception of gravity is not only a property of specialized cells, but can also be performed by undifferentiated cultured cells. In this investigation, callus of Arabidopsis thaliana cv. Columbia was used to investigate the initial steps of gravity-related signalling cascades, through altered expression of transcription factors (TFs). TFs are families of small proteins that regulate gene expression by binding to specific promoter sequences. Based on microarray studies, members of the gene families WRKY, MADS-box, MYB, and AP2/EREBP were selected for investigation, as well as members of signalling chains, namely IAA 19 and phosphoinositol-4-kinase. Using qRT-PCR, transcripts were quantified within a period of 30 min in response to hypergravity (8 g), clinorotation [2-D clinostat and 3-D random positioning machine (RPM)] and magnetic levitation (ML). The data indicated that (1) changes in gravity induced stress-related signalling, and (2) exposure in the RPM induced changes in gene expression which resemble those of magnetic levitation. Two dimensional clinorotation resulted in responses similar to those caused by hypergravity. It is suggested that RPM and ML are preferable to simulate microgravity than clinorotation.
NASA Astrophysics Data System (ADS)
Zhao, Yi; Fu, Ceji
2016-10-01
Tailoring the spectrum of thermal emission from the emitter is important for improving the performance of a thermophotovoltaic (TPV) system. In this work, a two-dimensional (2D) layered grating structure made of SiO2 and tungsten (W), which can realize wavelength-selective control of thermal emission, was proposed for a potential emitter in TPV applications. Numerical simulations of the spectral emissivity of the structure from the ultraviolet (UV) to the mid-infrared region reveals that the spectral-normal emissivity of the structure is enhanced to above 0.95 in the wavelength region from 0.55 μm to 1.9 μm for both TE and TM waves, but drops sharply at wavelength larger than 2 μm. Physical mechanisms responsible for the wavelength-selective emissivity were elucidated as due to resonance of magnetic polaritons (MPs) in the SiO2 spacer and in the grooves of the tungsten grating, Wood's anomaly (WA), excitation of surface plasmon polaritons (SPPs) and wave interference. Furthermore, the structure was found to exhibit quasi-diffuse and polarization-insensitive features of thermal emission, suggesting that the proposed structure can serve as the emitter in the design of high performance TPV systems.
NASA Astrophysics Data System (ADS)
Rockwood, Matthew; Green, Melissa
2012-11-01
In experimental, three-dimensional vortex-dominated flows, common particle image velocimetry (PIV) data is often collected in only the plane of interest due to equipment constraints. For flows with significant out of plane velocities or velocity gradients, this can create large discrepancies in Lagrangian analyses that require accurate particle trajectories. A Finite Time Lyapunov Exponent (FTLE) analysis is one such example, and has been shown to be very powerful at examining vortex dynamics and interactions in a variety of aperiodic flows. In this work, FTLE analysis of a turbulent channel simulation was conducted using both full three-dimensional velocity data and modified planar data extracted from the same computational domain. When the out of plane velocity component is neglected the difference in FTLE fields is non-trivial. A quantitative comparison and computation of error is presented for several planes across the width of the channel to determine the efficacy of using 2D analyses on the inherently 3D flows.
Icarus: A 2D direct simulation Monte Carlo (DSMC) code for parallel computers. User`s manual - V.3.0
Bartel, T.; Plimpton, S.; Johannes, J.; Payne, J.
1996-10-01
Icarus is a 2D Direct Simulation Monte Carlo (DSMC) code which has been optimized for the parallel computing environment. The code is based on the DSMC method of Bird and models from free-molecular to continuum flowfields in either cartesian (x, y) or axisymmetric (z, r) coordinates. Computational particles, representing a given number of molecules or atoms, are tracked as they have collisions with other particles or surfaces. Multiple species, internal energy modes (rotation and vibration), chemistry, and ion transport are modelled. A new trace species methodology for collisions and chemistry is used to obtain statistics for small species concentrations. Gas phase chemistry is modelled using steric factors derived from Arrhenius reaction rates. Surface chemistry is modelled with surface reaction probabilities. The electron number density is either a fixed external generated field or determined using a local charge neutrality assumption. Ion chemistry is modelled with electron impact chemistry rates and charge exchange reactions. Coulomb collision cross-sections are used instead of Variable Hard Sphere values for ion-ion interactions. The electrostatic fields can either be externally input or internally generated using a Langmuir-Tonks model. The Icarus software package includes the grid generation, parallel processor decomposition, postprocessing, and restart software. The commercial graphics package, Tecplot, is used for graphics display. The majority of the software packages are written in standard Fortran.
NASA Astrophysics Data System (ADS)
Tirupathi, S.; Schiemenz, A. R.; Liang, Y.; Parmentier, E.; Hesthaven, J.
2013-12-01
The style and mode of melt migration in the mantle are important to the interpretation of basalts erupted on the surface. Both grain-scale diffuse porous flow and channelized melt migration have been proposed. To better understand the mechanisms and consequences of melt migration in a heterogeneous mantle, we have undertaken a numerical study of reactive dissolution in an upwelling and viscously deformable mantle where solubility of pyroxene increases upwards. Our setup is similar to that described in [1], except we use a larger domain size in 2D and 3D and a new numerical method. To enable efficient simulations in 3D through parallel computing, we developed a high-order accurate numerical method for the magma dynamics problem using discontinuous Galerkin methods and constructed the problem using the numerical library deal.II [2]. Linear stability analyses of the reactive dissolution problem reveal three dynamically distinct regimes [3] and the simulations reported in this study were run in the stable regime and the unstable wave regime where small perturbations in porosity grows periodically. The wave regime is more relevant to melt migration beneath the mid-ocean ridges but computationally more challenging. Extending the 2D simulations in the stable regime in [1] to 3D using various combinations of sustained perturbations in porosity at the base of the upwelling column (which may result from a viened mantle), we show the geometry and distribution of dunite channel and high-porosity melt channels are highly correlated with inflow perturbation through superposition. Strong nonlinear interactions among compaction, dissolution, and upwelling give rise to porosity waves and high-porosity melt channels in the wave regime. These compaction-dissolution waves have well organized but time-dependent structures in the lower part of the simulation domain. High-porosity melt channels nucleate along nodal lines of the porosity waves, growing downwards. The wavelength scales
Computational Fluid Dynamic simulations of pipe elbow flow.
Homicz, Gregory Francis
2004-08-01
One problem facing today's nuclear power industry is flow-accelerated corrosion and erosion in pipe elbows. The Korean Atomic Energy Research Institute (KAERI) is performing experiments in their Flow-Accelerated Corrosion (FAC) test loop to better characterize these phenomena, and develop advanced sensor technologies for the condition monitoring of critical elbows on a continuous basis. In parallel with these experiments, Sandia National Laboratories is performing Computational Fluid Dynamic (CFD) simulations of the flow in one elbow of the FAC test loop. The simulations are being performed using the FLUENT commercial software developed and marketed by Fluent, Inc. The model geometry and mesh were created using the GAMBIT software, also from Fluent, Inc. This report documents the results of the simulations that have been made to date; baseline results employing the RNG k-e turbulence model are presented. The predicted value for the diametrical pressure coefficient is in reasonably good agreement with published correlations. Plots of the velocities, pressure field, wall shear stress, and turbulent kinetic energy adjacent to the wall are shown within the elbow section. Somewhat to our surprise, these indicate that the maximum values of both wall shear stress and turbulent kinetic energy occur near the elbow entrance, on the inner radius of the bend. Additional simulations were performed for the same conditions, but with the RNG k-e model replaced by either the standard k-{var_epsilon}, or the realizable k-{var_epsilon} turbulence model. The predictions using the standard k-{var_epsilon} model are quite similar to those obtained in the baseline simulation. However, with the realizable k-{var_epsilon} model, more significant differences are evident. The maximums in both wall shear stress and turbulent kinetic energy now appear on the outer radius, near the elbow exit, and are {approx}11% and 14% greater, respectively, than those predicted in the baseline calculation
Textbook Multigrid Efficiency for Computational Fluid Dynamics Simulations
NASA Technical Reports Server (NTRS)
Brandt, Achi; Thomas, James L.; Diskin, Boris
2001-01-01
Considerable progress over the past thirty years has been made in the development of large-scale computational fluid dynamics (CFD) solvers for the Euler and Navier-Stokes equations. Computations are used routinely to design the cruise shapes of transport aircraft through complex-geometry simulations involving the solution of 25-100 million equations; in this arena the number of wind-tunnel tests for a new design has been substantially reduced. However, simulations of the entire flight envelope of the vehicle, including maximum lift, buffet onset, flutter, and control effectiveness have not been as successful in eliminating the reliance on wind-tunnel testing. These simulations involve unsteady flows with more separation and stronger shock waves than at cruise. The main reasons limiting further inroads of CFD into the design process are: (1) the reliability of turbulence models; and (2) the time and expense of the numerical simulation. Because of the prohibitive resolution requirements of direct simulations at high Reynolds numbers, transition and turbulence modeling is expected to remain an issue for the near term. The focus of this paper addresses the latter problem by attempting to attain optimal efficiencies in solving the governing equations. Typically current CFD codes based on the use of multigrid acceleration techniques and multistage Runge-Kutta time-stepping schemes are able to converge lift and drag values for cruise configurations within approximately 1000 residual evaluations. An optimally convergent method is defined as having textbook multigrid efficiency (TME), meaning the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in the discretized system of equations (residual equations). In this paper, a distributed relaxation approach to achieving TME for Reynolds-averaged Navier-Stokes (RNAS) equations are discussed along with the foundations that form the
Multiphase fluid simulation tools for winning remediation solutions
Deschaine, L.M.
1997-07-01
Releases of petroleum product such as gasoline and diesel fuels from normal operating practices to aquifers are common. The costs to remediate these releases can run in the billions of dollars. Solutions to remediate these releases usually consist of some form of multiphase (air, water, oil) fluid movement, whether it be a multiphase high vacuum extraction system, bioslurping, groundwater pump and treat system, an air sparging system, a soil vapor extraction system, a free product recovery system, bioremediation or the like. The software being tested in Test Drive, Multiphase Organic Vacuum Enhanced Recovery Simulator (MOVER) is a computer simulation tool that will give the practitioner the ability to design high vacuum enhanced multiple phase recovery systems and bioslurping systems, which are often the low cost effective remediation approach. It will also allow for the comparison of various proposed remediation approaches and technologies so the best solution can be chosen for a site. This is a key competitive advantage to translate conceptual ideas into winning bids.
Large-eddy simulation of supercritical fluid flow and combustion
NASA Astrophysics Data System (ADS)
Huo, Hongfa
The present study focuses on the modeling and simulation of injection, mixing, and combustion of real fluids at supercritical conditions. The objectives of the study are: (1) to establish a unified theoretical framework that can be used to study the turbulent combustion of real fluids; (2) to implement the theoretical framework and conduct numerical studies with the aim of improving the understanding of the flow and combustion dynamics at conditions representative of contemporary liquid-propellant rocket engine operation; (3) to identify the key design parameters and the flow variables which dictate the dynamics characteristics of swirl- and shear- coaxial injectors. The theoretical and numerical framework is validated by simulating the Sandia Flame D. The calculated axial and radial profiles of velocity, temperature, and mass fractions of major species are in reasonably good agreement with the experimental measurements. The conditionally averaged mass fraction profiles agree very well with the experimental results at different axial locations. The validated model is first employed to examine the flow dynamics of liquid oxygen in a pressure swirl injector at supercritical conditions. Emphasis is placed on analyzing the effects of external excitations on the dynamic response of the injector. The high-frequency fluctuations do not significantly affect the flow field as they are dissipated shortly after being introduced into the flow. However, the lower-frequency fluctuations are amplified by the flow. As a result, the film thickness and the spreading angle at the nozzle exit fluctuate strongly for low-frequency external excitations. The combustion of gaseous oxygen/gaseous hydrogen in a high-pressure combustion chamber for a shear coaxial injector is simulated to assess the accuracy and the credibility of the computer program when applied to a sub-scale model of a combustor. The predicted heat flux profile is compared with the experimental and numerical studies. The
Dissolution of metal tritides in a simulated lung fluid
Cheng, Yung-Sung; Dahl, A.R.; Jow, Hong Nian
1997-10-01
Metal tritides including titanium tritide (Ti {sup 3}H{sub x}) and erbium tritide (Er {sup 3}H{sub x}) have been used as components of neutron generators. The current understanding of metal tritides and their radiation dosimetry for internal exposure is very limited, and the ICRP Publication 30 does not provide for tritium dosimetry in metal tritide form. However, a few papers in the literature suggest that the solubility of metal tritides could be low. The current radiation protection guidelines for metal tritide particles are based on the assumption that their biological behavior is similar to tritiated water, which could be easily absorbed into body fluid. Therefore, these particles could have relatively short biological half-lives (10 d). If the solubility is low, the biological half-life of metal tritide particles and the dosimetry of an inhalation exposure to these particles could be quite different from tritiated water. This paper describes experiments on the dissolution rate of titanium tritide particles in a simulated lung fluid. Titanium tritide particles with mean sizes of 103 {mu}m (coarse) and 0.95 {mu}m (fine) were used. The results showed that the coarse particles dissolved much more slowly than the fine particles. The long-term dissolution half times were 361 and 33 d for the coarse and fine particles, respectively. Dissolution data of the fine particles were consistent with the diffusion theory. The dissolution half times were longer than the 10-d biological half time for tritiated water in the body. This finding has significant implications for the current health protection guidelines, including annual limits of intakes and derived air concentrations.
Dissolution of metal tritides in a simulated lung fluid.
Cheng, Y S; Dahl, A R; Jow, H N
1997-10-01
Metal tritides including titanium tritide (Ti 3Hx) and erbium tritide (Er 3Hx) have been used as components of neutron generators. The current understanding of metal tritides and their radiation dosimetry for internal exposure is very limited, and the ICRP Publication 30 does not provide for tritium dosimetry in metal tritide form. However, a few papers in the literature suggest that the solubility of metal tritides could be low. The current radiation protection guidelines for metal tritide particles are based on the assumption that their biological behavior is similar to tritiated water, which could be easily absorbed into body fluid. Therefore, these particles could have relatively short biological half-lives (10 d). If the solubility is low, the biological half-life of metal tritide particles and the dosimetry of an inhalation exposure to these particles could be quite different from tritiated water. This paper describes experiments on the dissolution rate of titanium tritide particles in a simulated lung fluid. Titanium tritide particles with mean sizes of 103 microm (coarse) and 0.95 microm (fine) were used. The results showed that the coarse particles dissolved much more slowly than the fine particles. The long-term dissolution half times were 361 and 33 d for the coarse and fine particles, respectively. Dissolution data of the fine particles were consistent with the diffusion theory. The dissolution half times were longer than the 10-d biological half time for tritiated water in the body. This finding has significant implications for the current health protection guidelines, including annual limits of intakes and derived air concentrations. PMID:9314223
Iannaccone, Francesco; Degroote, Joris; Vierendeels, Jan; Segers, Patrick
2016-01-01
In recent years the role of FSI (fluid-structure interaction) simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian) or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations’ outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results. PMID:27128798
Vascular growth and remodeling coupled with fluid simulation in patient specific geometry
NASA Astrophysics Data System (ADS)
Wu, Jiacheng; Shadden, Shawn C.
2014-11-01
In this talk, we propose a computational framework to couple vascular growth and remodeling (G&R) with fluid simulation in 3D patient specific geometry. Hyperelastic and anisotropic properties are considered for the vessel wall material. A constrained mixture model is used to represent multiple constituents in the vessel wall. The coupled simulation is divided into two time scales, the longer time scale for G&R and the shorter time scale for fluid dynamics simulation. G&R is simulated to determine the boundary of the fluid domain, the fluid simulation in turn generates wall shear stress and transmural pressure data that regulates G&R. To minimize required computation cost, fluid is only simulated when G&R causes significant vascular geometric change. This coupled model can be used to study the influence of the stress-mediated law parameters on the stability of the vascular tissue growth, and predict progression of vascular diseases such as aneurysm expansion.
Numerical Simulation of non-Newtonian Fluid Flows through Fracture Network
NASA Astrophysics Data System (ADS)
Dharmawan, I. A.; Ulhag, R. Z.; Endyana, C.; Aufaristama, M.
2016-01-01
We present a numerical simulation of non-Newtonian fluid flow in a twodimensional fracture network. The fracture is having constant mean aperture and bounded with Hurst exponent surfaces. The non-Newtonian rheology behaviour of the fluid is described using the Power-Law model. The lattice Boltzmann method is employed to calculate the solutions for non-Newtonian flow in finite Reynolds number. We use a constant force to drive the fluid within the fracture, while the bounceback rules and periodic boundary conditions are applied for the fluid-solid interaction and inflow outlflow boundary conditions, respectively. The validation study of the simulation is done via parallel plate flow simulation and the results demonstrated good agreement with the analytical solution. In addition, the fluid flow properties within the fracture network follow the relationships of power law fluid while the errors are becoming larger if the fluid more shear thinning.
The Fluid-Kinetic Particle-in-Cell method for plasma simulations
NASA Astrophysics Data System (ADS)
Markidis, Stefano; Henri, Pierre; Lapenta, Giovanni; Rönnmark, Kjell; Hamrin, Maria; Meliani, Zakaria; Laure, Erwin
2014-08-01
A method that solves concurrently the multi-fluid and Maxwell's equations has been developed for plasma simulations. By calculating the stress tensor in the multi-fluid momentum equation by means of computational particles moving in a self-consistent electromagnetic field, the kinetic effects are retained while solving the multi-fluid equations. The Maxwell's and multi-fluid equations are discretized implicitly in time enabling kinetic simulations over time scales typical of the fluid simulations. The Fluid-Kinetic Particle-in-Cell method has been implemented in a three-dimensional electromagnetic code, and tested against the two-stream instability, the Weibel instability, the ion cyclotron resonance and magnetic reconnection problems. The method is a promising approach for coupling fluid and kinetic methods in a unified framework.
NASA Technical Reports Server (NTRS)
Tao, W-K.
2003-01-01
Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D). A few 3D CRMs have been used to study the response of clouds to large-scale forcing. In these 3D simulations, the model domain was small, and the integration time was 6 hours. Only recently have 3D experiments been performed for multi-day periods for tropical cloud systems with large horizontal domains at the National Center for Atmospheric Research (NACAR) and at NASA Goddard Space Flight Center . At Goddard, a 3D Goddard Cumulus Ensemble (GCE) model was used to simulate periods during TOGA COARE, SCSMEX and KWAJEX using 512 by 512 km domain (with 2 km resolution). The results indicate that surface precipitation and latent heating profiles are very similar between the 2D and 3D GCE model simulations. The reason for the strong similarity between the 2D and 3D CRM simulations is that the same observed large-scale advective tendencies of potential temperature, water vapor mixing ratio, and horizontal momentum were used as the main focusing in both the 2D and 3D models. Interestingly, the 2D and 3D versions of the CRM used at CSU showed significant differences in the rainfall and cloud statistics for three ARM cases. The major objectives of this paper are: (1) to assess the performance of the super-parameterization technique, (2) calculate and examine the surface energy (especially radiation) and water budgets, and (3) identify the differences and similarities in the organization and entrainment rates of convection between simulated 2D and 3D cloud systems.
NASA Astrophysics Data System (ADS)
Biswas, A.; Sharma, S. P.
2012-12-01
best result without any ambiguity and smaller uncertainty. Keywords: SP anomaly, inclined sheet, 2D structure, forward problems, VFSA Optimization,
Becker, Kathrin; Stauber, Martin; Schwarz, Frank; Beißbarth, Tim
2015-09-01
We propose a novel 3D-2D registration approach for micro-computed tomography (μCT) and histology (HI), constructed for dental implant biopsies, that finds the position and normal vector of the oblique slice from μCT that corresponds to HI. During image pre-processing, the implants and the bone tissue are segmented using a combination of thresholding, morphological filters and component labeling. After this, chamfer matching is employed to register the implant edges and fine registration of the bone tissues is achieved using simulated annealing. The method was tested on n=10 biopsies, obtained at 20 weeks after non-submerged healing in the canine mandible. The specimens were scanned with μCT 100 and processed for hard tissue sectioning. After registration, we assessed the agreement of bone to implant contact (BIC) using automated and manual measurements. Statistical analysis was conducted to test the agreement of the BIC measurements in the registered samples. Registration was successful for all specimens and agreement of the respective binary images was high (median: 0.90, 1.-3. Qu.: 0.89-0.91). Direct comparison of BIC yielded that automated (median 0.82, 1.-3. Qu.: 0.75-0.85) and manual (median 0.61, 1.-3. Qu.: 0.52-0.67) measures from μCT were significant positively correlated with HI (median 0.65, 1.-3. Qu.: 0.59-0.72) between μCT and HI groups (manual: R(2)=0.87, automated: R(2)=0.75, p<0.001). The results show that this method yields promising results and that μCT may become a valid alternative to assess osseointegration in three dimensions.
NASA Technical Reports Server (NTRS)
Zimmerman, M. I.; Farrell, W. M.; Poppe, A. R.
2014-01-01
We present results from a new grid-free 2D plasma simulation code applied to a small, unmagnetized body immersed in the streaming solar wind plasma. The body was purposely modeled as an irregular shape in order to examine photoemission and solar wind plasma flow in high detail on the dayside, night-side, terminator and surface-depressed 'pocket' regions. Our objective is to examine the overall morphology of the various plasma interaction regions that form around a small body like a small near-Earth asteroid (NEA). We find that the object obstructs the solar wind flow and creates a trailing wake region downstream, which involves the interplay between surface charging and ambipolar plasma expansion. Photoemission is modeled as a steady outflow of electrons from illuminated portions of the surface, and under direct illumination the surface forms a non-monotonic or ''double-sheath'' electric potential upstream of the body, which is important for understanding trajectories and equilibria of lofted dust grains in the presence of a complex asteroid geometry. The largest electric fields are found at the terminators, where ambipolar plasma expansion in the body-sized night-side wake merges seamlessly with the thin photoelectric sheath on the dayside. The pocket regions are found to be especially complex, with nearby sunlit regions of positive potential electrically connected to unlit negative potentials and forming adjacent natural electric dipoles. For objects near the surface, we find electrical dissipation times (through collection of local environmental solar wind currents) that vary over at least 5 orders of magnitude: from 39 Micro(s) inside the near-surface photoelectron cloud under direct sunlight to less than 1 s inside the particle-depleted night-side wake and shadowed pocket regions
Development Of Simulation Model For Fluid Catalytic Cracking
NASA Astrophysics Data System (ADS)
Ghosh, Sobhan
2010-10-01
Fluid Catalytic Cracking (FCC) is the most widely used secondary conversion process in the refining industry, for producing gasoline, olefins, and middle distillate from heavier petroleum fractions. There are more than 500 units in the world with a total processing capacity of about 17 to 20% of the crude capacity. FCC catalyst is the highest consumed catalyst in the process industry. On one hand, FCC is quite flexible with respect to it's ability to process wide variety of crudes with a flexible product yield pattern, and on the other hand, the interdependence of the major operating parameters makes the process extremely complex. An operating unit is self balancing and some fluctuations in the independent parameters are automatically adjusted by changing the temperatures and flow rates at different sections. However, a good simulation model is very useful to the refiner to get the best out of the process, in terms of selection of the best catalyst, to cope up with the day to day changing of the feed quality and the demands of different products from FCC unit. In addition, a good model is of great help in designing the process units and peripherals. A simple empirical model is often adequate to monitor the day to day operations, but they are not of any use in handling the other problems such as, catalyst selection or, design / modification of the plant. For this, a kinetic based rigorous model is required. Considering the complexity of the process, large number of chemical species undergoing "n" number of parallel and consecutive reactions, it is virtually impossible to develop a simulation model based on the kinetic parameters. The most common approach is to settle for a semi empirical model. We shall take up the key issues for developing a FCC model and the contribution of such models in the optimum operation of the plant.
Laboratory simulations of tensile (hydro) fracture via cyclical fluid pressurisation
NASA Astrophysics Data System (ADS)
Benson, P. M.; Heap, M. J.; Lavallee, Y.; Flaws, A.; Hess, K.; Selvadurai, A. P.; Dingwell, D. B.
2011-12-01
During magma ascent, cracking and faulting of the host rock provide conduits for the movement of magmatic fluids. The spatial and temporal formation of such conduits, driven largely by pressurized magmas in the form of dykes, is of key importance in the volcano-tectonic system. In particular, it is known that both a fracture mechanical (brittle) mechanism (due to the propagating dyke tip) as well as a petrological mechanism (due to the elevated pressure-temperature environment), play roles in dyke propagation. As the use of elevated temperatures in the laboratory is technically challenging, early work has tended to concentrate either on analogue setups using gelatine and other materials that are fractured by injection of coloured water or - for simulation of representative pressures - a simplified experimental setup at modest (room) temperatures. Here, we overcome these difficulties by simulating magma intrusion in the laboratory through an experimental protocol that compresses a 'conduit' of magma encapsulated inside a hollow cylindrical shell. A well-controlled stress is then imposed onto the conduit which has the effect of transmitting this force onto the inner wall of the surrounding shell. Although we present our work with a view to investigating fluid driven tensile fracture applicable to high temperature processes, this general protocol may be used to analyse a wide range of processes whereby direct fluid pressure is used to fracture a host medium. To analyse the system, we make use of a number of well-known fracture mechanics methods allied to independently measured rheological parameters for the inner conduit to develop a model to explain (a) the stress relaxations, and (b) the peak stress measured at failure, as well as the observed interactions between the ductile inner conduit and brittle outer shell, interpreted as analogous to dykes driving though a volcanic edifice. We show that (a), the coupling of stress, strain and seismic data through time can be
Sub-timing in fluid flow and transport simulations
NASA Astrophysics Data System (ADS)
Murty Bhallamudi, S.; Panday, Sorab; Huyakorn, Peter S.
A sub-time stepping method is described for computational fluid dynamics problems that utilize implicit-type time marching procedures to resolve transients. In this method, small time-step sizes are used in portions of a domain where interest and activity is high, with larger time-step sizes being applied in other locations. The sub-time step is an integral portion of a larger time step--i.e., multiple sub-time steps over a sub-timed part of a domain add up to the time interval of the full time step used over the remainder of the domain. The technique is particularly suitable for extensive simulations where large portions of a domain are temporally over-discretized. The principles underlying implementation of the implicit sub-timing procedure, the computational effort in relation to conventional implicit time-stepping methods, and an analysis of the effects of sub-timing on the matrix structure are presented. Feasibility and applicability of the implicit sub-timing method is demonstrated through three proof-of-the-concept example problems. These examples include implementation of implicit sub-timing to one-dimensional as well as two-dimensional flow and solute transport problems.
Corrosion and tribocorrosion of hafnium in simulated body fluids.
Rituerto Sin, J; Neville, A; Emami, N
2014-08-01
Hafnium is a passive metal with good biocompatibility and osteogenesis, however, little is known about its resistance to wear and corrosion in biological environments. The corrosion and tribocorrosion behavior of hafnium and commercially pure (CP) titanium in simulated body fluids were investigated using electrochemical techniques. Cyclic polarization scans and open circuit potential measurements were performed in 0.9% NaCl solution and 25% bovine calf serum solution to assess the effect of organic species on the corrosion behavior of the metal. A pin-on-plate configuration tribometer and a three electrode electrochemical cell were integrated to investigate the tribocorrosion performance of the studied materials. The results showed that hafnium has good corrosion resistance. The corrosion density currents measured in its passive state were lower than those measured in the case of CP titanium; however, it showed a higher tendency to suffer from localized corrosion, which was more acute when imperfections were present on the surface. The electrochemical breakdown of the oxide layer was retarded in the presence of proteins. Tribocorrosion tests showed that hafnium has the ability to quickly repassivate after the oxide layer was damaged; however, it showed higher volumetric loss than CP titanium in equivalent wear-corrosion conditions. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 1157-1164, 2014.
Introducing Computational Fluid Dynamics Simulation into Olfactory Display
NASA Astrophysics Data System (ADS)
Ishida, Hiroshi; Yoshida, Hitoshi; Nakamoto, Takamichi
An olfactory display is a device that delivers various odors to the user's nose. It can be used to add special effects to movies and games by releasing odors relevant to the scenes shown on the screen. In order to provide high-presence olfactory stimuli to the users, the display must be able to generate realistic odors with appropriate concentrations in a timely manner together with visual and audio playbacks. In this paper, we propose to use computational fluid dynamics (CFD) simulations in conjunction with the olfactory display. Odor molecules released from their source are transported mainly by turbulent flow, and their behavior can be extremely complicated even in a simple indoor environment. In the proposed system, a CFD solver is employed to calculate the airflow field and the odor dispersal in the given environment. An odor blender is used to generate the odor with the concentration determined based on the calculated odor distribution. Experimental results on presenting odor stimuli synchronously with movie clips show the effectiveness of the proposed system.
Fully Threaded Tree for Adaptive Refinement Fluid Dynamics Simulations
NASA Technical Reports Server (NTRS)
Khokhlov, A. M.
1997-01-01
A fully threaded tree (FTT) for adaptive refinement of regular meshes is described. By using a tree threaded at all levels, tree traversals for finding nearest neighbors are avoided. All operations on a tree including tree modifications are O(N), where N is a number of cells, and are performed in parallel. An efficient implementation of the tree is described that requires 2N words of memory. A filtering algorithm for removing high frequency noise during mesh refinement is described. A FTT can be used in various numerical applications. In this paper, it is applied to the integration of the Euler equations of fluid dynamics. An adaptive mesh time stepping algorithm is described in which different time steps are used at different l evels of the tree. Time stepping and mesh refinement are interleaved to avoid extensive buffer layers of fine mesh which were otherwise required ahead of moving shocks. Test examples are presented, and the FTT performance is evaluated. The three dimensional simulation of the interaction of a shock wave and a spherical bubble is carried out that shows the development of azimuthal perturbations on the bubble surface.
Simulating transitional hydrodynamics of the cerebrospinal fluid at extreme scale
NASA Astrophysics Data System (ADS)
Jain, Kartik; Roller, Sabine; Mardal, Kent-Andre
Chiari malformation type I is a disorder characterized by the herniation of cerebellar tonsils into the spinal canal through the foramen magnum resulting in obstruction to cerebrospinal fluid (CSF) outflow. The flow of pulsating bidirectional CSF is of acutely complex nature due to the anatomy of the conduit containing it - the subarachnoid space. We report lattice Boltzmann method based direct numerical simulations on patient specific cases with spatial resolution of 24 μm amounting meshes of up to 2 billion cells conducted on 50000 cores of the Hazelhen supercomputer in Stuttgart. The goal is to characterize intricate dynamics of the CSF at resolutions that are of the order of Kolmogorov microscales. Results unfold velocity fluctuations up to ~ 10 KHz , turbulent kinetic energy ~ 2 times of the mean flow energy in Chiari patients whereas the flow remains laminar in a control subject. The fluctuations confine near the cranio-vertebral junction and are commensurate with the extremeness of pathology and the extent of herniation. The results advocate that the manifestation of pathological conditions like Chiari malformation may lead to transitional hydrodynamics of the CSF, and a prudent calibration of numerical approach is necessary to avoid overlook of such phenomena.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Hou, A.; Atlas, R.; Starr, D.; Sud, Y.
2003-01-01
Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D). A few 3D CRMs have been used to study the response of clouds to large-scale forcing. In these 3D simulations, the model domain was small, and the integration time was 6 hours. The major objectives of this paper are: (1) to assess the performance of the super-parameterization technique (i.e. is 2D or semi-3D CRM appropriate for the super-parameterization?); (2) calculate and examine the surface energy (especially radiation) and water budgets; (3) identify the differences and similarities in the organization and entrainment rates of convection between simulated 2D and 3D cloud systems.
GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System
James Menart
2013-06-07
This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..
Quaini, A.; Canic, S.; Glowinski, R.; Igo, S.; Hartley, C.J.; Zoghbi, W.; Little, S.
2011-01-01
This work presents a validation of a fluid-structure interaction computational model simulating the flow conditions in an in vitro mock heart chamber modeling mitral valve regurgitation during the ejection phase during which the trans-valvular pressure drop and valve displacement are not as large. The mock heart chamber was developed to study the use of 2D and 3D color Doppler techniques in imaging the clinically relevant complex intra-cardiac flow events associated with mitral regurgitation. Computational models are expected to play an important role in supporting, refining, and reinforcing the emerging 3D echocardiographic applications. We have developed a 3D computational fluid-structure interaction algorithm based on a semi-implicit, monolithic method, combined with an arbitrary Lagrangian-Eulerian approach to capture the fluid domain motion. The mock regurgitant mitral valve corresponding to an elastic plate with a geometric orifice, was modeled using 3D elasticity, while the blood flow was modeled using the 3D Navier-Stokes equations for an incompressible, viscous fluid. The two are coupled via the kinematic and dynamic conditions describing the two-way coupling. The pressure, the flow rate, and orifice plate displacement were measured and compared with numerical simulation results. In-line flow meter was used to measure the flow, pressure transducers were used to measure the pressure, and a Doppler method developed by one of the authors was used to measure the axial displacement of the orifice plate. The maximum recorded difference between experiment and numerical simulation for the flow rate was 4%, the pressure 3.6%, and for the orifice displacement 15%, showing excellent agreement between the two. PMID:22138194
NASA Astrophysics Data System (ADS)
Castro, Maria Clara; Patriarche, Delphine; Goblet, Patrick
2005-09-01
Because helium and heat production results from a common source, a continental 4He crustal flux of 4.65 * 10 - 14 mol m - 2 s - 1 has been estimated based on heat flow considerations. In addition, because the observed mantle He / heat flux ratio at the proximity of mid-ocean ridges (6.6 * 10 - 14 mol J - 1 ) is significantly lower than the radiogenic production ratio (1.5 * 10 - 12 mol J - 1 ), the presence of a terrestrial helium-heat imbalance was suggested. The latter could be explained by the presence of a layered mantle in which removal of He is impeded from the lower mantle [R.K. O'Nions, E.R. Oxburgh, Heat and helium in the Earth, Nature 306 (1983) 429-431; E.R. Oxburgh, R.K. O'Nions, Helium loss, tectonics, and the terrestrial heat budget, Science 237 (1987) 1583-1588]. van Keken et al. [P.E. van Keken, C.J. Ballentine, D. Porcelli, A dynamical investigation of the heat and helium imbalance, Earth Planet, Sci. Lett. 188 (2001) 421-434] have recently claimed that the helium-heat imbalance remains a robust observation. Such conclusions, however, were reached under the assumption that a steady-state regime was in place for both tracers and that their transport properties are similar at least in the upper portion of the crust. Here, through 2-D simulations of groundwater flow, heat transfer and 4He transport carried out simultaneously in the Carrizo aquifer and surrounding formations in southwest Texas, we assess the legitimacy of earlier assumptions. Specifically, we show that the driving transport mechanisms for He and heat are of a fundamentally different nature for a high range of permeabilities ( k ≤ 10 - 16 m 2) found in metamorphic and volcanic rocks at all depths in the crust. The assumption that transport properties for these two tracers are similar in the crust is thus unsound. We also show that total 4He / heat flux ratios lower than radiogenic production ratios do not reflect a He deficit in the crust or mantle original reservoir. Instead, they
Simulation of Two Phase Fluid Flow With Various Kinds of Barriers Using Lattice Boltzmann Method
NASA Astrophysics Data System (ADS)
Wijaya, Imam; Purqon, Acep
2016-08-01
Multiphase fluid flow in a pore medium is a problem that is very interesting to be learned. In its flow, the fluid can experience a few of barriers / obstacles like the exsisting of things in the flow medium. The existence of the barriers can detain the rate speed of the fluid flow. The barries that its form is different will provide influence to the speed of of fluid flow that is different as well. To know the influence of barriers form twards the profile of fluid speed rate, is conducted by the simulation by using Lattice Boltzmann Methode (LBM). In this simulation, the barriers is varied in the form of circle, square, and ellips. From simulation that is conducted, to known the influence of barriers variations twards the fluid speed, ploted by the graph of the fluid speed relations along simulation time and plotted by the fluid speed vector in each posisition. From the simulation, it is obtained that the barriers with square formed produced the higest speed rate of the fluid flow, with the speed rate 0.26 lu/ts, then circle formed with the speed rate 0.24 lu/ts, and the last square formed with speed rate 0.24 lu/ts.
Dissolution rates of uranium compounds in simulated lung fluid
Kalkwarf, D.R.
1981-01-01
Maximum dissolution rates of uranium into simulated lung fluid from a variety of materials were measured at 37/sup 0/in the where f/sub i/ is in order to estimate clearance rates from the deep lung. A batch procedure was utilized in which samples containing as little as 10 ..mu..g of natural uranium could be tested. The materials included: products of uranium mining, milling and refining operations, coal fly ash, an environmental sample from a site exposed to multiple uranium sources, and purified samples of (NH/sub 4/)/sub 2/U/sub 2/O/sub 7/ U/sub 3/O/sub 8/, UO/sub 2/, and UF/sub 4/. Dissolution of uranium from several materials indicated the presence of more than one type of uranium compound; but in all cases, the fraction F of uranium remaining undissolved at any time t could be represented by the sum of up to three terms in the series: F = ..sigma../sub i/f/sub i/ exp (-0.693t/UPSILON/sub i/), where f/sub i/ is the initial fraction of component i with dissolution half-time epsilon/sub i/. Values of epsilon/sub i/ varied from 0.01 day to several thousand days depending on the physical and chemical form of the uranium. Dissolution occurred predominantly by formation of the (UO/sub 2/(CO/sub 3/)/sub 3/)/sup 4 -/ ion; and as a result, tetravalent uranium compounds dissolved slowly. Dissolution rates of size-separated yellow-cake aerosols were found to be more closely correlated with specific surface area than with aerodynamic diameter.
Computational Fluid Dynamics Simulation of Dual Bell Nozzle Film Cooling
NASA Technical Reports Server (NTRS)
Braman, Kalen; Garcia, Christian; Ruf, Joseph; Bui, Trong
2015-01-01
Marshall Space Flight Center (MSFC) and Armstrong Flight Research Center (AFRC) are working together to advance the technology readiness level (TRL) of the dual bell nozzle concept. Dual bell nozzles are a form of altitude compensating nozzle that consists of two connecting bell contours. At low altitude the nozzle flows fully in the first, relatively lower area ratio, nozzle. The nozzle flow separates from the wall at the inflection point which joins the two bell contours. This relatively low expansion results in higher nozzle efficiency during the low altitude portion of the launch. As ambient pressure decreases with increasing altitude, the nozzle flow will expand to fill the relatively large area ratio second nozzle. The larger area ratio of the second bell enables higher Isp during the high altitude and vacuum portions of the launch. Despite a long history of theoretical consideration and promise towards improving rocket performance, dual bell nozzles have yet to be developed for practical use and have seen only limited testing. One barrier to use of dual bell nozzles is the lack of control over the nozzle flow transition from the first bell to the second bell during operation. A method that this team is pursuing to enhance the controllability of the nozzle flow transition is manipulation of the film coolant that is injected near the inflection between the two bell contours. Computational fluid dynamics (CFD) analysis is being run to assess the degree of control over nozzle flow transition generated via manipulation of the film injection. A cold flow dual bell nozzle, without film coolant, was tested over a range of simulated altitudes in 2004 in MSFC's nozzle test facility. Both NASA centers have performed a series of simulations of that dual bell to validate their computational models. Those CFD results are compared to the experimental results within this paper. MSFC then proceeded to add film injection to the CFD grid of the dual bell nozzle. A series of
NASA Astrophysics Data System (ADS)
Savoini, P.; Lembege, B.
2014-12-01
The ion foreshock located upstream of the Earth's bow shock is populated with ions reflected back by the shock front. In-situ spacecraft measurements have clearly established the existence of two distinct populations in the upstream of the quasi-perpendicular shock region (i.e. for 45o ≤ ΘBn≤ 90o, where ΘBn is the angle between the shock normal and the upstream magnetostatic field): (i) field-aligned ion beams (or 'FAB') characterized by a gyrotropic distribution, and (ii) gyro-phase bunched ions (or 'GPB') characterized by a NON gyrotropic distribution, which exhibits a non-vanishing perpendicular bulk velocity. The use of 2D PIC simulations where full curvature effects, time of flight effects and both electrons and ions dynamics are fully described, has evidenced that the shock front itself can be the possible source of these two characteristic populations. A recent analysis has evidenced that both populations can be discriminated in terms of interaction time (Δtinter) with the shock front. 'GPB' and 'FAB' populations are characterized by a short (Δtinter ~ 1 τci) and much larger (Δtinter ≥ 2 τci) interaction time respectively, where τci is the ion upstream gyroperiod. In addition, present statistical results evidence that: (i) backstreaming ions are splitted into 'FAB' and 'GPB' populations depending on their injection angle when hitting the shock front (defined between the local normal to the shock front and the gyration velocity vector). (ii) As a consequence, ion trajectories strongly differ between the 'FAB' and 'GPB' populations at the shock front. In particular, 'FAB' ions suffer multi-bounces along the curved front whereas 'GPB' ions make only one bounce. Such differences may explain why the 'FAB' population loses their gyro-phase coherency and become gyrotropic which is not the case for the 'GPB'. Then, the differences observed between 'FAB' and 'GPB' populations do not involve some distinct reflection processes as often claimed in the
Numerical simulation of fluid ejection from a spinning cylinder
NASA Astrophysics Data System (ADS)
Fedele, P. D.
1985-02-01
A computer code, based on a convective flux approximation on a finite difference Eulerian grid, was to model the rate of fluid ejection from the opened end of an azimuthally rotating cylinder. The computer code, SOLA-VOF/CSL is described in a previous support. A constantly rotating cylinder, with an 80% fluid fill, is set in equilibrium solid body rotation and one end is instantaneously removed, allowing the centrifugal force to drive the fluid from the opened end. Fluid parameters have been chosen to model the behavior of water and glycerin at 25 C. The ratio of the volume ejection rate to the volume rotation shows similarity when expressed as a function of the cylinder rotation time. The fluid viscosity is observed to have negligible effect on the ejection rate for the spin rates of interest. This behavior is shown to be consistent with a dimensional analysis of the flows considered.
Large Eddy Simulation Study for Fluid Disintegration and Mixing
NASA Technical Reports Server (NTRS)
Bellan, Josette; Taskinoglu, Ezgi
2011-01-01
A new modeling approach is based on the concept of large eddy simulation (LES) within which the large scales are computed and the small scales are modeled. The new approach is expected to retain the fidelity of the physics while also being computationally efficient. Typically, only models for the small-scale fluxes of momentum, species, and enthalpy are used to reintroduce in the simulation the physics lost because the computation only resolves the large scales. These models are called subgrid (SGS) models because they operate at a scale smaller than the LES grid. In a previous study of thermodynamically supercritical fluid disintegration and mixing, additional small-scale terms, one in the momentum and one in the energy conservation equations, were identified as requiring modeling. These additional terms were due to the tight coupling between dynamics and real-gas thermodynamics. It was inferred that if these terms would not be modeled, the high density-gradient magnitude regions, experimentally identified as a characteristic feature of these flows, would not be accurately predicted without the additional term in the momentum equation; these high density-gradient magnitude regions were experimentally shown to redistribute turbulence in the flow. And it was also inferred that without the additional term in the energy equation, the heat flux magnitude could not be accurately predicted; the heat flux to the wall of combustion devices is a crucial quantity that determined necessary wall material properties. The present work involves situations where only the term in the momentum equation is important. Without this additional term in the momentum equation, neither the SGS-flux constant-coefficient Smagorinsky model nor the SGS-flux constant-coefficient Gradient model could reproduce in LES the pressure field or the high density-gradient magnitude regions; the SGS-flux constant- coefficient Scale-Similarity model was the most successful in this endeavor although not
Baghalnezhad, Masoud; Mirzaee, Iraj
2014-01-01
The Stokes flow induced by the motion of an elastic massless filament immersed in a two-dimensional fluid is studied. Initially, the filament is deviated from its equilibrium state and the fluid is at rest. The filament will induce fluid motion while returning to its equilibrium state. Two different test cases are examined. In both cases, the motion of a fixed-end massless filament induces the fluid motion inside a square domain. However, in the second test case, a deformable circular string is placed in the square domain and its interaction with the Stokes flow induced by the filament motion is studied. The interaction between the fluid and deformable body/bodies can become very complicated from the computational point of view. An immersed boundary method is used in the present study. In order to substantiate the accuracy of the numerical method employed, the simulated results associated with the Stokes flow induced by the motion of an extending star string are compared well with those obtained by the immersed interface method. The results show the ability and accuracy of the IBM method in solving the complicated fluid-structure and fluid-mediated structure-structure interaction problems happening in a wide variety of engineering and biological systems. PMID:24711736
Baghalnezhad, Masoud; Dadvand, Abdolrahman; Mirzaee, Iraj
2014-01-01
The Stokes flow induced by the motion of an elastic massless filament immersed in a two-dimensional fluid is studied. Initially, the filament is deviated from its equilibrium state and the fluid is at rest. The filament will induce fluid motion while returning to its equilibrium state. Two different test cases are examined. In both cases, the motion of a fixed-end massless filament induces the fluid motion inside a square domain. However, in the second test case, a deformable circular string is placed in the square domain and its interaction with the Stokes flow induced by the filament motion is studied. The interaction between the fluid and deformable body/bodies can become very complicated from the computational point of view. An immersed boundary method is used in the present study. In order to substantiate the accuracy of the numerical method employed, the simulated results associated with the Stokes flow induced by the motion of an extending star string are compared well with those obtained by the immersed interface method. The results show the ability and accuracy of the IBM method in solving the complicated fluid-structure and fluid-mediated structure-structure interaction problems happening in a wide variety of engineering and biological systems.
2005-07-01
Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.
NASA Astrophysics Data System (ADS)
Jang, Hyun-Sook; Yu, Changqian; Hayes, Robert; Granick, Steve
2015-03-01
Polymer vesicles (``polymersomes'') are an intriguing class of soft materials, commonly used to encapsulate small molecules or particles. Here we reveal they can also effectively incorporate nanoparticles inside their polymer membrane, leading to novel ``2D nanocomposites.'' The embedded nanoparticles alter the capacity of the polymersomes to bend and to stretch upon external stimuli.
NASA Technical Reports Server (NTRS)
Monta, William J.
1992-01-01
A pitot-rake survey of the simulated exhaust of a half-span scramjet nozzle model was conducted in the Langley 20-Inch Mach 6 Tunnel to provide an additional data set for computational fluid dynamics (CFD) code comparisons. A wind-tunnel model was tested with a 26-tube pitot rake that could be manually positioned along the mid-semispan plane of the model. The model configuration had an external expansion surface of 20 degrees and an internal cowl expansion of 12 degrees; tests were also performed with a flow fence. Tests were conducted at a free-stream Reynolds number of approximately 6.5 x 10(exp 6) per foot and a model angle of attack of -0.75 degrees. The two exhaust gas mediums that were tested were air and a Freon 12-argon mixture. Each medium was tested at two jet total pressures at approximately 28 and 14 psia. This document presents the flow-field survey results in graphical as well as tabular form, and several observations concerning the results are discussed. The surveys reveal the major expected flow-field characteristics for each test configuration. For a 50-percent freon 12 and 50-percent argon mixture by volume (Fr-Ar), the exhaust jet pressures were slightly higher than those for air. The addition of a flow fence slightly raised the pitot pressure for the Fr-Ar mixture, but it produced little change for air. For the Fr-Ar exhaust, the plume was larger and the region between the shock wave and plume was smaller.
Numerical simulation of fluid/structure interaction phenomena in viscous dominated flows
NASA Astrophysics Data System (ADS)
Tran, Hai Duong
2001-12-01
thermal information via a temperature wall law. For the transfer of the discretized heat fluxes from the fluid to the structural analyzer across meshes with non-conforming interfaces, we adopt the conservation method developed by Farhat and co-workers for exchanging aerodynamic data in aeroelastic problems. We validate our computational procedure on the flat plate benchmark problem and perform a thermal study of the F-16's 2D wing section. Lastly, we apply our solution methodology to the aerothermoelastic stability analysis of a flat panel.
Supersonic Parachute Aerodynamic Testing and Fluid Structure Interaction Simulation
NASA Astrophysics Data System (ADS)
Lingard, J. S.; Underwood, J. C.; Darley, M. G.; Marraffa, L.; Ferracina, L.
2014-06-01
The ESA Supersonic Parachute program expands the knowledge of parachute inflation and flying characteristics in supersonic flows using wind tunnel testing and fluid structure interaction to develop new inflation algorithms and aerodynamic databases.
Relativistic tearing and drift-kink instabilities in two-fluid simulations
NASA Astrophysics Data System (ADS)
Barkov, Maxim V.; Komissarov, Serguei S.
2016-05-01
The stability of current sheets in collisionless relativistic pair plasma was studied via two-dimensional two-fluid relativistic magnetohydrodynamic simulations with vanishing internal friction between fluids. In particular, we investigated the linear growth of the tearing and drift-kink modes in the current sheets both with and without the guide field and obtained the growth rates which are very similar to what has been found in the corresponding particle in cell (PIC) simulations. This suggests that the two-fluid simulations can be useful in studying the large-scale dynamics of astrophysical relativistic plasmas in problems involving magnetic reconnection.
Laboratory Experiments On Continually Forced 2d Turbulence
NASA Astrophysics Data System (ADS)
Wells, M. G.; Clercx, H. J. H.; Van Heijst, G. J. F.
There has been much recent interest in the advection of tracers by 2D turbulence in geophysical flows. While there is a large body of literature on decaying 2D turbulence or forced 2D turbulence in unbounded domains, there have been very few studies of forced turbulence in bounded domains. In this study we present new experimental results from a continuously forced quasi 2D turbulent field. The experiments are performed in a square Perspex tank filled with water. The flow is made quasi 2D by a steady background rotation. The rotation rate of the tank has a small (<8 %) sinusoidal perturbation which leads to the periodic formation of eddies in the corners of the tank. When the oscillation period of the perturbation is greater than an eddy roll-up time-scale, dipole structures are observed to form. The dipoles can migrate away from the walls, and the interior of the tank is continually filled with vortexs. From experimental visualizations the length scale of the vortexs appears to be largely controlled by the initial formation mechanism and large scale structures are not observed to form at large times. Thus the experiments provide a simple way of cre- ating a continuously forced 2D turbulent field. The resulting structures are in contrast with most previous laboratory experiments on 2D turbulence which have investigated decaying turbulence and have observed the formations of large scale structure. In these experiments, decaying turbulence had been produced by a variety of methods such as the decaying turbulence in the wake of a comb of rods (Massen et al 1999), organiza- tion of vortices in thin conducting liquids (Cardoso et al 1994) or in rotating systems where there are sudden changes in angular rotation rate (Konijnenberg et al 1998). Results of dye visualizations, particle tracking experiments and a direct numerical simulation will be presented and discussed in terms of their oceanographic application. Bibliography Cardoso,O. Marteau, D. &Tabeling, P
2011-12-31
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less
Simulations of Magnetic Reconnection - Kinetic Mechanisms Underlying the Fluid Description of Ions
NASA Technical Reports Server (NTRS)
Aunai, icolas; Belmont, Gerard; Smets, Roch
2012-01-01
Because of its ability to transfer the energy stored in magnetic field together with the breaking of the flux freezing constraint, magnetic reconnection is considered as one of the most important phenomena in plasma physics. When it happens in a collision less environment such as the terrestrial magnetosphere, it should a priori be modelled with in the framework of kinetic physics. The evidence of kinetic features has incidentally for a long time, been shown by researchers with the help of both numerical simulations and satellite observations. However, most of our understanding of the process comes from the more intuitive fluid interpretation with simple closure hypothesis which do not include kinetic effects. To what extent are these two separate descriptions of the same phenomenon related? What is the role of kinetic effects in the averaged/fluid dynamics of reconnection? This thesis addresses these questions for the proton population in the particular case of anti parallel merging with the help of 2D Hybrid simulations. We show that one can not assume, as is usually done, that the acceleration of the proton flow is only due to the Laplace force. Our results show, for symmetric and asymmetric connection, the importance of the pressure force, opposed to the electric one on the separatrices, in the decoupling region. In the symmetric case, we emphasize the kinetic origin of this force by analyzing the proton distribution functions and explain their structure by studying the underlying particle dynamics. Protons, as individual particles, are shown to bounce in the electric potential well created by the Hall effect. The spatial divergence of this well results in a mixing in phase space responsible for the observed structure of the pressure tensor. A detailed energy budget analysis confirms the role of the pressure force for the acceleration; but, contrary to what is sometimes assumed, it also reveals that the major part of the incoming Poynting flux is transferred to
Reactive Oxygen Species Generation by Lunar Simulants in Simulated Lung Fluid
NASA Astrophysics Data System (ADS)
Schoonen, M. A.; Kaur, J.; Rickman, D.
2015-12-01
The current interest in human exploration of the Moon and other airless planetary bodies has rekindled research into the harmful effects of Lunar dust on human health. Our team has evaluated the spontaneous formation of Reactive Oxygen Species (ROS; hydroxyl radicals, superoxide, and hydrogen peroxide) of a suite of lunar simulants when dispersed in deionized water. Of these species, hydroxyl radical reacts almost immediately with any biomolecule leading to oxidative damage. Sustained production of OH radical as a result of mineral exposure can initiate or enhance disease. The results in deionized water indicate that mechanical stress and the absence of molecular oxygen and water, important environmental characteristics of the lunar environment, can lead to enhanced production of ROS in general. On the basis of the results with deionized water, a few of the simulants were selected for additional studies to evaluate the formation of hydrogen peroxide, a precursor of hydroxyl radical in Simulated Lung Fluid. These simulants dispersed in deionized water typically produce a maximum in H2O2 within 10 to 40 minutes. However, experiments in SLF show a slow steady increase in H2O2 concentration that has been documented to continue for as long as 7 hours. Control experiments with one simulant demonstrate that the rise in H2O2 depends on the availability of dissolved O2. We speculate that this continuous rise in oxygenated SLF might be a result of metal ion-mediated oxidation of organic components, such as glycine in SLF. Ion-mediated oxidation essentially allows dissolved molecular oxygen to react with dissolved organic compounds by forming a metal-organic complex. Results of separate experiments with dissolved Fe, Ni, and Cu and speciation calculations support this notion.
NASA Astrophysics Data System (ADS)
Doisneau, F.; Laurent, F.; Murrone, A.; Dupays, J.; Massot, M.
2013-02-01
The accurate simulation of polydisperse sprays undergoing coalescence in unsteady gaseous flows is a crucial issue. In solid rocket motors, the internal flow depends strongly on the alumina droplet size distribution, which spreads up with coalescence. Yet solving for unsteady two-phase flows with high accuracy on the droplet sizes is a challenge for both modeling and scientific computing. As an alternative to Lagrangian approaches, a wide range of Eulerian models have been recently developed to describe the disperse liquid phase at a lower cost, with an easier coupling to the gaseous phase and with massively parallel codes. Among these models, the multi-fluid model allows the detailed description of polydispersity and size/velocity correlations by separately solving fluids of size-sorted droplets, the so-called sections. The existing one size moment method, which describes the size distribution with one size moment per section, provides simple and fast resolution for coalescence. On the other hand, a two size moment method has been suggested to reduce the number of sections but it lacks an efficient coalescence resolution method. After introducing a new strategy for two size moment coalescence, the two methods are compared on various configurations in a research code and an industrial-oriented code, in order to conclude on computational accuracy and cost. Then the paper aims at describing the most efficient approach for multi-dimensional unsteady and eventually coalescing rocket chamber simulations. Its objective is threefold: first, to validate the two size moment method by comparing simulations to reference solutions and dedicated experimental measurements conducted at ONERA, second to study the efficiency and robustness of both methods, third, to draw some firm conclusions about the necessity to use the one size moment or two size moment method to simulate solid propellant alumina sprays. We finally perform the first simulations of coalescence in realistic 2D
Program package FLUX for the simulation of fundamental and applied problems of fluid dynamics
NASA Astrophysics Data System (ADS)
Babakov, A. V.
2016-06-01
Based on parallel algorithms of a conservative numerical method, a software package for simulating fundamental and applied fluid dynamics problems in a wide range of parameters is developed. The software is implemented on a cluster computer system. Examples of the numerical simulation of three-dimensional problems in various fields of fluid dynamics are discussed, including problems of external flow around bodies, investigation of aerodynamic characteristics of flying vehicles, flows around a set of objects, flows in nozzles, and flows around underwater constructs.
NASA Astrophysics Data System (ADS)
Cerroni, D.; Fancellu, L.; Manservisi, S.; Menghini, F.
2016-06-01
In this work we propose to study the behavior of a solid elastic object that interacts with a multiphase flow. Fluid structure interaction and multiphase problems are of great interest in engineering and science because of many potential applications. The study of this interaction by coupling a fluid structure interaction (FSI) solver with a multiphase problem could open a large range of possibilities in the investigation of realistic problems. We use a FSI solver based on a monolithic approach, while the two-phase interface advection and reconstruction is computed in the framework of a Volume of Fluid method which is one of the more popular algorithms for two-phase flow problems. The coupling between the FSI and VOF algorithm is efficiently handled with the use of MEDMEM libraries implemented in the computational platform Salome. The numerical results of a dam break problem over a deformable solid are reported in order to show the robustness and stability of this numerical approach.
Verification strategies for fluid-based plasma simulation models
NASA Astrophysics Data System (ADS)
Mahadevan, Shankar
2012-10-01
Verification is an essential aspect of computational code development for models based on partial differential equations. However, verification of plasma models is often conducted internally by authors of these programs and not openly discussed. Several professional research bodies including the IEEE, AIAA, ASME and others have formulated standards for verification and validation (V&V) of computational software. This work focuses on verification, defined succinctly as determining whether the mathematical model is solved correctly. As plasma fluid models share several aspects with the Navier-Stokes equations used in Computational Fluid Dynamics (CFD), the CFD verification process is used as a guide. Steps in the verification process: consistency checks, examination of iterative, spatial and temporal convergence, and comparison with exact solutions, are described with examples from plasma modeling. The Method of Manufactured Solutions (MMS), which has been used to verify complex systems of PDEs in solid and fluid mechanics, is introduced. An example of the application of MMS to a self-consistent plasma fluid model using the local mean energy approximation is presented. The strengths and weaknesses of the techniques presented in this work are discussed.
Propagator-resolved 2D exchange in porous media in the inhomogeneous magnetic field.
Burcaw, Lauren M; Hunter, Mark W; Callaghan, Paul T
2010-08-01
We present a propagator-resolved 2D exchange spectroscopy technique for observing fluid motion in a porous medium. The susceptibility difference between the matrix and the fluid is exploited to produce an inhomogeneous internal magnetic field, causing the Larmor frequency to change as molecules migrate. We test our method using a randomly packed monodisperse 100 microm diameter glass bead matrix saturated with distilled water. Building upon previous 2D exchange spectroscopy work we add a displacement dimension which allows us to obtain 2D exchange spectra that are defined by both mixing time and spatial displacement rather than by mixing time alone. We also simulate our system using a Monte Carlo process in a random nonpenetrating monodisperse bead pack, finding good agreement with experiment. A simple analytic model is used to interpret the NMR data in terms of a characteristic length scale over which molecules must diffuse to sample the inhomogeneous field distribution. PMID:20554230
NASA Astrophysics Data System (ADS)
Peters, C. A.; Crandell, L. E.; Um, W.; Jones, K. W.; Lindquist, W. B.
2011-12-01
Geochemical reactions in the subsurface can alter the porosity and permeability of a porous medium through mineral precipitation and dissolution. While effects on porosity are relatively well understood, changes in permeability are more difficult to estimate. In this work, pore-network modeling is used to estimate the permeability of a porous medium using pore and throat size distributions. These distributions can be determined from 2D Scanning Electron Microscopy (SEM) images of thin sections or from 3D X-ray Computed Tomography (CT) images of small cores. Each method has unique advantages as well as unique sources of error. 3D CT imaging has the advantage of reconstructing a 3D pore network without the inherent geometry-based biases of 2D images but is limited by resolutions around 1 μm. 2D SEM imaging has the advantage of higher resolution, and the ability to examine sub-grain scale variations in porosity and mineralogy, but is limited by the small size of the sample of pores that are quantified. A pore network model was created to estimate flow permeability in a sand-packed experimental column investigating reaction of sediments with caustic radioactive tank wastes in the context of the Hanford, WA site. Before, periodically during, and after reaction, 3D images of the porous medium in the column were produced using the X2B beam line facility at the National Synchrotron Light Source (NSLS) at Brookhaven National Lab. These images were interpreted using 3DMA-Rock to characterize the pore and throat size distributions. After completion of the experiment, the column was sectioned and imaged using 2D SEM in backscattered electron mode. The 2D images were interpreted using erosion-dilation to estimate the pore and throat size distributions. A bias correction was determined by comparison with the 3D image data. A special image processing method was developed to infer the pore space before reaction by digitally removing the precipitate. The different sets of pore
Deiterding, Ralf; Wood, Stephen L
2013-01-01
We pursue a level set approach to couple an Eulerian shock-capturing fluid solver with space-time refinement to an explicit solid dynamics solver for large deformations and fracture. The coupling algorithms considering recursively finer fluid time steps as well as overlapping solver updates are discussed in detail. Our ideas are implemented in the AMROC adaptive fluid solver framework and are used for effective fluid-structure coupling to the general purpose solid dynamics code DYNA3D. Beside simulations verifying the coupled fluid-structure solver and assessing its parallel scalability, the detailed structural analysis of a reinforced concrete column under blast loading and the simulation of a prototypical blast explosion in a realistic multistory building are presented.
Fuel spray simulation with two-fluid nozzles
NASA Technical Reports Server (NTRS)
Ingebo, Robert D.
1989-01-01
Two-phase interacting flow inside a two-fluid fuel atomizer was investigated and a correction of aerodynamic and liquid-surface forces with characteristic drop diameter was obtained for liquid-jet breakup in Mach 1 gas flow. Nitrogen gas mass-flux was varied from 6 to 50 g/sq cm sec by using four differently sized two-fluid atomizers with nozzle diameters varying from 0.32 to 0.56 cm. The correlation was derived by using the acoustic gas velocity, V sub c, as a basic parameter in defining and evaluating the dimensionless product of the Weber (We) and Reynolds (Re) numbers. By using the definition of WeRe, it was found that the ratio of orifice diameter to Sauter mean drop diameter could be correlated with the dimensionless ratio WeRe and the gas to liquid density ratio.
Fluid and electrolyte control in simulated and actual spaceflight
NASA Technical Reports Server (NTRS)
Leach, C. S.; Johnson, P. C., Jr.
1985-01-01
Effects of microgravity on body fluid distribution and electrolyte and hormonal levels of astronauts have been studied since the early manned space missions. Bedrested subjects have been used as controls to separate effects of microgravity from those of hypokinesia. These investigations have led to documentation of the physiological effects of spaceflight and to a unified theory of response to microgravity. During flight, crewmembers have decreased thirst and a net loss of body water, sodium, and potassium. These changes seem to be initiated by passive transfer of extracellular fluid resulting in increased central venous pressure (CVP), to which the homeostatic mechanisms respond. A new equilibrium state is maintained during flight; it does not change in response to negative calcium and nitrogen balances during flight. On reexposure to gravity, profound water and salt retention occurs to replete extracellular fluid. Attempts to avoid cardiac deconditioning by repleting water and salt before leaving microgravity have somewhat ameliorated postural hypotension but have had little effect on CVP, cardiac chamber size or electrolyte dynamics.
LOOPREF: A Fluid Code for the Simulation of Coronal Loops
NASA Technical Reports Server (NTRS)
deFainchtein, Rosalinda; Antiochos, Spiro; Spicer, Daniel
1998-01-01
This report documents the code LOOPREF. LOOPREF is a semi-one dimensional finite element code that is especially well suited to simulate coronal-loop phenomena. It has a full implementation of adaptive mesh refinement (AMR), which is crucial for this type of simulation. The AMR routines are an improved version of AMR1D. LOOPREF's versatility makes is suitable to simulate a wide variety of problems. In addition to efficiently providing very high resolution in rapidly changing regions of the domain, it is equipped to treat loops of variable cross section, any non-linear form of heat conduction, shocks, gravitational effects, and radiative loss.
Djukic, Tijana; Mandic, Vesna; Filipovic, Nenad
2013-12-01
Medical education, training and preoperative diagnostics can be drastically improved with advanced technologies, such as virtual reality. The method proposed in this paper enables medical doctors and students to visualize and manipulate three-dimensional models created from CT or MRI scans, and also to analyze the results of fluid flow simulations. Simulation of fluid flow using the finite element method is performed, in order to compute the shear stress on the artery walls. The simulation of motion through the artery is also enabled. The virtual reality system proposed here could shorten the length of training programs and make the education process more effective. PMID:24290920
NASA Technical Reports Server (NTRS)
Ko, Malcolm K. W.; Sze, Nien-Dak; Weisenstein, Debra K.; Rodriguez, Jose M.
1988-01-01
Satellite borne instruments, the Total Ozone Mapping Spectrometer (TOMS) and the Solar Backscatter Ultraviolet spectrometer (SBUV), show that total column ozone has decreased by more than 5 percent in the neighborhood of 60 S at all seasons since 1979. This is considerably larger than the decrease calculated by 2-D models which take into account solar flux variation and increases of trace gas concentrations over the same period. The meteorological conditions (warmer temperature and the apparent lack of polar stratospheric clouds) at these latitudes do not seem to favor heterogeneous chemistry as the direct cause for the observed ozone reduction. A mechanism involving the seasonal transport of ozone-poor air mass from within the polar vortex to lower latitudes (the so-called dilution effect) is proposed as a possible explanation for the observed year-round ozone reduction in regions away from the vortex.
Linear stability analysis and direct numerical simulation of a miscible two-fluid channel flow
NASA Astrophysics Data System (ADS)
Haapanen, Siina Ilona
The temporal evolution of an initially laminar two-fluid channel flow is investigated using linear stability analysis and direct numerical simulation. The stability of a two-fluid shear flow is encountered in numerous situations, including water wave generation by wind, atomization of fuels, aircraft deicing and nuclear reactor cooling. The application of particular interest in this study is liquefying hybrid combustion, for which the two-fluid channel flow is used as a model problem to characterize the relevant mixing and entrainment mechanisms. The two fluids are miscible with dissimilar densities and viscosities. The thickness of one of the fluid layers is much smaller than that of the other, with the denser and more viscous fluid comprising the thin layer. Linear stability analysis is used to identify possibly unstable modes in the two-fluid configuration. The analysis is considered for two different situations. In one case, the fluid density and viscosity change discontinuously across a sharp interface, while in the other, the fluids are separated by a finite thickness transition layer, over which the fluid properties vary continuously. In the sharp interface limit, the linear stability is governed by an Orr-Sommerfeld equation in each fluid layer, coupled by boundary conditions at the interface. A numerical solution of the system of equations is performed using a Chebyshev spectral collocation method. In the case where the fluids are separated by a finite thickness transition zone, an Orr-Sommerfeld-type equation is solved with the compound matrix method. The non-linear stages of the flow evolution are investigated by direct numerical simulation. In a temporal simulation, two of the three spatial dimensions are periodic. Fourier spectral discretization is used in these dimensions, while a compact finite difference scheme is utilized in the non-periodic direction. The time advancement is performed by a projection method with a third order Adams
Determination of the bioaccessible fraction of metals in urban aerosol using simulated lung fluids
NASA Astrophysics Data System (ADS)
Coufalík, Pavel; Mikuška, Pavel; Matoušek, Tomáš; Večeřa, Zbyněk
2016-09-01
Determination of the bioaccessible fraction of metals in atmospheric aerosol is a significant issue with respect to air pollution in the urban environment. The aim of this work was to compare of metal bioaccessibility determined according to the extraction yields of six simulated lung fluids. Aerosol samples of the PM1 fraction were collected in Brno, Czech Republic. The total contents of Cd, Ce, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn in the samples were determined and their enrichment factors were calculated. The bioaccessible proportions of elements were determined by means of extraction in Gamble's solution, Gamble's solution with dipalmitoyl phosphatidyl choline (DPPC), artificial lysosomal fluid, saline, water, and in a newly proposed solution based on DPPC, referred to as "Simulated Alveoli Fluid" (SAF). The chemical composition and surface tension of the simulated lung fluids were the main parameters influencing extraction yields. Gamble's solutions and the newly designed solution of SAF exhibited the lowest extraction efficiency, and also had the lowest surface tensions. The bioaccessibility of particulate metals should be assessed by synthetic lung fluids with a low surface tension, which simulate better the behavior and composition of native lung surfactant. The bioaccessibility of metals in aerosol assessed by means of the extraction in water or artificial lysosomal fluid can be overestimated.
NASA Technical Reports Server (NTRS)
Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Jameson, Kristina K.
2006-01-01
Numerical simulations with the time-dependent Orificed Cathode (OrCa2D-II) computer code show that classical enhancements of the plasma resistivity can not account for the elevated electron temperatures and steep plasma potential gradients measured in the plume of a 25-27.5 A discharge hollow cathode. The cathode, which employs a 0.11-in diameter orifice, was operated at 5.5 sccm without an applied magnetic field using two different anode geometries. It is found that anomalous resistivity based on electron-driven instabilities improves the comparison between theory and experiment. It is also estimated that other effects such as the Hall-effect from the self-induced magnetic field, not presently included in OrCa2D-II, may contribute to the constriction of the current density streamlines thus explaining the higher plasma densities observed along the centerline.
NASA Astrophysics Data System (ADS)
Viridi, S.; Novitrian, Nurhayati, Hidayat, W.; Latief, F. D. E.; Zen, F. P.
2014-09-01
A simple model for transient flow in a narrow pipe is presented in this work. The model is simply derived from Newton's second law of motion. As an example it is used to predict flow occurrence in two forms of self-siphon, which are inverted-U and M-like forms. Simulation for system consists only a vertical pipe is also presented since it is actually part of the both siphon systems. For the simple systems the model can have good predictions but for the complex system it can only have 89.6 % good prediction. Its simplicity can be used to illustrate how the interface between fluid and air, single fluid volume element (SFVE) moves along the siphon. The method itself is named as SFVE method.
A hybrid FEM-DEM approach to the simulation of fluid flow laden with many particles
NASA Astrophysics Data System (ADS)
Casagrande, Marcus V. S.; Alves, José L. D.; Silva, Carlos E.; Alves, Fábio T.; Elias, Renato N.; Coutinho, Alvaro L. G. A.
2016-01-01
In this work we address a contribution to the study of particle laden fluid flows in scales smaller than TFM (two-fluid models). The hybrid model is based on a Lagrangian-Eulerian approach. A Lagrangian description is used for the particle system employing the discrete element method (DEM), while a fixed Eulerian mesh is used for the fluid phase modeled by the finite element method (FEM). The resulting coupled DEM-FEM model is integrated in time with a subcycling scheme. The aforementioned scheme is applied in the simulation of a seabed current to analyze which mechanisms lead to the emergence of bedload transport and sediment suspension, and also quantify the effective viscosity of the seabed in comparison with the ideal no-slip wall condition. A simulation of a salt plume falling in a fluid column is performed, comparing the main characteristics of the system with an experiment.
Towards Closures for Multi-Fluid Moment Simulations of Collisionless Plasmas
NASA Astrophysics Data System (ADS)
Hakim, A.
2015-12-01
Fluid simulation remain an efficient and valuable tool to understand the global behavior of plasmas. However, as it wellknown, fluid models require a closure approximation to yield a closed set of equations. Designing closures that capture correctkinetic behavior in asymptotic regimes, specially in the presence of weak guide fields, remains a challenge. We present anapproach to developing such closures in the context of multi-fluid moment models. In these, each fluid is treated independently, with higher-order moments (pressure tensor, heat-flux tensor) evolved self-consistently with time-dependent equations. Electromagnetic fields are evolved with Maxwell equations, retaining displacement currents. The validity of these closures is determined by comparison with PIC simulations. A brief overview of the numerical schemes, implemented in the open-source computational framework Gkeyll, will also be presented.
Particle and fluid simulations of resistive current-driven electrostatic ion cyclotron waves
NASA Technical Reports Server (NTRS)
Seyler, Charles E.; Providakes, Jason
1987-01-01
The results from 1-D numerical simulations of electrostatic ion cyclotron waves (EIC) are presented for a model in which the electrons are a resistive (collisional) fluid. Simulations of both the kinetic and fluid descriptions are performed and compared in order to assess the fundamental limitations of fluid theory for EIC waves. The effect of ion-neutral collisions is also included using a simple Monte Carlo technique. It is found that a small ion-neutral collision frequency destroys the frequency harmonic coupling of kinetic EIC waves and tends to validate the fluid description. The saturation amplitude of the current-driven EIC instability is in agreement with recent laboratory experiments. The coherent nature (extremely narrow spectral width) and phase velocity agree with ground based (coherent backscatter radars) and in situ observations of current-driven EIC waves in the high latitude ionosphere.
Application of a distributed network in computational fluid dynamic simulations
NASA Technical Reports Server (NTRS)
Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.; Deshpande, Ashish
1994-01-01
A general-purpose 3-D, incompressible Navier-Stokes algorithm is implemented on a network of concurrently operating workstations using parallel virtual machine (PVM) and compared with its performance on a CRAY Y-MP and on an Intel iPSC/860. The problem is relatively computationally intensive, and has a communication structure based primarily on nearest-neighbor communication, making it ideally suited to message passing. Such problems are frequently encountered in computational fluid dynamics (CDF), and their solution is increasingly in demand. The communication structure is explicitly coded in the implementation to fully exploit the regularity in message passing in order to produce a near-optimal solution. Results are presented for various grid sizes using up to eight processors.
Fluid simulations of toroidal ion temperature gradient turbulence
Sandberg, I.; Isliker, H.; Pavlenko, V.P.; Hizanidis, K.; Vlahos, L.
2006-02-15
The evolution of the toroidal ion temperature gradient mode instability is numerically studied by using the equations based on the standard reactive fluid model. The long-term dynamics of the instability are investigated using random-phase, small-amplitude fluctuations for initial conditions. The main events during the evolution of the instability that lead to the formation of large-scale coherent structures are described and the role of the dominant nonlinearities is clarified. The polarization drift nonlinearity leads to the inverse energy cascade while the convective ion heat nonlinearity is responsible for the saturation of the instability. Finally, the sensitivity of the saturated state to the initial plasma conditions is examined.
The Investigation of Ghost Fluid Method for Simulating the Compressible Two-Medium Flow
NASA Astrophysics Data System (ADS)
Lu, Hai Tian; Zhao, Ning; Wang, Donghong
2016-06-01
In this paper, we investigate the conservation error of the two-dimensional compressible two-medium flow simulated by the front tracking method. As the improved versions of the original ghost fluid method, the modified ghost fluid method and the real ghost fluid method are selected to define the interface boundary conditions, respectively, to show different effects on the conservation error. A Riemann problem is constructed along the normal direction of the interface in the front tracking method, with the goal of obtaining an efficient procedure to track the explicit sharp interface precisely. The corresponding Riemann solutions are also used directly in these improved ghost fluid methods. Extensive numerical examples including the sod tube and the shock-bubble interaction are tested to calculate the conservation error. It is found that these two ghost fluid methods have distinctive performances for different initial conditions of the flow field, and the related conclusions are made to suggest the best choice for the combination.
The simulation of fluid dynamic uncertainties in the SSME turbopump
NASA Technical Reports Server (NTRS)
Hamed, Awatef
1990-01-01
The aerodynamic uncertainties in the reusable rocket engine turbopumps due to randomness in their cryogenic environment are investigated. The probabilistic simulation of the turbopumps' aerodynamic response was accomplished using the panel method coupled with Fast Probability Integration methods. The results are presented for the probabilistic rotor blades and splitter loading and their sensitivity to specified flow coefficient and rotor preswirl variance.
NASA Technical Reports Server (NTRS)
Majumdar, Alok
2013-01-01
The purpose of the paper is to present the analytical capability developed to model no vent chill and fill of cryogenic tank to support CPST (Cryogenic Propellant Storage and Transfer) program. Generalized Fluid System Simulation Program (GFSSP) was adapted to simulate charge-holdvent method of Tank Chilldown. GFSSP models were developed to simulate chilldown of LH2 tank in K-site Test Facility and numerical predictions were compared with test data. The report also describes the modeling technique of simulating the chilldown of a cryogenic transfer line and GFSSP models were developed to simulate the chilldown of a long transfer line and compared with test data.
NASA Astrophysics Data System (ADS)
Yang, Qingjie; Mao, Weijian
2016-10-01
The poroelastodynamic equations are used to describe the dynamic solid-fluid interaction in the reservoir. To obtain the intrinsic properties of reservoir rocks from geophysical data measured in both laboratory and field, we need an accurate solution of the wave propagation in porous media. At present, the poroelastic wave equations are mostly solved in the time domain, which involves a difficult and complicated time convolution. In order to avoid the issues caused by the time convolution, we propose a frequency-space domain method. The poroelastic wave equations are composed of a linear system in the frequency domain, which easily takes into account the effects of all frequencies on the dispersion and attenuation of seismic wave. A 25-point weighted-averaging finite different scheme is proposed to discretize the equations. For the finite model, the perfectly matched layer technique is applied at the model boundaries. We validated the proposed algorithm by testing three numerical examples of poroelastic models, which are homogenous, two-layered and heterogeneous with different fluids, respectively. The testing results are encouraging in the aspects of both computational accuracy and efficiency.
NASA Astrophysics Data System (ADS)
Duan, Taizhong; Griffiths, Cedric M.; Johnsen, Sverre O.
1999-07-01
An attributed controlled grammar (ACG) has been formally used to represent the parasequences of a clastic shallow-marine system. The lithofacies distribution has been conditionally simulated in two dimensions using the ACG. In knowledge representation, the ACG has been shown to have several advantages over context-free, programmed and attributed grammars. The ACG for the parasequences is manually constructed by domain experts based on a conditioning dataset, combined with related sedimentological knowledge. The dataset includes several geological sections measured from outcrops and interpreted from boreholes. A parasequence is decomposed into coastal plain, foreshore, upper shoreface, lower shoreface and offshore facies tracts and their boundaries. Within each tract, lithofacies distribution is described by the facies transition relationship, which can be constructed directly from the dataset and adjusted in terms of related sedimentological knowledge. The boundaries between the tracts are represented by point chains, whereas the facies transitions are controlled by a transitional probability matrix and both vertical and horizontal extensions of the corresponding lithofacies. The simulation results show the following features: (1) the simulation honors the conditioning dataset, (2) the lithofacies distribution simulated from the ACG shows increased variability compared to traditional interpolations between geological sections and (3) the simulated lithofacies distribution is controlled mainly by the uncertainty of the vertical and horizontal extension of each lithofacies, which cannot usually be obtained directly from the conditional dataset, and is not formally considered in traditional geological correlation and interpretation. Work is underway to quantify such lateral and vertical extension in present-day systems.
Simulation of three-component fluid flows using the multiphase lattice Boltzmann flux solver
NASA Astrophysics Data System (ADS)
Shi, Y.; Tang, G. H.; Wang, Y.
2016-06-01
In this work, we extend the multiphase lattice Boltzmann flux solver, which was proposed in [1] for simulating incompressible flows of binary fluids based on two-component Cahn-Hilliard model, to three-component fluid flows. In the present method, the multiphase lattice Boltzmann flux solver is applied to solve for the flow field and the three-component Cahn-Hilliard model is used to predict the evolution of the interfaces. The proposed method is first validated through the classical problem of simulation of partial spreading of a liquid lens between the other two components. Numerical results of interface shapes and contact angles agree well with theoretical solutions. After that, to further demonstrate the capability of the present method, several numerical examples of three-component fluid flows are presented, including a bubble rising across a fluid-fluid interface, single droplet falling through a fluid-fluid interface, the collision-coalescence of two droplets, and the non-contact collision of two droplets. It is shown that the present method can successfully handle complex interactions among three components.
3D two-fluid simulations of turbulence in LAPD
NASA Astrophysics Data System (ADS)
Fisher, Dustin M.
The Large Plasma Device (LAPD) is modeled using a modified version of the 3D Global Braginskii Solver code (GBS) for a nominal Helium plasma. The unbiased low-flow regime is explored in simulations where there is an intrinsic E x B rotation of the plasma. In the simulations this rotation is caused primarily by sheath effects with the Reynolds stress and J x B torque due to a cross-field Pederson conductivity having little effect. Explicit biasing simulations are also explored for the first time where the intrinsic rotation of the plasma is modified through boundary conditions that mimic the biasable limiter used in LAPD. Comparisons to experimental measurements in the unbiased case show strong qualitative agreement with the data, particularly the radial dependence of the density fluctuations, cross-correlation lengths, radial flux dependence outside of the cathode edge, and camera imagery. Kelvin Helmholtz (KH) turbulence at relatively large scales is the dominant driver of cross-field transport in these simulations with smaller-scale drift waves and sheath modes playing a secondary role. Plasma holes and blobs arising from KH vortices are consistent with the scale sizes and overall appearance of those in LAPD camera images. The addition of ion-neutral collisions in the unbiased simulations at previously theorized values reduces the radial particle flux due to a modest stabilizing contribution of the collisions on the KH-modes driving the turbulent transport. In the biased runs the ion-neutral collisions have a much smaller effect due to the modification of the potential from sheath terms. In biasing the plasma to increase the intrinsic rotation, simulations show the emergence of a nonlinearly saturated coherent mode of order m = 6. In addition, the plasma inside of the cathode edge becomes quiescent due to the strong influence of the wall bias in setting up the equilibrium plasma potential. Biasing in the direction opposite to the intrinsic flow reduces the
NASA Technical Reports Server (NTRS)
Simanonok, K. E.; Srinivasan, R.; Charles, J. B.
1992-01-01
Fluid shifts in weightlessness may cause a central volume expansion, activating reflexes to reduce the blood volume. Computer simulation was used to test the hypothesis that preadaptation of the blood volume prior to exposure to weightlessness could counteract the central volume expansion due to fluid shifts and thereby attenuate the circulatory and renal responses resulting in large losses of fluid from body water compartments. The Guyton Model of Fluid, Electrolyte, and Circulatory Regulation was modified to simulate the six degree head down tilt that is frequently use as an experimental analog of weightlessness in bedrest studies. Simulation results show that preadaptation of the blood volume by a procedure resembling a blood donation immediately before head down bedrest is beneficial in damping the physiologic responses to fluid shifts and reducing body fluid losses. After ten hours of head down tilt, blood volume after preadaptation is higher than control for 20 to 30 days of bedrest. Preadaptation also produces potentially beneficial higher extracellular volume and total body water for 20 to 30 days of bedrest.
Zhong, L; Oostrom, M; Wietsma, T W; Covert, M A
2008-10-23
Low-permeability zones are typically bypassed when remedial fluids are injected into subsurface heterogeneous aquifer systems. Therefore, contaminants in the bypassed areas may not be contacted by the amendments in the remedial fluid, which may significantly prolong remediation operations. Laboratory experiments and numerical studies have been conducted to investigate the use of a shear-thinning polymer (Xanthan gum) to improve access to low-permeability zones in heterogeneous systems. The chemicals sodium mono-phosphate and the surfactant MA-80 were used as the remedial amendments. The impact of polymer concentration, fluid injection rate, and permeability contrast in the heterogeneous systems has been studied in a series of eleven two-dimensional flow cell experiments. The Subsurface Transport over Multiple Phases (STOMP) simulator was modified to include polymer-induced shear-thinning effects. The experimental and simulation results clearly show that using the polymer leads to an enhanced delivery of remedial amendments to lower-permeability zones and an increased sweeping efficiency. An added benefit of using the polymer is the stabilization of the displacing front when density differences exist between displaced and displacing fluids. The modified STOMP simulator was able to predict the experimental observed fluid displacing behavior well and might be used to predict subsurface remediation performance when a shear-thinning fluid is used to remediate a heterogeneous system at larger scales.
Kowalik, Bartosz; Winkler, Roland G
2013-03-14
The structural, dynamical, and rheological properties are studied of a multiparticle collision dynamics (MPC) fluid composed of shear-thinning Gaussian dumbbells. MPC is a mesoscale hydrodynamic simulation technique, which has successfully been applied in simulations of a broad range of complex fluids with Newtonian solvent. The MPC particles are replaced by Gaussian dumbbells, where we enforce a constant mean square length even under nonequilibrium conditions, which leads to shear thinning. This conserves the simplicity and efficiency of the original MPC fluid dynamics, since the analytical solution is known of Newton's equations of motion of the Gaussian dumbbells. Moreover, analytically obtained nonequilibrium structural, dynamical, and rheological properties are presented of Gaussian dumbbells under shear flow within the preaveraging approximation of hydrodynamic interactions. The comparison of the analytical and simulation results shows good agreement, with small deviations only due to the preaveraging approximation. In particular, we observe shear thinning and a nonzero second normal stress coefficient.
Majorczyk, Vincent; Cotin, Stéphane; Duriez, Christian; Allard, Jeremie
2013-01-01
We present a method to simulate the outcome of reconstructive facial surgery based on fat-filling. Facial anatomy is complex: the fat is constrained between layers of tissues which behave as walls along the face; in addition, connective tissues that are present between these different layers also influence the fat-filling procedure. To simulate the end result, we propose a method which couples a 2.5D Eulerian fluid model for the fat and a finite element model for the soft tissues. The two models are coupled using the computation of the mechanical compliance matrix. Two contributions are presented in this paper: a solver for fluids which couples properties of solid tissues and fluid pressure, and an application of this solver to fat-filling surgery procedure simulation. PMID:24505774
Drysdale, Mallory; Ljung Bjorklund, Karin; Jamieson, Heather E; Weinstein, Philip; Cook, Angus; Watkins, Ron T
2012-04-01
Simulated lung fluids are solutions designed to mimic the composition of human interstitial lung fluid as closely as possible. Analysis of mineral dusts using such solutions has been used to evaluate the respiratory bioaccessibility of various elements for which solubility in the lungs is a primary determinant of reactivity. The objective of this study was to employ simulated lung fluid analysis to investigate the respiratory bioaccessibility of nickel in soils. Current occupational guidelines in Australia regulate nickel compounds in terms of water solubility, though this may not be an accurate estimation of the total nickel that will dissociate in the lungs. Surface soils were collected from the city of Kalgoorlie in Western Australia, the site of an operational nickel smelter and metal mining activities. The fraction of the samples less than 10 μm was extracted from the soil, and it was this sub-10-μm fraction that was found to hold most of the total nickel present in the soil. The fine fraction was analyzed using a simulated lung fluid (modified Gamble's solution) to isolate the nickel phases soluble in the lungs. In addition, a sequential extraction was employed to compare the bioaccessible fraction to those dissolved from different binding forms in the soil. In all samples, the simulated lung fluid extracted more nickel than the two weakest leaches of the sequential extraction combined, providing a more representative nickel bioaccessibility value than the current water leach method.
Fluid models and simulations of biological cell phenomena
NASA Technical Reports Server (NTRS)
Greenspan, H. P.
1982-01-01
The dynamics of coated droplets are examined within the context of biofluids. Of specific interest is the manner in which the shape of a droplet, the motion within it as well as that of aggregates of droplets can be controlled by the modulation of surface properties and the extent to which such fluid phenomena are an intrinsic part of cellular processes. From the standpoint of biology, an objective is to elucidate some of the general dynamical features that affect the disposition of an entire cell, cell colonies and tissues. Conventionally averaged field variables of continuum mechanics are used to describe the overall global effects which result from the myriad of small scale molecular interactions. An attempt is made to establish cause and effect relationships from correct dynamical laws of motion rather than by what may have been unnecessary invocation of metabolic or life processes. Several topics are discussed where there are strong analogies droplets and cells including: encapsulated droplets/cell membranes; droplet shape/cell shape; adhesion and spread of a droplet/cell motility and adhesion; and oams and multiphase flows/cell aggregates and tissues. Evidence is presented to show that certain concepts of continuum theory such as suface tension, surface free energy, contact angle, bending moments, etc. are relevant and applicable to the study of cell biology.
Development of Efficient Real-Fluid Model in Simulating Liquid Rocket Injector Flows
NASA Technical Reports Server (NTRS)
Cheng, Gary; Farmer, Richard
2003-01-01
The characteristics of propellant mixing near the injector have a profound effect on the liquid rocket engine performance. However, the flow features near the injector of liquid rocket engines are extremely complicated, for example supercritical-pressure spray, turbulent mixing, and chemical reactions are present. Previously, a homogeneous spray approach with a real-fluid property model was developed to account for the compressibility and evaporation effects such that thermodynamics properties of a mixture at a wide range of pressures and temperatures can be properly calculated, including liquid-phase, gas- phase, two-phase, and dense fluid regions. The developed homogeneous spray model demonstrated a good success in simulating uni- element shear coaxial injector spray combustion flows. However, the real-fluid model suffered a computational deficiency when applied to a pressure-based computational fluid dynamics (CFD) code. The deficiency is caused by the pressure and enthalpy being the independent variables in the solution procedure of a pressure-based code, whereas the real-fluid model utilizes density and temperature as independent variables. The objective of the present research work is to improve the computational efficiency of the real-fluid property model in computing thermal properties. The proposed approach is called an efficient real-fluid model, and the improvement of computational efficiency is achieved by using a combination of a liquid species and a gaseous species to represent a real-fluid species.
Sensitivity analysis of left ventricle with dilated cardiomyopathy in fluid structure simulation.
Chan, Bee Ting; Abu Osman, Noor Azuan; Lim, Einly; Chee, Kok Han; Abdul Aziz, Yang Faridah; Abed, Amr Al; Lovell, Nigel H; Dokos, Socrates
2013-01-01
Dilated cardiomyopathy (DCM) is the most common myocardial disease. It not only leads to systolic dysfunction but also diastolic deficiency. We sought to investigate the effect of idiopathic and ischemic DCM on the intraventricular fluid dynamics and myocardial wall mechanics using a 2D axisymmetrical fluid structure interaction model. In addition, we also studied the individual effect of parameters related to DCM, i.e. peak E-wave velocity, end systolic volume, wall compliance and sphericity index on several important fluid dynamics and myocardial wall mechanics variables during ventricular filling. Intraventricular fluid dynamics and myocardial wall deformation are significantly impaired under DCM conditions, being demonstrated by low vortex intensity, low flow propagation velocity, low intraventricular pressure difference (IVPD) and strain rates, and high-end diastolic pressure and wall stress. Our sensitivity analysis results showed that flow propagation velocity substantially decreases with an increase in wall stiffness, and is relatively independent of preload at low-peak E-wave velocity. Early IVPD is mainly affected by the rate of change of the early filling velocity and end systolic volume which changes the ventriculo:annular ratio. Regional strain rate, on the other hand, is significantly correlated with regional stiffness, and therefore forms a useful indicator for myocardial regional ischemia. The sensitivity analysis results enhance our understanding of the mechanisms leading to clinically observable changes in patients with DCM. PMID:23825628
Supercritical fluid extraction of chemical warfare agent simulants from soil.
Griest, W H; Ramsey, R S; Ho, C H; Caldwell, W M
1992-05-29
Chemical warfare agent simulants are efficiently recovered from 2-ppm spikes in 1 g of Rocky Mountain Arsenal Standard Soil using methanol-carbon dioxide (5:95) at 300 atm for 2 min at 60 degrees C. Recoveries (n = 3) were 79 +/- 23% for dimethylmethylphosphonate, 93 +/- 14% for 2-chloroethylethyl sulfide, 92 +/- 13% for diisopropylfluorophosphate and 95 +/- 17% for diisopropylmethylphosphonate. Recoveries are higher than, but less precise than those achieved from a 5-min ultrasonic micro-scale extraction using methanol. Much less laboratory waste is generated than the current standard organic solvent extraction method (33 g of soil shaken with 100 ml of chloroform). PMID:1400849
Sediment Transport Simulations Coupling DEM with RANS Fluid Solver in Multi- dimensions
NASA Astrophysics Data System (ADS)
Calantoni, J.; Torres-Freyermuth, A.; Hsu, T.
2008-12-01
Multiphase simulations of the sediment-water interface in a wave bottom boundary layer are accomplished by using a Reynolds averaged Navier Stokes (RANS) fluid solver for water motions coupled to the discrete element method (DEM) for modeling the motions of individual sediment grains. Turbulence closure in the ensemble-averaged fluid-phase equations uses balance equations for fluid turbulent kinetic energy and its dissipation rate. Both 1DV and 2DV implementations of the RANS fluid solver have been coupled to the DEM. In both cases, the DEM is fully three-dimensional where sediment particles have spherical shape and point contacts are assumed with normal and tangential forces at the contact point between particle pairs modeled with springs and friction, respectively. Coupling between sediment-water phases varies from simple one-way coupling where fluid drives sediment motions with no feedback from the sediment, up to fully coupled continuity equations and turbulence closure as well as in the fluid momentum equations where Newton's Third Law is strictly enforced at every fluid time step. Fluid-particle interaction forces include drag, added mass, pressure gradient forces, and turbulent suspension implemented through an eddy-particle interaction model based on a random walk. The 1DV DEM-RANS coupled model was used to simulate sheet flow transport conditions under oscillatory flows. The 2DV DEM-RANS coupled model was used to simulate suspension and transport over small-scale sand ripples. For all cases, the DEM used coarse to fine (0.4 mm - 0.2 mm diameter) sized sediments where grain-grain interactions model viscous dissipation through an effective coefficient of restitution as a function of the collisional Stokes number estimated from published laboratory measurements of particle-particle and particle-wall collisions. Initial comparisons were made with laboratory U-tube measurements for bulk transport rates and time-dependent concentration profiles for sheet flow
NASA Astrophysics Data System (ADS)
Fiantini, Rosalina; Umar, Efrizon
2010-06-01
Common energy crisis has modified the national energy policy which is in the beginning based on natural resources becoming based on technology, therefore the capability to understanding the basic and applied science is needed to supporting those policies. National energy policy which aims at new energy exploitation, such as nuclear energy is including many efforts to increase the safety reactor core condition and optimize the related aspects and the ability to build new research reactor with properly design. The previous analysis of the modification TRIGA 2000 Reactor design indicates that forced convection of the primary coolant system put on an effect to the flow characteristic in the reactor core, but relatively insignificant effect to the flow velocity in the reactor core. In this analysis, the lid of reactor core is closed. However the forced convection effect is still presented. This analysis shows the fluid flow velocity vector in the model area without exception. Result of this analysis indicates that in the original design of TRIGA 2000 reactor, there is still forced convection effects occur but less than in the modified TRIGA 2000 design.
Fiantini, Rosalina; Umar, Efrizon
2010-06-22
Common energy crisis has modified the national energy policy which is in the beginning based on natural resources becoming based on technology, therefore the capability to understanding the basic and applied science is needed to supporting those policies. National energy policy which aims at new energy exploitation, such as nuclear energy is including many efforts to increase the safety reactor core condition and optimize the related aspects and the ability to build new research reactor with properly design. The previous analysis of the modification TRIGA 2000 Reactor design indicates that forced convection of the primary coolant system put on an effect to the flow characteristic in the reactor core, but relatively insignificant effect to the flow velocity in the reactor core. In this analysis, the lid of reactor core is closed. However the forced convection effect is still presented. This analysis shows the fluid flow velocity vector in the model area without exception. Result of this analysis indicates that in the original design of TRIGA 2000 reactor, there is still forced convection effects occur but less than in the modified TRIGA 2000 design.
Simulation of Flow Fluid in the BOF Steelmaking Process
NASA Astrophysics Data System (ADS)
Lv, Ming; Zhu, Rong; Guo, Ya-Guang; Wang, Yong-Wei
2013-12-01
The basic oxygen furnace (BOF) smelting process consists of different chemical reactions among oxygen, slag, and molten steel, which engenders a vigorous stirring process to promote slagging, dephosphorization, decarbonization, heating of molten steel, and homogenization of steel composition and temperature. Therefore, the oxygen flow rate, lance height, and slag thickness vary during the smelting process. This simulation demonstrated a three-dimensional mathematical model for a 100 t converter applying four-hole supersonic oxygen lance and simulated the effect of oxygen flow rate, lance height, and slag thickness on the flow of molten bath. It is found that as the oxygen flow rate increases, the impact area and depth increases, which increases the flow speed in the molten bath and decreases the area of dead zone. Low oxygen lance height benefits the increase of impact depth and accelerates the flow speed of liquid steel on the surface of the bath, while high oxygen lance height benefits the increase of impact area, thereafter enhances the uniform distribution of radial velocity in the molten steel and increases the flow velocity of molten steel at the bottom of furnace hearth. As the slag thickness increases, the diameter of impinging cavity on the slag and steel surface decreases. The radial velocity of liquid steel in the molten bath is well distributed when the jet flow impact on the slag layer increases.
Hydrothermal fluid flow and deformation in large calderas: Inferences from numerical simulations
Hurwitz, S.; Christiansen, L.B.; Hsieh, P.A.
2007-01-01
Inflation and deflation of large calderas is traditionally interpreted as being induced by volume change of a discrete source embedded in an elastic or viscoelastic half-space, though it has also been suggested that hydrothermal fluids may play a role. To test the latter hypothesis, we carry out numerical simulations of hydrothermal fluid flow and poroelastic deformation in calderas by coupling two numerical codes: (1) TOUGH2 [Pruess et al., 1999], which simulates flow in porous or fractured media, and (2) BIOT2 [Hsieh, 1996], which simulates fluid flow and deformation in a linearly elastic porous medium. In the simulations, high-temperature water (350??C) is injected at variable rates into a cylinder (radius 50 km, height 3-5 km). A sensitivity analysis indicates that small differences in the values of permeability and its anisotropy, the depth and rate of hydrothermal injection, and the values of the shear modulus may lead to significant variations in the magnitude, rate, and geometry of ground surface displacement, or uplift. Some of the simulated uplift rates are similar to observed uplift rates in large calderas, suggesting that the injection of aqueous fluids into the shallow crust may explain some of the deformation observed in calderas.
Use of computational fluid dynamics simulations for design of a pretreatment screw conveyor reactor.
Berson, R Eric; Hanley, Thomas R
2005-01-01
Computational fluid dynamics simulations were employed to compare performance of various designs of a pretreatment screw conveyor reactor. The reactor consisted of a vertical screw used to create cross flow between the upward conveying solids and the downward flow of acid. Simulations were performed with the original screw design and a modified design in which the upper flights of the screw were removed. Results of the simulations show visually that the modified design provided favorable plug flow behavior within the reactor. Pressure drop across the length of the reactor without the upper screws in place was predicted by the simulations to be 5 vs 40 kPa for the original design.
Simulation Study of Micro Particles Behavior in Fluid Flow Using Lattice Boltzmann Method
NASA Astrophysics Data System (ADS)
Miyoshi, T.; Yamada, Y.; Matsuoka, T.
2004-12-01
Evaluation of underground hydraulic characteristics has been a key issue not only for hydrogeology but for various fields of geo-engineering. We have been investigating hydraulic properties, such as permeability, of fractures and porous rocks using a 3D lattice Boltzmann method (LBM) for recent several years. In this paper, we propose a coupling method of LBM and DEM (distinct element method) to incorporate dynamic interaction of fluid flow and particles. This coupling technique brings new insights into the effect of micro particles in the hydraulic properties, such that migration and sedimentation of solid particles remarkably decreases permeability. We present two simulation examples; I) sedimentation of micro particles by the gravity in dead water, II) behaviour of micro particles in fluid flow through a porous media. In the simulation-I, surface geometry of the particle assembly shows a gentle 'sag' with a subtle subsidence at its center, suggesting that the upward fluid expulsion causes slightly uplifted geometry. Such geometry of particles can be commonly seen in natural sedimentary rocks that deformed due to fluid expulsion at its unconsolidated stages. The simulation-II clearly showed some conditions of pore throat plugging by the micro particles. The fluid flow pattern should be significantly affected by the moving particles, as well as the pressure difference (an input parameter). The percolation distance of solid particles was well controlled with the pressure difference and throat geometries. We concluded that the coupling simulation of LBM and DEM has extremely high potential to investigate the behavior of solid and fluid interactions. The technique can simulate permeability changes precisely, that are affected by dynamic or physical factors such as compaction. Fluid flow simulations with the technique can be directly applied for plugging of solid particles within a reservoir, which is significant for petroleum production and drill-hole completion. The
Stokesian Dynamic Simulations of Colloid Assembly at a Fluid Interface
NASA Astrophysics Data System (ADS)
Dani, Archit; Maldarelli, Charles
2015-11-01
The collective dynamics and self-assembly of colloids floating at a gas/liquid or a liquid/liquid interface is a balance between deterministic lateral interaction forces, e.g. capillary attraction and dipolar electrostatic repulsion if the particles are charged, viscous resistance to colloid motion along the surface and thermal fluctuations. As the colloid size decreases, thermal (Brownian) forces become important and can affect the self assembly into ordered patterns and crystal structures that are the starting point for materials applications. Stokesian dynamics simulations are presented to describe the lateral organization of particles along the surface in Brownian dominated regimes that includes (using a pairwise approximation) capillary attraction and the hydrodynamic interaction between particles (incorporating the effect of the particle immersion depth) and thermal fluctuations. Clustering, fractal growth and particle ordering are observed at critically large values of the Peclet numbers, while smaller values yield states in which particles remain uncorrelated in space and more widely separated.
NASA Astrophysics Data System (ADS)
Yoon, Jeoung Seok; Zang, Arno; Zimmermann, Günter; Stephansson, Ove
2016-04-01
Operation of fluid injection into and withdrawal from the subsurface for various purposes has been known to induce earthquakes. Such operations include hydraulic fracturing for shale gas extraction, hydraulic stimulation for Enhanced Geothermal System development and waste water disposal. Among these, several damaging earthquakes have been reported in the USA in particular in the areas of high-rate massive amount of wastewater injection [1] mostly with natural fault systems. Oil and gas production have been known to induce earthquake where pore fluid pressure decreases in some cases by several tens of Mega Pascal. One recent seismic event occurred in November 2013 near Azle, Texas where a series of earthquakes began along a mapped ancient fault system [2]. It was studied that a combination of brine production and waste water injection near the fault generated subsurface pressures sufficient to induced earthquakes on near-critically stressed faults. This numerical study aims at investigating the occurrence mechanisms of such earthquakes induced by fluid injection [3] and withdrawal by using hydro-geomechanical coupled dynamic simulator (Itasca's Particle Flow Code 2D). Generic models are setup to investigate the sensitivity of several parameters which include fault orientation, frictional properties, distance from the injection well to the fault, amount of fluid withdrawal around the injection well, to the response of the fault systems and the activation magnitude. Fault slip movement over time in relation to the diffusion of pore pressure is analyzed in detail. Moreover, correlations between the spatial distribution of pore pressure change and the locations of induced seismic events and fault slip rate are investigated. References [1] Keranen KM, Weingarten M, Albers GA, Bekins BA, Ge S, 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science 345, 448, DOI: 10.1126/science.1255802. [2] Hornbach MJ, DeShon HR
Yang, Li-Ming; Dornfeld, Matthew; Frauenheim, Thomas; Ganz, Eric
2015-10-21
We predict a highly stable and robust atomically thin gold monolayer with a hexagonal close packed lattice stabilized by metallic bonding with contributions from strong relativistic effects and aurophilic interactions. We have shown that the framework of the Au monolayer can survive 10 ps MD annealing simulations up to 1400 K. The framework is also able to survive large motions out of the plane. Due to the smaller number of bonds per atom in the 2D layer compared to the 3D bulk we observe significantly enhanced energy per bond (0.94 vs. 0.52 eV per bond). This is similar to the increase in bond strength going from 3D diamond to 2D graphene. It is a non-magnetic metal, and was found to be the global minima in the 2D space. Phonon dispersion calculations demonstrate high kinetic stability with no negative modes. This 2D gold monolayer corresponds to the top monolayer of the bulk Au(111) face-centered cubic lattice. The close-packed lattice maximizes the aurophilic interactions. We find that the electrons are completely delocalized in the plane and behave as 2D nearly free electron gas. We hope that the present work can inspire the experimental fabrication of novel free standing 2D metal systems.
Methods for simulation-based analysis of fluid-structure interaction.
Barone, Matthew Franklin; Payne, Jeffrey L.
2005-10-01
Methods for analysis of fluid-structure interaction using high fidelity simulations are critically reviewed. First, a literature review of modern numerical techniques for simulation of aeroelastic phenomena is presented. The review focuses on methods contained within the arbitrary Lagrangian-Eulerian (ALE) framework for coupling computational fluid dynamics codes to computational structural mechanics codes. The review treats mesh movement algorithms, the role of the geometric conservation law, time advancement schemes, wetted surface interface strategies, and some representative applications. The complexity and computational expense of coupled Navier-Stokes/structural dynamics simulations points to the need for reduced order modeling to facilitate parametric analysis. The proper orthogonal decomposition (POD)/Galerkin projection approach for building a reduced order model (ROM) is presented, along with ideas for extension of the methodology to allow construction of ROMs based on data generated from ALE simulations.
Molecular simulation of pressure-driven fluid flow in nanoporous membranes
NASA Astrophysics Data System (ADS)
Takaba, Hiromitsu; Onumata, Yasushi; Nakao, Shin-ichi
2007-08-01
An extended nonequilibrium molecular dynamics technique has been developed to investigate the transport properties of pressure-driven fluid flow in thin nanoporous membranes. Our simulation technique allows the simulation of the pressure-driven permeation of liquids through membranes while keeping a constant driving pressure using fluctuating walls. The flow of argon in the liquid state was simulated on applying an external pressure difference of 2.4×106Pa through the slitlike and cylindrical pores. The volume flux and velocity distribution in the membrane pores were examined as a function of pore size, along with the interaction with the pore walls, and these were compared with values estimated using the Hagen-Poiseuille flow. The calculated velocity strongly depends on the strength of the interaction between the fluid and the atoms in the wall when the pore size is approximately <20σ. The calculated volume flux also shows a dependence on the interaction between the fluid and the atoms in the wall. The Hagen-Poiseuille law overestimates or underestimates the flux depending on the interaction. From the analysis of calculated results, a good linear correlation between the density of the fluid in the membrane pores and the deviation of the flux estimated from the Hagen-Poiseuille flow was found. This suggests that the flux deviation in nanopore from the Hagen-Poiseuille flow can be predicted based on the fluid density in the pores.
NASA Astrophysics Data System (ADS)
Rafiee Dastjerdi, S.; Ghanaatshoar, M.
2013-08-01
A finite difference time domain method based on regular Yee's algorithm in an orthogonal coordinate system is utilized to calculate the band structure of a two-dimensional square-lattice photonic crystal comprising dielectric cylinders in air background and to simulate the image formation of mentioned structure incorporating the perfectly matched layer boundary condition. By analyzing the photonic band diagram of this system, we find that the frequency region of effective negative refraction exists in the second band in near-infrared domain. In this case, electromagnetic wave propagates with a negative phase velocity and the evanescent waves can be supported to perform higher image resolution.
Brownian dynamics simulations of DNA in fluid flow
NASA Astrophysics Data System (ADS)
Larson, Ronald
2002-03-01
Recent advances in single-molecule imaging methods applied to DNA molecules in flow (Smith and Chu 1998) and advances in computer speed have allowed detailed comparisons to be made between observed and predicted behavior of polymeric DNA molecules in simple flows. These have shown that the conformations and rheology of DNA molecules in bulk solution can be predicted with high accuracy by Brownian dynamics simulations using bead-spring or bead-rod course-grained models (Larson et al. 1999; Hur et al. 2000). A logical next step is to extend these methods to the interactions of flowing DNA polymers with surfaces, which are of importance in the development of microfluidic devices for processing of DNA and other large molecules for genomics, bio-assays, combinatorial polymer science, etc. Using single-molecule experiments and Brownian dynamics simulations we consider isolated DNA molecules near adsorbing and non-adsorbing walls in the presence of a simple shearing flow and in an evaporating droplet. The former flow is predicted to produce highly stretched adsorbed molecules due to the prevalence of end-sticking, following by regular unraveling from one end to the other and laying down of the molecule onto the surface. In the drying-droplet flow, this process is inhibited by the downward convection, which drives the molecule towards the surface, resulting in complete adhesion before unraveling is complete. Experimental studies using surfaces treated with APTES (3-aminopropyltriethoxysilane) to produce strong sticking of DNA confirm the Brownian dynamics predictions for the drying flow containing DNA. In simple shearing flow, an unusual, and unexplained, interaction of DNA with the surface inhibits stretching, at distances as great as 20 microns from the surface. 1) Hur, J.S., Shaqfeh, E.S.G., and Larson, R.G., J. Rheol., 44:713 (2000). 2) Larson, R.G., Hu, H., Smith, D.E., and Chu, S. J. Rheol., 43:267 (1999). 3) Smith, D.E., and Chu, S., Science, 281:1335 (1998).
Artificial Fluid Properties for Large-Eddy Simulation of Compressible Turbulent Mixing
Cook, A W
2007-01-08
An alternative methodology is described for Large-Eddy Simulation of flows involving shocks, turbulence and mixing. In lieu of filtering the governing equations, it is postulated that the large-scale behavior of an ''LES'' fluid, i.e., a fluid with artificial properties, will be similar to that of a real fluid, provided the artificial properties obey certain constraints. The artificial properties consist of modifications to the shear viscosity, bulk viscosity, thermal conductivity and species diffusivity of a fluid. The modified transport coefficients are designed to damp out high wavenumber modes, close to the resolution limit, without corrupting lower modes. Requisite behavior of the artificial properties is discussed and results are shown for a variety of test problems, each designed to exercise different aspects of the models. When combined with a 10th-order compact scheme, the overall method exhibits excellent resolution characteristics for turbulent mixing, while capturing shocks and material interfaces in crisp fashion.
Artificial fluid properties for large-eddy simulation of compressible turbulent mixing
NASA Astrophysics Data System (ADS)
Cook, Andrew W.
2007-05-01
An alternative methodology is described for large-eddy simulation (LES) of flows involving shocks, turbulence, and mixing. In lieu of filtering the governing equations, it is postulated that the large-scale behavior of a LES fluid, i.e., a fluid with artificial properties, will be similar to that of a real fluid, provided the artificial properties obey certain constraints. The artificial properties consist of modifications to the shear viscosity, bulk viscosity, thermal conductivity, and species diffusivity of a fluid. The modified transport coefficients are designed to damp out high wavenumber modes, close to the resolution limit, without corrupting lower modes. Requisite behavior of the artificial properties is discussed and results are shown for a variety of test problems, each designed to exercise different aspects of the models. When combined with a tenth-order compact scheme, the overall method exhibits excellent resolution characteristics for turbulent mixing, while capturing shocks and material interfaces in a crisp fashion.
Ghorbani-Asl, Mahdi; Juarez-Mosqueda, Rosalba; Kuc, Agnieszka; Heine, Thomas
2012-08-14
Molecular dynamics simulations using quantum mechanics for the electronic system, i.e., within the Born-Oppenheimer or related Car-Parrinello approximation, became feasible and popular in recent years for very large systems. The most common setup for these simulations is the supercell method in conjunction with the Γ-point approximation. Here we provide a tool which is useful to choose the supercell of the considered system such that it makes it appear to have either an as large as possible band gap (optimized for Car-Parrinello setup) or the metallic character reflected at the Γ point (e.g., fold the Dirac point to the Γ point for graphene and carbon nanotubes) in order to monitor the metallic character in a trajectory. We address carbon nanotubes, graphene, and inorganic TS2 analogues with T = Re, Nb. We further provide a simple Hückel code, which allows checking the electronic states close to the Fermi level within the Γ-point approximation, and we test its predictions against the density-functional-based tight-binding approach.
Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation
Tchelepi, Hamdi
2014-11-14
A multiscale linear-solver framework for the pressure equation associated with flow in highly heterogeneous porous formations was developed. The multiscale based approach is cast in a general algebraic form, which facilitates integration of the new scalable linear solver in existing flow simulators. The Algebraic Multiscale Solver (AMS) is employed as a preconditioner within a multi-stage strategy. The formulations investigated include the standard MultiScale Finite-Element (MSFE) andMultiScale Finite-Volume (MSFV) methods. The local-stage solvers include incomplete factorization and the so-called Correction Functions (CF) associated with the MSFV approach. Extensive testing of AMS, as an iterative linear solver, indicate excellent convergence rates and computational scalability. AMS compares favorably with advanced Algebraic MultiGrid (AMG) solvers for highly detailed three-dimensional heterogeneous models. Moreover, AMS is expected to be especially beneficial in solving time-dependent problems of coupled multiphase flow and transport in large-scale subsurface formations.
Developing highly scalable fluid solvers for enabling multiphysics simulation.
Clausen, Jonathan R
2013-03-01
We performed an investigation into explicit algorithms for the simulation of incompressible flows using methods with a finite, but small amount of compressibility added. Such methods include the artificial compressibility method and the lattice-Boltzmann method. The impetus for investigating such techniques stems from the increasing use of parallel computation at all levels (processors, clusters, and graphics processing units). Explicit algorithms have the potential to leverage these resources. In our investigation, a new form of artificial compressibility was derived. This method, referred to as the Entropically Damped Artificial Compressibility (EDAC) method, demonstrated superior results to traditional artificial compressibility methods by damping the numerical acoustic waves associated with these methods. Performance nearing that of the lattice- Boltzmann technique was observed, without the requirement of recasting the problem in terms of particle distribution functions; continuum variables may be used. Several example problems were investigated using a finite-di erence and finite-element discretizations of the EDAC equations. Example problems included lid-driven cavity flow, a convecting Taylor-Green vortex, a doubly periodic shear layer, freely decaying turbulence, and flow over a square cylinder. Additionally, a scalability study was performed using in excess of one million processing cores. Explicit methods were found to have desirable scaling properties; however, some robustness and general applicability issues remained.
Comparative study of the biodegradability of porous silicon films in simulated body fluid.
Peckham, J; Andrews, G T
2015-01-01
The biodegradability of oxidized microporous, mesoporous and macroporous silicon films in a simulated body fluid with ion concentrations similar to those found in human blood plasma were studied using gravimetry. Film dissolution rates were determined by periodically weighing the samples after removal from the fluid. The dissolution rates for microporous silicon were found to be higher than those for mesoporous silicon of comparable porosity. The dissolution rate of macroporous silicon was much lower than that for either microporous or mesoporous silicon. This is attributed to the fact that its specific surface area is much lower than that of microporous and mesoporous silicon. Using an equation adapted from [Surf. Sci. Lett. 306 (1994), L550-L554], the dissolution rate of porous silicon in simulated body fluid can be estimated if the film thickness and specific surface area are known.
Thermodynamic properties of double square-well fluids: Computer simulations and theory
NASA Astrophysics Data System (ADS)
Solana, J. R.
2008-12-01
Computer simulations have been performed to obtain the thermodynamic properties of fluids with double square-well potentials, that is, potentials consisting of two adjacent square wells with different depths. The compressibility factor, excess energy, chemical potential, constant-volume excess heat capacity, and other derived properties have been obtained. These data have been used to test the performance of several perturbation theories for predicting the thermodynamic properties of this kind of fluids. Good agreement is found on the whole between theory and simulation at supercritical temperatures. The possible presence of anomalous behavior at high densities in the fluids considered has been also analyzed in light of the same theories, with the result that in general, they do not predict such anomalous behavior, with the possible exception of a Monte Carlo-based perturbation theory for relatively large potential widths at high densities and very low temperatures.
Error and Uncertainty Quantification in the Numerical Simulation of Complex Fluid Flows
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
2010-01-01
The failure of numerical simulation to predict physical reality is often a direct consequence of the compounding effects of numerical error arising from finite-dimensional approximation and physical model uncertainty resulting from inexact knowledge and/or statistical representation. In this topical lecture, we briefly review systematic theories for quantifying numerical errors and restricted forms of model uncertainty occurring in simulations of fluid flow. A goal of this lecture is to elucidate both positive and negative aspects of applying these theories to practical fluid flow problems. Finite-element and finite-volume calculations of subsonic and hypersonic fluid flow are presented to contrast the differing roles of numerical error and model uncertainty. for these problems.
Fluid pressure responses for a Devil's Slide-like system: problem formulation and simulation
Thomas, Matthew A.; Loague, Keith; Voss, Clifford I.
2015-01-01
This study employs a hydrogeologic simulation approach to investigate subsurface fluid pressures for a landslide-prone section of the central California, USA, coast known as Devil's Slide. Understanding the relative changes in subsurface fluid pressures is important for systems, such as Devil's Slide, where slope creep can be interrupted by episodic slip events. Surface mapping, exploratory core, tunnel excavation records, and dip meter data were leveraged to conceptualize the parameter space for three-dimensional (3D) Devil's Slide-like simulations. Field observations (i.e. seepage meter, water retention, and infiltration experiments; well records; and piezometric data) and groundwater flow simulation (i.e. one-dimensional vertical, transient, and variably saturated) were used to design the boundary conditions for 3D Devil's Slide-like problems. Twenty-four simulations of steady-state saturated subsurface flow were conducted in a concept-development mode. Recharge, heterogeneity, and anisotropy are shown to increase fluid pressures for failure-prone locations by up to 18.1, 4.5, and 1.8% respectively. Previous estimates of slope stability, driven by simple water balances, are significantly improved upon with the fluid pressures reported here. The results, for a Devil's Slide-like system, provide a foundation for future investigations
Computer simulation studies in fluid and calcium regulation and orthostatic intolerance
NASA Technical Reports Server (NTRS)
1985-01-01
The systems analysis approach to physiological research uses mathematical models and computer simulation. Major areas of concern during prolonged space flight discussed include fluid and blood volume regulation; cardiovascular response during shuttle reentry; countermeasures for orthostatic intolerance; and calcium regulation and bone atrophy. Potential contributions of physiologic math models to future flight experiments are examined.
Determining the pivotal plane of fluid lipid membranes in simulations
NASA Astrophysics Data System (ADS)
Wang, Xin; Deserno, Markus
2015-10-01
Each leaflet of a curved lipid membrane contains a surface at which the area strain vanishes, the so-called pivotal plane. Its distance z0 from the bilayer's midplane arises in numerous contexts, for instance the connection between monolayer and bilayer moduli, stress-profile moments, or area-difference elasticity theories. Here, we propose two precise methods for determining the location of the pivotal plane in computer simulations, both of which rely on monitoring the lipid imbalance across a curved bilayer. The first method considers the ratio of lipid number between the two leaflets of cylindrical or spherical vesicles; it hence requires lipid flip-flop for equilibration. The second method looks at the leaflet difference across local sections cut out from a buckled membrane; this observable equilibrates even in the absence of flip-flop. We apply our methods to two different coarse-grained lipid models, the generic three-bead solvent-free Cooke model and a ten-bead representation of dimyristoylphosphocholine with the explicit solvent MARTINI model. The Cooke model is amenable to both methods and gives results that agree at the percent level. Using it, we also show that the pivotal plane moves outward as lipid curvature becomes more positive. The MARTINI model can only be analyzed with the buckling method; the obtained value z0 = 0.850(11) nm lies about 0.4 nm inwards of the glycerol backbone and is hence unexpectedly small. We attribute this to limitations of the coarse-grained description, suggesting that the location of the pivotal plane might be a good indicator for how well lipid models capture the microscopic origins of curvature elasticity. Finally, we also show that the pivotal plane position itself moves as the membrane is bent. The leading correction is linear in curvature, dependent on the Poisson ratio, and can matter when analyzing experimental results obtained from highly curved inverse hexagonal phases.
NASA Astrophysics Data System (ADS)
Savoini, P.; Lembege, B.
2015-12-01
The ion foreshock located upstream of the Earth's shock wave is populated with ions having interacted with the shock, and then, reflected back with an high energy gain. Spacecrafts have clearly established the existence of two distinct populations in the quasi-perpendicular shock region (i.e. for 45° ≤ ΘBn ≤ 90°, where ΘBn is the angle between the shock normal and the upstream magnetic field) : (i) field-aligned ion beams or « FAB » characterized by a gyrotropic distribution, and (ii) gyro-phase bunched ions or « GPB » characterized by a NON gyrotropic distribution. One of the important unresolved problem is the exact origin of the particles contributing to these two populations. To our knowledge, it was the first time that full-particle simulations have been performed including self-consistently the shock front curvature and nonstationarity, and the time-of-flight effects. Our analysis evidences that these two backstreaming populations may be reflected by the front itself and can be differentiated both in terms of interaction time and trajectory within the shock front. In particular, simulations evidence that "GPB" population is characterized by a short interaction time (ΔTinter = 1 to 2 τci) while the "FAB" population corresponds to a much larger time range (from 1 τci to 10 τci), where tci is the upstream ion gyroperiod. Present individual ion trajectories evidence that "FAB" population shows a strong perpendicular drift at the shock front (i.e. strong dependence of the pitch angle to the perpendicular velocity) whereas the "GPB" population shows no perpendicular drift (i.e. its pitch angle is mainly driven by the parallel velocity). Such differences explain why the "FAB" population loses their gyro-phase coherency and become gyrotropic which is not the case for the "GPB". This important result was not expected and greatly simplifies the question of their origin.
A Numerical Method for Simulating Non-Newtonian Fluid Flow andDisplacement in Porous Media
Wu, Y.S.; Pruess , K.
1996-02-01
Flow and displacement of non-Newtonian fluids in porousmedia occurs in many subsurface systems, related to underground naturalresource recovery and storage projects, as well as environmentalremediation schemes. A thorough understanding of non-Newtonian fluid flowthrough porous media is of fundamental importance in these engineeringapplications. Considerable progress has been made in our understanding ofsingle-phase porous flow behavior of non-Newtonian fluids through manyquantitative and experimental studies over the past few decades. However,very little research can be found in the literature regarding multi-phasenon-Newtonian fluid flow or numerical modeling approaches for suchanalyses.For non-Newtonian fluid flow through porous media, the governingequations become nonlinear, even under single-phase flow conditions,because effective viscosity for the non-Newtonian fluid is a highlynonlinear function of the shear rate, or the pore velocity. The solutionfor such problems can in general only be obtained by numerical methods.Wehave developed a three-dimensional, fully implicit, integral finitedifference simulator for single- and multi-phase flow of non-Newtonianfluids in porous/fractured media. The methodology, architecture andnumerical scheme of the model are based on a general multi-phase,multi-component fluid and heat flow simulator--TOUGH2. Severalrheological models for power-law and Bingham non-Newtonian fluids havebeen incorporated into the model. In addition, the model predictions onsingle- and multi-phase flow of the power-law and Bingham fluids havebeen verified against the analytical solutions available for theseproblems, and in all the cases the numerical simulations are in goodagreement with the analytical solutions. In this presentation, we willdiscuss the numerical scheme used in the treatment of non-Newtonianproperties, and several benchmark problems for model verification.In aneffort to demonstrate the three-dimensional modeling capability of themodel
NASA Technical Reports Server (NTRS)
DiSalvo, Roberto; Deaconu, Stelu; Majumdar, Alok
2006-01-01
One of the goals of this program was to develop the experimental and analytical/computational tools required to predict the flow of non-Newtonian fluids through the various system components of a propulsion system: pipes, valves, pumps etc. To achieve this goal we selected to augment the capabilities of NASA's Generalized Fluid System Simulation Program (GFSSP) software. GFSSP is a general-purpose computer program designed to calculate steady state and transient pressure and flow distributions in a complex fluid network. While the current version of the GFSSP code is able to handle various systems components the implicit assumption in the code is that the fluids in the system are Newtonian. To extend the capability of the code to non-Newtonian fluids, such as silica gelled fuels and oxidizers, modifications to the momentum equations of the code have been performed. We have successfully implemented in GFSSP flow equations for fluids with power law behavior. The implementation of the power law fluid behavior into the GFSSP code depends on knowledge of the two fluid coefficients, n and K. The determination of these parameters for the silica gels used in this program was performed experimentally. The n and K parameters for silica water gels were determined experimentally at CFDRC's Special Projects Laboratory, with a constant shear rate capillary viscometer. Batches of 8:1 (by weight) water-silica gel were mixed using CFDRC s 10-gallon gelled propellant mixer. Prior to testing the gel was allowed to rest in the rheometer tank for at least twelve hours to ensure that the delicate structure of the gel had sufficient time to reform. During the tests silica gel was pressure fed and discharged through stainless steel pipes ranging from 1", to 36", in length and three diameters; 0.0237", 0.032", and 0.047". The data collected in these tests included pressure at tube entrance and volumetric flowrate. From these data the uncorrected shear rate, shear stress, residence time
Global axisymmetric simulations of two-fluid reconnection in an experimentally relevant geometry
Murphy, N. A.; Sovinec, C. R.
2008-04-15
To address the interplay between local and global effects in magnetic reconnection, axisymmetric numerical simulations for the Magnetic Reconnection Experiment [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)] are performed using the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)]. The 'pull' and 'push' modes of the device are simulated both with and without two-fluid effects in the generalized Ohm's law. As in experiment, the pull reconnection rate is slowed due to the presence of downstream pressure associated with the outflow. Effects induced by toroidicity include a radially inward drift of the current sheet during pull reconnection and a radially outward displacement of the X-point during push reconnection. These effects result from the inboard side of the current sheet having less volume than the outboard side, facilitating the formation of large scale pressure gradients since the inboard side is more susceptible to a buildup or depletion of density. Toroidicity also leads to asymmetry of the quadrupole field during two-fluid simulations. During pull reconnection, the outboard lobes of the quadrupole typically peak close to the X-point, whereas the inboard quadrupole lobes peak near the flux core surfaces. At experimentally relevant parameters, the reconnection rate is found to depend more on the mode of operation than on the inclusion of two-fluid effects. The current sheet in two-fluid co-helicity simulations tilts due to a Lorentz force associated with the guide field and the outflowing electrons, resulting in asymmetric flow patterns for both ions and electrons. In two-fluid counter-helicity simulations, the Hall effect leads to a radial shift in position of the X-point and an asymmetric outflow pattern, which is examined in terms of separate force-density contributions. In general, asymmetry due to toroidicity or the Hall effect often leads to uneven outflow, which then feeds back on the reconnection process through large scale
Physics based simulation of seismicity induced in the vicinity of a high-pressure fluid injection
NASA Astrophysics Data System (ADS)
McCloskey, J.; NicBhloscaidh, M.; Murphy, S.; O'Brien, G. S.; Bean, C. J.
2013-12-01
High-pressure fluid injection into subsurface is known, in some cases, to induce earthquakes in the surrounding volume. The increasing importance of ';fracking' as a potential source of hydrocarbons has made the seismic hazard from this effect an important issue the adjudication of planning applications and it is likely that poor understanding of the process will be used as justification of refusal of planning in Ireland and the UK. Here we attempt to understand some of the physical controls on the size and frequency of induced earthquakes using a physics-based simulation of the process and examine resulting earthquake catalogues The driver for seismicity in our simulations is identical to that used in the paper by Murphy et al. in this session. Fluid injection is simulated using pore fluid movement throughout a permeable layer from a high-pressure point source using a lattice Boltzmann scheme. Diffusivities and frictional parameters can be defined independently at individual nodes/cells allowing us to reproduce 3-D geological structures. Active faults in the model follow a fractal size distribution and exhibit characteristic event size, resulting in a power-law frequency-size distribution. The fluid injection is not hydraulically connected to the fault (i.e. fluid does not come into physical contact with the fault); however stress perturbations from the injection drive the seismicity model. The duration and pressure-time function of the fluid injection can be adjusted to model any given injection scenario and the rate of induced seismicity is controlled by the local structures and ambient stress field as well as by the stress perturbations resulting from the fluid injection. Results from the rate and state fault models of Murphy et al. are incorporated to include the effect of fault strengthening in seismically quite areas. Initial results show similarities with observed induced seismic catalogues. Seismicity is only induced where the active faults have not been
A Cryogenic Fluid System Simulation in Support of Integrated Systems Health Management
NASA Technical Reports Server (NTRS)
Barber, John P.; Johnston, Kyle B.; Daigle, Matthew
2013-01-01
Simulations serve as important tools throughout the design and operation of engineering systems. In the context of sys-tems health management, simulations serve many uses. For one, the underlying physical models can be used by model-based health management tools to develop diagnostic and prognostic models. These simulations should incorporate both nominal and faulty behavior with the ability to inject various faults into the system. Such simulations can there-fore be used for operator training, for both nominal and faulty situations, as well as for developing and prototyping health management algorithms. In this paper, we describe a methodology for building such simulations. We discuss the design decisions and tools used to build a simulation of a cryogenic fluid test bed, and how it serves as a core technology for systems health management development and maturation.
Simulating the Rayleigh-Taylor instability in polymer fluids with dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Li, Yanggui; Geng, Xingguo; Zhuang, Xin; Wang, Lihua; Ouyang, Jie
2016-04-01
The Rayleigh-Taylor (RT) instability that occurs in the flow of polymer fluids is numerically investigated with dissipative particle dynamics (DPD) method at the mesoscale particle level. For modeling two-phase flow, the Flory-Huggins parameter is introduced to model binary fluids. And the polymer chains in fluids are described by the modified FENE model that depicts both the elastic tension and the elastic repulsion between the adjacent beads with bond length as the equilibrium length of one segment. Besides, a bead repulsive potential is employed to capture entanglements between polymer chains. Through our model and numerical simulation, we research the dynamics behaviors of the RT instability in polymer fluid medium. Furthermore, we also explore the effects of polymer volume concentration, chain length, and extensibility on the evolution of RT instability. These simulation results show that increasing any of the parameters, concentration, chain length, and extensibility, the saturation length of spikes becomes longer, and the two polymer fluids have less mixture. On the contrary, for the case of low concentration, or short chain, or small extensibility, the spikes easily split and break up, and the RT instability pattern evolves into chaotic structure. These observations indicate that the polymer and its properties drastically modify the RT instability pattern.
Simulation of the droplet-to-bubble transition in a two-fluid system.
Garzon, M; Gray, L J; Sethian, J A
2011-04-01
Recent experiments by Burton and Taborek have demonstrated a droplet-to-bubble transition in the pinchoff behavior of one inviscid fluid inside another. With D the relative densities ρ(E)/ρ(ℑ), they find transition from (D=0) droplet-to-bubble behavior at D≈4. Numerical simulations of this two-fluid system, up to and beyond the initial breakup of the inner fluid, have been carried out utilizing level set and boundary integral methods. A droplet-to-bubble transition is predicted: For D sufficiently large, the volume of the satellite droplet shrinks to zero and there is no overturning of the fluid at separation. The calculated self-similar scaling exponents and the pinchoff region shapes match the known behavior at the droplet and bubble extremes (D=0, D=100). For intermediate D values, the simulations presented here indicate that the transition range between droplet and bubble behavior depends upon initial drop geometry. When the neck separates two nonequal inner fluid masses the transition is mild and occurs in the range 4
NASA Astrophysics Data System (ADS)
Tackley, P. J.
2014-12-01
Here we extend the numerical convection models of Venus models of [1], which included melting, magmatism, decaying heat-producing elements, core cooling, realistic temperature-dependent viscosity and either stagnant lid or episodic lithospheric overturn. In [1] it was found that for stagnant lid convection the dominant mode of heat loss is magmatic heat pipe, which requires massive magmatism and produces very thick, cold crust, inconsistent with observations. In contrast, episodic lid overturn interspersed by periods of quiescence effectively loses Venus's heat while giving lower rates of volcanism and a thinner crust. Calculations predict 5-8 overturn events over Venus's history, each lasting ˜150 Myr, initiating in one place and then spreading globally. Venus-like amplitudes of topography and geoid can be produced in either stagnant or episodic modes, with a viscosity profile that is Earth-like but shifted to higher values. Here we extend [1] by considering intrusive magmatism as an alternative to the purely extrusive magmatism previously assumed. Intrusive magmatism warms and weakens the crust, resulting in substantial surface deformation and a thinner crust. This is further enhanced by using a basaltic rheology for the crust instead of assuming the same rheological parameters as for the mantle. In some cases massive intrusive magmatism can even lead to episodic lithospheric overturn events without plastic yielding. Here we quantitatively analyse the resulting surface deformation and other signatures, and compare to observations in order to constrain the likely ratio of intrusive to extrusive magmatism. [1] Armann, M., and P. J. Tackley (2012), Simulating the thermochemical magmatic and tectonic evolution of Venus's mantle and lithosphere: Two-dimensional models, J. Geophys. Res., 117, E12003, doi:10.1029/2012JE004231.
NASA Astrophysics Data System (ADS)
Tackley, Paul
2015-04-01
Here we extend the numerical convection models of Venus models of [1], which included melting, magmatism, decaying heat-producing elements, core cooling, realistic temperature-dependent viscosity and either stagnant lid or episodic lithospheric overturn. In [1] it was found that for stagnant lid convection the dominant mode of heat loss is magmatic heat pipe, which requires massive magmatism and produces very thick, cold crust, inconsistent with observations. In contrast, episodic lid overturn interspersed by periods of quiescence effectively loses Venus's heat while giving lower rates of volcanism and a thinner crust. Calculations predict 5-8 overturn events over Venus's history, each lasting ˜150 Myr, initiating in one place and then spreading globally. Venus-like amplitudes of topography and geoid can be produced in either stagnant or episodic modes, with a viscosity profile that is Earth-like but shifted to higher values. Here we extend [1] by considering intrusive magmatism as an alternative to the purely extrusive magmatism previously assumed. Intrusive magmatism warms and weakens the crust, resulting in substantial surface deformation and a thinner crust. This is further enhanced by using a basaltic rheology for the crust instead of assuming the same rheological parameters as for the mantle. In some cases massive intrusive magmatism can even lead to episodic lithospheric overturn events without plastic yielding. Here we quantitatively analyse the resulting surface deformation and other signatures, and compare to observations in order to constrain the likely ratio of intrusive to extrusive magmatism. [1] Armann, M., and P. J. Tackley (2012), Simulating the thermochemical magmatic and tectonic evolution of Venus's mantle and lithosphere: Two-dimensional models, J. Geophys. Res., 117, E12003, doi:10.1029/2012JE004231.
NASA Astrophysics Data System (ADS)
Kwon, Deuk-Chul; Song, Mi-Young; Yoon, Jung-Sik
2014-10-01
It is well known that the dielectric relaxation scheme (DRS) can efficiently overcome the limitation on the simulation time step for fluid transport simulations of high density plasma discharges. By imitating a realistic and physical shielding process of electric field perturbation, the DRS overcomes the dielectric limitation on time step. However, the electric field was obtained with assuming the drift-diffusion approximation. Although the drift-diffusion expressions are good approximations for both the electrons and ions at high pressure, the inertial term cannot be neglected in the ion momentum equation for low pressure. Therefore, in this work, we developed the extended DRS by introducing an effective electric field. To compare the extended DRS with the previous method, two-dimensional fluid simulations for inductively coupled plasma discharges were performed. This work was supported by the Industrial Strategic Technology Development Program (10041637, Development of Dry Etch System for 10 nm class SADP Process) funded by the Ministry of Knowledge Economy (MKE, Korea).
Gen Purpose 1-D Finite Element Network Fluid Flow Heat Transfer System Simulator
1993-08-02
SAFSIM (System Analysis Flow Simulator) is a FORTRAN computer program to simulate the integrated performance of systems involving fluid mechanics, heat transfer, and reactor dynamics. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a one-dimensional finite element fluid mechanicsmore » module with multiple flow network capability; (2) a one-dimensional finite element structure heat transfer module with multiple convection and radiation exchange capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems.« less
Technology Transfer Automated Retrieval System (TEKTRAN)
Computer simulation is a useful tool for benchmarking the electrical and fuel energy consumption and water use in a fluid milk plant. In this study, a computer simulation model of the fluid milk process based on high temperature short time (HTST) pasteurization was extended to include models for pr...
A velocity-dependent anomalous radial transport model for (2-D, 2-V) kinetic transport codes
NASA Astrophysics Data System (ADS)
Bodi, Kowsik; Krasheninnikov, Sergei; Cohen, Ron; Rognlien, Tom
2008-11-01
Plasma turbulence constitutes a significant part of radial plasma transport in magnetically confined plasmas. This turbulent transport is modeled in the form of anomalous convection and diffusion coefficients in fluid transport codes. There is a need to model the same in continuum kinetic edge codes [such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory] with non-Maxwellian distributions. We present an anomalous transport model with velocity-dependent convection and diffusion coefficients leading to a diagonal transport matrix similar to that used in contemporary fluid transport models (e.g., UEDGE). Als