Science.gov

Sample records for 2d fluid system

  1. A mathematical model for 2D heat transfer dynamics in fluid systems with localized sink of magmatic fluid into local fractured zones above the top of crystallizing intrusions

    NASA Astrophysics Data System (ADS)

    Sharapov, V. N.; Cherepanov, A. N.; Popov, V. N.; Bykova, V. G.

    2012-11-01

    A model describing two-dimensional (2D) dynamics of heat transfer in the fluid systems with a localized sink of a magmatic fluid into local fractured zones above the roof of crystallizing crustal intrusions is suggested. Numerical modeling of the migration of the phase boundaries in 2D intrusive chambers under retrograde boiling of magma with relatively high initial water content in the melt shows that, depending on the character of heat dissipation from a magmatic fluid into the host rock, two types of fluid magmatic systems can arise. (1) At high heat losses, the zoning of fluidogenic ore formation is determined by the changes in temperature of the rocks within the contact aureole of the intrusive bodies. These temperature variations are controlled by the migration of the phase boundaries in the cooling melt towards the center of the magmatic bodies from their contacts. (2) In the case of a localized sink of the magmatic fluid in different parts of the top of the intrusive chambers, a specific characteristic scenario of cooling of the magmatic bodies is probably implemented. In 2D systems with a heat transfer coefficient α k < 5 × 104 W/m2 K, an area with quasi-stationary phase boundaries develops close to the region of fluid drainage through the fractured zone in the intrusion. Therefore, as the phase boundaries contract to the sink zone of a fluid, specific thermal tubes arise, whose characteristics depend on the width of the fluid-conductive zone and the heat losses into the side rocks. (3) The time required for the intrusion to solidify varies depending on the particular position of the fluid conductor above the top of the magmatic body.

  2. Collective excitations in 2D hard-disc fluid.

    PubMed

    Huerta, Adrian; Bryk, Taras; Trokhymchuk, Andrij

    2015-07-01

    Collective dynamics of a two-dimensional (2D) hard-disc fluid was studied by molecular dynamics simulations in the range of packing fractions that covers states up to the freezing. Some striking features concerning collective excitations in this system were observed. In particular, the short-wavelength shear waves while being absent at low packing fractions were observed in the range of high packing fractions, just before the freezing transition in a 2D hard-disc fluid. In contrast, the so-called "positive sound dispersion" typically observed in dense Lennard-Jones-like fluids, was not detected for the 2D hard-disc fluid. The ratio of specific heats in the 2D hard-disc fluid shows a monotonic increase with density approaching the freezing, resembling in this way the similar behavior in the vicinity of the Widom line in the case of supercritical fluids. PMID:25595625

  3. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  4. Rheological Properties of Quasi-2D Fluids in Microgravity

    NASA Technical Reports Server (NTRS)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  5. A discrete simulation of 2-D fluid flow on TERASYS

    SciTech Connect

    Mullins, P.G.; Krolak, P.D.

    1995-12-01

    A discrete simulation of two-dimensional (2-D) fluid flow, on a recently designed novel architecture called TERASYS is presented. The simulation uses a cellular automaton approach, implemented in a new language called data-parallel bit C (dbC). A performance comparison between our implementation on TERASYS and an implementation on the Connection Machine is discussed. We comment briefly on the suitability of the TERASYS system for modeling fluid flow using cellular automata.

  6. SATURATION MEASUREMENT OF IMMISCIBLE FLUIDS IN 2-D STATIC SYSTEMS: VALIDATION BY LIGHT TRANSMISSION VISUALIZATION (SAN FRANCISCO, CA)

    EPA Science Inventory

    This study is a part of an ongoing research project that aims at assessing the environmental benefits of DNAPL removal. The laboratory part of the research project is to examine the functional relationship between DNAPL architecture, mass removal and contaminant mass flux in 2-D ...

  7. A new inversion method for (T2, D) 2D NMR logging and fluid typing

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Zou, Youlong; Zhou, Cancan

    2013-02-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.

  8. A 2D electrohydrodynamic model for electrorotation of fluid drops.

    PubMed

    Feng, James Q

    2002-02-01

    A theoretical analysis of spontaneous electrorotation of deformable fluid drops in a DC electric field is presented with a 2D electrohydrodynamic model. The fluids in the system are assumed to be leaky dielectric and Newtonian. If the rotating flow is dominant over the cellular convection type of electrohydrodynamic flow, closed-form solutions for drops of small deformations can be obtained. Because the governing equations are in general nonlinear even when drop deformations are ignored, the general solution for even undeformed drop takes a form of infinite series and can only be evaluated by numerical means. Both closed-form solutions for special cases and numerical solutions for more general cases are obtained here to describe steady-state field variables and first-order drop deformations. In a DC electric field of strength beyond the threshold value, spontaneous electrorotation of a drop is shown to occur when charge relaxation in the surrounding fluid is faster than the fluid inside the drop. With increasing the strength of the applied electric field from the threshold for onset of electrorotation, the axis of drop contraction deviates from from that of the applied electric field in the direction of the rotating flow with an angle increasing with the field strength. PMID:16290391

  9. Effects of fluid flow and calcium phosphate coating on human bone marrow stromal cells cultured in a defined 2D model system.

    PubMed

    Scaglione, S; Wendt, D; Miggino, S; Papadimitropoulos, A; Fato, M; Quarto, R; Martin, I

    2008-08-01

    In this study, we investigated the effect of the long-term (10 days) application of a defined and uniform level of fluid flow (uniform shear stress of 1.2 x 10(-3) N/m(2)) on human bone marrow stromal cells (BMSC) cultured on different substrates (i.e., uncoated glass or calcium phosphate coated glass, Osteologictrade mark) in a 2D parallel plate model. Both exposure to flow and culture on Osteologic significantly reduced the number of cell doublings. BMSC cultured under flow were more intensely stained for collagen type I and by von Kossa for mineralized matrix. BMSC exposed to flow displayed an increased osteogenic commitment (i.e., higher mRNA expression of cbfa-1 and osterix), although phenotype changes in response to flow (i.e., mRNA expression of osteopontin, osteocalcin and bone sialoprotein) were dependent on the substrate used. These findings highlight the importance of the combination of physical forces and culture substrate to determine the functional state of differentiating osteoblastic cells. The results obtained using a simple and controlled 2D model system may help to interpret the long-term effects of BMSC culture under perfusion within 3D porous scaffolds, where multiple experimental variables cannot be easily studied independently, and shear stresses cannot be precisely computed. PMID:17969030

  10. The 2D lingual appliance system.

    PubMed

    Cacciafesta, Vittorio

    2013-09-01

    The two-dimensional (2D) lingual bracket system represents a valuable treatment option for adult patients seeking a completely invisible orthodontic appliance. The ease of direct or simplified indirect bonding of 2D lingual brackets in combination with low friction mechanics makes it possible to achieve a good functional and aesthetic occlusion, even in the presence of a severe malocclusion. The use of a self-ligating bracket significantly reduces chair-side time for the orthodontist, and the low-profile bracket design greatly improves patient comfort. PMID:24005953

  11. 2D stepping drive for hyperspectral systems

    NASA Astrophysics Data System (ADS)

    Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin

    2015-07-01

    We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.

  12. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  13. Fluid Management System (FMS) fluid systems overview

    NASA Technical Reports Server (NTRS)

    Baird, R. S.

    1990-01-01

    Viewgraphs on fluid management system (FMS) fluid systems overview are presented. Topics addressed include: fluid management system description including system requirements (integrated nitrogen system, integrated water system, and integrated waste gas system) and physical description; and fluid management system evolution.

  14. Roton Excitations and the Fluid-Solid Phase Transition in Superfluid 2D Yukawa Bosons

    NASA Astrophysics Data System (ADS)

    Molinelli, S.; Galli, D. E.; Reatto, L.; Motta, M.

    2016-05-01

    We compute several ground-state properties and the dynamical structure factor of a zero-temperature system of Bosons interacting with the 2D screened Coulomb (2D-SC) potential. We resort to the exact shadow path integral ground state (SPIGS) quantum Monte Carlo method to compute the imaginary-time correlation function of the model, and to the genetic algorithm via falsification of theories (GIFT) to retrieve the dynamical structure factor. We provide a detailed comparison of ground-state properties and collective excitations of 2D-SC and ^4 He atoms. The roton energy of the 2D-SC system is an increasing function of density, and not a decreasing one as in ^4 He. This result is in contrast with the view that the roton is the soft mode of the fluid-solid transition. We uncover a remarkable quasi-universality of backflow and of other properties when expressed in terms of the amount of short-range order as quantified by the height of the first peak of the static structure factor.

  15. 2-D traveling-wave patterns in binary fluid convection

    SciTech Connect

    Surko, C.M.; Porta, A.L.

    1996-12-31

    An overview is presented of recent experiments designed to study two-dimensional traveling-wave convection in binary fluid convection in a large aspect ratio container. Disordered patterns are observed when convection is initiated. As time proceeds, they evolve to more ordered patterns, consisting of several domains of traveling-waves separated by well-defined domain boundaries. The detailed character of the patterns depends sensitively on the Rayleigh number. Numerical techniques are described which were developed to provide a quantitative characterization of the traveling-wave patterns. Applications of complex demodulation techniques are also described, which make a detailed study of the structure and dynamics of the domain boundaries possible.

  16. Documentation and verification of VST2D; a model for simulating transient, Variably Saturated, coupled water-heat-solute Transport in heterogeneous, anisotropic 2-Dimensional, ground-water systems with variable fluid density

    USGS Publications Warehouse

    Friedel, Michael J.

    2001-01-01

    This report describes a model for simulating transient, Variably Saturated, coupled water-heatsolute Transport in heterogeneous, anisotropic, 2-Dimensional, ground-water systems with variable fluid density (VST2D). VST2D was developed to help understand the effects of natural and anthropogenic factors on quantity and quality of variably saturated ground-water systems. The model solves simultaneously for one or more dependent variables (pressure, temperature, and concentration) at nodes in a horizontal or vertical mesh using a quasi-linearized general minimum residual method. This approach enhances computational speed beyond the speed of a sequential approach. Heterogeneous and anisotropic conditions are implemented locally using individual element property descriptions. This implementation allows local principal directions to differ among elements and from the global solution domain coordinates. Boundary conditions can include time-varying pressure head (or moisture content), heat, and/or concentration; fluxes distributed along domain boundaries and/or at internal node points; and/or convective moisture, heat, and solute fluxes along the domain boundaries; and/or unit hydraulic gradient along domain boundaries. Other model features include temperature and concentration dependent density (liquid and vapor) and viscosity, sorption and/or decay of a solute, and capability to determine moisture content beyond residual to zero. These features are described in the documentation together with development of the governing equations, application of the finite-element formulation (using the Galerkin approach), solution procedure, mass and energy balance considerations, input requirements, and output options. The VST2D model was verified, and results included solutions for problems of water transport under isohaline and isothermal conditions, heat transport under isobaric and isohaline conditions, solute transport under isobaric and isothermal conditions, and coupled water

  17. In situ fluid typing and quantification with 1D and 2D NMR logging.

    PubMed

    Sun, Boqin

    2007-05-01

    In situ nuclear magnetic resonance (NMR) fluid typing has recently gained momentum due to data acquisition and inversion algorithm enhancement of NMR logging tools. T(2) distributions derived from NMR logging contain information on bulk fluids and pore size distributions. However, the accuracy of fluid typing is greatly overshadowed by the overlap between T(2) peaks arising from different fluids with similar apparent T(2) relaxation times. Nevertheless, the shapes of T(2) distributions from different fluid components are often different and can be predetermined. Inversion with predetermined T(2) distributions allows us to perform fluid component decomposition to yield individual fluid volume ratios. Another effective method for in situ fluid typing is two-dimensional (2D) NMR logging, which results in proton population distribution as a function of T(2) relaxation time and fluid diffusion coefficient (or T(1) relaxation time). Since diffusion coefficients (or T(1) relaxation time) for different fluid components can be very different, it is relatively easy to separate oil (especially heavy oil) from water signal in a 2D NMR map and to perform accurate fluid typing. Combining NMR logging with resistivity and/or neutron/density logs provides a third method for in situ fluid typing. We shall describe these techniques with field examples. PMID:17466778

  18. Numerical simulation of ( T 2, T 1) 2D NMR and fluid responses

    NASA Astrophysics Data System (ADS)

    Tan, Mao-Jin; Zou, You-Long; Zhang, Jin-Yan; Zhao, Xin

    2012-12-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology is limited for fluid typing, while two-dimensional nuclear magnetic resonance (2D NMR) logging can provide more parameters including longitudinal relaxation time ( T 1) and transverse relaxation time ( T 2) relative to fluid types in porous media. Based on the 2D NMR relaxation mechanism in a gradient magnetic field, echo train simulation and 2D NMR inversion are discussed in detail. For 2D NMR inversion, a hybrid inversion method is proposed based on the damping least squares method (LSQR) and an improved truncated singular value decomposition (TSVD) algorithm. A series of spin echoes are first simulated with multiple waiting times ( T W s) in a gradient magnetic field for given fluid models and these synthesized echo trains are inverted by the hybrid method. The inversion results are consistent with given models. Moreover, the numerical simulation of various fluid models such as the gas-water, light oil-water, and vicious oil-water models were carried out with different echo spacings ( T E s) and T W s by this hybrid method. Finally, the influences of different signal-to-noise ratios (SNRs) on inversion results in various fluid models are studied. The numerical simulations show that the hybrid method and optimized observation parameters are applicable to fluid typing of gas-water and oil-water models.

  19. Potential role of CYP2D6 in the central nervous system

    PubMed Central

    Cheng, Jie; Zhen, Yueying; Miksys, Sharon; Beyoğlu, Diren; Krausz, Kristopher W.; Tyndale, Rachel F.; Yu, Aiming; Idle, Jeffrey R.; Gonzalez, Frank J.

    2013-01-01

    Cytochrome P450 2D6 (CYP2D6) is a pivotal enzyme responsible for a major human drug oxidation polymorphism in human populations. Distribution of CYP2D6 in brain and its role in serotonin metabolism suggest this CYP2D6 may have a function in central nervous system. To establish an efficient and accurate platform for the study of CYP2D6 in vivo, a transgenic human CYP2D6 (Tg-2D6) model was generated by transgenesis in wild-type C57BL/6 (WT) mice using a P1 phage artificial chromosome clone containing the complete human CYP2D locus, including CYP2D6 gene and 5’- and 3’- flanking sequences. Human CYP2D6 was expressed not only in the liver, but also in brain. The abundance of serotonin and 5-hydroxyindoleacetic acid in brain of Tg-2D6 is higher than in WT mice either basal levels or after harmaline induction. Metabolomics of brain homogenate and cerebrospinal fluid revealed a significant up-regulation of l-carnitine, acetyl-l-carnitine, pantothenic acid, dCDP, anandamide, N-acetylglucosaminylamine, and a down-regulation of stearoyl-l-carnitine in Tg-2D6 mice compared with WT mice. Anxiety tests indicate Tg-2D6 mice have a higher capability to adapt to anxiety. Overall, these findings indicate that the Tg-2D6 mouse model may serve as a valuable in vivo tool to determine CYP2D6-involved neurophysiological metabolism and function. PMID:23614566

  20. A case study of fluid flow in fractured rock mass based on 2-D DFN modeling

    NASA Astrophysics Data System (ADS)

    Han, Jisu; Noh, Young-Hwan; Um, Jeong-Gi; Choi, Yosoon

    2014-05-01

    A two dimensional steady-state fluid flow through fractured rock mass of an abandoned copper mine in Korea is addressed based on discrete fracture network modeling. An injection well and three observation wells were installed at the field site to monitor the variations of total heads induced by injection of fresh water. A series of packer tests were performed to estimate the rock mass permeability. First, the two dimensional stochastic fracture network model was built and validated for a granitic rock mass using the geometrical and statistical data obtained from surface exposures and borehole logs. This validated fracture network model was combined with the fracture data observed on boreholes to generate a stochastic-deterministic fracture network system. Estimated apertures for each of the fracture sets using permeability data obtained from borehole packer tests were discussed next. Finally, a systematic procedure for fluid flow modeling in fractured rock mass in two dimensional domain was presented to estimate the conductance, flow quantity and nodal head in 2-D conceptual linear pipe channel network. The results obtained in this study clearly show that fracture geometry parameters (orientation, density and size) play an important role in the hydraulic behavior of fractured rock masses.

  1. 2-D Three Fluid Simulation of Upstreaming Ions Above Auroral Precipitation

    NASA Astrophysics Data System (ADS)

    Danielides, M. A.; Lummerzheim, D.; Otto, A.; Stevens, R. J.

    2006-12-01

    The ionosphere is a rich reservoir of charged particles from which a variable fraction is transported to the magnetosphere. An important transport phenomena is the formation of upward ion flow above auroral structure. A primary region of the outflow is not known, but contributions come from polar cap, dayside cusp/cleft region, auroral oval, or even from mid-latitudes. In the past global magnetospheric models and fluid codes were used to simulate large scale ion outflow above, e.g., the polar-cap aurora. However, satellites orbiting at low- altitudes have repeatingly detected localized ion outflow above the auroral oval. Ionosphere-magnetosphere coupling simulations gave first insides into the small-scale dynamics of aurora. The aim of this study is the investigation of coupled plasma and neutral dynamics in smaller scale aurora to explain the generation, structure, and dynamics of vertical ion upstream. We consider auroral electron precipitation at ionospheric heights in a 2-D three fluid ionospheric-magnetospheric coupling code (Otto and Zhu, 2003). Specially we examine the effects of the electron precipitation, heat conduction and heating in field- aligned current through coulomb collisions or turbulence causing: i) electron heating, ii) electron pressure gradients, and iii) upstreaming of ions through a resulting ambipolar electric field. Our first case studies are performed for different boundary conditions and for different auroral electron precipitation parameters (variation in characteristic auroral energy, auroral energy flux and horizontal scale). The results shall clarify how auroral precipitation can drive ions upwards. Finally we discuss the effect of ion drag and the interaction of the upstreaming ions with a stable neutral constituent. Otto, O. and H. Zhu, Fluid plasma simulation of coupled systems: Ionosphere and magnetosphere, Space Plasma Simulation. Edited by J. Buechner, C. Dum, and M. Scholer., Lecture Notes in Physics, vol. 615, p.193

  2. Validation of a 2-D semi-coupled numerical model for fluid-structure-seabed interaction

    NASA Astrophysics Data System (ADS)

    Ye, Jianhong; Jeng, Dongsheng; Wang, Ren; Zhu, Changqi

    2013-10-01

    A 2-D semi-coupled model PORO-WSSI 2D (also be referred as FSSI-CAS 2D) for the Fluid-Structure-Seabed Interaction (FSSI) has been developed by employing RANS equations for wave motion in fluid domain, VARANS equations for porous flow in porous structures; and taking the dynamic Biot's equations (known as "u - p" approximation) for soil as the governing equations. The finite difference two-step projection method and the forward time difference method are adopted to solve the RANS, VARANS equations; and the finite element method is adopted to solve the "u - p" approximation. A data exchange port is developed to couple the RANS, VARANS equations and the dynamic Biot's equations together. The analytical solution proposed by Hsu and Jeng (1994) and some experiments conducted in wave flume or geotechnical centrifuge in which various waves involved are used to validate the developed semi-coupled numerical model. The sandy bed involved in these experiments is poro-elastic or poro-elastoplastic. The inclusion of the interaction between fluid, marine structures and poro-elastoplastic seabed foundation is a special point and highlight in this paper, which is essentially different with other previous coupled models The excellent agreement between the numerical results and the experiment data indicates that the developed coupled model is highly reliablefor the FSSI problem.

  3. Optical imaging systems analyzed with a 2D template.

    PubMed

    Haim, Harel; Konforti, Naim; Marom, Emanuel

    2012-05-10

    Present determination of optical imaging systems specifications are based on performance values and modulation transfer function results carried with a 1D resolution template (such as the USAF resolution target or spoke templates). Such a template allows determining image quality, resolution limit, and contrast. Nevertheless, the conventional 1D template does not provide satisfactory results, since most optical imaging systems handle 2D objects for which imaging system response may be different by virtue of some not readily observable spatial frequencies. In this paper we derive and analyze contrast transfer function results obtained with 1D as well as 2D templates. PMID:22614498

  4. LOCA hydroloads calculations with multidimensional nonlinear fluid/structure interaction. Volume 2: STEALTH 2D/WHAMSE 2D single-phse fluid and elastic structure studies. Final report. [PWR

    SciTech Connect

    Chang, F.H.; Santee, G.E. Jr.; Mortensen, G.A.; Brockett, G.F.; Gross, M.B.; Silling, S.A.; Belytschko, T.

    1981-03-01

    This report, the second in a series of reports for RP-1065, describes the second step in the stepwise approach for developing the three-dimensional, nonlinear, fluid/structure interaction methodology to assess the hydroloads on a large PWR during the subcooled portions of a hypothetical LOCA. The second step in the methodology considers enhancements and special modifications to the 2D STEALTH-HYDRO computer program and the 2D WHAMSE computer program. The 2D STEALTH-HYDRO enhancements consist of a fluid-fluid coupling control-volume model and an orifice control-volume model. The enhancements to 2D WHAMSE include elimination of the implicit integration routines, material models, and structural elements not required for the hydroloads application. In addition the logic for coupling the 2D STEALTH-HYDRO computer program to the 2D WHAMSE computer program is discussed.

  5. An Integrative Model of Excitation Driven Fluid Flow in a 2D Uterine Channel

    NASA Astrophysics Data System (ADS)

    Maggio, Charles; Fauci, Lisa; Chrispell, John

    2009-11-01

    We present a model of intra-uterine fluid flow in a sagittal cross-section of the uterus by inducing peristalsis in a 2D channel. This is an integrative multiscale computational model that takes as input fluid viscosity, passive tissue properties of the uterine channel and a prescribed wave of membrane depolarization. This voltage pulse is coupled to a model of calcium dynamics inside a uterine smooth muscle cell, which in turn drives a kinetic model of myosin phosphorylation governing contractile muscle forces. Using the immersed boundary method, these muscle forces are communicated to a fluid domain to simulate the contractions which occur in a human uterus. An analysis of the effects of model parameters on the flow properties and emergent geometry of the peristaltic channel will be presented.

  6. Microscale 2D separation systems for proteomic analysis

    PubMed Central

    Xu, Xin; Liu, Ke; Fan, Z. Hugh

    2012-01-01

    Microscale 2D separation systems have been implemented in capillaries and microfabricated channels. They offer advantages of faster analysis, higher separation efficiency and less sample consumption than the conventional methods, such as liquid chromatography (LC) in a column and slab gel electrophoresis. In this article, we review their recent advancement, focusing on three types of platforms, including 2D capillary electrophoresis (CE), CE coupling with capillary LC, and microfluidic devices. A variety of CE and LC modes have been employed to construct 2D separation systems via sophistically designed interfaces. Coupling of different separation modes has also been realized in a number of microfluidic devices. These separation systems have been applied for the proteomic analysis of various biological samples, ranging from a single cell to tumor tissues. PMID:22462786

  7. GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System

    DOE Data Explorer

    James Menart

    2013-06-07

    This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..

  8. On Regularity Criteria for the 2D Generalized MHD System

    NASA Astrophysics Data System (ADS)

    Jiang, Zaihong; Wang, Yanan; Zhou, Yong

    2016-06-01

    This paper deals with the problem of regularity criteria for the 2D generalized MHD system with fractional dissipative terms {-Λ^{2α}u} for the velocity field and {-Λ^{2β}b} for the magnetic field respectively. Various regularity criteria are established to guarantee smoothness of solutions. It turns out that our regularity criteria imply previous global existence results naturally.

  9. Resonances of piezoelectric plate with embedded 2D electron system

    NASA Astrophysics Data System (ADS)

    Suslov, A. V.

    2009-02-01

    A thin GaAs/AlGaAs plate was studied by the resonant ultrasound spectroscopy (RUS) in the temperature range 0.3-10 K and in magnetic fields of up to 18 T. The resonance frequencies and linewidths were measured. Quantum oscillations of both these values were observed and were associated with the quantum Hall effect occurred in the 2D electron system. For an analysis the sample was treated as a dielectric piezoelectric plate covered on one side by a film with a field dependent conductivity. Screening of the strain-driven electric field was changed due to the variation of the electron relaxation time in the vicinity of the metal-dielectric transitions caused by the magnetic field in the 2D system. The dielectric film does not affect properties of GaAs and thus the resonance frequencies are defined only by the elastic, piezoelectric and dielectric constants of GaAs. A metallic 2D sheet effectively screens the parallel electric field, so the ultrasound wave velocities and resonance frequencies decrease when the sheet conductivity increases. Oscillations of the resonance linewidth reflect the influence of the 2D system on the ultrasound attenuation, which is proportional to the linewidth. A metallic film as well as a dielectric one does not affect this attenuation but at some finite nonzero value of the conductivity the linewidth approaches a maximum. In high magnetic field each oscillation of the conductivity produces one oscillation of a resonance frequency and two linewidth peaks. The observed phenomena can be described by the relaxation type equations and the resonant ultrasound spectroscopy opens another opportunity for contactless studies on 2D electron systems.

  10. NASA High-Speed 2D Photogrammetric Measurement System

    NASA Technical Reports Server (NTRS)

    Dismond, Harriett R.

    2012-01-01

    The object of this report is to provide users of the NASA high-speed 2D photogrammetric measurement system with procedures required to obtain drop-model trajectory and impact data for full-scale and sub-scale models. This guide focuses on use of the system for vertical drop testing at the NASA Langley Landing and Impact Research (LandIR) Facility.

  11. Fluid channeling system

    NASA Technical Reports Server (NTRS)

    Davis, Donald Y. (Inventor); Hitch, Bradley D. (Inventor)

    1994-01-01

    A fluid channeling system includes a fluid ejector, a heat exchanger, and a fluid pump disposed in series flow communication The ejector includes a primary inlet for receiving a primary fluid, and a secondary inlet for receiving a secondary fluid which is mixed with the primary fluid and discharged therefrom as ejector discharge. Heat is removed from the ejector discharge in the heat exchanger, and the heat exchanger discharge is compressed in the fluid pump and channeled to the ejector secondary inlet as the secondary fluid In an exemplary embodiment, the temperature of the primary fluid is greater than the maximum operating temperature of a fluid motor powering the fluid pump using a portion of the ejector discharge, with the secondary fluid being mixed with the primary fluid so that the ejector discharge temperature is equal to about the maximum operating temperature of the fluid motor.

  12. Universal Fabrication of 2D Electron Systems in Functional Oxides.

    PubMed

    Rödel, Tobias Chris; Fortuna, Franck; Sengupta, Shamashis; Frantzeskakis, Emmanouil; Fèvre, Patrick Le; Bertran, François; Mercey, Bernard; Matzen, Sylvia; Agnus, Guillaume; Maroutian, Thomas; Lecoeur, Philippe; Santander-Syro, Andrés Felipe

    2016-03-01

    2D electron systems (2DESs) in functional oxides are promising for applications, but their fabrication and use, essentially limited to SrTiO3 -based heterostructures, are hampered by the need for growing complex oxide overlayers thicker than 2 nm using evolved techniques. It is demonstrated that thermal deposition of a monolayer of an elementary reducing agent suffices to create 2DESs in numerous oxides. PMID:26753522

  13. Conformal Laplace superintegrable systems in 2D: polynomial invariant subspaces

    NASA Astrophysics Data System (ADS)

    Escobar-Ruiz, M. A.; Miller, Willard, Jr.

    2016-07-01

    2nd-order conformal superintegrable systems in n dimensions are Laplace equations on a manifold with an added scalar potential and 2n-1 independent 2nd order conformal symmetry operators. They encode all the information about Helmholtz (eigenvalue) superintegrable systems in an efficient manner: there is a 1-1 correspondence between Laplace superintegrable systems and Stäckel equivalence classes of Helmholtz superintegrable systems. In this paper we focus on superintegrable systems in two-dimensions, n = 2, where there are 44 Helmholtz systems, corresponding to 12 Laplace systems. For each Laplace equation we determine the possible two-variate polynomial subspaces that are invariant under the action of the Laplace operator, thus leading to families of polynomial eigenfunctions. We also study the behavior of the polynomial invariant subspaces under a Stäckel transform. The principal new results are the details of the polynomial variables and the conditions on parameters of the potential corresponding to polynomial solutions. The hidden gl 3-algebraic structure is exhibited for the exact and quasi-exact systems. For physically meaningful solutions, the orthogonality properties and normalizability of the polynomials are presented as well. Finally, for all Helmholtz superintegrable solvable systems we give a unified construction of one-dimensional (1D) and two-dimensional (2D) quasi-exactly solvable potentials possessing polynomial solutions, and a construction of new 2D PT-symmetric potentials is established.

  14. Thermal conductivity measurements in a 2D Yukawa system

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Ivlev, A.; Zhdanov, S.; Morfill, G.; Goree, J.; Piel, A.

    2007-03-01

    Thermal conductivity was measured for a 2D Yukawa system. First, we formed a monolayer suspension of microspheres in a plasma, i.e., a dusty plasma, which is like a colloidal suspension, but with an extremely low volume fraction and a partially-ionized rarefied gas instead of solvent. In the absence of manipulation, the suspension forms a 2D triangular lattice. To melt this lattice and form a liquid, we used a laser-heating method. Two focused laser beams were moved rapidly around in the monolayer. The kinetic temperature of the particles increased with the laser power applied, and above a threshold a melting transition occurred. We used digital video microscopy for direct imaging and particle tracking. The spatial profiles of the particle kinetic temperature were calculated. Using the heat transport equation with an additional term to account for the energy dissipation due to the gas drag, we analyzed the temperature distribution to derive the thermal conductivity.

  15. 2-D linear motion system. Innovative technology summary report

    SciTech Connect

    1998-11-01

    The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology

  16. 2D induced gravity from the canonically gauged WZNW system

    NASA Astrophysics Data System (ADS)

    Blagojević, M.; Popović, D. S.; Sazdović, B.

    1999-02-01

    Starting from the Kac-Moody structure of the WZNW model for SL(2,R) and using the general canonical formalism, we formulate a gauge theory invariant under local SL(2,R)×SL(2,R) and diffeomorphisms. This theory represents a gauge extension of the WZNW system, defined by a difference of two simple WZNW actions. By performing a partial gauge fixing and integrating out some dynamical variables, we prove that the resulting effective theory coincides with the induced gravity in 2D. The geometric properties of the induced gravity are obtained out of the gauge properties of the WZNW system with the help of the Dirac brackets formalism.

  17. 2-D scalable optical controlled phased-array antenna system

    NASA Astrophysics Data System (ADS)

    Chen, Maggie Yihong; Howley, Brie; Wang, Xiaolong; Basile, Panoutsopoulos; Chen, Ray T.

    2006-02-01

    A novel optoelectronically-controlled wideband 2-D phased-array antenna system is demonstrated. The inclusion of WDM devices makes a highly scalable system structure. Only (M+N) delay lines are required to control a M×N array. The optical true-time delay lines are combination of polymer waveguides and optical switches, using a single polymeric platform and are monolithically integrated on a single substrate. The 16 time delays generated by the device are measured to range from 0 to 175 ps in 11.6 ps. Far-field patterns at different steering angles in X-band are measured.

  18. Symmetries of the 2D magnetic particle imaging system matrix.

    PubMed

    Weber, A; Knopp, T

    2015-05-21

    In magnetic particle imaging (MPI), the relation between the particle distribution and the measurement signal can be described by a linear system of equations. For 1D imaging, it can be shown that the system matrix can be expressed as a product of a convolution matrix and a Chebyshev transformation matrix. For multidimensional imaging, the structure of the MPI system matrix is not yet fully explored as the sampling trajectory complicates the physical model. It has been experimentally found that the MPI system matrix rows have symmetries and look similar to the tensor products of Chebyshev polynomials. In this work we will mathematically prove that the 2D MPI system matrix has symmetries that can be used for matrix compression. PMID:25919400

  19. Gradient-Driven Vortex Motion in Nonneutral Plasmas and Ideal 2D Fluids

    NASA Astrophysics Data System (ADS)

    Schecter, David A.

    2000-10-01

    Two-dimensional (2D) turbulent flows can relax to metastable patterns without dissipation of kinetic energy. This ``rapid'' relaxation has been observed in computer simulations of ideal 2D fluids, and more recently in experiments with pure electron plasmas, which can obey similar dynamics. The late stage of relaxation often involves small vortices moving in a larger ``background'' shear-flow.(X.P. Huang et al., Phys. Rev. Lett. 74), 4424 (1995). In time, positive vortices (rotating counter-clockwise) move to peaks in background vorticity, whereas negative vortices (rotating clockwise) move to minima.(C.G. Rossby, J. Mar. Res. 7), 175 (1948); C.H. Liu and L. Ting, Comp. & Fluids 15, 77 (1987). In general, the rate of this migration increases with the magnitude of the background vorticity gradient, whereas it decreases as the background shear intensifies.\\vspace12pt Positive and negative vortices can also be classified as either prograde or retrograde, depending on whether they rotate with or against the local background shear. Surprisingly, a retrograde vortex moves up or down a background vorticity gradient orders of magnitude faster than a prograde vortex of equal strength.(D.A. Schecter and D.H.E. Dubin, Phys. Rev. Lett. 83), 2191 (1999). An accurate expression for the velocity of a weak retrograde vortex is obtained from an analytic calculation, in which the response of the background flow to the vortex is linearized. However, this linear theory fails for prograde vortices of any strength. Interestingly, the velocity of a prograde vortex can be obtained from a simple estimate, which accounts for the nonlinear ``trapping'' of background fluid around the vortex. The analytic expressions for the velocities of both prograde and retrograde vortices are in good quantitative agreement with vortex-in-cell simulations, and with electron plasma experiments, when the background shear is below a critical level. When the ratio of background shear to background vorticity

  20. Upscaling of upward CO2 migration in 2D system

    NASA Astrophysics Data System (ADS)

    Behzadi, Hamid; Alvarado, Vladimir

    2012-09-01

    A procedure for upscaling CO2 buoyancy driven upward migration in finite-difference simulation models is presented in this work. This upscaling procedure accounts for capillary and buoyancy forces to enable CO2 upward migration modeling in coarser grids while accounting for dominant fine-scaled geological effects. The developed method is applied to 2D domains with no-flow boundary conditions. The absolute permeability field is correlated in the horizontal direction, with zero correlation in the vertical direction. Capillary pressure is parameterized using a Leveret J-function. A Dykstra-Parsons coefficient of 0.7 was used to generate a relatively heterogeneous absolute permeability field and hence test the developed algorithm under more stringent conditions. Multiphase flow upscaling is improved by accounting for spatial connectivity (percolation), which enables us to obtain more realistic rock-fluid pseudo-functions and capture effects of local capillary trapping at the fine scale (meso-scale trapping). The upscaling method and estimation of rock-fluid functions are numerically tested and compared with currently accepted single and multiphase flow upscaling methods. Results show that single-phase flow upscaling is insufficient, because it fails to adequately predict mobility and residual saturation, and hence multiphase flow upscaling should be employed. Significant improvement in gas travel time (representative of mobility) and trapped CO2 saturation (representative of trapped saturation) are observed when spatial connectivity (percolation) is included. The simulation execution time reduces 17-fold through upscaling. This speedup will enable simulating 3D CO2 sequestration simulation scenarios.

  1. Measurement of topological invariants in a 2D photonic system

    NASA Astrophysics Data System (ADS)

    Mittal, Sunil; Ganeshan, Sriram; Fan, Jingyun; Vaezi, Abolhassan; Hafezi, Mohammad

    2016-03-01

    A hallmark feature of topological physics is the presence of one-way propagating chiral modes at the system boundary. The chirality of edge modes is a consequence of the topological character of the bulk. For example, in a non-interacting quantum Hall model, edge modes manifest as mid-gap states between two topologically distinct bulk bands. The bulk-boundary correspondence dictates that the number of chiral edge modes, a topological invariant called the winding number, is completely determined by the bulk topological invariant, the Chern number. Here, for the first time, we measure the winding number in a 2D photonic system. By inserting a unit flux quantum at the edge, we show that the edge spectrum resonances shift by the winding number. This experiment provides a new approach for unambiguous measurement of topological invariants, independent of the microscopic details, and could possibly be extended to probe strongly correlated topological orders.

  2. Force-chain identification in quasi-2D granular systems

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Wu, Jun-Qi; Zhang, Jie

    2013-06-01

    Understanding the properties of force-chains is essential in understanding the physical and mechanical properties of granular materials. The key is to identify force-chains. In this study, we describe a systematic method to identify individual force-chains in 2D granular systems under different external load-pure shear or isotropic compression, where bi-disperse photo-elastic particles were used in order to measure vector contact forces between particles. Using this method, we studied the statistics of force-chain size distribution in these two systems: in pure shear, the distribution shows a fat tail that deviates from an exponential distribution function, whereas in isotropic compression, the distribution decays exponentially. In addition, we also investigated the dependence of various force-chain statistics on two main parameters defined in the force-chain identification algorithm.

  3. The inviscid, compressible and rotational, 2D isotropic Burgers and pressureless Euler-Coriolis fluids: Solvable models with illustrations

    NASA Astrophysics Data System (ADS)

    Choquard, Ph.; Vuffray, M.

    2014-10-01

    The coupling between dilatation and vorticity, two coexisting and fundamental processes in fluid dynamics (Wu et al., 2006, pp. 3, 6) is investigated here, in the simplest cases of inviscid 2D isotropic Burgers and pressureless Euler-Coriolis fluids respectively modeled by single vortices confined in compressible, local, inertial and global, rotating, environments. The field equations are established, inductively, starting from the equations of the characteristics solved with an initial Helmholtz decomposition of the velocity fields namely a vorticity free and a divergence free part (Wu et al., 2006, Sects. 2.3.2, 2.3.3) and, deductively, by means of a canonical Hamiltonian Clebsch like formalism (Clebsch, 1857, 1859), implying two pairs of conjugate variables. Two vector valued fields are constants of the motion: the velocity field in the Burgers case and the momentum field per unit mass in the Euler-Coriolis one. Taking advantage of this property, a class of solutions for the mass densities of the fluids is given by the Jacobian of their sum with respect to the actual coordinates. Implementation of the isotropy hypothesis entails a radial dependence of the velocity potentials and of the stream functions associated to the compressible and to the rotational part of the fluids and results in the cancellation of the dilatation-rotational cross terms in the Jacobian. A simple expression is obtained for all the radially symmetric Jacobians occurring in the theory. Representative examples of regular and singular solutions are shown and the competition between dilatation and vorticity is illustrated. Inspired by thermodynamical, mean field theoretical analogies, a genuine variational formula is proposed which yields unique measure solutions for the radially symmetric fluid densities investigated. We stress that this variational formula, unlike the Hopf-Lax formula, enables us to treat systems which are both compressible and rotational. Moreover in the one

  4. 2D numerical modelling of fluid percolation in the subduction zone

    NASA Astrophysics Data System (ADS)

    Dymkova, D.; Gerya, T.; Podladchikov, Y.

    2012-04-01

    Subducting slab dehydration and resulting aqueous fluid percolation triggers partial melting in the mantle wedge and is accompanied with the further melt percolation through the porous space to the region above the slab. This problem is a complex coupled chemical, thermal and mechanical process responsible for the magmatic arcs formation and change of the mantle wedge properties. We have created a two-dimensional model of a two-phase flow in a porous media solving a coupled Darcy-Stokes system of equations for two incompressible media for the case of nonlinear visco-plastic rheology of solid matrix. Our system of equation is expanded for the high-porosity limits and stabilized for the case of high porosity contrasts. We use a finite-difference method with fully staggered grid in a combination with marker-in-cell technique for advection of fluid and solid phase. We performed a comparison with a benchmark of a thermal convection in a porous media in a bottom-heated box to verify the interdependency of Rayleigh and Nusselt numbers with earlier obtained ones (Cherkaoui & Wilcock, 1999). We have demonstrated the stability and robustness of the algorithm in case of strongly non-linear visco-plastic rheology of solid including cases with localization of both deformation and porous flow along spontaneously forming shear bands. We have checked our model for the forming of localized porous channels under a simple shear stress (Katz et al, 2006). We have developed a setup of a self-initiating due to gravitational instability subduction. With our coupled fluid-solid flow we have achieved a self-consistent water downward suction by a slab bending predicted by the other models with a simplified fluid kinematical motion implementation (Faccenda et al, 2009). With this setup we have obtained a self-consistent upper crust weakening by a porous fluid pressure which was theoretically assumed in the previously existing subduction models (Gerya & Meilick, 2011; Faccenda et al, 2009

  5. 2D fluid simulations of acoustic waves in pulsed ICP discharges: Comparison with experiments

    NASA Astrophysics Data System (ADS)

    Despiau-Pujo, Emilie; Cunge, Gilles; Sadeghi, Nader; Braithwaite, N. St. J.

    2012-10-01

    Neutral depletion, which is mostly caused by gas heating under typical material processing conditions, is an important phenomenon in high-density plasmas. In low pressure pulsed discharges, experiments show that additional depletion due to electron pressure (Pe) may have a non-negligible influence on radical transport [1]. To evaluate this effect, comparisons between 2D fluid simulations and measurements of gas convection in Ar/Cl2 pulsed ICP plasmas are reported. In the afterglow, Pe drops rapidly by electron cooling which generates a neutral pressure gradient between the plasma bulk and the reactor walls. This in turn forces the cold surrounding gas to move rapidly towards the center, thus launching an acoustic wave in the reactor. Time-resolved measurements of atoms drift velocity and gas temperature by LIF and LAS in the early afterglow are consistent with gas drifting at acoustic wave velocity followed by rapid gas cooling. Similar results are predicted by the model. The ion flux at the reactor walls is also shown to oscillate in phase with the acoustic wave due to ion-neutral friction forces. Finally, during plasma ignition, experiments show opposite phenomena when Pe rises.[4pt] [1] Cunge et al, APL 96, 131501 (2010)

  6. A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.

    PubMed

    Qiu, Weibao; Wang, Congzhi; Li, Yongchuan; Zhou, Juan; Yang, Ge; Xiao, Yang; Feng, Ge; Jin, Qiaofeng; Mu, Peitian; Qian, Ming; Zheng, Hairong

    2015-09-01

    Ultrasound elastography is widely used for the non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) is a quantitative method for assessing tissue stiffness. SWI has been demonstrated to be less operator dependent than quasi-static elastography, and has the ability to acquire quantitative elasticity information in contrast with acoustic radiation force impulse (ARFI) imaging. However, traditional SWI implementations cannot acquire two dimensional (2D) quantitative images of the tissue elasticity distribution. This study proposes and evaluates a scanning-mode 2D SWI (s2D-SWI) system. The hardware and image processing algorithms are presented in detail. Programmable devices are used to support flexible control of the system and the image processing algorithms. An analytic signal based cross-correlation method and a Radon transformation based shear wave speed determination method are proposed, which can be implemented using parallel computation. Imaging of tissue mimicking phantoms, and in vitro, and in vivo imaging test are conducted to demonstrate the performance of the proposed system. The s2D-SWI system represents a new choice for the quantitative mapping of tissue elasticity, and has great potential for implementation in commercial ultrasound scanners. PMID:26025508

  7. Fast modular data acquisition system for GEM-2D detector

    NASA Astrophysics Data System (ADS)

    Kasprowicz, G.; Byszuk, Adrian; Wojeński, A.; Zienkiewicz, P.; Czarski, T.; Chernyshova, M.; Poźniak, K.; Rzadkiewicz, J.; Zabolotny, W.; Juszczyk, B.

    2014-11-01

    A novel approach to two dimensional Gas Electron Multiplier (GEM) detector readout is presented. Unlike commonly used methods, based on discriminators and analogue FIFOs, the method developed uses simulta- neously sampling high speed ADCs with fast hybrid integrator and advanced FPGA-based processing logic to estimate the energy of every single photon. Such a method is applied to every GEM strip / pixel signal. It is especially useful in case of crystal-based spectrometers for soft X-rays, 2D imaging for plasma tomography and all these applications where energy resolution of every single photon is required. For the purpose of the detector readout, a novel, highly modular and extendable conception of the measurement platform was developed. It is evolution of already deployed measurement system for JET Spectrometer.

  8. Global small solutions of 2-D incompressible MHD system

    NASA Astrophysics Data System (ADS)

    Lin, Fanghua; Xu, Li; Zhang, Ping

    2015-11-01

    In this paper, we consider the global wellposedness of 2-D incompressible magneto-hydrodynamical system with smooth initial data which is close to some non-trivial steady state. It is a coupled system between the Navier-Stokes equations and a free transport equation with a universal nonlinear coupling structure. The main difficulty of the proof lies in exploring the dissipative mechanism of the system. To achieve this and to avoid the difficulty of propagating anisotropic regularity for the free transport equation, we first reformulate our system (1.1) in the Lagrangian coordinates (2.19). Then we employ anisotropic Littlewood-Paley analysis to establish the key a prioriL1 (R+ ; Lip (R2)) estimate for the Lagrangian velocity field Yt. With this estimate, we can prove the global wellposedness of (2.19) with smooth and small initial data by using the energy method. We emphasize that the algebraic structure of (2.19) is crucial for the proofs to work. The global wellposedness of the original system (1.1) then follows by a suitable change of variables.

  9. Fluid infusion system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Performance testing carried out in the development of the prototype zero-g fluid infusion system is described and summarized. Engineering tests were performed in the course of development, both on the original breadboard device and on the prototype system. This testing was aimed at establishing baseline system performance parameters and facilitating improvements. Acceptance testing was then performed on the prototype system to verify functional performance. Acceptance testing included a demonstration of the fluid infusion system on a laboratory animal.

  10. Development of models for the two-dimensional, two-fluid code for sodium boiling NATOF-2D. [LMFBR

    SciTech Connect

    Zielinski, R.G.; Kazimi, M.S.

    1981-09-01

    Several features were incorporated into NATOF-2D, a two-dimensional, two fluid code developed at MIT for the purpose of analysis of sodium boiling transients under LMFBR conditions. They include improved interfacial mass, momentum and energy exchange rate models, and a cell-to-cell radial heat conduction mechanism which was calibrated by simulation of Westinghouse Blanket Heat Transfer Test Program Runs 544 and 545. Finally, a direct method of pressure field solution was implemented into a direct method of pressure field solution was implemented into NATOF-2D, replacing the iterative technique previously available, and resulted in substantially reduced computational costs.

  11. Anomalous diffusion of an ellipsoid in quasi-2D active fluids

    NASA Astrophysics Data System (ADS)

    Peng, Yi; Yang, Ou; Tang, Chao; Cheng, Xiang

    Enhanced diffusion of a tracer particle is a unique feature in active fluids. Here, we studied the diffusion of an ellipsoid in a free-standing film of E. coli. Particle diffusion is linearly enhanced at low bacterial concentrations, whereas a non-linear enhancement is observed at high bacterial concentrations due to the giant fluctuation. More importantly, we uncover an anomalous coupling between the translational and rotational degrees of freedom that is strictly prohibited in the classical Brownian diffusion. Combining experiments with theoretical modeling, we show that such an anomaly arises from the stretching flow induced by the force dipole of swimming bacteria. Our work illustrates a novel universal feature of active matter and transforms the understanding of fundamental transport processes in microbiological systems. ACS Petroleum Research Fund #54168-DNI9, NSF Faculty Early Career Development Program, DMR-1452180.

  12. SAGE 2D and 3D Simulations of the Explosive Venting of Supercritical Fluids Through Porous Media

    NASA Astrophysics Data System (ADS)

    Weaver, R.; Gisler, G.; Svensen, H.; Mazzini, A.

    2008-12-01

    Magmatic intrusive events in large igneous provinces heat sedimentary country rock leading to the eventual release of volatiles. This has been proposed as a contributor to climate change and other environmental impacts. By means of numerical simulations, we examine ways in which these volatiles can be released explosively from depth. Gases and fluids cooked out of country rock by metamorphic heating may be confined for a time by impermeable clays or other barriers, developing high pressures and supercritical fluids. If confinement is suddenly breached (by an earthquake for example) in such a way that the fluid has access to porous sediments, a violent eruption of a non-magmatic mixture of fluid and sediment may result. Surface manifestations of these events could be hydrothermal vent complexes, kimberlite pipes, pockmarks, or mud volcanoes. These are widespread on Earth, especially in large igneous provinces, as in the Karoo Basin of South Africa, the North Sea off the Norwegian margin, and the Siberian Traps. We have performed 2D and 3D simulations with the Sage hydrocode (from Los Alamos and Science Applications International) of supercritical venting in a variety of geometries and configurations. The simulations show several different patterns of propagation and fracturing in porous or otherwise weakened overburden, dependent on depth, source conditions (fluid availability, temperature, and pressure), and manner of confinement breach. Results will be given for a variety of 2D and 3D simulations of these events exploring the release of volatiles into the atmosphere.

  13. Basic fluid system trainer

    DOEpatents

    Semans, Joseph P.; Johnson, Peter G.; LeBoeuf, Jr., Robert F.; Kromka, Joseph A.; Goron, Ronald H.; Hay, George D.

    1993-01-01

    A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

  14. Evidence for a New Intermediate Phase in a Strongly Correlated 2D System near Wigner Crystallization

    NASA Astrophysics Data System (ADS)

    Gao, Xuan; Qiu, Richard; Goble, Nicholas; Serafin, Alex; Yin, Liang; Xia, Jian-Sheng; Sullivan, Neil; Pfeiffer, Loren; West, Ken

    How the two dimensional (2D) quantum Wigner crystal (WC) transforms into the metallic liquid phase remains an outstanding problem in physics. In theories considering the 2D WC to liquid transition in the clean limit, it was suggested that a number of intermediate phases might exist. We have studied the transformation between the metallic fluid phase and the low magnetic field reentrant insulating phase (RIP) which was interpreted as due to the WC [Qiu et al., PRL 108, 106404 (2012)], in a strongly correlated 2D hole system in GaAs quantum well with large interaction parameter rs (~20-30) and high mobility. Instead of a sharp transition, we found that increasing density (or lowering rs) drives the RIP into a state where the incipient RIP coexists with Fermi liquid. This apparent mixture phase intermediate between Fermi liquid and WC also exhibits a non-trivial temperature dependent resistivity behavior which can be qualitatively understood by the reversed melting of WC in the mixture, in analogy to the Pomeranchuk effect in the solid-liquid mixture of Helium-3. X.G. thanks NSF (DMR-0906415) for supporting work at CWRU. Experiments at the NHMFL High B/T Facility were supported by NSF Grant 0654118 and the State of Florida. L.P. thanks the Gordon and Betty Moore Foundation and NSF MRSEC (DMR-0819860) for support.

  15. Multiphase fluid characterization system

    DOEpatents

    Sinha, Dipen N.

    2014-09-02

    A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.

  16. 2D steady-state general solution and fundamental solution for fluid-saturated, orthotropic, poroelastic materials

    NASA Astrophysics Data System (ADS)

    Pan, Li-Hua; Hou, Peng-Fei; Chen, Jia-Yun

    2016-08-01

    The 2D steady-state solutions regarding the expressions of stress and strain for fluid-saturated, orthotropic, poroelastic plane are derived in this paper. For this object, the general solutions of the corresponding governing equation are first obtained and expressed in harmonic functions. Based on these compact general solutions, the suitable harmonic functions with undetermined constants for line fluid source in the interior of infinite poroelastic body and a line fluid source on the surface of semi-infinite poroelastic body are presented, respectively. The fundamental solutions can be obtained by substituting these functions into the general solution, and the undetermined constants can be obtained by the continuous conditions, equilibrium conditions and boundary conditions.

  17. Vlasov Fluid stability of a 2-D plasma with a linear magnetic field null

    SciTech Connect

    Kim, J.S.

    1984-01-01

    Vlasov Fluid stability of a 2-dimensional plasma near an O type magnetic null is investigated. Specifically, an elongated Z-pinch is considered, and applied to Field Reversed Configurations at Los Alamos National Laboratory by making a cylindrical approximation of the compact torus. The orbits near an elliptical O type null are found to be very complicated; the orbits are large and some are stochastic. The kinetic corrections to magnetohydrodynamics (MHD) are investigated by evaluating the expectation values of the growth rates of a Vlasov Fluid dispersion functional by using a set of trial functions based on ideal MHD. The dispersion functional involves fluid parts and orbit dependent parts. The latter involves phase integral of two time correlations. The phase integral is replaced by the time integral both for the regular and for the stochastic orbits. Two trial functions are used; one has a large displacement near the null and the other away from the null.

  18. 2D foam coarsening in a microfluidic system

    NASA Astrophysics Data System (ADS)

    Marchalot, J.; Lambert, J.; Cantat, I.; Tabeling, P.; Jullien, M.-C.

    2008-09-01

    We report an experimental study of 2D microfoam coarsening confined in a micrometer scale geometry, the typical bubbles diameter being of the order of 50-100 μm. These experiments raise both fundamental and applicative issues. For applicative issues: what is the typical time of foam ageing (for a polydisperse foam) in microsystems in scope of gas pocket storage in lab-on-a-chips? Experimental results show that a typical time of 2-3 mn is found, leading to the possibility of short-time storing, depending on the application. For fundamental interests, 2D foam ageing is generally described by von Neumann's law (von Neumann J., Metal Interfaces (American Society of Metals, Cleveland) 1952, p. 108) which is based on the hypothesis that bubbles are separated by thin films. Does this hypothesis still hold for foams confined in a 40 μm height geometry? This problematic is analyzed and it is shown that von Neumann's law still holds but that the diffusion coefficient involved in this law is modified by the confinement which imposes a curvature radius at Plateau borders. More precisely, it is shown that the liquid fraction is high on a film cross-section, in contrast with macrometric experiments where drainage occurs. An analytical description of the diffusion is developped taking into account the fact that soap film height is only a fraction of the cell height. While most of microfoams are flowing, the experimental set-up we describe leads to the achievement of a motionless confined microfoam.

  19. Orbital Fluid Transfer System

    NASA Technical Reports Server (NTRS)

    Johnston, A. S., (Nick); Ryder, Mel; Tyler, Tony R.

    1998-01-01

    An automated fluid and power interface system needs to be developed for future space missions which require on orbit consumable replenishment. Current method of fluid transfer require manned vehicles and extravehicular activity. Currently the US does not have an automated capability for consumable transfer on-orbit. This technology would benefit both Space Station and long duration satellites. In order to provide this technology the Automated Fluid Interface System (AFIS) was developed. The AFIS project was an advanced development program aimed at developing a prototype satellite servicer for future space operations. This mechanism could transfer propellants, cryogens, fluids, gasses, electrical power, and communications from a tanker unit to the orbiting satellite. The development of this unit was a cooperative effort between Marshall Space Flight Center in Huntsville, Alabama, and Moog, Inc. in East Aurora, New York. An engineering model was built and underwent substantial development testing at Marshall Space Flight Center (MSFC). While the AFIS is not suitable for spaceflight, testing and evaluation of the AFIS provided significant experience which would be beneficial in building a flight unit. The lessons learned from testing the AFIS provided the foundation for the next generation fluid transfer mechanism, the Orbital Fluid Transfer System (OFTS). The OFTS project was a study contract with MSFC and Moog, Inc. The OFTS was designed for the International Space Station (ISS), but its flexible design could used for long duration satellite missions and other applications. The OFTS was designed to be used after docking. The primary function was to transfer bipropellants and high pressure gases. The other items addressed by this task included propellant storage, hardware integration, safety and control system issues. A new concept for high pressure couplings was also developed. The results of the AFIS testing provided an excellent basis for the OFTS design. The OFTS

  20. Intravenous Fluid Generation System

    NASA Technical Reports Server (NTRS)

    McQuillen, John; McKay, Terri; Brown, Daniel; Zoldak, John

    2013-01-01

    The ability to stabilize and treat patients on exploration missions will depend on access to needed consumables. Intravenous (IV) fluids have been identified as required consumables. A review of the Space Medicine Exploration Medical Condition List (SMEMCL) lists over 400 medical conditions that could present and require treatment during ISS missions. The Intravenous Fluid Generation System (IVGEN) technology provides the scalable capability to generate IV fluids from indigenous water supplies. It meets USP (U.S. Pharmacopeia) standards. This capability was performed using potable water from the ISS; water from more extreme environments would need preconditioning. The key advantage is the ability to filter mass and volume, providing the equivalent amount of IV fluid: this is critical for remote operations or resource- poor environments. The IVGEN technology purifies drinking water, mixes it with salt, and transfers it to a suitable bag to deliver a sterile normal saline solution. Operational constraints such as mass limitations and lack of refrigeration may limit the type and volume of such fluids that can be carried onboard the spacecraft. In addition, most medical fluids have a shelf life that is shorter than some mission durations. Consequently, the objective of the IVGEN experiment was to develop, design, and validate the necessary methodology to purify spacecraft potable water into a normal saline solution, thus reducing the amount of IV fluids that are included in the launch manifest. As currently conceived, an IVGEN system for a space exploration mission would consist of an accumulator, a purifier, a mixing assembly, a salt bag, and a sterile bag. The accumulator is used to transfer a measured amount of drinking water from the spacecraft to the purifier. The purifier uses filters to separate any air bubbles that may have gotten trapped during the drinking water transfer from flowing through a high-quality deionizing cartridge that removes the impurities in

  1. Fluid management system technology discipline

    NASA Technical Reports Server (NTRS)

    Symons, E. Patrick

    1990-01-01

    Viewgraphs on fluid management system technology discipline for Space Station Freedom are presented. Topics covered include: subcritical cryogenic storage and transfer; fluid handling; and components and instrumentation.

  2. Density functional theory for polymeric systems in 2D

    NASA Astrophysics Data System (ADS)

    Słyk, Edyta; Roth, Roland; Bryk, Paweł

    2016-06-01

    We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim’s first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys. 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT.

  3. Density functional theory for polymeric systems in 2D.

    PubMed

    Słyk, Edyta; Roth, Roland; Bryk, Paweł

    2016-06-22

    We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim's first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys. 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT. PMID:27115343

  4. Comparing a 2D fluid model of the DC planar magnetron cathode to experiments

    SciTech Connect

    Garcia, M.

    1996-05-01

    Planar magnetron cathodes have arching magnetic field lines which concentrate plasma density near the electrode surface. This enhances the ion bombardment of the surface and the yield of sputtered atoms. Magnetron cathodes are used in the Plasma Electrode Pockels Cell (PEPC) devices of the Laser Program because they provide for significantly higher conduction than do glow discharges. An essential feature of magnetron cathodes is that the vector product of the perpendicular electric field, E[sub y], with the parallel component of the magnetic field, B[sub x], forms a closed track with a circulating current along the cathode surface. An analytical, 2D, two component, quasi-neutral, continuum model yields formulas for the plasma density, the total and component current densities, the electric field, and the positive electrical potential, between the cathode surface and a distant, uniform plasma. For a specific gas, the free parameters are electron temperature, gas number density, and total current. The model is applied to the interpretation of experimental data from the PEPC device, as well as a small vacuum facility for testing magnetron cathodes. Finally, the model has been applied to generate cross sectional views of a PEPC magnetron cathode track.

  5. 2-D isotropic negative refractive index in a N-type four-level atomic system

    NASA Astrophysics Data System (ADS)

    Zhao, Shun-Cai; Wu, Qi-Xuan; Ma, Kun

    2015-11-01

    2-D(Two-dimensional) isotropic negative refractive index (NRI) is explicitly realized via the orthogonal signal and coupling standing-wave fields coupling the Ntype four-level atomic system. Under some key parameters of the dense vapour media, the atomic system exhibits isotropic NRI with simultaneous negative permittivity and permeability (i.e. left-handedness) in the 2-D x-y plane. Compared with other 2-D NRI schemes, the coherent atomic vapour media in our scheme may be an ideal 2-D isotropic NRI candidate and has some potential advantages, significance or applications in the further investigation.

  6. Disorder-driven loss of phase coherence in a quasi-2D cold atom system

    NASA Astrophysics Data System (ADS)

    Beeler, M. C.; Reed, M. E. W.; Hong, T.; Rolston, S. L.

    2012-07-01

    We study the order parameter of a quasi-two-dimensional (quasi-2D) gas of ultracold atoms trapped in an optical potential in the presence of controllable disorder. Our results show that disorder drives phase fluctuations without significantly affecting the amplitude of the quasi-condensate order parameter. This is evidence that disorder can drive phase fluctuations in 2D systems, relevant to the phase-fluctuation mechanism for the superconductor-to-insulator phase transition (SIT) in disordered 2D superconductors.

  7. GAS DIFFUSION IN A 2-D SOIL SYSTEM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical alternatives for methyl bromide appear to be the only viable short to medium range replacements in pre-plant soil fumigation systems. However, current fumigation practices need to be improved to minimize negative societal and environmental impacts. Often the amount of fumigant applied to so...

  8. Screening and transport in 2D semiconductor systems at low temperatures

    PubMed Central

    Das Sarma, S.; Hwang, E. H.

    2015-01-01

    Low temperature carrier transport properties in 2D semiconductor systems can be theoretically well-understood within RPA-Boltzmann theory as being limited by scattering from screened Coulomb disorder arising from random quenched charged impurities in the environment. In this work, we derive a number of analytical formula, supported by realistic numerical calculations, for the relevant density, mobility, and temperature range where 2D transport should manifest strong intrinsic (i.e., arising purely from electronic effects) metallic temperature dependence in different semiconductor materials arising entirely from the 2D screening properties, thus providing an explanation for why the strong temperature dependence of the 2D resistivity can only be observed in high-quality and low-disorder 2D samples and also why some high-quality 2D materials manifest much weaker metallicity than other materials. We also discuss effects of interaction and disorder on the 2D screening properties in this context as well as compare 2D and 3D screening functions to comment why such a strong intrinsic temperature dependence arising from screening cannot occur in 3D metallic carrier transport. Experimentally verifiable predictions are made about the quantitative magnitude of the maximum possible low-temperature metallicity in 2D systems and the scaling behavior of the temperature scale controlling the quantum to classical crossover. PMID:26572738

  9. Reliability of fluid systems

    NASA Astrophysics Data System (ADS)

    Kopáček, Jaroslav; Fojtášek, Kamil; Dvořák, Lukáš

    2016-03-01

    This paper focuses on the importance of detection reliability, especially in complex fluid systems for demanding production technology. The initial criterion for assessing the reliability is the failure of object (element), which is seen as a random variable and their data (values) can be processed using by the mathematical methods of theory probability and statistics. They are defined the basic indicators of reliability and their applications in calculations of serial, parallel and backed-up systems. For illustration, there are calculation examples of indicators of reliability for various elements of the system and for the selected pneumatic circuit.

  10. Analysis on oscillating actuator frequency influence of the fluid flow characterization for 2D contractile water jet thruster

    NASA Astrophysics Data System (ADS)

    Shaari, M. F.; Abu Bakar, H.; Nordin, N.; Saw, S. K.; Samad, Z.

    2013-12-01

    Contractile body is an alternative mechanism instead of rotating blade propeller to generate water jet for locomotion. The oscillating motion of the actuator at different frequencies varies the pressure and volume of the pressure chamber in time to draw in and jet out the water at a certain mass flow rate. The aim of this research was to analyze the influence of the actuating frequency of the fluid flow in the pressure chamber of the thruster during this inflation-deflation process. A 70mm × 70mm × 18mm (L × W × T) 2D water jet thruster was fabricated for this purpose. The contractile function was driven using two lateral pneumatic actuators where the fluid flow analysis was focused on the X-Y plane vector. Observation was carried out using a video camera and Matlab image measurement technique to determine the volume of the flowing mass. The result demonstrated that the greater actuating frequency decreases the fluid flow rate and the Reynolds number. This observation shows that the higher frequency would give a higher mass flow rate during water jet generation.

  11. Novel exciton systems in 2D TMD monolayers and heterobilayers

    NASA Astrophysics Data System (ADS)

    Yu, Hongyi

    In this talk, two exciton systems in transition metal dichalcogenides (TMDs) monolayer and heterobilayer will be discussed. In TMD monolayers, the strong e-h Coulomb exchange interaction splits the exciton and trion dispersions into two branches with zero and finite gap, respectively. Each branch is a center-of-mass wave vector dependent coherent superposition of the two valleys, which leads to a valley-orbit coupling and possibly a trion valley Hall effect. The exchange interaction also eliminates the linear polarization of the negative trion PL emission. In TMD heterobilayers with a type-II band alignment, the low energy exciton has an interlayer configuration with the e and h localized in opposite layers. Because of the inevitable twist or/and lattice mismatch between the two layers, the bright interlayer excitons are located at finite center-of-mass velocities with a six-fold degeneracy. The corresponding photon emission is elliptically polarized, with the major axis locked to the direction of exciton velocity, and helicity determined by the valley indices of the e and h. Some experimental results on the interlayer excitons in the WSe2-MoSe2 heterobilayers will also be presented. The interlayer exciton exhibits a long lifetime as well as a long depolarization time, which facilitate the observation of a PL polarization ring pattern due to the valley dependent exciton-exciton interaction induced expansion. The works were supported by the Research Grant Council of Hong Kong (HKU17305914P, HKU705513P), the Croucher Foundation, and the HKU OYRA and ROP.

  12. Fluid infusion system

    NASA Technical Reports Server (NTRS)

    Hammond, J. C.

    1975-01-01

    Development of a fluid infusion system was undertaken in response to a need for an intravenous infusion device operable under conditions of zero-g. The initial design approach, pursued in the construction of the first breadboard instrument, was to regulate the pressure of the motive gas to produce a similar regulated pressure in the infusion liquid. This scheme was not workable because of the varying bag contact area, and a major design iteration was made. A floating sensor plate in the center of the bag pressure plate was made to operate a pressure regulator built into the bellows assembly, effectively making liquid pressure the directly controlled variable. Other design changes were made as experience was gained with the breadboard. Extensive performance tests were conducted on both the breadboard and the prototype device; accurately regulated flows from 6 m1/min to 100 m1/min were achieved. All system functions were shown to operate satisfactorily.

  13. 2D and 3D Mechanobiology in Human and Nonhuman Systems.

    PubMed

    Warren, Kristin M; Islam, Md Mydul; LeDuc, Philip R; Steward, Robert

    2016-08-31

    Mechanobiology involves the investigation of mechanical forces and their effect on the development, physiology, and pathology of biological systems. The human body has garnered much attention from many groups in the field, as mechanical forces have been shown to influence almost all aspects of human life ranging from breathing to cancer metastasis. Beyond being influential in human systems, mechanical forces have also been shown to impact nonhuman systems such as algae and zebrafish. Studies of nonhuman and human systems at the cellular level have primarily been done in two-dimensional (2D) environments, but most of these systems reside in three-dimensional (3D) environments. Furthermore, outcomes obtained from 3D studies are often quite different than those from 2D studies. We present here an overview of a select group of human and nonhuman systems in 2D and 3D environments. We also highlight mechanobiological approaches and their respective implications for human and nonhuman physiology. PMID:27214883

  14. Dynamics and Control of a Reduced Order System of the 2-d Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Smaoui, Nejib; Zribi, Mohamed

    2014-11-01

    The dynamics and control problem of a reduced order system of the 2-d Navier-Stokes (N-S) equations is analyzed. First, a seventh order system of nonlinear ordinary differential equations (ODE) which approximates the dynamical behavior of the 2-d N-S equations is obtained by using the Fourier Galerkin method. We show that the dynamics of this ODE system transforms from periodic solutions to chaotic attractors through a sequence of bifurcations including a period doubling scenarios. Then three Lyapunov based controllers are designed to either control the system of ODEs to a desired fixed point or to synchronize two ODE systems obtained from the truncation of the 2-d N-S equations under different conditions. Numerical simulations are presented to show the effectiveness of the proposed controllers. This research was supported and funded by the Research Sector, Kuwait University under Grant No. SM02/14.

  15. Approximation of 2D Euler Equations by the Second-Grade Fluid Equations with Dirichlet Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Lopes Filho, Milton C.; Nussenzveig Lopes, Helena J.; Titi, Edriss S.; Zang, Aibin

    2015-06-01

    The second-grade fluid equations are a model for viscoelastic fluids, with two parameters: α > 0, corresponding to the elastic response, and , corresponding to viscosity. Formally setting these parameters to 0 reduces the equations to the incompressible Euler equations of ideal fluid flow. In this article we study the limits of solutions of the second-grade fluid system, in a smooth, bounded, two-dimensional domain with no-slip boundary conditions. This class of problems interpolates between the Euler- α model (), for which the authors recently proved convergence to the solution of the incompressible Euler equations, and the Navier-Stokes case ( α = 0), for which the vanishing viscosity limit is an important open problem. We prove three results. First, we establish convergence of the solutions of the second-grade model to those of the Euler equations provided , as α → 0, extending the main result in (Lopes Filho et al., Physica D 292(293):51-61, 2015). Second, we prove equivalence between convergence (of the second-grade fluid equations to the Euler equations) and vanishing of the energy dissipation in a suitably thin region near the boundary, in the asymptotic regime , as α → 0. This amounts to a convergence criterion similar to the well-known Kato criterion for the vanishing viscosity limit of the Navier-Stokes equations to the Euler equations. Finally, we obtain an extension of Kato's classical criterion to the second-grade fluid model, valid if , as . The proof of all these results relies on energy estimates and boundary correctors, following the original idea by Kato.

  16. 2D fluid-analytical simulation of electromagnetic effects in low pressure, high frequency electronegative capacitive discharges

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lichtenberg, A. J.; Lieberman, M. A.; Marakhtanov, A. M.

    2016-06-01

    A fast 2D axisymmetric fluid-analytical multifrequency capacitively coupled plasma (CCP) reactor code is used to study center high nonuniformity in a low pressure electronegative chlorine discharge. In the code, a time-independent Helmholtz wave equation is used to solve for the capacitive fields in the linearized frequency domain. This eliminates the time dependence from the electromagnetic (EM) solve, greatly speeding up the simulations at the cost of neglecting higher harmonics. However, since the code allows up to three driving frequencies, we can add the two most important harmonics to the CCP simulations as the second and third input frequencies. The amplitude and phase of these harmonics are estimated by using a recently developed 1D radial nonlinear transmission line (TL) model of a highly asymmetric cylindrical discharge (Lieberman et al 2015 Plasma Sources Sci. Technol. 24 055011). We find that at higher applied frequencies, the higher harmonics contribute significantly to the center high nonuniformity due to their shorter plasma wavelengths.

  17. Comparative study on 3D-2D convertible integral imaging systems

    NASA Astrophysics Data System (ADS)

    Choi, Heejin; Kim, Joohwan; Kim, Yunhee; Lee, Byoungho

    2006-02-01

    In spite of significant improvements in three-dimensional (3D) display fields, the commercialization of a 3D-only display system is not achieved yet. The mainstream of display market is a high performance two-dimensional (2D) flat panel display (FPD) and the beginning of the high-definition (HD) broadcasting accelerates the opening of the golden age of HD FPDs. Therefore, a 3D display system needs to be able to display a 2D image with high quality. In this paper, two different 3D-2D convertible methods based on integral imaging are compared and categorized for its applications. One method uses a point light source array and a polymer-dispersed liquid crystal and one display panel. The other system adopts two display panels and a lens array. The former system is suitable for mobile applications while the latter is for home applications such as monitors and TVs.

  18. High performance CCD camera system for digitalisation of 2D DIGE gels.

    PubMed

    Strijkstra, Annemieke; Trautwein, Kathleen; Roesler, Stefan; Feenders, Christoph; Danzer, Daniel; Riemenschneider, Udo; Blasius, Bernd; Rabus, Ralf

    2016-07-01

    An essential step in 2D DIGE-based analysis of differential proteome profiles is the accurate and sensitive digitalisation of 2D DIGE gels. The performance progress of commercially available charge-coupled device (CCD) camera-based systems combined with light emitting diodes (LED) opens up a new possibility for this type of digitalisation. Here, we assessed the performance of a CCD camera system (Intas Advanced 2D Imager) as alternative to a traditionally employed, high-end laser scanner system (Typhoon 9400) for digitalisation of differential protein profiles from three different environmental bacteria. Overall, the performance of the CCD camera system was comparable to the laser scanner, as evident from very similar protein abundance changes (irrespective of spot position and volume), as well as from linear range and limit of detection. PMID:27252121

  19. Fluid sampling system

    DOEpatents

    Houck, Edward D.

    1994-01-01

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

  20. Fluid sampling system

    DOEpatents

    Houck, E.D.

    1994-10-11

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

  1. Fluid sampling system

    SciTech Connect

    Houck, E.D.

    1993-12-31

    This invention comprises a fluid sampling system which allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped up into a sampling jet of venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decrease, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodicially leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

  2. Fluid delivery control system

    SciTech Connect

    Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad

    2006-06-06

    A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.

  3. Design of FBG En/decoders in Coherent 2-D Time-polarization OCDMA Systems

    NASA Astrophysics Data System (ADS)

    Hou, Fen-fei; Yang, Ming

    2012-12-01

    A novel fiber Bragg grating (FBG)-based en/decoder for the two-dimensional (2-D) time-spreading and polarization multiplexer optical coding is proposed. Compared with other 2-D en/decoders, the proposed en/decoding for an optical code-division multiple-access (OCDMA) system uses a single phase-encoded FBG and coherent en/decoding. Furthermore, combined with reconstruction-equivalent-chirp technology, such en/decoders can be realized with a conventional simple fabrication setup. Experimental results of such en/decoders and the corresponding system test at a data rate of 5 Gbit/s demonstrate that this kind of 2-D FBG-based en/decoders could improve the performances of OCDMA systems.

  4. Ultrasonic Fluid Quality Sensor System

    DOEpatents

    Gomm, Tyler J.; Kraft, Nancy C.; Phelps, Larry D.; Taylor, Steven C.

    2003-10-21

    A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

  5. Ultrasonic fluid quality sensor system

    DOEpatents

    Gomm, Tyler J.; Kraft, Nancy C.; Phelps, Larry D.; Taylor, Steven C.

    2002-10-08

    A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

  6. Hydrocarbon fluid, ejector refrigeration system

    SciTech Connect

    Kowalski, G.J.; Foster, A.R.

    1993-08-31

    A refrigeration system is described comprising: a vapor ejector cycle including a working fluid having a property such that entropy of the working fluid when in a saturated vapor state decreases as pressure decreases, the vapor ejector cycle comprising: a condenser located on a common fluid flow path; a diverter located downstream from the condenser for diverting the working fluid into a primary fluid flow path and a secondary fluid flow path parallel to the primary fluid flow path; an evaporator located on the secondary fluid flow path; an expansion device located on the secondary fluid flow path upstream of the evaporator; a boiler located on the primary fluid flow path parallel to the evaporator for boiling the working fluid, the boiler comprising an axially extending core region having a substantially constant cross sectional area and a porous capillary region surrounding the core region, the core region extending a length sufficient to produce a near sonic velocity saturated vapor; and an ejector having an outlet in fluid communication with the inlet of the condenser and an inlet in fluid communication with the outlet of the evaporator and the outlet of the boiler and in which the flows of the working fluid from the evaporator and the boiler are mixed and the pressure of the working fluid is increased to at least the pressure of the condenser, the ejector inlet, located downstream from the axially extending core region, including a primary nozzle located sufficiently close to the outlet of the boiler to minimize a pressure drop between the boiler and the primary nozzle, the primary nozzle of the ejector including a converging section having an included angle and length preselected to receive the working fluid from the boiler as a near sonic velocity saturated vapor.

  7. A multifunctional automated system of 2D laser polarimetry of biological tissues

    NASA Astrophysics Data System (ADS)

    Zabolotna, Natalia I.; Radchenko, Kostiantyn O.

    2014-09-01

    Multifunctional automated system of 2D laser polarimetry of biological tissues with enhanced functional capabilities is proposed. Two-layer optically thin (attenuation coefficient τ <= 0,1 ) biological structures, formed by "muscle tissue (MT) - the dermis of the skin (DS)" histological cryosections for the two physiological states (normal - dystrophy) were investigated. Complex of objective indexes which characterized by 2D polarization reproduced distributions under the following criteria: histograms of the distributions; statistical moments of the 1st - 4th order; autocorrelation functions; correlation moments; power spectra logarithmic dependencies of the distributions; fractal dimensions of the distributions; spectra moments are presented.

  8. 2-D PSD Diagnostic System for the Pellet Trajectory in LHD Plasmas

    NASA Astrophysics Data System (ADS)

    Hoshino, Mitsuyasu; Sakamoto, Ryuichi; Yamada, Hiroshi; Itoh, Yasuhiko; Kumagai, Kohki; Kumazawa, Ryuhei; Watari, Tetsuo; LHD Experimental Group

    Ablation of a solid hydrogen pellet in hot plasmas of Large Helical Device (LHD) has been studied. A position sensitive detector (PSD) diagnostics has been newly installed to measure the trajectory of ablating pellets. 2-D diagnostics enables the measurement with high time (1 MHz) and spatial resolutions (80 μm). A 3-D pellet trajectory can be described by a combination of 2-D images and information of initial pellet direction and velocity. A deflection of the pellet trajectory in the neutral beam injection (NBI) heated plasmas of LHD has been observed. Means of improving the measurement accuracy of this system are also discussed.

  9. Oil well fluid processing system

    SciTech Connect

    Cobb, J.R.

    1988-10-25

    This patent describes an oil well fluid processing system, comprising: a skid having a first skid section and a second skid section separable from the first skid section; means for connecting one end of the first skid section to one end of the second skid section; a cylindrical fluid processing apparatus pivotally mounted at a lower end thereof on the first skid section for pivoting movement between a raised position wherein the fluid processing apparatus extends vertically from the first skid section and a lowered position wherein the fluid processing apparatus overlays the second skid section at such times that the two sections of the skid are connected together; and means mounted on the second skid section and connectable to the fluid processing apparatus for moving the fluid processing apparatus between the raised and lowered positions at such times that the two sections of the skid are connected together.

  10. Priority depth fusion for the 2D to 3D conversion system

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Lin; Chen, Wei-Yin; Chang, Jing-Ying; Tsai, Yi-Min; Lee, Chia-Lin; Chen, Liang-Gee

    2008-02-01

    For the sake of providing 3D contents for up-coming 3D display devices, a real-time automatic depth fusion 2D-to-3D conversion system is needed on the home multimedia platform. We proposed a priority depth fusion algorithm with a 2D-to-3D conversion system which generates the depth map from most of the commercial video sequences. The results from different kinds of depth reconstruction methods are integrated into one depth map by the proposed priority depth fusion algorithm. Then the depth map and the original 2D image are converted to stereo images for showing on the 3D display devices. In this paper, a 2D-to-3D conversion algorithm set is combined with the proposed depth fusion algorithm to show the improved results. With the converted 3D contents, the needs for 3D display devices will also increase. As long as the two technologies evolve, the 3D-TV era will come as soon as possible.

  11. 2D and 3D Mass Transfer Simulations in β Lyrae System

    NASA Astrophysics Data System (ADS)

    Nazarenko, V. V.; Glazunova, L. V.; Karetnikov, V. G.

    2001-12-01

    2D and 3D mass transfer simulations of the mass transfer in β Lyrae binary system. We have received that from a point L3 40 per cent of mass transfer from L1-point is lost.The structure of a gas envelope, around system is calculated.3-D mass transfer simulations has shown presence the spiral shock in the disk around primary star's and a jet-like structures (a mass flow in vertical direction) over a stream.

  12. BILL2D - A software package for classical two-dimensional Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Solanpää, J.; Luukko, P. J. J.; Räsänen, E.

    2016-02-01

    We present BILL2D, a modern and efficient C++ package for classical simulations of two-dimensional Hamiltonian systems. BILL2D can be used for various billiard and diffusion problems with one or more charged particles with interactions, different external potentials, an external magnetic field, periodic and open boundaries, etc. The software package can also calculate many key quantities in complex systems such as Poincaré sections, survival probabilities, and diffusion coefficients. While aiming at a large class of applicable systems, the code also strives for ease-of-use, efficiency, and modularity for the implementation of additional features. The package comes along with a user guide, a developer's manual, and a documentation of the application program interface (API).

  13. A 2-D Microdisplay Using An Integrated Microresonating Waveguide Scanning System

    PubMed Central

    Hua, Wei-Shu; Tsui, Chi Leung; Soetanto, William; Wu, Wen-Jong; Wang, Wei-Chih

    2012-01-01

    Our research team has developed a MEMS based on a 2D micro image display device that can potentially overcome the size reduction limits while maintaining the high image resolution and field of view obtained by mirror based display systems. The basic design of the optical scanner includes a micro-fabricated polymer based cantilever waveguide that is electromechanically deflected by a 2D piezoelectric actuator. From the distal tip of the cantilever waveguide, a light beam is emitted and the direction of propagation is displaced along two orthogonal directions. The waveforms for the X-Y actuators and the LED light modulation are controlled using a field programmable gate array (FPGA). In this paper we will extend our display development by reporting more recent integration of components including actuators and light sources with a controller. Here we will describe the design, fabrication of the latest polymeric waveguide cantilever beam steering device driven by 2-D piezoelectric actuator using aerosol deposited PZT thick film actuators. The mechanical and optical design for the microresonating scanner will be discussed. In addition, the mechanical and optical performance of the 2-D scanner will be presented. PMID:26726320

  14. Automated Fluid Interface System (AFIS)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Automated remote fluid servicing will be necessary for future space missions, as future satellites will be designed for on-orbit consumable replenishment. In order to develop an on-orbit remote servicing capability, a standard interface between a tanker and the receiving satellite is needed. The objective of the Automated Fluid Interface System (AFIS) program is to design, fabricate, and functionally demonstrate compliance with all design requirements for an automated fluid interface system. A description and documentation of the Fairchild AFIS design is provided.

  15. Parameterising root system growth models using 2D neutron radiography images

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Felderer, Bernd; Vontobel, Peter; Leitner, Daniel

    2013-04-01

    Root architecture is a key factor for plant acquisition of water and nutrients from soil. In particular in view of a second green revolution where the below ground parts of agricultural crops are important, it is essential to characterise and quantify root architecture and its effect on plant resource acquisition. Mathematical models can help to understand the processes occurring in the soil-plant system, they can be used to quantify the effect of root and rhizosphere traits on resource acquisition and the response to environmental conditions. In order to do so, root architectural models are coupled with a model of water and solute transport in soil. However, dynamic root architectural models are difficult to parameterise. Novel imaging techniques such as x-ray computed tomography, neutron radiography and magnetic resonance imaging enable the in situ visualisation of plant root systems. Therefore, these images facilitate the parameterisation of dynamic root architecture models. These imaging techniques are capable of producing 3D or 2D images. Moreover, 2D images are also available in the form of hand drawings or from images of standard cameras. While full 3D imaging tools are still limited in resolutions, 2D techniques are a more accurate and less expensive option for observing roots in their environment. However, analysis of 2D images has additional difficulties compared to the 3D case, because of overlapping roots. We present a novel algorithm for the parameterisation of root system growth models based on 2D images of root system. The algorithm analyses dynamic image data. These are a series of 2D images of the root system at different points in time. Image data has already been adjusted for missing links and artefacts and segmentation was performed by applying a matched filter response. From this time series of binary 2D images, we parameterise the dynamic root architecture model in the following way: First, a morphological skeleton is derived from the binary

  16. Global existence and uniqueness theorem to 2-D incompressible non-resistive MHD system with non-equilibrium background magnetic field

    NASA Astrophysics Data System (ADS)

    Zhai, Cuili; Zhang, Ting

    2016-09-01

    In this article, we consider the global existence and uniqueness of the solution to the 2D incompressible non-resistive MHD system with non-equilibrium background magnetic field. Our result implies that a strong enough non-equilibrium background magnetic field will guarantee the stability of the nonlinear MHD system. Beside the classical energy method, the interpolation inequalities and the algebraic structure of the equations coming from the incompressibility of the fluid are crucial in our arguments.

  17. Developing Mobile BIM/2D Barcode-Based Automated Facility Management System

    PubMed Central

    Chen, Yen-Pei

    2014-01-01

    Facility management (FM) has become an important topic in research on the operation and maintenance phase. Managing the work of FM effectively is extremely difficult owing to the variety of environments. One of the difficulties is the performance of two-dimensional (2D) graphics when depicting facilities. Building information modeling (BIM) uses precise geometry and relevant data to support the facilities depicted in three-dimensional (3D) object-oriented computer-aided design (CAD). This paper proposes a new and practical methodology with application to FM that uses an integrated 2D barcode and the BIM approach. Using 2D barcode and BIM technologies, this study proposes a mobile automated BIM-based facility management (BIMFM) system for FM staff in the operation and maintenance phase. The mobile automated BIMFM system is then applied in a selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FM practice. The combined results demonstrate that a BIMFM-like system can be an effective mobile automated FM tool. The advantage of the mobile automated BIMFM system lies not only in improving FM work efficiency for the FM staff but also in facilitating FM updates and transfers in the BIM environment. PMID:25250373

  18. Developing mobile BIM/2D barcode-based automated facility management system.

    PubMed

    Lin, Yu-Cheng; Su, Yu-Chih; Chen, Yen-Pei

    2014-01-01

    Facility management (FM) has become an important topic in research on the operation and maintenance phase. Managing the work of FM effectively is extremely difficult owing to the variety of environments. One of the difficulties is the performance of two-dimensional (2D) graphics when depicting facilities. Building information modeling (BIM) uses precise geometry and relevant data to support the facilities depicted in three-dimensional (3D) object-oriented computer-aided design (CAD). This paper proposes a new and practical methodology with application to FM that uses an integrated 2D barcode and the BIM approach. Using 2D barcode and BIM technologies, this study proposes a mobile automated BIM-based facility management (BIMFM) system for FM staff in the operation and maintenance phase. The mobile automated BIMFM system is then applied in a selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FM practice. The combined results demonstrate that a BIMFM-like system can be an effective mobile automated FM tool. The advantage of the mobile automated BIMFM system lies not only in improving FM work efficiency for the FM staff but also in facilitating FM updates and transfers in the BIM environment. PMID:25250373

  19. Phase Transitions in Quasi-2D Plasma-Dust Systems: Simulations and Experiments

    NASA Astrophysics Data System (ADS)

    Petrov, Oleg; Vasiliev, Mikhail; Statsenko, Konstantin; Koss, Xeniya; Vasilieva, Elena; Myasnikov, Maxim; Lisin, Evgeny

    2015-11-01

    A nature of phase transition in quasi-2D dusty plasma structures was studied and the influence of the quasi-2D cluster size (a number of particles in it) on the features of the phase transition was investigated. Experiments and numerical simulation was conducted for the systems consisting of small (~ 10) and large (~ 103) number of particles. To investigate the phase state of the system with 7, 18 and 100 particles observed in numerical and laboratory experiments, we used the method based on analysis of dynamic entropy. Numerical modeling of small systems was conducted by the Langevin molecular dynamic method with the Langevin force, responsible for the stochastic nature of the motion of particles with a given kinetic temperature. Phase state of systems with the number of elements in the order of 103, was studied using the methods of statistical thermodynamics. Here we present new results of an experimental study of the change of translational and orientational order and topological defects, and the pair interactions at 2D melting of dust cluster in rf discharge plasma. The experimental results have revealed the existence of hexatic phase as well as solid-to-hexatic phase and hexatic-to-liquid transitions. This work was supported by the Russian Science Foundation (O.F. Petrov, M.M.Vasiliev, K.B. Stacenko, X.G. Koss, E.V. Vasilieva, M.I.Myasnikov and E.?.Lisin) through Grant No. 14-12-01440).

  20. Preliminary work of real-time ultrasound imaging system for 2-D array transducer.

    PubMed

    Li, Xu; Yang, Jiali; Ding, Mingyue; Yuchi, Ming

    2015-01-01

    Ultrasound (US) has emerged as a non-invasive imaging modality that can provide anatomical structure information in real time. To enable the experimental analysis of new 2-D array ultrasound beamforming methods, a pre-beamformed parallel raw data acquisition system was developed for 3-D data capture of 2D array transducer. The transducer interconnection adopted the row-column addressing (RCA) scheme, where the columns and rows were active in sequential for transmit and receive events, respectively. The DAQ system captured the raw data in parallel and the digitized data were fed through the field programmable gate array (FPGA) to implement the pre-beamforming. Finally, 3-D images were reconstructed through the devised platform in real-time. PMID:26405923

  1. Delay-dependent stability and stabilisation of continuous 2D delayed systems with saturating control

    NASA Astrophysics Data System (ADS)

    Hmamed, Abdelaziz; Kririm, Said; Benzaouia, Abdellah; Tadeo, Fernando

    2016-09-01

    This paper deals with the stabilisation problem of continuous two-dimensional (2D) delayed systems, in the presence of saturations on the control signals. For this, a new delay decomposition approach is proposed to deal with the stability and stabilisation issues. The idea is that the range of variation of each delay is divided into segments, and a specific Lyapunov- Krasovskii functional is used that contains different weight matrices in each segment. Then, based on this approach, new delay-dependent stability and stabilisation criteria for continuous 2D delayed systems are derived. These criteria are less conservative and include some existing results as special cases. Some numerical examples are provided to show that a significant improvement is achieved using the proposed approach.

  2. Generalized Fluid System Simulation Program

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok Kumar (Inventor); Bailey, John W. (Inventor); Schallhorn, Paul Alan (Inventor); Steadman, Todd E. (Inventor)

    2004-01-01

    A general purpose program implemented on a computer analyzes steady state and transient flow in a complex fluid network, modeling phase changes, compressibility, mixture thermodynamics and external body forces such as gravity and centrifugal force. A preprocessor provides for the inter- active development of a fluid network simulation having nodes and branches. Mass, energy, and specie conservation equations are solved at the nodes, and momentum conservation equations are solved in the branches. Contained herein are subroutines for computing "real fluid" thermodynamic and thermophysical properties for 12 fluids, and a number of different source options are provided for model- ing momentum sources or sinks in the branches. The system of equations describing the fluid network is solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods. Application and verification of this invention are provided through an example problem, which demonstrates that the predictions of the present invention compare most reasonably with test data.

  3. Fluid management systems technology summaries

    NASA Technical Reports Server (NTRS)

    Stark, J. A.; Blatt, M. H.; Bennett, F. O., Jr.; Campbell, B. J.

    1974-01-01

    A summarization and categorization of the pertinent literature associated with fluid management systems technology having potential application to in-orbit fluid transfer and/or associated storage are presented. A literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in the following manner: (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4) major results, and (5) comments of the reviewer. Pertinent figures are presented on a single facing page separate from the text. Specific areas covered are: fluid line dynamics and thermodynamics, low-g mass gauging, other instrumentation, stratification/pressurization, low-g vent systems, fluid mixing refrigeration and reliquefaction, and low-g interface control and liquid acquisition systems. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed.

  4. The potential energy surface and chaos in 2D Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Li, Jiangdan; Zhang, Suying

    2011-02-01

    We provide a new insight into the relationship between the geometric property of the potential energy surface and chaotic behavior of 2D Hamiltonian dynamical systems, and give an indicator of chaos based on the geometric property of the potential energy surface by defining Mean Convex Index (MCI). We also discuss a model of unstable Hamiltonian in detail, and show our results in good agreement with HBLSL's (Horwitz, Ben Zion, Lewkowicz, Schiffer and Levitan) new Riemannian geometric criterion.

  5. Interaction of water molecules with hexagonal 2D systems. A DFT study

    NASA Astrophysics Data System (ADS)

    Rojas, Ángela; Rey, Rafael

    Over the years water sources have been contaminated with many chemical agents, becoming issues that affect health of the world population. The advances of the nanoscience and nanotechnology in the development new materials constitute an alternative for design molecular filters with great efficiencies and low cost for water treatment and purification. In the nanoscale, the process of filtration or separation of inorganic and organic pollutants from water requires to study interactions of these atoms or molecules with different nano-materials. Specifically, it is necessary to understand the role of these interactions in physical and chemical properties of the nano-materials. In this work, the main interest is to do a theoretical study of interaction between water molecules and 2D graphene-like systems, such as silicene (h-Si) or germanene (h-Ge). Using Density Functional Theory we calculate total energy curves as function of separation between of water molecules and 2D systems. Different spatial configurations of water molecules relative to 2D systems are considered. Structural relaxation effects and changes of electronic charge density also are reported. Universidad Nacional de Colombia.

  6. IGUANA: a high-performance 2D and 3D visualisation system

    NASA Astrophysics Data System (ADS)

    Alverson, G.; Eulisse, G.; Muzaffar, S.; Osborne, I.; Taylor, L.; Tuura, L. A.

    2004-11-01

    The IGUANA project has developed visualisation tools for multiple high-energy experiments. At the core of IGUANA is a generic, high-performance visualisation system based on OpenInventor and OpenGL. This paper describes the back-end and a feature-rich 3D visualisation system built on it, as well as a new 2D visualisation system that can automatically generate 2D views from 3D data, for example to produce R/Z or X/Y detector displays from existing 3D display with little effort. IGUANA has collaborated with the open-source gl2ps project to create a high-quality vector postscript output that can produce true vector graphics output from any OpenGL 2D or 3D display, complete with surface shading and culling of invisible surfaces. We describe how it works. We also describe how one can measure the memory and performance costs of various OpenInventor constructs and how to test scene graphs. We present good patterns to follow and bad patterns to avoid. We have added more advanced tools such as per-object clipping, slicing, lighting or animation, as well as multiple linked views with OpenInventor, and describe them in this paper. We give details on how to edit object appearance efficiently and easily, and even dynamically as a function of object properties, with instant visual feedback to the user.

  7. Strong and Weak 2D Topological Superconductivity in Hidden Quasi-1D Systems

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Yao, Hong

    2014-03-01

    Partly motivated by the newly discovered family of bismuth-based superconductors including LaO1-xFxBiS2, we study possible 2D topological superconductivities (TSC) in hidden quasi-1D systems with spin-orbit couplings. By doing RPA calculations and renormalization group (RG) treatment, we theoretically find that in a large portion of the phase diagram with varying interaction strengths and spin-orbit coupling the ground states favors superconductivity with odd-parity pairing, which results in either chiral TSC or time reversal invariant weak-Z2 TSC. We shall discuss several ways to experimentally identify these strong and weak 2D topological superconductivity. Possible applications to the bismuth-based superconductors LaO1-xFxBiS2 will also be remarked.

  8. Numerical studies of the melting transition in 2D Yukawa systems

    SciTech Connect

    Hartmann, P.; Donko, Z.; Kalman, G. J.

    2008-09-07

    We present the latest results of our systematic studies of the solid--liquid phase transition in 2D classical many-particle systems interacting with the Yukawa potential. Our previous work is extended by applying the molecular dynamic simulations to systems with up to 1.6 million particles in the computational box (for {kappa} = 2 case). Equilibrium simulations are performed for different coupling parameters in the vicinity of the expected melting transition ({gamma}{sub m}{sup {kappa}}{sup ={sup 2}}{approx_equal}415) and a wide range of observables are averaged over uncorrelated samples of the micro-canonical ensemble generated by the simulations.

  9. FPGA implementation of 2-D discrete cosine transforms algorithm using systemC

    NASA Astrophysics Data System (ADS)

    Liu, Yifei; Ding, Mingyue

    2007-12-01

    Discrete Cosine Transform (DCT) is widely applied in image and video compression. This paper presented the software and hardware co-design method based on SystemC. As a case of study, a two dimension (2D) DCT Algorithm was implemented on Programmable Gate Arrays (FPGAs) chip. The short simulation time and verification process greatly increases the design efficiency of SystemC, making the product designed by SystemC more quickly into the market. The design effect using SystemC is compared between the expertise hardware designer and the software designer with little hardware knowledge. The result shows SystemC is an excellent and high efficiency hardware design method for an expertise hardware designer.

  10. Corner transfer matrices for 2D strongly coupled many-body Floquet systems

    NASA Astrophysics Data System (ADS)

    Kukuljan, Ivan; Prosen, Tomaž

    2016-04-01

    We develop, based on Baxter’s corner transfer matrices, a renormalizable numerically exact method for computation of the level density of the quasienergy spectra of two-dimensional (2D) locally interacting many-body Floquet systems. We demonstrate its functionality exemplified by the kicked 2D quantum Ising model. Using the method, we are able to treat systems of arbitrarily large finite size (for example lattices of the order of 108 spins). We clearly demonstrate that the density of the Floquet quasienergy spectrum tends to a flat function in the thermodynamic limit for generic values of model parameters. However, contrary to the prediction of random matrices of the circular orthogonal ensemble, the decay rates of the Fourier coefficients of the Floquet level density exhibit rich and non-trivial dependence on the system’s parameters. Remarkably, we find that the method is renormalizable and gives thermodynamically convergent results only in certain regions of the parameter space where the corner transfer matrices have effectively a finite rank for any system size. In the complementary regions, the corner transfer matrices effectively become of full rank and the method becomes non-renormalizable. This may indicate an interesting phase transition from an area- to volume-law of entanglement in the thermodynamic state of a Floquet system.

  11. Microwave tomography of extremities: 1. Dedicated 2D system and physiological signatures

    NASA Astrophysics Data System (ADS)

    Semenov, Serguei; Kellam, James; Sizov, Yuri; Nazarov, Alexei; Williams, Thomas; Nair, Bindu; Pavlovsky, Andrey; Posukh, Vitaly; Quinn, Michael

    2011-04-01

    Microwave tomography (MWT) is a novel imaging modality which might be applicable for non-invasive assessment of functional and pathological conditions of biological tissues. Imaging of the soft tissue of extremities is one of its potential applications. The feasibility of this technology for such applications was demonstrated earlier. This is the first of two companion papers focused on an application of MWT for imaging of the extremity's soft tissues. The goal of this study is to assess the technical performance of the developed 2D MWT system dedicated for imaging of functional and pathological conditions of the extremity's soft tissues. Specifically, the system's performance was tested by its ability to detect signals associated with physiological activity and soft tissue interventions (circulatory related changes, blood flow reduction and a simulated compartmental syndrome)—the so-called physiological signatures. The developed 2D MWT system dedicated to the imaging of animal extremities demonstrates good technical performance allowing for stable and predictable data acquisition with reasonable agreement between the experimentally measured electromagnetic (EM) field and the simulated EM field within a measurement domain. Using the system, we were able to obtain physiological signatures associated with systolic versus diastolic phases of circulation in an animal extremity, reperfusion versus occlusion phases of the blood supply to the animal's extremity and a compartment syndrome. The imaging results are presented and discussed in the second companion paper.

  12. Microwave tomography of extremities: 1. Dedicated 2D system and physiological signatures.

    PubMed

    Semenov, Serguei; Kellam, James; Sizov, Yuri; Nazarov, Alexei; Williams, Thomas; Nair, Bindu; Pavlovsky, Andrey; Posukh, Vitaly; Quinn, Michael

    2011-04-01

    Microwave tomography (MWT) is a novel imaging modality which might be applicable for non-invasive assessment of functional and pathological conditions of biological tissues. Imaging of the soft tissue of extremities is one of its potential applications. The feasibility of this technology for such applications was demonstrated earlier. This is the first of two companion papers focused on an application of MWT for imaging of the extremity's soft tissues. The goal of this study is to assess the technical performance of the developed 2D MWT system dedicated for imaging of functional and pathological conditions of the extremity's soft tissues. Specifically, the system's performance was tested by its ability to detect signals associated with physiological activity and soft tissue interventions (circulatory related changes, blood flow reduction and a simulated compartmental syndrome)--the so-called physiological signatures. The developed 2D MWT system dedicated to the imaging of animal extremities demonstrates good technical performance allowing for stable and predictable data acquisition with reasonable agreement between the experimentally measured electromagnetic (EM) field and the simulated EM field within a measurement domain. Using the system, we were able to obtain physiological signatures associated with systolic versus diastolic phases of circulation in an animal extremity, reperfusion versus occlusion phases of the blood supply to the animal's extremity and a compartment syndrome. The imaging results are presented and discussed in the second companion paper. PMID:21364265

  13. Electron phase coherent effects in nanostructures and coupled 2D systems

    SciTech Connect

    Simmons, J.A.; Lyo, S.K.; Klem, J.F.; Sherwin, M.E.; Harff, N.E.; Eiles, T.M.; Wendt, J.R.

    1995-05-01

    This report describes the research accomplishments achieved under the LDRD Project ``Electron Phase Coherent Effects in Nanostructures and Coupled 2D Systems.`` The goal of this project was to discover and characterize novel quantum transport phenomena in small semiconductor structures at low temperatures. Included is a description of the purpose of the research, the various approaches used, and a detailed qualitative description of the numerous new results obtained. The first appendix gives a detailed listing of publications, presentations, patent applications, awards received, and various other measures of the LDRD project success. Subsequent appendices consist of reprinted versions of several specific,`` scientific journal publications resulting from this LDRD project.

  14. The evaluation system of the 2-D scanning mirror based on CMOS sensor

    NASA Astrophysics Data System (ADS)

    Zeng, Gui-ying; Xie, Yuan; Chen, Jin-xing

    2010-10-01

    The high precision two-dimension scanning control technique is being developed for the next geosynchronous satellites FY-4 satellites which is using the three-axis stabilization stages. How to evaluate the point and scanning precision of the scanning mirror is one of the most important technologies. This paper describes the optoelectronic measure method based on CMOS sensors to evaluate the point and scanning precision of the scanning mirror in the laboratory, which is a 2-D dynamic angle measurement system. Some technologies, such as the sup-pixel orientation technology and the CMOS ROI technology, are used in the measurement system. The research shows that the angle measurement system based on IBIS-6600CMOS sensors can attain the 20°× 20° field of view, 2" accuracy, and 1Kframes/s speed. But the system is sensitive to the environment and it can only be worked in the laboratory.

  15. Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Pan, Shumin; Cheng, Shan; Zhou, Zhihong

    2016-08-01

    Most image encryption algorithms based on low-dimensional chaos systems bear security risks and suffer encryption data expansion when adopting nonlinear transformation directly. To overcome these weaknesses and reduce the possible transmission burden, an efficient image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing is proposed. The original image is measured by the measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the cycle shift operation controlled by a hyper-chaotic system. Cycle shift operation can change the values of the pixels efficiently. The proposed cryptosystem decreases the volume of data to be transmitted and simplifies the keys distribution simultaneously as a nonlinear encryption system. Simulation results verify the validity and the reliability of the proposed algorithm with acceptable compression and security performance.

  16. Development of 2D Microdisplay Using an Integrated Microresonating Waveguide Scanning System.

    PubMed

    Hua, Wei-Shu; Wang, Wei-Chih; Wu, Wen-Jong; Tsui, Chi Leung; Cui, Wei; Shih, Wen-Pin

    2011-09-01

    Our research team has developed a 2D micro image display device that can potentially overcome the size reduction limits while maintaining the high-image resolution and field of view obtained by mirror-based display systems. The basic design of the optical scanner includes a microfabricated SU-8 cantilever waveguide that is electromechanically deflected by a piezoelectric actuator. From the distal tip of the cantilever waveguide, a light beam is emitted and the direction of propagation is displaced along two orthogonal directions. The waveforms for the actuator and the LED light modulation are generated and controlled using a field programmable gate array. Our recent study is an update to the previously-reported mechanical scanner, replacing the hand-built PZT scanner and fiber waveguide with a microfabricated system incorporating aerosol-deposited PZT thin film and a polymeric SU-8 wave guide. In this article, we report on the design and fabrication of a prototype miniaturized 2D scanner, discuss optical and mechanical the modeling of the system's properties and present the experimental results. PMID:22876080

  17. Microwave tomography of extremities: 1) Dedicated 2D system and physiological signatures

    PubMed Central

    Semenov, Serguei; Kellam, James; Sizov, Yuri; Nazarov, Alexei; Williams, Thomas; Nair, Bindu; Pavlovsky, Andrey; Posukh, Vitaly; Quinn, Michael

    2011-01-01

    Microwave Tomography (MWT) is a novel imaging modality which might be applicable for non-invasive assessment of functional and pathological conditions of biological tissues. The imaging of the soft tissue of extremities is one of its potential applications. The feasibility of this technology for such applications was demonstrated earlier. This is the first of two companion papers focused on an application of MWT for imaging of the extremity’s soft tissues. The goal of this study is to assess the technical performance of the developed 2D MWT system dedicated for imaging of functional and pathological conditions of the extremity’s soft tissues. Specifically, the system’s performance was tested by its ability to detect signals associated with physiological activity and soft tissue interventions (circulatory related changes, blood flow reduction and a simulated compartmental syndrome) – so called “physiological signatures”. The developed 2D MWT system dedicated for an imaging of animal extremities demonstrates good technical performance allowing for stable and predictable data acquisition with reasonable agreement between experimentally measured electromagnetic (EM) field and simulated EM field within a measurement domain. Using the system we were able to obtain physiological signatures associated with systolic vs diastolic phases of circulation in an animal extremity, reperfusion vs occlusion phases of the blood supply to the animal’s extremity and the a compartment syndrome. The imaging results are presented and discussed in the second companion paper. PMID:21364265

  18. Wellbottom fluid implosion treatment system

    SciTech Connect

    Brieger, Emmet F.

    2001-01-01

    A system for inducing implosion shock forces on perforation traversing earth formations with fluid pressure where an implosion tool is selected relative to a shut in well pressure and a tubing pressure to have a large and small area piston relationship in a well tool so that at a predetermined tubing pressure the pistons move a sufficient distance to open an implosion valve which permits a sudden release of well fluid pressure into the tubing string and produces an implosion force on the perforations. A pressure gauge on the well tool records tubing pressure and well pressure as a function of time.

  19. Spanning graphene to carbon-nitride: A 2-D semiconductor alloy system of carbon and nitrogen

    NASA Astrophysics Data System (ADS)

    Therrien, Joel; Li, Yancen; Schmidt, Daniel

    2014-03-01

    With the explosion of materials that form 2-D structures in the past few years, there have been a much more diverse ecosystem of combinations of characteristics to explore. Yet with the majority of materials investigated, the properties are fixed according to the composition of the material. Ideally, one wishes to have a tunable system similar to the semiconductor alloy systems, such as AlxGa1-xAs. There have been some theoretical studies of transition metal dichalogenides, none have been reported experimentally as of this writing. The tertianary alloy of BCN has been synthesized, however it was found that the boron had the tendency to cause phase segregation of the material into domains of graphene and boron nitride. Here we will report on the synthesis of non-phase seperated carbon-nitrogen 2D alloys ranging from graphene (Eg = 0 eV) to carbon-nitride, or melon, (Eg = 2.7 eV). We will report on synthesis methods and a summary of relevant electronic and material properties of selected alloys.

  20. Schrödinger equation for non-pure dipole potential in 2D systems

    NASA Astrophysics Data System (ADS)

    Moumni, M.; Falek, M.

    2016-07-01

    In this work, we analytically study the Schrödinger equation for the (non-pure) dipolar ion potential V(r) = q/r + Dcosθ/r2, in the case of 2D systems (systems in two-dimensional Euclidean plane) using the separation of variables and the Mathieu equations for the angular part. We give the expressions of eigenenergies and eigenfunctions and study their dependence on the dipole moment D. Imposing the condition of reality on the energies En,m implies that the dipole moment must not exceed a maximum value, otherwise the corresponding bound state disappears. We also find that the s states (m = 0) can no longer exist in the system as soon as the dipole term is present.

  1. Radiometer uncertainty equation research of 2D planar scanning PMMW imaging system

    NASA Astrophysics Data System (ADS)

    Hu, Taiyang; Xu, Jianzhong; Xiao, Zelong

    2009-07-01

    With advances in millimeter-wave technology, passive millimeter-wave (PMMW) imaging technology has received considerable concerns, and it has established itself in a wide range of military and civil practical applications, such as in the areas of remote sensing, blind landing, precision guidance and security inspection. Both the high transparency of clothing at millimeter wavelengths and the spatial resolution required to generate adequate images combine to make imaging at millimeter wavelengths a natural approach of screening people for concealed contraband detection. And at the same time, the passive operation mode does not present a safety hazard to the person who is under inspection. Based on the description to the design and engineering implementation of a W-band two-dimensional (2D) planar scanning imaging system, a series of scanning methods utilized in PMMW imaging are generally compared and analyzed, followed by a discussion on the operational principle of the mode of 2D planar scanning particularly. Furthermore, it is found that the traditional radiometer uncertainty equation, which is derived from a moving platform, does not hold under this 2D planar scanning mode due to the fact that there is no absolute connection between the scanning rates in horizontal direction and vertical direction. Consequently, an improved radiometer uncertainty equation is carried out in this paper, by means of taking the total time spent on scanning and imaging into consideration, with the purpose of solving the problem mentioned above. In addition, the related factors which affect the quality of radiometric images are further investigated under the improved radiometer uncertainty equation, and ultimately some original results are presented and analyzed to demonstrate the significance and validity of this new methodology.

  2. An IPOT meshless method using DC PSE approximation for fluid flow equations in 2D and 3D geometries

    NASA Astrophysics Data System (ADS)

    Bourantas, G. C.; Loukopoulos, V. C.; Skouras, E. D.; Burganos, V. N.; Nikiforidis, G. C.

    2016-06-01

    Navier-Stokes (N-S) equations, in their primitive variable (u-v-p) formulation, are numerically solved using the Implicit Potential (IPOT) numerical scheme in the context of strong form Meshless Point Collocation (MPC) method. The unknown field functions are computed using the Discretization Correction Particle Strength Exchange (DC PSE) approximation method. The latter makes use of discrete moment conditions to derive the operator kernels, which leads to low condition number for the moment matrix compared to other meshless interpolation methods and increased stability for the numerical solution. The proposed meshless scheme is applied on 2D and 3D spatial domains, using uniform or irregular set of nodes to represent the domain. The numerical results obtained are compared against those obtained using well-established methods.

  3. Avalanches in 2D Dislocation Systems: Plastic Yielding Is Not Depinning

    NASA Astrophysics Data System (ADS)

    Ispánovity, Péter Dusán; Laurson, Lasse; Zaiser, Michael; Groma, István; Zapperi, Stefano; Alava, Mikko J.

    2014-06-01

    We study the properties of strain bursts (dislocation avalanches) occurring in two-dimensional discrete dislocation dynamics models under quasistatic stress-controlled loading. Contrary to previous suggestions, the avalanche statistics differ fundamentally from predictions obtained for the depinning of elastic manifolds in quenched random media. Instead, we find an exponent τ =1 of the power-law distribution of slip or released energy, with a cutoff that increases exponentially with the applied stress and diverges with system size at all stresses. These observations demonstrate that the avalanche dynamics of 2D dislocation systems is scale-free at every applied stress and, therefore, cannot be envisaged in terms of critical behavior associated with a depinning transition.

  4. Robust H(∞) control for a class of 2-D discrete delayed systems.

    PubMed

    Ye, Shuxia; Li, Jianzhen; Yao, Juan

    2014-09-01

    In this paper, we deal with the problem of robust H∞ control for a class of 2-D discrete uncertain systems with delayed perturbations described by the Roesser state-space model (RM). The problem to be addressed is the design of robust controllers via state feedback such that the stability of the resulting closed-loop system is guaranteed and a prescribed H∞ performance level is ensured for all delayed perturbations. By utilizing the Lyapunov method and some results, H∞ controllers are given. The results are delay-dependent and can be expressed in terms of linear matrix inequalities (LMIs). Finally, some numerical examples are given to illustrate the effectiveness of the proposed results. PMID:24411024

  5. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system

    PubMed Central

    Aronov, Dmitriy; Tank, David W.

    2015-01-01

    SUMMARY Virtual reality (VR) enables precise control of an animal’s environment and otherwise impossible experimental manipulations. Neural activity in navigating rodents has been studied on virtual linear tracks. However, the spatial navigation system’s engagement in complete two-dimensional environments has not been shown. We describe a VR setup for rats, including control software and a large-scale electrophysiology system, which supports 2D navigation by allowing animals to rotate and walk in any direction. The entorhinal-hippocampal circuit, including place cells, grid cells, head direction cells and border cells, showed 2D activity patterns in VR similar to those in the real world. Hippocampal neurons exhibited various remapping responses to changes in the appearance or the shape of the virtual environment, including a novel form in which a VR-induced cue conflict caused remapping to lock to geometry rather than salient cues. These results suggest a general-purpose tool for novel types of experimental manipulations in navigating rats. PMID:25374363

  6. Automatic angle measurement of a 2D object using optical correlator-neural networks hybrid system

    NASA Astrophysics Data System (ADS)

    Manivannan, N.; Neil, M. A. A.

    2011-04-01

    In this paper a novel method is proposed and demonstrated for automatic rotation angle measurement of a 2D object using a hybrid architecture, consisting of a 4f optical correlator with a binary phase only multiplexed matched filter and a single layer neural network. The hybrid set-up can be considered as a two-layer perceptron-like neural network; an optical correlator is the first layer and the standard single layer neural network is the second layer. The training scheme used to train the hybrid architecture is a combination of a Direct Binary Search algorithm, to train the optical correlator, and an Error Back Propagation algorithm, to train the neural network. The aim is to perform the major information processing by the optical correlator with a small additional processing by the neural network stage. This allows the system to be used for real-time applications as optics has the inherent ability to process information in a parallel manner at high speed. The neural network stage gives an extra dimension of freedom so that complicated tasks like automatic rotation angle measurement can be achieved. Results of both computer simulation and experimental set-up are presented for rotation angle measurement of an English alphabetic character as a 2D object. The experimental set-up consists of a real optical correlator using two spatial light modulators for both input and frequency plane representations and a PC based model of a single layer network.

  7. Phase Diagram of Bilayer 2D Electron Systems at νT = 1

    NASA Astrophysics Data System (ADS)

    Champagne, Alexandre

    2009-03-01

    Bilayer 2D electron systems at total filling fraction νT = 1 and small interlayer spacing can support a strongly correlated phase which exhibits spontaneous interlayer phase coherence and may be described as an excitonic Bose condensate. We use electron interlayer tunnelling and transport to explore the phase diagram of bilayer 2D electron systems at νT = 1, and find that phase transitions between the excitonic νT = 1 phase and bilayer states which lack significant interlayer correlations can be induced in three different ways: by increasing the effective interlayer spacing, d/l, the temperature, T, or the charge imbalance, δν=ν1-ν2. First, for the balanced (δν = 0) system we find that the amplitude of the resonant tunneling in the coherent νT = 1 phase obeys an empirical power law scaling versus d/l at various T, and the layer separation where the tunneling disappears scales linearly with T. Our results [1] offer strong evidence that a finite temperature phase transition separates the balanced interlayer coherent phase from incoherent phases which lack strong interlayer correlations. Secondly, we observe [2] that close to the phase boundary the coherent νT = 1 phase can be absent at δν = 0, present at intermediate δν, and absent again at large δν, thus indicating an intricate phase competition between it and incoherent quasi-independent layer states. Lastly, at δν = 1/3 we report [2] the observation of a direct phase transition between the coherent νT = 1 bilayer integer quantum Hall phase and the pair of single layer fractional quantized Hall states at ν1 = 2/3 and ν2 = 1/3.[4pt] [1] A.R. Champagne, et al., Phys. Rev. Lett. 100, 096801 (2008).[0pt] [2] A.R. Champagne, et al, Phys. Rev. B 78, 205310 (2008)

  8. 2D fluid model analysis for the effect of 3D gas flow on a capacitively coupled plasma deposition reactor

    NASA Astrophysics Data System (ADS)

    Kim, Ho Jun; Lee, Hae June

    2016-06-01

    The wide applicability of capacitively coupled plasma (CCP) deposition has increased the interest in developing comprehensive numerical models, but CCP imposes a tremendous computational cost when conducting a transient analysis in a three-dimensional (3D) model which reflects the real geometry of reactors. In particular, the detailed flow features of reactive gases induced by 3D geometric effects need to be considered for the precise calculation of radical distribution of reactive species. Thus, an alternative inclusive method for the numerical simulation of CCP deposition is proposed to simulate a two-dimensional (2D) CCP model based on the 3D gas flow results by simulating flow, temperature, and species fields in a 3D space at first without calculating the plasma chemistry. A numerical study of a cylindrical showerhead-electrode CCP reactor was conducted for particular cases of SiH4/NH3/N2/He gas mixture to deposit a hydrogenated silicon nitride (SiN x H y ) film. The proposed methodology produces numerical results for a 300 mm wafer deposition reactor which agree very well with the deposition rate profile measured experimentally along the wafer radius.

  9. Formation of a helical channel in a 2D system in a quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Kazakov, Aleksandr; Kolkovsky, V.; Adamus, Z.; Karczewski, G.; Wojtowicz, T.; Rokhinson, Leonid

    A two-dimensional system with reconfigurable network of one-dimensional p-wave superconducting channels is a perfect platform to perform braiding of non-Abelian excitations. Such channels can be realized in CdTe:Mn quantum wells in a quantum Hall effect regime, where counterpropagaring edge states with opposite spin polarization can be formed by electrostatic gating. These edges form helical channels similar to the edges of 2D topological insulators and, coupled to a superconductor, should support non-Abelian excitations. While long channels are localized at low temperatures, we found that resistance in short (<6 μm) helical channels remains finite at low temperatures. Transport data and resistance scaling with channel length will be presented. Work supported by ONR, National Science Centre (Poland) and Foundation for Polish Science.

  10. Calibration of an Ultrasound Tomography System for Medical Imaging with 2D Contrast-Source Inversion

    NASA Astrophysics Data System (ADS)

    Faucher, Gabriel Paul

    This dissertation describes two possible methods for the calibration of an ultrasound tomography system developed at University of Manitoba's Electromagnetic Imaging Laboratory for imaging with the contrast-source inversion algorithm. The calibration techniques are adapted from existing procedures employed for microwave tomography. A theoretical model of these calibration principles is developed in order to provide a rationale for the effectiveness of the proposed procedures. The applicability of such an imaging algorithm and calibration methods in the context of ultrasound are discussed. Also presented are 2D and 3D finite-difference time-domain update equations for the simulation of acoustic wave propagation in inhomogeneous media. Details regarding the application of an absorbing boundary-condition, point-source modelling and the treatment of penetrable objects are included in this document.

  11. The stability of freely-propagating ion acoustic waves in 2D systems

    NASA Astrophysics Data System (ADS)

    Chapman, Thomas; Berger, Richard; Banks, Jeffrey; Brunner, Stephan

    2014-10-01

    The stability of a freely-propagating ion acoustic wave (IAW) is a basic science problem that is made difficult by the need to resolve electron kinetic effects over a timescale that greatly exceeds the IAW period during numerical simulation. Recent results examining IAW stability using a 1D+1V Vlasov-Poisson solver indicate that instability is a fundamental property of IAWs that occurs over most if not all of the parameter space of relevance to ICF experiments. We present here new results addressing the fundamental question of IAW stability across a broad range of plasma conditions in a 2D+2V system using LOKI, ranging from a regime of relatively weak to a regime of relatively strong ion kinetic effects. Work performed under the auspices of the U.S. DOE by LLNL (DE-AC52-07NA27344) and funded by the LDRD Program at LLNL (12-ERD-061).

  12. Stress dynamics of a 2D dense granular system near shear jamming

    NASA Astrophysics Data System (ADS)

    Ren, Jie; Dijksman, Joshua; Behringer, Robert

    2013-03-01

    We study the dynamics of pressure and shear stress in a frictional 2D dense granular system using a novel apparatus that can provide fixed-volume shear without generating inhomogeneities. Under increasing shear strain, the system's pressure shows a strong increase with strain, characterized by a ``Reynolds coefficient,'' R =d2 P / dγ2 . R depends only on packing fraction ϕ, and shows a strong increase as ϕ approaches ϕJ from below. In the meantime, the system's shear stress shows a non-monotonic behavior with increasing strain. It first increases with strain as the system is in ``fragile'' states and builds up long force chains along the compression direction. After a certain amount of strain, force chains along the dilation direction starts to build up, and the system transfers into a ``shear-jammed'' state and the shear stress starts to decrease with strain. Under oscillatory shear, both pressure and shear stress show limit-cycle behavior and reach steady states after many cycles. However, the limit cycles of pressure and shear stress are very different: the pressure exhibits a hysteresis-free parabolic curve, while the shear stress exhibits a strongly hysteretic loop. This work is funded by NSF grants: DMR0906908, DMS0835571, NASA grant NNX10AU01G and ARO grant W911NF-11-1-0110.

  13. Multichannel reconfigurable measurement system for hot plasma diagnostics based on GEM-2D detector

    NASA Astrophysics Data System (ADS)

    Wojenski, A. J.; Kasprowicz, G.; Pozniak, K. T.; Byszuk, A.; Chernyshova, M.; Czarski, T.; Jablonski, S.; Juszczyk, B.; Zienkiewicz, P.

    2015-12-01

    In the future magnetically confined fusion research reactors (e.g. ITER tokamak), precise determination of the level of the soft X-ray radiation of plasma with temperature above 30 keV (around 350 mln K) will be very important in plasma parameters optimization. This paper presents the first version of a designed spectrography measurement system. The system is already installed at JET tokamak. Based on the experience gained from the project, the new generation of hardware for spectrography measurements, was designed and also described in the paper. The GEM detector readout structure was changed to 2D in order to perform measurements of i.e. laser generated plasma. The hardware structure of the system was redesigned in order to provide large number of high speed input channels. Finally, this paper also covers the issue of new control software, necessary to set-up a complete system of certain complexity and perform data acquisition. The main goal of the project was to develop a new version of the system, which includes upgraded structure and data transmission infrastructure (i.e. handling large number of measurement channels, high sampling rate).

  14. Two-Phase Acto-Cytosolic Fluid Flow in a Moving Keratocyte: A 2D Continuum Model.

    PubMed

    Nikmaneshi, M R; Firoozabadi, B; Saidi, M S

    2015-09-01

    The F-actin network and cytosol in the lamellipodia of crawling cells flow in a centripetal pattern and spout-like form, respectively. We have numerically studied this two-phase flow in the realistic geometry of a moving keratocyte. Cytosol has been treated as a low viscosity Newtonian fluid flowing through the high viscosity porous medium of F-actin network. Other involved phenomena including myosin activity, adhesion friction, and interphase interaction are also discussed to provide an overall view of this problem. Adopting a two-phase coupled model by myosin concentration, we have found new accurate perspectives of acto-cytosolic flow and pressure fields, myosin distribution, as well as the distribution of effective forces across the lamellipodia of a keratocyte with stationary shape. The order of magnitude method is also used to determine the contribution of forces in the internal dynamics of lamellipodia. PMID:26403420

  15. Caracterisation pratique des systemes quantiques et memoires quantiques auto-correctrices 2D

    NASA Astrophysics Data System (ADS)

    Landon-Cardinal, Olivier

    approche, dite de tomographie variationnelle, propose de reconstruire l'etat en restreignant l'espace de recherche a une classe variationnelle plutot qu'a l'immense espace des etats possibles. Un etat variationnel etant decrit par un petit nombre de parametres, un petit nombre d'experiences peut suffire a identifier les parametres variationnels de l'etat experimental. Nous montrons que c'est le cas pour deux classes variationnelles tres utilisees, les etats a produits matriciels (MPS) et l'ansatz pour intrication multi-echelle (MERA). Memoires quantiques auto-correctrices 2D. Une memoire quantique auto-correctrice est un systeme physique preservant de l'information quantique durant une duree de temps macroscopique. Il serait done l'equivalent quantique d'un disque dur ou d'une memoire flash equipant les ordinateurs actuels. Disposer d'un tel dispositif serait d'un grand interet pour l'informatique quantique. Une memoire quantique auto-correctrice est initialisee en preparant un etat fondamental, c'est-a-dire un etat stationnaire de plus basse energie. Afin de stocker de l'information quantique, il faut plusieurs etats fondamentaux distincts, chacun correspondant a une valeur differente de la memoire. Plus precisement, l'espace fondamental doit etre degenere. Dans cette these, on s'interesse a des systemes de particules disposees sur un reseau bidimensionnel (2D), telles les pieces sur un echiquier, qui sont plus faciles a realiser que les systemes 3D. Nous identifions deux criteres pour l'auto-correction: - La memoire quantique doit etre stable face aux perturbations provenant de l'environnement, par exemple l'application d'un champ magnetique externe. Ceci nous amene a considerer les systemes topologiques 2D dont les degres de liberte sont intrinsequement robustes aux perturbations locales de l'environnement. - La memoire quantique doit etre robuste face a un environnement thermique. Il faut s'assurer que les excitations thermiques n'amenent pas deux etats fondamentaux

  16. Spin-Orbit Interaction and Related Transport Phenomena in 2d Electron and Hole Systems

    NASA Astrophysics Data System (ADS)

    Khaetskii, A.

    Spin-orbit interaction is responsible for many physical phenomena which are under intensive study currently. Here we discuss several of them. The first phenomenon is the edge spin accumulation, which appears due to spin-orbit interaction in 2D mesoscopic structures in the presence of a charge current. We consider the case of a strong spin-orbit-related splitting of the electron spectrum, i.e. a spin precession length is small compared to the mean free path l. The structure can be either in a ballistic regime (when the mean free path is the largest scale in the problem) or quasi-ballistic regime (when l is much smaller than the sample size). We show how physics of edge spin accumulation in different situations should be understood from the point of view of unitarity of boundary scattering. Using transparent method of scattering states, we are able to explain some previous puzzling theoretical results. We clarify the important role of the form of the spin-orbit Hamiltonian, the role of the boundary conditions, etc., and reveal the wrong results obtained in the field by other researchers. The relation between the edge spin density and the bulk spin current in different regimes is discussed. The detailed comparison with the existing theoretical works is presented. Besides, we consider several new transport phenomena which appear in the presence of spin-orbit interaction, for example, magnetotransport phenomena in an external classical magnetic field. In particular, new mechanism of negative magneto-resistance appears which is due to destruction of spin fluxes by the magnetic field, and which can be really pronounced in 2D systems with strong scatterers.

  17. Propagating fronts in 2D Cr(OH) 3 precipitate systems in gelled media

    NASA Astrophysics Data System (ADS)

    Sultan, Rabih; Panjarian, Shoghag

    2001-09-01

    Diffusion fronts propagate as two co-precipitate ions inter-diffuse in a gel medium. Liesegang bands of precipitate form periodically behind the diffusion front of an outer electrolyte. The precipitation of Cr(OH) 3 from NaOH diffusing into a Cr 3+ gel matrix is known to yield a single band that propagates in a one-dimensional (1D) tube - Cr(OH) 3 dissolves in excess OH - forming Cr(OH) 4-. We perform similar experiments on the Cr(OH) 3 system in two dimensions (2D), wherein we obtain a perfectly circular Cr(OH) 3 ring that grows larger and thicker as time advances. Using a specially designed Petri dish, ring propagation is monitored both in the absence and the presence of a constant electric field. The field is applied along a radial direction, and the front velocities with the field on are compared with the field-free case. When the field is applied against the direction of front propagation (“negative” field), wave saturation is obtained, characterized by a slight increase in the velocity of propagation with field strength, until it reaches a constant value as the field strength is further increased. In a positive field situation, the wave velocity increases with field strength and exhibits some other interesting features: (1) wave stopping indicated by a freeze in the ring position at a certain characteristic time; (2) annihilation of the ring formation above a critical value of the field strength. Electrical effects in 2D are also studied when electrodes with different potentials are planted at various locations in the electrolyte periphery. Interesting patterning structures including the distortion of the circular symmetry and the birth of multiple rings are reported.

  18. Controlling the Dynamics of the Five-Mode Truncation System of the 2-d Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Smaoui, Nejib; Zribi, Mohamed

    2015-11-01

    The dynamics and the control problem of the two dimensional (2-d) Navier-Stokes (N-S) equations with spatially periodic and temporally steady forcing is addressed. At first, the Fourier Galerkin method is applied to the 2-d N-S equations to obtain a fifth order system of nonlinear ordinary differential equations (ODE) that approximates the behavior of these equations. Simulation studies indicate that the obtained ODE system captures the behavior of the 2-d N-S equations. Then, a control law is proposed to drive the states of the ODE system to a desired fixed point. Next, a second control law is developed to synchronize two reduced order ODE models of the 2-d N-S equations having the same Reynolds number and starting from different initial conditions. Finally, simulation results are undertaken to validate the theoretical developments. This research was supported and funded by the Research Sector, Kuwait University under Grant No. SM 05/15.

  19. Compressor bleed cooling fluid feed system

    DOEpatents

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  20. Experimental study of quasi-2D dipolar vortex streets generated by a moving momentum source in a stratified fluid

    NASA Astrophysics Data System (ADS)

    Chen, K.; You, Y.; Noblesse, F.

    2016-07-01

    Experiments are conducted in a linear stratified fluid with a momentum source modeled via a nozzle jet moving horizontally. The generation mechanism of the quasi-two-dimensional dipolar vortex streets is investigated and their evolution characteristics are analyzed. Observation shows that the formation of a dipolar vortex street requires a nonzero motion of the nozzle in addition to conditions of the Reynolds and Froude number (Re, Fr). The (Re, Fr) condition that the dipolar vortex streets can be generated is determined via experimental measurements. The explanation for the absence of such a vortex street can be the low energy of the jet and the strong body-effect disturbance of the solid nozzle. The dependence of the vortex street dimensionless formation time τ and the Strouhal number St on the Froude number Fr or the Reynolds number Re is analyzed. This analysis shows that τ and St appear to be independent of Re and approximately have power-law relations with Fr via data fitting. The exponents of Fr in the two power-law functions are -0.27 for τ and -0.21 for St, while the constant coefficients are 65 and 0.21.

  1. Comparison of Failure Modes in 2-D and 3-D Woven Carbon Phenolic Systems

    NASA Technical Reports Server (NTRS)

    Rossman, Grant A.; Stackpoole, Mairead; Feldman, Jay; Venkatapathy, Ethiraj; Braun, Robert D.

    2013-01-01

    NASA Ames Research Center is developing Woven Thermal Protection System (WTPS) materials as a new class of heatshields for entry vehicles (Stackpoole). Currently, there are few options for ablative entry heatshield materials, none of which is ideally suited to the planetary probe missions currently of interest to NASA. While carbon phenolic was successfully used for the missions Pioneer Venus and Galileo (to Jupiter), the heritage constituents are no longer available. An alternate carbon phenolic would need to be qualified for probe missions, which is most efficient at heat fluxes greater than those currently of interest. Additional TPS materials such as Avcoat and PICA are not sufficiently robust for the heat fluxes required. As a result, there is a large TPS gap between the materials efficient at very high conditions (carbon phenolic) and those that are effective at low-moderate conditions (all others). Development of 3D Woven TPS is intended to fill this gap, targeting mid-density weaves that could with withstand mid-range heat fluxes between 1100 W/sq cm and 8000 W/sq cm (Venkatapathy (2012). Preliminary experimental studies have been performed to show the feasibility of WTPS as a future mid-range TPS material. One study performed in the mARC Jet Facility at NASA Ames Research Center characterized the performance of a 3D Woven TPS sample and compared it to 2D carbon phenolic samples at ply angles of 0deg, 23.5deg, and 90deg. Each sample contained similar compositions of phenolic and carbon fiber volume fractions for experimental consistency. The goal of this study was to compare the performance of the TPS materials by evaluating resulting recession and failure modes. After exposing both samples to similar heat flux and pressure conditions, the 2D carbon phenolic laminate was shown to experience significant delamination between layers and further pocketing underneath separated layers. The 3D Woven TPS sample did not experience the delamination or pocketing

  2. Eliminating friction with friction: 2D Janssen effect in a friction-driven system.

    PubMed

    Karim, M Yasinul; Corwin, Eric I

    2014-05-01

    The Janssen effect is a unique property of confined granular materials experiencing gravitational compaction in which the pressure at the bottom saturates with an increasing filling height due to frictional interactions with side walls. In this Letter, we replace gravitational compaction with frictional compaction. We study friction-compacted 2D granular materials confined within fixed boundaries on a horizontal conveyor belt. We find that even with high-friction side walls the Janssen effect completely vanishes. Our results demonstrate that gravity-compacted granular systems are inherently different from friction-compacted systems in at least one important way: vibrations induced by sliding friction with the driving surface relax away tangential forces on the walls. Remarkably, we find that the Janssen effect can be recovered by replacing the straight side walls with a sawtooth pattern. The mechanical force introduced by varying the sawtooth angle θ can be viewed as equivalent to a tunable friction force. By construction, this mechanical friction force cannot be relaxed away by vibrations in the system. PMID:24856724

  3. Eliminating Friction with Friction: 2D Janssen Effect in a Friction-Driven System

    NASA Astrophysics Data System (ADS)

    Karim, M. Yasinul; Corwin, Eric I.

    2014-05-01

    The Janssen effect is a unique property of confined granular materials experiencing gravitational compaction in which the pressure at the bottom saturates with an increasing filling height due to frictional interactions with side walls. In this Letter, we replace gravitational compaction with frictional compaction. We study friction-compacted 2D granular materials confined within fixed boundaries on a horizontal conveyor belt. We find that even with high-friction side walls the Janssen effect completely vanishes. Our results demonstrate that gravity-compacted granular systems are inherently different from friction-compacted systems in at least one important way: vibrations induced by sliding friction with the driving surface relax away tangential forces on the walls. Remarkably, we find that the Janssen effect can be recovered by replacing the straight side walls with a sawtooth pattern. The mechanical force introduced by varying the sawtooth angle θ can be viewed as equivalent to a tunable friction force. By construction, this mechanical friction force cannot be relaxed away by vibrations in the system.

  4. A 2-D spectral-element method for computing spherical-earth seismograms-II. Waves in solid-fluid media

    NASA Astrophysics Data System (ADS)

    Nissen-Meyer, Tarje; Fournier, Alexandre; Dahlen, F. A.

    2008-09-01

    We portray a dedicated spectral-element method to solve the elastodynamic wave equation upon spherically symmetric earth models at the expense of a 2-D domain. Using this method, 3-D wavefields of arbitrary resolution may be computed to obtain Fréchet sensitivity kernels, especially for diffracted arrivals. The meshing process is presented for varying frequencies in terms of its efficiency as measured by the total number of elements, their spacing variations and stability criteria. We assess the mesh quantitatively by defining these numerical parameters in a general non-dimensionalized form such that comparisons to other grid-based methods are straightforward. Efficient-mesh generation for the PREM example and a minimum-messaging domain decomposition and parallelization strategy lay foundations for waveforms up to frequencies of 1 Hz on moderate PC clusters. The discretization of fluid, solid and respective boundary regions is similar to previous spectral-element implementations, save for a fluid potential formulation that incorporates the density, thereby yielding identical boundary terms on fluid and solid sides. We compare the second-order Newmark time extrapolation scheme with a newly implemented fourth-order symplectic scheme and argue in favour of the latter in cases of propagation over many wavelengths due to drastic accuracy improvements. Various validation examples such as full moment-tensor seismograms, wavefield snapshots, and energy conservation illustrate the favourable behaviour and potential of the method.

  5. System for connecting fluid couplings

    NASA Technical Reports Server (NTRS)

    Cody, Joseph C. (Inventor); Matthews, Paul R. (Inventor)

    1990-01-01

    A system for mating fluid transfer couplings is constructed having a male connector which is provided with a pair of opposed rollers mounted to an exterior region thereof. A male half of a fluid transfer coupling is rotatably supported in an opening in an end of the connector and is equipped with an outwardly extending forward portion. The forward portion locks into an engagement and locking region of a female half of the fluid transfer coupling, with female half being rotatably supported in a receptacle. The receptacle has an opening aligned with locking region, with this opening having a pair of concentric, annularly disposed ramps extending around an interior portion of opening. These ramps are inclined toward the interior of the receptacle and are provided with slots through which rollers of the connector pass. After the connector is inserted into the receptacle (engaging forward portion into engagement region), relative rotation between the connector and receptacle causes the rollers to traverse ramps until the rollers abut and are gripped by retainers. This axially forces the forward portion into locked, sealed engagement with the engagement region.

  6. Digit ratio 2D:4D in relation to autism spectrum disorders, empathizing, and systemizing: a quantitative review.

    PubMed

    Hönekopp, Johannes

    2012-08-01

    Prenatal testosterone (PT) effects have been proposed to increase systemizing (the drive to understand lawful input-output relationships), to decrease empathizing (the drive to understand others), and to cause autism via hypermasculinization of the brain. Digit ratio 2D:4D is a putative marker of PT effects in humans. An online study (n = 1896) into the relationship between the Reading the Mind in the Eyes Test (a widely used measure of empathizing) and self-measured 2D:4D in a nonclinical sample is reported. No evidence for a link between empathizing and 2D:4D in either females or males emerged. Further, three meta-analyses are presented that look into the relationships of 2D:4D with autism spectrum disorder (ASD), systemizing, and empathizing. 2D:4D was substantially lower (more masculine) in ASD-affected individuals than in normal controls (d = -0.58, P < 0.001). However, 2D:4D was found to be virtually unrelated to systemizing and empathizing in normal adults. The results support the idea that high PT is a risk factor for autism, but they challenge the view that PT substantially contributes to sex differences in systemizing and empathizing. Possibly, this pattern reflects an interaction effect, whereby PT drives ASD characteristic changes only in brains with a specific damage. PMID:22674640

  7. A preliminary evaluation work on a 3D ultrasound imaging system for 2D array transducer

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoli; Li, Xu; Yang, Jiali; Li, Chunyu; Song, Junjie; Ding, Mingyue; Yuchi, Ming

    2016-04-01

    This paper presents a preliminary evaluation work on a pre-designed 3-D ultrasound imaging system. The system mainly consists of four parts, a 7.5MHz, 24×24 2-D array transducer, the transmit/receive circuit, power supply, data acquisition and real-time imaging module. The row-column addressing scheme is adopted for the transducer fabrication, which greatly reduces the number of active channels . The element area of the transducer is 4.6mm by 4.6mm. Four kinds of tests were carried out to evaluate the imaging performance, including the penetration depth range, axial and lateral resolution, positioning accuracy and 3-D imaging frame rate. Several strong reflection metal objects , fixed in a water tank, were selected for the purpose of imaging due to a low signal-to-noise ratio of the transducer. The distance between the transducer and the tested objects , the thickness of aluminum, and the seam width of the aluminum sheet were measured by a calibrated micrometer to evaluate the penetration depth, the axial and lateral resolution, respectively. The experiment al results showed that the imaging penetration depth range was from 1.0cm to 6.2cm, the axial and lateral resolution were 0.32mm and 1.37mm respectively, the imaging speed was up to 27 frames per second and the positioning accuracy was 9.2%.

  8. Exosomes and the MICA-NKG2D system in cancer.

    PubMed

    Clayton, Aled; Tabi, Zsuzsanna

    2005-01-01

    Exosomes are nanometer sized vesicles, secreted by a diverse range of cell types, whose biological functions remain ambiguous. Several groups have demonstrated the potential of manipulating exosomes for activating cellular immune responses. The possibility that exosomes may inhibit immunological responses, however, has not been widely addressed. We have investigated if exosomes produced by tumor cells can inhibit immunological functions, through modulating expression of the NKG2D receptor by effector cells. Incubating tumor exosomes with fresh peripheral blood leukocytes resulted in a marked reduction in the proportion of NKG2D-positive CD3+CD8+ Cells, and CD3- cells by 48 h. This effect was dose dependent and was shown with exosomes from different tumor cells including breast cancer and mesothelioma. Analysis of tumor exosome-phenotype revealed positive expression of several NKG2D ligands, and antibody blocking experiments revealed the importance of such ligands in driving the reduction in the proportion of NKG2D-positive effector cells. The functional importance of the decrease in NKG2D-positive cells was addressed in vitro cytotoxicity assays. For example a CD8+ T cell line pre-incubated with tumor exosomes had significant decreased capacity to kill peptide-pulsed T2 target cells. These data highlight a role for tumor exosomes bearing NKG2D ligands as a mechanism contributing to cancer immune evasion. PMID:15885603

  9. The development and testing of a 2D laboratory seismic modelling system for heterogeneous structure investigations

    NASA Astrophysics Data System (ADS)

    Mo, Yike; Greenhalgh, Stewart A.; Robertsson, Johan O. A.; Karaman, Hakki

    2015-05-01

    Lateral velocity variations and low velocity near-surface layers can produce strong scattered and guided waves which interfere with reflections and lead to severe imaging problems in seismic exploration. In order to investigate these specific problems by laboratory seismic modelling, a simple 2D ultrasonic model facility has been recently assembled within the Wave Propagation Lab at ETH Zurich. The simulated geological structures are constructed from 2 mm thick metal and plastic sheets, cut and bonded together. The experiments entail the use of a piezoelectric source driven by a pulse amplifier at ultrasonic frequencies to generate Lamb waves in the plate, which are detected by piezoelectric receivers and recorded digitally on a National Instruments recording system, under LabVIEW software control. The 2D models employed were constructed in-house in full recognition of the similitude relations. The first heterogeneous model features a flat uniform low velocity near-surface layer and deeper dipping and flat interfaces separating different materials. The second model is comparable but also incorporates two rectangular shaped inserts, one of low velocity, the other of high velocity. The third model is identical to the second other than it has an irregular low velocity surface layer of variable thickness. Reflection as well as transmission experiments (crosshole & vertical seismic profiling) were performed on each model. The two dominant Lamb waves recorded are the fundamental symmetric mode (non-dispersive) and the fundamental antisymmetric (flexural) dispersive mode, the latter normally being absent when the source transducer is located on a model edge but dominant when it is on the flat planar surface of the plate. Experimental group and phase velocity dispersion curves were determined and plotted for both modes in a uniform aluminium plate. For the reflection seismic data, various processing techniques were applied, as far as pre-stack Kirchhoff migration. The

  10. Magnetotransport properties of 2D fermionic systems with k-cubic Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Mawrie, Alestin; Biswas, Tutul; Kanti Ghosh, Tarun

    2014-10-01

    The spin-orbit interaction in heavy hole gas formed at p-doped semiconductor heterojunctions and electron gas at SrTiO3 surfaces is cubic in momentum. Here we report magnetotransport properties of k-cubic Rashba spin-orbit coupled 2D fermionic systems. We study longitudinal and Hall components of the resistivity tensor analytically as well as numerically. The longitudinal resistivity shows a beating pattern due to different Shubnikov-de Haas (SdH) oscillation frequencies f± for spin-up and spin-down fermions. We propose empirical forms of f± as exact expressions are not available, which are being used to find locations of the beating nodes. The beating nodes and the number of oscillations between any two successive nodes obtained from exact numerical results are in excellent agreement with those calculated from the proposed empirical formula. In the Hall resistivity, an additional Hall plateau appears between the two conventional ones as the spin-orbit coupling constant increases. The width of this additional plateau increases with spin-orbit coupling constant.

  11. General solution of 2D and 3D superconducting quasiclassical systems: coalescing vortices and nanoisland geometries.

    PubMed

    Amundsen, Morten; Linder, Jacob

    2016-01-01

    An extension of quasiclassical Keldysh-Usadel theory to higher spatial dimensions than one is crucial in order to describe physical phenomena like charge/spin Hall effects and topological excitations like vortices and skyrmions, none of which are captured in one-dimensional models. We here present a numerical finite element method which solves the non-linearized 2D and 3D quasiclassical Usadel equation relevant for the diffusive regime. We show the application of this on three model systems with non-trivial geometries: (i) a bottlenecked Josephson junction with external flux, (ii) a nanodisk ferromagnet deposited on top of a superconductor and (iii) superconducting islands in contact with a ferromagnet. In case (i), we demonstrate that one may control externally not only the geometrical array in which superconducting vortices arrange themselves, but also to cause coalescence and tune the number of vortices. In case (iii), we show that the supercurrent path can be tailored by incorporating magnetic elements in planar Josephson junctions which also lead to a strong modulation of the density of states. The finite element method presented herein paves the way for gaining insight in physical phenomena which have remained largely unexplored due to the complexity of solving the full quasiclassical equations in higher dimensions. PMID:26961921

  12. Experimental investigation on the high chip rate of 2D incoherent optical CDMA system

    NASA Astrophysics Data System (ADS)

    Su, Guorui; Wang, Rong; Pu, Tao; Fang, Tao; Zheng, Jilin; Zhu, Huatao; Wu, Weijiang

    2015-08-01

    An innovative approach to realise high chip rate in OCDMA transmission system is proposed and experimentally investigation, the high chip rate is achieved through a 2-D wavelength-hopping time-spreading en/decoder based on the supercontinuum light source. The source used in the experiment is generated by high nonlinear optical fiber (HNLF), Erbium-doped fiber amplifier (EDFA) which output power is 26 dBm, and distributed feed-back laser diode which works in the gain switch state. The span and the flatness of the light source are 20 nm and 3 dB, respectively, after equalization of wavelength selective switch (WSS). The wavelength-hopping time-spreading coder can be changed 20 nm in the wavelength and 400 ps in the time, is consist of WSS and delay lines. Therefore, the experimental results show that the chip rate can achieve 500 Gchip/s, in the case of 2.5 Gbit/s, while keeping a bit error rate below forward error correction limit after 40 km transmission.

  13. General solution of 2D and 3D superconducting quasiclassical systems: coalescing vortices and nanoisland geometries

    PubMed Central

    Amundsen, Morten; Linder, Jacob

    2016-01-01

    An extension of quasiclassical Keldysh-Usadel theory to higher spatial dimensions than one is crucial in order to describe physical phenomena like charge/spin Hall effects and topological excitations like vortices and skyrmions, none of which are captured in one-dimensional models. We here present a numerical finite element method which solves the non-linearized 2D and 3D quasiclassical Usadel equation relevant for the diffusive regime. We show the application of this on three model systems with non-trivial geometries: (i) a bottlenecked Josephson junction with external flux, (ii) a nanodisk ferromagnet deposited on top of a superconductor and (iii) superconducting islands in contact with a ferromagnet. In case (i), we demonstrate that one may control externally not only the geometrical array in which superconducting vortices arrange themselves, but also to cause coalescence and tune the number of vortices. In case (iii), we show that the supercurrent path can be tailored by incorporating magnetic elements in planar Josephson junctions which also lead to a strong modulation of the density of states. The finite element method presented herein paves the way for gaining insight in physical phenomena which have remained largely unexplored due to the complexity of solving the full quasiclassical equations in higher dimensions. PMID:26961921

  14. Remapping of digital subtraction angiography on a standard fluoroscopy system using 2D-3D registration

    NASA Astrophysics Data System (ADS)

    Alhrishy, Mazen G.; Varnavas, Andreas; Guyot, Alexis; Carrell, Tom; King, Andrew; Penney, Graeme

    2015-03-01

    Fluoroscopy-guided endovascular interventions are being performing for more and more complex cases with longer screening times. However, X-ray is much better at visualizing interventional devices and dense structures compared to vasculature. To visualise vasculature, angiography screening is essential but requires the use of iodinated contrast medium (ICM) which is nephrotoxic. Acute kidney injury is the main life-threatening complication of ICM. Digital subtraction angiography (DSA) is also often a major contributor to overall patient radiation dose (81% reported). Furthermore, a DSA image is only valid for the current interventional view and not the new view once the C-arm is moved. In this paper, we propose the use of 2D-3D image registration between intraoperative images and the preoperative CT volume to facilitate DSA remapping using a standard fluoroscopy system. This allows repeated ICM-free DSA and has the potential to enable a reduction in ICM usage and radiation dose. Experiments were carried out using 9 clinical datasets. In total, 41 DSA images were remapped. For each dataset, the maximum and averaged remapping accuracy error were calculated and presented. Numerical results showed an overall averaged error of 2.50 mm, with 7 patients scoring averaged errors < 3 mm and 2 patients < 6 mm.

  15. Parametric Modeling for Fluid Systems

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Martinez, Jonathan

    2013-01-01

    Fluid Systems involves different projects that require parametric modeling, which is a model that maintains consistent relationships between elements as is manipulated. One of these projects is the Neo Liquid Propellant Testbed, which is part of Rocket U. As part of Rocket U (Rocket University), engineers at NASA's Kennedy Space Center in Florida have the opportunity to develop critical flight skills as they design, build and launch high-powered rockets. To build the Neo testbed; hardware from the Space Shuttle Program was repurposed. Modeling for Neo, included: fittings, valves, frames and tubing, between others. These models help in the review process, to make sure regulations are being followed. Another fluid systems project that required modeling is Plant Habitat's TCUI test project. Plant Habitat is a plan to develop a large growth chamber to learn the effects of long-duration microgravity exposure to plants in space. Work for this project included the design and modeling of a duct vent for flow test. Parametric Modeling for these projects was done using Creo Parametric 2.0.

  16. A three-dimensional measuring system based on 2D laser displacement sensor

    NASA Astrophysics Data System (ADS)

    Jiang, Sulun; Fu, Yuegang; Zhu, Wangbin; Zhang, Yingwei; Wang, Weichen

    2014-12-01

    3D(Three-dimensional) measurement has found its applications in the fields of automation process, Reverse engineering(RE), machine vision, as well as medical diagnostic. There are some disadvantages in the present 3D measurement methods. In this paper, a 2D laser displacement sensor-based and fast-dimensional surface measurement method for small size objects was proposed after analyzing the existing three-dimensional measurement methods. This method uses the information collected by 2D laser displacement sensor and encoder in pan-tilt to three-dimensional reconstruct 3D model. And then discuss the restrictive relation between angular velocity of pan-tilt and parameters (measurement range, signal sample rate, precision, etc.) of 2D laser displacement sensor. The sources of error and methods of improving precision were analyzed. Theoretical analyses and experiments have proved the feasibility, high-precision and practical of this method.

  17. Extension of Generalized Fluid System Simulation Program's Fluid Property Database

    NASA Technical Reports Server (NTRS)

    Patel, Kishan

    2011-01-01

    This internship focused on the development of additional capabilities for the General Fluid Systems Simulation Program (GFSSP). GFSSP is a thermo-fluid code used to evaluate system performance by a finite volume-based network analysis method. The program was developed primarily to analyze the complex internal flow of propulsion systems and is capable of solving many problems related to thermodynamics and fluid mechanics. GFSSP is integrated with thermodynamic programs that provide fluid properties for sub-cooled, superheated, and saturation states. For fluids that are not included in the thermodynamic property program, look-up property tables can be provided. The look-up property tables of the current release version can only handle sub-cooled and superheated states. The primary purpose of the internship was to extend the look-up tables to handle saturated states. This involves a) generation of a property table using REFPROP, a thermodynamic property program that is widely used, and b) modifications of the Fortran source code to read in an additional property table containing saturation data for both saturated liquid and saturated vapor states. Also, a method was implemented to calculate the thermodynamic properties of user-fluids within the saturation region, given values of pressure and enthalpy. These additions required new code to be written, and older code had to be adjusted to accommodate the new capabilities. Ultimately, the changes will lead to the incorporation of this new capability in future versions of GFSSP. This paper describes the development and validation of the new capability.

  18. Safety drain system for fluid reservoir

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)

    2012-01-01

    A safety drain system includes a plurality of drain sections, each of which defines distinct fluid flow paths. At least a portion of the fluid flow paths commence at a side of the drain section that is in fluid communication with a reservoir's fluid. Each fluid flow path at the side communicating with the reservoir's fluid defines an opening having a smallest dimension not to exceed approximately one centimeter. The drain sections are distributed over at least one surface of the reservoir. A manifold is coupled to the drain sections.

  19. Application of a Hybrid 3D-2D Laser Scanning System to the Characterization of Slate Slabs

    PubMed Central

    López, Marcos; Martínez, Javier; Matías, José María; Vilán, José Antonio; Taboada, Javier

    2010-01-01

    Dimensional control based on 3D laser scanning techniques is widely used in practice. We describe the application of a hybrid 3D-2D laser scanning system to the characterization of slate slabs with structural defects that are difficult for the human eye to characterize objectively. Our study is based on automating the process using a 3D laser scanner and a 2D camera. Our results demonstrate that the application of this hybrid system optimally characterizes slate slabs in terms of the defects described by the Spanish UNE-EN 12326-1 standard. PMID:22219696

  20. Determining ice water content from 2D crystal images in convective cloud systems

    NASA Astrophysics Data System (ADS)

    Leroy, Delphine; Coutris, Pierre; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter

    2016-04-01

    Cloud microphysical in-situ instrumentation measures bulk parameters like total water content (TWC) and/or derives particle size distributions (PSD) (utilizing optical spectrometers and optical array probes (OAP)). The goal of this work is to introduce a comprehensive methodology to compute TWC from OAP measurements, based on the dataset collected during recent HAIC (High Altitude Ice Crystals)/HIWC (High Ice Water Content) field campaigns. Indeed, the HAIC/HIWC field campaigns in Darwin (2014) and Cayenne (2015) provide a unique opportunity to explore the complex relationship between cloud particle mass and size in ice crystal environments. Numerous mesoscale convective systems (MCSs) were sampled with the French Falcon 20 research aircraft at different temperature levels from -10°C up to 50°C. The aircraft instrumentation included an IKP-2 (isokinetic probe) to get reliable measurements of TWC and the optical array probes 2D-S and PIP recording images over the entire ice crystal size range. Based on the known principle relating crystal mass and size with a power law (m=α•Dβ), Fontaine et al. (2014) performed extended 3D crystal simulations and thereby demonstrated that it is possible to estimate the value of the exponent β from OAP data, by analyzing the surface-size relationship for the 2D images as a function of time. Leroy et al. (2015) proposed an extended version of this method that produces estimates of β from the analysis of both the surface-size and perimeter-size relationships. Knowing the value of β, α then is deduced from the simultaneous IKP-2 TWC measurements for the entire HAIC/HIWC dataset. The statistical analysis of α and β values for the HAIC/HIWC dataset firstly shows that α is closely linked to β and that this link changes with temperature. From these trends, a generalized parameterization for α is proposed. Finally, the comparison with the initial IKP-2 measurements demonstrates that the method is able to predict TWC values

  1. Closed-loop control of a 2-D mems micromirror with sidewall electrodes for a laser scanning microscope system

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Chen, Albert; Jie Sun, Wei; Sun, Zhen Dong; Yeow, John TW

    2016-01-01

    This article presents the development and implementation of a robust nonlinear control scheme for a 2-D micromirror-based laser scanning microscope system. The presented control scheme, built around sliding mode control approach and augmented an adaptive algorithm, is proposed to improve the tracking accuracy in presence of cross-axis effect. The closed-loop controlled imaging system is developed through integrating a 2-D micromirror with sidewall electrodes (SW), a laser source, NI field-programmable gate array (FPGA) hardware, the optics, position sensing detector (PSD) and photo detector (PD). The experimental results demonstrated that the proposed scheme is able to achieve accurate tracking of a reference triangular signal. Compared with open-loop control, the scanning performance is significantly improved, and a better 2-D image is obtained using the micromirror with the proposed scheme.

  2. Qualification of a surrogate matrix-based absolute quantification method for amyloid-β₄₂ in human cerebrospinal fluid using 2D UPLC-tandem mass spectrometry.

    PubMed

    Korecka, Magdalena; Waligorska, Teresa; Figurski, Michal; Toledo, Jon B; Arnold, Steven E; Grossman, Murray; Trojanowski, John Q; Shaw, Leslie M

    2014-01-01

    The primary aims of this work were to: 1) establish a calibrator surrogate matrix for quantification of amyloid-β (Aβ)42 in human cerebrospinal fluid (CSF) and preparation of quality control samples for LC-MS-MS methodology, 2) validate analytical performance of the assay, and 3) evaluate its diagnostic utility and compare it with the AlzBio3 immunoassay. The analytical methodology was based on a 2D-UPLC-MS-MS platform. Sample pretreatment used 5 M guanidine hydrochloride and extraction on μElution SPE columns as previously described. A column cleaning procedure involved gradual removal of aqueous solvents by acetonitrile assured consistent long-term chromatography performance. Receiver-operator characteristic (ROC) curve and correlation analyses evaluated the diagnostic utility of UPLC-MS-MS compared to AlzBio3 immunoassay for detection of Alzheimer's disease (AD). The surrogate matrix, artificial CSF containing 4 mg/mL of BSA, provides linear and reproducible calibration comparable to human pooled CSF as calibration matrix. Appropriate cleaning of the trapping and analytical columns provided every-day, trouble-free runs. Analyses of CSF Aβ42 showed that UPLC-MS-MS distinguished neuropathologically-diagnosed AD subjects from healthy controls with at least equivalent diagnostic utility to AlzBio3. Comparison of ROC curves for these two assays showed no statistically significant difference (p = 0.2229). Linear regression analysis of Aβ42 concentrations measured by this mass spectrometry-based method compared to the AlzBio3 immunoassay showed significantly higher but highly correlated results. In conclusion, the newly established surrogate matrix for 2D-UPLC-MS-MS measurement of Aβ42 provides selective, reproducible, and accurate results. The documented analytical performance and diagnostic performance for AD versus controls supports consideration as a candidate reference method. PMID:24625802

  3. Interaction of an acoustical 2D-beam with an elastic cylinder with arbitrary location in a non-viscous fluid.

    PubMed

    Mitri, F G

    2015-09-01

    The classical Resonance Scattering Theory (RST) for plane waves in acoustics is generalized for the case of a 2D arbitrarily-shaped beam incident upon an elastic cylinder with arbitrary location that is immersed in a nonviscous fluid. The formulation is valid for an elastic (or viscoelastic) cylinder (or a cylindrical shell, a layered cylinder/shell, or a multilayered cylindrical shell, etc.) of any size and material. Partial-wave series expansions (PWSEs) for the incident, internal and scattered fields are derived, and numerical examples illustrate the theory. The wave-fields are expressed using a generalized PWSE involving the beam-shape coefficients (BSCs) and the scattering coefficients of the cylinder. When the beam is shifted off the center of the cylinder, the off-axial BSCs are evaluated by performing standard numerical integration. Acoustic resonance scattering directivity diagrams are calculated by subtracting an appropriate background from the expression of the scattered pressure field. The properties related to the arbitrary scattering of a zeroth-order quasi-Gaussian cylindrical beam (chosen as an example) by an elastic brass cylinder centered on the axis of wave propagation of the beam, and shifted off-axially are analyzed and discussed. Moreover, the total and resonance backscattering form function moduli are numerically computed, and the results discussed with emphasis on the contribution of the surface waves circumnavigating the cylinder circular surface to the resonance backscattering. Furthermore, the analysis is extended to derive general expressions for the axial and transverse acoustic radiation force functions for the cylinder in any 2D beam of arbitrary shape. Examples are provided for a zeroth-order quasi Gaussian cylindrical beam with different waist. Potential applications are in underwater and physical acoustics, however, ongoing research in biomedical ultrasound, non-destructive evaluation, imaging, manufacturing, instrumentation, and

  4. Fluid sampling system for a nuclear reactor

    DOEpatents

    Lau, L.K.; Alper, N.I.

    1994-11-22

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.

  5. Fluid sampling system for a nuclear reactor

    DOEpatents

    Lau, Louis K.; Alper, Naum I.

    1994-01-01

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.

  6. Micro-electromechanical Systems for Probing Novel Strain Physics and Innovative Strain Devices in 2D Materials

    NASA Astrophysics Data System (ADS)

    Christopher, Jason; Vutukuru, Mounika; Bishop, David; Swan, Anna; Goldberg, Bennett

    Straining 2D materials can dramatically change electrical, thermal and optical properties and can even cause unconventional behavior such as generating pseudo-magnetic fields. However attempts at probing these effects have been hindered by the difficulty involved with precisely straining these materials. Here we present micro-electromechanical systems (MEMS) as an ideal platform for straining 2D materials because they are readily compatible with existing electronics and their size makes them compatible with 2D materials. Additionally the MEMS platform does more than facilitate experimentation; by freeing us to think of strain as dynamical it makes a whole new class of devices practical for next generation technology. To demonstrate the power of this platform we have for the first time measured the strain response of the Raman and photoluminescence spectra of suspended MoS2, and measured the friction force between MoS2 and the MEMS structure. This talk will touch on the basics of designing MEMS structures for straining 2D materials, how to transfer 2D materials onto MEMS without break either, proof of concept experimental results, and next steps in developing the MEMS platform. This work is supported by NSF DMR Grant 1411008, and author J. Christopher thanks the NDSEG program for its support.

  7. Disappearance of 2D Magnetic Character in Quasi-1D System CoNb2O6 under Magnetic Field

    NASA Astrophysics Data System (ADS)

    Mitsuda, Setsuo; Kobayashi, Satoru; Katagiri, Kouji; Yoshizawa, Hideki; Ishikawa, Masayasu; Miyatani, Kazuo; Kohn, Kay

    1995-07-01

    We report neutron scattering as well as ac susceptibility studies on the formation of magnetic ordering in a quasi-1D ferromagnetic chain system CoNb2O6 in magnetic fields up to 600 Oe. At T=1.5 K, a noncollinear ferrimagnetic (FR) phase with up-up-down spin arrangement along the b axis is field-induced in the magnetic field above ˜300 Oe. Interestingly, the pronounced 2D magnetic character previously found in the noncollinear antiferromagnetic phase disappears in the FR phase. This is direct evidence that the 2D magnetic character is due to the cancellation of interchain exchange fields at an apex site of a 2D isosceles-triangular lattice where quasi-1D ferromagnetic chains lie.

  8. Simulated KWAJEX Convective Systems Using a 2D and 3D Cloud Resolving Model and Their Comparisons with Radar Observations

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Tao, Wei-Kuo; Simpson, Joanne

    2003-01-01

    The 1999 Kwajalein Atoll field experiment (KWAJEX), one of several major TRMM (Tropical Rainfall Measuring Mission) field experiments, has successfully obtained a wealth of information and observation data on tropical convective systems over the western Central Pacific region. In this paper, clouds and convective systems that developed during three active periods (Aug 7-12, Aug 17-21, and Aug 29-Sep 13) around Kwajalein Atoll site are simulated using both 2D and 3D Goddard Cumulus Ensemble (GCE) models. Based on numerical results, the clouds and cloud systems are generally unorganized and short lived. These features are validated by radar observations that support the model results. Both the 2D and 3D simulated rainfall amounts and their stratiform contribution as well as the heat, water vapor, and moist static energy budgets are examined for the three convective episodes. Rainfall amounts are quantitatively similar between the two simulations, but the stratiform contribution is considerably larger in the 2D simulation. Regardless of dimension, fo all three cases, the large-scale forcing and net condensation are the two major physical processes that account for the evolution of the budgets with surface latent heat flux and net radiation solar and long-wave radiation)being secondary processes. Quantitative budget differences between 2D and 3D as well as between various episodes will be detailed.Morover, simulated radar signatures and Q1/Q2 fields from the three simulations are compared to each other and with radar and sounding observations.

  9. Space station integrated propulsion and fluid system study: Fluid systems configuration databook

    NASA Technical Reports Server (NTRS)

    Rose, L.; Bicknell, B.; Bergman, D.; Wilson, S.

    1987-01-01

    This databook contains fluid system requirements and system descriptions for Space Station program elements including the United States and International modules, integrated fluid systems, attached payloads, fluid servicers and vehicle accommodation facilities. Separate sections are devoted to each of the program elements and include a discussion of the overall system requirements, specific fluid systems requirements and systems descriptions. The systems descriptions contain configurations, fluid inventory data and component lists. In addition, a list of information sources is referenced at the end of each section.

  10. Capacitive system detects and locates fluid leaks

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Electronic monitoring system automatically detects and locates minute leaks in seams of large fluid storage tanks and pipelines covered with thermal insulation. The system uses a capacitive tape-sensing element that is adhesively bonded over seams where fluid leaks are likely to occur.

  11. Critical thickness of 2D to 3D transition in GexSi1-x/Si(001) system

    NASA Astrophysics Data System (ADS)

    Lozovoy, K. A.; Kokhanenko, A. P.; Voitsekhovskii, A. V.

    2016-07-01

    In this paper, Stranski-Krastanov growth of GexSi1-x epitaxial layers on the Si(001) surface is considered. Experimental investigations show that the moment of transition from 2D to 3D growth and the critical thickness of 2D layer at which this transition occurs play a key role during the synthesis of such materials. Among the most important parameters determining the peculiarities of the growth process and characteristics of emerging island ensembles are growth temperature and surface conditions (for example, the presence of surfactants). But existing theoretical models are not able to predict the values of the critical thickness in the whole range of growth temperatures and compositions x of solution for these systems. For the calculations of the critical thickness of transition from 2D to 3D growth, in this paper, a theoretical model based on general nucleation theory is proposed. This model is specified by taking into account dependencies of elastic modulus, lattices mismatch, and surface energy of the side facet on the composition x. As a result, dependencies of the critical thickness of Stranski-Krastanov transition on composition x and temperature are obtained. This allows one to determine conditions of transition from 2D to 3D growth mode in these systems. The simulated results explain experimentally observed results on temperature dependencies of the critical thickness for different germanium contents.

  12. Focused fluid-flow processes through high-quality bathymetric, 2D seismic and Chirp data from the southern parts of the Bay of Biscay, France

    NASA Astrophysics Data System (ADS)

    Baudon, Catherine; Gillet, Hervé; Cremer, Michel

    2013-04-01

    High-quality bathymetric, 2D seismic and Chirp data located in the southern parts of the Bay of Biscay, France, collected by the University of Bordeaux 1 (Cruises ITSAS 2, 2001; PROSECAN 3, 2006 and SARGASS, 2010) have recently been compiled. The survey area widely covers the Capbreton Canyon, which lies on the boundary between two major structural zones: the Aquitanian passive margin to the North, and the Basque-Cantabrian margin to the South which corresponds to the offshore Pyrenean front. The dataset revealed a large number of key seafloor features potentially associated with focused fluid-flow processes and subsurface sediment-remobilization. Focused fluid migration through sub-seabed sediments is a common phenomenon on continental margins worldwide and has widespread implications from both industrial and fundamental perspectives, from seafloor marine environmental issues to petroleum exploration and hazard assessments. Our study analyses the relationships between seafloor features, deeper structures and fluid migration through the Plio-Quaternary sedimentary pile. The geometrical characteristics, mechanisms of formation and kinematics of four main groups of seabed features have been investigated. (i) A 150km2 field of pockmarks can be observed on the Basque margin. These features are cone-shaped circular or elliptical depressions that are either randomly distributed as small pockmarks (diameter < 20m) or aligned in trains of large pockmarks (ranging from 200 to 600m in diameter) along shallow troughs leading downstream to the Capbreton Canyon. Seismic data show that most pockmarks reach the seabed through vertically staked V-shaped features but some are buried and show evidence of lateral migration through time. (ii) A second field of widely-spaced groups of pockmarks pierce the upper slope of the Aquitanian margin. These depressions are typically a few hundred meters in diameter and seem to be preferentially located in the troughs or on the stoss sides of

  13. Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems

    1994-06-20

    FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors,more » gasifiers, and FCC (Fluid Catalytic Cracker) reactors.« less

  14. Development of an open source laboratory information management system for 2-D gel electrophoresis-based proteomics workflow

    PubMed Central

    Morisawa, Hiraku; Hirota, Mikako; Toda, Tosifusa

    2006-01-01

    Background In the post-genome era, most research scientists working in the field of proteomics are confronted with difficulties in management of large volumes of data, which they are required to keep in formats suitable for subsequent data mining. Therefore, a well-developed open source laboratory information management system (LIMS) should be available for their proteomics research studies. Results We developed an open source LIMS appropriately customized for 2-D gel electrophoresis-based proteomics workflow. The main features of its design are compactness, flexibility and connectivity to public databases. It supports the handling of data imported from mass spectrometry software and 2-D gel image analysis software. The LIMS is equipped with the same input interface for 2-D gel information as a clickable map on public 2DPAGE databases. The LIMS allows researchers to follow their own experimental procedures by reviewing the illustrations of 2-D gel maps and well layouts on the digestion plates and MS sample plates. Conclusion Our new open source LIMS is now available as a basic model for proteome informatics, and is accessible for further improvement. We hope that many research scientists working in the field of proteomics will evaluate our LIMS and suggest ways in which it can be improved. PMID:17018156

  15. Enhanced job control language procedures for the SIMSYS2D two-dimensional water-quality simulation system

    USGS Publications Warehouse

    Karavitis, G.A.

    1984-01-01

    The SIMSYS2D two-dimensional water-quality simulation system is a large-scale digital modeling software system used to simulate flow and transport of solutes in freshwater and estuarine environments. Due to the size, processing requirements, and complexity of the system, there is a need to easily move the system and its associated files between computer sites when required. A series of job control language (JCL) procedures was written to allow transferability between IBM and IBM-compatible computers. (USGS)

  16. Ti3CrCu4: A possible 2-D ferromagnetic spin fluctuating system

    NASA Astrophysics Data System (ADS)

    Dhar, S. K.; Provino, A.; Manfrinetti, P.; Kulkarni, R.; Goyal, Neeraj; Paudyal, D.

    2016-05-01

    Ti3CrCu4 is a new ternary compound which crystallizes in the tetragonal Ti3Pd5 structure type. The Cr atoms form square nets in the a-b plane (a = 3.124 Å) which are separated by an unusually large distance c = 11.228 Å along the tetragonal axis, thus forming a -2-D Cr-sublattice. The paramagnetic susceptibility is characterized by a low effective moment, μeff = 1.1 μB, a low paramagnetic Curie temperature θP (below 7 K) and a temperature independent χ0 = 6.7 x 10-4 emu/mol. The magnetization at 1.8 K increases rapidly with field nearly saturating to 0.2 μB/f.u. The zero field heat capacity C/T shows an upturn below 7 K (˜190 mJ/mol K2 at ˜0.1K) which is suppressed in applied magnetic fields and interpreted as suggesting the presence of spin fluctuations. The resistivity at low temperatures shows non-Fermi liquid behavior. Overall, the experimental data thus reveal an unusual magnetic state in Ti3CrCu4, which likely has its origin in the layered nature of the Cr sub-lattice and ferromagnetic spin fluctuations. Density functional theoretical calculations reveal a sharp Cr density of states peak just above the Fermi level, indicating the propensity of Ti3CrCu4 to become magnetic.

  17. Development of electrokinetic remediation for caesium: A feasibility study of 2D electrode configuration system

    NASA Astrophysics Data System (ADS)

    Syah Putra, Rudy

    2016-02-01

    Agar matrix was artificially contaminated with caesium and subjected to rapid assessment of electrokinetic treatment on the basis of the 2D electrode configuration. The effect of caesium concentration on the process was investigated using different electrode configuration (i.e. rectangular, hexagonal and triangular). During treatment the in situ pH distribution, the current flow, and the potential distribution were monitored. At the end of the treatment, the caesium concentration distribution was measured. The results of these experiments showed that for caesium contamination, pH control is essential in order to create a suitable environment throughout the agar matrix to enable contaminant removal. It was found that the type of electrode configuration used to control the pH affected the rate of caesium accumulation. All of the electrode configurations tested was effective, but the highest caesium extraction was achieved when the hexagonal pattern was used to control the pH. After 72 h of treatment at 50 mA, the concentration of caesium decreased gradually from the second and first layer of agar matrix throughout the cell, suggesting that most of the caesium was concentrated on the cathode part.

  18. Fluid permeability measurement system and method

    DOEpatents

    Hallman, Jr., Russell Louis; Renner, Michael John

    2008-02-05

    A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  19. Novel low-cost 2D/3D switchable autostereoscopic system for notebook computers and other portable devices

    NASA Astrophysics Data System (ADS)

    Eichenlaub, Jesse B.

    1995-03-01

    Mounting a lenticular lens in front of a flat panel display is a well known, inexpensive, and easy way to create an autostereoscopic system. Such a lens produces half resolution 3D images because half the pixels on the LCD are seen by the left eye and half by the right eye. This may be acceptable for graphics, but it makes full resolution text, as displayed by common software, nearly unreadable. Very fine alignment tolerances normally preclude the possibility of removing and replacing the lens in order to switch between 2D and 3D applications. Lenticular lens based displays are therefore limited to use as dedicated 3D devices. DTI has devised a technique which removes this limitation, allowing switching between full resolution 2D and half resolution 3D imaging modes. A second element, in the form of a concave lenticular lens array whose shape is exactly the negative of the first lens, is mounted on a hinge so that it can be swung down over the first lens array. When so positioned the two lenses cancel optically, allowing the user to see full resolution 2D for text or numerical applications. The two lenses, having complementary shapes, naturally tend to nestle together and snap into perfect alignment when pressed together--thus obviating any need for user operated alignment mechanisms. This system represents an ideal solution for laptop and notebook computer applications. It was devised to meet the stringent requirements of a laptop computer manufacturer including very compact size, very low cost, little impact on existing manufacturing or assembly procedures, and compatibility with existing full resolution 2D text- oriented software as well as 3D graphics. Similar requirements apply to high and electronic calculators, several models of which now use LCDs for the display of graphics.

  20. Surface cleanliness of fluid systems, specification for

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This specification establishes surface cleanliness levels, test methods, cleaning and packaging requirements, and protection and inspection procedures for determining surface cleanliness. These surfaces pertain to aerospace parts, components, assemblies, subsystems, and systems in contact with any fluid medium.

  1. A convergent 2D finite-difference scheme for the Dirac–Poisson system and the simulation of graphene

    SciTech Connect

    Brinkman, D.; Heitzinger, C.; Markowich, P.A.

    2014-01-15

    We present a convergent finite-difference scheme of second order in both space and time for the 2D electromagnetic Dirac equation. We apply this method in the self-consistent Dirac–Poisson system to the simulation of graphene. The model is justified for low energies, where the particles have wave vectors sufficiently close to the Dirac points. In particular, we demonstrate that our method can be used to calculate solutions of the Dirac–Poisson system where potentials act as beam splitters or Veselago lenses.

  2. Temperature and Pinning Effects on Driving a 2D Electron System on a Helium Film: A Numerical Study

    NASA Astrophysics Data System (ADS)

    Damasceno, Pablo F.; Dasilva, Cláudio José; Rino, José Pedro; Cândido, Ladir

    2010-07-01

    Using numerical simulations we investigated the dynamic response to an externally driven force of a classical two-dimensional (2D) electron system on a helium film at finite temperatures. A potential barrier located at the center of the system behaves as a pinning center that results in an insulator state below a threshold driving force. We have found that the current-voltage characteristic obeys the scaling relation I= f ξ , with ξ ranging from ˜(1.0-1.7) for different pinning strengths and temperatures. Our results may be used to understand the spread range of ξ in experiments with typical characteristic of plastic depinning.

  3. Learning control system design based on 2-D theory - An application to parallel link manipulator

    NASA Technical Reports Server (NTRS)

    Geng, Z.; Carroll, R. L.; Lee, J. D.; Haynes, L. H.

    1990-01-01

    An approach to iterative learning control system design based on two-dimensional system theory is presented. A two-dimensional model for the iterative learning control system which reveals the connections between learning control systems and two-dimensional system theory is established. A learning control algorithm is proposed, and the convergence of learning using this algorithm is guaranteed by two-dimensional stability. The learning algorithm is applied successfully to the trajectory tracking control problem for a parallel link robot manipulator. The excellent performance of this learning algorithm is demonstrated by the computer simulation results.

  4. Wireless Fluid Level Measuring System

    NASA Technical Reports Server (NTRS)

    Taylor, Bryant D. (Inventor); Woodard, Stanley E. (Inventor)

    2007-01-01

    A level-sensing probe positioned in a tank is divided into sections with each section including (i) a fluid-level capacitive sensor disposed along the length thereof, (ii) an inductor electrically coupled to the capacitive sensor, (iii) a sensor antenna positioned for inductive coupling to the inductor, and (iv) an electrical conductor coupled to the sensor antenna. An electrically non-conductive housing accessible from a position outside of the tank houses antennas arrayed in a pattern. Each antenna is electrically coupled to the electrical conductor from a corresponding one of the sections. A magnetic field response recorder has a measurement head with transceiving antennas arrayed therein to correspond to the pattern of the housing's antennas. When a measurement is to be taken, the measurement head is mechanically coupled to the housing so that each housing antenna is substantially aligned with a specific one of the transceiving antennas.

  5. LASA (Lidar Atmospheric Sounder and Altimeter) Earth Observing System. Volume 2D: Instrument Panel Report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Earth Observing System (Eos) will provide an ideal forum in which the stronly synergistic characteristics of the lidar systems can be used in concert with the characteristics of a number of other sensors to better understand the Earth as a system. Progress in the development of more efficient and long-lasting laser systems will insure their availability in the Eos time frame. The necessary remote-sensing techniques are being developed to convert the Lidar Atmospheric Sounder and Altimeter (LASA) observations into the proper scientific parameters. Each of these activities reinforces the promise that LASA and GLRS will be a reality in the Eos era.

  6. Note: Reliable and non-contact 6D motion tracking system based on 2D laser scanners for cargo transportation

    SciTech Connect

    Kim, Young-Keun; Kim, Kyung-Soo

    2014-10-15

    Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.

  7. Note: Reliable and non-contact 6D motion tracking system based on 2D laser scanners for cargo transportation

    NASA Astrophysics Data System (ADS)

    Kim, Young-Keun; Kim, Kyung-Soo

    2014-10-01

    Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.

  8. Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging

    NASA Astrophysics Data System (ADS)

    Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas

    2016-03-01

    In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.

  9. Large scale cryogenic fluid systems testing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA Lewis Research Center's Cryogenic Fluid Systems Branch (CFSB) within the Space Propulsion Technology Division (SPTD) has the ultimate goal of enabling the long term storage and in-space fueling/resupply operations for spacecraft and reusable vehicles in support of space exploration. Using analytical modeling, ground based testing, and on-orbit experimentation, the CFSB is studying three primary categories of fluid technology: storage, supply, and transfer. The CFSB is also investigating fluid handling, advanced instrumentation, and tank structures and materials. Ground based testing of large-scale systems is done using liquid hydrogen as a test fluid at the Cryogenic Propellant Tank Facility (K-site) at Lewis' Plum Brook Station in Sandusky, Ohio. A general overview of tests involving liquid transfer, thermal control, pressure control, and pressurization is given.

  10. Implementation of a system to life test 2-D laser arrays

    NASA Astrophysics Data System (ADS)

    Faltus, Thomas H.; Bicket, Daniel J.

    1992-02-01

    Multi-emitter laser devices, stacked to form 2-dimensional arrays, have been shown to effectively pump Nd:YAG slabs in solid state laser systems. Using these arrays as substitutes for flashlamps provides the potential for increased reliability of laser systems. However, to quantify this reliability improvement, laser arrays must be life tested. To ensure that the life test data accurately describes the array lifetimes, the life test system must possess the following characteristics: adequate control of operating stresses, to ensure that the test results apply to true use-conditions; continuous monitoring and recording of array health, to capture unpredictable variations in array performance; in-situ parameter measurement, to measure array performance without inducing handling damage; and extensive safety interlocks, to protect personnel from laser hazards. This paper describes an array life test system possessing these characteristics. It describes the system hardware, operating and test software, and the methodology behind the system's use. We demonstrate the system's performance by life testing 2-dimensional laser arrays having previously documented front facet anomalies. Disadvantages as well as advantages of design decisions are discussed.

  11. Note: Significant increase to the temporal resolution of 2D X-ray detectors using a novel beam chopper system

    SciTech Connect

    Küchemann, Stefan; Mahn, Carsten; Samwer, Konrad

    2014-01-15

    The investigation of short time dynamics using X-ray scattering techniques is commonly limited either by the read out frequency of the detector or by a low intensity. In this paper, we present a chopper system, which can increase the temporal resolution of 2D X-ray detectors by a factor of 13. This technique only applies to amorphous or polycrystalline samples due to their circular diffraction patterns. Using the chopper, we successfully increased the temporal resolution up to 5.1 ms during synchrotron experiments. For the construction, we provide a mathematical formalism, which, in principle, allows an even higher increase of the temporal resolution.

  12. Assessing HYDRUS-2D model to estimate soil water contents and olive tree transpiration fluxes under different water distribution systems

    NASA Astrophysics Data System (ADS)

    Autovino, Dario; Negm, Amro; Rallo, Giovanni; Provenzano, Giuseppe

    2016-04-01

    In Mediterranean countries characterized by limited water resources for agricultural and societal sectors, irrigation management plays a major role to improve water use efficiency at farm scale, mainly where irrigation systems are correctly designed to guarantee a suitable application efficiency and the uniform water distribution throughout the field. In the last two decades, physically-based agro-hydrological models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere (SPA) system. Mechanistic models like HYDRUS 2D/3D (Šimunek et al., 2011) have been proposed to simulate all the components of water balance, including actual crop transpiration fluxes estimated according to a soil potential-dependent sink term. Even though the suitability of these models to simulate the temporal dynamics of soil and crop water status has been reported in the literature for different horticultural crops, a few researches have been considering arboreal crops where the higher gradients of root water uptake are the combination between the localized irrigation supply and the three dimensional root system distribution. The main objective of the paper was to assess the performance of HYDRUS-2D model to evaluate soil water contents and transpiration fluxes of an olive orchard irrigated with two different water distribution systems. Experiments were carried out in Castelvetrano (Sicily) during irrigation seasons 2011 and 2012, in a commercial farm specialized in the production of table olives (Olea europaea L., var. Nocellara del Belice), representing the typical variety of the surrounding area. During the first season, irrigation water was provided by a single lateral placed along the plant row with four emitters per plant (ordinary irrigation), whereas during the second season a grid of emitters laid on the soil was installed in order to irrigate the whole soil surface around the selected trees. The model performance was assessed based on the

  13. Control system for fluid heated steam generator

    DOEpatents

    Boland, James F.; Koenig, John F.

    1985-01-01

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  14. Control system for fluid heated steam generator

    DOEpatents

    Boland, J.F.; Koenig, J.F.

    1984-05-29

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  15. Aero/fluids database system

    NASA Technical Reports Server (NTRS)

    Reardon, John E.; Violett, Duane L., Jr.

    1991-01-01

    The AFAS Database System was developed to provide the basic structure of a comprehensive database system for the Marshall Space Flight Center (MSFC) Structures and Dynamics Laboratory Aerophysics Division. The system is intended to handle all of the Aerophysics Division Test Facilities as well as data from other sources. The system was written for the DEC VAX family of computers in FORTRAN-77 and utilizes the VMS indexed file system and screen management routines. Various aspects of the system are covered, including a description of the user interface, lists of all code structure elements, descriptions of the file structures, a description of the security system operation, a detailed description of the data retrieval tasks, a description of the session log, and a description of the archival system.

  16. An automated calibration system that combines fringe projection and 2D digital image correlation

    NASA Astrophysics Data System (ADS)

    Siegmann, Philip; Felipe-Sesé, Luis A.; Díaz Garrido, Francisco; Piñeiro-Ave, José

    2015-09-01

    An optical non-contact and full-field system that allows large displacement measurements in x-, y- and z-direction is presented. The system combines 2-dimentional digital image correlation (for in-plane measurements) and fringe projection (for out-of-plane displacements) and uses only one camera. The in- and out-of-plane displacements are obtained at the same instant allowing real-time measurements thanks to a color encoding filtering procedure. The out-of-plane measurement allows the correction of the in-plane measurements and the system has to be precisely aligned by following an established alignment procedure. Furthermore, a calibration has to be done to obtain a fringe parameter k for each pixel of the specimen surface image necessary to relate the shifted phase with the out-of-plane displacements. The presented system obtains different values of k for each pixel because of the divergent and non-normal incidence of the fringe beam onto the sample surface (non zero incidence angle). The calibration is performed automatically and only has to be done once for each configuration of the system. The system is portable and can be easily adapted to measure large displacements and wide areas (using small incidence angle) or smaller distances but with higher resolutions (when increasing the incidence angle).

  17. A robust omnifont open-vocabulary Arabic OCR system using pseudo-2D-HMM

    NASA Astrophysics Data System (ADS)

    Rashwan, Abdullah M.; Rashwan, Mohsen A.; Abdel-Hameed, Ahmed; Abdou, Sherif; Khalil, A. H.

    2012-01-01

    Recognizing old documents is highly desirable since the demand for quickly searching millions of archived documents has recently increased. Using Hidden Markov Models (HMMs) has been proven to be a good solution to tackle the main problems of recognizing typewritten Arabic characters. These attempts however achieved a remarkable success for omnifont OCR under very favorable conditions, they didn't achieve the same performance in practical conditions, i.e. noisy documents. In this paper we present an omnifont, large-vocabulary Arabic OCR system using Pseudo Two Dimensional Hidden Markov Model (P2DHMM), which is a generalization of the HMM. P2DHMM offers a more efficient way to model the Arabic characters, such model offer both minimal dependency on the font size/style (omnifont), and high level of robustness against noise. The evaluation results of this system are very promising compared to a baseline HMM system and best OCRs available in the market (Sakhr and NovoDynamics). The recognition accuracy of the P2DHMM classifier is measured against the classic HMM classifier, the average word accuracy rates for P2DHMM and HMM classifiers are 79% and 66% respectively. The overall system accuracy is measured against Sakhr and NovoDynamics OCR systems, the average word accuracy rates for P2DHMM, NovoDynamics, and Sakhr are 74%, 71%, and 61% respectively.

  18. Single-snapshot 2D color measurement by plenoptic imaging system

    NASA Astrophysics Data System (ADS)

    Masuda, Kensuke; Yamanaka, Yuji; Maruyama, Go; Nagai, Sho; Hirai, Hideaki; Meng, Lingfei; Tosic, Ivana

    2014-03-01

    Plenoptic cameras enable capture of directional light ray information, thus allowing applications such as digital refocusing, depth estimation, or multiband imaging. One of the most common plenoptic camera architectures contains a microlens array at the conventional image plane and a sensor at the back focal plane of the microlens array. We leverage the multiband imaging (MBI) function of this camera and develop a single-snapshot, single-sensor high color fidelity camera. Our camera is based on a plenoptic system with XYZ filters inserted in the pupil plane of the main lens. To achieve high color measurement precision of this system, we perform an end-to-end optimization of the system model that includes light source information, object information, optical system information, plenoptic image processing and color estimation processing. Optimized system characteristics are exploited to build an XYZ plenoptic colorimetric camera prototype that achieves high color measurement precision. We describe an application of our colorimetric camera to color shading evaluation of display and show that it achieves color accuracy of ΔE<0.01.

  19. A neuromorphic VLSI device for implementing 2-D selective attention systems.

    PubMed

    Indiveri, G

    2001-01-01

    Selective attention is a mechanism used to sequentially select and process salient subregions of the input space, while suppressing inputs arriving from nonsalient regions. By processing small amounts of sensory information in a serial fashion, rather than attempting to process all the sensory data in parallel, this mechanism overcomes the problem of flooding limited processing capacity systems with sensory inputs. It is found in many biological systems and can be a useful engineering tool for developing artificial systems that need to process in real-time sensory data. In this paper we present a neuromorphic hardware model of a selective attention mechanism implemented on a very large scale integration (VLSI) chip, using analog circuits. The chip makes use of a spike-based representation for receiving input signals, transmitting output signals and for shifting the selection of the attended input stimulus over time. It can be interfaced to neuromorphic sensors and actuators, for implementing multichip selective attention systems. We describe the characteristics of the circuits used in the architecture and present experimental data measured from the system. PMID:18249973

  20. Thermal stability of Ag, Al, Sn, Pb, and Hg films reinforced by 2D (C, Si) crystals and the formation of interfacial fluid states in them upon heating. MD experiment

    NASA Astrophysics Data System (ADS)

    Polukhin, V. A.; Kurbanova, E. D.

    2016-02-01

    Molecular dynamics simulation is used to study the thermal stability of the interfacial states of metallic Al, Ag, Sn, Pb, and Hg films (i.e., the structural elements of superconductor composites and conducting electrodes) reinforced by 2D graphene and silicene crystals upon heating up to disordering and to analyze the formation of nonautonomous fluid pseudophases in interfaces. The effect of perforation defects in reinforcing 2D-C and 2D-Si planes with passivated edge covalent bonds on the atomic dynamics is investigated. As compared to Al and Ag, the diffusion coefficients in Pd and Hg films increase monotonically with temperature during thermally activated disordering processes, the interatomic distances decrease, the sizes decrease, drops form, and their density profile grows along the normal. The coagulation of Pb and Hg drops is accompanied by a decrease in the contact angle, the reduction of the interface contact with graphene, and the enhancement of its corrugation (waviness).

  1. Hexatic and mesoscopic phases in a 2D quantum coulomb system.

    PubMed

    Clark, Bryan K; Casula, Michele; Ceperley, D M

    2009-07-31

    We study the Wigner crystal melting in a two-dimensional quantum system of distinguishable particles interacting via the 1/r Coulomb potential. We use quantum Monte Carlo methods to calculate its phase diagram, locate the Wigner crystal region, and analyze its instabilities towards the liquid phase. We discuss the role of quantum effects in the critical behavior of the system, and compare our numerical results with the classical theory of melting, and the microemulsion theory of frustrated Coulomb systems. We find a Pomeranchuk effect much larger then in solid helium. In addition, we find that the exponent for the algebraic decay of the hexatic phase differs significantly from the Kosterilitz-Thouless theory of melting. We search for the existence of mesoscopic phases and find evidence of metastable bubbles but no mesoscopic phase that is stable in equilibrium. PMID:19792514

  2. The evaluation of an inexpensive, 2D, video based gait assessment system for clinical use.

    PubMed

    Ugbolue, U Chris; Papi, Enrica; Kaliarntas, Konstantinos T; Kerr, Andrew; Earl, Leo; Pomeroy, Valerie M; Rowe, Philip J

    2013-07-01

    The purpose of this study was to investigate the clinical potential of an augmented-video-based-portable-system (AVPS). The AVPS included a walkway grid mat made of vinyl flooring, flat paper bull's eye markers, four photoswitches mounted on tripods, a light-indicator, a video camera, and a computer with ProTrainer System software. The AVPS output was compared to a "gold standard" 3D Vicon Motion Analysis System both statically and dynamically over a fixed range (-90° to +90°) using a two-segment-goniometric-rig marked with both bull's eye and retroreflective markers. At each segment angle position, three trials of data were captured. The reliability of the AVPS was also tested using three raters. Further twelve, young, healthy subjects participated in a concurrent validity study in which they performed six gait trials which were simultaneously recorded by both systems. Both motion analysis systems showed low levels of intra subject variability in all kinematic variables indicated by the size of the standard deviations across the six trials. There were no significant differences between the motion systems with respect to the kinematic variables (P>0.05). The results showed a high intra- and inter-rater reliability for both the kinematic and temporo-spatial parameters. With respect to gait events the lowest ICC value for the intra-rater reliability test was 0.993 for the kinematic variables, and ranged from 0.941 to 0.956 for the temporo-spatial variables and 0.731 to 0.954 for the tibia inclination angles. The validation data suggest the AVPS is capable of generating highly reliable and repeatable data when applied to normal subjects and could be used within the clinical setting. PMID:23465758

  3. A plastic scintillator-based 2D thermal neutron mapping system for use in BNCT studies.

    PubMed

    Ghal-Eh, N; Green, S

    2016-06-01

    In this study, a scintillator-based measurement instrument is proposed which is capable of measuring a two-dimensional map of thermal neutrons within a phantom based on the detection of 2.22MeV gamma rays generated via nth+H→D+γ reaction. The proposed instrument locates around a small rectangular water phantom (14cm×15cm×20cm) used in Birmingham BNCT facility. The whole system has been simulated using MCNPX 2.6. The results confirm that the thermal flux peaks somewhere between 2cm and 4cm distance from the system entrance which is in agreement with previous studies. PMID:26986813

  4. Filling of orbital fluid management systems

    NASA Technical Reports Server (NTRS)

    Merino, F.; Blatt, M. H.; Thies, N. C.

    1978-01-01

    A study was performed with three objectives: (1) analyze fluid management system fill under orbital conditions; (2) determine what experimentation is needed; and (3) develop an experimental program. The fluid management system was a 1.06m (41.7 in) diameter pressure vessel with screen channel device. Analyses were conducted using liquid hydrogen and N2O4. The influence of helium and autogenous pressurization systems was considered. Analyses showed that fluid management system fill will be more difficult with a cryogen than with an earth storable. The key to a successful fill with cryogens is in devising techniques for filling without vent liquid, and removing trapped vapor from the screen device at tank fill completion. This will be accomplished with prechill, fill, and vapor condensation processes. Refill will require a vent and purge process, to dilute the residual helium, prior to introducing liquid. Neither prechill, chill, nor purge processes will be required for earth storables.

  5. Topologically robust transport of entangled photons in a 2D photonic system.

    PubMed

    Mittal, Sunil; Orre, Venkata Vikram; Hafezi, Mohammad

    2016-07-11

    We theoretically study the transport of time-bin entangled photon pairs in a two-dimensional topological photonic system of coupled ring resonators. This system implements the integer quantum Hall model using a synthetic gauge field and exhibits topologically robust edge states. We show that the transport through edge states preserves temporal correlations of entangled photons whereas bulk transport does not preserve these correlations and can lead to significant unwanted temporal bunching or anti-bunching of photons. We study the effect of disorder on the quantum transport properties; while the edge transport remains robust, bulk transport is very susceptible, and in the limit of strong disorder, bulk states become localized. We show that this localization is manifested as an enhanced bunching/anti-bunching of photons. This topologically robust transport of correlations through edge states could enable robust on-chip quantum communication channels and delay lines for information encoded in temporal correlations of photons. PMID:27410836

  6. Tracer dispersion simulation in low wind speed conditions with a new 2D Langevin equation system

    NASA Astrophysics Data System (ADS)

    Anfossi, D.; Alessandrini, S.; Trini Castelli, S.; Ferrero, E.; Oettl, D.; Degrazia, G.

    The simulation of atmospheric dispersion in low wind speed conditions (LW) is still recognised as a challenge for modellers. Recently, a new system of two coupled Langevin equations that explicitly accounts for meandering has been proposed. It is based on the study of turbulence and dispersion properties in LW. The new system was implemented in the Lagrangian stochastic particle models LAMBDA and GRAL. In this paper we present simulations with this new approach applying it to the tracer experiments carried out in LW by Idaho National Engineering Laboratory (INEL, USA) in 1974 and by the Graz University of Technology and CNR-Torino near Graz in 2003. To assess the improvement obtained with the present model with respect to previous models not taking into account the meandering effect, the simulations for the INEL experiments were also performed with the old version of LAMBDA. The results of the comparisons clearly indicate that the new approach improves the simulation results.

  7. Interlayer tunneling studies of highly imbalanced bilayer 2D electron systems at νT= 1

    NASA Astrophysics Data System (ADS)

    Champagne, A. R.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.

    2007-03-01

    When the separation between two parallel 2-dimensional electron systems (2DES) becomes comparable to the average distance between electrons within a single layer, the system can support a quantum Hall state with total filling factor νT=1. This state can be described as a Bose condensate of excitons. Previous studies [1] have shown that close to the νT=1 phase boundary, a small imbalance in the number of electrons in each layer can strengthen the condensate. We report on interlayer tunneling measurements of the effect of large imbalances as a function of the interlayer spacing. We explore the possibility of competing order between the excitonic state and the (1/3, 2/3) fractional states in the individual layers. This work was supported by the NSF and the DOE. [1] I. B. Spielman, et al., Phys. Rev. B 70, 081303 (2004).

  8. Study of the height and density distributions of the 2-D granular system under vertical vibration

    NASA Astrophysics Data System (ADS)

    Pak, Hyuk Kyu; Kim, Kipom; Jun, Yonggun

    1998-03-01

    Melecular dynamic simulations and experiments are used to investigate the pattern formation of the granular materials in a vertically vibrated rigid container. The height and density distributions of the peak of the patterns in two dimensional system are measured using the simulation. The height distribution agrees with the experimental observation. At the peak of height of the pattern the density is observed minimum. From the information of the vertical velocities of the particles, the momentum flux distributions are studied also.

  9. A novel 2D wavelength-time chaos code in optical CDMA system

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Xin, Xiangjun; Wang, Yongjun; Zhang, Lijia; Yu, Chongxiu; Meng, Nan; Wang, Houtian

    2012-11-01

    Two-dimensional wavelength-time chaos code is proposed and constructed for a synchronous optical code division multiple access system. The access performance is compared between one-dimensional chaos code, WDM/chaos code and the proposed code. Comparison shows that two-dimensional wavelength-time chaos code possesses larger capacity, better spectral efficiency and bit-error ratio than WDM/chaos combinations and one-dimensional chaos code.

  10. Tracking contrast agents using real-time 2D photoacoustic imaging system for cardiac applications

    NASA Astrophysics Data System (ADS)

    Olafsson, Ragnar; Montilla, Leonardo; Ingram, Pier; Witte, Russell S.

    2009-02-01

    Photoacoustic (PA) imaging is a rapidly developing imaging modality that can detect optical contrast agents with high sensitivity. While detectors in PA imaging have traditionally been single element ultrasound transducers, use of array systems is desirable because they potentially provide high frame rates to capture dynamic events, such as injection and distribution of contrast in clinical applications. We present preliminary data consisting of 40 second sequences of coregistered pulse-echo (PE) and PA images acquired simultaneously in real time using a clinical ultrasonic machine. Using a 7 MHz linear array, the scanner allowed simultaneous acquisition of inphase-quadrature (IQ) data on 64 elements at a rate limited by the illumination source (Q-switched laser at 20 Hz) with spatial resolution determined to be 0.6 mm (axial) and 0.4 mm (lateral). PA images had a signal-to-noise ratio of approximately 35 dB without averaging. The sequences captured the injection and distribution of an infrared-absorbing contrast agent into a cadaver rat heart. From these data, a perfusion time constant of 0.23 s-1 was estimated. After further refinement, the system will be tested in live animals. Ultimately, an integrated system in the clinic could facilitate inexpensive molecular screening for coronary artery disease.

  11. Space station integrated propulsion and fluid systems study. Space station program fluid management systems databook

    NASA Technical Reports Server (NTRS)

    Bicknell, B.; Wilson, S.; Dennis, M.; Lydon, M.

    1988-01-01

    Commonality and integration of propulsion and fluid systems associated with the Space Station elements are being evaluated. The Space Station elements consist of the core station, which includes habitation and laboratory modules, nodes, airlocks, and trusswork; and associated vehicles, platforms, experiments, and payloads. The program is being performed as two discrete tasks. Task 1 investigated the components of the Space Station architecture to determine the feasibility and practicality of commonality and integration among the various propulsion elements. This task was completed. Task 2 is examining integration and commonality among fluid systems which were identified by the Phase B Space Station contractors as being part of the initial operating capability (IOC) and growth Space Station architectures. Requirements and descriptions for reference fluid systems were compiled from Space Station documentation and other sources. The fluid systems being examined are: an experiment gas supply system, an oxygen/hydrogen supply system, an integrated water system, the integrated nitrogen system, and the integrated waste fluids system. Definitions and descriptions of alternate systems were developed, along with analyses and discussions of their benefits and detriments. This databook includes fluid systems descriptions, requirements, schematic diagrams, component lists, and discussions of the fluid systems. In addition, cost comparison are used in some cases to determine the optimum system for a specific task.

  12. Performance analysis of 2D asynchronous hard-limiting optical code-division multiple access system through atmospheric scattering channel

    NASA Astrophysics Data System (ADS)

    Zhao, Yaqin; Zhong, Xin; Wu, Di; Zhang, Ye; Ren, Guanghui; Wu, Zhilu

    2013-09-01

    Optical code-division multiple access (OCDMA) systems usually allocate orthogonal or quasi-orthogonal codes to the active users. When transmitting through atmospheric scattering channel, the coding pulses are broadened and the orthogonality of the codes is worsened. In truly asynchronous case, namely both the chips and the bits are asynchronous among each active user, the pulse broadening affects the system performance a lot. In this paper, we evaluate the performance of a 2D asynchronous hard-limiting wireless OCDMA system through atmospheric scattering channel. The probability density function of multiple access interference in truly asynchronous case is given. The bit error rate decreases as the ratio of the chip period to the root mean square delay spread increases and the channel limits the bit rate to different levels when the chip period varies.

  13. Application of Compressed Sensing to 2-D Ultrasonic Propagation Imaging System data

    SciTech Connect

    Mascarenas, David D.; Farrar, Charles R.; Chong, See Yenn; Lee, J.R.; Park, Gyu Hae; Flynn, Eric B.

    2012-06-29

    The Ultrasonic Propagation Imaging (UPI) System is a unique, non-contact, laser-based ultrasonic excitation and measurement system developed for structural health monitoring applications. The UPI system imparts laser-induced ultrasonic excitations at user-defined locations on a structure of interest. The response of these excitations is then measured by piezoelectric transducers. By using appropriate data reconstruction techniques, a time-evolving image of the response can be generated. A representative measurement of a plate might contain 800x800 spatial data measurement locations and each measurement location might be sampled at 500 instances in time. The result is a total of 640,000 measurement locations and 320,000,000 unique measurements. This is clearly a very large set of data to collect, store in memory and process. The value of these ultrasonic response images for structural health monitoring applications makes tackling these challenges worthwhile. Recently compressed sensing has presented itself as a candidate solution for directly collecting relevant information from sparse, high-dimensional measurements. The main idea behind compressed sensing is that by directly collecting a relatively small number of coefficients it is possible to reconstruct the original measurement. The coefficients are obtained from linear combinations of (what would have been the original direct) measurements. Often compressed sensing research is simulated by generating compressed coefficients from conventionally collected measurements. The simulation approach is necessary because the direct collection of compressed coefficients often requires compressed sensing analog front-ends that are currently not commercially available. The ability of the UPI system to make measurements at user-defined locations presents a unique capability on which compressed measurement techniques may be directly applied. The application of compressed sensing techniques on this data holds the potential to

  14. The optical system design and application of micro 2D barcode

    NASA Astrophysics Data System (ADS)

    Zhu, Yi-jia; Li, Liang-liang; Qian, Cheng; Liang, Zhong-cheng

    2010-11-01

    We show an optical system of micro visual tag which is based on the principle of microscope and the property of QR Code. Unlike current optical tag, such as barcodes, must be read within a short rang and occupy valuable physical space on products, the new tags can be shrunk to several millimeters and captured from a distance of over 0.5 meters. We design the transmitter according to the parameters of camera lens. We also take the detection range and apertures into account, meanwhile conduct simulations and experiments. The result shows that: the tag can be captured from a long distance, and the amplified image is able to accurately be decoded.

  15. Anomalous giant piezoresistance in AlAs 2D electron systems with antidot lattices.

    PubMed

    Gunawan, O; Gokmen, T; Shkolnikov, Y P; De Poortere, E P; Shayegan, M

    2008-01-25

    An AlAs two-dimensional electron system patterned with an antidot lattice exhibits a giant piezoresistance effect at low temperatures, with a sign opposite to the piezoresistance observed in the unpatterned region. We suggest that the origin of this anomalous giant piezoresistance is the nonuniform strain in the antidot lattice and the exclusion of electrons occupying the two conduction-band valleys from different regions of the sample. This is analogous to the well-known giant magnetoresistance effect, with valley playing the role of spin and strain the role of magnetic field. PMID:18233015

  16. Chaotically Spiking Canards in an Excitable System with 2D Inertial Fast Manifolds

    NASA Astrophysics Data System (ADS)

    Marino, Francesco; Marin, Francesco; Balle, Salvador; Piro, Oreste

    2007-02-01

    We introduce a new class of excitable systems with two-dimensional fast dynamics that includes inertia. A novel transition from excitability to relaxation oscillations is discovered where the usual Hopf bifurcation is followed by a cascade of period doubled and chaotic small excitable attractors and, as they grow, by a new type of canard explosion where a small chaotic background erratically but deterministically triggers excitable spikes. This scenario is also found in a model for a nonlinear Fabry-Perot cavity with one pendular mirror.

  17. Time dependent inflow-outflow boundary conditions for 2D acoustic systems

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Myers, Michael K.

    1989-01-01

    An analysis of the number and form of the required inflow-outflow boundary conditions for the full two-dimensional time-dependent nonlinear acoustic system in subsonic mean flow is performed. The explicit predictor-corrector method of MacCormack (1969) is used. The methodology is tested on both uniform and sheared mean flows with plane and nonplanar sources. Results show that the acoustic system requires three physical boundary conditions on the inflow and one on the outflow boundary. The most natural choice for the inflow boundary conditions is judged to be a specification of the vorticity, the normal acoustic impedance, and a pressure gradient-density gradient relationship normal to the boundary. Specification of the acoustic pressure at the outflow boundary along with these inflow boundary conditions is found to give consistent reliable results. A set of boundary conditions developed earlier, which were intended to be nonreflecting is tested using the current method and is shown to yield unstable results for nonplanar acoustic waves.

  18. An active microwave imaging system for reconstruction of 2-D electrical property distributions.

    PubMed

    Meaney, P M; Paulsen, K D; Hartov, A; Crane, R K

    1995-10-01

    The goal of this work is to develop a microwave-based imaging system for hyperthermia treatment monitoring and assessment. Toward this end, a four transmit channel and four receive channel hardware device and concomitant image reconstruction algorithm have been realized. The hardware is designed to measure electric fields (i.e., amplitude and phase) at various locations in a phantom tank with and without the presence of various heterogeneities using standard heterodyning principles. Particular attention has been paid to designing a receiver with better than 115 dB of linear dynamic range which is necessary for imaging biological tissue which often has very high conductivity, especially for tissues with high water content. A calibration procedure has been developed to compensate for signal loss due to three-dimensional radiation in the measured data, since the reconstruction process is only two-dimensional at the present time. Results are shown which demonstrate the stability and accuracy of the measurement system, the extent to which the forward computational model agrees with the measured field distribution when the electrical properties are known, and image reconstructions of electrically unknown targets of varying diameter. In the latter case, images of both the reactive and resistive component of the electrical property distribution have been recoverable. Quantitative information on object location, size, and electrical properties results when the target is approximately one-half wavelength in size. Images of smaller objects lack the same level of quantitative information, but remain qualitatively correct. PMID:8582719

  19. Numerical and experimental studies of the elastic enhancement factor of 2D open systems

    NASA Astrophysics Data System (ADS)

    Sirko, Leszek; Białous, Małgorzata; Yunko, Vitalii; Bauch, Szymon; Ławniczak, Michał

    We present the results of numerical and experimental studies of the elastic enhancement factor W for microwave rough and rectangular cavities simulating two-dimensional chaotic and partially chaotic quantum billiards in the presence of moderate absorption strength. We show that for the frequency range ν = 15 . 0 - 18 . 5 GHz, in which the coupling between antennas and the system is strong enough, the values of W for the microwave rough cavity lie below the predictions of random matrix theory and on average they are above the theoretical results of V. Sokolov and O. Zhirov, Phys. Rev. E, 91, 052917 (2015). We also show that the enhancement factor W of a microwave rectangular cavity coupled to the external channels via microwave antennas, simulating a partially chaotic quantum billiard, calculated by applying the Potter-Rosenzweig model with κ = 2 . 8 +/- 0 . 5 is close to the experimental one. Our numerical and experimental results suggest that the enhancement factor can be used as a measure of internal chaos which can be especially useful for systems with significant openness or absorption. This work was partially supported by the Ministry of Science and Higher Education Grants N N202 130239 and UMO-2013/09/D/ST2/03727.

  20. Orbital Express fluid transfer demonstration system

    NASA Astrophysics Data System (ADS)

    Rotenberger, Scott; SooHoo, David; Abraham, Gabriel

    2008-04-01

    Propellant resupply of orbiting spacecraft is no longer in the realm of high risk development. The recently concluded Orbital Express (OE) mission included a fluid transfer demonstration that operated the hardware and control logic in space, bringing the Technology Readiness Level to a solid TRL 7 (demonstration of a system prototype in an operational environment). Orbital Express (funded by the Defense Advanced Research Projects Agency, DARPA) was launched aboard an Atlas-V rocket on March 9th, 2007. The mission had the objective of demonstrating technologies needed for routine servicing of spacecraft, namely autonomous rendezvous and docking, propellant resupply, and orbital replacement unit transfer. The demonstration system used two spacecraft. A servicing vehicle (ASTRO) performed multiple dockings with the client (NextSat) spacecraft, and performed a variety of propellant transfers in addition to exchanges of a battery and computer. The fluid transfer and propulsion system onboard ASTRO, in addition to providing the six degree-of-freedom (6 DOF) thruster system for rendezvous and docking, demonstrated autonomous transfer of monopropellant hydrazine to or from the NextSat spacecraft 15 times while on orbit. The fluid transfer system aboard the NextSat vehicle was designed to simulate a variety of client systems, including both blowdown pressurization and pressure regulated propulsion systems. The fluid transfer demonstrations started with a low level of autonomy, where ground controllers were allowed to review the status of the demonstration at numerous points before authorizing the next steps to be performed. The final transfers were performed at a full autonomy level where the ground authorized the start of a transfer sequence and then monitored data as the transfer proceeded. The major steps of a fluid transfer included the following: mate of the coupling, leak check of the coupling, venting of the coupling, priming of the coupling, fluid transfer, gauging

  1. Application of the digital watermarking technique in 2D barcode certificate anti-counterfeit systems

    NASA Astrophysics Data System (ADS)

    Chen, MuSheng; Lin, ShunDa

    2011-06-01

    At present, two dimensional barcode has been used in many fields. The safety of information in barcode is important, so this article brings up an effective two dimensional barcode encryption technology to assure it. Either two-dimensional barcode or digital watermarking technique is one of the most important parts and research focuses in anti-counterfeit fields. This paper designs and realizes a whole set of certificate administration system based on QRcode. On this platform the digital watermarking technique based on the spatial domain is used to encrypt the two dimensional barcode. The combination of two dimensional barcode and digital watermarking can improve the security and secrecy of personal information, and realize real anti-counterfeit certificates.

  2. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    PubMed

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-01-01

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking. PMID:25808773

  3. Matrix Cracking in Four Different 2D SiC/SiC Composite Systems

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2003-01-01

    Silicon carbide fiber reinforced, silicon carbide matrix composites are some of the most advanced composite systems for high-temperature, high-stress applications in oxidizing environments. A basic area that needs to be understood for the purpose of material behavior modeling and optimization is the architectural, constituent, and mechanistic factors that contribute to non-linear stress-strain behavior. The mechanism that causes non-linear stress-strain in dense-matrix composites is the formation and propagation of bridged matrix cracks. In addition, the occurrence and propagation of matrix cracks controls the time-dependent strength-properties of these materials in oxidizing environments at elevated temperatures. A modal acoustic emission technique has been used to monitor and estimate the stress-dependent matrix cracking. Two different SiC matrix systems, chemical vapor infiltrated (CVI) and melt-infiltrated (MI), with two different SiC fiber reinforcement, Hi-Nicalon (trademark) and Sylramic (trademark) were compared. Even though the averages of the range where matrix cracking occurred for the composites varied by more than 0.1% in strain and almost 200 MPa in stress, the range or distribution for matrix cracking could be reduced to a narrow band of stress for CVI SiC and MI SiC composites if it were assumed that all matrix cracks emanate outside of the load-bearing fiber, interphase, CVI preform minicomposite. A simple relationship was determined to describe stress-dependent matrix cracking which can then be used to estimate the onset of large, bridged matrix cracks or for material behavior models.

  4. Location Detection and Tracking of Moving Targets by a 2D IR-UWB Radar System

    PubMed Central

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-01-01

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking. PMID:25808773

  5. Association of autonomic nervous system and EEG scalp potential during playing 2D Grand Turismo 5.

    PubMed

    Subhani, Ahmad Rauf; Likun, Xia; Saeed Malik, Aamir

    2012-01-01

    Cerebral activation and autonomic nervous system have importance in studies such as mental stress. The aim of this study is to analyze variations in EEG scalp potential which may influence autonomic activation of heart while playing video games. Ten healthy participants were recruited in this study. Electroencephalogram (EEG) and electrocardiogram (ECG) signals were measured simultaneously during playing video game and rest conditions. Sympathetic and parasympathetic innervations of heart were evaluated from heart rate variability (HRV), derived from the ECG. Scalp potential was measured by the EEG. The results showed a significant upsurge in the value theta Fz/alpha Pz (p<0.001) while playing game. The results also showed tachycardia while playing video game as compared to rest condition (p<0.005). Normalized low frequency power and ratio of low frequency/high frequency power were significantly increased while playing video game and normalized high frequency power sank during video games. Results showed synchronized activity of cerebellum and sympathetic and parasympathetic innervation of heart. PMID:23366661

  6. 2D position guidance with single-station optical scan-based system

    NASA Astrophysics Data System (ADS)

    Guo, Siyang; Ren, Yongjie; Huang, Zhe; Chen, Yang; Hong, Tianqi

    2015-08-01

    The workshop Measuring Position System (wMPS) based on intersection of optical planes is widely applied in large-scale metrology. However, in guidance areas concerning more about horizontal directions such as in the area of transporting with AGVs, the coordinate of z axis which represents the height of the vehicle is of no particular importance. Also, the installation and parameters calibration of wMPS is complex and time-consuming. In this paper, a new method with single transmitter measuring two dimensional coordinate to guide the moving object (except the vertical direction) is proposed and demonstrated. The three dimensional coordinate of receiver was calculated if its horizontal angle, vertical angle and the coordinate of vertical direction are given. In order to get the receiver's horizontal and vertical angle, a serious of mathematical formulas was derived from a model of single transmitter with two rotating laser planes. The coordinate of vertical direction was obtained by the laser tracker and mapped from laser tracker coordinates to transmitter coordinates. Concerning that the coordinate of the vertical direction remains almost the same if the object moves in the level ground, a series of vertical-direction coordinates of moving object was measured beforehand and the average value of coordinates was the approximate vertical-direction coordinates of every point. To verify this method, the points acquired by the transmitter were remeasured by the laser tracker. Finally, the coordinates were compared and the results were analyzed. The experiment results show that the method's measuring accuracy has reached 5mm.

  7. A novel beat-noise-reducing en/decoding technology for a coherent 2-D OCDMA system.

    PubMed

    Zheng, Jilin; Wang, Rong; Pu, Tao; Lu, Lin; Fang, Tao; Cheng, Yun; Chen, Xiangfei

    2009-10-12

    A novel fiber Bragg grating (FBG)-based en/decoder for a coherent two-dimensional (2-D) wavelength-time (WT) optical code-division multiple-access (OCDMA) system is proposed to suppress the beat noise (BN). The feasibility of en/decoding function and the effectiveness of BN suppression are demonstrated by the simulation comparison between the conventional and proposed scheme, which are also further validated by en/decoding experiments with two users at a data rate of 2.5, 5 and 10 Gb/s respectively. The further numerical performance analysis of the proposed en/decoding method reveals the BER improvement compared with the conventional system. PMID:20372663

  8. Fluid Power Systems. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in fluid power systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in company-sponsored…

  9. Combining the switched-beam and beam-steering capabilities in a 2-D phased array antenna system

    NASA Astrophysics Data System (ADS)

    Tsai, Yi-Che; Chen, Yin-Bing; Hwang, Ruey-Bing

    2016-01-01

    This paper presents the development, fabrication, and measurement of a novel beam-forming system consisting of 16 subarray antennas, each containing four aperture-coupled patch antennas, and the application of this system in smart wireless communication systems. The beam patterns of each of the subarray antennas can be switched toward one of nine zones over a half space by adjusting the specific phase delay angles among the four antenna elements. Furthermore, when all subarrays are pointed at the same zone, slightly continuous beam steering in around 1° increments can be achieved by dynamically altering the progressive phase delay angle among the subarrays. Phase angle calibration was implemented by coupling each transmitter output and down converter into the in-phase/quadrature baseband to calculate the correction factor to the weight. In addition, to validate the proposed concepts and the fabricated 2-D phased array antenna system, this study measured the far-field radiation patterns of the aperture-coupled patch array integrated with feeding networks and a phase-calibration system to carefully verify its spatially switched-beam and beam-steering characteristics at a center frequency of 2.4 GHz which can cover the industrial, scientific, and medical band and some long-term evolution applications. In addition, measured results were compared with calculated results, and agreement between them was observed.

  10. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  11. Magneto-transport characteristics of a 2D electron system driven to negative magneto-conductivity by microwave photoexcitation

    NASA Astrophysics Data System (ADS)

    Mani, Ramesh; Kriisa, A.

    2015-03-01

    Negative diagonal magneto-conductivity/resistivity is a spectacular- and thought provoking- property of driven, far-from-equilibrium, low dimensional electronic systems. The physical response of this exotic electronic state is not yet fully understood since it is rarely encountered in experiment. The microwave-radiation-induced zero-resistance state in the high mobility GaAs/AlGaAs 2D electron system is believed to be an example where negative magneto-conductivity/resistivity is responsible for the observed phenomena. Here, we examine the magneto-transport characteristics of this negative conductivity/resistivity state in the microwave photo-excited two-dimensional electron system (2DES) through a numerical solution of the associated boundary value problem. The results suggest, surprisingly, that a bare negative diagonal conductivity/resistivity state in the 2DES under photo-excitation should yield a positive diagonal resistance with a concomitant sign reversal in the Hall voltage. Transport measurements are supported by the DOE, Office of Basic Energy Sciences, Material Sciences and Engineering Division under DE-SC0001762. Additional support by the ARO under W911NF-07-01-015.

  12. GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 1: Theory and method

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.

    1990-01-01

    An efficient computer program, called GRID2D/3D was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no

  13. Systems Improved Numerical Fluids Analysis Code

    NASA Technical Reports Server (NTRS)

    Costello, F. A.

    1990-01-01

    Systems Improved Numerical Fluids Analysis Code, SINFAC, consists of additional routines added to April, 1983, version of SINDA. Additional routines provide for mathematical modeling of active heat-transfer loops. Simulates steady-state and pseudo-transient operations of 16 different components of heat-transfer loops, including radiators, evaporators, condensers, mechanical pumps, reservoirs, and many types of valves and fittings. Program contains property-analysis routine used to compute thermodynamic properties of 20 different refrigerants. Source code written in FORTRAN 77.

  14. Breaker system for high viscosity fluids

    SciTech Connect

    Hinkel, J.J.

    1981-02-10

    A tertiary amine/persulfate breaker system is disclosed which effects complete breaks of polysaccharide based water-gels or fluids in the ambient temperature range. Induction time may be controlled over wide permissible limits. The invention claims improved compositions and methods, particularly advantageously applied to the treatment and stimulation of shallow oil and gas wells (Formation temperatures from about 50 to 125/sup 0/F.).

  15. Breaker system for high viscosity fluids

    SciTech Connect

    Hinkel, J. J.

    1985-12-24

    A tertiary amine/persulfate breaker system is disclosed which effects complete breaks of polysaccharide based water-gels or fluids in the ambient temperature range. Induction time may be controlled over wide permissible limits. The invention claims improved compositions and methods, particularly advantageously applied to the treatment and stimulation of shallow oil and gas wells (formation temperatures from about 50/sup 0/ to 125/sup 0/ F.).

  16. Testing of the Automated Fluid Interface System

    NASA Technical Reports Server (NTRS)

    Johnston, A. S.; Tyler, Tony R.

    1998-01-01

    The Automated Fluid Interface System (AFIS) is an advanced development prototype satellite servicer. The device was designed to transfer consumables from one spacecraft to another. An engineering model was built and underwent development testing at Marshall Space Flight Center. While the current AFIS is not suitable for spaceflight, testing and evaluation of the AFIS provided significant experience which would be beneficial in building a flight unit.

  17. A systems approach to theoretical fluid mechanics: Fundamentals

    NASA Technical Reports Server (NTRS)

    Anyiwo, J. C.

    1978-01-01

    A preliminary application of the underlying principles of the investigator's general system theory to the description and analyses of the fluid flow system is presented. An attempt is made to establish practical models, or elements of the general fluid flow system from the point of view of the general system theory fundamental principles. Results obtained are applied to a simple experimental fluid flow system, as test case, with particular emphasis on the understanding of fluid flow instability, transition and turbulence.

  18. Increase of spin dephasing times in a 2D electron system with degree of initial spin polarization

    NASA Astrophysics Data System (ADS)

    Stich, D.; Korn, T.; Schulz, R.; Schuh, D.; Wegscheider, W.; Schüller, C.

    2008-03-01

    We report on time-resolved Faraday/Kerr rotation measurements on a high-mobility 2D electron system. A variable initial spin polarization is created in the sample by a circularly polarized pump pulse, and the spin polarization is tracked by measuring the Faraday/Kerr rotation of a time-delayed probe pulse. By varying the pump intensity, the initial spin polarization is changed from the low-polarization limit to a polarization degree of several percent. The observed spin dephasing time increases from less than 20 ps to more than 200 ps as the initial spin polarization is increased. To exclude sample heating effects, additional measurements with constant pump intensity and variable degree of circular polarization are performed. The results confirm the theoretical prediction by Weng and Wu [Phys. Rev. B 68 (2003) 075312] that the spin dephasing strongly depends on the initial spin polarization degree. The microscopic origin for this is the Hartree-Fock term in the Coulomb interaction, which acts as an effective out-of plane magnetic field.

  19. Histamine-functionalized copolymer micelles as a drug delivery system in 2D and 3D models of breast cancer

    PubMed Central

    Zhang, Yuning; Lundberg, Pontus; Diether, Maren; Porsch, Christian; Janson, Caroline; Lynd, Nathaniel A.; Ducani, Cosimo; Malkoch, Michael; Malmström, Eva; Hawker, Craig J.; Nyström, Andreas M.

    2015-01-01

    Histamine functionalized block copolymers based on poly(allyl glycidyl ether)-b-poly(ethylene oxide) (PAGE-b-PEO) were prepared with different ratios of histamine and octyl or benzyl groups using UV-initiated thiol-ene click chemistry. At neutral pH, the histamine units are uncharged and hydrophobic, while in acidic environments, such as in the endosome, lysosomes, or extracellular sites of tumours, the histamine groups are positively charged and hydrophilic. pH responsible polymer drug delivery systems is a promising route to site specific delivery of drugs and offers the potential to avoid side effects of systemic treatment. Our detailed in vitro experiments of the efficacy of drug delivery and the intracellular localization characteristics of this library of NPs in 2D and 3D cultures of breast cancer revealed that the 50% histamine-modified polymer loaded with DOX exhibited rapid accumulation in the nucleus of free DOX within 2 h. Confocal studies showed enhanced mitochondrial localization and lysosomal escape when compared to controls. From these combined studies, it was shown that by accurately tuning the structure of the initial block copolymers, the resulting self-assembled NPs can be designed to exploit histamine as an endosomal escape trigger and the octyl/benzyl units give rise to a hydrophobic core resulting in highly efficacious drug delivery systems (DDS) with control over intracellular localization. Optimization and rational control of the intracellular localization of both DDS and the parent drug can give nanomedicines a substantial increase in efficacy and should be explored in future studies. PMID:26257912

  20. Fluid flow dynamics in MAS systems

    NASA Astrophysics Data System (ADS)

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3 mm-rotor diameter has been analyzed for spinning rates up to 67 kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3 mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7 mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.

  1. Fluid flow dynamics in MAS systems.

    PubMed

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor. PMID:26073599

  2. Precision Clean Hardware: Maintenance of Fluid Systems Cleanliness

    NASA Technical Reports Server (NTRS)

    Sharp, Sheila; Pedley, Mike; Bond, Tim; Quaglino, Joseph; Lorenz, Mary Jo; Bentz, Michael; Banta, Richard; Tolliver, Nancy; Golden, John; Levesque, Ray

    2003-01-01

    The ISS fluid systems are so complex that fluid system cleanliness cannot be verified at the assembly level. A "build clean / maintain clean" approach was used by all major fluid systems: Verify cleanliness at the detail and subassembly level. Maintain cleanliness during assembly.

  3. 14 CFR 23.1097 - Carburetor deicing fluid system capacity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor deicing fluid system capacity... Powerplant Induction System § 23.1097 Carburetor deicing fluid system capacity. (a) The capacity of each carburetor deicing fluid system— (1) May not be less than the greater of— (i) That required to provide...

  4. 14 CFR 23.1097 - Carburetor deicing fluid system capacity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor deicing fluid system capacity... Powerplant Induction System § 23.1097 Carburetor deicing fluid system capacity. (a) The capacity of each carburetor deicing fluid system— (1) May not be less than the greater of— (i) That required to provide...

  5. 14 CFR 23.1097 - Carburetor deicing fluid system capacity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor deicing fluid system capacity... Powerplant Induction System § 23.1097 Carburetor deicing fluid system capacity. (a) The capacity of each carburetor deicing fluid system— (1) May not be less than the greater of— (i) That required to provide...

  6. 14 CFR 23.1097 - Carburetor deicing fluid system capacity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor deicing fluid system capacity... Powerplant Induction System § 23.1097 Carburetor deicing fluid system capacity. (a) The capacity of each carburetor deicing fluid system— (1) May not be less than the greater of— (i) That required to provide...

  7. Preliminary analysis of the Baranof Fan system, Gulf of Alaska, based on 2D seismic reflection and multibeam bathymetry data

    NASA Astrophysics Data System (ADS)

    LeVoir, M. A.; Gulick, S. P.; Reece, R.; Barth, G. A.; Childs, J. R.; Everson, E. D.; Hart, P. E.; Johnson, K. M.; Lester, W. R.; Sliter, R. W.

    2011-12-01

    The Baranof Fan is a large marine sedimentary system in the eastern Gulf of Alaska, straddling the border between the U.S. and Canada. The volume of the Fan is estimated to be > 200,000 km3. Little is known about the depositional timing, the tectonic and morphologic processes influencing its development, or the role of channel aggradation and avulsion in its progression. Both tectonic and climatic transitions likely influenced the formation and evolution of the Fan, with events including the onset of northern hemisphere glaciation, the Mid-Pleistocene transition, the transport of the Yakutat Terrane along the southeast Alaskan margin, and the uplift of the Coast Mountains. 2D seismic reflection and multibeam bathymetry data were collected in the Gulf of Alaska in June 2011 aboard the R/V Marcus G. Langseth as a part of the U.S. Extended Continental Shelf (ECS) program assessing potential opportunities under the United Nations Law of the Sea Convention. The purpose of the 2011 survey was to determine sediment thickness, velocity structure, stratigraphic architecture, and crustal structure on of the Gulf of Alaska seafloor in support of U.S. continental shelf maritime zone definition. The surveyed geologic features include the Surveyor and Baranof sedimentary systems, which control active sediment distribution in the Gulf of Alaska. Preliminary analysis of these data show four distinct buried channels throughout the mid to distal Baranof Fan, ranging in width from 5 - 9 km, which may have evolved into modern surface channels (ranging in width from 2 - 7 km) visible in both the seismic data and multibeam bathymetry. The location and trajectory of these buried channels, however, appears distinct from the modern Horizon and Mukluk Channels; the buried channels may have avulsed into the modern channel systems, or could possibly be older and now abandoned branches instrumental in building the westward part of the Fan. All of the imaged channels appear to be depositional

  8. Telerobotic on-orbit remote fluid resupply system

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The development of a telerobotic on-orbit fluid resupply demonstration system is described. A fluid transfer demonstration system was developed which functionally simulates operations required to remotely transfer fluids (liquids or gases) from a servicing spacecraft to a receiving spacecraft through the use of telerobotic manipulations. The fluid system is representative of systems used by current or planned spacecraft and propulsion stages requiring on-orbit remote resupply. The system was integrated with an existing MSFC remotely controlled manipulator arm to mate/demate couplings for demonstration and evaluation of a complete remotely operated fluid transfer system.

  9. The Validity of a New Low-Dose Stereoradiography System to Perform 2D and 3D Knee Prosthetic Alignment Measurements

    PubMed Central

    Meijer, Marrigje F.; Velleman, Ton; Boerboom, Alexander L.; Bulstra, Sjoerd K.; Otten, Egbert; Stevens, Martin; Reininga, Inge H. F.

    2016-01-01

    Introduction The EOS stereoradiography system has shown to provide reliable varus/valgus (VV) measurements of the lower limb in 2D (VV2D) and 3D (VV3D) after total knee arthroplasty (TKA). Validity of these measurements has not been investigated yet, therefore the purpose of this study was to determine validity of EOS VV2D and VV3D. Methods EOS images were made of a lower limb phantom containing a knee prosthesis, while varying VV angle from 15° varus to 15° valgus and flexion angle from 0° to 20°, and changing rotation from 20° internal to 20° external rotation. Differences between the actual VV position of the lower limb phantom and its position as measured on EOS 2D and 3D images were investigated. Results Rotation, flexion or VV angle alone had no major impact on VV2D or VV3D. Combination of VV angle and rotation with full extension did not show major differences in VV2D measurements either. Combination of flexion and rotation with a neutral VV angle showed variation of up to 7.4° for VV2D; maximum variation for VV3D was only 1.5°. A combination of the three variables showed an even greater distortion of VV2D, while VV3D stayed relatively constant. Maximum measurement difference between preset VV angle and VV2D was 9.8°, while the difference with VV3D was only 1.9°. The largest differences between the preset VV angle and VV2D were found when installing the leg in extreme angles, for example 15° valgus, 20° flexion and 20° internal rotation. Conclusions After TKA, EOS VV3D were more valid than VV2D, indicating that 3D measurements compensate for malpositioning during acquisition. Caution is warranted when measuring VV angle on a conventional radiograph of a knee with a flexion contracture, varus or valgus angle and/or rotation of the knee joint during acquisition. PMID:26771177

  10. Carbon and sulfur isotopes as tracers of fluid-fluid and fluid-rock interaction in geothermal systems

    NASA Astrophysics Data System (ADS)

    Stefansson, A.; Keller, N. S.; Gunnarsson Robin, J.; Kjartansdottir, R.; Ono, S.; Sveinbjörnsdottir, A. E.

    2014-12-01

    Carbon and sulfur are among major components in geothermal systems. They are found in various oxidation state and present in solid phases and fluids (water and vapor). In order to study the reactions and mass movement within multiphase geothermal systems, we have combined geochemical fluid-fluid and fluid-rock modelling with sulfur and carbon isotope fractionation modelling and compared the results with measured carbon and sulfur isotopes in geothermal fluids (water and vapor) for selected low- and high-enthalpy geothermal systems in Iceland. In this study we have focused on δ34S for H2S in vapor and water and SO4 in water as well as δ13C for CO2 in vapor and water phases. Isotope fractionations for CO2 and H2S between vapor and liquid water, upon aqueous speciation and upon carbonate and sulfide mineral formation were revised. These were combined with reaction modelling involving closed system boiling and progressive water-rock interaction to constrain the mass movement and isotope abundance between various phases. The results indicate that for a closed system, carbon and sulfur isotope abundance is largely dependent on progressive fluid-fluid and fluid-rock interaction and the initial total δ34S and δ13C value of the system. Initially, upon progressive fluid rock interaction the δ34S and δ13C values for the bulk aqueous phase approach that of the host rocks. Secondary mineral formation may alter these values, the exact isotope value of the mineral and resulting aqueous phase depending on aqueous speciation and isotope fractionation factor. In turn, aqueous speciation and mineral saturation depends on progressive fluid-rock interaction, fluid-fluid interaction, temperature and acid supply to the system. Depressurization boiling also results in isotope fractionation, the exact isotope value of the vapor and aqueous phase depending on aqueous speciation and isotope fractionation fractor. In this way, carbon and sulfur isotopes may be used combined with

  11. On the global well-posedness of 2-D inhomogeneous incompressible Navier-Stokes system with variable viscous coefficient

    NASA Astrophysics Data System (ADS)

    Abidi, Hammadi; Zhang, Ping

    2015-10-01

    Given solenoidal vector u0 ∈H ˙ - 2 δ ∩H1 (R2), ρ0 - 1 ∈L2 (R2), and ρ0 ∈L∞ ∩W ˙ 1, r (R2) with a positive lower bound for δ ∈ (0, 1/2) and 2 < r < 2/1 - 2 δ, we prove that 2-D incompressible inhomogeneous Navier-Stokes system (1.1) has a unique global solution provided that the viscous coefficient μ (ρ0) is close enough to 1 in the L∞ norm compared to the size of δ and the norms of the initial data. With smoother initial data, we can prove the propagation of regularities for such solutions. Furthermore, for 1 < p < 4, if (ρ0 - 1, u0) belongs to the critical Besov spaces B˙p, 1 2/p (R2) × ( B˙p, 1 - 1 +2/p ∩L2 (R2)) and the B˙p, 1 2/p (R2) norm of ρ0 - 1 is sufficiently small compared to the exponential of ‖u0‖L2 2 +‖u0 ‖ B˙p, 1 - 1 +2/p, we prove the global well-posedness of (1.1) in the scaling invariant spaces. Finally for initial data in the almost critical Besov spaces, we prove the global well-posedness of (1.1) under the assumption that the L∞ norm of ρ0 - 1 is sufficiently small.

  12. Heat pipe systems using new working fluids

    NASA Technical Reports Server (NTRS)

    Chao, David F. (Inventor); Zhang, Nengli (Inventor)

    2004-01-01

    The performance of a heat pipe system is greatly improved by the use of a dilute aqueous solution of about 0.0005 and about 0.005 moles per liter of a long chain alcohol as the working fluid. The surface tension-temperature gradient of the long-chain alcohol solutions turns positive as the temperature exceeds a certain value, for example about 40.degree. C. for n-heptanol solutions. Consequently, the Marangoni effect does not impede, but rather aids in bubble departure from the heating surface. Thus, the bubble size at departure is substantially reduced at higher frequencies and, therefore, increases the boiling limit of heat pipes. This feature is useful in microgravity conditions. In addition to microgravity applications, the heat pipe system may be used for commercial, residential and vehicular air conditioning systems, micro heat pipes for electronic devices, refrigeration and heat exchangers, and chemistry and cryogenics.

  13. High-throughput critical dimensions uniformity (CDU) measurement of two-dimensional (2D) structures using scanning electron microscope (SEM) systems

    NASA Astrophysics Data System (ADS)

    Fullam, Jennifer; Boye, Carol; Standaert, Theodorus; Gaudiello, John; Tomlinson, Derek; Xiao, Hong; Fang, Wei; Zhang, Xu; Wang, Fei; Ma, Long; Zhao, Yan; Jau, Jack

    2011-03-01

    In this paper, we tested a novel methodology of measuring critical dimension (CD) uniformity, or CDU, with electron beam (e-beam) hotspot inspection and measurement systems developed by Hermes Microvision, Inc. (HMI). The systems were used to take images of two-dimensional (2D) array patterns and measure CDU values in a custom designated fashion. Because this methodology combined imaging of scanning micro scope (SEM) and CD value averaging over a large array pattern of optical CD, or OCD, it can measure CDU of 2D arrays with high accuracy, high repeatability and high throughput.

  14. Robust design of feedback feed-forward iterative learning control based on 2D system theory for linear uncertain systems

    NASA Astrophysics Data System (ADS)

    Li, Zhifu; Hu, Yueming; Li, Di

    2016-08-01

    For a class of linear discrete-time uncertain systems, a feedback feed-forward iterative learning control (ILC) scheme is proposed, which is comprised of an iterative learning controller and two current iteration feedback controllers. The iterative learning controller is used to improve the performance along the iteration direction and the feedback controllers are used to improve the performance along the time direction. First of all, the uncertain feedback feed-forward ILC system is presented by an uncertain two-dimensional Roesser model system. Then, two robust control schemes are proposed. One can ensure that the feedback feed-forward ILC system is bounded-input bounded-output stable along time direction, and the other can ensure that the feedback feed-forward ILC system is asymptotically stable along time direction. Both schemes can guarantee the system is robust monotonically convergent along the iteration direction. Third, the robust convergent sufficient conditions are given, which contains a linear matrix inequality (LMI). Moreover, the LMI can be used to determine the gain matrix of the feedback feed-forward iterative learning controller. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed schemes.

  15. Sensitivity and System Response of Pin Power Peaking in VVER-1000 Fuel Assembly Using TSUNAMI-2D

    NASA Astrophysics Data System (ADS)

    Frybort, J.

    2014-04-01

    Pin power peaking in a VVER-1000 fuel assembly and its sensitivity and uncertainty was analyzed by TSUNAMI-2D code. Several types of fuel assemblies were considered. They differ in number and position of gadolinium fuel pins. The calculations were repeated for several fuel compositions obtained by fuel depletion calculation. The results are quantified sensitivity data, which can be used for enrichment profiling.

  16. A New Blind 2D-RAKE Receiver Based on CMA Criteria for Spread Spectrum Systems Suitable for Software Defined Radio Architecture

    NASA Astrophysics Data System (ADS)

    Takayama, Kei; Kamiya, Yukihiro; Fujii, Takeo; Suzuki, Yasuo

    Spread Spectrum (SS) has been widely used for various wireless systems such as cellular systems, wireless local area network (LAN) and so on. Using multiple antennas at the receiver, two-dimensional (2D) RAKE is realized over the time- and the space-domain. However, it should be noted that the 2D-RAKE receiver must detect the bit timing prior to the RAKE combining. In case of deep fading, it is often difficult to detect it due to low signal-to-noise power ratio (SNR). To solve this problem, we propose a new blind 2D-RAKE receiver based on the constant modulus algorithm (CMA). Since it does not need a priori bit timing detection, it is possible to compensate frequency selective fading even in very low SNR environments. The proposed method is particularly suitable for the software defined radio (SDR) architecture. The performance of the proposed method is investigated through computer simulations.

  17. Discovery of a Novel Linear-in-k Spin Splitting for Holes in the 2D GaAs/AlAs System

    SciTech Connect

    Luo, J. W.; Chantis, A. N.; van Schilfgaarde, M.; Bester, G.; Zunger, A.

    2010-02-12

    The spin-orbit interaction generally leads to spin splitting (SS) of electron and hole energy states in solids, a splitting that is characterized by a scaling with the wave vector k. Whereas for 3D bulk zinc blende solids the electron (heavy-hole) SS exhibits a cubic (linear) scaling with k, in 2D quantum wells, the electron (heavy-hole) SS is currently believed to have a mostly linear (cubic) scaling. Such expectations are based on using a small 3D envelope function basis set to describe 2D physics. By treating instead the 2D system explicitly as a system in its own right, we discover a large linear scaling of hole states in 2D. This scaling emerges from coupling of hole bands that would be unsuspected by the standard model that judges coupling by energy proximity. This discovery of a linear Dresselhaus k scaling for holes in 2D implies a different understanding of hole physics in low dimensions.

  18. Phase transitions in fluids and biological systems

    NASA Astrophysics Data System (ADS)

    Sipos, Maksim

    In this thesis, I consider systems from two seemingly different fields: fluid dynamics and microbial ecology. In these systems, the unifying features are the existences of global non-equilibrium steady states. I consider generic and statistical models for transitions between these global states, and I relate the model results with experimental data. A theme of this thesis is that these rather simple, minimal models are able to capture a lot of functional detail about complex dynamical systems. In Part I, I consider the transition between laminar and turbulent flow. I find that quantitative and qualitative features of pipe flow experiments, the superexponential lifetime and the splitting of turbulent puffs, and the growth rate of turbulent slugs, can all be explained by a coarse-grained, phenomenological model in the directed percolation universality class. To relate this critical phenomena approach closer to the fluid dynamics, I consider the transition to turbulence in the Burgers equation, a simplified model for Navier-Stokes equations. Via a transformation to a model of directed polymers in a random medium, I find that the transition to Burgers turbulence may also be in the directed percolation universality class. This evidence implies that the turbulent-to-laminar transition is statistical in nature and does not depend on details of the Navier-Stokes equations describing the fluid flow. In Part II, I consider the disparate subject of microbial ecology where the complex interactions within microbial ecosystems produce observable patterns in microbe abundance, diversity and genotype. In order to be able to study these patterns, I develop a bioinformatics pipeline to multiply align and quickly cluster large microbial metagenomics datasets. I also develop a novel metric that quantifies the degree of interactions underlying the assembly of a microbial ecosystem, particularly the transition between neutral (random) and niche (deterministic) assembly. I apply this

  19. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 2: 2D NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Deshmukh, Ashish P.; Pacheco, Carlos; Hay, Michael B.; Myneni, Satish C. B.

    2007-07-01

    Carboxyl groups are abundant in natural organic molecules (NOM) and play a major role in their reactivity. The structural environments of carboxyl groups in IHSS soil and river humic samples were investigated using 2D NMR (heteronuclear and homonuclear correlation) spectroscopy. Based on the 1H- 13C heteronuclear multiple-bond correlation (HMBC) spectroscopy results, the carboxyl environments in NOM were categorized as Type I (unsubstituted and alkyl-substituted aliphatic/alicyclic), Type II (functionalized carbon substituted), Type IIIa, b (heteroatom and olefin substituted), and Type IVa, b (5-membered heterocyclic aromatic and 6-membered aromatic). The most intense signal in the HMBC spectra comes from the Type I carboxyl groups, including the 2JCH and 3JCH couplings of unsubstituted aliphatic and alicyclic acids, though this spectral region also includes the 3JCH couplings of Type II and III structures. Type II and III carboxyls have small but detectable 2JCH correlations in all NOM samples except for the Suwannee River humic acid. Signals from carboxyls bonded to 5-membered aromatic heterocyclic fragments (Type IVa) are observed in the soil HA and Suwannee River FA, while correlations to 6-membered aromatics (Type IVb) are only observed in Suwannee River HA. In general, aromatic carboxylic acids may be present at concentrations lower than previously imagined in these samples. Vibrational spectroscopy results for these NOM samples, described in an accompanying paper [Hay M. B. and Myneni S. C. B. (2007) Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochim. Cosmochim. Acta (in press)], suggest that Type II and Type III carboxylic acids with α substituents (e.g., -OH, -OR, or -CO 2H) constitute the majority of carboxyl structures in all humic substances examined. Furoic and salicylic acid structures (Type IV) are also feasible fragments, albeit as minor constituents. The

  20. Analysis of 2D THz-Raman spectroscopy using a non-Markovian Brownian oscillator model with nonlinear system-bath interactions.

    PubMed

    Ikeda, Tatsushi; Ito, Hironobu; Tanimura, Yoshitaka

    2015-06-01

    We explore and describe the roles of inter-molecular vibrations employing a Brownian oscillator (BO) model with linear-linear (LL) and square-linear (SL) system-bath interactions, which we use to analyze two-dimensional (2D) THz-Raman spectra obtained by means of molecular dynamics (MD) simulations. In addition to linear infrared absorption (1D IR), we calculated 2D Raman-THz-THz, THz-Raman-THz, and THz-THz-Raman signals for liquid formamide, water, and methanol using an equilibrium non-equilibrium hybrid MD simulation. The calculated 1D IR and 2D THz-Raman signals are compared with results obtained from the LL+SL BO model applied through use of hierarchal Fokker-Planck equations with non-perturbative and non-Markovian noise. We find that all of the qualitative features of the 2D profiles of the signals obtained from the MD simulations are reproduced with the LL+SL BO model, indicating that this model captures the essential features of the inter-molecular motion. We analyze the fitted 2D profiles in terms of anharmonicity, nonlinear polarizability, and dephasing time. The origins of the echo peaks of the librational motion and the elongated peaks parallel to the probe direction are elucidated using optical Liouville paths. PMID:26049441

  1. A flexible micro fluid transport system featuring magnetorheological elastomer

    NASA Astrophysics Data System (ADS)

    Behrooz, Majid; Gordaninejad, Faramarz

    2016-02-01

    This study presents a flexible magnetically-actuated micro fluid transport system utilizing an isotropic magnetorheological elastomer (MRE). Theoretical modeling and analysis of this system is presented for a two-dimensional model. This fluid transport system can propel the fluid by applying a fluctuating magnetic field on the MRE. The magneto-fluid-structure interaction analysis is employed to determine movement of the solid domain and the velocity of the fluid under a controllable magnetic field. The effects of key material, geometric, and magnetic parameters on the behavior of this system are examined. It is demonstrated that the proposed system can propel the fluid unidirectionally, and the volume of the transported fluid is significantly affected by some of the design parameters.

  2. Safety features of subcritical fluid fueled systems

    SciTech Connect

    Bell, Charles R.

    1995-09-15

    Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitative in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved is very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible.

  3. Safety features of subcritical fluid fueled systems

    SciTech Connect

    Bell, C.R.

    1994-09-01

    Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitative in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved in very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible.

  4. Fluid dynamics of double diffusive systems

    NASA Astrophysics Data System (ADS)

    Koseff, J. R.

    1991-04-01

    A study of mixing processes in doubly diffusive systems is being conducted. Continuous gradients of two diffusing components (heat and salinity in our case) are being used as initial conditions, and forcing is introduced by lateral heatings and surface shear. The goals of the proposed work include: (1) quantification of the effects of finite amplitude disturbances on stable, double diffusive systems, particularly with respect to lateral heating, (2) development of an improved understanding of the physical phenomena present in wind-driven shear flows in double diffusive stratified environments, (3) increasing our knowledge-base on turbulent flow in stratified environments and how to represent it, and (4) formulation of a numerical code for such flows. The work is being carried out in an experimental facility which is located in the Stanford Environmental Fluid Mechanics Laboratory, and on laboratory minicomputers and CRAY computers. In particular, our overall goals are as follows: (1) develop more general stability and scaling criteria for the destabilization of doubly-stratified systems, (2) further study the variation of flow structure and scales with Rayleigh ratio and lateral heating ratio, (3) further delineate the mechanisms governing convective layer formation and merging, (4) study the mixing processes within the convective layers and across interfaces, and estimate the heat and mass fluxes in such a system, (5) quantify the effects of turbulence and coherent structures (due to a wind-driven surface shear) on a doubly stratified system, and (6) study the interaction between surface shear and side-wall heating destabilization mechanisms.

  5. Spin-spin correlation functions of spin systems coupled to 2-d quantum gravity for 0 < c < 1.

    NASA Astrophysics Data System (ADS)

    Ambjørn, J.; Anagnostopoulos, K. N.; Magnea, U.; Thorleifsson, G.

    1997-02-01

    We perform Monte Carlo simulations of 2-d dynamically triangulated surfaces coupled to Ising and three-states Potts model matter. By measuring spin-spin correlation functions as a function of the geodesic distance we provide substantial evidence for a diverging correlation length at βc. The corresponding scaling exponents are directly related to the KPZ exponents of the matter fields as conjectured in [4].

  6. Fluid flow systems analysis to save energy

    SciTech Connect

    Parekh, P.S.

    1999-07-01

    Industrial processes use rotating equipment (e.g.; pump, fan, blower, centrifugal compressor, positive displacement compressor) and pipe (or duct) to move fluid from point A to B, with many processes using electric motors as the prime mover. Most of the systems in the industry are over-designed to meet a peak load demand which might occur over a small fraction of the time or to satisfy a higher pressure demanded by a much smaller user in the same process. The system over-design will result in a selection of larger but inefficient rotating equipment and electric motor system. A careful life cycle cost and economic evaluation must be undertaken to ensure that the process audit, reengineering and equipment selections are not impacting the industrial process goals, but result in a least optimal cost over the life of the project. The paper will define, discuss, and present various process systems in chemical, hydrocarbon and pulp and paper industries. It will discuss the interactive impact of the changes in the mechanical system configuration and the changes in the process variables to better redesign the system and reduce the cost of operation. it will also present a check list of energy conservation measures (ECM) or opportunities. Such ECMs will be related to hydraulics, system components, process modifications, and system efficiency. Two or three case studies will be presented focusing on various conservation measures that improve electrical operating efficiency of a distillation column system. An incremental cost and payback analysis will be presented to assist the investment in process optimization and energy savings' measures.

  7. Mantle fluids in the San Andreas fault system, California

    USGS Publications Warehouse

    Kennedy, B.M.; Kharaka, Y.K.; Evans, William C.; Ellwood, A.; DePaolo, D.J.; Thordsen, J.; Ambats, G.; Mariner, R.H.

    1997-01-01

    Fluids associated with the San Andreas and companion faults n central and south-central California have high 3He/4He ratios. The lack of correlation between helium isotopes and fluid chemistry or local geology requires that fluids enter the fault system from the mantle. Mantle fluids passing through the ductile lower crust must enter the brittle fault zone at or near lithostatic pressures; estimates of fluid flux based on helium isotopes suggest that they may thus contribute directly to fault-weakening high-fluid pressures at seismogenic depths.

  8. Mantle fluids in the San Andreas fault system, California

    SciTech Connect

    Kennedy, B.M.; Kharaka, Y.K.; Evans, W.C.

    1997-11-14

    Fluids associated with the San Andreas and companion faults in central and south-central California have high {sup 3}He/{sup 4}He ratios. The lack of correlation between helium isotopes and fluid chemistry or local geology requires that fluids enter the fault system from the mantle. Mantle fluids passing through the ductile lower crust must enter the brittle fault zone at or near lithostatic pressures; estimates of fluid flux based on helium isotopes suggest that they may thus contribute directly to fault-weakening high-fluid pressures at seismogenic depths. 31 refs., 4 figs.

  9. The impact of structural deformation in a 2D basin and petroleum system model of the East Coast Basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Burgreen, B.; Graham, S. A.; Meisling, K. E.

    2013-12-01

    The East Coast Basin of New Zealand is a petroliferous forearc basin that has eluded commercial development largely because of challenges related to its complex structural and tectonic history. Basin formation is associated with three tectonic phases: 1) a Cretaceous convergent margin phase, 2) a Late Cretaceous to Paleogene rifting to passive margin phase, and 3) a Neogene to present convergent margin phase. Beginning in Neogene time, the basin underwent multiple stages of structural deformation including low angle thrust faulting, listric normal faulting, and inversion. This complex basin history provides an ideal situation to test the influence of tectonics on petroleum system development. This study focuses on offshore Hawke Bay where a regional 2D seismic line has been interpreted, palinspastically reconstructed, and incorporated into a basin and petroleum system model. In the model, several paleo-heat flow scenarios are developed to represent the tectonic evolution of the basin. Higher heat flow is modeled during the rifting to passive margin phase, and a reduction in heat flow is modeled during the Neogene phase to account for cold slab subduction. Heat flow scenarios are calibrated to temperature, apatite-fission track data, and vitrinite-intertinite reflectance and fluorescence data from the Hawke Bay-1 and Opoutama-1 wells. The palinspastic reconstructions are integrated into the basin and petroleum system model to assess the impact of different styles of deformation. Faults play a key role in the burial history/rate of burial, fluid migration, and pressure compartmentalization. The relative timing of paleo-heat flow and structural events are tested in the model to understand how they enhance and/or negate effects on petroleum generation. For example, models with early Miocene low angle thrusts (i.e. structural thickening) contemporaneous with remnant high heat flow from the passive margin phase create a scenario for mid-Miocene petroleum generation

  10. Method of calibrating a fluid-level measurement system

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2010-01-01

    A method of calibrating a fluid-level measurement system is provided. A first response of the system is recorded when the system's sensor(s) is (are) not in contact with a fluid of interest. A second response of the system is recorded when the system's sensor(s) is (are) fully immersed in the fluid of interest. Using the first and second responses, a plurality of expected responses of the system's sensor(s) is (are) generated for a corresponding plurality of levels of immersion of the sensor(s) in the fluid of interest.

  11. The application of 2-D dual nanoscale liquid chromatography and triple quadrupole-linear ion trap system for the identification of proteins.

    PubMed

    Tschäppät, Viviane; Varesio, Emmanuel; Signor, Luca; Hopfgartner, Gérard

    2005-09-01

    2-D nanoscale LC combined with a triple quadrupole-linear ion trap mass spectrometer was applied to the analysis of a complex peptide mixture. A 2-D dual nanoscale LC-MS/MS system was compared to a conventional one. Peptides were separated with a strong cation exchange (SCX) microcolumn in the first dimension and two C18 nanocolumns were used as second dimension. MS experiments were performed using information-dependent data acquisition, where two precursor ions were selected from an enhanced MS (EMS) or an enhanced multicharged ion (EMC) as survey scan. The major benefit of EMC instead of EMS was a two-fold reduction of the data file and a 15% increase of characterized proteins. The advantage of the 2-D dual nanoscale LC-MS/MS system versus the conventional 2-D nanoscale LC-MS/MS system was reflected in the significant increase of peptides which were successfully identified within the same time frame. The first factor contributing to this increase was that the mass spectrometer was collecting twice the number of relevant MS/MS data. The second factor is the use of twice the number of SCX salt fractions in the first dimension, allowing a better sample fractionation, thereby reducing the number of peptides transferred to the second chromatographic dimension per salt fraction. PMID:16224964

  12. System and Method for Wirelessly Determining Fluid Volume

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2009-01-01

    A system and method are provided for determining the volume of a fluid in container. Sensors are positioned at distinct locations in a container of a fluid. Each sensor is sensitive to an interface defined by the top surface of the fluid. Interfaces associated with at least three of the sensors are determined and used to find the volume of the fluid in the container in a geometric process.

  13. High gliding fluid power generation system with fluid component separation and multiple condensers

    SciTech Connect

    Mahmoud, Ahmad M; Lee, Jaeseon; Radcliff, Thomas D

    2014-10-14

    An example power generation system includes a vapor generator, a turbine, a separator and a pump. In the separator, the multiple components of the working fluid are separated from each other and sent to separate condensers. Each of the separate condensers is configured for condensing a single component of the working fluid. Once each of the components condense back into a liquid form they are recombined and exhausted to a pump that in turn drives the working fluid back to the vapor generator.

  14. Tracing Injection Fluids in Engineered Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Rose, P. E.; Leecaster, K.; Mella, M.; Ayling, B.; Bartl, M. H.

    2011-12-01

    The reinjection of produced fluids is crucial to the effective management of geothermal reservoirs, since it provides a mechanism for maintaining reservoir pressures while allowing for the disposal of a toxic byproduct. Tracers are essential to the proper location of injection wells since they are the only known tool for reliably characterizing the flow patterns of recirculated fluids. If injection wells are placed too close to production wells, then reinjected fluids do not have sufficient residence time to extract heat from the reservoir and premature thermal breakthrough results. If injection wells are placed too far away, then the reservoir risks unacceptable pressure loss. Several thermally stable compounds from a family of very detectable fluorescent organic compounds (the naphthalene sulfonates) were characterized and found to be effective for use as geothermal tracers. Through batch-autoclave reactions, their Arrhenius pseudo-first-order decay-rate constants were determined. An analytical method was developed that allows for the laboratory determination of concentrations in the low parts-per-trillion range. Field experiments in numerous geothermal reservoirs throughout the world have confirmed the laboratory findings. Whereas conservative tracers such as the naphthalene sulfonates are effective tools for indicating interwell flow patterns and for measuring reservoir pore volumes, 'reactive' tracers can be used to constrain fracture surface area, which is the effective area for heat extraction. This is especially important for engineered geothermal system (EGS) wells, since reactive tracers can be used to measure fracture surface area immediately after drilling and while the well stimulation equipment is still on site. The reactive properties of these tracers that can be exploited to constrain fracture surface area are reversible sorption, contrasting diffusivity, and thermal decay. Laboratory batch- and flow-reactor experiments in combination with numerical

  15. Computational Studies of Condensed Matter Systems: Manganese Vanadium Oxide and 2D attractive Hubbard model with spin-dependent disorder

    NASA Astrophysics Data System (ADS)

    Nanguneri, Ravindra

    -dependent disorder. Further, the finite temperature phase diagram for the 2D attractive fermion Hubbard model with spin-dependent disorder is also considered within BdG mean field theory. Three types of disorder are studied. In the first, only one species is coupled to a random site energy; in the second, the two species both move in random site energy landscapes which are of the same amplitude, but different realizations; and finally, in the third, the disorder is in the hopping rather than the site energy. For all three cases we find that, unlike the case of spin-symmetric randomness, where the energy gap and average order parameter do not vanish as the disorder strength increases, a critical disorder strength exists separating distinct phases. In fact, the energy gap and the average order parameter vanish at distinct transitions, Vcgap and Vc op, allowing for a gapless superconducting (gSC) phase. The gSC phase becomes smaller with increasing temperature, until it vanishes at a temperature T*.

  16. Studies of complexity in fluid systems

    SciTech Connect

    Nagel, Sidney R.

    2000-06-12

    This is the final report of Grant DE-FG02-92ER25119, ''Studies of Complexity in Fluids'', we have investigated turbulence, flow in granular materials, singularities in evolution of fluid surfaces and selective withdrawal fluid flows. We have studied numerical methods for dealing with complex phenomena, and done simulations on the formation of river networks. We have also studied contact-line deposition that occurs in a drying drop.

  17. Collagen esterification enhances the function and survival of pancreatic β cells in 2D and 3D culture systems

    SciTech Connect

    Ko, Jae Hyung; Kim, Yang Hee; Jeong, Seong Hee; Lee, Song; Park, Si-Nae; Shim, In Kyong; Kim, Song Cheol

    2015-08-07

    Collagen, one of the most important components of the extracellular matrix (ECM), may play a role in the survival of pancreatic islet cells. In addition, chemical modifications that change the collagen charge profile to a net positive charge by esterification have been shown to increase the adhesion and proliferation of various cell types. The purpose of this study was to characterize and compare the effects of native collagen (NC) and esterified collagen (EC) on β cell function and survival. After isolation by the collagenase digestion technique, rat islets were cultured with NC and EC in 2 dimensional (2D) and 3 dimensional (3D) environments for a long-term duration in vitro. The cells were assessed for islet adhesion, morphology, viability, glucose-induced insulin secretion, and mRNA expression of glucose metabolism-related genes, and visualized by scanning electron microscopy (SEM). Islet cells attached tightly in the NC group, but islet cell viability was similar in both the NC and EC groups. Glucose-stimulated insulin secretion was higher in the EC group than in the NC group in both 2D and 3D culture. Furthermore, the mRNA expression levels of glucokinase in the EC group were higher than those in the NC group and were associated with glucose metabolism and insulin secretion. Finally, SEM observation confirmed that islets had more intact component cells on EC sponges than on NC sponges. These results indicate that modification of collagen may offer opportunities to improve function and viability of islet cells. - Highlights: • We changed the collagen charge profile to a net positive charge by esterification. • Islets cultured on esterified collagen improved survival in both 2D and 3D culture. • Islets cultured on esterified collagen enhanced glucose-stimulated insulin release. • High levels of glucokinase mRNA may be associated with increased insulin release.

  18. Modeling water flow and nitrate dynamics in a plastic mulch vegetable cultivation system using HYDRUS-2D

    NASA Astrophysics Data System (ADS)

    Filipović, Vilim; Romić, Davor; Romić, Marija; Matijević, Lana; Mallmann, Fábio J. K.; Robinson, David A.

    2016-04-01

    Growing vegetables commercially requires intensive management and involves high irrigation demands and input of agrochemicals. Plastic mulch application in combination with drip irrigation is a common agricultural management technique practiced due to variety of benefits to the crop, mostly vegetable biomass production. However, the use of these techniques can result in various impacts on water and nutrient distribution in underlying soil and consequently affect nutrient leaching towards groundwater resources. The aim of this work is to estimate the effect of plastic mulch cover in combination with drip irrigation on water and nitrate dynamics in soil using HYDRUS-2D model. The field site was located in Croatian costal karst area on a Gleysol (WRB). The experiment was designed according to the split-plot design in three repetitions and was divided into plots with plastic mulch cover (MULCH) and control plots with bare soil (CONT). Each of these plots received applications of three levels of nitrogen fertilizer: 70, 140, and 210 kg per ha. All plots were equipped with drip irrigation and cropped with bell pepper (Capsicum annuum L. cv. Bianca F1). Lysimeters were installed at 90 cm depth in all plots and were used for monitoring the water and nitrate outflow. HYDRUS-2D was used for modeling the water and nitrogen outflow in the MULCH and CONT plots, implementing the proper boundary conditions. HYDRUS-2D simulated results showed good fitting to the field site observed data in both cumulative water and nitrate outflow, with high level of agreement. Water flow simulations produced model efficiency of 0.84 for CONT and 0.56 for MULCH plots, while nitrate simulations showed model efficiency ranging from 0.67 to 0.83 and from 0.70 to 0.93, respectively. Additional simulations were performed with the absence of the lysimeter, revealing faster transport of nitrates below drip line in the CONT plots, mostly because of the increased surface area subjected to precipitation

  19. SINFAC - SYSTEMS IMPROVED NUMERICAL FLUIDS ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Costello, F. A.

    1994-01-01

    The Systems Improved Numerical Fluids Analysis Code, SINFAC, consists of additional routines added to the April 1983 revision of SINDA, a general thermal analyzer program. The purpose of the additional routines is to allow for the modeling of active heat transfer loops. The modeler can simulate the steady-state and pseudo-transient operations of 16 different heat transfer loop components including radiators, evaporators, condensers, mechanical pumps, reservoirs and many types of valves and fittings. In addition, the program contains a property analysis routine that can be used to compute the thermodynamic properties of 20 different refrigerants. SINFAC can simulate the response to transient boundary conditions. SINFAC was first developed as a method for computing the steady-state performance of two phase systems. It was then modified using CNFRWD, SINDA's explicit time-integration scheme, to accommodate transient thermal models. However, SINFAC cannot simulate pressure drops due to time-dependent fluid acceleration, transient boil-out, or transient fill-up, except in the accumulator. SINFAC also requires the user to be familiar with SINDA. The solution procedure used by SINFAC is similar to that which an engineer would use to solve a system manually. The solution to a system requires the determination of all of the outlet conditions of each component such as the flow rate, pressure, and enthalpy. To obtain these values, the user first estimates the inlet conditions to the first component of the system, then computes the outlet conditions from the data supplied by the manufacturer of the first component. The user then estimates the temperature at the outlet of the third component and computes the corresponding flow resistance of the second component. With the flow resistance of the second component, the user computes the conditions down stream, namely the inlet conditions of the third. The computations follow for the rest of the system, back to the first component

  20. 14 CFR 23.1097 - Carburetor deicing fluid system capacity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor deicing fluid system capacity... Powerplant Induction System § 23.1097 Carburetor deicing fluid system capacity. (a) The capacity of each... operation. (b) If the available preheat exceeds 50 °F. but is less than 100 °F., the capacity of the...

  1. Fluid design studies of integrated modular engine system

    NASA Technical Reports Server (NTRS)

    Frankenfield, Bruce; Carek, Jerry

    1993-01-01

    A study was performed to develop a fluid system design and show the feasibility of constructing an integrated modular engine (IME) configuration, using an expander cycle engine. The primary design goal of the IME configuration was to improve the propulsion system reliability. The IME fluid system was designed as a single fault tolerant system, while minimizing the required fluid components. This study addresses the design of the high pressure manifolds, turbopumps and thrust chambers for the IME configuration. A physical layout drawing was made, which located each of the fluid system components, manifolds and thrust chambers. Finally, a comparison was made between the fluid system designs of an IME system and a non-network (clustered) engine system.

  2. Systems, compositions, and methods for fluid purification

    SciTech Connect

    Ho, W.S. Winston; Verweij, Hendrik; Shqau, Krenar; Ramasubranian, Kartik

    2015-12-22

    Disclosed herein are membranes comprising a substrate, a support layer, and a selective layer. In some embodiments the membrane may further comprise a permeable layer. Methods of forming membranes are also disclosed comprising forming a support layer on a substrate, removing adsorbed species from the support layer, preparing a solution containing inorganic materials of a selective layer, contacting the support layer with the solution, drying the membrane, and exposing the membrane to rapid thermal processing. Also disclosed are methods of fluid purification comprising providing a membrane having a feed side and a permeable side, passing a fluid mixture across the feed side of the membrane, providing a driving force for transmembrane permeation, removing from the permeate side a permeate stream enriched in a purified fluid, and withdrawing from the feed side a fluid that is depleted in a purified fluid.

  3. Controlled differential pressure system for an enhanced fluid blending apparatus

    DOEpatents

    Hallman, Jr., Russell Louis

    2009-02-24

    A system and method for producing a controlled blend of two or more fluids. Thermally-induced permeation through a permeable tube is used to mix a first fluid from outside the tube with a second fluid flowing through the tube. Mixture ratios may be controlled by adjusting the temperature of the first fluid or by adjusting the pressure drop through the permeable tube. The combination of a back pressure control valve and a differential regulator is used to control the output pressure of the blended fluid. The combination of the back pressure control valve and differential regulator provides superior flow control of the second dry gas. A valve manifold system may be used to mix multiple fluids, and to adjust the volume of blended fluid produced, and to further modify the mixture ratio.

  4. COTHERM: Modelling fluid-rock interactions in Icelandic geothermal systems

    NASA Astrophysics Data System (ADS)

    Thien, Bruno; Kosakowski, Georg; Kulik, Dmitrii

    2014-05-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced geothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. We model the mineralogical and porosity evolution of Icelandic geothermal systems with 1D and 2D reactive transport models. These geothermal systems are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. The shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. We investigate two contrasting geothermal systems: Krafla, for which the water recharge consists of meteoritic water; and Reykjanes, for which the water recharge mainly consists of seawater. The initial rock composition is a fresh basalt. We use the GEM-Selektor geochemical modeling package [1] for calculation of kinetically controlled mineral equilibria between the rock and the ingression water. We consider basalt minerals dissolution kinetics according to Palandri & Kharaka [2]. Reactive surface areas are assumed to be geometric surface areas, and are corrected using a spherical-particle surface/mass relationship. For secondary minerals, we consider the partial equilibrium assuming that the primary mineral dissolution is slow, and the secondary mineral precipitation is fast. Comparison of our modeling results with the mineralogical assemblages observed in the

  5. Fluid thrust control system. [for liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Howell, W. L.; Jansen, H. B.; Lehmann, E. N. (Inventor)

    1968-01-01

    A pure fluid thrust control system is described for a pump-fed, regeneratively cooled liquid propellant rocket engine. A proportional fluid amplifier and a bistable fluid amplifier control overshoot in the starting of the engine and take it to a predetermined thrust. An ejector type pump is provided in the line between the liquid hydrogen rocket nozzle heat exchanger and the turbine driving the fuel pump to aid in bringing the fluid at this point back into the regular system when it is not bypassed. The thrust control system is intended to function in environments too severe for mechanical controls.

  6. Longevity of duct tape in residential air distribution systems: 1-D, 2-D, and 3-D joints

    SciTech Connect

    Abushakra, Bass

    2002-05-30

    The aging tests conducted so far showed that duct tape tends to degrade in its performance as the joint it is applied to requires a geometrical description of a higher number of space dimensions (1-D, 2-D, 3-D). One-dimensional joints are the easiest to seal with duct tape, and thus the least to experience failure. Two-dimensional joints, such as the flexible duct core-to-collar joints tested in this study, are less likely to fail than three-dimensional collar-to-plenum joints, as the shrinkage could have a positive effect in tightening the joint. Three-dimensional joints are the toughest to seal and the most likely to experience failure. The 2-D flexible duct core-to-collar joints passed the six-month period of the aging test in terms of leakage, but with the exception of the foil-butyl tape, showed degradation in terms hardening, brittleness, partial peeling, shrinkage, wrinkling, delamination of the tape layers, flaking, cracking, bubbling, oozing and discoloration. The baking test results showed that the failure in the duct tape joints could be attributed to the type of combination of the duct tape and the material it is applied to, as the duct tape behaves differently with different substrates. Overall, the foil-butyl tape (Tape 4) had the best results, while the film tape (Tape 3) showed the most deterioration. The conventional duct tapes tested (Tape 1 and Tape 2) were between these two extremes, with Tape 2 performing better than Tape 1. Lastly, we found that plastic straps became discolored and brittle during the tests, and a couple of straps broke completely. Therefore, we recommend that clamping the duct-taped flexible core-to-collar joints should be done with metallic adjustable straps.

  7. Analysis of fluid/mechanical systems using EASY5

    NASA Technical Reports Server (NTRS)

    Clark, Robert W., Jr.; Arndt, Scott D.; Hurlbert, Eric A.

    1992-01-01

    This paper illustrates how the use of a general analysis package can simplify modeling and analyzing fluid/mechanical systems. One such package is EASY5, a Boeing Computer Services product. The basic transmission line equations for modeling piped fluid systems are presented, as well as methods of incorporating these equations into the EASY5 environment. The paper describes how this analysis tool has been used to model several fluid subsystems of the Space Shuttle Orbiter.

  8. Lithium isotope traces magmatic fluid in a seafloor hydrothermal system.

    PubMed

    Yang, Dan; Hou, Zengqian; Zhao, Yue; Hou, Kejun; Yang, Zhiming; Tian, Shihong; Fu, Qiang

    2015-01-01

    Lithium isotopic compositions of fluid inclusions and hosted gangue quartz from a giant volcanogenic massive sulfide deposit in China provide robust evidence for inputting of magmatic fluids into a Triassic submarine hydrothermal system. The δ(7)Li results vary from +4.5‰ to +13.8‰ for fluid inclusions and from +6.7‰ to +21.0‰ for the hosted gangue quartz(9 gangue quartz samples containing primary fluid inclusions). These data confirm the temperature-dependent Li isotopic fractionation between hydrothermal quartz and fluid (i.e., Δδ(7)Liquartz-fluid = -8.9382 × (1000/T) + 22.22(R(2) = 0.98; 175 °C-340 °C)), which suggests that the fluid inclusions are in equilibrium with their hosted quartz, thus allowing to determine the composition of the fluids by using δ(7)Liquartz data. Accordingly, we estimate that the ore-forming fluids have a δ(7)Li range from -0.7‰ to +18.4‰ at temperatures of 175-340 °C. This δ(7)Li range, together with Li-O modeling , suggest that magmatic fluid played a significant role in the ore formation. This study demonstrates that Li isotope can be effectively used to trace magmatic fluids in a seafloor hydrothermal system and has the potential to monitor fluid mixing and ore-forming process. PMID:26347051

  9. Lithium isotope traces magmatic fluid in a seafloor hydrothermal system

    NASA Astrophysics Data System (ADS)

    Yang, Dan; Hou, Zengqian; Zhao, Yue; Hou, Kejun; Yang, Zhiming; Tian, Shihong; Fu, Qiang

    2015-09-01

    Lithium isotopic compositions of fluid inclusions and hosted gangue quartz from a giant volcanogenic massive sulfide deposit in China provide robust evidence for inputting of magmatic fluids into a Triassic submarine hydrothermal system. The δ7Li results vary from +4.5‰ to +13.8‰ for fluid inclusions and from +6.7‰ to +21.0‰ for the hosted gangue quartz(9 gangue quartz samples containing primary fluid inclusions). These data confirm the temperature-dependent Li isotopic fractionation between hydrothermal quartz and fluid (i.e., Δδ7Liquartz-fluid = -8.9382 × (1000/T) + 22.22(R2 = 0.98 175 °C-340 °C)), which suggests that the fluid inclusions are in equilibrium with their hosted quartz, thus allowing to determine the composition of the fluids by using δ7Liquartz data. Accordingly, we estimate that the ore-forming fluids have a δ7Li range from -0.7‰ to +18.4‰ at temperatures of 175-340 °C. This δ7Li range, together with Li-O modeling , suggest that magmatic fluid played a significant role in the ore formation. This study demonstrates that Li isotope can be effectively used to trace magmatic fluids in a seafloor hydrothermal system and has the potential to monitor fluid mixing and ore-forming process.

  10. CD4+NKG2D+ T Cells Exhibit Enhanced Migratory and Encephalitogenic Properties in Neuroinflammation

    PubMed Central

    Ruck, Tobias; Bittner, Stefan; Gross, Catharina C.; Breuer, Johanna; Albrecht, Stefanie; Korr, Sabrina; Göbel, Kerstin; Pankratz, Susann; Henschel, Christian M.; Schwab, Nicholas; Staszewski, Ori; Prinz, Marco; Kuhlmann, Tanja

    2013-01-01

    Migration of encephalitogenic CD4+ T lymphocytes across the blood-brain barrier is an essential step in the pathogenesis of multiple sclerosis (MS). We here demonstrate that expression of the co-stimulatory receptor NKG2D defines a subpopulation of CD4+ T cells with elevated levels of markers for migration, activation, and cytolytic capacity especially when derived from MS patients. Furthermore, CD4+NKG2D+ cells produce high levels of proinflammatory IFN-γ and IL-17 upon stimulation. NKG2D promotes the capacity of CD4+NKG2D+ cells to migrate across endothelial cells in an in vitro model of the blood-brain barrier. CD4+NKG2D+ T cells are enriched in the cerebrospinal fluid of MS patients, and a significant number of CD4+ T cells in MS lesions coexpress NKG2D. We further elucidated the role of CD4+NKG2D+ T cells in the mouse system. NKG2D blockade restricted central nervous system migration of T lymphocytes in vivo, leading to a significant decrease in the clinical and pathologic severity of experimental autoimmune encephalomyelitis, an animal model of MS. Blockade of NKG2D reduced killing of cultivated mouse oligodendrocytes by activated CD4+ T cells. Taken together, we identify CD4+NKG2D+ cells as a subpopulation of T helper cells with enhanced migratory, encephalitogenic and cytotoxic properties involved in inflammatory CNS lesion development. PMID:24282598

  11. Thermal fluids in low temperature systems. Part 2

    SciTech Connect

    Lynde, P.G.; Yonkers, E.D.

    1996-02-01

    This article focuses on the lifeblood of these systems, the thermal transfer fluid itself. Low-temperature heat-transfer fluids are used to condition engine fluids, test chambers, cooling fluids, or a combination of these in environmental test facilities. To meet the specific test criteria, these fluids may be required to maintain pumpability and function with thermal efficiency at temperatures as low as {minus}120 F. This article presents information related to heat-transfer fluids used in low-temperature cooling applications. Three general groups of fluids are discussed: water-based antifreezes (ethylene and propylene glycol solutions); chlorinated solvents (methylene chloride and trichloroethylene); organic and synthetic coolants (diethylbenzene, two forms of dimethylpolysiloxane, heavy naphtha hydrotreated, and citrus terpene).

  12. Development of a computational aero/fluids analysis system

    NASA Technical Reports Server (NTRS)

    Kelley, P. B.

    1987-01-01

    The Computational Aero/Fluids Analysis System (AFAS) provides the analytical capability to perform state-of-the-art computational analyses in two difficult fluid dynamics disciplines associated with the Space Shuttle program. This system provides the analysis tools and techniques for rapidly and efficiently accessing, analyzing, and reformulating the large and expanding external aerodynamic data base while also providing tools for complex fluid flow analyses of the SSME engine components. Both of these fluid flow disciplines, external aerodynamics and internal gasdynamics, required this capability to ensure that MSFC can respond in a timely manner as problems are encountered and operational changes are made in the Space Shuttle.

  13. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  14. Direct observation of an out-of-plane spin polarization caused by an in-plane magnetic field in a GaAs 2D hole system

    NASA Astrophysics Data System (ADS)

    Yeoh, Lareine; Srinivasan, Ashwin; Klochan, Oleh; Micolich, Adam; Winkler, Roland; Simmons, Michelle; Ritchie, David; Pepper, Michael; Hamilton, Alexander

    2014-03-01

    Recent interest in spin-orbit coupling has led to studies of quantum confined, hole based semiconductor devices, which naturally possess strong spin-orbit interaction due to the intrinsic spin-3/2 nature of holes. In general both crystal anisotropies and quantum confinement will affect the spin properties of holes. In high symmetry crystals such anisotropies can be ignored, however in low symmetry crystals this complex interplay between the crystal and the confining potential gives rise to intriguing spin behavior, which has no counterpart in spin-1/2 electron-based systems. Here I will present the first direct observations of an unusual effect where a magnetic field applied in the plane of the 2D hole system generates a spin polarization perpendicular to the 2D plane. This out-of-plane spin polarisation is detected in transport measurements of a symmetrically doped, GaAs 2D hole quantum well in tilted magnetic fields. We are able to extract the sign of this off-diagonal component of the Landé g-factor and show that it is consistent with theory.

  15. 2D THD and 3D TEHD analysis of large spindle supported thrust bearings with pins and double layer system used in the three gorges hydroelectric generators

    NASA Astrophysics Data System (ADS)

    Huang, B.; Wu, Z. D.; Wu, J. L.; Wang, L. Q.

    2012-11-01

    A 2D THD model and a 3DTEHD model for large spindle supported thrust bearings were set up and used to analyze the lubrication performance of the Three Gorges test thrust beating withpins and double layer system developed by Alstom Power. The finite difference method was employed to solve the THD model, and the thermal-elasticdeformations in the pad and runner were obtained by the finite element software ANSYS11.0. The data transfer between the THD model and ANSYS11.0 was carried out automatically by an interface program.A detailed comparison between the experimental results and numerical predictions by the two different modelsset up in this paper was carried out. Poor agreement has been found between the theoretical results obtained by 2D THD model and experimental data, while 3D TEHD provides fairly good agreement, confirming the importance of thermal effects and thermal-elastic deformations in both pad and runner.

  16. Space station integrated propulsion and fluid systems study

    NASA Technical Reports Server (NTRS)

    Bicknell, B.; Wilson, S.; Dennis, M.; Shepard, D.; Rossier, R.

    1988-01-01

    The program study was performed in two tasks: Task 1 addressed propulsion systems and Task 2 addressed all fluid systems associated with the Space Station elements, which also included propulsion and pressurant systems. Program results indicated a substantial reduction in life cycle costs through integrating the oxygen/hydrogen propulsion system with the environmental control and life support system, and through supplying nitrogen in a cryogenic gaseous supercritical or subcritical liquid state. A water sensitivity analysis showed that increasing the food water content would substantially increase the amount of water available for propulsion use and in all cases, the implementation of the BOSCH CO2 reduction process would reduce overall life cycle costs to the station and minimize risk. An investigation of fluid systems and associated requirements revealed a delicate balance between the individual propulsion and fluid systems across work packages and a strong interdependence between all other fluid systems.

  17. System for Dispensing a Precise Amount of Fluid

    DOEpatents

    Benett, William J.; Krulevitch, Peter A.; Visuri, Steven R.; Dzenitis, John M.; Ness, Kevin D.

    2008-08-12

    A dispensing system delivers a precise amount of fluid for biological or chemical processing and/or analysis. Dispensing means moves the fluid. The dispensing means is operated by a pneumatic force. Connection means delivers the fluid to the desired location. An actuator means provides the pneumatic force to the dispensing means. Valving means transmits the pneumatic force from the actuator means to the dispensing means.

  18. Quantum-Carnot engine for particle confined to 2D symmetric potential well

    SciTech Connect

    Belfaqih, Idrus Husin Sutantyo, Trengginas Eka Putra Prayitno, T. B.; Sulaksono, Anto

    2015-09-30

    Carnot model of heat engine is the most efficient cycle consisting of isothermal and adiabatic processes which are reversible. Although ideal gas usually used as a working fluid in the Carnot engine, Bender used quantum particle confined in 1D potential well as a working fluid. In this paper, by following Bender we generalize the situation to 2D symmetric potential well. The efficiency is express as the ratio of the initial length of the system to the final length of the compressed system. The result then is shown that for the same ratio, 2D potential well is more efficient than 1D potential well.

  19. SU-E-CAMPUS-T-05: Preliminary Results On a 2D Dosimetry System Based On the Optically Stimulated Luminescence of Al2O3

    SciTech Connect

    Ahmed, M; Eller, S; Yukihara, E; Schnell, E; Ahmad, S; Akselrod, M; Hanson, O

    2014-06-15

    Purpose: To develop a precise 2D dose mapping technique based on the optically stimulated luminescence (OSL) from Al{sub 2}O{sub 3} films for medical applications. Methods: A 2D laser scanning reader was developed using fast F{sup +}-center (lifetime of <7 ns) and slow F-center (lifetime of 35 ms) OSL emission from newly developed Al{sub 2}O{sub 3} films (Landauer Inc.). An algorithm was developed to correct images for both material and system properties. Since greater contribution of the F??-center emission in the recorded signal increases the readout efficiency and robustness of image corrections, Al{sub 2}O{sub 3}:C,Mg film samples are being investigated in addition to Al{sub 2}O{sub 3}:C samples. Preliminary investigations include exposure of the films to a 6 MV photon beam at 10 cm depth in solid water phantom with an SSD of 100 cm, using a 10 cm × 10 cm flat field or a 4 cm × 4 cm field with a 60° wedge filter. Kodak EDR2 radiographic film and EBT2 Gafchromic film were also exposed for comparison. Results: The results indicate that the algorithm is able to correct images and calculate 2D dose. For the wedge field irradiation, the calculated dose at the center of the field was 0.9 Gy for Al{sub 2}O{sub 3}:C and 0.87 Gy for Al{sub 2}O{sub 3}:C,Mg, whereas, the delivered dose was 0.95 Gy. A good qualitative agreement of the dose profiles was obtained between the OSL films and EDR2 and EBT2 films. Laboratory tests using a beta source suggest that a large dynamic range (10{sup −2}−10{sup 2} Gy) can be achieved using this technique. Conclusion: A 2D dosimetry system and an in-house image correction algorithm were developed for 2D film dosimetry in medical applications. The system is in the preliminary stage of development, but the data demonstrates the feasibility of this approach. This work was supported by Landauer, Inc.

  20. Mesh2d

    SciTech Connect

    Greg Flach, Frank Smith

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.

  1. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  2. Registration of 2D C-Arm and 3D CT Images for a C-Arm Image-Assisted Navigation System for Spinal Surgery.

    PubMed

    Chang, Chih-Ju; Lin, Geng-Li; Tse, Alex; Chu, Hong-Yu; Tseng, Ching-Shiow

    2015-01-01

    C-Arm image-assisted surgical navigation system has been broadly applied to spinal surgery. However, accurate path planning on the C-Arm AP-view image is difficult. This research studies 2D-3D image registration methods to obtain the optimum transformation matrix between C-Arm and CT image frames. Through the transformation matrix, the surgical path planned on preoperative CT images can be transformed and displayed on the C-Arm images for surgical guidance. The positions of surgical instruments will also be displayed on both CT and C-Arm in the real time. Five similarity measure methods of 2D-3D image registration including Normalized Cross-Correlation, Gradient Correlation, Pattern Intensity, Gradient Difference Correlation, and Mutual Information combined with three optimization methods including Powell's method, Downhill simplex algorithm, and genetic algorithm are applied to evaluate their performance in converge range, efficiency, and accuracy. Experimental results show that the combination of Normalized Cross-Correlation measure method with Downhill simplex algorithm obtains maximum correlation and similarity in C-Arm and Digital Reconstructed Radiograph (DRR) images. Spine saw bones are used in the experiment to evaluate 2D-3D image registration accuracy. The average error in displacement is 0.22 mm. The success rate is approximately 90% and average registration time takes 16 seconds. PMID:27018859

  3. Numerical Modeling of Fluid Transient in Cryogenic Fluid Network of Rocket Propulsion System

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Flachbart, Robin

    2003-01-01

    Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicles propulsion systems. These transients often occur at system activation and shut down. For ground safety reasons, many spacecrafts are launched with the propellant lines dry. These lines are often evacuated by the time the spacecraft reaches orbit. When the propellant isolation valve opens during propulsion system activation, propellant rushes into lines creating a pressure surge. During propellant system shutdown, a pressure surge is created due to sudden closure of a valve. During both activation and shutdown, pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. The method of characteristics is the most widely used method of calculating fluid transients in pipeline [ 1,2]. The method of characteristics, however, has limited applications in calculating flow distribution in complex flow circuits with phase change, heat transfer and rotational effects. A robust cryogenic propulsion system analyzer must have the capability to handle phase change, heat transfer, chemical reaction, rotational effects and fluid transients in conjunction with subsystem flow model for pumps, valves and various pipe fittings. In recent years, such a task has been undertaken at Marshall Space Flight Center with the development of the Generalized Fluid System Simulation Program (GFSSP), which is based on finite volume method in fluid network [3]. GFSSP has been extensively verified and validated by comparing its predictions with test data and other numerical methods for various applications such as internal flow of turbo-pump [4], propellant tank pressurization [5,6], chilldown of cryogenic transfer line [7] and squeeze film damper rotordynamics [8]. The purpose of the present paper is to investigate the applicability of the finite volume method to predict fluid transient in cryogenic flow

  4. Power systems utilizing the heat of produced formation fluid

    DOEpatents

    Lambirth, Gene Richard

    2011-01-11

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method includes treating a hydrocarbon containing formation. The method may include providing heat to the formation; producing heated fluid from the formation; and generating electricity from at least a portion of the heated fluid using a Kalina cycle.

  5. UAH/NASA Workshop on Fluids Experiment System

    NASA Technical Reports Server (NTRS)

    Hendricks, J. (Editor); Askins, B. (Editor)

    1979-01-01

    The Fluids Experiment System is being developed to fit into a Spacelab rack. Papers presented at this workshop describe a variety of fluid and chemical experiments that would be of great benefit to researchers of processes in a low gravity environment.

  6. Fluid Power Systems Maintenance and Operation. Instructor's Guide.

    ERIC Educational Resources Information Center

    Paule, Bob A.

    Written to complement the Fluid Power/Basic Hydraulic and Basic Pneumatics guides, this curriculum guide contains materials for a seven-unit course in fluid power systems maintenance and operation. Units, which consist of one to eight lessons, cover these topics: preventive maintenance, repair machine malfunctions, overhaul/recondition hydraulic…

  7. Methods and systems for integrating fluid dispensing technology with stereolithography

    DOEpatents

    Medina, Francisco; Wicker, Ryan; Palmer, Jeremy A.; Davis, Don W.; Chavez, Bart D.; Gallegos, Phillip L.

    2010-02-09

    An integrated system and method of integrating fluid dispensing technologies (e.g., direct-write (DW)) with rapid prototyping (RP) technologies (e.g., stereolithography (SL)) without part registration comprising: an SL apparatus and a fluid dispensing apparatus further comprising a translation mechanism adapted to translate the fluid dispensing apparatus along the Z-, Y- and Z-axes. The fluid dispensing apparatus comprises: a pressurized fluid container; a valve mechanism adapted to control the flow of fluid from the pressurized fluid container; and a dispensing nozzle adapted to deposit the fluid in a desired location. To aid in calibration, the integrated system includes a laser sensor and a mechanical switch. The method further comprises building a second part layer on top of the fluid deposits and optionally accommodating multi-layered circuitry by incorporating a connector trace. Thus, the present invention is capable of efficiently building single and multi-material SL fabricated parts embedded with complex three-dimensional circuitry using DW.

  8. Maintenance components for Space Station long life fluid systems

    NASA Technical Reports Server (NTRS)

    Greene, John B., Jr.; Roebelen, George J., Jr.; Owen, James W.

    1986-01-01

    The Space Station elements or modules will maintain thermal conditioning by way of fluid systems. Because of the Station's 20 year minimum orbital lifetime, these fluid system designs must allow for on-orbit maintenance. This paper describes the maintenance assessment of the various Space Station thermal control system options, their components and the recommended maintenance approach for each. The design and utilization of the primary fluid isolation servicing method, the Maintainable Maintenance Disconnect Valve (MMDV) and the effects of selecting different levels for the orbital replacement unit (ORU) are also presented.

  9. High-throughput 2D root system phenotyping platform facilitates genetic analysis of root growth and development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-throughput phenotyping of root systems requires a combination of specialized techniques and adaptable plant growth, root imaging and software tools. A custom phenotyping platform was designed to capture images of whole root systems, and novel software tools were developed to process and analyz...

  10. Generalized Fluid System Simulation Program (GFSSP) Version 6 - General Purpose Thermo-Fluid Network Analysis Software

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Leclair, Andre; Moore, Ric; Schallhorn, Paul

    2011-01-01

    GFSSP stands for Generalized Fluid System Simulation Program. It is a general-purpose computer program to compute pressure, temperature and flow distribution in a flow network. GFSSP calculates pressure, temperature, and concentrations at nodes and calculates flow rates through branches. It was primarily developed to analyze Internal Flow Analysis of a Turbopump Transient Flow Analysis of a Propulsion System. GFSSP development started in 1994 with an objective to provide a generalized and easy to use flow analysis tool for thermo-fluid systems.

  11. String-fluid transition in systems with aligned anisotropic interactions.

    PubMed

    Brandt, P C; Ivlev, A V; Morfill, G E

    2010-06-21

    Systems with aligned anisotropic interactions between particles exhibit numerous phase transitions. A remarkable example of the fluid phase transition occurring in such systems is the formation of particle strings--the so-called "string" or "chain" fluids. We employ an approach based on the Ornstein-Zernike (OZ) equation, which allows us to calculate structural properties of fluids with aligned anisotropic interactions. We show that the string-fluid transition can be associated with the bifurcation of the "isotropic" correlation length into two distinct scales which characterize the longitudinal and transverse order in string fluids and, hence, may be used as a fingerprint of this transition. The comparison of the proposed OZ theory with the Monte Carlo simulations reveals fairly good agreement. PMID:20572736

  12. System and method measuring fluid flow in a conduit

    DOEpatents

    Ortiz, M.G.; Kidd, T.G.

    1999-05-18

    A system is described for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements. 3 figs.

  13. System and method measuring fluid flow in a conduit

    DOEpatents

    Ortiz, Marcos German; Kidd, Terrel G.

    1999-01-01

    A system for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements.

  14. Stabilizing a solution of the 2D Navier-Stokes system in the exterior of a bounded domain by means of a control on the boundary

    SciTech Connect

    Gorshkov, Aleksei V

    2012-09-30

    The problem of stabilizing a solution of the 2D Navier-Stokes system defined in the exterior of a bounded domain with smooth boundary is investigated. For a given initial velocity field a control on the boundary of the domain must be constructed such that the solution stabilizes to a prescribed vortex solution or trivial solution at the rate of 1/t{sup k}. On the way, related questions are investigated, concerning the behaviour of the spectrum of an operator under a relatively compact perturbation and the existence of attracting invariant manifolds. Bibliography: 21 titles.

  15. Lithium isotope traces magmatic fluid in a seafloor hydrothermal system

    PubMed Central

    Yang, Dan; Hou, Zengqian; Zhao, Yue; Hou, Kejun; Yang, Zhiming; Tian, Shihong; Fu, Qiang

    2015-01-01

    Lithium isotopic compositions of fluid inclusions and hosted gangue quartz from a giant volcanogenic massive sulfide deposit in China provide robust evidence for inputting of magmatic fluids into a Triassic submarine hydrothermal system. The δ7Li results vary from +4.5‰ to +13.8‰ for fluid inclusions and from +6.7‰ to +21.0‰ for the hosted gangue quartz(9 gangue quartz samples containing primary fluid inclusions). These data confirm the temperature-dependent Li isotopic fractionation between hydrothermal quartz and fluid (i.e., Δδ7Liquartz-fluid = –8.9382 × (1000/T) + 22.22(R2 = 0.98; 175 °C–340 °C)), which suggests that the fluid inclusions are in equilibrium with their hosted quartz, thus allowing to determine the composition of the fluids by using δ7Liquartz data. Accordingly, we estimate that the ore-forming fluids have a δ7Li range from −0.7‰ to +18.4‰ at temperatures of 175–340 °C. This δ7Li range, together with Li–O modeling , suggest that magmatic fluid played a significant role in the ore formation. This study demonstrates that Li isotope can be effectively used to trace magmatic fluids in a seafloor hydrothermal system and has the potential to monitor fluid mixing and ore-forming process. PMID:26347051

  16. Accuracy and precision of a custom camera-based system for 2D and 3D motion tracking during speech and nonspeech motor tasks

    PubMed Central

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories, and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and sub-millimeter accuracy. Method We examined the accuracy and precision of 2D and 3D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially-available computer software (APAS, Ariel Dynamics), and a custom calibration device. Results Overall mean error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3 vs. 6 mm diameter) was negligible at all frame rates for both 2D and 3D data. Conclusion Motion tracking with consumer-grade digital cameras and the APAS software can achieve sub-millimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484

  17. Accuracy and precision of a custom camera-based system for 2-d and 3-d motion tracking during speech and nonspeech motor tasks.

    PubMed

    Feng, Yongqiang; Max, Ludo

    2014-04-01

    PURPOSE Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and submillimeter accuracy. METHOD The authors examined the accuracy and precision of 2-D and 3-D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially available computer software (APAS, Ariel Dynamics), and a custom calibration device. RESULTS Overall root-mean-square error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3- vs. 6-mm diameter) was negligible at all frame rates for both 2-D and 3-D data. CONCLUSION Motion tracking with consumer-grade digital cameras and the APAS software can achieve submillimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484

  18. Method for controlling clathrate hydrates in fluid systems

    DOEpatents

    Sloan, Jr., Earle D.

    1995-01-01

    Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member and/or six member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone.

  19. Routine disinfection of the total dialysis fluid system.

    PubMed

    Gorke, A; Kittel, J

    2002-01-01

    The importance of bacteria and endotoxin free, sterile dialysis fluid for long term, high quality haemodialysis treatment is obvious and very much demanded (1,2). Dead spaces and connections between units (segments) of fluid production and delivery in elder systems are a continuous source for bacteria growth, biofilm generation and endotoxin release (3). After varying success with routine disinfection of system components showing partly fast recovery and growth of bacteria (i.e. < 48 hours) we changed to routine disinfection of the entire fluid production and distribution system. We call this'system disinfection'. We report the methods and results from observation of practice over 28 months of disinfection. The fluid system is composed of a soft water tank, reverse osmosis (double RO), RO fluid loop, central bicarbonate production and delivery system and dialysis stations with and without ultrafilter and citric-thermal disinfection before and after each haemodialysis. The system disinfection is carried out bimonthly with peracetic acid 3.5% in > 0.1% solution at a mean temperature of > 15 degrees C and at a minimum of 60 minutes of disinfection time. Samples for microbiological testing and endotoxin measurement were assessed 3-4 monthly at 7 measurement points. The tests were carried out 7 times on the 11th day (mean value [MV]) after routine system disinfection. The result was in 0.2 CFU/ml (MV) in 40 tests. The endotoxin levels (IU/L) were all < 0.25 except one at 0.325 in RO water. Endotoxin was assessed 5 times in 26 tests over 28 months. Samples were taken at 10.5 (MV) days after system disinfection. The Gel Clot or turbometric method was used. Efficient and preventive routine system disinfection of an entire dialysis fluid production and distribution system as standard in modern equipment - can support sufficient quality in dialysis fluid produced and distributed by elder and composed systems. PMID:12371736

  20. 3-D and quasi-2-D discrete element modeling of grain commingling in a bucket elevator boot system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unwanted grain commingling impedes new quality-based grain handling systems and has proven to be an expensive and time consuming issue to study experimentally. Experimentally validated models may reduce the time and expense of studying grain commingling while providing additional insight into detail...

  1. Fault-tolerant quantum computation and communication on a distributed 2D array of small local systems

    SciTech Connect

    Fujii, K.; Yamamoto, T.; Imoto, N.; Koashi, M.

    2014-12-04

    We propose a scheme for distributed quantum computation with small local systems connected via noisy quantum channels. We show that the proposed scheme tolerates errors with probabilities ∼30% and ∼ 0.1% in quantum channels and local operations, respectively, both of which are improved substantially compared to the previous works.

  2. An admissibility and asymptotic-preserving scheme for systems of conservation laws with source term on 2D unstructured meshes

    NASA Astrophysics Data System (ADS)

    Blachère, F.; Turpault, R.

    2016-06-01

    The objective of this work is to design explicit finite volumes schemes for specific systems of conservations laws with stiff source terms, which degenerate into diffusion equations. We propose a general framework to design an asymptotic preserving scheme, that is stable and consistent under a classical hyperbolic CFL condition in both hyperbolic and diffusive regime, for any two-dimensional unstructured mesh. Moreover, the scheme developed also preserves the set of admissible states, which is mandatory to keep physical solutions in stiff configurations. This construction is achieved by using a non-linear scheme as a target scheme for the diffusive equation, which gives the form of the global scheme for the complete system of conservation laws. Numerical results are provided to validate the scheme in both regimes.

  3. 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage.

    PubMed

    Bonaccorso, Francesco; Colombo, Luigi; Yu, Guihua; Stoller, Meryl; Tozzini, Valentina; Ferrari, Andrea C; Ruoff, Rodney S; Pellegrini, Vittorio

    2015-01-01

    Graphene and related two-dimensional crystals and hybrid systems showcase several key properties that can address emerging energy needs, in particular for the ever growing market of portable and wearable energy conversion and storage devices. Graphene's flexibility, large surface area, and chemical stability, combined with its excellent electrical and thermal conductivity, make it promising as a catalyst in fuel and dye-sensitized solar cells. Chemically functionalized graphene can also improve storage and diffusion of ionic species and electric charge in batteries and supercapacitors. Two-dimensional crystals provide optoelectronic and photocatalytic properties complementing those of graphene, enabling the realization of ultrathin-film photovoltaic devices or systems for hydrogen production. Here, we review the use of graphene and related materials for energy conversion and storage, outlining the roadmap for future applications. PMID:25554791

  4. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  5. Comparison of the Expression of Hepatic Genes by Human Wharton’s Jelly Mesenchymal Stem Cells Cultured in 2D and 3D Collagen Culture Systems

    PubMed Central

    Khodabandeh, Zahra; Vojdani, Zahra; Talaei-Khozani, Tahereh; Jaberipour, Mansoureh; Hosseini, Ahmad; Bahmanpour, Soghra

    2016-01-01

    Background: Human Wharton’s jelly mesenchymal stem cells (HWJMSCs) express liver-specific markers such as albumin, alpha-fetoprotein, cytokeratin-19, cytokeratin-18, and glucose-6-phosphatase. Therefore, they can be considered as a good source for cell replacement therapy for liver diseases. This study aimed to evaluate the effects of various culture systems on the hepatocyte-specific gene expression pattern of naïve HWJMSCs. Methods: HWJMSCs were characterized as MSCs by detecting the surface CD markers and capability to differentiate toward osteoblast and adipocyte. HWJMSCs were cultured in 2D collagen films and 3D collagen scaffolds for 21 days and were compared to control cultures. Real time RT-PCR was used to evaluate the expression of liver-specific genes. Results: The HWJMSCs which were grown on non-coated culture plates expressed cytokeratin-18 and -19, alpha-fetoprotein, albumin, glucose-6-phosphatase, and claudin. The expression of the hepatic nuclear factor 4 (HNF4) was very low. The cells showed a significant increase in caludin expression when they cultured in 3D collagen scaffolds compared to the conventional monolayer culture and 2D collagen scaffold. Conclusion: Various culture systems did not influence on hepatocyte specific marker expression by HWJMSCs, except for claudin. The expression of claudin showed that 3D collagen scaffold provided the extracellular matrix for induction of the cells to interconnect with each other. PMID:26722142

  6. Analysis of bell-shape negative giant-magnetoresistance in high mobility GaAs/AlGaAs 2D electron systems using multi-conduction model

    NASA Astrophysics Data System (ADS)

    Samaraweera, Rasanga; Liu, Han-Chun; Wegscheider, Werner; Mani, Ramesh

    Recent advancements in the growth techniques of the GaAs/AlGaAs two dimensional electron system (2DES) routinely yield high quality heterostructures with enhanced physical and electrical properties, including devices with 2D electron mobilities well above 107 cm2/Vs. These improvements have opened new pathways to study interesting physical phenomena associated with the 2D electron system. Negative giant-magnetoresistance (GMR) is one such phenomenon which can observed in the high mobility 2DES. However, the negative GMR in the GaAs/AlGaAs 2DES is still not fully understood. In this contribution, we present an experimental study of the bell-shape negative GMR in high mobility GaAs/AlGaAs devices and quantitatively analyze the results utilizing the multi-conduction model. The multi-conduction model includes interesting physical characteristics such as negative diagonal conductivity, non-vanishing off-diagonal conductivity, etc. The aim of the study is to examine GMR over a wider experimental parameter space and determine whether the multi-conduction model serves to describe the experimental results.

  7. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    SciTech Connect

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  8. Fitting of Diverging Thermoelectric Power in a Strongly Interacting 2D Electron System of Si-MOSFETs

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Tak

    2013-03-01

    The diverging-effective mass (DEM) in a metallic system is evidence of strong correlation between fermions in strongly correlated systems. The identification of the DEM still remains to be revealed The effective mass, m* =mo/(1-ρ4) where ρ is band filling helps clarify the diverging thermoelectric power, S, measured in inhomogeneous Si-MOSFET systems. As a carrier density ns decreases, S increases rapidly This is regarded as the metal-insulator transition (MIT) near nc ~ 79x10-1cm-2, where nc is about 0.02% to nSi ~ 3.4x10-14cm-2 in Si. This can be solved in assuming that ρ = nc/ns increases as ns decreases. nc is an excited(doped) carrier density in the semiconductor induced by gate and can be also regarded as a metallic carrier density, that is, nc ≡ nseminon = nmetal. ns is given as ntot ≡ ns = nc + nseminon where nseminon is a carrier density in a nonmetallic phase. The carrier density measured by Hall effect is the sum of carriers both induced by gate field and generated by MIT. Moreover, a larger metallic phase is not made due to a conducting path in the field-effect structure after a metallic phase is formed. Thus, increasing ns indicates increasing nnon; this corresponds to an over-doping to increase inhomogeneity. It's fitting is given from S = (απ3 kB2T/3e)(1/EF)= (α 8π3kB2T/3h2)(m*/e*nc) =So(1/ ρ) (1/(1-ρ4)) , where e* = ρ e, ρ = nc/ns, T =0.8K, m* =mo/(1-ρ4), α = 0.6, and So = (α 8π3kB2T/3h2)(mo/enc) ~12.36 are used. The data S are closely fitted by m*

  9. Off-axis electron holography with a dual-lens imaging system and its usefulness in 2-D potential mapping of semiconductor devices.

    PubMed

    Wang, Y Y; Kawasaki, M; Bruley, J; Gribelyuk, M; Domenicucci, A; Gaudiello, J

    2004-11-01

    A variable magnification electron holography, applicable for two-dimensional (2-D) potential mapping of semiconductor devices, employing a dual-lens imaging system is described. Imaging operation consists of a virtual image formed by the objective lens (OL) and a real image formed in a fixed imaging plane by the objective minilens. Wide variations in field of view (100-900 nm) and fringe spacing (0.7-6 nm) were obtained using a fixed biprism voltage by varying the total magnification of the dual OL system. The dual-lens system allows fringe width and spacing relative to the object to be varied roughly independently from the fringe contrast, resulting in enhanced resolution and sensitivity. The achievable fringe width and spacing cover the targets needed for devices in the semiconductor technology road map from the 350 to 45 nm node. Two-D potential maps for CMOS devices with 220 and 70 nm gate lengths were obtained. PMID:15450653

  10. Neutron scattering study of a quasi-2D spin-1/2 dimer system Piperazinium Hexachlorodicuprate under hydrostatic pressure

    SciTech Connect

    Hong, Tao; Stock, C.; Cabrera, I.; Broholm, C.; Qiu, Y.; Leao, J. B.; Poulton, S. J.; Copley, J.R.D.

    2010-01-01

    We report inelastic neutron scattering study of a quasi-two-dimensional S=1/2 dimer system piperazinium hexachlorodicuprate under hydrostatic pressure. The spin gap {Delta} becomes softened with the increase of the hydrostatic pressure up to P = 9.0 kbar. The observed threefold degenerate triplet excitation at P = 6.0 kbar is consistent with the theoretical prediction and the bandwidth of the dispersion relation is unaffected within the experimental uncertainty. At P = 9.0 kbar the spin gap is reduced to {Delta} = 0.55 meV from {Delta} = 1.0 meV at ambient pressure.

  11. 3He Bilayer Film Adsorbed on Graphite Plated with a Bilayer of 4He: a New Frustrated 2D Magnetic System

    NASA Astrophysics Data System (ADS)

    Neumann, Michael; Nyéki, Ján; Cowan, Brian; Saunders, John

    2006-09-01

    The heat capacity and NMR response of a 3He bilayer adsorbed on graphite plated with a bilayer of 4He have been measured over the temperature range 1-80 mK. We find that the first 3He layer requires the presence of a 3He fluid overlayer before it solidifies. Solidification is completed at a total coverage close to 9.85 nm-2, On further increasing the coverage the heat capacity maximum grows from `antiferromagnetic-like' (AFM-like) to `ferromagnetic-like' (FM-like). On the other hand, when the 3He layer first solidifies, it has a low temperature saturation magnetisation corresponding to a significant fraction of full polarisation, and this increases with increasing coverage. Furthermore the effective exchange constant inferred from the high temperature magnetisation data is always ferromagnetic. The effective exchange constants inferred from the heat capacity and magnetisation are significantly larger than those observed in the second layer of pure 3He films adsorbed on bare graphite. Otherwise there are strong similarities in the coverage dependence of the heat capacity and magnetisation, providing fresh insights into how the magnetic ground state of such 2D magnets evolves as the frustration is tuned with increasing coverage.

  12. Ice Detector and Deicing Fluid Effectiveness Monitoring System

    NASA Technical Reports Server (NTRS)

    Seegmiller, H. Lee B. (Inventor)

    1996-01-01

    An ice detector and deicing fluid effectiveness monitoring system for an aircraft is disclosed. The ice detection portion is particularly suited for use in flight to notify the flight crew of an accumulation of ice on an aircraft lifting and control surfaces, or helicopter rotors, whereas the deicing fluid effectiveness monitoring portion is particularly suited for use on the ground to notify the flight crew of the possible loss of the effectiveness of the deicing fluid. The ice detection portion comprises a temperature sensor and a parallel arrangement of electrodes whose coefficient of coupling is indicative of the formation of the ice, as well as the thickness of the formed ice. The fluid effectiveness monitoring portion comprises a temperature sensor and an ionic-conduction cell array that measures the conductivity of the deicing fluid which is indicative of its concentration and, thus, its freezing point. By measuring the temperature and having knowledge of the freezing point of the deicing fluid, the fluid effectiveness monitoring portion predicts when the deicing fluid may lose its effectiveness because its freezing point may correspond to the temperature of the ambient.

  13. Evaluation of high-pressure drilling fluid supply systems

    SciTech Connect

    McDonald, M.C.; Reichman, J.M.; Theimer, K.J.

    1981-10-01

    A study was undertaken to help determine the technical and economic feasibility of developing a high-pressure fluid-jet drilling system for the production of geothermal wells. Three system concepts were developed and analyzed in terms of costs, component availability, and required new-component development. These concepts included a single-conduit system that supplies the downhole cutting nozzles directly via surface-located high-pressure pumps; a single-conduit system utilizing low-pressure surface pumps to supply and operate a high-pressure downhole pump, which in turn supplies the cutting nozzles; and a dual-conduit system supplying surface-generated high-pressure fluid for cutting via one conduit and low-pressure scavenging fluid via the other. It is concluded that the single-conduit downhole pump system concept has the greatest potential for success in this application. 28 figures, 11 tables.

  14. Generalized Fluid System Simulation Program, Version 6.0

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; LeClair, A. C.; Moore, A.; Schallhorn, P. A.

    2013-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependant flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 25 demonstrated example problems.

  15. Generalized Fluid System Simulation Program (GFSSP) - Version 6

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul

    2015-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.

  16. A MODIFIED LIGHT TRANSMISSION VISUALIZATION METHOD FOR DNAPL SATURATION MEASUREMENTS IN 2-D MODELS

    EPA Science Inventory

    In this research, a light transmission visualization (LTV) method was used to quantify dense non-aqueous phase liquids (DNAPL) saturation in two-dimensional (2-D), two fluid phase systems. The method is an expansion of earlier LTV methods and takes into account both absorption an...

  17. Heat-Transfer Fluids for Solar-Energy Systems

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1982-01-01

    43-page report investigates noncorrosive heat-transport fluids compatible with both metallic and nonmetallic solar collectors and plumbing systems. Report includes tables and figures of X-ray inspections for corrosion and schematics of solar-heat transport systems and heat rejection systems.

  18. Wireless Fluid-Level Measurement System Equips Boat Owners

    NASA Technical Reports Server (NTRS)

    2008-01-01

    While developing a measurement acquisition system to be used to retrofit aging aircraft with vehicle health monitoring capabilities, Langley Research Center developed an innovative wireless fluid-level measurement system. The NASA technology was of interest to Tidewater Sensors LLC, of Newport News, Virginia, because of its many advantages over conventional fuel management systems, including its ability to provide an accurate measurement of volume while a boat is experiencing any rocking motion due to waves or people moving about on the boat. These advantages led the company to license this novel fluid-level measurement system from NASA for marine applications.

  19. Towards a smart non-invasive fluid loss measurement system.

    PubMed

    Suryadevara, N K; Mukhopadhyay, S C; Barrack, L

    2015-04-01

    In this article, a smart wireless sensing non-invasive system for estimating the amount of fluid loss, a person experiences while physical activity is presented. The system measures three external body parameters, Heart Rate, Galvanic Skin Response (GSR, or skin conductance), and Skin Temperature. These three parameters are entered into an empirically derived formula along with the user's body mass index, and estimation for the amount of fluid lost is determined. The core benefit of the developed system is the affluence usage in combining with smart home monitoring systems to care elderly people in ambient assisted living environments as well in automobiles to monitor the body parameters of a motorist. PMID:25686913

  20. Development and testing of the Automated Fluid Interface System

    NASA Astrophysics Data System (ADS)

    Milton, Martha E.; Tyler, Tony R.

    1993-05-01

    The Automated Fluid Interface System (AFIS) is an advanced development program aimed at becoming the standard interface for satellite servicing for years to come. The AFIS will be capable of transferring propellants, fluids, gasses, power, and cryogens from a tanker to an orbiting satellite. The AFIS program currently under consideration is a joint venture between the NASA/Marshall Space Flight Center and Moog, Inc. An engineering model has been built and is undergoing development testing to investigate the mechanism's abilities.

  1. Development and testing of the Automated Fluid Interface System

    NASA Technical Reports Server (NTRS)

    Milton, Martha E.; Tyler, Tony R.

    1993-01-01

    The Automated Fluid Interface System (AFIS) is an advanced development program aimed at becoming the standard interface for satellite servicing for years to come. The AFIS will be capable of transferring propellants, fluids, gasses, power, and cryogens from a tanker to an orbiting satellite. The AFIS program currently under consideration is a joint venture between the NASA/Marshall Space Flight Center and Moog, Inc. An engineering model has been built and is undergoing development testing to investigate the mechanism's abilities.

  2. A deep crustal fluid channel into the San Andreas Fault system near Parkfield, California

    USGS Publications Warehouse

    Becken, M.; Ritter, O.; Park, S.K.; Bedrosian, P.A.; Weckmann, U.; Weber, M.

    2008-01-01

    Magnetotelluric (MT) data from 66 sites along a 45-km-long profile across the San Andreas Fault (SAF) were inverted to obtain the 2-D electrical resistivity structure of the crust near the San Andreas Fault Observatory at Depth (SAFOD). The most intriguing feature of the resistivity model is a steeply dipping upper crustal high-conductivity zone flanking the seismically defined SAF to the NE, that widens into the lower crust and appears to be connected to a broad conductivity anomaly in the upper mantle. Hypothesis tests of the inversion model suggest that upper and lower crustal and upper-mantle anomalies may be interconnected. We speculate that the high conductivities are caused by fluids and may represent a deep-rooted channel for crustal and/or mantle fluid ascent. Based on the chemical analysis of well waters, it was previously suggested that fluids can enter the brittle regime of the SAF system from the lower crust and mantle. At high pressures, these fluids can contribute to fault-weakening at seismogenic depths. These geochemical studies predicted the existence of a deep fluid source and a permeable pathway through the crust. Our resistivity model images a conductive pathway, which penetrates the entire crust, in agreement with the geochemical interpretation. However, the resistivity model also shows that the upper crustal branch of the high-conductivity zone is located NE of the seismically defined SAF, suggesting that the SAF does not itself act as a major fluid pathway. This interpretation is supported by both, the location of the upper crustal high-conductivity zone and recent studies within the SAFOD main hole, which indicate that pore pressures within the core of the SAF zone are not anomalously high, that mantle-derived fluids are minor constituents to the fault-zone fluid composition and that both the volume of mantle fluids and the fluid pressure increase to the NE of the SAF. We further infer from the MT model that the resistive Salinian block

  3. Effects of burning on the development of 2D turbulence

    NASA Astrophysics Data System (ADS)

    Hicks, Elizabeth; Rosner, Robert

    2010-12-01

    We present the results of two-dimensional (2D) direct numerical simulations of a Boussinesq fluid in the presence of gravity. Our simulations compare the evolution of a burning interface between a denser fuel and less dense ashes to the evolution of a non-burning interface. Initially, a dense, cool fluid is placed over a light, hot fluid and the interface between the two fluids is perturbed. Because of the presence of gravity, the system is Rayleigh-Taylor unstable, and the two fluids mix. We compare this Rayleigh-Taylor mixing problem to that in the same setup but with premixed combustion occurring at the interface between the two fluids. In both cases, the boundary conditions are periodic in the horizontal direction. As the force of gravity is increased, the flow behind the flame transitions from an ordered, laminar state to a chaotic, turbulent state. Our simulations explore the effect of burning on the development of the turbulent state, especially the effect of burning on the energy and enstrophy cascades, the mixing of the temperature fields and the shape of the flame front.

  4. [Rh system genotyping in amniotic fluid].

    PubMed

    Cotorruelo, C; Biondi, C; García Borrás, S; Di Mónaco, R; Martino, W; Racca, A

    2001-01-01

    The aim of this work was to determine the presence of the RHD gene in fetal cells obtained from amniotic fluid (AF). We studied 65 samples of AF, 11 from RhD- mothers sensitized with anti-D. The fetal origin of the DNA was confirmed with the analysis of 1 VNTR locus and 3 STR loci in DNA samples from AF and maternal blood. The RHD genotyping was performed in non contaminated samples (n = 62) using a multiplex PCR strategy that yields 3 amplification products from RhD+ phenotypes and 1 DNA fragment from RhD- phenotypes. We genotyped 54 RhD+ fetuses (8 from RhD- sensitized mothers) and 8 RhD- fetuses (3 from RhD- sensitized mothers). Fetal DNA genotyping allows the diagnosis, from a single amniocentesis, of fetuses at real risk of hemolytic disease of the newborn. When the fetus is determined to be RhD- all invasive procedures can be avoided. PMID:11265629

  5. Fluid dynamics of double diffusive systems

    SciTech Connect

    Koseff, J.R.

    1990-04-03

    The major accomplishments of our initial research period (August 1, 1987, to March 1, 1990) are as follows; we completed construction of the experimental facility. Originally, it had been our intent to modify an existing facility in our laboratory. When this became impractical we constructed a new stand-alone facility. Modified an existing three-dimensional numerical code developed in our laboratory, SEAFLOS1, by incorporating a salinity transport equation. Developed experimental and analytical techniques, and performed both physical and numerical experiments for a wide range of initial and boundary conditions. Focused our overall research effort to answer the following four questions pertaining to the formation of convective intrusions due to lateral temperature gradients established by sidewall heating. (1) What is the internal structure of the convective intrusions as a function of the initial stratification and sidewall heating rates (2) What is the correct scaling for the initial vertical dimension of the intrusions (3) How does the merging process vary as a function of initial stratification and sidewall heating rate (4) Is the sidewall heating critical for continued propagation of the intrusions, or is it merely a trigger which releases the internal instability in the fluid

  6. Analyses of ACPL thermal/fluid conditioning system

    NASA Technical Reports Server (NTRS)

    Stephen, L. A.; Usher, L. H.

    1976-01-01

    Results of engineering analyses are reported. Initial computations were made using a modified control transfer function where the systems performance was characterized parametrically using an analytical model. The analytical model was revised to represent the latest expansion chamber fluid manifold design, and systems performance predictions were made. Parameters which were independently varied in these computations are listed. Systems predictions which were used to characterize performance are primarily transient computer plots comparing the deviation between average chamber temperature and the chamber temperature requirement. Additional computer plots were prepared. Results of parametric computations with the latest fluid manifold design are included.

  7. ISS-CREAM Thermal and Fluid System Design and Analysis

    NASA Technical Reports Server (NTRS)

    Thorpe, Rosemary S.

    2015-01-01

    Thermal and Fluids Analysis Workshop (TFAWS), Silver Spring MD NCTS 21070-15. The ISS-CREAM (Cosmic Ray Energetics And Mass for the International Space Station) payload is being developed by an international team and will provide significant cosmic ray characterization over a long time frame. Cold fluid provided by the ISS Exposed Facility (EF) is the primary means of cooling for 5 science instruments and over 7 electronics boxes. Thermal fluid integrated design and analysis was performed for CREAM using a Thermal Desktop model. This presentation will provide some specific design and modeling examples from the fluid cooling system, complex SCD (Silicon Charge Detector) and calorimeter hardware, and integrated payload and ISS level modeling. Features of Thermal Desktop such as CAD simplification, meshing of complex hardware, External References (Xrefs), and FloCAD modeling will be discussed.

  8. System for recovering fluids from a horizontal wellbore

    SciTech Connect

    Pasini, J. III.

    1980-03-25

    The present invention is directed to a gas-lift system for facilitating the removal of fluid (liquid and/or gaseous) energy values from a subterranean geologic earth formation penetrated by a horizontally extending wellbore. In accordance with the present invention concentric tubing is disposed in the wellbore with the outer tubing being provided with one-way valves for admitting the fluids from the earth formation surrounding the tubing. These fluids flow into an annulus between the tubings and are expelled from the annulus by injecting a gas into the annulus between the tubes which closes the valves and flushes the liquids from the tubing by forcing the fluids through the inner tube to a surface collection point.

  9. Finite element analysis of fluid-filled elastic piping systems

    NASA Technical Reports Server (NTRS)

    Everstine, G. C.; Marcus, M. S.; Quezon, A. J.

    1983-01-01

    Two finite element procedures are described for predicting the dynamic response of general 3-D fluid-filled elastic piping systems. The first approach, a low frequency procedure, models each straight pipe or elbow as a sequence of beams. The contained fluid is modeled as a separate coincident sequence axial members (rods) which are tied to the pipe in the lateral direction. The model includes the pipe hoop strain correction to the fluid sound speed and the flexibility factor correction to the elbow flexibility. The second modeling approach, an intermediate frequency procedure, follows generally the original Zienkiewicz-Newton scheme for coupled fluid-structure problems except that the velocity potential is used as the fundamental fluid unknown to symmetrize the coefficient matrices. From comparisons of the beam model predictions to both experimental data and the 3-D model, the beam model is validated for frequencies up to about two-thirds of the lowest fluid-filled labor pipe mode. Accurate elbow flexibility factors are seen to be crucial for effective beam modeling of piping systems.

  10. Generalized Fluid System Simulation Program, Version 5.0-Educational

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.

    2011-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems.

  11. Fluid Delivery System For Capillary Electrophoretic Applications.

    DOEpatents

    Li, Qingbo; Liu, Changsheng; Kane, Thomas E.; Kernan, John R.; Sonnenschein, Bernard; Sharer, Michael V.

    2002-04-23

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  12. Determination of gas volume trapped in a closed fluid system

    NASA Technical Reports Server (NTRS)

    Hunter, W. F.; Jolley, J. E.

    1971-01-01

    Technique involves extracting known volume of fluid and measuring system before and after extraction, volume of entrapped gas is then computed. Formula derived from ideal gas laws is basis of this method. Technique is applicable to thermodynamic cycles and hydraulic systems.

  13. A Generalized Fluid System Simulation Program to Model Flow Distribution in Fluid Networks

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Bailey, John W.; Schallhorn, Paul; Steadman, Todd

    1998-01-01

    This paper describes a general purpose computer program for analyzing steady state and transient flow in a complex network. The program is capable of modeling phase changes, compressibility, mixture thermodynamics and external body forces such as gravity and centrifugal. The program's preprocessor allows the user to interactively develop a fluid network simulation consisting of nodes and branches. Mass, energy and specie conservation equations are solved at the nodes; the momentum conservation equations are solved in the branches. The program contains subroutines for computing "real fluid" thermodynamic and thermophysical properties for 33 fluids. The fluids are: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutane, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride and ammonia. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. Seventeen different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include: pipe flow, flow through a restriction, non-circular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct, labyrinth seal, parallel plates, common fittings and valves, pump characteristics, pump power, valve with a given loss coefficient, and a Joule-Thompson device. The system of equations describing the fluid network is solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods. This paper also illustrates the application and verification of the code by comparison with Hardy Cross method for steady state flow and analytical solution for unsteady flow.

  14. Immiscible fluid: Heat of fusion heat storage system

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Melsheimer, S. S.; Mullins, J. C.

    1980-01-01

    Both heat and mass transfer in direct contact aqueous crystallizing systems were studied as part of a program desig- ned to evaluate the feasibility of direct contact heat transfer in phase change storage using aqueous salt system. Major research areas, discussed include (1) crystal growth velocity study on selected salts; (2) selection of salt solutions; (3) selection of immiscible fluids; (4) studies of heat transfer and system geometry; and (5) system demonstration.

  15. Space Station Freedom external fluid utilities system design and integration

    NASA Astrophysics Data System (ADS)

    Reinhard, Dawn M.

    1993-02-01

    This paper presents the current Space Station Freedom External Fluid System Design, which is an integrated design of numerous criteria, such as safety, reliability, availability, manufacturability, commonality and compatibility with Extravehicular Activity (EVA). McDonnell Douglas engineers are working to meet a Critical Design Review (CDR) in 1993 and to begin production of fluid system hardware for first launch in 1996, with successive launches continuing through the decade. The fluid system design hardware, such as the 316L Stainless Steel tubing, Inconel, flexible metal hoses, tee fittings, clamping systems and quick disconnect couplings will be presented, with special emphasis on how they were selected in the early phases of the design process. Fabrication and assembly of the Space Station Freedom fluid utility system, using the Numerically Controlled (NC) tube bender and Orbital Welder will be discussed. The Extravehicular Activity (EVA) on-orbit assembly and maintenance techniques of this system will also be briefly explained. Recommendations which have contributed to the success of this design effort include: Consistent communications between groups. a centralized computer-aided drafting/Computer-aided manufacturing (CAD/CAM) system with Electronic Development Fixture (EDF) capability, and technical review boards to control and minimize changes to the design baseline.

  16. LHC II system sensitivity to magnetic fluids

    NASA Astrophysics Data System (ADS)

    Cotae, Vlad; Creanga, Ioan

    2005-03-01

    Experiments have been designed to reveal the influences of ferrofluid treatment and static magnetic field exposure on the photosynthetic system II, where the light harvesting complex (LHC II) controls the ratio chlorophyll a/ chlorophyll b (revealing, indirectly, the photosynthesis rate). Spectrophotometric measurement of chlorophyll content revealed different influences for relatively low ferrofluid concentrations (10-30 μl/l) in comparison to higher concentrations (70-100 μl/l). The overlapped effect of the static magnetic field shaped better the stimulatory ferrofluid action on LHC II system in young poppy plantlets.

  17. The fluid systems for the SLD Cherenkov ring imaging detector

    SciTech Connect

    Abe, K.; Hasegawa, K.; Hasegawa, Y.; Iwasaki, Y.; Suekane, F.; Yuta, H.; Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dolinsky, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.W.G.S.; McCulloch, M.; McShurley, D.; Mueller, G.; Muller, D.; Nagamine, T.; Pavel, T.J.; Peterson, H.; Ratcliff, B.; Reif, R.; Rensing, P.; Schultz, D.; Shapiro, S.; Shaw, H.; Simopoulos, C.; Solodov, E.; Toge, N.; Vavra, J.; Watt, R.; Weber, T.; Williams, S.H.; Baird, K.; Jacques, P.; Kalelkar, M.; Plano, R.; Stamer, P.; Word, G.; Bean, A.; Caldwell, D.O.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Yellin, S.; Ben-David, R.; Manly, S.; Snyder, J.; Turk, J.; Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Gagnon, P.; Liu, X.; Schneider, M.; Williams, D.A.; Coller, J.; Shank, J.T.; Whitaker, J.S.; d`Oliveira, A.; Johnson, R.A.; Martinez, J.; Nussbaum, M.; Santha, A.K.S.; Sokoloff, M.D.; Stockdale, I.; Wilson, R.J.

    1992-10-01

    We describe the design and operation of the fluid delivery, monitor and control systems for the SLD barrel Cherenkov Ring Imaging Detector (CRID). The systems deliver drift gas (C{sub 2}H{sub 6} + TMAE), radiator gas (C{sub 5}F{sub 12} + N{sub 2}) and radiator liquid (C{sub 6}F{sub 14}). Measured critical quantities such as electron lifetime in the drift gas and ultra-violet (UV) transparencies of the radiator fluids, together with the operational experience, are also reported.

  18. Rotation of a rod system containing inertial fluid flow

    NASA Astrophysics Data System (ADS)

    Sergeev, A. D.

    2012-11-01

    This paper considers a rod system for which it is possible to correctly formulate and solve the problem of three-dimensional motion in the physical space of an elastic pipeline area containing inertial incompressible fluid flow. The precession of the axis of an elastic pipeline along which inertial incompressible fluid flows is described, a physical phenomenon which has not been previously studied. With the use of rigid body dynamics, it was theoretically established that a three-dimensional dynamic process is possible in an open (exchanging mass with the environment) elastic-inertial rod system.

  19. Fluid-bed air-supply system

    DOEpatents

    Zielinski, Edward A.; Comparato, Joseph R.

    1979-01-01

    The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.

  20. 2D/3D Image fusion for accurate target localization and evaluation of a mask based stereotactic system in fractionated stereotactic radiotherapy of cranial lesions

    SciTech Connect

    Jin, J.-Y.; Ryu, Samuel; Faber, Kathleen; Mikkelsen, Tom; Chen Qing; Li Shidong; Movsas, Benjamin

    2006-12-15

    The purpose of this study was to evaluate the accuracy of a two-dimensional (2D) to three-dimensional (3D) image-fusion-guided target localization system and a mask based stereotactic system for fractionated stereotactic radiotherapy (FSRT) of cranial lesions. A commercial x-ray image guidance system originally developed for extracranial radiosurgery was used for FSRT of cranial lesions. The localization accuracy was quantitatively evaluated with an anthropomorphic head phantom implanted with eight small radiopaque markers (BBs) in different locations. The accuracy and its clinical reliability were also qualitatively evaluated for a total of 127 fractions in 12 patients with both kV x-ray images and MV portal films. The image-guided system was then used as a standard to evaluate the overall uncertainty and reproducibility of the head mask based stereotactic system in these patients. The phantom study demonstrated that the maximal random error of the image-guided target localization was {+-}0.6 mm in each direction in terms of the 95% confidence interval (CI). The systematic error varied with measurement methods. It was approximately 0.4 mm, mainly in the longitudinal direction, for the kV x-ray method. There was a 0.5 mm systematic difference, primarily in the lateral direction, between the kV x-ray and the MV portal methods. The patient study suggested that the accuracy of the image-guided system in patients was comparable to that in the phantom. The overall uncertainty of the mask system was {+-}4 mm, and the reproducibility was {+-}2.9 mm in terms of 95% CI. The study demonstrated that the image guidance system provides accurate and precise target positioning.

  1. Propagator-resolved 2D exchange in porous media in the inhomogeneous magnetic field.

    PubMed

    Burcaw, Lauren M; Hunter, Mark W; Callaghan, Paul T

    2010-08-01

    We present a propagator-resolved 2D exchange spectroscopy technique for observing fluid motion in a porous medium. The susceptibility difference between the matrix and the fluid is exploited to produce an inhomogeneous internal magnetic field, causing the Larmor frequency to change as molecules migrate. We test our method using a randomly packed monodisperse 100 microm diameter glass bead matrix saturated with distilled water. Building upon previous 2D exchange spectroscopy work we add a displacement dimension which allows us to obtain 2D exchange spectra that are defined by both mixing time and spatial displacement rather than by mixing time alone. We also simulate our system using a Monte Carlo process in a random nonpenetrating monodisperse bead pack, finding good agreement with experiment. A simple analytic model is used to interpret the NMR data in terms of a characteristic length scale over which molecules must diffuse to sample the inhomogeneous field distribution. PMID:20554230

  2. Method for controlling clathrate hydrates in fluid systems

    DOEpatents

    Sloan, Jr., Earle D.

    1995-01-01

    Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone. Additives can also contain multiple cyclic chemical groupings having different size rings. One such additive is sold under the name Gaffix VC-713.

  3. Method for controlling clathrate hydrates in fluid systems

    DOEpatents

    Sloan, E.D. Jr.

    1995-07-11

    Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone. Additives can also contain multiple cyclic chemical groupings having different size rings. One such additive is sold under the name Gaffix VC-713.

  4. Fluid dynamics of double diffusive systems

    SciTech Connect

    Koseff, J.R.

    1988-05-01

    A study of mixing processes in doubly diffusive systems is being conducted. Continuous gradients of two diffusing components (heat and salinity) are being used as initial conditions, and forcing is introduced by lateral heating, surface shear and sloping boundaries. The goals of the proposed work include: quantification of the effects of finite amplitude disturbances on stable, double diffusive systems, particularly with respect to lateral heating, development of an improved understanding of the physical phenomena present in wind-driven shear flows in double diffusive stratified environments, increasing our knowledge-base on turbulent flow in stratified environments and how to represent it, and formulation of numerical code for such flows. The work is being carried out in a new experimental facility at Stanford and on laboratory minicomputers and CRAY computers. In particular we are focusing on the following key issues. The formation and propagation of double diffusive intrusions away from a heated wall and the effects of lateral heating on the double diffusive system; The interaction between the double diffusively influenced fluxes and the turbulence induced fluxes; The formation of gravitational intrusions; and The influence of double diffusive gradients on mixed layer deepening. The goals of the project were as follows. Physical experiments: Construct experimental facility; Modify and fabricate instrument rakes; Develop sampling and calibration software; Develop stratification techniques; Conduct flow visualization studies; Qualify wind tunnel over a range of wind speeds. Numerical experiments: Adapt REMIXCS to handle turbulent flows; Investigate approaches for specifying wind field; Perform calculations for low wind speeds. With the exception of the wind tunnel qualification, all the tasks have already been completed and we are now conducting quantitative experiments. 2 figs.

  5. A Laser Absorption Spectroscopy System for 2D Mapping of CO2 Over Large Spatial Areas for Monitoring, Reporting and Verification of Ground Carbon Storage Sites

    NASA Astrophysics Data System (ADS)

    Dobler, J. T.; Braun, M.; Blume, N.; McGregor, D.; Zaccheo, T. S.; Pernini, T.; Botos, C.

    2014-12-01

    We will present the development of the Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE). GreenLITE consists of two laser based transceivers and a number of retro-reflectors to measure differential transmission (DT) of a number of overlapping chords in a plane over the site being monitored. The transceivers use the Intensity Modulated Continuous Wave (IM-CW) approach, which is a technique that allows simultaneous transmission/reception of multiple fixed wavelength lasers and a lock-in, or matched filter, to measure amplitude and phase of the different wavelengths in the digital domain. The technique was developed by Exelis and has been evaluated using an airborne demonstrator for the past 10 years by NASA Langley Research Center. The method has demonstrated high accuracy and high precision measurements as compared to an in situ monitor tracable to WMO standards, agreeing to 0.65 ppm +/-1.7 ppm. The GreenLITE system is coupled to a cloud-based data storage and processing system that takes the measured chord data, along with auxiliary data to retrieve an average CO2 concentration per chord and which combines the chords to provide an estimate of the spatial distribution of CO2 concentration in the plane. A web-based interface allows users to view real-time CO2 concentrations and 2D concentration maps of the area being monitored. The 2D maps can be differenced as a function of time for an estimate of the flux across the plane measured by the system. The system is designed to operate autonomously from semi-remote locations with a very low maintenance cycle. Initial instrument tests, conducted in June, showed signal to noise in the measured ratio of >3000 for 10 s averages. Additional local field testing and a quantifiable field testing at the Zero Emissions Research and Technology (ZERT) site in Bozeman, MT are planned for this fall. We will present details on the instrument and software tools that have been developed, along with results from the local

  6. Monte Carlo simulation of the dose response of a novel 2D silicon diode array for use in hybrid MRI–LINAC systems

    SciTech Connect

    Gargett, Maegan Rosenfeld, Anatoly; Oborn, Brad; Metcalfe, Peter

    2015-02-15

    Purpose: MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named “magic plate,” for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. Methods: GEANT4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-line and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm{sup 3}) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm{sup 2} area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm{sup 2} photon field size. Results: The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. Conclusions: A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI

  7. Generalized Fluid System Simulation Program, Version 6.0

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; LeClair, A. C.; Moore, R.; Schallhorn, P. A.

    2016-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a general purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. Two thermodynamic property programs (GASP/WASP and GASPAK) provide required thermodynamic and thermophysical properties for 36 fluids: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutene, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride, ammonia, hydrogen peroxide, and air. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. The users can also supply property tables for fluids that are not in the library. Twenty-four different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include pipe flow, flow through a restriction, noncircular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct

  8. GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 2: User's manual and program listing

    NASA Technical Reports Server (NTRS)

    Bailey, R. T.; Shih, T. I.-P.; Nguyen, H. L.; Roelke, R. J.

    1990-01-01

    An efficient computer program, called GRID2D/3D, was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no

  9. Control system for cheng dual-fluid cycle engine system

    SciTech Connect

    Cheng, D.Y.

    1987-07-21

    A dual-fluid heat engine is described which is operated to produce co-generated process steam having: a chamber; compressor means for introducing a first gaseous working fluid comprising air into the chamber, the compressor means having a predetermined pressure ratio (CPR); means for introducing a second liquid-vapor working fluid comprising water in the form of a vapor within the chamber at a defined water/air working fluid ratio (XMIX); means for heating the water vapor and air in the chamber at a defined specific heat input rate (SHIR); turbine means responsive to the mixture of the first and second working fluids for converting the energy associated with the mixture to mechanical energy, the temperature of the mixture entering the turbine means defining the turbine inlet temperature (TIT) and having a design maximum turbine inlet temperature (TITmax); counterflow heat exchanger means for transferring residual thermal energy from the exhausted mixture of first and second working fluids to the incoming working fluid water to thereby preheat the same to water vapor prior to its introduction within the chamber; means for diverting water vapor from the chamber, if desired, for co-generated process steam; and wherein the improvement comprises: means for operating the engine under partial load conditions such that when substantially no co-generated process steam is required. The engine control path follows a locus of peak efficiency points resulting in declining TIT as the load decreases, and such that XMIX and SHIR are selected so that for a given value of TIT, XMIX is at or near XMIX peak, where XMIX peak occurs when conditions are met simultaneously.

  10. 2D electronic materials for army applications

    NASA Astrophysics Data System (ADS)

    O'Regan, Terrance; Perconti, Philip

    2015-05-01

    The record electronic properties achieved in monolayer graphene and related 2D materials such as molybdenum disulfide and hexagonal boron nitride show promise for revolutionary high-speed and low-power electronic devices. Heterogeneous 2D-stacked materials may create enabling technology for future communication and computation applications to meet soldier requirements. For instance, transparent, flexible and even wearable systems may become feasible. With soldier and squad level electronic power demands increasing, the Army is committed to developing and harnessing graphene-like 2D materials for compact low size-weight-and-power-cost (SWAP-C) systems. This paper will review developments in 2D electronic materials at the Army Research Laboratory over the last five years and discuss directions for future army applications.

  11. Enhancement of biomixing by swimming cells in 2D films

    NASA Astrophysics Data System (ADS)

    Gollub, Jerry; Kurtuldu, Huseyin; Guasto, Jeffrey; Johnson, Karl

    2011-11-01

    Fluid mixing in active suspensions of microorganisms is important to ecological phenomena and shows surprising statistical behavior. We investigate the mixing produced by swimming unicellular algal cells (Chlamydomonas) in quasi-2D films by tracking the motions of cells and of microscopic passive tracer particles advected by the fluid. The reduced spatial dimension of the system leads to long-range flows and a surprisingly strong dependence of tracer transport on the swimmer concentration. The mean square displacements are well described by a stochastic Langevin model, with an effective diffusion coefficient D growing as the 3/2 power of the swimmer concentration, due to the interaction of tracer particles with multiple swimmers. We also discuss the anomalous probability distributions of tracer displacements, which become Gaussian at high concentration, but show strong power-law tails at low concentration. Supported by NSF Grant DMR-0803153.

  12. System proportions fluid-flow in response to demand signals

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Control system provides proportioned fluid flow rates in response to demand signals. It compares a digital signal, representing a flow demand, with a reference signal to yield a control voltage to one or more solenoid valves connected to orifices of a predetermined size.

  13. 2D materials for nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  14. Inertial solvation in femtosecond 2D spectra

    NASA Astrophysics Data System (ADS)

    Hybl, John; Albrecht Ferro, Allison; Farrow, Darcie; Jonas, David

    2001-03-01

    We have used 2D Fourier transform spectroscopy to investigate polar solvation. 2D spectroscopy can reveal molecular lineshapes beneath ensemble averaged spectra and freeze molecular motions to give an undistorted picture of the microscopic dynamics of polar solvation. The transition from "inhomogeneous" to "homogeneous" 2D spectra is governed by both vibrational relaxation and solvent motion. Therefore, the time dependence of the 2D spectrum directly reflects the total response of the solvent-solute system. IR144, a cyanine dye with a dipole moment change upon electronic excitation, was used to probe inertial solvation in methanol and propylene carbonate. Since the static Stokes' shift of IR144 in each of these solvents is similar, differences in the 2D spectra result from solvation dynamics. Initial results indicate that the larger propylene carbonate responds more slowly than methanol, but appear to be inconsistent with rotational estimates of the inertial response. To disentangle intra-molecular vibrations from solvent motion, the 2D spectra of IR144 will be compared to the time-dependent 2D spectra of the structurally related nonpolar cyanine dye HDITCP.

  15. 46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Requirements for miscellaneous fluid power and control...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and...

  16. 46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Requirements for miscellaneous fluid power and control...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and...

  17. 46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Requirements for miscellaneous fluid power and control...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and...

  18. 46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Requirements for miscellaneous fluid power and control...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and...

  19. 46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Requirements for miscellaneous fluid power and control...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and...

  20. Cellular Biotechnology Operations Support System Fluid Dynamics Investigation

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Aboard the International Space Station (ISS), the Tissue Culture Medium (TCM) is the bioreactor vessel in which cell cultures are grown. With its two syringe ports, it is much like a bag used to administer intravenous fluid, except it allows gas exchange needed for life. The TCM contains cell culture medium, and when frozen cells are flown to the ISS, they are thawed and introduced to the TCM through the syringe ports. In the Cellular Biotechnology Operations Support System-Fluid Dynamics Investigation (CBOSS-FDI) experiment, several mixing procedures are being assessed to determine which method achieves the most uniform mixing of growing cells and culture medium.

  1. [A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system].

    PubMed

    Dubousset, Jean; Charpak, Georges; Dorion, Irène; Skalli, Wafa; Lavaste, François; Deguise, Jacques; Kalifa, Gabriel; Ferey, Solène

    2005-02-01

    Close collaboration between multidisciplinary specialists (physicists, biomecanical engineers, medical radiologists and pediatric orthopedic surgeons) has led to the development of a new low-dose radiation device named EOS. EOS has three main advantages: The use of a gaseous X-ray detector, invented by Georges Charpak (Nobel Prizewinner 1992), the dose necessary to obtain a 2D image of the skeletal system has been reduced by 8 to 10 times, while that required to obtain a 3D reconstruction from CT slices has fallen by a factor of 800 to 1000. The accuracy of the 3D reconstruction obtained with EOS is as good as that obtained with CT. The patient is examined in the standing (or seated) position, and is scanned simultaneously from head to feet, both frontally and laterally. This is a major advantage over conventional CT which requires the patient to be placed horizontally. -The 3D reconstructions of each element of the osteo-articular system are as precise as those obtained by conventional CT. EOS is also rapid, taking only 15 to 30 minutes to image the entire spine. PMID:16114859

  2. Theory and realization of a 2D high resolution and high sensitivity SPECT system with an angle-encoding attenuator pattern

    NASA Astrophysics Data System (ADS)

    Feng, Tao; Wang, Jizhe; Tsui, Benjamin M. W.

    2016-04-01

    The camera of the conventional SPECT system requires a collimator to allow incoming photons from a specific range of incident angle to reach the detector. It is the major factor that determines the spatial resolution of the camera. Moreover, it also greatly reduces the number of detected photons and hence increases statistical fluctuations in the acquired image data. The goal of this paper is to propose a theory and design for a novel high resolution and high sensitivity SPECT system without conventional collimators. The key is to resolve the incident photons from all directional angles and detected by every detector bin. Special ‘attenuators’ were designed to ‘encode’ the incoming photons from different directions similar to coded aperture to form projection data for image reconstruction. Each encoded angular pattern of detected photons was recorded as one measurement. Different angular patterns were achieved by changing the configurations of the attenuators so that angular pattern of different measurements or measurement matrix (MM) is invertible, which guarantee a unique reconstructed image. In simulation, the attenuators were fitted on a virtual full-ring gamma camera, as an alternative to the collimators in conventional SPECT systems. To evaluate the performance of the new SPECT system, analytical simulated projection data in 2D scenario were generated from the XCAT phantom. Noisy simulation using 100 noise realizations suggests that the new attenuator design provides much improved image quality in terms of contrast-noise trade-offs (~30% improvement). The results suggest that the new design of using attenuators to replace collimator is feasible and could potentially improve sensitivity without sacrificing resolution in today’s SPECT systems.

  3. Theory and realization of a 2D high resolution and high sensitivity SPECT system with an angle-encoding attenuator pattern.

    PubMed

    Feng, Tao; Wang, Jizhe; Tsui, Benjamin M W

    2016-04-01

    The camera of the conventional SPECT system requires a collimator to allow incoming photons from a specific range of incident angle to reach the detector. It is the major factor that determines the spatial resolution of the camera. Moreover, it also greatly reduces the number of detected photons and hence increases statistical fluctuations in the acquired image data. The goal of this paper is to propose a theory and design for a novel high resolution and high sensitivity SPECT system without conventional collimators. The key is to resolve the incident photons from all directional angles and detected by every detector bin. Special 'attenuators' were designed to 'encode' the incoming photons from different directions similar to coded aperture to form projection data for image reconstruction. Each encoded angular pattern of detected photons was recorded as one measurement. Different angular patterns were achieved by changing the configurations of the attenuators so that angular pattern of different measurements or measurement matrix (MM) is invertible, which guarantee a unique reconstructed image. In simulation, the attenuators were fitted on a virtual full-ring gamma camera, as an alternative to the collimators in conventional SPECT systems. To evaluate the performance of the new SPECT system, analytical simulated projection data in 2D scenario were generated from the XCAT phantom. Noisy simulation using 100 noise realizations suggests that the new attenuator design provides much improved image quality in terms of contrast-noise trade-offs (~30% improvement). The results suggest that the new design of using attenuators to replace collimator is feasible and could potentially improve sensitivity without sacrificing resolution in today's SPECT systems. PMID:26976649

  4. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  5. Internal fluid mechanics research on supercomputers for aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Miller, Brent A.; Anderson, Bernhard H.; Szuch, John R.

    1988-01-01

    The Internal Fluid Mechanics Division of the NASA Lewis Research Center is combining the key elements of computational fluid dynamics, aerothermodynamic experiments, and advanced computational technology to bring internal computational fluid mechanics (ICFM) to a state of practical application for aerospace propulsion systems. The strategies used to achieve this goal are to: (1) pursue an understanding of flow physics, surface heat transfer, and combustion via analysis and fundamental experiments, (2) incorporate improved understanding of these phenomena into verified 3-D CFD codes, and (3) utilize state-of-the-art computational technology to enhance experimental and CFD research. Presented is an overview of the ICFM program in high-speed propulsion, including work in inlets, turbomachinery, and chemical reacting flows. Ongoing efforts to integrate new computer technologies, such as parallel computing and artificial intelligence, into high-speed aeropropulsion research are described.

  6. Code System for Fluid-Structure Interaction Analysis.

    2001-05-30

    Version 00 PELE-IC is a two-dimensional semi-implicit Eulerian hydrodynamics program for the solution of incompressible flow coupled to flexible structures. The code was developed to calculate fluid-structure interactions and bubble dynamics of a pressure-suppression system following a loss-of-coolant accident (LOCA). The fluid, structure, and coupling algorithms have been verified by calculation of benchmark problems and air and steam blowdown experiments. The code is written for both plane and cylindrical coordinates. The coupling algorithm is generalmore » enough to handle a wide variety of structural shapes. The concepts of void fractions and interface orientation are used to track the movement of free surfaces, allowing great versatility in following fluid-gas interfaces both for bubble definition and water surface motion without the use of marker particles.« less

  7. Multifunctional Nanofluids with 2D Nanosheets for thermal management and tribological applications

    NASA Astrophysics Data System (ADS)

    Taha Tijerina, Jose Jaime

    Conventional heat-transfer fluids such as water, ethylene glycol, standard oils and other lubricants are typically low-efficiency heat-transfer fluids. Thermal management plays a critical factor in many applications where these fluids can be used, such as in motors/engines, solar cells, biopharmaceuticals, fuel cells, high voltage power transmission systems, micro/nanoelectronics mechanical systems (MEMS/NEMS), and nuclear cooling among others. These insulating fluids require superb filler dispersion, high thermal conduction, and for certain applications as in electrical/electronic devices also electrical insulation. The miniaturization and high efficiency of electrical/electronic devices in these fields demand successful heat management and energy-efficient fluid-based heat-transfer systems. Recent advances in layered materials enable large scale synthesis of various two-dimensional (2D) structures. Some of these 2D materials are good choices as nanofillers in heat transfer fluids; mainly due to their inherent high thermal conductivity (TC) and high surface area available for thermal energy transport. Among various 2D-nanostructures, hexagonal boron nitride (h-BN) and graphene (G) exhibit versatile properties such as outstanding TC, excellent mechanical stability, and remarkable chemical inertness. The following research, even though investigate various conventional fluids, will focus on dielectric insulating nanofluids (mineral oil -- MO) with significant thermal performance. It is presented the plan for synthesis and characterization of stable high-thermal conductivity nanofluids using 2D-nanostructures of h-BN, which will be further incorporated at diverse filler concentrations to conventional fluids for cooling applications, without compromising its electrical insulating property. For comparison, properties of h-BN based fluids are compared with conductive fillers such as graphene; where graphene has similar crystal structure of h-BN and also has similar bulk

  8. NUBOW-2D Inelastic

    2002-01-31

    This program solves the two-dimensional mechanical equilbrium configuration of a core restraint system, which is subjected to radial temperature and flux gradients, on a time increment basis. At each time increment, the code calculates the irradiation creep and swelling strains for each duct from user-specified creep and swelling correlations. Using the calculated thermal bowing, inelastic bowing and the duct dilation, the corresponding equilibrium forces, beam deflections, total beam displacements, and structural reactivity changes are calculated.

  9. Sustainable fouling management for spacecraft fluid handling systems

    NASA Astrophysics Data System (ADS)

    Thomas, Evan Alexander Beirne

    Current technologies for microgravity fluid management utilize centripetal acceleration or capillary action to separate liquids from gases without gravity buoyancy. Centripetal acceleration hardware is prone to failure from fouling, while capillary technologies have only been utilized in favorable wetting environments, wherein the contact angle of the liquid, Qadv, a key design parameter, is reliably low. In this work, the impact of wastewater fouling on Qadv, is characterized, and the results applied to the development of a capillary static phase separator. Mean wastewater Qadv, on clean surfaces are between ≈78° and ≈89° on hydrophilic surfaces, and up to over ≈105° on hydrophobic surfaces. Small crystalline growth on the order of 10microm can lower advancing contact angles Qadv, by approximately 30°, while biofilm growth can lower them by approximately 15o. Vacuum drying of fouled surfaces increased Qadv, by about 8°, and defects greater in height than 5% of the capillary length increased Qadv, by approximately 30°. Interestingly, the promotion of wastewater fouling may even improve the performance of capillary dependent fluid management systems, and designs attempting to exploit wastewater wetting must account for highly variable wetting conditions. Reduced gravity flight tests demonstrated a static phase separator that achieved nearly 100% separation of gas from fluids with widely varying Qadv. The system uses centrifugal force to coalesce droplets via a circular path; collects bulk fluid via capillary geometries (wetting) or air drag (non-wetting); and contains bulk fluid by capillary force; while minimizing liquid carryover into the air stream by pinning edges (wetting) or tortuous path (non-wetting). Instead of attempting to prevent or reduce wastewater fouling, sustainable fluid management systems can be designed to accommodate fouling. For example, a lunar outpost water recovery system could be encouraged to foul regolith media and form

  10. A gun recoil system employing a magnetorheological fluid damper

    NASA Astrophysics Data System (ADS)

    Li, Z. C.; Wang, J.

    2012-10-01

    This research aims to design and control a full scale gun recoil buffering system which works under real firing impact loading conditions. A conventional gun recoil absorber is replaced with a controllable magnetorheological (MR) fluid damper. Through dynamic analysis of the gun recoil system, a theoretical model for optimal design and control of the MR fluid damper for impact loadings is derived. The optimal displacement, velocity and optimal design rules are obtained. By applying the optimal design theory to protect against impact loadings, an MR fluid damper for a full scale gun recoil system is designed and manufactured. An experimental study is carried out on a firing test rig which consists of a 30 mm caliber, multi-action automatic gun with an MR damper mounted to the fixed base through a sliding guide. Experimental buffering results under passive control and optimal control are obtained. By comparison, optimal control is better than passive control, because it produces smaller variation in the recoil force while achieving less displacement of the recoil body. The optimal control strategy presented in this paper is open-loop with no feedback system needed. This means that the control process is sensor-free. This is a great benefit for a buffering system under impact loading, especially for a gun recoil system which usually works in a harsh environment.

  11. Impact of advanced fluids on costs of district cooling systems

    SciTech Connect

    Choi, U.S. ); France, D.M.; Knodel, B.D. Illinois Univ., Chicago, IL . Dept. of Mechanical Engineering)

    1992-01-01

    Three alternate fluids, ice-water slurry, friction reduction additive and the combination of them, have been compared for use in District Cooling Systems (DCS). The effect of the fluids on cost and cooling capacities were considered for the two cases of new and existing DCS separately. Two criteria were used in comparisons among fluids in each case: constant pumping power which allows for the most benefit, and constant velocity which is more practical consideration. An economic assessment for a 500 ton system shows a potential cost difference in the total pipe cost for a new system of 70% when a 30% ice slurry is used in place of chilled water. The pipe diameter is reduced to 40% using the slurry. These results apply to the constant comparison and are independent of the use of additive. Friction reduction additives serve to reduce pumping power and pressure drop. The ice-water slurry also has a significant impact on existing district cooling systems. It can potentially expand the cooling capacity by 500% without new piping being installed while maintaining the same pumping power, velocity and pressure-drop as the chilled water system. Again, friction reduction additives serve to reduce pumping power and pressure-drop. They do not influence cooling capacity. The cost for expanding the piping to increase the cooling capacity by the same amount by the use of conventional district cooling technology has been shown to be extremely high compared to the ice-water slurry system.

  12. Impact of advanced fluids on costs of district cooling systems

    SciTech Connect

    Choi, U.S.; France, D.M.; Knodel, B.D. |

    1992-07-01

    Three alternate fluids, ice-water slurry, friction reduction additive and the combination of them, have been compared for use in District Cooling Systems (DCS). The effect of the fluids on cost and cooling capacities were considered for the two cases of new and existing DCS separately. Two criteria were used in comparisons among fluids in each case: constant pumping power which allows for the most benefit, and constant velocity which is more practical consideration. An economic assessment for a 500 ton system shows a potential cost difference in the total pipe cost for a new system of 70% when a 30% ice slurry is used in place of chilled water. The pipe diameter is reduced to 40% using the slurry. These results apply to the constant comparison and are independent of the use of additive. Friction reduction additives serve to reduce pumping power and pressure drop. The ice-water slurry also has a significant impact on existing district cooling systems. It can potentially expand the cooling capacity by 500% without new piping being installed while maintaining the same pumping power, velocity and pressure-drop as the chilled water system. Again, friction reduction additives serve to reduce pumping power and pressure-drop. They do not influence cooling capacity. The cost for expanding the piping to increase the cooling capacity by the same amount by the use of conventional district cooling technology has been shown to be extremely high compared to the ice-water slurry system.

  13. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  14. A System for True and False Memory Prediction Based on 2D and 3D Educational Contents and EEG Brain Signals.

    PubMed

    Bamatraf, Saeed; Hussain, Muhammad; Aboalsamh, Hatim; Qazi, Emad-Ul-Haq; Malik, Amir Saeed; Amin, Hafeez Ullah; Mathkour, Hassan; Muhammad, Ghulam; Imran, Hafiz Muhammad

    2016-01-01

    We studied the impact of 2D and 3D educational contents on learning and memory recall using electroencephalography (EEG) brain signals. For this purpose, we adopted a classification approach that predicts true and false memories in case of both short term memory (STM) and long term memory (LTM) and helps to decide whether there is a difference between the impact of 2D and 3D educational contents. In this approach, EEG brain signals are converted into topomaps and then discriminative features are extracted from them and finally support vector machine (SVM) which is employed to predict brain states. For data collection, half of sixty-eight healthy individuals watched the learning material in 2D format whereas the rest watched the same material in 3D format. After learning task, memory recall tasks were performed after 30 minutes (STM) and two months (LTM), and EEG signals were recorded. In case of STM, 97.5% prediction accuracy was achieved for 3D and 96.6% for 2D and, in case of LTM, it was 100% for both 2D and 3D. The statistical analysis of the results suggested that for learning and memory recall both 2D and 3D materials do not have much difference in case of STM and LTM. PMID:26819593

  15. A System for True and False Memory Prediction Based on 2D and 3D Educational Contents and EEG Brain Signals

    PubMed Central

    2016-01-01

    We studied the impact of 2D and 3D educational contents on learning and memory recall using electroencephalography (EEG) brain signals. For this purpose, we adopted a classification approach that predicts true and false memories in case of both short term memory (STM) and long term memory (LTM) and helps to decide whether there is a difference between the impact of 2D and 3D educational contents. In this approach, EEG brain signals are converted into topomaps and then discriminative features are extracted from them and finally support vector machine (SVM) which is employed to predict brain states. For data collection, half of sixty-eight healthy individuals watched the learning material in 2D format whereas the rest watched the same material in 3D format. After learning task, memory recall tasks were performed after 30 minutes (STM) and two months (LTM), and EEG signals were recorded. In case of STM, 97.5% prediction accuracy was achieved for 3D and 96.6% for 2D and, in case of LTM, it was 100% for both 2D and 3D. The statistical analysis of the results suggested that for learning and memory recall both 2D and 3D materials do not have much difference in case of STM and LTM. PMID:26819593

  16. State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems

    NASA Astrophysics Data System (ADS)

    Lyczkowski, R. W.; Bouillard, J. X.; Ding, J.; Chang, S. L.; Burge, S. W.

    1994-05-01

    As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBR's) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBR's and pneumatic and slurry components are computed by ANL's EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre- and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale, and biomass as energy sources; to retain energy security; and to remediate waste and ecological problems.

  17. Investigation of 2D photonic crystal structure based channel drop filter using quad shaped photonic crystal ring resonator for CWDM system

    NASA Astrophysics Data System (ADS)

    Chhipa, Mayur Kumar; Dusad, Lalit Kumar

    2016-05-01

    In this paper, the design & performance of two dimensional (2-D) photonic crystal structure based channel drop filter is investigated using quad shaped photonic crystal ring resonator. In this paper, Photonic Crystal (PhC) based on square lattice periodic arrays of Gallium Indium Phosphide (GaInP) rods in air structure have been investigated using Finite Difference Time Domain (FDTD) method and photonic band gap is being calculated using Plane Wave Expansion (PWE) method. The PhC designs have been optimized for telecommunication wavelength λ= 1571 nm by varying the rods lattice constant. The number of rods in Z and X directions is 21 and 20, with lattice constant 0.540 nm it illustrates that the arrangement of Gallium Indium Phosphide (GaInP) rods in the structure which gives the overall size of the device around 11.4 µm × 10.8 µm. The designed filter gives good dropping efficiency using 3.298, refractive index. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm2.

  18. An annotation system for 3D fluid flow visualization

    NASA Technical Reports Server (NTRS)

    Loughlin, Maria M.; Hughes, John F.

    1995-01-01

    Annotation is a key activity of data analysis. However, current systems for data analysis focus almost exclusively on visualization. We propose a system which integrates annotations into a visualization system. Annotations are embedded in 3D data space, using the Post-it metaphor. This embedding allows contextual-based information storage and retrieval, and facilitates information sharing in collaborative environments. We provide a traditional database filter and a Magic Lens filter to create specialized views of the data. The system has been customized for fluid flow applications, with features which allow users to store parameters of visualization tools and sketch 3D volumes.

  19. 14 CFR 23.1099 - Carburetor deicing fluid system detail design.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor deicing fluid system detail... Powerplant Induction System § 23.1099 Carburetor deicing fluid system detail design. Each carburetor deicing fluid system must meet the applicable requirements for the design of a fuel system, except as...

  20. 14 CFR 23.1099 - Carburetor deicing fluid system detail design.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor deicing fluid system detail... Powerplant Induction System § 23.1099 Carburetor deicing fluid system detail design. Each carburetor deicing fluid system must meet the applicable requirements for the design of a fuel system, except as...

  1. 14 CFR 23.1099 - Carburetor deicing fluid system detail design.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor deicing fluid system detail... Powerplant Induction System § 23.1099 Carburetor deicing fluid system detail design. Each carburetor deicing fluid system must meet the applicable requirements for the design of a fuel system, except as...

  2. 14 CFR 23.1099 - Carburetor deicing fluid system detail design.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor deicing fluid system detail... Powerplant Induction System § 23.1099 Carburetor deicing fluid system detail design. Each carburetor deicing fluid system must meet the applicable requirements for the design of a fuel system, except as...

  3. 14 CFR 23.1099 - Carburetor deicing fluid system detail design.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor deicing fluid system detail... Powerplant Induction System § 23.1099 Carburetor deicing fluid system detail design. Each carburetor deicing fluid system must meet the applicable requirements for the design of a fuel system, except as...

  4. Autoradiographic localization of delta opioid receptors within the mesocorticolimbic dopamine system using radioiodinated (2-D-penicillamine, 5-D-penicillamine)enkephalin ( sup 125 I-DPDPE)

    SciTech Connect

    Dilts, R.P.; Kalivas, P.W. )

    1990-01-01

    The enkephalin analog (2-D-penicillamine, 5-D-penicillamine)enkephalin was radioiodinated (125I-DPDPE) and shown to retain a pharmacological selectivity characteristic of the delta opioid receptor in in vitro binding studies. The distributions of 125I-DPDPE binding, using in vitro autoradiographic techniques, were similar to those previously reported for the delta opioid receptor. The nucleus accumbens, striatum, and medial prefrontal cortex contain dense gradients of 125I-DPDPE binding in regions known to receive dopaminergic afferents emanating from the mesencephalic tegmentum. Selective chemical lesions of the ventral tegmental area and substantia nigra were employed to deduce the location of the 125I-DPDPE binding within particular regions of the mesocorticolimbic dopamine system. Unilateral lesions of dopamine perikarya (A9 and A10) within the ventral tegmental area and substantia nigra produced by mesencephalic injection of 6-hydroxydopamine resulted in significant (20-30%) increases in 125I-DPDPE binding contralateral to the lesion within the striatum and nucleus accumbens. Lesions of the perikarya (dopaminergic and nondopaminergic) of the ventral tegmental area, induced by quinolinic acid injections, caused increases of less magnitude within these same nuclei. No significant alterations in 125I-DPDPE binding were observed within the mesencephalon as a result of either treatment. The specificity of the lesions was confirmed by immunocytochemistry for tyrosine hydroxylase. These results suggest that the enkephalins and opioid agonists acting through delta opioid receptors do not directly modulate dopaminergic afferents but do regulate postsynaptic targets of the mesocorticolimbic dopamine system.

  5. Investigations of ammonia-secondary fluid systems in supermarket refrigeration systems

    SciTech Connect

    McDowell, T.P.; Mitchell, J.W.; Klein, S.A.

    1995-12-31

    International agreements have legislated the phaseout of many refrigerants, including R-502 and R-12, which are commonly used in supermarket refrigeration systems. R-22 and ammonia (R-717) are candidate replacement refrigerants having appropriate thermodynamic properties. The toxicity of ammonia at low concentrations required that it be confined to the equipment room, so a secondary fluid is needed to distribute cooling to the refrigerated cases. This paper investigates ammonia-secondary fluid systems and compares their performance with equivalent R-22 systems. Both R-22 and ammonia have high compressor discharge temperatures, necessitating staged compression. Three methods of staging the compression were compared for both refrigerants. Six secondary fluids were evaluated for use with ammonia in the supermarket system. The overall system performance of the ammonia-secondary fluid refrigeration system, including both compressor and secondary fluid pump power, is governed by a large set of design parameters. The influence of these parameters on the overall system performance was studied in a systematic manner. From this parametric study, design rules leading to optimal ammonia-secondary fluid systems were developed. The performance of well-designed ammonia-secondary fluid systems was found to be 4% to 10% lower than that of R-22 systems operating under similar conditions.

  6. An electro-fluid-dynamic simulator for the cardiovascular system.

    PubMed

    Felipini, Celso Luiz; de Andrade, Aron José Pazin; Lucchi, Júlio César; da Fonseca, Jeison Willian Gomes; Nicolosi, Denys

    2008-04-01

    This work presents the initial studies and the proposal for a cardiovascular system electro-fluid-dynamic simulator to be applied in the development of left ventricular assist devices (LVADs). The simulator, which is being developed at University Sao Judas Tadeu and at Institute Dante Pazzanese of Cardiology, is composed of three modules: (i) an electrical analog model of the cardiovascular system operating in the PSpice electrical simulator environment; (ii) an electronic controller, based on laboratory virtual instrumentation engineering workbench (LabVIEW) acquisition and control tool, which will act over the physical simulator; and (iii) the physical simulator: a fluid-dynamic equipment composed of pneumatic actuators and compliance tubes for the simulation of active cardiac chambers and big vessels. The physical simulator (iii) is based on results obtained from the electrical analog model (i) and physiological parameters. PMID:18370952

  7. Mechanized fluid connector and assembly tool system with ball detents

    NASA Technical Reports Server (NTRS)

    Zentner, Ronald C. (Inventor); Smith, Steven A. (Inventor)

    1991-01-01

    A fluid connector system is disclosed which includes a modified plumbing union having a rotatable member for drawing said union into a fluid tight condition. A drive tool is electric motor actuated and includes a reduction gear train providing an output gear engaging an integral peripheral spur gear on the rotatable member. Coaxial alignment means are attached to both the connector assembly and the drive tool. A hand lever actuated latching system includes a plurality of circumferentially spaced latching balls selectively wedged against the alignment means attached to the connector assembly or to secure the drive tool with its output gear in mesh with the integral peripheral spur gear. The drive motor is torque, speed, and direction controllable.

  8. STEALTH - a Lagrange explicit finite-difference code for solid, structural, and thermohydraulic analysis. Volume 8A: STEALTH/WHAMSE - a 2-D fluid-structure interaction code. Computer code manual

    SciTech Connect

    Gross, M.B.

    1984-10-01

    STEALTH is a family of computer codes that can be used to calculate a variety of physical processes in which the dynamic behavior of a continuum is involved. The version of STEALTH described in this volume is designed for calculations of fluid-structure interaction. This version of the program consists of a hydrodynamic version of STEALTH which has been coupled to a finite-element code, WHAMSE. STEALTH computes the transient response of the fluid continuum, while WHAMSE computes the transient response of shell and beam structures under external fluid loadings. The coupling between STEALTH and WHAMSE is performed during each cycle or step of a calculation. Separate calculations of fluid response and structural response are avoided, thereby giving a more accurate model of the dynamic coupling between fluid and structure. This volume provides the theoretical background, the finite-difference equations, the finite-element equations, a discussion of several sample problems, a listing of the input decks for the sample problems, a programmer's manual and a description of the input records for the STEALTH/WHAMSE computer program.

  9. Fluid flow processes in the Beppu geothermal system, Japan

    SciTech Connect

    Allis, R.G. ); Yusa, Y. )

    1989-01-01

    This paper reports on the Beppu geothermal system, centered beneath the late Quaternary volcanoes of Tsurumi and Garandake at the northern end of the Ryukyu volcanic arc. The deep fluid has a temperature of at least 250--300{degrees} C, and an inferred chloride concentration of 1400--1600 mg/kg. Apart from fumarolic areas near the summits of the two volcanoes, most thermal activity occurs at low elevation along the two main outflow paths towards the coast. The hot spring waters of downtown Beppu have originated from outflow along the Asamigawa Fault, with their chemistry indicating predominantly dilution of the deep fluid by groundwater. The second outflow zone towards the hot spring area of downtown Kamegawa coincides with a ridge of lavas. Here boiling, steam loss, and subsequent mixing with steam-heated groundwaters have significantly modified both the deep fluid and host rocks. The area of the geothermal system above 200{degrees} C is at least 15 km{sup 2} at sea level, and the total natural heat output is inferred to be at least 250 MW. Most of this heat output occurs as subsurface hot water outflows towards the coast due to the 1300 m of topographic relief across the system.

  10. Fluid technology (selected components, devices, and systems): A compilation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Developments in fluid technology and hydraulic equipment are presented. The subjects considered are: (1) the use of fluids in the operation of switches, amplifiers, and servo devices, (2) devices and data for laboratory use in the study of fluid dynamics, and (3) the use of fluids as controls and certain methods of controlling fluids.

  11. Synthesis and characterization of a new metal organic framework structure with a 2D porous system: (H 2NEt 2) 2[Zn 3(BDC) 4]ṡ3DEF

    NASA Astrophysics Data System (ADS)

    Biemmi, Enrica; Bein, Thomas; Stock, Norbert

    2006-03-01

    A new open-framework zinc terephthalate (H 2NEt 2) 2[Zn 3(BDC) 4]ṡ3DEF (BDC = 1,4-benzendicarboxylate, DEF=N,N-diethylformamide) was obtained under slightly acidic condition by reacting 1,4-benzendicarboxylic acid (H 2BDC) with ZnO in a DEF solution. The structure was obtained by single crystal X-ray diffraction and consists of trimetallic zinc building units, that are interconnected by eight BDC units each (crystal data: monoclinic, C2/c, a=3337.24(5), b=983.17(2), c=1819.67(2) pm, β=92.455(1, V=5965.0(2)×10 pm, Z=4, R=0.0395, wR=0.0843 for 4533 reflections I>2σ(I)). Six BDC ions together with the trimetallic zinc units form a two-dimensional (3,6)-net while the other two BDC unit pillar these layers. Thus a three-dimensional anionic framework with a 2D pore system is formed. The pore space is occupied by solvent molecules (DEF) and diethylammonium ions, produced by in situ hydrolysis of DEF. These are interconnected as well as connected to the framework by hydrogen-bonds. The TG investigation in combination with powder X-ray diffraction and vibrational-spectroscopy show a two-step loss of the pore filling molecules as well as one H 2BDC molecule leading to crystalline phases which are stable up to 250 and 400 °C, respectively. In addition, 13C MAS-NMR data of the title compound is presented.

  12. Network Flow Simulation of Fluid Transients in Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, Alak; Hamill, Brian; Ramachandran, Narayanan; Majumdar, Alok

    2011-01-01

    Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicle propulsion systems. These transients often occur at system activation and shutdown. The pressure rise due to sudden opening and closing of valves of propulsion feed lines can cause serious damage during activation and shutdown of propulsion systems. During activation (valve opening) and shutdown (valve closing), pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. In the current work, a network flow simulation software (Generalized Fluid System Simulation Program) based on Finite Volume Method has been used to predict the pressure surges in the feed line due to both valve closing and valve opening using two separate geometrical configurations. The valve opening pressure surge results are compared with experimental data available in the literature and the numerical results compared very well within reasonable accuracy (< 5%) for a wide range of inlet-to-initial pressure ratios. A Fast Fourier Transform is preformed on the pressure oscillations to predict the various modal frequencies of the pressure wave. The shutdown problem, i.e. valve closing problem, the simulation results are compared with the results of Method of Characteristics. Most rocket engines experience a longitudinal acceleration, known as "pogo" during the later stage of engine burn. In the shutdown example problem, an accumulator has been used in the feed system to demonstrate the "pogo" mitigation effects in the feed system of propellant. The simulation results using GFSSP compared very well with the results of Method of Characteristics.

  13. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  14. 2D microwave imaging reflectometer electronics

    NASA Astrophysics Data System (ADS)

    Spear, A. G.; Domier, C. W.; Hu, X.; Muscatello, C. M.; Ren, X.; Tobias, B. J.; Luhmann, N. C.

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  15. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program. PMID:25430247

  16. Microgravity fluid management requirements of advanced solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Migra, Robert P.

    1987-01-01

    The advanced solar dynamic system (ASDS) program is aimed at developing the technology for highly efficient, lightweight space power systems. The approach is to evaluate Stirling, Brayton and liquid metal Rankine power conversion systems (PCS) over the temperature range of 1025 to 1400K, identify the critical technologies and develop these technologies. Microgravity fluid management technology is required in several areas of this program, namely, thermal energy storage (TES), heat pipe applications and liquid metal, two phase flow Rankine systems. Utilization of the heat of fusion of phase change materials offers potential for smaller, lighter TES systems. The candidate TES materials exhibit large volume change with the phase change. The heat pipe is an energy dense heat transfer device. A high temperature application may transfer heat from the solar receiver to the PCS working fluid and/or TES. A low temperature application may transfer waste heat from the PCS to the radiator. The liquid metal Rankine PCS requires management of the boiling/condensing process typical of two phase flow systems.

  17. AnisWave 2D

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  18. Nonlinear dynamics of fluid-structure systems. Annual technical report

    SciTech Connect

    Moon, F.C.; Muntean, G.

    1994-01-01

    We are investigating the nonlinear dynamics of a row of cylindrical tubes excited by the cross flow of fluid. Both experimental and analytical/numerical studies have been conducted. The goal of this research is to look for low dimensional dynamic models in flow- induced vibrations using modern methods of dynamical systems and chaos theory. The experimental study uses a 25 cm {times} 25 cm wind tunnel with flow velocity in the range of 15 m/sec. The use of a wind tunnel to explore dynamic phenomenon compliments the work of Chen at Argonne National Laboratory who also is conducting experiments with a water tunnel. The principal nonlinearities studies are impact constraints due to gaps in the cylinder supports and nonlinear fluid forces.

  19. Method, apparatus and system for controlling fluid flow

    DOEpatents

    McMurtrey, Ryan D.; Ginosar, Daniel M.; Burch, Joesph V.

    2007-10-30

    A system, apparatus and method of controlling the flow of a fluid are provided. In accordance with one embodiment of the present invention, a flow control device includes a valve having a flow path defined therethrough and a valve seat in communication with the flow path with a valve stem disposed in the valve seat. The valve stem and valve seat are cooperatively configured to cause mutual relative linear displacement thereof in response to rotation of the valve stem. A gear member is coupled with the rotary stem and a linear positioning member includes a portion which complementarily engages the gear member. Upon displacement of the linear positioning member along a first axis, the gear member and rotary valve stem are rotated about a second axis and the valve stem and valve seat are mutually linearly displaced to alter the flow of fluid through the valve.

  20. Quick-Disconnect Valves For Modular Fluid Systems

    NASA Technical Reports Server (NTRS)

    Fluger, Charles; Rexer, Rudolf; Roebelen, George J.; Green, John B., Jr.

    1988-01-01

    Maintainable valves being developed for use as interfaces between modules or other separable components in maintainable fluid systems. Pair of valves joins two plumbing subsystems, connected to or disconnected from each other and enabling either or both to be isolated upon disconnection. Relief valve built into cartridge of maintainable valve, cartridge removes for replacement or inspection. New valves designed for temperature-regulating equipment aboard space station, used with or without modifications in variety of liquid and low-pressure-gas systems on Earth.

  1. CYP2D6 and CYP2C19 genotypes of patients with terodiline cardiotoxicity identified through the yellow card system

    PubMed Central

    Ford, Gary A; Wood, Susan M; Daly, Ann K

    2000-01-01

    Aims Terodiline has concentration dependent QT prolonging effects and thus the potential for cardiotoxicity. Pharmacogenetic variation in terodiline metabolism could be responsible for cardiotoxicity. We sought to determine whether CYP2D6 (debrisoquine hydroxylase) or CYP2C19 (S-mephenytoin hydroxylase) status is a risk factor for terodiline cardiotoxicity. Methods Using the UK Yellow Card scheme to identify patients, blood samples were obtained from eight patients who survived ventricular tachycardia or torsades de pointes suspected to be due to terodiline, for determination of CYP2D6 and CYP2C19 genotypes. Genotype prevalence was compared with that in published general population groups. Results One patient was a CYP2D6 poor metaboliser (CYP2D6*4 homozygous) and a second was heterozygous for CYP2D6*4, a slightly lower frequency for these genotypes compared with the general population (P = 0.31). In the case of CYP2C19, one patient was a poor metaboliser and four were heterozygous for the variant CYP2C19*2 allele, compared with general population frequencies of 2% and 23%, respectively (P = 0.035). Conclusions These findings suggest that debrisoquine poor metaboliser status is not primarily responsible for terodiline cardiotoxicity. However, possession of the CYP2C19*2 allele appears to contribute to adverse cardiac reactions to terodiline. The present study demonstrates the feasibility of using spontaneous adverse drug reaction reporting schemes to determine the contribution of genotype for metabolizing enzymes to uncommon adverse drug reactions. PMID:10886124

  2. An intelligent data acquisition system for fluid mechanics research

    NASA Technical Reports Server (NTRS)

    Cantwell, E. R.; Zilliac, G.; Fukunishi, Y.

    1989-01-01

    This paper describes a novel data acquisition system for use with wind-tunnel probe-based measurements, which incorporates a degree of specific fluid dynamics knowledge into a simple expert system-like control program. The concept was developed with a rudimentary expert system coupled to a probe positioning mechanism operating in a small-scale research wind tunnel. The software consisted of two basic elements, a general-purpose data acquisition system and the rulebased control element to take and analyze data and supplying decisions as to where to measure, how many data points to take, and when to stop. The system was validated in an experiment involving a vortical flow field, showing that it was possible to increase the resolution of the experiment or, alternatively, reduce the total number of data points required, to achieve parity with the results of most conventional data acquisition approaches.

  3. Analysis of Direct Samples of Early Solar System Aqueous Fluids

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Bodnar, R J.; Fedele, L.; Yurimoto,H.; Itoh, S.; Fries, M.; Steele, A.

    2012-01-01

    Over the past three decades we have become increasingly aware of the fundamental importance of water, and aqueous alteration, on primitive solar-system bodies. Some carbonaceous and ordinary chondrites have been altered by interactions with liquid water within the first 10 million years after formation of their parent asteroids. Millimeter to centimeter-sized aggregates of purple halite containing aqueous fluid inclusions were found in the matrix of two freshly-fallen brecciated H chondrite falls, Monahans (1998, hereafter simply "Monahans") (H5) and Zag (H3-6) (Zolensky et al., 1999; Whitby et al., 2000; Bogard et al., 2001) In order to understand origin and evolution of the aqueous fluids inside these inclusions we much measure the actual fluid composition, and also learn the O and H isotopic composition of the water. It has taken a decade for laboratory analytical techniques to catch up to these particular nanomole-sized aqueous samples. We have recently been successful in (1) measuring the isotopic composition of H and O in the water in a few fluid inclusions from the Zag and Monahans halite, (2) mineralogical characterization of the solid mineral phases associated with the aqueous fluids within the halite, and (3) the first minor element analyses of the fluid itself. A Cameca ims-1270 equipped with a cryo-sample-stage of Hokkaido University was specially prepared for the O and H isotopic measurements. The cryo-sample-stage (Techno. I. S. Corp.) was cooled down to c.a. -190 C using liquid nitrogen at which the aqueous fluid in inclusions was frozen. We excavated the salt crystal surfaces to expose the frozen fluids using a 15 keV Cs+ beam and measured negative secondary ions. The secondary ions from deep craters of approximately 10 m in depth emitted stably but the intensities changed gradually during measurement cycles because of shifting states of charge compensation, resulting in rather poor reproducibility of multiple measurements of standard fluid

  4. 21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lecithin/sphingomyelin ratio in amniotic fluid... Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system. (a) Identification. A lecithin/sphingomyelin ratio in amniotic fluid test system is a device intended to measure...

  5. 21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lecithin/sphingomyelin ratio in amniotic fluid... Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system. (a) Identification. A lecithin/sphingomyelin ratio in amniotic fluid test system is a device intended to measure...

  6. 21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lecithin/sphingomyelin ratio in amniotic fluid... Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system. (a) Identification. A lecithin/sphingomyelin ratio in amniotic fluid test system is a device intended to measure...

  7. 21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lecithin/sphingomyelin ratio in amniotic fluid... Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system. (a) Identification. A lecithin/sphingomyelin ratio in amniotic fluid test system is a device intended to measure...

  8. 21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lecithin/sphingomyelin ratio in amniotic fluid... Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system. (a) Identification. A lecithin/sphingomyelin ratio in amniotic fluid test system is a device intended to measure...

  9. Modeling interfacial area transport in multi-fluid systems

    SciTech Connect

    Yarbro, S.L.

    1996-11-01

    Many typical chemical engineering operations are multi-fluid systems. They are carried out in distillation columns (vapor/liquid), liquid-liquid contactors (liquid/liquid) and other similar devices. An important parameter is interfacial area concentration, which determines the rate of interfluid heat, mass and momentum transfer and ultimately, the overall performance of the equipment. In many cases, the models for determining interfacial area concentration are empirical and can only describe the cases for which there is experimental data. In an effort to understand multiphase reactors and the mixing process better, a multi-fluid model has been developed as part of a research effort to calculate interfacial area transport in several different types of in-line static mixers. For this work, the ensemble-averaged property conservation equations have been derived for each fluid and for the mixture. These equations were then combined to derive a transport equation for the interfacial area concentration. The final, one-dimensional model was compared to interfacial area concentration data from two sizes of Kenics in-line mixer, two sizes of concurrent jet and a Tee mixer. In all cases, the calculated and experimental data compared well with the highest scatter being with the Tee mixer comparison.

  10. Measurement of 2D birefringence distribution

    NASA Astrophysics Data System (ADS)

    Noguchi, Masato; Ishikawa, Tsuyoshi; Ohno, Masahiro; Tachihara, Satoru

    1992-10-01

    A new measuring method of 2-D birefringence distribution has been developed. It has not been an easy job to get a birefringence distribution in an optical element with conventional ellipsometry because of its lack of scanning means. Finding an analogy between the rotating analyzer method in ellipsometry and the phase-shifting method in recently developed digital interferometry, we have applied the phase-shifting algorithm to ellipsometry, and have developed a new method that makes the measurement of 2-D birefringence distribution easy and possible. The system contains few moving parts, assuring reliability, and measures a large area of a sample at one time, making the measuring time very short.

  11. A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds

    SciTech Connect

    Li, Tingwen; Zhang, Yongmin

    2013-10-11

    Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.

  12. 2D Raman correlation analysis of formation mechanism of passivating film on overcharged LiCoO2 electrode with additive system

    NASA Astrophysics Data System (ADS)

    Park, Yeonju; Shin, Su Hyun; Lee, Sung Man; Kim, Sung Phil; Choi, Hyun Chul; Jung, Young Mee

    2014-07-01

    The effect of vinylene carbonate (VC) as solid electrolyte interface (SEI)-forming additive on the electrochemical performance of the LiCoO2 cathode was investigated by galvanostatic charge-discharge testing as well as Raman and 2D correlation spectroscopy. It was found that VC-containing electrolyte has a positive effect on capacity fading. An analysis of the 2D Raman correlation spectra suggested that even though the same SEI components (i.e., Co3O4 and Li2O) are produced on the cathode surface, the electrochemical reaction kinetics in the cathode/electrolyte interface differ according to the non-use or use of VC: in the latter case, formation of the SEI components is delayed.

  13. High-efficiency exfoliation of layered materials into 2D nanosheets in switchable CO2/Surfactant/H2O system

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Xu, Qun; Xu, Shanshan; Qi, Yuhang; Chen, Meng; Li, Hongxiang; Han, Buxing

    2015-11-01

    Layered materials present attractive and important properties due to their two-dimensional (2D) structure, allowing potential applications including electronics, optoelectronics, and catalysis. However, fully exploiting the outstanding properties will require a method for their efficient exfoliation. Here we present that a series of layered materials can be successfully exfoliated into single- and few-layer nanosheets using the driving forces coming from the phase inversion, i.e., from micelles to reverse micelles in the emulsion microenvironment built by supercritical carbon dioxide (SC CO2). The effect of variable experimental parameters including CO2 pressure, ethanol/water ratio, and initial concentration of bulk materials on the exfoliation yield have been investigated. Moreover, we demonstrate that the exfoliated 2D nanosheets have their worthwhile applications, for example, graphene can be used to prepare conductive paper, MoS2 can be used as fluorescent label to perform cellular labelling, and BN can effectively reinforce polymers leading to the promising mechanical properties.

  14. Design of Advanced Photocatalysis System by Adatom Decoration in 2D Nanosheets of Group-IV and III–V Binary Compounds

    PubMed Central

    Jin, Hao; Dai, Ying; Huang, Bai-Biao

    2016-01-01

    Searching for novel photocatalysts is one of the most important topic in photocatalytic fields. In the present work, we propose a feasible approach to improve the photocatalytic activities of 2D bilayers through surface decoration, i.e. hydrogenation, halogenation, and hydroxylation. Our investigations demonstrate that after surface modification, the optical adsorption expands into the visible region, while a built-in electric field is induced due to the interlayer coupling, which can promote the charge separation for photogenerated electron-hole pairs. Our results show that the indirect-direct band gap transition of SiC, SnC, BN and GaN can be realised through adatom decoration. Furthermore, the surface-modified 2D bilayers have suitable VBM and CBM alignments with the oxidation and reduction potentials for water splitting, suggesting powerful potentials in energy and environmental applications. PMID:26983908

  15. Design of Advanced Photocatalysis System by Adatom Decoration in 2D Nanosheets of Group-IV and III–V Binary Compounds

    NASA Astrophysics Data System (ADS)

    Jin, Hao; Dai, Ying; Huang, Bai-Biao

    2016-03-01

    Searching for novel photocatalysts is one of the most important topic in photocatalytic fields. In the present work, we propose a feasible approach to improve the photocatalytic activities of 2D bilayers through surface decoration, i.e. hydrogenation, halogenation, and hydroxylation. Our investigations demonstrate that after surface modification, the optical adsorption expands into the visible region, while a built-in electric field is induced due to the interlayer coupling, which can promote the charge separation for photogenerated electron-hole pairs. Our results show that the indirect-direct band gap transition of SiC, SnC, BN and GaN can be realised through adatom decoration. Furthermore, the surface-modified 2D bilayers have suitable VBM and CBM alignments with the oxidation and reduction potentials for water splitting, suggesting powerful potentials in energy and environmental applications.

  16. Study of Fluid Cooling Loop System in Chinese Manned Spacecraft

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Xu, Jiwan; Fan, Hanlin; Huang, Jiarong

    2002-01-01

    change. To solve the questions, a fluid cooling loop system must be applied to Chinese manned spacecraft besides other conventional thermal control methods, such as thermal control coatings, multiplayer insulation blankets, heat pipes, electro-heating adjustment temperature devices, and so on. The paper will introduce the thermal design of inner and outer fluid loop including their constitution and fundamental, etc. The capability of heat transportation and the accuracy of control temperature for the fluid loop will be evaluated and analyzed. To insure the air temperature of sealed cabins within 21+/-4, the inlet liquid temperature of condensing heat exchanger needs to be controlled within 9+/-2. To insure this, the inlet liquid temperature of middle heat exchanger needs to be controlled within 8+/-1.8. The inlet temperature point is controlled by a subsidiary loop adjusting: when the computer receives feedbacks of the deviation and the variety rate of deviation from the controlled temperature point. It drives the temperature control valve to adjust the flow flux distribution between the main loop through radiator and the subsidiary loop which isn't through radiator to control the temperature of the mixed fluid within 8+/-1.8. The paper will also introduce thermal designs of key parts in the cooling loop, such as space radiators, heat exchangers and cooling plates. Thermal simulated tests on the ground and flight tests have been performed to verify correctness of thermal designs. rational and the loop system works order. It realizes the circulation of absorbing heat dissipation to the loop and transferring it to radiator then radiating it to space. (2) loop control system controls inlet temperature of middle heat exchanger within 8+/-1.8 under various thermal cases. Thermal design of the middle heat exchanger insures inlet temperature of condensing heat within 9+/-2. Thereby, the air temperature of sealed cabins is controlled within about 21+/-4 accurately. (3) The

  17. Design Considerations for Artificial Lifting of Enhanced Geothermal System Fluids

    SciTech Connect

    Xina Xie; K. K. Bloomfield; G. L. Mines; G. M. Shook

    2005-07-01

    This work evaluates the effect of production well pumping requirements on power generation. The amount of work that can be extracted from a geothermal fluid and the rate at which this work is converted to power increase as the reservoir temperature increases. Artificial lifting is an important issue in this process. The results presented are based on a configuration comprising one production well and one injection well, representing an enhanced geothermal system. The effects of the hydraulic conductivity of the geothermal reservoir, the flow rate, and the size of the production casing are considered in the study. Besides submersible pumps, the possibility of using lineshaft pumps is also discussed.

  18. Performance of a Multispectral Optoacoustic Tomography (MSOT) System equipped with 2D vs. 3D Handheld Probes for Potential Clinical Translation

    PubMed Central

    Neuschmelting, Volker; Burton, Neal C.; Lockau, Hannah; Urich, Alexander; Harmsen, Stefan; Ntziachristos, Vasilis; Kircher, Moritz F.

    2015-01-01

    A handheld approach to optoacoustic imaging is essential for the clinical translation. The first 2- and 3-dimensional handheld multispectral optoacoustic tomography (MSOT) probes featuring real-time unmixing have recently been developed. Imaging performance of both probes was determined in vitro and in a brain melanoma metastasis mouse model in vivo. T1-weighted MR images were acquired for anatomical reference. The limit of detection of melanoma cells in vitro was significantly lower using the 2D than the 3D probe. The signal decrease was more profound in relation to depth with the 3D versus the 2D probe. Both approaches were capable of imaging the melanoma tumors qualitatively at all time points. Quantitatively, the 2D approach enabled closer anatomical resemblance of the tumor compared to the 3D probe, particularly at depths beyond 3 mm. The 3D probe was shown to be superior for rapid 3D imaging and, thus, holds promise for more superficial target structures. PMID:27069872

  19. Ruggedness of 2D code printed on grain tracers for implementing a prospective grain traceability system to the bulk grain delivery system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food-grade tracers were printed with two-dimensional Data Matrix (DM) barcode so that they could carry simulated identifying information about grain as part of a prospective traceability system. The key factor in evaluating the tracers was their ability to be read with a code scanner after being rem...

  20. Steady propagation of Bingham plugs in 2D channels

    NASA Astrophysics Data System (ADS)

    Zamankhan, Parsa; Takayama, Shuichi; Grotberg, James

    2009-11-01

    The displacement of the yield-stress liquid plugs in channels and tubes occur in many biological systems and industrial processes. Among them is the propagation of mucus plugs in the respiratory tracts as may occur in asthma, cystic fibrosis, or emphysema. In this work the steady propagation of mucus plugs in a 2D channel is studied numerically, assuming that the mucus is a pure Bingham fluid. The governing equations are solved by a mixed-discontinuous finite element formulation and the free surface is resolved with the method of spines. The constitutive equation for a pure Bingham fluid is modeled by a regularization method. Fluid inertia is neglected, so the controlling parameters in a steady displacement are; the capillary number, Ca, Bingham number ,Bn, and the plug length. According to the numerical results, the yield stress behavior of the plug modifies the plug shape, the pattern of the streamlines and the distribution of stresses in the plug domain and along the walls in a significant way. The distribution along the walls is a major factor in studying cell injuries. This work is supported through the grant NIH HL84370.

  1. A comprehensive approach using fuzzy logic to select fracture fluid systems

    SciTech Connect

    Xiong, H.; Davidson, B.; Holditch, S.A.; Saunders, B.

    1997-01-01

    This system, which consists of several fuzzy logic evaluators, can also be applied to similar problems associated with drilling, completing and working over wells. With formation information, the fuzzy logic system first determines base fluid, viscosifying method and energization method before choosing the 3--5 best combinations of possible fluids. The system then determines polymer type and loading, crosslinker, gas type if necessary, and other additives for the fluid systems. Also using fuzzy logic, this system checks the compatibility of the fluid and additives with formation fluids and composition.

  2. 21 CFR 866.5800 - Seminal fluid (sperm) immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Seminal fluid (sperm) immunological test system. 866.5800 Section 866.5800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....5800 Seminal fluid (sperm) immunological test system. (a) Identification. A seminal fluid...

  3. 21 CFR 866.5800 - Seminal fluid (sperm) immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Seminal fluid (sperm) immunological test system. 866.5800 Section 866.5800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....5800 Seminal fluid (sperm) immunological test system. (a) Identification. A seminal fluid...

  4. 21 CFR 866.5800 - Seminal fluid (sperm) immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Seminal fluid (sperm) immunological test system. 866.5800 Section 866.5800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....5800 Seminal fluid (sperm) immunological test system. (a) Identification. A seminal fluid...

  5. Unified system for holographic measurement in fluid and solid mechanics: use of the system for 3D displacement measurement on surfaces

    NASA Astrophysics Data System (ADS)

    Barnhart, Donald H.; Chan, Victor S. S.; Halliwell, Neil A.; Coupland, Jeremy M.

    1999-10-01

    This paper reports the use of a new holographic measurement system in the study of 3D surface displacements. Although equally applicable to fluid and solid mechanics, the aim of this report is to demonstrate the system's use in quantitative surface displacement measurements with a classical cantilever experiment, using a continuous-wave diode-pumped YAG laser system. The reported results exhibit an accuracy corresponding to other interferometric systems, but with a much larger displacement range. The measurement system employs a novel optical image shifting method to eliminate the problem of directional ambiguity. In addition, the reported system uses 3D complex correlation rather than 2D real correlation, thereby offering a direct method for measuring 3D displacement in 3D space. FInally, with the novel use of an optical fiber to probe the recorded holographic image space, it is found to be a simple matter to directly obtain 3D displacement measurements at precisely known surface locations.

  6. Characterization of Porous Medium Properties Using 2D NMR

    NASA Astrophysics Data System (ADS)

    Sun, Boqin; Dunn, Keh-Jim

    2003-03-01

    We have successfully applied the concept of 2D NMR to the characterization of properties of fluid-saturated porous medium. Using a two-windowed modified CPMG pulse sequence, we were able to explore the magnetic internal filed gradient distribution within the pore space of a fluid-saturated porous medium due to magnetic susceptibility contrast between the solid matrix and pore fluid. Similar scheme is used to identify and quantify different types of pore fluids, such as oil, water, and gas, based on the contrast in their diffusion coefficients. The magic angle spinning technique (MAS) can also be applied in the 2D NMR framework for delineating the chemical shift spectra of the pore fluids in a porous medium at different T1 or T2 relaxation times. The results can be displayed in a two-dimensional plot, with one axis being the T1 or T2 relaxation times, the other axis being the internal field gradient, diffusion coefficient, or chemical shift, and the third axis being the proton population. Our preliminary laboratory work indicates that the 2D NMR approach can be a powerful tool for the characterization of properties of fluid-saturated porous medium, such as fluid typing, oil viscosity determination, surface wettability, etc.

  7. Stacking up 2D materials

    NASA Astrophysics Data System (ADS)

    Mayor, Louise

    2016-05-01

    Graphene might be the most famous example, but there are other 2D materials and compounds too. Louise Mayor explains how these atomically thin sheets can be layered together to create flexible “van der Waals heterostructures”, which could lead to a range of novel applications.

  8. Histochemical examination of adipose derived stem cells combined with β-TCP for bone defects restoration under systemic administration of 1α,25(OH)2D3.

    PubMed

    Feng, Wei; Lv, Shengyu; Cui, Jian; Han, Xiuchun; Du, Juan; Sun, Jing; Wang, Kefeng; Wang, Zhenming; Lu, Xiong; Guo, Jie; Oda, Kimimitsu; Amizuka, Norio; Xu, Xin; Li, Minqi

    2015-09-01

    The purpose of this study was to evaluate the effects of osteogenic differentiated adipose-derived stem cell (ADSC) loaded beta-tricalcium phosphate (β-TCP) in the restoration of bone defects under intraperitoneal administration of 1α,25-dihydroxyvitamin D3(1α,25(OH)2D3). ADSCs were isolated from the fat tissue of 8 week old Wister rats and co-cultured with β-TCP for 21 days under osteogenic induction. Then the ADSC-β-TCP complexes were implanted into bone defects in the femora of rats. 1α,25(OH)2D3 (VD) or normal saline (NS) was administrated intraperitoneally every other day after the surgery. Femora were harvested at day 7, day 14 and day 28 post-surgery. There were 4 groups for all specimens: β-TCP-NS group; β-TCP-ADSC-NS group; β-TCP-VD group and β-TCP-ADSC-VD group. Alkaline phosphatase (ALP) was up-regulated obviously in ADSC groups compared with non-ADSC groups at day 7, day 14 and day 28, although high expression of runt-related transcription factor 2 (RUNX2) was only seen at day 7. Furthermore, the number of TRAP-positive osteoclasts and the expression of cathepsin K (CK) were significantly decreased in VD groups compared with non-VD groups at day 7 and day 14. As a most significant finding, the β-TCP-ADSC-VD group showed the highest BV/TV ratio compared with the other three groups at day 28. Taken together, ADSC-loaded β-TCP under the administration of 1α,25(OH)2D3 made a promising therapy for bone defects restoration. PMID:26046276

  9. In vitro inhibition of the cytochrome P450 (CYP450) system by the antiplatelet drug ticlopidine: potent effect on CYP2C19 and CYP2D6

    PubMed Central

    Ko, Jae Wook; Desta, Zeruesenay; Soukhova, Nadia V; Tracy, Timothy; Flockhart, David A

    2000-01-01

    Aims To examine the potency of ticlopidine (TCL) as an inhibitor of cytochrome P450s (CYP450s) in vitro using human liver microsomes (HLMs) and recombinant human CYP450s. Methods Isoform-specific substrate probes of CYP1A2, 2C19, 2C9, 2D6, 2E1 and 3A4 were incubated in HLMs or recombinant CYPs with or without TCL. Preliminary data were generated to simulate an appropriate range of substrate and inhibitor concentrations to construct Dixon plots. In order to estimate accurately inhibition constants (Ki values) of TCL and determine the type of inhibition, data from experiments with three different HLMs for each isoform were fitted to relevant nonlinear regression enzyme inhibition models by WinNonlin. Results TCL was a potent, competitive inhibitor of CYP2C19 (Ki = 1.2 ± 0.5 µm) and of CYP2D6 (Ki = 3.4 ± 0.3 µm). These Ki values fell within the therapeutic steady-state plasma concentrations of TCL (1–3 µm). TCL was also a moderate inhibitor of CYP1A2 (Ki = 49 ± 19 µm) and a weak inhibitor of CYP2C9 (Ki > 75 µm), but its effect on the activities of CYP2E1 (Ki = 584 ± 48 µm) and CYP3A (> 1000 µm) was marginal. Conclusions TCL appears to be a broad-spectrum inhibitor of the CYP isoforms, but clinically significant adverse drug interactions are most likely with drugs that are substrates of CYP2C19 or CYP2D6. PMID:10759690

  10. Structural Variations in the Uranyl/4,4'-Biphenyldicarboxylate System. Rare Examples of 2D → 3D Polycatenated Uranyl-Organic Networks.

    PubMed

    Thuéry, Pierre; Harrowfield, Jack

    2015-08-17

    4,4'-Biphenyldicarboxylic acid (H2L) was reacted with uranyl ions under solvo-hydrothermal conditions with variations in the experimental procedure (organic cosolvent, presence of additional 3d-block metal cations, and N-donor species), thus giving six complexes of the fully deprotonated acid that were characterized by their crystal structure and, in most cases, their emission spectrum. The three complexes [UO2(L)(DMA)] (1), [UO2(L)(NMP)] (2), and [UO2(L)(NMP)] (3) include the cosolvent as a coligand, and they crystallize as two-dimensional (2D) assemblies, with different combinations of the chelating and bridging-bidentate carboxylate coordination modes, resulting in two different topologies. Complex 4, [Ni(bipy)3][(UO2)2(L)2(C2O4)]·H2O, includes oxalate coligands generated in situ and contains an anionic planar two-dimensional (2D) assembly with a {6(3)} honeycomb topology. The same hexagonal geometry is found in the homoleptic complexes [Ni(bipy)3][(UO2)2(L)3]·6H2O (5) and [Ni(phen)3][(UO2)2(L)3]·4H2O (6), but the large size of the hexagonal rings in these cases (∼27 Å in the longest dimension) allows 2D → three-dimensional (3D) inclined polycatenation to occur, with the two families of networks either orthogonal in tetragonal complex 5 or at an angle of 73.4° in orthorhombic complex 6. The parallel networks are arranged in closely spaced groups of two, with possible π···π stacking interactions, and as many as four rods from four parallel nets pass through each ring of the inclined family of nets, an unusually high degree of catenation. These are the second cases only of 2D → 3D inclined polycatenation in uranyl-organic species. Emission spectra measured in the solid state show the usual vibronic fine structure, with variations in intensity and positions of maxima that are not simply connected with the number of equatorial donors and the presence of additional metal cations. PMID:26241368

  11. A scintillator purification plant and fluid handling system for SNO+

    SciTech Connect

    Ford, Richard J.

    2015-08-17

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with {sup 130}Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  12. A scintillator purification plant and fluid handling system for SNO+

    NASA Astrophysics Data System (ADS)

    Ford, Richard J.

    2015-08-01

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with 130Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  13. Physical and chemical aspects of fluid evolution in hydrothermal ore systems

    SciTech Connect

    Cline, J.S.

    1990-01-01

    A one-dimensional, physical model describing two-phase fluid flow is used to simulate the effect of boiling on silica precipitation in geothermal and epithermal precious metal systems. The extent to which decreasing temperature and fluid vaporization are responsible for quartz precipitation is dependent on three related factors-the temperature of the fluid entering the two-phase system, the change in fluid temperature with respect to distance of fluid travel, and the extent of fluid vaporization in regions of gradual temperature decline. Boiling contributes to significant quartz precipitation in systems with high-temperature basal fluids, and in deeper portions of systems in which extensive vaporization occurs. Temperature reduction is a dominate precipitation mechanism in near-surface regions where temperature reduction is rapid, and in systems with lower temperature fluids. Quartz precipitation is most intense in systems with high mass flux/permeability ratios and low initial fluid temperatures. Geothermal systems with high mass flux/permeability and moderately low initial fluid temperatures are most effective in producing epithermal systems with abundant gold. Fluid evolution during the magnetic-hydrothermal transition and coincident molybdenite precipitation at Questa, New Mexico, has been traced using fluid inclusion microthermometry. The lack of cogenetic liquid- and vapor-rich inclusions, plus final homogenization of most saline, liquid-rich inclusions by halite dissolution indicate that high-salinity fluids were generated by a mechanism other than fluid immiscibility. Pressure flucuations are capable of producing the observed fluids and inclusion behavior. Solubility data indicate that the crystallizing aplite porphyry generated fluids with salinates as high as 57 wt.% NaCl equivalent.

  14. Fluid-magmatic systems and volcanic centers in Northern Caucasus

    NASA Astrophysics Data System (ADS)

    Sobisevich, Alexey L.; Masurenkov, Yuri P.; Pouzich, Irina N.; Laverova, Ninel I.

    2014-05-01

    The fluid-magmatic activity within modern and Holocene volcanic centers of The Greater Caucasus is considered. Results of complimentary geological and geophysical studies carried out in the Elbrus volcanic area and the Pyatigorsk volcanic center are presented. The deep magmatic source and the peripheral magmatic chamber of the Elbrus volcano are outlined via comparative analysis of geological and experimental geophysical data (microgravity studies, magneto-telluric sounding, temperature variations measured in carbonaceous mineral waters). It has been determined that the peripheral magmatic chamber and the deep magmatic source are located at depths of 0-7 and 20-30 km below sea level, respectively, and the geothermal gradient beneath the volcano is 100°C/km. In this study, analysis of processes of modern heat outflux produced by carbonaceous springs in the Elbrus volcanic center is carried out with respect to updated information about spatial configuration of deep fluid-magmatic structures. It has been shown, that observed degradation and the rate of melting for the glaciers on the volcano's eastern slope are related both to climatic variations and endogenic heat flux. In the area of Caucasus Mineral Waters (Pyatigorsk volcanic center) the annular zonality of structural, petro-geochemical, geothermal, and hydrochemical features has been found. The likelihood of existence of peripheral magmatic source at depth of 9 - 15 km is suggested. The relation between hydro-chemical properties of Caucasus Mineral Waters and structural as well as petrologic and geochemical features of the fluid-magmatic system of the Pyatigorsk volcanic center is determined and discussed.

  15. Fluid Flow Prediction with Development System Interwell Connectivity Influence

    NASA Astrophysics Data System (ADS)

    Bolshakov, M.; Deeva, T.; Pustovskikh, A.

    2016-03-01

    In this paper interwell connectivity has been studied. First of all, literature review of existing methods was made which is divided into three groups: Statistically-Based Methods, Material (fluid) Propagation-Based Methods and Potential (pressure) Change Propagation-Based Method. The disadvantages of the first and second groups are as follows: methods do not involve fluid flow through porous media, ignore any changes of well conditions (BHP, skin factor, etc.). The last group considers changes of well conditions and fluid flow through porous media. In this work Capacitance method (CM) has been chosen for research. This method is based on material balance and uses weight coefficients lambdas to assess well influence. In the next step synthetic model was created for examining CM. This model consists of an injection well and a production well. CM gave good results, it means that flow rates which were calculated by analytical method (CM) show matching with flow rate in model. Further new synthetic model was created which includes six production and one injection wells. This model represents seven-spot pattern. To obtain lambdas weight coefficients, the delta function was entered using by minimization algorithm. Also synthetic model which has three injectors and thirteen producer wells was created. This model simulates seven-spot pattern production system. Finally Capacitance method (CM) has been adjusted on real data of oil Field Ω. In this case CM does not give enough satisfying results in terms of field data liquid rate. In conclusion, recommendations to simplify CM calculations were given. Field Ω is assumed to have one injection and one production wells. In this case, satisfying results for production rates and cumulative production were obtained.

  16. MR urography (MRU) of non-dilated ureter with diuretic administration: Static fluid 2D FSE T2-weighted versus 3D gadolinium T1-weighted GE excretory MR

    PubMed Central

    Roy, C.; Ohana, M.; Host, Ph.; Alemann, G.; Labani, A.; Wattiez, A.; Lang, H.

    2014-01-01

    Objective The goal of this prospective study was to compare the efficiency of two types of MRU after diuretic administration to identify the non-dilated ureter. Methods MR pelvic examinations were performed in 126 patients after receiving furosemide. Each patient underwent in addition to their protocol for context, two types of MRU: 2D T2-weighted FSE (T2w-MRU) and 3D Gd T1-weighted GE (CE-MRU). Four segments were checked for each ureter. For the first part of the analysis, readers evaluated the whole image quality using a four points subjective scale and for the second part, they were asked to score separately each ureteral segment as present or absent. Results 1008 ureteral segments were checked. For the image quality, readers did not find any significant difference (3.8 ± 0.5 vs 3.6 ± 0.7, p value: 0.13) between MRU methods. The interobserver agreement was excellent with a κ correlation coefficient as high as 0.89 for T2w-MRU and 0.92 for CE-MRU, respectively. For the detection of the segments and considering the 9 rotations for the T2W MRU, there were no statistically significant differences between the two groups. Conclusion T2-weighted MRU with multiple orientations and diuretic is sufficient to identify the non-dilated ureter. It offers information on ureteral peristaltism. It can be suggested that this sequence is able to detect an initial obstruction before hydronephrosis occurs. PMID:26937423

  17. SU-E-J-13: Six Degree of Freedom Image Fusion Accuracy for Cranial Target Localization On the Varian Edge Stereotactic Radiosurgery System: Comparison Between 2D/3D and KV CBCT Image Registration

    SciTech Connect

    Xu, H; Song, K; Chetty, I; Kim, J; Wen, N

    2015-06-15

    Purpose: To determine the 6 degree of freedom systematic deviations between 2D/3D and CBCT image registration with various imaging setups and fusion algorithms on the Varian Edge Linac. Methods: An anthropomorphic head phantom with radio opaque targets embedded was scanned with CT slice thicknesses of 0.8, 1, 2, and 3mm. The 6 DOF systematic errors were assessed by comparing 2D/3D (kV/MV with CT) with 3D/3D (CBCT with CT) image registrations with different offset positions, similarity measures, image filters, and CBCT slice thicknesses (1 and 2 mm). The 2D/3D registration accuracy of 51 fractions for 26 cranial SRS patients was also evaluated by analyzing 2D/3D pre-treatment verification taken after 3D/3D image registrations. Results: The systematic deviations of 2D/3D image registration using kV- kV, MV-kV and MV-MV image pairs were within ±0.3mm and ±0.3° for translations and rotations with 95% confidence interval (CI) for a reference CT with 0.8 mm slice thickness. No significant difference (P>0.05) on target localization was observed between 0.8mm, 1mm, and 2mm CT slice thicknesses with CBCT slice thicknesses of 1mm and 2mm. With 3mm CT slice thickness, both 2D/3D and 3D/3D registrations performed less accurately in longitudinal direction than thinner CT slice thickness (0.60±0.12mm and 0.63±0.07mm off, respectively). Using content filter and using similarity measure of pattern intensity instead of mutual information, improved the 2D/3D registration accuracy significantly (P=0.02 and P=0.01, respectively). For the patient study, means and standard deviations of residual errors were 0.09±0.32mm, −0.22±0.51mm and −0.07±0.32mm in VRT, LNG and LAT directions, respectively, and 0.12°±0.46°, −0.12°±0.39° and 0.06°±0.28° in RTN, PITCH, and ROLL directions, respectively. 95% CI of translational and rotational deviations were comparable to those in phantom study. Conclusion: 2D/3D image registration provided on the Varian Edge radiosurgery, 6 DOF

  18. Fluid-magmatic systems and volcanic centers in Northern Caucasus

    NASA Astrophysics Data System (ADS)

    Sobisevich, Alexey L.; Masurenkov, Yuri P.; Pouzich, Irina N.; Laverova, Ninel I.

    2013-04-01

    The central segment of Alpine mobile folded system and the Greater Caucasus is considered with respect to fluid-magmatic activity within modern and Holocene volcanic centers. A volcanic center is a combination of volcanoes, intrusions, and hydrothermal features supported by endogenous flow of matter and energy localised in space and steady in time; responsible for magma generation and characterized by structural representation in the form of circular dome and caldera associations. Results of complimentary geological and geophysical studies carried out in the Elbrus volcanic area and the Pyatogorsk volcanic center are presented. The deep magmatic source and the peripheral magmatic chamber of the Elbrus volcano are outlined via comparative analysis of geological and experimental geophysical data (microgravity studies, magneto-telluric profiling, temperature of carbonaceous mineral waters). It has been determined that the peripheral magmatic chamber and the deep magmatic source of the volcano are located at depths of 0-7 and 20-30 km below sea level, respectively, and the geothermal gradient beneath the volcano is 100°C/km. In this study, analysis of processes of modern heat outflux produced by carbonaceous springs in the Elbrus volcanic center is carried out with respect to updated information about spatial configuration of deep fluid-magmatic structures of the Elbrus volcano. It has been shown, that degradation of the Elbrus glaciers throughout the historical time is related both to climatic variations and endogenic heat. The stable fast rate of melting for the glaciers on the volcano's eastern slope is of theoretical and practical interest as factors of eruption prognosis. The system approach to studying volcanism implies that events that seem to be outside the studied process should not be ignored. This concerns glaciers located in the vicinity of volcanoes. The crustal rocks contacting with the volcanism products exchange matter and energy between each other

  19. Microgravity fluid management in two-phase thermal systems

    NASA Technical Reports Server (NTRS)

    Parish, Richard C.

    1987-01-01

    Initial studies have indicated that in comparison to an all liquid single phase system, a two-phase liquid/vapor thermal control system requires significantly lower pumping power, demonstrates more isothermal control characteristics, and allows greater operational flexibility in heat load placement. As a function of JSC's Work Package responsibility for thermal management of space station equipment external to the pressurized modules, prototype development programs were initiated on the Two-Phase Thermal Bus System (TBS) and the Space Erectable Radiator System (SERS). JSC currently has several programs underway to enhance the understanding of two-phase fluid flow characteristics. The objective of one of these programs (sponsored by the Microgravity Science and Applications Division at NASA-Headquarters) is to design, fabricate, and fly a two-phase flow regime mapping experiment in the Shuttle vehicle mid-deck. Another program, sponsored by OAST, involves the testing of a two-phase thermal transport loop aboard the KC-135 reduced gravity aircraft to identify system implications of pressure drop variation as a function of the flow quality and flow regime present in a representative thermal system.

  20. Computational fluid dynamics applications to improve crop production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Computational fluid dynamics (CFD), numerical analysis and simulation tools of fluid flow processes have emerged from the development stage and become nowadays a robust design tool. It is widely used to study various transport phenomena which involve fluid flow, heat and mass transfer, providing det...

  1. 3D face reconstruction from 2D pictures: first results of a web-based computer aided system for aesthetic procedures.

    PubMed

    Oliveira-Santos, Thiago; Baumberger, Christian; Constantinescu, Mihai; Olariu, Radu; Nolte, Lutz-Peter; Alaraibi, Salman; Reyes, Mauricio

    2013-05-01

    The human face is a vital component of our identity and many people undergo medical aesthetics procedures in order to achieve an ideal or desired look. However, communication between physician and patient is fundamental to understand the patient's wishes and to achieve the desired results. To date, most plastic surgeons rely on either "free hand" 2D drawings on picture printouts or computerized picture morphing. Alternatively, hardware dependent solutions allow facial shapes to be created and planned in 3D, but they are usually expensive or complex to handle. To offer a simple and hardware independent solution, we propose a web-based application that uses 3 standard 2D pictures to create a 3D representation of the patient's face on which facial aesthetic procedures such as filling, skin clearing or rejuvenation, and rhinoplasty are planned in 3D. The proposed application couples a set of well-established methods together in a novel manner to optimize 3D reconstructions for clinical use. Face reconstructions performed with the application were evaluated by two plastic surgeons and also compared to ground truth data. Results showed the application can provide accurate 3D face representations to be used in clinics (within an average of 2 mm error) in less than 5 min. PMID:23319167

  2. High-efficiency exfoliation of layered materials into 2D nanosheets in switchable CO2/Surfactant/H2O system

    PubMed Central

    Wang, Nan; Xu, Qun; Xu, Shanshan; Qi, Yuhang; Chen, Meng; Li, Hongxiang; Han, Buxing

    2015-01-01

    Layered materials present attractive and important properties due to their two-dimensional (2D) structure, allowing potential applications including electronics, optoelectronics, and catalysis. However, fully exploiting the outstanding properties will require a method for their efficient exfoliation. Here we present that a series of layered materials can be successfully exfoliated into single- and few-layer nanosheets using the driving forces coming from the phase inversion, i.e., from micelles to reverse micelles in the emulsion microenvironment built by supercritical carbon dioxide (SC CO2). The effect of variable experimental parameters including CO2 pressure, ethanol/water ratio, and initial concentration of bulk materials on the exfoliation yield have been investigated. Moreover, we demonstrate that the exfoliated 2D nanosheets have their worthwhile applications, for example, graphene can be used to prepare conductive paper, MoS2 can be used as fluorescent label to perform cellular labelling, and BN can effectively reinforce polymers leading to the promising mechanical properties. PMID:26568039

  3. Therapeutic Options for Controlling Fluids in the Visual System

    NASA Technical Reports Server (NTRS)

    Curry, Kristina M.; Wotring, Virginia E.

    2014-01-01

    Visual Impairment/Intracranial Pressure (VIIP) is a newly recognized risk at NASA. The VIIP project examines the effect of long-term exposure to microgravity on vision of crewmembers before and after they return to Earth. Diamox (acetazolamide) is a medication which is used to decrease intraocular pressure; however, it carries a 3% risk of kidney stones. Astronauts are at a higher risk of kidney stones during spaceflight and the use Diamox would only increase the risk; therefore alternative therapies were investigated. Histamine 2 (H2) antagonist acid blockers such as cimetidine, ranitidine, famotidine and nizatidine are typically used to relieve the symptoms of gastroesophageal reflux disease (GERD). H2 receptors have been found in the human visual system, which has led to research on the use of H2 antagonist blockers to control fluid production in the human eye. Another potential therapeutic strategy is targeted at aquaporins, which are water channels that help maintain fluid homeostasis. Aquaporin antagonists are also known to affect intracranial pressure which can in turn alter intraocular pressure. Studies on aquaporin antagonists suggest high potential for effective treatment. The primary objective of this investigation is to review existing research on alternate medications or therapy to significantly reduce intracranial and intraocular pressure. A literature review was conducted. Even though we do not have all the answers quite yet, a considerable amount of information was discovered, and findings were narrowed, which should allow for more conclusive answers to be found in the near future.

  4. GBL-2D Version 1.0: a 2D geometry boolean library.

    SciTech Connect

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J.

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  5. Tracing fluid pathways in Archean hydrothermal systems with imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    von Ruitenbeek, F. J. A.; Cudahy, T.; Hale, M.; van der Werff, H. M. A.; van der Meer, F. D.

    2008-09-01

    Abstract Fossil submarine hydrothermal systems in Archean greenstone belts and other geologic terranes are important because of their relationship with volcanic massive sulfide (VMS) mineral deposits and their association with environments that are favorable for early forms of life. Interpretation and reconstruction of these systems is difficult because of their geologic complexity. Airborne imaging spectroscopy provides information about the presence, abundance, and composition of near-infrared active minerals at continuous spatial coverage and high spatial resolution, and can therefore be used to obtain new geologic insights into of the Archean hydrothermal systems. It was applied to the Panorama VMS-district in the Soanesville greenstone belt, Western Australia. Results from the analyses of 189 hand specimen showed that the wavelength position of the main absorption feature of white micas, a proxy for their Al content, varied between 2195 nm and 2225 nm. These wavelength variations and the relative abundance of white micas were used to reconstruct fossil fluid pathways from low-temperature recharge to hightemperature discharge zones. Results also showed that the absorption-wavelength variations of white micas could be mapped from airborne imaging spectroscopy using a stochastic method where the presence of white mica minerals and their absorption wavelengths in field measurements were predicted from hyperspectral band ratios. Analysis of the spatial patterns in segmented images, covering 52 km2, of white mica probability and their absorption wavelengths and their comparison with field data resulted in the identification of regional scale hydrothermal fluid pathways, a regional-scale K alteration event, and differences in hydrothermal regime between the northern and southern parts of the test area.

  6. Working fluid selection for space-based two-phase heat transport systems

    NASA Technical Reports Server (NTRS)

    Mclinden, Mark O.

    1988-01-01

    The working fluid for externally-mounted, space-based two-phase heat transport systems is considered. A sequence of screening criteria involving freezing and critical point temperatures and latent heat of vaporization and vapor density are applied to a data base of 860 fluids. The thermal performance of the 52 fluids which pass this preliminary screening are then ranked according to their impact on the weight of a reference system. Upon considering other nonthermal criteria (flammability, toxicity, and chemical stability) a final set of 10 preferred fluids is obtained. The effects of variations in system parameters is investigated for these 10 fluids by means of a factorial design.

  7. MOSS2D V1

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  8. Coalescence avalanches in 2D emulsions: a stochastic approach

    NASA Astrophysics Data System (ADS)

    Masila, Danny Raj; Rengaswamy, Raghunathan

    2015-11-01

    One coalescence event in a 2D concentrated emulsion can trigger an avalanche resulting in the rapid destabilization of the drop-assembly. The sensitive dependence of this phenomenon on various factors that include surfactant concentration and viscosities of the fluid phases makes the avalanching problem appear probabilistic. We propose a stochastic framework- that utilizes a probability function to explain local coalescence events- to study the dynamics of the coalescence avalanches. A function that accounts for the local coalescence mechanism is used to fit the experimentally (from literature) measured probability data. A continuation parameter is introduced along with this function to account for the effect of system properties on the avalanche dynamics. Our analysis reveals that this behavior is a result of the inherent autocatalytic nature of the process. We discover that the avalanche dynamics shows critical behavior where two outcomes are favored: no avalanche and large avalanches that lead to destabilization. We study the effect of system size and fluid properties on the avalanche dynamics. A sharp transition from non-autocatalytic (stable emulsions) to autocatalytic (unstable) behavior is observed as parameters are varied.

  9. Safety System for Controlling Fluid Flow into a Suction Line

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)

    2015-01-01

    A safety system includes a sleeve fitted within a pool's suction line at the inlet thereof. An open end of the sleeve is approximately aligned with the suction line's inlet. The sleeve terminates with a plate that resides within the suction line. The plate has holes formed therethrough. A housing defining a plurality of distinct channels is fitted in the sleeve so that the distinct channels lie within the sleeve. Each of the distinct channels has a first opening on one end thereof and a second opening on another end thereof. The second openings reside in the sleeve. Each of the distinct channels is at least approximately three feet in length. The first openings are in fluid communication with the water in the pool, and are distributed around a periphery of an area of the housing that prevents coverage of all the first openings when a human interacts therewith.

  10. High-resolution simulations of multi-phase flow in magmatic-hydrothermal systems with realistic fluid properties

    NASA Astrophysics Data System (ADS)

    Geiger, S.; Driesner, T.; Matthai, S.; Heinrich, C.

    2002-12-01

    Realistic modelling of multi-phase fluid flow, energy and component transport in magmatic-hydrothermal systems is very challenging because hydrological properties of fluids and rocks vary over many orders of magnitude and the geometric complexities of such systems. Furthermore, density dependent component transport and transient permeability variations due to P-T changes and fluid-rock interactions introduce additional difficulties. As a result, the governing equations for the hydrodynamics, energy and component transport, and thermodynamics in magmatic hydrothermal systems are highly non-linear and strongly coupled. Essential requirements of a numerical formulation for such a system are: (1) a treatment of the hydrodynamics that can accurately resolve complex geological structures and represent the highly variable fluid velocities herein, (2) a realistic thermodynamic representation of the fluid properties including the wide P-T-X range of liquid+vapour coexistence for the highly saline fluids, and (3) an accurate handling of the highly contrasting transport properties of the two fluids. We are combining higher order finite-element (FE) methods with total variation diminishing finite volume (TVDFV) methods to model the hydrodynamics and energy and component transport of magmatic hydrothermal systems. Combined FE and TVDFV methods are mass and shock preserving, yield great geometric flexibility in 2D and 3D [2]. Furthermore, efficient matrix solvers can be employed to model fluid flow in geologically realistic structures [5]. The governing equations are linearized by operator-splitting and solved sequentially using a Picard iteration scheme. We chose the system water-NaCl as a realistic proxy for natural fluids occurring in magmatic-hydrothermal systems. An in-depth evaluation of the available experimental and theoretical data led to a consistent and accurate set of formulations for the PVTXH relations that are valid from 0 to 800 C, 0 to 500 MPa, and 0 to 1 XNa

  11. Evaluation of progesterone permeability from supercritical fluid processed dispersion systems.

    PubMed

    Falconer, James R; Wen, Jingyuan; Zargar-Shoshtari, Sara; Chen, John J; Farid, Mohammed; El Maghraby, Gamal M; Alany, Raid G

    2014-03-01

    The aim of this study was to investigate the permeability of unique dispersion systems prepared by supercritical fluid (SCF) processing, to deliver bioidentical progesterone (PGN) across mouse skin. Semisolid dispersions of PGN were made up of either polyethylene glycol (PEG) 400/4000, Gelucire 44/14, d-α-tocopheryl PEG 1000 succinate (TPGS), tanscutol P or myritol 318. SCF dispersion systems were compared with various control formulations; a market cream, aqueous suspension, and three conventionally prepared dispersions – comelted, cosolvent and physically mixed systems. The permeability coefficient in the absence or presence of a permeation enhancer was evaluated using ex vivo mouse skin. The permeation study results for the TPGS/myritol/transcutol P dispersion system prepared using supercritical carbon dioxide (SC-CO2) had a two-fold improvement in transdermal permeation over 24 h compared to the control formulation, 245.7 and 126 µg cm(-2), respectively (p value < 0.05). In this study, the skin integrity and morphology was also investigated for changes due to the formulation constituents using histological examination and Fourier transform infrared spectroscopy. The particles from the gas-saturated suspension method and SC-CO2 together with TPGS/myritol/transcutol P may offer potential advantages over the available cream on the market based on the vastly improved lag time and flux of PGN across the skin. PMID:23432633

  12. Effects of temperature on performance of a compressible magnetorheological fluid damper-liquid spring suspension system

    NASA Astrophysics Data System (ADS)

    McKee, Michael; Wang, Xiaojie; Gordaninejad, Faramarz

    2011-03-01

    A compact compressible magnetorheological (MR) fluid damper-liquid spring (CMRFD-LS) suspension system is designed, developed and tested. The performances of the CMRFD-LS are investigated under room temperature. However, MR fluids are temperature dependent. The effect of temperature is observed in both the viscosity and the compressibility of the MR fluid. This study is to experimentally determine how temperature affects the performance of a CMRFD-LS device. A test setup is developed to measure the stiffness and energy dissipated by the system under various frequency loadings, magnetic fields and temperatures. The experimental results demonstrate that both the stiffness and the energy dissipated by the CMRFD-LS are inversely related to the temperature of the MR fluid. These changes in damper characteristics show that the compressibility of MR fluid is proportional to the fluid temperature, while the viscosity of the MR fluid is inversely related to the fluid temperature.

  13. EXPERIMENTAL BUBBLE FORMATION IN A LARGE SCALE SYSTEM FOR NEWTONIAN AND NONNEWTONIAN FLUIDS

    SciTech Connect

    Leishear, R; Michael Restivo, M

    2008-06-26

    The complexities of bubble formation in liquids increase as the system size increases, and a photographic study is presented here to provide some insight into the dynamics of bubble formation for large systems. Air was injected at the bottom of a 28 feet tall by 30 inch diameter column. Different fluids were subjected to different air flow rates at different fluid depths. The fluids were water and non-Newtonian, Bingham plastic fluids, which have yield stresses requiring an applied force to initiate movement, or shearing, of the fluid. Tests showed that bubble formation was significantly different in the two types of fluids. In water, a field of bubbles was formed, which consisted of numerous, distributed, 1/4 to 3/8 inch diameter bubbles. In the Bingham fluid, large bubbles of 6 to 12 inches in diameter were formed, which depended on the air flow rate. This paper provides comprehensive photographic results related to bubble formation in these fluids.

  14. Method and apparatus for continuous fluid leak monitoring and detection in analytical instruments and instrument systems

    DOEpatents

    Weitz, Karl K.; Moore, Ronald J.

    2010-07-13

    A method and device are disclosed that provide for detection of fluid leaks in analytical instruments and instrument systems. The leak detection device includes a collection tube, a fluid absorbing material, and a circuit that electrically couples to an indicator device. When assembled, the leak detection device detects and monitors for fluid leaks, providing a preselected response in conjunction with the indicator device when contacted by a fluid.

  15. Nanoimprint lithography: 2D or not 2D? A review

    NASA Astrophysics Data System (ADS)

    Schift, Helmut

    2015-11-01

    Nanoimprint lithography (NIL) is more than a planar high-end technology for the patterning of wafer-like substrates. It is essentially a 3D process, because it replicates various stamp topographies by 3D displacement of material and takes advantage of the bending of stamps while the mold cavities are filled. But at the same time, it keeps all assets of a 2D technique being able to pattern thin masking layers like in photon- and electron-based traditional lithography. This review reports about 20 years of development of replication techniques at Paul Scherrer Institut, with a focus on 3D aspects of molding, which enable NIL to stay 2D, but at the same time enable 3D applications which are "more than Moore." As an example, the manufacturing of a demonstrator for backlighting applications based on thermally activated selective topography equilibration will be presented. This technique allows generating almost arbitrary sloped, convex and concave profiles in the same polymer film with dimensions in micro- and nanometer scale.

  16. Controls on mound formation and effects of fluid ascent on the gas hydrate system of mound structures offshore Costa Rica

    NASA Astrophysics Data System (ADS)

    Planert, L.; Klaeschen, D.; Berndt, C.; Hensen, C.; Brueckmann, W.

    2010-12-01

    Our analysis of 2D MCS seismic data from the Middle America margin provides an insight into the buildup and formation mechanisms of mound structures and the effects of fluid ascent on the gas hydrate system observed on the continental slope offshore Costa Rica. Our targets, Mounds 11&12, are the sites of IODP drilling proposal 633-Full2, which aims to enhance the general understanding of complex forearc dewatering processes of the erosive subduction system off Costa Rica. Major sites of dewatering planned for drilling are mounds, related to mud diapirism/volcanism and precipitation of authigenic carbonates, and large-scale slides related to the subduction of seamounts. Geochemical analysis of methane hydrate and chloride anomalies as well as heat flow modeling of the mounds indicate deeply sourced fluids discharged by clay dehydration at the decollement. Hence, the hydrogeological system at this margin appears to be dominated by the fracture porosity of faults which extend through the overriding plate and provide the paths for fluids liberated by early dehydration reactions from the plate boundary. In order to test the hypothesis of deeply sourced and fault-controlled dewatering sites and to better understand the interactions between gas hydrate formation and dissociation with the fluid ascent from the deep sources, new pre-site survey seismic profiles were acquired using the 36-gun, four-string linear gun array of R/V Marcus Langseth, and a 240 channel streamer with 3000 m of active length. The seismic lines were prestack depth migrated, in which the velocity model is iteratively improved using depth focusing analysis and residual moveout correction on common image point gathers. Improvement of the deep imaging involved multiple attenuation and detailed velocity analysis of the lower sedimentary portions and beneath the basement down to the plate boundary. Our results reveal an upward bending of the bottom simulating reflection (BSR) directly beneath the mounds

  17. TMI-2 in-vessel hydraulic systems utilize high water and high boron content fluids

    SciTech Connect

    Baston, V.F.; Hofstetter, K.J.; Hofman, L.A.; Gallagher, R.E.

    1987-01-01

    Choice of a hydraulic fluid for use in the Three Mile Island Unit 2 (TMI-2) reactor vessel defueling equipment required consideration of the following constraints for the hydraulic fluid given an accidental spill into the reactor coolant system (RCS). The TMI-2 RCS hydraulic fluid utilized in the hydraulic operations utilized a solution composition of 95 wt% water and 5 wt% of the above base fluid. The TMI-2 hydraulic system utilizes pressures up to 3500 psi. The selected hydraulic fluid has been in use since December 1986 with minimal operational difficulties.

  18. A dynamic optical measurement system for cryogenic fluids using laser interferometry

    NASA Astrophysics Data System (ADS)

    Zhang, J. H.; Bao, S. R.; Zhang, R. P.; Qiu, L. M.

    2015-12-01

    Dynamic visualization is of great significance in the research of flow conditions and mass transfer process of cryogenic fluids. In this paper, two common ways to measure the concentration of cryogenic fluids are introduced and compared. To improve the real-time monitoring of cryogenic fluid, a non-contact dynamic optical measurement system using laser interferometry is designed, which is sensitive to subtle changes of fluid concentration. A precise and dynamic interference pattern can be obtained using this system. Two-dimensional concentration distribution of the fluid can be calculated from the interference pattern. Detailed calculation process is presented in the paper.

  19. Cryogenic Fluid Management Technologies for Advanced Green Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Meyer, Michael L.; Tucker, Stephen P.

    2007-01-01

    In support of the Exploration Vision for returning to the Moon and beyond, NASA and its partners are developing and testing critical cryogenic fluid propellant technologies that will meet the need for high performance propellants on long-term missions. Reliable knowledge of low-gravity cryogenic fluid management behavior is lacking and yet is critical in the areas of tank thermal and pressure control, fluid acquisition, mass gauging, and fluid transfer. Such knowledge can significantly reduce or even eliminate tank fluid boil-off losses for long term missions, reduce propellant launch mass and required on-orbit margins, and simplify vehicle operations. The Propulsion and Cryogenic Advanced Development (PCAD) Project is performing experimental and analytical evaluation of several areas within Cryogenic Fluid Management (CFM) to enable NASA's Exploration Vision. This paper discusses the status of the PCAD CFM technology focus areas relative to the anticipated CFM requirements to enable execution of the Vision for Space Exploration.

  20. System and method for determining velocity of electrically conductive fluid

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A. (Inventor); Korman, Valentin (Inventor); Markusic, Thomas E. (Inventor); Stanojev, Boris Johann (Inventor)

    2008-01-01

    A flowing electrically-conductive fluid is controlled between an upstream and downstream location thereof to insure that a convection timescale of the flowing fluid is less than a thermal diffusion timescale of the flowing fluid. First and second nodes of a current-carrying circuit are coupled to the fluid at the upstream location. A current pulse is applied to the current-carrying circuit so that the current pulse travels through the flowing fluid to thereby generate a thermal feature therein at the upstream location. The thermal feature is convected to the downstream location where it is monitored to detect a peak associated with the thermal feature so-convected. The velocity of the fluid flow is determined using a time-of-flight analysis.

  1. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  2. Stochastic Inversion of 2D Magnetotelluric Data

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less

  3. Stochastic Inversion of 2D Magnetotelluric Data

    SciTech Connect

    Chen, Jinsong

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows

  4. Geothermal fluid equilibrium modeling: a comparison of wellhead fluid samples to deep samples in the Reykjanes system Iceland

    NASA Astrophysics Data System (ADS)

    Seward, R. J.; Reed, M. H.; Fridriksson, T.

    2013-12-01

    Single phase geothermal fluids sampled at depth (Hardardottir et al. 2007) from the Reykjanes geothermal system in Iceland show large differences in dissolved copper, zinc, and iron concentrations when compared with fluid sampled from the same well at the surface. Equilibrium modeling of the samples taken at depth indicate that the fluid was supersaturated in sulfide minerals even at moderately acidic pH values, suggesting that the deep samples, as collected, are out of equilibrium. One possibility for this discrepancy is that the down-well mechanical sampler trapped suspended particles of sulfide minerals that were treated as part of the dissolved constituents of the fluid when it was analyzed, thus inflating the concentrations of Cu, Zn and Fe. In addition to possible entrained solids, techniques used to take in-situ fluid samples at depth in these wells do not provide a complete picture of dissolved species within the fluid because gases are lost when samples are brought to the surface. This precludes meaningful pH measurements and therefore requires chemical modeling of surface samples to understand the state of fluids at depth. In this study geothermal fluids are modeled from surface sample analyses and compared with results from models of fluids collected at depth in the same geothermal wells by calculating a full chemical speciation of geothermal fluids as they boil with decreasing pressure and temperature using programs SOLVEQ-xpt and CHIM-xpt. One of the wells examined for this study was well RN-12. In-situ down-well samples were collected at 1500m, within the single phase region as indicated by pre-sampling pressure and temperature logging in the well which showed that boiling starts at 1300m, and 295 degrees C. Fluid and gas samples which were collected at the well head are recomputed as a single phase fluid to be compared with the down-well sampler. These surface fluids reached a maximum temperature of 300 to 320 degrees C, determined by computing the

  5. A new methodology in fast and accurate matching of the 2D and 3D point clouds extracted by laser scanner systems

    NASA Astrophysics Data System (ADS)

    Torabi, M.; Mousavi G., S. M.; Younesian, D.

    2015-03-01

    Registration of the point clouds is a conventional challenge in computer vision related applications. As an application, matching of train wheel profiles extracted from two viewpoints is studied in this paper. The registration problem is formulated into an optimization problem. An error minimization function for registration of the two partially overlapping point clouds is presented. The error function is defined as the sum of the squared distance between the source points and their corresponding pairs which should be minimized. The corresponding pairs are obtained thorough Iterative Closest Point (ICP) variants. Here, a point-to-plane ICP variant is employed. Principal Component Analysis (PCA) is used to obtain tangent planes. Thus it is shown that minimization of the proposed objective function diminishes point-to-plane ICP variant. We utilized this algorithm to register point clouds of two partially overlapping profiles of wheel train extracted from two viewpoints in 2D. Also, a number of synthetic point clouds and a number of real point clouds in 3D are studied to evaluate the reliability and rate of convergence in our method compared with other registration methods.

  6. 2dF mechanical engineering

    NASA Astrophysics Data System (ADS)

    Smith, Greg; Lankshear, Allan

    1998-07-01

    2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.

  7. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  8. Solar heat transport fluids for solar energy collection systems: A collection of quarterly reports

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Noncorrosive fluid subsystem is being developed that is compatible with closed-loop solar heating and combined heating and hot water systems. The system is also to be compatible with both metallic and nonmetallic plumbing systems, and any combination of these. At least 100 gallons of each type of fluid recommended by the contractor will be delivered.

  9. 21 CFR 866.5860 - Total spinal fluid immuno-logical test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... diagnosis of multiple sclerosis and other diseases of the nervous system. (b) Classification. Class I... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Total spinal fluid immuno-logical test system. 866....5860 Total spinal fluid immuno-logical test system. (a) Identification. A total spinal...

  10. 21 CFR 866.5860 - Total spinal fluid immuno-logical test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... diagnosis of multiple sclerosis and other diseases of the nervous system. (b) Classification. Class I... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Total spinal fluid immuno-logical test system. 866....5860 Total spinal fluid immuno-logical test system. (a) Identification. A total spinal...

  11. 21 CFR 866.5860 - Total spinal fluid immuno-logical test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... diagnosis of multiple sclerosis and other diseases of the nervous system. (b) Classification. Class I... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Total spinal fluid immuno-logical test system. 866....5860 Total spinal fluid immuno-logical test system. (a) Identification. A total spinal...

  12. 21 CFR 866.5860 - Total spinal fluid immuno-logical test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... diagnosis of multiple sclerosis and other diseases of the nervous system. (b) Classification. Class I... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Total spinal fluid immuno-logical test system. 866....5860 Total spinal fluid immuno-logical test system. (a) Identification. A total spinal...

  13. 21 CFR 866.5860 - Total spinal fluid immuno-logical test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... diagnosis of multiple sclerosis and other diseases of the nervous system. (b) Classification. Class I... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Total spinal fluid immuno-logical test system. 866....5860 Total spinal fluid immuno-logical test system. (a) Identification. A total spinal...

  14. Test instrumentation evaluates electrostatic hazards in fluid system

    NASA Technical Reports Server (NTRS)

    Collins, L. H.; Henry, R.; Krebs, D.

    1967-01-01

    RJ-1 fuel surface potential is measured with a probe to determine the degree of hazard originating from static electricity buildup in the hydraulic fluid. The probe is mounted in contact with the fluid surface and connected to an electrostatic voltmeter.

  15. System and method for improving performance of a fluid sensor for an internal combustion engine

    DOEpatents

    Kubinski, David; Zawacki, Garry

    2009-03-03

    A system and method for improving sensor performance of an on-board vehicle sensor, such as an exhaust gas sensor, while sensing a predetermined substance in a fluid flowing through a pipe include a structure for extending into the pipe and having at least one inlet for receiving fluid flowing through the pipe and at least one outlet generally opposite the at least one inlet, wherein the structure redirects substantially all fluid flowing from the at least one inlet to the sensor to provide a representative sample of the fluid to the sensor before returning the fluid through the at least one outlet.

  16. A review of progress in understanding the fluid geochemistry of the Cerro Prieto geothermal system

    USGS Publications Warehouse

    Truesdell, A.H.; Nehring, N.L.; Thompson, J.M.; Janik, C.J.; Coplen, T.B.

    1984-01-01

    Fluid geochemistry has played a major role in our present understanding of the Cerro Prieto geothermal system. Fluid chemical and isotopic compositions have been used to indicate the origin of water, salts and gases, original subsurface temperature and fluid flow, fluid-production mechanisms, and production-induced aquifer boiling and cold-water entry. The extensive geochemical data and interpretations for Cerro Prieto published from 1964 to 1981 are reviewed and discussed. Fluid geochemistry must continue to play an important role in the further development of the Cerro Prieto field. ?? 1984.

  17. Review of progress in understanding the fluid geochemistry of the Cerro Prieto Geothermal System

    SciTech Connect

    Truesdell, A.H.; Nehring, N.L.; Thompson, J.M.; Janik, C.J.; Coplen, T.B.

    1982-08-10

    Fluid geochemistry has played a major role in the authors present understanding of the Cerro Prieto geothermal system. Fluid chemical and isotopic compositions have been used to indicate the origin of water, salts, and gases, original subsurface temperature and fluid flow, fluid-production mechanims, and production-induced aquifer boiling and cold-water entry. The extensive geochemical data and interpretation for Cerro Prieto published from 1964 to 1981 are reviewed and discussed. Fluid geochemistry must continue to play an important role in the further development of the Cerro Prieto field.

  18. Well treating method and system for stimulating recovery of fluids

    SciTech Connect

    Hill, G.A.; Passamaneck, R.S.; Touryan, K.J.

    1988-01-12

    This patent describes a method for fracturing a subterranean earth formation to stimulate the production of fluid from the formation wherein a wellbore extends at least to the formation from a surface point. The wellbore is provided with casing means forming a substantially fluid tight interior space. The method comprises the steps of: providing perforating means for perforating the casing means at a predetermined zone of the formation to provide for flow of fluids between the formation and the wellbore and placing the perforating means at the zone, filling at least a portion of the wellbore with a compressible fracturing fluid comprised of a liquid containing dispersed quantities of gas and having a solid propant dispersed therein; raising the pressure of the fracturing fluid in the wellbore to a predetermined pressure greater than the pressure required to hydraulically extend a fracture in the formation at the zone; and actuating the perforating means to form apertures in the casing means whereby the pressurized fracturing fluid at the predetermined pressure is allowed to flow into the formation under decompression forces to fracture the formation with a quantity of the fracturing fluid and to pro fractures in the formation open with the propant.

  19. Effectiveness of a disk-type magnetorheologic fluid damper for rotor system vibration control

    NASA Astrophysics Data System (ADS)

    Zhu, Changsheng; Robb, David A.; Ewins, David J.

    2001-07-01

    A disk-type MR fluid damper based on shear operation mode is presented in this paper. The magnetic field of the disk-type MR fluid damper is analysed by the finite element method. The effect of excitation current in the coil on the magnetic flux density in the axial gaps filled with MR fluid is studied both theoretically and experimentally. Finally, the effectiveness of the disk-type MR fluid damper for attenuating vibration of rotor systems and of a simple open-loop on-off control based on the feedback of rotational speed on controlling vibration of rotor systems are experimentally studied. It is shown that the dynamic characteristics of the disk-type MR fluid damper can be controlled by a simple magnetic coil with a low voltage, and the disk-type MR fluid damper is very effective to attenuate vibration of rotor systems.

  20. System for concentrating and analyzing particles suspended in a fluid

    DOEpatents

    Fiechtner, Gregory J.; Cummings, Eric B.; Singh, Anup K.

    2011-04-26

    Disclosed is a device for separating and concentrating particles suspended in a fluid stream by using dielectrophoresis (DEP) to trap and/or deflect those particles as they migrate through a fluid channel. The method uses fluid channels designed to constrain a liquid flowing through it to uniform electrokinetic flow velocities. This behavior is achieved by connecting deep and shallow sections of channels, with the channel depth varying abruptly along an interface. By careful design of abrupt changes in specific permeability at the interface, an abrupt and spatially uniform change in electrokinetic force can be selected. Because these abrupt interfaces also cause a sharp gradient in applied electric fields, a DEP force also can be established along the interface. Depending on the complex conductivity of the suspended particles and the immersion liquid, the DEP force can controllably complement or oppose the local electrokinetic force transporting the fluid through the channel allowing for manipulation of particles suspended in the transporting liquid.