Science.gov

Sample records for 2d fluid system

  1. NATRAN2. Fluid Hammer Analysis 1D & 2D Systems

    SciTech Connect

    Shin, Y.W.; Valentin, R.A.

    1992-03-03

    NATRAN2 analyzes short-term pressure-pulse transients in a closed hydraulic system consisting of a two-dimensional axisymmetric domain connected to a one-dimensional piping network. The one-dimensional network may consist of series or parallel piping, pipe junctions, diameter discontinuities, junctions of three to six branches, closed ends, surge tanks, far ends, dummy junctions, acoustic impedance discontinuities, and rupture disks. By default, the working fluid is assumed to be liquid sodium without cavitation; but another working fluid can be specified in terms of its density, sonic speed, and viscosity. The source pressure pulse can arise from one of the following: a pressure-time function specified at some point in the two-dimensional domain, a pressure-time function or a sodium-water reaction specified at some point in the one-dimensional domain. The pressure pulse from a sodium-water reaction is assumed to be generated according to the dynamic model of Zaker and Salmon.

  2. 2D Computational Fluid Dynamic Modeling of Human Ventricle System Based on Fluid-Solid Interaction and Pulsatile Flow.

    PubMed

    Masoumi, Nafiseh; Framanzad, F; Zamanian, Behnam; Seddighi, A S; Moosavi, M H; Najarian, S; Bastani, Dariush

    2013-01-01

    Many diseases are related to cerebrospinal fluid (CSF) hydrodynamics. Therefore, understanding the hydrodynamics of CSF flow and intracranial pressure is helpful for obtaining deeper knowledge of pathological processes and providing better treatments. Furthermore, engineering a reliable computational method is promising approach for fabricating in vitro models which is essential for inventing generic medicines. A Fluid-Solid Interaction (FSI)model was constructed to simulate CSF flow. An important problem in modeling the CSF flow is the diastolic back flow. In this article, using both rigid and flexible conditions for ventricular system allowed us to evaluate the effect of surrounding brain tissue. Our model assumed an elastic wall for the ventricles and a pulsatile CSF input as its boundary conditions. A comparison of the results and the experimental data was done. The flexible model gave better results because it could reproduce the diastolic back flow mentioned in clinical research studies. The previous rigid models have ignored the brain parenchyma interaction with CSF and so had not reported the back flow during the diastolic time. In this computational fluid dynamic (CFD) analysis, the CSF pressure and flow velocity in different areas were concordant with the experimental data.

  3. 2D Computational Fluid Dynamic Modeling of Human Ventricle System Based on Fluid-Solid Interaction and Pulsatile Flow.

    PubMed

    Masoumi, Nafiseh; Framanzad, F; Zamanian, Behnam; Seddighi, A S; Moosavi, M H; Najarian, S; Bastani, Dariush

    2013-01-01

    Many diseases are related to cerebrospinal fluid (CSF) hydrodynamics. Therefore, understanding the hydrodynamics of CSF flow and intracranial pressure is helpful for obtaining deeper knowledge of pathological processes and providing better treatments. Furthermore, engineering a reliable computational method is promising approach for fabricating in vitro models which is essential for inventing generic medicines. A Fluid-Solid Interaction (FSI)model was constructed to simulate CSF flow. An important problem in modeling the CSF flow is the diastolic back flow. In this article, using both rigid and flexible conditions for ventricular system allowed us to evaluate the effect of surrounding brain tissue. Our model assumed an elastic wall for the ventricles and a pulsatile CSF input as its boundary conditions. A comparison of the results and the experimental data was done. The flexible model gave better results because it could reproduce the diastolic back flow mentioned in clinical research studies. The previous rigid models have ignored the brain parenchyma interaction with CSF and so had not reported the back flow during the diastolic time. In this computational fluid dynamic (CFD) analysis, the CSF pressure and flow velocity in different areas were concordant with the experimental data. PMID:25337330

  4. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  5. Rheological Properties of Quasi-2D Fluids in Microgravity

    NASA Technical Reports Server (NTRS)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  6. SATURATION MEASUREMENT OF IMMISCIBLE FLUIDS IN 2-D STATIC SYSTEMS: VALIDATION BY LIGHT TRANSMISSION VISUALIZATION (SAN FRANCISCO, CA)

    EPA Science Inventory

    This study is a part of an ongoing research project that aims at assessing the environmental benefits of DNAPL removal. The laboratory part of the research project is to examine the functional relationship between DNAPL architecture, mass removal and contaminant mass flux in 2-D ...

  7. A new inversion method for (T2, D) 2D NMR logging and fluid typing

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Zou, Youlong; Zhou, Cancan

    2013-02-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.

  8. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  9. Roton Excitations and the Fluid-Solid Phase Transition in Superfluid 2D Yukawa Bosons

    NASA Astrophysics Data System (ADS)

    Molinelli, S.; Galli, D. E.; Reatto, L.; Motta, M.

    2016-10-01

    We compute several ground-state properties and the dynamical structure factor of a zero-temperature system of Bosons interacting with the 2D screened Coulomb (2D-SC) potential. We resort to the exact shadow path integral ground state (SPIGS) quantum Monte Carlo method to compute the imaginary-time correlation function of the model, and to the genetic algorithm via falsification of theories (GIFT) to retrieve the dynamical structure factor. We provide a detailed comparison of ground-state properties and collective excitations of 2D-SC and ^4He atoms. The roton energy of the 2D-SC system is an increasing function of density, and not a decreasing one as in ^4He. This result is in contrast with the view that the roton is the soft mode of the fluid-solid transition. We uncover a remarkable quasi-universality of backflow and of other properties when expressed in terms of the amount of short-range order as quantified by the height of the first peak of the static structure factor.

  10. Roton Excitations and the Fluid-Solid Phase Transition in Superfluid 2D Yukawa Bosons

    NASA Astrophysics Data System (ADS)

    Molinelli, S.; Galli, D. E.; Reatto, L.; Motta, M.

    2016-05-01

    We compute several ground-state properties and the dynamical structure factor of a zero-temperature system of Bosons interacting with the 2D screened Coulomb (2D-SC) potential. We resort to the exact shadow path integral ground state (SPIGS) quantum Monte Carlo method to compute the imaginary-time correlation function of the model, and to the genetic algorithm via falsification of theories (GIFT) to retrieve the dynamical structure factor. We provide a detailed comparison of ground-state properties and collective excitations of 2D-SC and ^4 He atoms. The roton energy of the 2D-SC system is an increasing function of density, and not a decreasing one as in ^4 He. This result is in contrast with the view that the roton is the soft mode of the fluid-solid transition. We uncover a remarkable quasi-universality of backflow and of other properties when expressed in terms of the amount of short-range order as quantified by the height of the first peak of the static structure factor.

  11. 2-D traveling-wave patterns in binary fluid convection

    SciTech Connect

    Surko, C.M.; Porta, A.L.

    1996-12-31

    An overview is presented of recent experiments designed to study two-dimensional traveling-wave convection in binary fluid convection in a large aspect ratio container. Disordered patterns are observed when convection is initiated. As time proceeds, they evolve to more ordered patterns, consisting of several domains of traveling-waves separated by well-defined domain boundaries. The detailed character of the patterns depends sensitively on the Rayleigh number. Numerical techniques are described which were developed to provide a quantitative characterization of the traveling-wave patterns. Applications of complex demodulation techniques are also described, which make a detailed study of the structure and dynamics of the domain boundaries possible.

  12. Documentation and verification of VST2D; a model for simulating transient, Variably Saturated, coupled water-heat-solute Transport in heterogeneous, anisotropic 2-Dimensional, ground-water systems with variable fluid density

    USGS Publications Warehouse

    Friedel, Michael J.

    2001-01-01

    This report describes a model for simulating transient, Variably Saturated, coupled water-heatsolute Transport in heterogeneous, anisotropic, 2-Dimensional, ground-water systems with variable fluid density (VST2D). VST2D was developed to help understand the effects of natural and anthropogenic factors on quantity and quality of variably saturated ground-water systems. The model solves simultaneously for one or more dependent variables (pressure, temperature, and concentration) at nodes in a horizontal or vertical mesh using a quasi-linearized general minimum residual method. This approach enhances computational speed beyond the speed of a sequential approach. Heterogeneous and anisotropic conditions are implemented locally using individual element property descriptions. This implementation allows local principal directions to differ among elements and from the global solution domain coordinates. Boundary conditions can include time-varying pressure head (or moisture content), heat, and/or concentration; fluxes distributed along domain boundaries and/or at internal node points; and/or convective moisture, heat, and solute fluxes along the domain boundaries; and/or unit hydraulic gradient along domain boundaries. Other model features include temperature and concentration dependent density (liquid and vapor) and viscosity, sorption and/or decay of a solute, and capability to determine moisture content beyond residual to zero. These features are described in the documentation together with development of the governing equations, application of the finite-element formulation (using the Galerkin approach), solution procedure, mass and energy balance considerations, input requirements, and output options. The VST2D model was verified, and results included solutions for problems of water transport under isohaline and isothermal conditions, heat transport under isobaric and isohaline conditions, solute transport under isobaric and isothermal conditions, and coupled water

  13. In situ fluid typing and quantification with 1D and 2D NMR logging.

    PubMed

    Sun, Boqin

    2007-05-01

    In situ nuclear magnetic resonance (NMR) fluid typing has recently gained momentum due to data acquisition and inversion algorithm enhancement of NMR logging tools. T(2) distributions derived from NMR logging contain information on bulk fluids and pore size distributions. However, the accuracy of fluid typing is greatly overshadowed by the overlap between T(2) peaks arising from different fluids with similar apparent T(2) relaxation times. Nevertheless, the shapes of T(2) distributions from different fluid components are often different and can be predetermined. Inversion with predetermined T(2) distributions allows us to perform fluid component decomposition to yield individual fluid volume ratios. Another effective method for in situ fluid typing is two-dimensional (2D) NMR logging, which results in proton population distribution as a function of T(2) relaxation time and fluid diffusion coefficient (or T(1) relaxation time). Since diffusion coefficients (or T(1) relaxation time) for different fluid components can be very different, it is relatively easy to separate oil (especially heavy oil) from water signal in a 2D NMR map and to perform accurate fluid typing. Combining NMR logging with resistivity and/or neutron/density logs provides a third method for in situ fluid typing. We shall describe these techniques with field examples. PMID:17466778

  14. Numerical simulation of ( T 2, T 1) 2D NMR and fluid responses

    NASA Astrophysics Data System (ADS)

    Tan, Mao-Jin; Zou, You-Long; Zhang, Jin-Yan; Zhao, Xin

    2012-12-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology is limited for fluid typing, while two-dimensional nuclear magnetic resonance (2D NMR) logging can provide more parameters including longitudinal relaxation time ( T 1) and transverse relaxation time ( T 2) relative to fluid types in porous media. Based on the 2D NMR relaxation mechanism in a gradient magnetic field, echo train simulation and 2D NMR inversion are discussed in detail. For 2D NMR inversion, a hybrid inversion method is proposed based on the damping least squares method (LSQR) and an improved truncated singular value decomposition (TSVD) algorithm. A series of spin echoes are first simulated with multiple waiting times ( T W s) in a gradient magnetic field for given fluid models and these synthesized echo trains are inverted by the hybrid method. The inversion results are consistent with given models. Moreover, the numerical simulation of various fluid models such as the gas-water, light oil-water, and vicious oil-water models were carried out with different echo spacings ( T E s) and T W s by this hybrid method. Finally, the influences of different signal-to-noise ratios (SNRs) on inversion results in various fluid models are studied. The numerical simulations show that the hybrid method and optimized observation parameters are applicable to fluid typing of gas-water and oil-water models.

  15. Translational and Rotational Diffusion of Nanoparticle Aggregates of Irregular Shape in 2D Fluid Membranes

    NASA Astrophysics Data System (ADS)

    Meienberg, Kyle; Papaioannou, John; Park, Cheol; Glaser, Matt; Maclennan, Joe; Clark, Noel; Kuriabova, Tatiana; Powers, Thomas

    2015-03-01

    We observe directly the diffusion and aggregation of nanoparticles (buckyballs) embedded in thin, freely suspended smectic A liquid crystal films of 8CB using reflected light microscopy Individual buckyballs, initially homogeneously dispersed in the film, are too small to see but after some hours form nanoscale clusters. These, in turn, aggregate to form extended, micron-scale objects which diffuse in the film, enabling the measurement of 2D rotational and translational mobilities of inclusions with a wide variety of different shapes. The experimental mobilities are compared with predictions of the extended Saffman-Delbrück (SD) model used successfully to describe the diffusion of micron-sized objects in thin fluid membranes in a variety of experimental systems. This work was supported by NASA Grant No. NNX-13AQ81G, NSF MRSEC Grant No. DMR-0820579, and by NSF Grant No. CBET-0854108.

  16. Potential role of CYP2D6 in the central nervous system

    PubMed Central

    Cheng, Jie; Zhen, Yueying; Miksys, Sharon; Beyoğlu, Diren; Krausz, Kristopher W.; Tyndale, Rachel F.; Yu, Aiming; Idle, Jeffrey R.; Gonzalez, Frank J.

    2013-01-01

    Cytochrome P450 2D6 (CYP2D6) is a pivotal enzyme responsible for a major human drug oxidation polymorphism in human populations. Distribution of CYP2D6 in brain and its role in serotonin metabolism suggest this CYP2D6 may have a function in central nervous system. To establish an efficient and accurate platform for the study of CYP2D6 in vivo, a transgenic human CYP2D6 (Tg-2D6) model was generated by transgenesis in wild-type C57BL/6 (WT) mice using a P1 phage artificial chromosome clone containing the complete human CYP2D locus, including CYP2D6 gene and 5’- and 3’- flanking sequences. Human CYP2D6 was expressed not only in the liver, but also in brain. The abundance of serotonin and 5-hydroxyindoleacetic acid in brain of Tg-2D6 is higher than in WT mice either basal levels or after harmaline induction. Metabolomics of brain homogenate and cerebrospinal fluid revealed a significant up-regulation of l-carnitine, acetyl-l-carnitine, pantothenic acid, dCDP, anandamide, N-acetylglucosaminylamine, and a down-regulation of stearoyl-l-carnitine in Tg-2D6 mice compared with WT mice. Anxiety tests indicate Tg-2D6 mice have a higher capability to adapt to anxiety. Overall, these findings indicate that the Tg-2D6 mouse model may serve as a valuable in vivo tool to determine CYP2D6-involved neurophysiological metabolism and function. PMID:23614566

  17. 2-D Three Fluid Simulation of Upstreaming Ions Above Auroral Precipitation

    NASA Astrophysics Data System (ADS)

    Danielides, M. A.; Lummerzheim, D.; Otto, A.; Stevens, R. J.

    2006-12-01

    The ionosphere is a rich reservoir of charged particles from which a variable fraction is transported to the magnetosphere. An important transport phenomena is the formation of upward ion flow above auroral structure. A primary region of the outflow is not known, but contributions come from polar cap, dayside cusp/cleft region, auroral oval, or even from mid-latitudes. In the past global magnetospheric models and fluid codes were used to simulate large scale ion outflow above, e.g., the polar-cap aurora. However, satellites orbiting at low- altitudes have repeatingly detected localized ion outflow above the auroral oval. Ionosphere-magnetosphere coupling simulations gave first insides into the small-scale dynamics of aurora. The aim of this study is the investigation of coupled plasma and neutral dynamics in smaller scale aurora to explain the generation, structure, and dynamics of vertical ion upstream. We consider auroral electron precipitation at ionospheric heights in a 2-D three fluid ionospheric-magnetospheric coupling code (Otto and Zhu, 2003). Specially we examine the effects of the electron precipitation, heat conduction and heating in field- aligned current through coulomb collisions or turbulence causing: i) electron heating, ii) electron pressure gradients, and iii) upstreaming of ions through a resulting ambipolar electric field. Our first case studies are performed for different boundary conditions and for different auroral electron precipitation parameters (variation in characteristic auroral energy, auroral energy flux and horizontal scale). The results shall clarify how auroral precipitation can drive ions upwards. Finally we discuss the effect of ion drag and the interaction of the upstreaming ions with a stable neutral constituent. Otto, O. and H. Zhu, Fluid plasma simulation of coupled systems: Ionosphere and magnetosphere, Space Plasma Simulation. Edited by J. Buechner, C. Dum, and M. Scholer., Lecture Notes in Physics, vol. 615, p.193

  18. LOCA hydroloads calculations with multidimensional nonlinear fluid/structure interaction. Volume 2: STEALTH 2D/WHAMSE 2D single-phse fluid and elastic structure studies. Final report. [PWR

    SciTech Connect

    Chang, F.H.; Santee, G.E. Jr.; Mortensen, G.A.; Brockett, G.F.; Gross, M.B.; Silling, S.A.; Belytschko, T.

    1981-03-01

    This report, the second in a series of reports for RP-1065, describes the second step in the stepwise approach for developing the three-dimensional, nonlinear, fluid/structure interaction methodology to assess the hydroloads on a large PWR during the subcooled portions of a hypothetical LOCA. The second step in the methodology considers enhancements and special modifications to the 2D STEALTH-HYDRO computer program and the 2D WHAMSE computer program. The 2D STEALTH-HYDRO enhancements consist of a fluid-fluid coupling control-volume model and an orifice control-volume model. The enhancements to 2D WHAMSE include elimination of the implicit integration routines, material models, and structural elements not required for the hydroloads application. In addition the logic for coupling the 2D STEALTH-HYDRO computer program to the 2D WHAMSE computer program is discussed.

  19. An Integrative Model of Excitation Driven Fluid Flow in a 2D Uterine Channel

    NASA Astrophysics Data System (ADS)

    Maggio, Charles; Fauci, Lisa; Chrispell, John

    2009-11-01

    We present a model of intra-uterine fluid flow in a sagittal cross-section of the uterus by inducing peristalsis in a 2D channel. This is an integrative multiscale computational model that takes as input fluid viscosity, passive tissue properties of the uterine channel and a prescribed wave of membrane depolarization. This voltage pulse is coupled to a model of calcium dynamics inside a uterine smooth muscle cell, which in turn drives a kinetic model of myosin phosphorylation governing contractile muscle forces. Using the immersed boundary method, these muscle forces are communicated to a fluid domain to simulate the contractions which occur in a human uterus. An analysis of the effects of model parameters on the flow properties and emergent geometry of the peristaltic channel will be presented.

  20. GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System

    DOE Data Explorer

    James Menart

    2013-06-07

    This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..

  1. THz devices based on 2D electron systems

    NASA Astrophysics Data System (ADS)

    Xing, Huili Grace; Yan, Rusen; Song, Bo; Encomendero, Jimy; Jena, Debdeep

    2015-05-01

    In two-dimensional electron systems with mobility on the order of 1,000 - 10,000 cm2/Vs, the electron scattering time is about 1 ps. For the THz window of 0.3 - 3 THz, the THz photon energy is in the neighborhood of 1 meV, substantially smaller than the optical phonon energy of solids where these 2D electron systems resides. These properties make the 2D electron systems interesting as a platform to realize THz devices. In this paper, I will review 3 approaches investigated in the past few years in my group toward THz devices. The first approach is the conventional high electron mobility transistor based on GaN toward THz amplifiers. The second approach is to employ the tunable intraband absorption in 2D electron systems to realize THz modulators, where I will use graphene as a model material system. The third approach is to exploit plasma wave in these 2D electron systems that can be coupled with a negative differential conductance element for THz amplifiers/sources/detectors.

  2. NASA High-Speed 2D Photogrammetric Measurement System

    NASA Technical Reports Server (NTRS)

    Dismond, Harriett R.

    2012-01-01

    The object of this report is to provide users of the NASA high-speed 2D photogrammetric measurement system with procedures required to obtain drop-model trajectory and impact data for full-scale and sub-scale models. This guide focuses on use of the system for vertical drop testing at the NASA Langley Landing and Impact Research (LandIR) Facility.

  3. Conformal Laplace superintegrable systems in 2D: polynomial invariant subspaces

    NASA Astrophysics Data System (ADS)

    Escobar-Ruiz, M. A.; Miller, Willard, Jr.

    2016-07-01

    2nd-order conformal superintegrable systems in n dimensions are Laplace equations on a manifold with an added scalar potential and 2n-1 independent 2nd order conformal symmetry operators. They encode all the information about Helmholtz (eigenvalue) superintegrable systems in an efficient manner: there is a 1-1 correspondence between Laplace superintegrable systems and Stäckel equivalence classes of Helmholtz superintegrable systems. In this paper we focus on superintegrable systems in two-dimensions, n = 2, where there are 44 Helmholtz systems, corresponding to 12 Laplace systems. For each Laplace equation we determine the possible two-variate polynomial subspaces that are invariant under the action of the Laplace operator, thus leading to families of polynomial eigenfunctions. We also study the behavior of the polynomial invariant subspaces under a Stäckel transform. The principal new results are the details of the polynomial variables and the conditions on parameters of the potential corresponding to polynomial solutions. The hidden gl 3-algebraic structure is exhibited for the exact and quasi-exact systems. For physically meaningful solutions, the orthogonality properties and normalizability of the polynomials are presented as well. Finally, for all Helmholtz superintegrable solvable systems we give a unified construction of one-dimensional (1D) and two-dimensional (2D) quasi-exactly solvable potentials possessing polynomial solutions, and a construction of new 2D PT-symmetric potentials is established.

  4. Fluid channeling system

    NASA Technical Reports Server (NTRS)

    Davis, Donald Y. (Inventor); Hitch, Bradley D. (Inventor)

    1994-01-01

    A fluid channeling system includes a fluid ejector, a heat exchanger, and a fluid pump disposed in series flow communication The ejector includes a primary inlet for receiving a primary fluid, and a secondary inlet for receiving a secondary fluid which is mixed with the primary fluid and discharged therefrom as ejector discharge. Heat is removed from the ejector discharge in the heat exchanger, and the heat exchanger discharge is compressed in the fluid pump and channeled to the ejector secondary inlet as the secondary fluid In an exemplary embodiment, the temperature of the primary fluid is greater than the maximum operating temperature of a fluid motor powering the fluid pump using a portion of the ejector discharge, with the secondary fluid being mixed with the primary fluid so that the ejector discharge temperature is equal to about the maximum operating temperature of the fluid motor.

  5. Thin soap films are quasi-2D fluids and thick soap films are not

    NASA Astrophysics Data System (ADS)

    Vivek, Skanda; Weeks, Eric R.

    2012-11-01

    We use microrheology to measure the 2D (interfacial) viscosity of soap films. Microrheology uses the diffusive motion of tracer particles suspended in the soap film to infer the viscosity. Our particles are colloids of diameter d = 0 . 5 μm. We measure the interfacial viscosity of soap films ranging in thickness from h = 0 . 5 μm to 2.0 μm. The thickness of these films is measured using the infrared absorbance of the water based soap films, based on a previous setup [X. L. Wu, R. Levine, M. A. Rutgers, H. Kellay, W.I. Goldburg, Rev. Sci. Inst. 72, 2467 (2001)]. From the knowledge of the film thickness and the viscosity of the fluid used to make the film, we can infer the interfacial viscosity due to the surfactant layers at the film/air interfaces. Consistent results are found for thin films (h / d < 3) whereas for thicker films inconsistent and unphysical results are found indicating 3D effects begin to play a role. The transition from 2D to 3D properties as a function of h / d is sharp.

  6. 2-D scalable optical controlled phased-array antenna system

    NASA Astrophysics Data System (ADS)

    Chen, Maggie Yihong; Howley, Brie; Wang, Xiaolong; Basile, Panoutsopoulos; Chen, Ray T.

    2006-02-01

    A novel optoelectronically-controlled wideband 2-D phased-array antenna system is demonstrated. The inclusion of WDM devices makes a highly scalable system structure. Only (M+N) delay lines are required to control a M×N array. The optical true-time delay lines are combination of polymer waveguides and optical switches, using a single polymeric platform and are monolithically integrated on a single substrate. The 16 time delays generated by the device are measured to range from 0 to 175 ps in 11.6 ps. Far-field patterns at different steering angles in X-band are measured.

  7. Crustal metamorphic fluid flux beneath the Dead Sea Basin: Constraints from 2D and 3D magnetotelluric modelling

    NASA Astrophysics Data System (ADS)

    Meqbel, Naser; Weckmann, Ute; Muñoz, Gerard; Ritter, Oliver

    2016-09-01

    We report on a study to explore the deep electrical conductivity structure of the Dead Sea Basin (DSB) using magnetotelluric (MT) data collected along a transect across the DSB where the left lateral strike slip Dead Sea transform fault (DST) splits into two fault strands forming one of the largest pull-apart basins of the world. A very pronounced feature of our 2D inversion model is a deep, sub-vertical conductive zone beneath the DSB. The conductor extends through the entire crust and is sandwiched between highly resistive structures associated with Precambrian rocks of the basin flanks. The high electrical conductivity could be attributed to fluids released by dehydration of the uppermost mantle beneath the DSB, possibly in combination with fluids released by mid to low grade metamorphism in the lower crust and generation of hydrous minerals in the middle crust through retrograde metamorphism. Similar high conductivity zones associated with fluids have been reported from other large fault systems. The presence of fluids and hydrous minerals in the middle and lower crust could explain the required low friction coefficient of the DST along the eastern boundary of the Dead Sea basin and the high subsidence rate of basin sediments. 3D inversion models confirm the existence of a sub-vertical high conductivity structure underneath the DSB but its expression is far less pronounced. Instead, the 3D inversion model suggests a deepening of the conductive DSB sediments off-profile towards the south, reaching a maximum depth of approximately 12 km, which is consistent with other geophysical observations. At shallower levels, the 3D inversion model reveals salt diapirism as an upwelling of highly resistive structures, localized underneath the Al-Lisan Peninsula. The 3D model furthermore contains an E-W elongated conductive structure to the north-east of the Dead Sea basin. More MT data with better spatial coverage are required, however, to fully constrain the robustness of

  8. Development of models for the two-dimensional, two-fluid code for sodium boiling NATOF-2D. [LMFBR

    SciTech Connect

    Zielinski, R.G.; Kazimi, M.S.

    1981-09-01

    Several features were incorporated into NATOF-2D, a two-dimensional, two fluid code developed at MIT for the purpose of analysis of sodium boiling transients under LMFBR conditions. They include improved interfacial mass, momentum and energy exchange rate models, and a cell-to-cell radial heat conduction mechanism which was calibrated by simulation of Westinghouse Blanket Heat Transfer Test Program Runs 544 and 545. Finally, a direct method of pressure field solution was implemented into a direct method of pressure field solution was implemented into NATOF-2D, replacing the iterative technique previously available, and resulted in substantially reduced computational costs.

  9. Fast 2D fluid-analytical simulation of ion energy distributions and electromagnetic effects in multi-frequency capacitive discharges

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lieberman, M. A.; Graves, D. B.

    2014-12-01

    A fast 2D axisymmetric fluid-analytical plasma reactor model using the finite elements simulation tool COMSOL is interfaced with a 1D particle-in-cell (PIC) code to study ion energy distributions (IEDs) in multi-frequency capacitive argon discharges. A bulk fluid plasma model, which solves the time-dependent plasma fluid equations for the ion continuity and electron energy balance, is coupled with an analytical sheath model, which solves for the sheath parameters. The time-independent Helmholtz equation is used to solve for the fields and a gas flow model solves for the steady-state pressure, temperature and velocity of the neutrals. The results of the fluid-analytical model are used as inputs to a PIC simulation of the sheath region of the discharge to obtain the IEDs at the target electrode. Each 2D fluid-analytical-PIC simulation on a moderate 2.2 GHz CPU workstation with 8 GB of memory took about 15-20 min. The multi-frequency 2D fluid-analytical model was compared to 1D PIC simulations of a symmetric parallel-plate discharge, showing good agreement. We also conducted fluid-analytical simulations of a multi-frequency argon capacitively coupled plasma (CCP) with a typical asymmetric reactor geometry at 2/60/162 MHz. The low frequency 2 MHz power controlled the sheath width and sheath voltage while the high frequencies controlled the plasma production. A standing wave was observable at the highest frequency of 162 MHz. We noticed that adding 2 MHz power to a 60 MHz discharge or 162 MHz to a dual frequency 2 MHz/60 MHz discharge can enhance the plasma uniformity. We found that multiple frequencies were not only useful for controlling IEDs but also plasma uniformity in CCP reactors.

  10. Fluid infusion system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Performance testing carried out in the development of the prototype zero-g fluid infusion system is described and summarized. Engineering tests were performed in the course of development, both on the original breadboard device and on the prototype system. This testing was aimed at establishing baseline system performance parameters and facilitating improvements. Acceptance testing was then performed on the prototype system to verify functional performance. Acceptance testing included a demonstration of the fluid infusion system on a laboratory animal.

  11. Anomalous diffusion of an ellipsoid in quasi-2D active fluids

    NASA Astrophysics Data System (ADS)

    Peng, Yi; Yang, Ou; Tang, Chao; Cheng, Xiang

    Enhanced diffusion of a tracer particle is a unique feature in active fluids. Here, we studied the diffusion of an ellipsoid in a free-standing film of E. coli. Particle diffusion is linearly enhanced at low bacterial concentrations, whereas a non-linear enhancement is observed at high bacterial concentrations due to the giant fluctuation. More importantly, we uncover an anomalous coupling between the translational and rotational degrees of freedom that is strictly prohibited in the classical Brownian diffusion. Combining experiments with theoretical modeling, we show that such an anomaly arises from the stretching flow induced by the force dipole of swimming bacteria. Our work illustrates a novel universal feature of active matter and transforms the understanding of fundamental transport processes in microbiological systems. ACS Petroleum Research Fund #54168-DNI9, NSF Faculty Early Career Development Program, DMR-1452180.

  12. Sphere based fluid systems

    NASA Technical Reports Server (NTRS)

    Elleman, Daniel D. (Inventor); Wang, Taylor G. (Inventor)

    1989-01-01

    Systems are described for using multiple closely-packed spheres. In one system for passing fluid, a multiplicity of spheres lie within a container, with all of the spheres having the same outside diameter and with the spheres being closely nested in one another to create multiple interstitial passages of a known size and configuration and smooth walls. The container has an inlet and outlet for passing fluid through the interstitial passages formed between the nested spheres. The small interstitial passages can be used to filter out material, especially biological material such as cells in a fluid, where the cells can be easily destroyed if passed across sharp edges. The outer surface of the spheres can contain a material that absorbs a constitutent in the flowing fluid, such as a particular contamination gas, or can contain a catalyst to chemically react the fluid passing therethrough, the use of multiple small spheres assuring a large area of contact of these surfaces of the spheres with the fluid. In a system for storing and releasing a fluid such as hydrogen as a fuel, the spheres can include a hollow shell containing the fluid to be stored, and located within a compressable container that can be compressed to break the shells and release the stored fluid.

  13. Evidence for a New Intermediate Phase in a Strongly Correlated 2D System near Wigner Crystallization

    NASA Astrophysics Data System (ADS)

    Gao, Xuan; Qiu, Richard; Goble, Nicholas; Serafin, Alex; Yin, Liang; Xia, Jian-Sheng; Sullivan, Neil; Pfeiffer, Loren; West, Ken

    How the two dimensional (2D) quantum Wigner crystal (WC) transforms into the metallic liquid phase remains an outstanding problem in physics. In theories considering the 2D WC to liquid transition in the clean limit, it was suggested that a number of intermediate phases might exist. We have studied the transformation between the metallic fluid phase and the low magnetic field reentrant insulating phase (RIP) which was interpreted as due to the WC [Qiu et al., PRL 108, 106404 (2012)], in a strongly correlated 2D hole system in GaAs quantum well with large interaction parameter rs (~20-30) and high mobility. Instead of a sharp transition, we found that increasing density (or lowering rs) drives the RIP into a state where the incipient RIP coexists with Fermi liquid. This apparent mixture phase intermediate between Fermi liquid and WC also exhibits a non-trivial temperature dependent resistivity behavior which can be qualitatively understood by the reversed melting of WC in the mixture, in analogy to the Pomeranchuk effect in the solid-liquid mixture of Helium-3. X.G. thanks NSF (DMR-0906415) for supporting work at CWRU. Experiments at the NHMFL High B/T Facility were supported by NSF Grant 0654118 and the State of Florida. L.P. thanks the Gordon and Betty Moore Foundation and NSF MRSEC (DMR-0819860) for support.

  14. Pattern formation in 2D flow of non-Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Shelley, Michael; Ljubinko; Kondic; Palffy-Muhoray, Peter

    1997-03-01

    We explore the dynamics of the interface between a gas and a non-Newtonian fluid in a Hele-Shaw cell. If gas expands into fluid, the interface is unstable (Saffman-Taylor instability). This instability leads to viscous fingering for Newtonian fluids, but can produce dendritic morphology for non-Newtonian ones. Our analysis is based on the formulation of modified Darcy's law (Kondic, Palffy-Muhoray, and Shelley, Phys. Rev. E 54), 4536 R, 1996., where the problem reduces to nonlinear boundary value problem for pressure field in the fluid. We perform full numerical simulation of the time evolution of the interface. In the flow regime where elastic effects are negligible, it is found that shear-thinning character of the fluid considerably influences the morphology of the interface. We hope to understand experimentally observed dendritic structure, which also appears in many related physical problems, such as directional solidification.

  15. Basic fluid system trainer

    DOEpatents

    Semans, Joseph P.; Johnson, Peter G.; LeBoeuf, Jr., Robert F.; Kromka, Joseph A.; Goron, Ronald H.; Hay, George D.

    1993-01-01

    A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

  16. Multiphase fluid characterization system

    DOEpatents

    Sinha, Dipen N.

    2014-09-02

    A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.

  17. 2D steady-state general solution and fundamental solution for fluid-saturated, orthotropic, poroelastic materials

    NASA Astrophysics Data System (ADS)

    Pan, Li-Hua; Hou, Peng-Fei; Chen, Jia-Yun

    2016-08-01

    The 2D steady-state solutions regarding the expressions of stress and strain for fluid-saturated, orthotropic, poroelastic plane are derived in this paper. For this object, the general solutions of the corresponding governing equation are first obtained and expressed in harmonic functions. Based on these compact general solutions, the suitable harmonic functions with undetermined constants for line fluid source in the interior of infinite poroelastic body and a line fluid source on the surface of semi-infinite poroelastic body are presented, respectively. The fundamental solutions can be obtained by substituting these functions into the general solution, and the undetermined constants can be obtained by the continuous conditions, equilibrium conditions and boundary conditions.

  18. 2D foam coarsening in a microfluidic system

    NASA Astrophysics Data System (ADS)

    Marchalot, J.; Lambert, J.; Cantat, I.; Tabeling, P.; Jullien, M.-C.

    2008-09-01

    We report an experimental study of 2D microfoam coarsening confined in a micrometer scale geometry, the typical bubbles diameter being of the order of 50-100 μm. These experiments raise both fundamental and applicative issues. For applicative issues: what is the typical time of foam ageing (for a polydisperse foam) in microsystems in scope of gas pocket storage in lab-on-a-chips? Experimental results show that a typical time of 2-3 mn is found, leading to the possibility of short-time storing, depending on the application. For fundamental interests, 2D foam ageing is generally described by von Neumann's law (von Neumann J., Metal Interfaces (American Society of Metals, Cleveland) 1952, p. 108) which is based on the hypothesis that bubbles are separated by thin films. Does this hypothesis still hold for foams confined in a 40 μm height geometry? This problematic is analyzed and it is shown that von Neumann's law still holds but that the diffusion coefficient involved in this law is modified by the confinement which imposes a curvature radius at Plateau borders. More precisely, it is shown that the liquid fraction is high on a film cross-section, in contrast with macrometric experiments where drainage occurs. An analytical description of the diffusion is developped taking into account the fact that soap film height is only a fraction of the cell height. While most of microfoams are flowing, the experimental set-up we describe leads to the achievement of a motionless confined microfoam.

  19. Vlasov Fluid stability of a 2-D plasma with a linear magnetic field null

    SciTech Connect

    Kim, J.S.

    1984-01-01

    Vlasov Fluid stability of a 2-dimensional plasma near an O type magnetic null is investigated. Specifically, an elongated Z-pinch is considered, and applied to Field Reversed Configurations at Los Alamos National Laboratory by making a cylindrical approximation of the compact torus. The orbits near an elliptical O type null are found to be very complicated; the orbits are large and some are stochastic. The kinetic corrections to magnetohydrodynamics (MHD) are investigated by evaluating the expectation values of the growth rates of a Vlasov Fluid dispersion functional by using a set of trial functions based on ideal MHD. The dispersion functional involves fluid parts and orbit dependent parts. The latter involves phase integral of two time correlations. The phase integral is replaced by the time integral both for the regular and for the stochastic orbits. Two trial functions are used; one has a large displacement near the null and the other away from the null.

  20. Fluid-assisted deformation of the subduction interface: Coupled and decoupled regimes from 2-D hydromechanical modeling

    NASA Astrophysics Data System (ADS)

    Zheng, Liang; May, Dave; Gerya, Taras; Bostock, Michael

    2016-08-01

    Shear deformation, accompanied with fluid activity inside the subduction interface, is related to many tectonic energy-releasing events, including regular and slow earthquakes. We have numerically examined the fluid-rock interactions inside a deforming subduction interface using state-of-the-art 2-D hydromechanical numerical models, which incorporate the rock fracturing behavior as a plastic rheology which is dependent on the pore fluid pressure. Our modeling results suggest that two typical dynamical regimes of the deforming subduction interface exist, namely, a "coupled" and a "decoupled" regime. In the coupled regime the subduction interface is subdivided into multiple rigid blocks, each separated by a narrow shear zone inclined at an angle of 15-20° with respect to the slab surface. In contrast, in the decoupled regime the subduction interface is divided into two distinct layers moving relative to each other along a pervasive slab surface-parallel shear zone. Through a systematic parameter study, we observe that the tensile strength (cohesion) of the material within the subduction interface dictates the resulting style of deformation within the interface: high cohesion (~60 MPa) results in the coupled regime, while low cohesion (~10 MPa) leads to the decoupled regime. We also demonstrate that the lithostatic pressure and inflow/outflow fluid fluxes (i.e., fluid-fluxed boundary condition) influence the location and orientation of faults. Predictions from our numerical models are supported by experimental laboratory studies, geological data, and geophysical observations from modern subduction settings.

  1. Orbital Fluid Transfer System

    NASA Technical Reports Server (NTRS)

    Johnston, A. S., (Nick); Ryder, Mel; Tyler, Tony R.

    1998-01-01

    An automated fluid and power interface system needs to be developed for future space missions which require on orbit consumable replenishment. Current method of fluid transfer require manned vehicles and extravehicular activity. Currently the US does not have an automated capability for consumable transfer on-orbit. This technology would benefit both Space Station and long duration satellites. In order to provide this technology the Automated Fluid Interface System (AFIS) was developed. The AFIS project was an advanced development program aimed at developing a prototype satellite servicer for future space operations. This mechanism could transfer propellants, cryogens, fluids, gasses, electrical power, and communications from a tanker unit to the orbiting satellite. The development of this unit was a cooperative effort between Marshall Space Flight Center in Huntsville, Alabama, and Moog, Inc. in East Aurora, New York. An engineering model was built and underwent substantial development testing at Marshall Space Flight Center (MSFC). While the AFIS is not suitable for spaceflight, testing and evaluation of the AFIS provided significant experience which would be beneficial in building a flight unit. The lessons learned from testing the AFIS provided the foundation for the next generation fluid transfer mechanism, the Orbital Fluid Transfer System (OFTS). The OFTS project was a study contract with MSFC and Moog, Inc. The OFTS was designed for the International Space Station (ISS), but its flexible design could used for long duration satellite missions and other applications. The OFTS was designed to be used after docking. The primary function was to transfer bipropellants and high pressure gases. The other items addressed by this task included propellant storage, hardware integration, safety and control system issues. A new concept for high pressure couplings was also developed. The results of the AFIS testing provided an excellent basis for the OFTS design. The OFTS

  2. A Numerical Analysis of Sloshing Fluid in 2D Tanks with Baffles

    NASA Astrophysics Data System (ADS)

    Wu, C. H.; Chen, B. F.

    2011-09-01

    A tuned liquid damper (TLD) is one possible damping device of tall buildings under wind and earthquake excitations. A 2D tank with a vertically tank bottom-mounted baffle under horizontal excitation is studied in this work. The combination of time-independent finite difference method [1-3] and one-dimensional ghost cell approach was implemented to solve liquid sloshing in the baffled tank. The correlation between the movement of baffles and flow field due to liquid sloshing might to the clue to investigate the evolution of vortices around the baffle tip. We categorize the interaction process of vortices evolution into three phases: (1) Formation of separated shear layer and generation of vortices; (2) Formation of a vertical jet and shedding of vortices; (3) Interaction between shedding vortices and sloshing flow: the generation of snaky flow.

  3. Density functional theory for polymeric systems in 2D

    NASA Astrophysics Data System (ADS)

    Słyk, Edyta; Roth, Roland; Bryk, Paweł

    2016-06-01

    We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim’s first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys. 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT.

  4. Density functional theory for polymeric systems in 2D.

    PubMed

    Słyk, Edyta; Roth, Roland; Bryk, Paweł

    2016-06-22

    We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim's first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys. 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT. PMID:27115343

  5. Intravenous Fluid Generation System

    NASA Technical Reports Server (NTRS)

    McQuillen, John; McKay, Terri; Brown, Daniel; Zoldak, John

    2013-01-01

    The ability to stabilize and treat patients on exploration missions will depend on access to needed consumables. Intravenous (IV) fluids have been identified as required consumables. A review of the Space Medicine Exploration Medical Condition List (SMEMCL) lists over 400 medical conditions that could present and require treatment during ISS missions. The Intravenous Fluid Generation System (IVGEN) technology provides the scalable capability to generate IV fluids from indigenous water supplies. It meets USP (U.S. Pharmacopeia) standards. This capability was performed using potable water from the ISS; water from more extreme environments would need preconditioning. The key advantage is the ability to filter mass and volume, providing the equivalent amount of IV fluid: this is critical for remote operations or resource- poor environments. The IVGEN technology purifies drinking water, mixes it with salt, and transfers it to a suitable bag to deliver a sterile normal saline solution. Operational constraints such as mass limitations and lack of refrigeration may limit the type and volume of such fluids that can be carried onboard the spacecraft. In addition, most medical fluids have a shelf life that is shorter than some mission durations. Consequently, the objective of the IVGEN experiment was to develop, design, and validate the necessary methodology to purify spacecraft potable water into a normal saline solution, thus reducing the amount of IV fluids that are included in the launch manifest. As currently conceived, an IVGEN system for a space exploration mission would consist of an accumulator, a purifier, a mixing assembly, a salt bag, and a sterile bag. The accumulator is used to transfer a measured amount of drinking water from the spacecraft to the purifier. The purifier uses filters to separate any air bubbles that may have gotten trapped during the drinking water transfer from flowing through a high-quality deionizing cartridge that removes the impurities in

  6. Screening and transport in 2D semiconductor systems at low temperatures

    PubMed Central

    Das Sarma, S.; Hwang, E. H.

    2015-01-01

    Low temperature carrier transport properties in 2D semiconductor systems can be theoretically well-understood within RPA-Boltzmann theory as being limited by scattering from screened Coulomb disorder arising from random quenched charged impurities in the environment. In this work, we derive a number of analytical formula, supported by realistic numerical calculations, for the relevant density, mobility, and temperature range where 2D transport should manifest strong intrinsic (i.e., arising purely from electronic effects) metallic temperature dependence in different semiconductor materials arising entirely from the 2D screening properties, thus providing an explanation for why the strong temperature dependence of the 2D resistivity can only be observed in high-quality and low-disorder 2D samples and also why some high-quality 2D materials manifest much weaker metallicity than other materials. We also discuss effects of interaction and disorder on the 2D screening properties in this context as well as compare 2D and 3D screening functions to comment why such a strong intrinsic temperature dependence arising from screening cannot occur in 3D metallic carrier transport. Experimentally verifiable predictions are made about the quantitative magnitude of the maximum possible low-temperature metallicity in 2D systems and the scaling behavior of the temperature scale controlling the quantum to classical crossover. PMID:26572738

  7. Genetic polymorphisms of CYP2D6 oxidation in patients with systemic lupus erythematosus

    PubMed Central

    Skrętkowicz, Jadwiga; Barańska, Małgorzata; Kaczorowska, Anna; Rychlik-Sych, Mariola

    2011-01-01

    Introduction Systemic lupus erythematosus (SLE) is a complex, multifactor autoimmune disease. The studies on aetiopathogenesis of autoimmune diseases focus on the impact the genetically conditioned impairment of xenobiotic metabolism may exert. The knowledge of oxidation polymorphism in the course of SLE may be helpful in choosing more efficient and safer therapy. We determined whether there was an association between susceptibility to SLE and particularly to CYP2D6 genotypes. Material and methods The study was carried out in 60 patients with SLE and 129 healthy volunteers and all the subjects were of Polish origin. The samples were analysed for two major defective alles for CYP2D6 – CYP2D6*3 and CYP2D6*4 and one wild -type allele CYP2D6*1-by the polymerase chain reaction fragment length polymorphism (PCR-RFLP) metod with DNA extracted from peripheral blood. Results No statistically significant differences in the incidence of CYP2D6 genotypes between the studied groups were found (p = 0.615). Risk (OR) of SLE development was 1.03 for the carriers of CYP2D6*3 allele and 1.48 for the subjects with CYP2D6*4 allele; but it was not statistically significant. Conclusions Increased occurrence of mutant alleles of the CYP2D6 gene in SLE patients and the calculated OR values could suggest the effect of these mutations on increased SLE development. PMID:22291833

  8. Novel exciton systems in 2D TMD monolayers and heterobilayers

    NASA Astrophysics Data System (ADS)

    Yu, Hongyi

    In this talk, two exciton systems in transition metal dichalcogenides (TMDs) monolayer and heterobilayer will be discussed. In TMD monolayers, the strong e-h Coulomb exchange interaction splits the exciton and trion dispersions into two branches with zero and finite gap, respectively. Each branch is a center-of-mass wave vector dependent coherent superposition of the two valleys, which leads to a valley-orbit coupling and possibly a trion valley Hall effect. The exchange interaction also eliminates the linear polarization of the negative trion PL emission. In TMD heterobilayers with a type-II band alignment, the low energy exciton has an interlayer configuration with the e and h localized in opposite layers. Because of the inevitable twist or/and lattice mismatch between the two layers, the bright interlayer excitons are located at finite center-of-mass velocities with a six-fold degeneracy. The corresponding photon emission is elliptically polarized, with the major axis locked to the direction of exciton velocity, and helicity determined by the valley indices of the e and h. Some experimental results on the interlayer excitons in the WSe2-MoSe2 heterobilayers will also be presented. The interlayer exciton exhibits a long lifetime as well as a long depolarization time, which facilitate the observation of a PL polarization ring pattern due to the valley dependent exciton-exciton interaction induced expansion. The works were supported by the Research Grant Council of Hong Kong (HKU17305914P, HKU705513P), the Croucher Foundation, and the HKU OYRA and ROP.

  9. Reliability of fluid systems

    NASA Astrophysics Data System (ADS)

    Kopáček, Jaroslav; Fojtášek, Kamil; Dvořák, Lukáš

    2016-03-01

    This paper focuses on the importance of detection reliability, especially in complex fluid systems for demanding production technology. The initial criterion for assessing the reliability is the failure of object (element), which is seen as a random variable and their data (values) can be processed using by the mathematical methods of theory probability and statistics. They are defined the basic indicators of reliability and their applications in calculations of serial, parallel and backed-up systems. For illustration, there are calculation examples of indicators of reliability for various elements of the system and for the selected pneumatic circuit.

  10. Basins of attraction for a discrete dynamical system derived from the 2-D Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Bible, Stewart A.; McDonough, J. M.

    2000-11-01

    It has previously been shown that a system of coupled logistic maps can be derived via Fourier analysis of the 2-D incompressible Navier-Stokes equations. Numerical studies of this 2-D discrete dynamical system (DDS) have demonstrated that uniqueness of solutions found for the usual 1-D logistic map no longer holds in 2-D, in accord with analytical results. If such DDSs are to be used as components of LES subgrid-scale models (as proposed in Hylin & McDonough, Int. J. Fluid Mech. Res. 26, 539, 1999), it is necessary to obtain an accurate delineation of the basins of attraction for each of their regimes. This presentation reports results of a preliminary study aimed at providing such information. In the current work we will present results for a restricted set of bifurcation parameter values selected from ``interesting'' regions of the overall regime map constructed by McDonough & Huang (submitted to Phys. Fluids, 2000). A not unexpected result has been the identification of ``holes'' and ``islands'' (see Abraham et al., Chaos in Discrete Dynamical Systems, 1997) for this regime map associated with sets of initial data having (apparently) nonzero measure. Implications of this in the context of model construction will be discussed.

  11. 2D and 3D Mechanobiology in Human and Nonhuman Systems.

    PubMed

    Warren, Kristin M; Islam, Md Mydul; LeDuc, Philip R; Steward, Robert

    2016-08-31

    Mechanobiology involves the investigation of mechanical forces and their effect on the development, physiology, and pathology of biological systems. The human body has garnered much attention from many groups in the field, as mechanical forces have been shown to influence almost all aspects of human life ranging from breathing to cancer metastasis. Beyond being influential in human systems, mechanical forces have also been shown to impact nonhuman systems such as algae and zebrafish. Studies of nonhuman and human systems at the cellular level have primarily been done in two-dimensional (2D) environments, but most of these systems reside in three-dimensional (3D) environments. Furthermore, outcomes obtained from 3D studies are often quite different than those from 2D studies. We present here an overview of a select group of human and nonhuman systems in 2D and 3D environments. We also highlight mechanobiological approaches and their respective implications for human and nonhuman physiology. PMID:27214883

  12. 2D and 3D Mechanobiology in Human and Nonhuman Systems.

    PubMed

    Warren, Kristin M; Islam, Md Mydul; LeDuc, Philip R; Steward, Robert

    2016-08-31

    Mechanobiology involves the investigation of mechanical forces and their effect on the development, physiology, and pathology of biological systems. The human body has garnered much attention from many groups in the field, as mechanical forces have been shown to influence almost all aspects of human life ranging from breathing to cancer metastasis. Beyond being influential in human systems, mechanical forces have also been shown to impact nonhuman systems such as algae and zebrafish. Studies of nonhuman and human systems at the cellular level have primarily been done in two-dimensional (2D) environments, but most of these systems reside in three-dimensional (3D) environments. Furthermore, outcomes obtained from 3D studies are often quite different than those from 2D studies. We present here an overview of a select group of human and nonhuman systems in 2D and 3D environments. We also highlight mechanobiological approaches and their respective implications for human and nonhuman physiology.

  13. Fluid infusion system

    NASA Technical Reports Server (NTRS)

    Hammond, J. C.

    1975-01-01

    Development of a fluid infusion system was undertaken in response to a need for an intravenous infusion device operable under conditions of zero-g. The initial design approach, pursued in the construction of the first breadboard instrument, was to regulate the pressure of the motive gas to produce a similar regulated pressure in the infusion liquid. This scheme was not workable because of the varying bag contact area, and a major design iteration was made. A floating sensor plate in the center of the bag pressure plate was made to operate a pressure regulator built into the bellows assembly, effectively making liquid pressure the directly controlled variable. Other design changes were made as experience was gained with the breadboard. Extensive performance tests were conducted on both the breadboard and the prototype device; accurately regulated flows from 6 m1/min to 100 m1/min were achieved. All system functions were shown to operate satisfactorily.

  14. Approximation of 2D Euler Equations by the Second-Grade Fluid Equations with Dirichlet Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Lopes Filho, Milton C.; Nussenzveig Lopes, Helena J.; Titi, Edriss S.; Zang, Aibin

    2015-06-01

    The second-grade fluid equations are a model for viscoelastic fluids, with two parameters: α > 0, corresponding to the elastic response, and , corresponding to viscosity. Formally setting these parameters to 0 reduces the equations to the incompressible Euler equations of ideal fluid flow. In this article we study the limits of solutions of the second-grade fluid system, in a smooth, bounded, two-dimensional domain with no-slip boundary conditions. This class of problems interpolates between the Euler- α model (), for which the authors recently proved convergence to the solution of the incompressible Euler equations, and the Navier-Stokes case ( α = 0), for which the vanishing viscosity limit is an important open problem. We prove three results. First, we establish convergence of the solutions of the second-grade model to those of the Euler equations provided , as α → 0, extending the main result in (Lopes Filho et al., Physica D 292(293):51-61, 2015). Second, we prove equivalence between convergence (of the second-grade fluid equations to the Euler equations) and vanishing of the energy dissipation in a suitably thin region near the boundary, in the asymptotic regime , as α → 0. This amounts to a convergence criterion similar to the well-known Kato criterion for the vanishing viscosity limit of the Navier-Stokes equations to the Euler equations. Finally, we obtain an extension of Kato's classical criterion to the second-grade fluid model, valid if , as . The proof of all these results relies on energy estimates and boundary correctors, following the original idea by Kato.

  15. High performance CCD camera system for digitalisation of 2D DIGE gels.

    PubMed

    Strijkstra, Annemieke; Trautwein, Kathleen; Roesler, Stefan; Feenders, Christoph; Danzer, Daniel; Riemenschneider, Udo; Blasius, Bernd; Rabus, Ralf

    2016-07-01

    An essential step in 2D DIGE-based analysis of differential proteome profiles is the accurate and sensitive digitalisation of 2D DIGE gels. The performance progress of commercially available charge-coupled device (CCD) camera-based systems combined with light emitting diodes (LED) opens up a new possibility for this type of digitalisation. Here, we assessed the performance of a CCD camera system (Intas Advanced 2D Imager) as alternative to a traditionally employed, high-end laser scanner system (Typhoon 9400) for digitalisation of differential protein profiles from three different environmental bacteria. Overall, the performance of the CCD camera system was comparable to the laser scanner, as evident from very similar protein abundance changes (irrespective of spot position and volume), as well as from linear range and limit of detection.

  16. High performance CCD camera system for digitalisation of 2D DIGE gels.

    PubMed

    Strijkstra, Annemieke; Trautwein, Kathleen; Roesler, Stefan; Feenders, Christoph; Danzer, Daniel; Riemenschneider, Udo; Blasius, Bernd; Rabus, Ralf

    2016-07-01

    An essential step in 2D DIGE-based analysis of differential proteome profiles is the accurate and sensitive digitalisation of 2D DIGE gels. The performance progress of commercially available charge-coupled device (CCD) camera-based systems combined with light emitting diodes (LED) opens up a new possibility for this type of digitalisation. Here, we assessed the performance of a CCD camera system (Intas Advanced 2D Imager) as alternative to a traditionally employed, high-end laser scanner system (Typhoon 9400) for digitalisation of differential protein profiles from three different environmental bacteria. Overall, the performance of the CCD camera system was comparable to the laser scanner, as evident from very similar protein abundance changes (irrespective of spot position and volume), as well as from linear range and limit of detection. PMID:27252121

  17. Optical design of wavelength selective CPVT system with 3D/2D hybrid concentration

    NASA Astrophysics Data System (ADS)

    Ahmad, N.; Ijiro, T.; Yamada, N.; Kawaguchi, T.; Maemura, T.; Ohashi, H.

    2012-10-01

    Optical design of a concentrating photovoltaic/thermal (CPVT) system is carried out. Using wavelength-selective optics, the system demonstrates 3-D concentration onto a solar cell and 2-D concentration onto a thermal receiver. Characteristics of the two types of concentrator systems are examined with ray-tracing analysis. The first system is a glazed mirror-based concentrator system mounted on a 2-axis pedestal tracker. The size of the secondary optical element is minimized to decrease the cost of the system, and it has a wavelength-selective function for performing 3-D concentration onto a solar cell and 2-D concentration onto a thermal receiver. The second system is a non-glazed beamdown concentrator system containing parabolic mirrors in the lower part. The beam-down selective mirror performs 3-D concentration onto a solar cell placed above the beam-down selective mirror, and 2-D concentration down to a thermal receiver placed at the bottom level. The system is mounted on a two-axis carousel tracker. A parametric study is performed for those systems with different geometrical 2-D/3-D concentration ratios. Wavelength-selective optics such as hot/cold mirrors and spectrum-splitting technologies are taken into account in the analysis. Results show reduced heat load on the solar cell and increased total system efficiency compared to a non-selective CPV system. Requirements for the wavelength-selective properties are elucidated. It is also shown that the hybrid concept with 2-D concentration onto a thermal receiver and 3-D concentration onto a solar cell has an advantageous geometry because of the high total system efficiency and compatibility with the piping arrangement of the thermal receiver.

  18. Fluid sampling system

    DOEpatents

    Houck, Edward D.

    1994-01-01

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

  19. Fluid sampling system

    DOEpatents

    Houck, E.D.

    1994-10-11

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

  20. Fluid sampling system

    SciTech Connect

    Houck, E.D.

    1993-12-31

    This invention comprises a fluid sampling system which allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped up into a sampling jet of venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decrease, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodicially leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

  1. Fluid delivery control system

    DOEpatents

    Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad

    2006-06-06

    A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.

  2. Ultrasonic Fluid Quality Sensor System

    DOEpatents

    Gomm, Tyler J.; Kraft, Nancy C.; Phelps, Larry D.; Taylor, Steven C.

    2003-10-21

    A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

  3. Ultrasonic fluid quality sensor system

    DOEpatents

    Gomm, Tyler J.; Kraft, Nancy C.; Phelps, Larry D.; Taylor, Steven C.

    2002-10-08

    A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

  4. A multifunctional automated system of 2D laser polarimetry of biological tissues

    NASA Astrophysics Data System (ADS)

    Zabolotna, Natalia I.; Radchenko, Kostiantyn O.

    2014-09-01

    Multifunctional automated system of 2D laser polarimetry of biological tissues with enhanced functional capabilities is proposed. Two-layer optically thin (attenuation coefficient τ <= 0,1 ) biological structures, formed by "muscle tissue (MT) - the dermis of the skin (DS)" histological cryosections for the two physiological states (normal - dystrophy) were investigated. Complex of objective indexes which characterized by 2D polarization reproduced distributions under the following criteria: histograms of the distributions; statistical moments of the 1st - 4th order; autocorrelation functions; correlation moments; power spectra logarithmic dependencies of the distributions; fractal dimensions of the distributions; spectra moments are presented.

  5. A 2 D high accuracy slope measuring system based on a Stitching Shack Hartmann Optical Head.

    PubMed

    Idir, Mourad; Kaznatcheev, Konstantine; Dovillaire, Guillaume; Legrand, Jerome; Rungsawang, Rakchanok

    2014-02-10

    We present a 2D Slope measuring System based on a Stitching Shack Hartmann Optical Head (SSH-OH) aiming to perform high accuracy optical metrology for X-ray mirrors. This system was developed to perform high-accuracy automated metrology for extremely high quality optical components needed for synchrotrons or Free Electrons Lasers (FEL), EUV lithography and x-ray astronomy with slope error accuracy better than 50 nrad rms. PMID:24663568

  6. Analysis of heat conductivity in a 2D hard disk system

    NASA Astrophysics Data System (ADS)

    Del Pozo, J.; Garrido, P. L.

    2009-01-01

    Using numerical simulations, we study the heat conductivity in a 2d Hard Disk system. We find nonlinear temperature profiles for diferent gradients, and use this profiles to obtain the empirical expresion of heat conductivity κ(T,ρ). We compare our results with predictions based on the Enskog theory, finding good agreement even for large gradients. Also we find that Henderson state equation for Hard Disk stands for our system.

  7. Spectroscopy of emergent states in strongly interacting 2D electron systems

    NASA Astrophysics Data System (ADS)

    Hirjibehedin, Cyrus Farokh

    In this dissertation I present my recent resonant inelastic light scattering studies of the remarkable emergent states formed by strongly interacting 2D electron systems. I describe the first experimental determinations of long wavelength, low energy dispersions in the fractional quantum Hall (FQH) regime. The demonstration of existence of well defined modes at small wavevectors for the nu = 1/3 state gives a measure of the macroscopic extent of the quantum fluid beyond the micron length scale. I report evidence of a novel splitting of modes and discuss interpretations of these modes as two-roton states. I report the first studies to probe the boundary between different FQH sequences that occurs at nu = 1/3. Evidence of the coexistence of excitations from both sequences at distinct energy scales is uncovered. The abrupt appearance of lower energy modes at nu ≲ 1/3 suggests a change in the quantum ground state on crossing the nu = 1/3 boundary. The coexistence of excitations indicates a layered set of excitations of different quasiparticle flavors from a single ground state. I discuss the resonant enhancements of light scattering for spin excitations at nu = 1/3, which are strongest near photoluminescence bands assigned in the literature to negatively charged excitons. The observed enhancement profiles are interpreted by scattering mechanisms with intermediate transitions to states with charged excitonic excitations. We fabricated the first ultra-low density quantum structures and were able to show that light scattering methods are sensitive enough to probe systems currently reaching as low as n = 7.7 x 108cm -2 at wavevectors large enough to show correlation and non-local effects. I find well-defined plasmons with dispersions that deviate from the long wavelength q limit, suggesting evidence of large correlation effects. I discuss the use of light scattering to measure the electron temperature through the anti-Stokes/Stokes scattering ratio, highlighting the

  8. Robust stabilisation of 2D state-delayed stochastic systems with randomly occurring uncertainties and nonlinearities

    NASA Astrophysics Data System (ADS)

    Duan, Zhaoxia; Xiang, Zhengrong; Karimi, Hamid Reza

    2014-07-01

    This paper is concerned with the state feedback control problem for a class of two-dimensional (2D) discrete-time stochastic systems with time-delays, randomly occurring uncertainties and nonlinearities. Both the sector-like nonlinearities and the norm-bounded uncertainties enter into the system in random ways, and such randomly occurring uncertainties and nonlinearities obey certain mutually uncorrelated Bernoulli random binary distribution laws. Sufficient computationally tractable linear matrix inequality-based conditions are established for the 2D nonlinear stochastic time-delay systems to be asymptotically stable in the mean-square sense, and then the explicit expression of the desired controller gains is derived. An illustrative example is provided to show the usefulness and effectiveness of the proposed method.

  9. BILL2D - A software package for classical two-dimensional Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Solanpää, J.; Luukko, P. J. J.; Räsänen, E.

    2016-02-01

    We present BILL2D, a modern and efficient C++ package for classical simulations of two-dimensional Hamiltonian systems. BILL2D can be used for various billiard and diffusion problems with one or more charged particles with interactions, different external potentials, an external magnetic field, periodic and open boundaries, etc. The software package can also calculate many key quantities in complex systems such as Poincaré sections, survival probabilities, and diffusion coefficients. While aiming at a large class of applicable systems, the code also strives for ease-of-use, efficiency, and modularity for the implementation of additional features. The package comes along with a user guide, a developer's manual, and a documentation of the application program interface (API).

  10. Oil well fluid processing system

    SciTech Connect

    Cobb, J.R.

    1988-10-25

    This patent describes an oil well fluid processing system, comprising: a skid having a first skid section and a second skid section separable from the first skid section; means for connecting one end of the first skid section to one end of the second skid section; a cylindrical fluid processing apparatus pivotally mounted at a lower end thereof on the first skid section for pivoting movement between a raised position wherein the fluid processing apparatus extends vertically from the first skid section and a lowered position wherein the fluid processing apparatus overlays the second skid section at such times that the two sections of the skid are connected together; and means mounted on the second skid section and connectable to the fluid processing apparatus for moving the fluid processing apparatus between the raised and lowered positions at such times that the two sections of the skid are connected together.

  11. Parameterising root system growth models using 2D neutron radiography images

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Felderer, Bernd; Vontobel, Peter; Leitner, Daniel

    2013-04-01

    Root architecture is a key factor for plant acquisition of water and nutrients from soil. In particular in view of a second green revolution where the below ground parts of agricultural crops are important, it is essential to characterise and quantify root architecture and its effect on plant resource acquisition. Mathematical models can help to understand the processes occurring in the soil-plant system, they can be used to quantify the effect of root and rhizosphere traits on resource acquisition and the response to environmental conditions. In order to do so, root architectural models are coupled with a model of water and solute transport in soil. However, dynamic root architectural models are difficult to parameterise. Novel imaging techniques such as x-ray computed tomography, neutron radiography and magnetic resonance imaging enable the in situ visualisation of plant root systems. Therefore, these images facilitate the parameterisation of dynamic root architecture models. These imaging techniques are capable of producing 3D or 2D images. Moreover, 2D images are also available in the form of hand drawings or from images of standard cameras. While full 3D imaging tools are still limited in resolutions, 2D techniques are a more accurate and less expensive option for observing roots in their environment. However, analysis of 2D images has additional difficulties compared to the 3D case, because of overlapping roots. We present a novel algorithm for the parameterisation of root system growth models based on 2D images of root system. The algorithm analyses dynamic image data. These are a series of 2D images of the root system at different points in time. Image data has already been adjusted for missing links and artefacts and segmentation was performed by applying a matched filter response. From this time series of binary 2D images, we parameterise the dynamic root architecture model in the following way: First, a morphological skeleton is derived from the binary

  12. Global existence and uniqueness theorem to 2-D incompressible non-resistive MHD system with non-equilibrium background magnetic field

    NASA Astrophysics Data System (ADS)

    Zhai, Cuili; Zhang, Ting

    2016-09-01

    In this article, we consider the global existence and uniqueness of the solution to the 2D incompressible non-resistive MHD system with non-equilibrium background magnetic field. Our result implies that a strong enough non-equilibrium background magnetic field will guarantee the stability of the nonlinear MHD system. Beside the classical energy method, the interpolation inequalities and the algebraic structure of the equations coming from the incompressibility of the fluid are crucial in our arguments.

  13. Developing Mobile BIM/2D Barcode-Based Automated Facility Management System

    PubMed Central

    Chen, Yen-Pei

    2014-01-01

    Facility management (FM) has become an important topic in research on the operation and maintenance phase. Managing the work of FM effectively is extremely difficult owing to the variety of environments. One of the difficulties is the performance of two-dimensional (2D) graphics when depicting facilities. Building information modeling (BIM) uses precise geometry and relevant data to support the facilities depicted in three-dimensional (3D) object-oriented computer-aided design (CAD). This paper proposes a new and practical methodology with application to FM that uses an integrated 2D barcode and the BIM approach. Using 2D barcode and BIM technologies, this study proposes a mobile automated BIM-based facility management (BIMFM) system for FM staff in the operation and maintenance phase. The mobile automated BIMFM system is then applied in a selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FM practice. The combined results demonstrate that a BIMFM-like system can be an effective mobile automated FM tool. The advantage of the mobile automated BIMFM system lies not only in improving FM work efficiency for the FM staff but also in facilitating FM updates and transfers in the BIM environment. PMID:25250373

  14. Delay-dependent stability and stabilisation of continuous 2D delayed systems with saturating control

    NASA Astrophysics Data System (ADS)

    Hmamed, Abdelaziz; Kririm, Said; Benzaouia, Abdellah; Tadeo, Fernando

    2016-09-01

    This paper deals with the stabilisation problem of continuous two-dimensional (2D) delayed systems, in the presence of saturations on the control signals. For this, a new delay decomposition approach is proposed to deal with the stability and stabilisation issues. The idea is that the range of variation of each delay is divided into segments, and a specific Lyapunov- Krasovskii functional is used that contains different weight matrices in each segment. Then, based on this approach, new delay-dependent stability and stabilisation criteria for continuous 2D delayed systems are derived. These criteria are less conservative and include some existing results as special cases. Some numerical examples are provided to show that a significant improvement is achieved using the proposed approach.

  15. Preliminary work of real-time ultrasound imaging system for 2-D array transducer.

    PubMed

    Li, Xu; Yang, Jiali; Ding, Mingyue; Yuchi, Ming

    2015-01-01

    Ultrasound (US) has emerged as a non-invasive imaging modality that can provide anatomical structure information in real time. To enable the experimental analysis of new 2-D array ultrasound beamforming methods, a pre-beamformed parallel raw data acquisition system was developed for 3-D data capture of 2D array transducer. The transducer interconnection adopted the row-column addressing (RCA) scheme, where the columns and rows were active in sequential for transmit and receive events, respectively. The DAQ system captured the raw data in parallel and the digitized data were fed through the field programmable gate array (FPGA) to implement the pre-beamforming. Finally, 3-D images were reconstructed through the devised platform in real-time. PMID:26405923

  16. 2-D Reflectometer Modeling for Optimizing the ITER Low-field Side Reflectometer System

    SciTech Connect

    Kramer, G.J.; Nazikian, R.; Valeo, E.J.; Budny, R.V.; Kessel, C.; Johnson, D.

    2005-09-02

    The response of a low-field side reflectometer system for ITER is simulated with a 2?D reflectometer code using a realistic plasma equilibrium. It is found that the reflected beam will often miss its launch point by as much as 40 cm and that a vertical array of receiving antennas is essential in order to observe a reflection on the low-field side of ITER.

  17. Interaction of water molecules with hexagonal 2D systems. A DFT study

    NASA Astrophysics Data System (ADS)

    Rojas, Ángela; Rey, Rafael

    Over the years water sources have been contaminated with many chemical agents, becoming issues that affect health of the world population. The advances of the nanoscience and nanotechnology in the development new materials constitute an alternative for design molecular filters with great efficiencies and low cost for water treatment and purification. In the nanoscale, the process of filtration or separation of inorganic and organic pollutants from water requires to study interactions of these atoms or molecules with different nano-materials. Specifically, it is necessary to understand the role of these interactions in physical and chemical properties of the nano-materials. In this work, the main interest is to do a theoretical study of interaction between water molecules and 2D graphene-like systems, such as silicene (h-Si) or germanene (h-Ge). Using Density Functional Theory we calculate total energy curves as function of separation between of water molecules and 2D systems. Different spatial configurations of water molecules relative to 2D systems are considered. Structural relaxation effects and changes of electronic charge density also are reported. Universidad Nacional de Colombia.

  18. Formation of nanowires at the percolation threshold in rectangular 2D systems

    NASA Astrophysics Data System (ADS)

    Schmelzer, J., Jr.; Brown, Simon A.; Schulze, M.; Dunbar, Alan; Partridge, J.; Gourley, S.; Ramsay, B.; Wurl, A.; Hyslop, M.; Blaikie, Richard J.

    2003-07-01

    Random deposition of conducting nanoparticles on a flat two dimensional (2D) substrate leads to the formation of a conducting path at the percolation threshold. In sufficiently small systems significant finite size effects are expected. However, in the 2D square systems that are usually studied, the random deposition means that the main effect of small system sizes is that stochastic fluctuations become increasingly large. We have performed experiments and simulations on rectangular 2D nanoparticle films with nanoscale overall dimensions. The sample geometry is chosen to limit stochastic fluctuations in the film"s properties. In the experiments bismuth nanoparticles with mean diameters in the range 20-60nm are deposited between contacts with separations down to 300nm. At small contact separations there is a significant shift in the percolation threshold (pc) and the conducting path formed close to pc resembles a nanowire. Percolation theory describes the experimental onset of conduction well: there is good agreement between predicted and measured values of the power law exponent for the correlation length.

  19. IGUANA: a high-performance 2D and 3D visualisation system

    NASA Astrophysics Data System (ADS)

    Alverson, G.; Eulisse, G.; Muzaffar, S.; Osborne, I.; Taylor, L.; Tuura, L. A.

    2004-11-01

    The IGUANA project has developed visualisation tools for multiple high-energy experiments. At the core of IGUANA is a generic, high-performance visualisation system based on OpenInventor and OpenGL. This paper describes the back-end and a feature-rich 3D visualisation system built on it, as well as a new 2D visualisation system that can automatically generate 2D views from 3D data, for example to produce R/Z or X/Y detector displays from existing 3D display with little effort. IGUANA has collaborated with the open-source gl2ps project to create a high-quality vector postscript output that can produce true vector graphics output from any OpenGL 2D or 3D display, complete with surface shading and culling of invisible surfaces. We describe how it works. We also describe how one can measure the memory and performance costs of various OpenInventor constructs and how to test scene graphs. We present good patterns to follow and bad patterns to avoid. We have added more advanced tools such as per-object clipping, slicing, lighting or animation, as well as multiple linked views with OpenInventor, and describe them in this paper. We give details on how to edit object appearance efficiently and easily, and even dynamically as a function of object properties, with instant visual feedback to the user.

  20. Automated Fluid Interface System (AFIS)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Automated remote fluid servicing will be necessary for future space missions, as future satellites will be designed for on-orbit consumable replenishment. In order to develop an on-orbit remote servicing capability, a standard interface between a tanker and the receiving satellite is needed. The objective of the Automated Fluid Interface System (AFIS) program is to design, fabricate, and functionally demonstrate compliance with all design requirements for an automated fluid interface system. A description and documentation of the Fairchild AFIS design is provided.

  1. Fluid management systems technology summaries

    NASA Technical Reports Server (NTRS)

    Stark, J. A.; Blatt, M. H.; Bennett, F. O., Jr.; Campbell, B. J.

    1974-01-01

    A summarization and categorization of the pertinent literature associated with fluid management systems technology having potential application to in-orbit fluid transfer and/or associated storage are presented. A literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in the following manner: (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4) major results, and (5) comments of the reviewer. Pertinent figures are presented on a single facing page separate from the text. Specific areas covered are: fluid line dynamics and thermodynamics, low-g mass gauging, other instrumentation, stratification/pressurization, low-g vent systems, fluid mixing refrigeration and reliquefaction, and low-g interface control and liquid acquisition systems. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed.

  2. Numerical studies of the melting transition in 2D Yukawa systems

    SciTech Connect

    Hartmann, P.; Donko, Z.; Kalman, G. J.

    2008-09-07

    We present the latest results of our systematic studies of the solid--liquid phase transition in 2D classical many-particle systems interacting with the Yukawa potential. Our previous work is extended by applying the molecular dynamic simulations to systems with up to 1.6 million particles in the computational box (for {kappa} = 2 case). Equilibrium simulations are performed for different coupling parameters in the vicinity of the expected melting transition ({gamma}{sub m}{sup {kappa}}{sup ={sup 2}}{approx_equal}415) and a wide range of observables are averaged over uncorrelated samples of the micro-canonical ensemble generated by the simulations.

  3. Microwave tomography of extremities: 1. Dedicated 2D system and physiological signatures

    NASA Astrophysics Data System (ADS)

    Semenov, Serguei; Kellam, James; Sizov, Yuri; Nazarov, Alexei; Williams, Thomas; Nair, Bindu; Pavlovsky, Andrey; Posukh, Vitaly; Quinn, Michael

    2011-04-01

    Microwave tomography (MWT) is a novel imaging modality which might be applicable for non-invasive assessment of functional and pathological conditions of biological tissues. Imaging of the soft tissue of extremities is one of its potential applications. The feasibility of this technology for such applications was demonstrated earlier. This is the first of two companion papers focused on an application of MWT for imaging of the extremity's soft tissues. The goal of this study is to assess the technical performance of the developed 2D MWT system dedicated for imaging of functional and pathological conditions of the extremity's soft tissues. Specifically, the system's performance was tested by its ability to detect signals associated with physiological activity and soft tissue interventions (circulatory related changes, blood flow reduction and a simulated compartmental syndrome)—the so-called physiological signatures. The developed 2D MWT system dedicated to the imaging of animal extremities demonstrates good technical performance allowing for stable and predictable data acquisition with reasonable agreement between the experimentally measured electromagnetic (EM) field and the simulated EM field within a measurement domain. Using the system, we were able to obtain physiological signatures associated with systolic versus diastolic phases of circulation in an animal extremity, reperfusion versus occlusion phases of the blood supply to the animal's extremity and a compartment syndrome. The imaging results are presented and discussed in the second companion paper.

  4. Calibration of an acoustic system for measuring 2-D temperature distribution around hydrothermal vents.

    PubMed

    Fan, Wei; Chen, Chen-Tung Arthur; Chen, Ying

    2013-04-01

    One of the fundamental purposes of quantitative acoustic surveys of seafloor hydrothermal vents is to measure their 2-D temperature distributions. Knowing the system latencies and the acoustic center-to-center distances between the underwater transducers in an acoustic tomography system is fundamental to the overall accuracy of the temperature reconstruction. However, commercial transducer sources typically do not supply the needed data. Here we present a novel calibration algorithm to automatically determine the system latencies and the acoustic center-to-center distances. The possible system latency error and the resulting temperature error are derived and analyzed. We have also developed the experimental setup for calibration. To validate the effectiveness of the proposed calibration method, an experimental study was performed on acoustic imaging of underwater temperature fields in Lake Qiezishan, located at Longling County, Yunnan Province, China. Using the calibrated data, the reconstructed temperature distributions closely resemble the actual distributions measured with thermocouples, thus confirming the effectiveness of our algorithm.

  5. Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Pan, Shumin; Cheng, Shan; Zhou, Zhihong

    2016-08-01

    Most image encryption algorithms based on low-dimensional chaos systems bear security risks and suffer encryption data expansion when adopting nonlinear transformation directly. To overcome these weaknesses and reduce the possible transmission burden, an efficient image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing is proposed. The original image is measured by the measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the cycle shift operation controlled by a hyper-chaotic system. Cycle shift operation can change the values of the pixels efficiently. The proposed cryptosystem decreases the volume of data to be transmitted and simplifies the keys distribution simultaneously as a nonlinear encryption system. Simulation results verify the validity and the reliability of the proposed algorithm with acceptable compression and security performance.

  6. Spanning graphene to carbon-nitride: A 2-D semiconductor alloy system of carbon and nitrogen

    NASA Astrophysics Data System (ADS)

    Therrien, Joel; Li, Yancen; Schmidt, Daniel

    2014-03-01

    With the explosion of materials that form 2-D structures in the past few years, there have been a much more diverse ecosystem of combinations of characteristics to explore. Yet with the majority of materials investigated, the properties are fixed according to the composition of the material. Ideally, one wishes to have a tunable system similar to the semiconductor alloy systems, such as AlxGa1-xAs. There have been some theoretical studies of transition metal dichalogenides, none have been reported experimentally as of this writing. The tertianary alloy of BCN has been synthesized, however it was found that the boron had the tendency to cause phase segregation of the material into domains of graphene and boron nitride. Here we will report on the synthesis of non-phase seperated carbon-nitrogen 2D alloys ranging from graphene (Eg = 0 eV) to carbon-nitride, or melon, (Eg = 2.7 eV). We will report on synthesis methods and a summary of relevant electronic and material properties of selected alloys.

  7. Multi-scale 2D tracking of articulated objects using hierarchical spring systems.

    PubMed

    Artner, Nicole M; Ion, Adrian; Kropatsch, Walter G

    2011-04-01

    This paper presents a flexible framework to build a target-specific, part-based representation for arbitrary articulated or rigid objects. The aim is to successfully track the target object in 2D, through multiple scales and occlusions. This is realized by employing a hierarchical, iterative optimization process on the proposed representation of structure and appearance. Therefore, each rigid part of an object is described by a hierarchical spring system represented by an attributed graph pyramid. Hierarchical spring systems encode the spatial relationships of the features (attributes of the graph pyramid) describing the parts and enforce them by spring-like behavior during tracking. Articulation points connecting the parts of the object allow to transfer position information from reliable to ambiguous parts. Tracking is done in an iterative process by combining the hypotheses of simple trackers with the hypotheses extracted from the hierarchical spring systems.

  8. Schrödinger equation for non-pure dipole potential in 2D systems

    NASA Astrophysics Data System (ADS)

    Moumni, M.; Falek, M.

    2016-07-01

    In this work, we analytically study the Schrödinger equation for the (non-pure) dipolar ion potential V(r) = q/r + Dcosθ/r2, in the case of 2D systems (systems in two-dimensional Euclidean plane) using the separation of variables and the Mathieu equations for the angular part. We give the expressions of eigenenergies and eigenfunctions and study their dependence on the dipole moment D. Imposing the condition of reality on the energies En,m implies that the dipole moment must not exceed a maximum value, otherwise the corresponding bound state disappears. We also find that the s states (m = 0) can no longer exist in the system as soon as the dipole term is present.

  9. Modulation of peritoneal macrophage antimicrobial activity by peritoneal dialysis fluid, Ca++, and 1,25(OH)2D3 in CAPD patients.

    PubMed

    Carozzi, S; Nasini, M G; Schelotto, C; Caviglia, P M; Barocci, S; Cantaluppi, A; Salit, M

    1990-01-01

    Previous in vitro studies showed that Ca++ and 1,25(OH)2D3 modulate peritoneal macrophage (PM0) antimicrobial activity in CAPD patients. Twenty-four CAPD patients were evaluated in vivo (12 who had never had peritonitis, and 12 with an overall peritonitis incidence of more than one episode per 8 patient/months), for the effects of different peritoneal dialysis fluids (PDF) and Ca++ concentrations (1.25, 1.75, and 2.25 mmol/L) on PM0: cytoplasmic Ca++ concentration; superoxide generation; leukotriene B4 (LTB4) release; and bacterial killing for Staphylococcus epidermidis. The same parameters were also evaluated after adding 1,25(OH)2D3 (0.25 microgram/L) to the PDF. Results showed a direct correlation between the PDF Ca++ concentration and PM0 Ca++ levels, superoxide and LTB4 generation, and bacterial killing such that, with 2.25 mmol/L of Ca++, these values were significantly higher than those seen with 1.75 mmol/L. The addition of 1,25(OH)2D3 potentiated the Ca(++)-induced effects. On the other hand, with PDF Ca++ levels of 1,25 mmol/L, an inhibition of the aforementioned parameters was seen. However, this effect was reversed by the addition of 1,25(OH)2D3. These in vivo results confirm the importance of Ca++ and 1,25(OH)2D3 in PM0 antibacterial function in CAPD patients, and may be useful in determining the prophylaxis and therapy of peritonitis.

  10. Avalanches in 2D dislocation systems: plastic yielding is not depinning.

    PubMed

    Ispánovity, Péter Dusán; Laurson, Lasse; Zaiser, Michael; Groma, István; Zapperi, Stefano; Alava, Mikko J

    2014-06-13

    We study the properties of strain bursts (dislocation avalanches) occurring in two-dimensional discrete dislocation dynamics models under quasistatic stress-controlled loading. Contrary to previous suggestions, the avalanche statistics differ fundamentally from predictions obtained for the depinning of elastic manifolds in quenched random media. Instead, we find an exponent τ=1 of the power-law distribution of slip or released energy, with a cutoff that increases exponentially with the applied stress and diverges with system size at all stresses. These observations demonstrate that the avalanche dynamics of 2D dislocation systems is scale-free at every applied stress and, therefore, cannot be envisaged in terms of critical behavior associated with a depinning transition.

  11. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system

    PubMed Central

    Aronov, Dmitriy; Tank, David W.

    2015-01-01

    SUMMARY Virtual reality (VR) enables precise control of an animal’s environment and otherwise impossible experimental manipulations. Neural activity in navigating rodents has been studied on virtual linear tracks. However, the spatial navigation system’s engagement in complete two-dimensional environments has not been shown. We describe a VR setup for rats, including control software and a large-scale electrophysiology system, which supports 2D navigation by allowing animals to rotate and walk in any direction. The entorhinal-hippocampal circuit, including place cells, grid cells, head direction cells and border cells, showed 2D activity patterns in VR similar to those in the real world. Hippocampal neurons exhibited various remapping responses to changes in the appearance or the shape of the virtual environment, including a novel form in which a VR-induced cue conflict caused remapping to lock to geometry rather than salient cues. These results suggest a general-purpose tool for novel types of experimental manipulations in navigating rats. PMID:25374363

  12. Wellbottom fluid implosion treatment system

    DOEpatents

    Brieger, Emmet F.

    2001-01-01

    A system for inducing implosion shock forces on perforation traversing earth formations with fluid pressure where an implosion tool is selected relative to a shut in well pressure and a tubing pressure to have a large and small area piston relationship in a well tool so that at a predetermined tubing pressure the pistons move a sufficient distance to open an implosion valve which permits a sudden release of well fluid pressure into the tubing string and produces an implosion force on the perforations. A pressure gauge on the well tool records tubing pressure and well pressure as a function of time.

  13. Critical Behavior of a Strongly-Interacting 2D Electron System

    NASA Astrophysics Data System (ADS)

    Sarachik, Myriam P.

    2013-03-01

    Two-dimensional (2D) electron systems that obey Fermi liquid theory at high electron densities are expected to undergo one or more transitions to spatially and/or spin-ordered phases as the density is decreased, ultimately forming a Wigner crystal in the dilute, strongly-interacting limit. Interesting, unexpected behavior is observed with decreasing electron density as the electrons' interactions become increasingly important relative to their kinetic energy: the resistivity undergoes a transition from metallic to insulating temperature dependence; the resistance increases sharply and then saturates abruptly with increasing in-plane magnetic field; a number of experiments indicate that the electrons' effective mass exhibits a substantial increase approaching a finite ``critical'' density. There has been a great deal of debate concerning the underlying physics in these systems, and many have questioned whether the change of the resistivity from metallic to insulating signals a phase transition or a crossover. In this talk, I will report measurements that show that with decreasing density ns, the thermopower S of a low-disorder 2D electron system in silicon exhibits a sharp increase by more than an order of magnitude, tending to a divergence at a finite, disorder-independent density nt, consistent with the critical form (- T / S) ~(ns -nt) x with x = 1 . 0 +/- 0 . 1 (T is the temperature). Unlike the resistivity which may not clearly distinguish between a transition and crossover behavior, the thermopower provides clear evidence that a true phase transition occurs with decreasing density to a new low-density phase. Work supported by DOE Grant DE-FG02-84ER45153, BSF grant 2006375, RFBR, RAS, and the Russian Ministry of Science.

  14. 2D fluid model analysis for the effect of 3D gas flow on a capacitively coupled plasma deposition reactor

    NASA Astrophysics Data System (ADS)

    Kim, Ho Jun; Lee, Hae June

    2016-06-01

    The wide applicability of capacitively coupled plasma (CCP) deposition has increased the interest in developing comprehensive numerical models, but CCP imposes a tremendous computational cost when conducting a transient analysis in a three-dimensional (3D) model which reflects the real geometry of reactors. In particular, the detailed flow features of reactive gases induced by 3D geometric effects need to be considered for the precise calculation of radical distribution of reactive species. Thus, an alternative inclusive method for the numerical simulation of CCP deposition is proposed to simulate a two-dimensional (2D) CCP model based on the 3D gas flow results by simulating flow, temperature, and species fields in a 3D space at first without calculating the plasma chemistry. A numerical study of a cylindrical showerhead-electrode CCP reactor was conducted for particular cases of SiH4/NH3/N2/He gas mixture to deposit a hydrogenated silicon nitride (SiN x H y ) film. The proposed methodology produces numerical results for a 300 mm wafer deposition reactor which agree very well with the deposition rate profile measured experimentally along the wafer radius.

  15. The stability of freely-propagating ion acoustic waves in 2D systems

    NASA Astrophysics Data System (ADS)

    Chapman, Thomas; Berger, Richard; Banks, Jeffrey; Brunner, Stephan

    2014-10-01

    The stability of a freely-propagating ion acoustic wave (IAW) is a basic science problem that is made difficult by the need to resolve electron kinetic effects over a timescale that greatly exceeds the IAW period during numerical simulation. Recent results examining IAW stability using a 1D+1V Vlasov-Poisson solver indicate that instability is a fundamental property of IAWs that occurs over most if not all of the parameter space of relevance to ICF experiments. We present here new results addressing the fundamental question of IAW stability across a broad range of plasma conditions in a 2D+2V system using LOKI, ranging from a regime of relatively weak to a regime of relatively strong ion kinetic effects. Work performed under the auspices of the U.S. DOE by LLNL (DE-AC52-07NA27344) and funded by the LDRD Program at LLNL (12-ERD-061).

  16. Low-voltage coded excitation utilizing a miniaturized integrated ultrasound system employing piezoelectric 2-D arrays.

    PubMed

    Triger, Simon; Saillant, Jean-Francois; Demore, Christine E M; Cochran, Sandy; Cumming, David R S

    2010-01-01

    We describe the development of an integrated, miniaturized ultrasound system designed for use with low-voltage piezoelectric transducer arrays. The technology targets low-frequency NDT and medium- to high-frequency sonar applications, at 1.2 MHz frequency. We have constructed a flexible, reconfigurable, low cost building block capable of 3-D beam forming. The tessellation of multiple building blocks permits formation of scalable 2-D macro-arrays of increased size and varying shape. This differs from conventional ultrasound solutions by integrating the entire system in a single module. No long RF cables are required to link the array elements to the electronics. The close coupling of the array and electronics assists in achieving adequate receive signal amplitudes with differential transmission voltages as low as +/- 3.3 V, although the system can be used at higher voltages. The system has been characterized by identifying flat-bottomed holes as small as 1 mm in diameter located at depths up to 190 mm in aluminum, and holes as small as 3 mm in diameter at a depth of 160 mm in cast iron. The results confirm the ability of the highly integrated system to obtain reflections from the targets despite the +/- 3.3 V excitation voltage by exploiting coding in low-voltage ultrasound.

  17. Multichannel reconfigurable measurement system for hot plasma diagnostics based on GEM-2D detector

    NASA Astrophysics Data System (ADS)

    Wojenski, A. J.; Kasprowicz, G.; Pozniak, K. T.; Byszuk, A.; Chernyshova, M.; Czarski, T.; Jablonski, S.; Juszczyk, B.; Zienkiewicz, P.

    2015-12-01

    In the future magnetically confined fusion research reactors (e.g. ITER tokamak), precise determination of the level of the soft X-ray radiation of plasma with temperature above 30 keV (around 350 mln K) will be very important in plasma parameters optimization. This paper presents the first version of a designed spectrography measurement system. The system is already installed at JET tokamak. Based on the experience gained from the project, the new generation of hardware for spectrography measurements, was designed and also described in the paper. The GEM detector readout structure was changed to 2D in order to perform measurements of i.e. laser generated plasma. The hardware structure of the system was redesigned in order to provide large number of high speed input channels. Finally, this paper also covers the issue of new control software, necessary to set-up a complete system of certain complexity and perform data acquisition. The main goal of the project was to develop a new version of the system, which includes upgraded structure and data transmission infrastructure (i.e. handling large number of measurement channels, high sampling rate).

  18. Caracterisation pratique des systemes quantiques et memoires quantiques auto-correctrices 2D

    NASA Astrophysics Data System (ADS)

    Landon-Cardinal, Olivier

    approche, dite de tomographie variationnelle, propose de reconstruire l'etat en restreignant l'espace de recherche a une classe variationnelle plutot qu'a l'immense espace des etats possibles. Un etat variationnel etant decrit par un petit nombre de parametres, un petit nombre d'experiences peut suffire a identifier les parametres variationnels de l'etat experimental. Nous montrons que c'est le cas pour deux classes variationnelles tres utilisees, les etats a produits matriciels (MPS) et l'ansatz pour intrication multi-echelle (MERA). Memoires quantiques auto-correctrices 2D. Une memoire quantique auto-correctrice est un systeme physique preservant de l'information quantique durant une duree de temps macroscopique. Il serait done l'equivalent quantique d'un disque dur ou d'une memoire flash equipant les ordinateurs actuels. Disposer d'un tel dispositif serait d'un grand interet pour l'informatique quantique. Une memoire quantique auto-correctrice est initialisee en preparant un etat fondamental, c'est-a-dire un etat stationnaire de plus basse energie. Afin de stocker de l'information quantique, il faut plusieurs etats fondamentaux distincts, chacun correspondant a une valeur differente de la memoire. Plus precisement, l'espace fondamental doit etre degenere. Dans cette these, on s'interesse a des systemes de particules disposees sur un reseau bidimensionnel (2D), telles les pieces sur un echiquier, qui sont plus faciles a realiser que les systemes 3D. Nous identifions deux criteres pour l'auto-correction: - La memoire quantique doit etre stable face aux perturbations provenant de l'environnement, par exemple l'application d'un champ magnetique externe. Ceci nous amene a considerer les systemes topologiques 2D dont les degres de liberte sont intrinsequement robustes aux perturbations locales de l'environnement. - La memoire quantique doit etre robuste face a un environnement thermique. Il faut s'assurer que les excitations thermiques n'amenent pas deux etats fondamentaux

  19. Spin-Orbit Interaction and Related Transport Phenomena in 2d Electron and Hole Systems

    NASA Astrophysics Data System (ADS)

    Khaetskii, A.

    Spin-orbit interaction is responsible for many physical phenomena which are under intensive study currently. Here we discuss several of them. The first phenomenon is the edge spin accumulation, which appears due to spin-orbit interaction in 2D mesoscopic structures in the presence of a charge current. We consider the case of a strong spin-orbit-related splitting of the electron spectrum, i.e. a spin precession length is small compared to the mean free path l. The structure can be either in a ballistic regime (when the mean free path is the largest scale in the problem) or quasi-ballistic regime (when l is much smaller than the sample size). We show how physics of edge spin accumulation in different situations should be understood from the point of view of unitarity of boundary scattering. Using transparent method of scattering states, we are able to explain some previous puzzling theoretical results. We clarify the important role of the form of the spin-orbit Hamiltonian, the role of the boundary conditions, etc., and reveal the wrong results obtained in the field by other researchers. The relation between the edge spin density and the bulk spin current in different regimes is discussed. The detailed comparison with the existing theoretical works is presented. Besides, we consider several new transport phenomena which appear in the presence of spin-orbit interaction, for example, magnetotransport phenomena in an external classical magnetic field. In particular, new mechanism of negative magneto-resistance appears which is due to destruction of spin fluxes by the magnetic field, and which can be really pronounced in 2D systems with strong scatterers.

  20. Comparison of Failure Modes in 2-D and 3-D Woven Carbon Phenolic Systems

    NASA Technical Reports Server (NTRS)

    Rossman, Grant A.; Stackpoole, Mairead; Feldman, Jay; Venkatapathy, Ethiraj; Braun, Robert D.

    2013-01-01

    NASA Ames Research Center is developing Woven Thermal Protection System (WTPS) materials as a new class of heatshields for entry vehicles (Stackpoole). Currently, there are few options for ablative entry heatshield materials, none of which is ideally suited to the planetary probe missions currently of interest to NASA. While carbon phenolic was successfully used for the missions Pioneer Venus and Galileo (to Jupiter), the heritage constituents are no longer available. An alternate carbon phenolic would need to be qualified for probe missions, which is most efficient at heat fluxes greater than those currently of interest. Additional TPS materials such as Avcoat and PICA are not sufficiently robust for the heat fluxes required. As a result, there is a large TPS gap between the materials efficient at very high conditions (carbon phenolic) and those that are effective at low-moderate conditions (all others). Development of 3D Woven TPS is intended to fill this gap, targeting mid-density weaves that could with withstand mid-range heat fluxes between 1100 W/sq cm and 8000 W/sq cm (Venkatapathy (2012). Preliminary experimental studies have been performed to show the feasibility of WTPS as a future mid-range TPS material. One study performed in the mARC Jet Facility at NASA Ames Research Center characterized the performance of a 3D Woven TPS sample and compared it to 2D carbon phenolic samples at ply angles of 0deg, 23.5deg, and 90deg. Each sample contained similar compositions of phenolic and carbon fiber volume fractions for experimental consistency. The goal of this study was to compare the performance of the TPS materials by evaluating resulting recession and failure modes. After exposing both samples to similar heat flux and pressure conditions, the 2D carbon phenolic laminate was shown to experience significant delamination between layers and further pocketing underneath separated layers. The 3D Woven TPS sample did not experience the delamination or pocketing

  1. Experimental study of quasi-2D dipolar vortex streets generated by a moving momentum source in a stratified fluid

    NASA Astrophysics Data System (ADS)

    Chen, K.; You, Y.; Noblesse, F.

    2016-07-01

    Experiments are conducted in a linear stratified fluid with a momentum source modeled via a nozzle jet moving horizontally. The generation mechanism of the quasi-two-dimensional dipolar vortex streets is investigated and their evolution characteristics are analyzed. Observation shows that the formation of a dipolar vortex street requires a nonzero motion of the nozzle in addition to conditions of the Reynolds and Froude number (Re, Fr). The (Re, Fr) condition that the dipolar vortex streets can be generated is determined via experimental measurements. The explanation for the absence of such a vortex street can be the low energy of the jet and the strong body-effect disturbance of the solid nozzle. The dependence of the vortex street dimensionless formation time τ and the Strouhal number St on the Froude number Fr or the Reynolds number Re is analyzed. This analysis shows that τ and St appear to be independent of Re and approximately have power-law relations with Fr via data fitting. The exponents of Fr in the two power-law functions are -0.27 for τ and -0.21 for St, while the constant coefficients are 65 and 0.21.

  2. Eliminating friction with friction: 2D Janssen effect in a friction-driven system.

    PubMed

    Karim, M Yasinul; Corwin, Eric I

    2014-05-01

    The Janssen effect is a unique property of confined granular materials experiencing gravitational compaction in which the pressure at the bottom saturates with an increasing filling height due to frictional interactions with side walls. In this Letter, we replace gravitational compaction with frictional compaction. We study friction-compacted 2D granular materials confined within fixed boundaries on a horizontal conveyor belt. We find that even with high-friction side walls the Janssen effect completely vanishes. Our results demonstrate that gravity-compacted granular systems are inherently different from friction-compacted systems in at least one important way: vibrations induced by sliding friction with the driving surface relax away tangential forces on the walls. Remarkably, we find that the Janssen effect can be recovered by replacing the straight side walls with a sawtooth pattern. The mechanical force introduced by varying the sawtooth angle θ can be viewed as equivalent to a tunable friction force. By construction, this mechanical friction force cannot be relaxed away by vibrations in the system. PMID:24856724

  3. 2D Simulations of Earthquake Cycles at a Subduction Zone Based on a Rate and State Friction Law -Effects of Pore Fluid Pressure Changes-

    NASA Astrophysics Data System (ADS)

    Mitsui, Y.; Hirahara, K.

    2006-12-01

    There have been a lot of studies that simulate large earthquakes occurring quasi-periodically at a subduction zone, based on the laboratory-derived rate-and-state friction law [eg. Kato and Hirasawa (1997), Hirose and Hirahara (2002)]. All of them assume that pore fluid pressure in the fault zone is constant. However, in the fault zone, pore fluid pressure changes suddenly, due to coseismic pore dilatation [Marone (1990)] and thermal pressurization [Mase and Smith (1987)]. If pore fluid pressure drops and effective normal stress rises, fault slip is decelerated. Inversely, if pore fluid pressure rises and effective normal stress drops, fault slip is accelerated. The effect of pore fluid may cause slow slip events and low-frequency tremor [Kodaira et al. (2004), Shelly et al. (2006)]. For a simple spring model, how pore dilatation affects slip instability was investigated [Segall and Rice (1995), Sleep (1995)]. When the rate of the slip becomes high, pore dilatation occurs and pore pressure drops, and the rate of the slip is restrained. Then the inflow of pore fluid recovers the pore pressure. We execute 2D earthquake cycle simulations at a subduction zone, taking into account such changes of pore fluid pressure following Segall and Rice (1995), in addition to the numerical scheme in Kato and Hirasawa (1997). We do not adopt hydrostatic pore pressure but excess pore pressure for initial condition, because upflow of dehydrated water seems to exist at a subduction zone. In our model, pore fluid is confined to the fault damage zone and flows along the plate interface. The smaller the flow rate is, the later pore pressure recovers. Since effective normal stress keeps larger, the fault slip is decelerated and stress drop becomes smaller. Therefore the smaller flow rate along the fault zone leads to the shorter earthquake recurrence time. Thus, not only the frictional parameters and the subduction rate but also the fault zone permeability affects the recurrence time of

  4. Digit ratio 2D:4D in relation to autism spectrum disorders, empathizing, and systemizing: a quantitative review.

    PubMed

    Hönekopp, Johannes

    2012-08-01

    Prenatal testosterone (PT) effects have been proposed to increase systemizing (the drive to understand lawful input-output relationships), to decrease empathizing (the drive to understand others), and to cause autism via hypermasculinization of the brain. Digit ratio 2D:4D is a putative marker of PT effects in humans. An online study (n = 1896) into the relationship between the Reading the Mind in the Eyes Test (a widely used measure of empathizing) and self-measured 2D:4D in a nonclinical sample is reported. No evidence for a link between empathizing and 2D:4D in either females or males emerged. Further, three meta-analyses are presented that look into the relationships of 2D:4D with autism spectrum disorder (ASD), systemizing, and empathizing. 2D:4D was substantially lower (more masculine) in ASD-affected individuals than in normal controls (d = -0.58, P < 0.001). However, 2D:4D was found to be virtually unrelated to systemizing and empathizing in normal adults. The results support the idea that high PT is a risk factor for autism, but they challenge the view that PT substantially contributes to sex differences in systemizing and empathizing. Possibly, this pattern reflects an interaction effect, whereby PT drives ASD characteristic changes only in brains with a specific damage.

  5. A preliminary evaluation work on a 3D ultrasound imaging system for 2D array transducer

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoli; Li, Xu; Yang, Jiali; Li, Chunyu; Song, Junjie; Ding, Mingyue; Yuchi, Ming

    2016-04-01

    This paper presents a preliminary evaluation work on a pre-designed 3-D ultrasound imaging system. The system mainly consists of four parts, a 7.5MHz, 24×24 2-D array transducer, the transmit/receive circuit, power supply, data acquisition and real-time imaging module. The row-column addressing scheme is adopted for the transducer fabrication, which greatly reduces the number of active channels . The element area of the transducer is 4.6mm by 4.6mm. Four kinds of tests were carried out to evaluate the imaging performance, including the penetration depth range, axial and lateral resolution, positioning accuracy and 3-D imaging frame rate. Several strong reflection metal objects , fixed in a water tank, were selected for the purpose of imaging due to a low signal-to-noise ratio of the transducer. The distance between the transducer and the tested objects , the thickness of aluminum, and the seam width of the aluminum sheet were measured by a calibrated micrometer to evaluate the penetration depth, the axial and lateral resolution, respectively. The experiment al results showed that the imaging penetration depth range was from 1.0cm to 6.2cm, the axial and lateral resolution were 0.32mm and 1.37mm respectively, the imaging speed was up to 27 frames per second and the positioning accuracy was 9.2%.

  6. Compressor bleed cooling fluid feed system

    DOEpatents

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  7. The development and testing of a 2D laboratory seismic modelling system for heterogeneous structure investigations

    NASA Astrophysics Data System (ADS)

    Mo, Yike; Greenhalgh, Stewart A.; Robertsson, Johan O. A.; Karaman, Hakki

    2015-05-01

    Lateral velocity variations and low velocity near-surface layers can produce strong scattered and guided waves which interfere with reflections and lead to severe imaging problems in seismic exploration. In order to investigate these specific problems by laboratory seismic modelling, a simple 2D ultrasonic model facility has been recently assembled within the Wave Propagation Lab at ETH Zurich. The simulated geological structures are constructed from 2 mm thick metal and plastic sheets, cut and bonded together. The experiments entail the use of a piezoelectric source driven by a pulse amplifier at ultrasonic frequencies to generate Lamb waves in the plate, which are detected by piezoelectric receivers and recorded digitally on a National Instruments recording system, under LabVIEW software control. The 2D models employed were constructed in-house in full recognition of the similitude relations. The first heterogeneous model features a flat uniform low velocity near-surface layer and deeper dipping and flat interfaces separating different materials. The second model is comparable but also incorporates two rectangular shaped inserts, one of low velocity, the other of high velocity. The third model is identical to the second other than it has an irregular low velocity surface layer of variable thickness. Reflection as well as transmission experiments (crosshole & vertical seismic profiling) were performed on each model. The two dominant Lamb waves recorded are the fundamental symmetric mode (non-dispersive) and the fundamental antisymmetric (flexural) dispersive mode, the latter normally being absent when the source transducer is located on a model edge but dominant when it is on the flat planar surface of the plate. Experimental group and phase velocity dispersion curves were determined and plotted for both modes in a uniform aluminium plate. For the reflection seismic data, various processing techniques were applied, as far as pre-stack Kirchhoff migration. The

  8. A 2D virtual reality system for visual goal-driven navigation in zebrafish larvae

    PubMed Central

    Jouary, Adrien; Haudrechy, Mathieu; Candelier, Raphaël; Sumbre, German

    2016-01-01

    Animals continuously rely on sensory feedback to adjust motor commands. In order to study the role of visual feedback in goal-driven navigation, we developed a 2D visual virtual reality system for zebrafish larvae. The visual feedback can be set to be similar to what the animal experiences in natural conditions. Alternatively, modification of the visual feedback can be used to study how the brain adapts to perturbations. For this purpose, we first generated a library of free-swimming behaviors from which we learned the relationship between the trajectory of the larva and the shape of its tail. Then, we used this technique to infer the intended displacements of head-fixed larvae, and updated the visual environment accordingly. Under these conditions, larvae were capable of aligning and swimming in the direction of a whole-field moving stimulus and produced the fine changes in orientation and position required to capture virtual prey. We demonstrate the sensitivity of larvae to visual feedback by updating the visual world in real-time or only at the end of the discrete swimming episodes. This visual feedback perturbation caused impaired performance of prey-capture behavior, suggesting that larvae rely on continuous visual feedback during swimming. PMID:27659496

  9. Experimental investigation on the high chip rate of 2D incoherent optical CDMA system

    NASA Astrophysics Data System (ADS)

    Su, Guorui; Wang, Rong; Pu, Tao; Fang, Tao; Zheng, Jilin; Zhu, Huatao; Wu, Weijiang

    2015-08-01

    An innovative approach to realise high chip rate in OCDMA transmission system is proposed and experimentally investigation, the high chip rate is achieved through a 2-D wavelength-hopping time-spreading en/decoder based on the supercontinuum light source. The source used in the experiment is generated by high nonlinear optical fiber (HNLF), Erbium-doped fiber amplifier (EDFA) which output power is 26 dBm, and distributed feed-back laser diode which works in the gain switch state. The span and the flatness of the light source are 20 nm and 3 dB, respectively, after equalization of wavelength selective switch (WSS). The wavelength-hopping time-spreading coder can be changed 20 nm in the wavelength and 400 ps in the time, is consist of WSS and delay lines. Therefore, the experimental results show that the chip rate can achieve 500 Gchip/s, in the case of 2.5 Gbit/s, while keeping a bit error rate below forward error correction limit after 40 km transmission.

  10. Remapping of digital subtraction angiography on a standard fluoroscopy system using 2D-3D registration

    NASA Astrophysics Data System (ADS)

    Alhrishy, Mazen G.; Varnavas, Andreas; Guyot, Alexis; Carrell, Tom; King, Andrew; Penney, Graeme

    2015-03-01

    Fluoroscopy-guided endovascular interventions are being performing for more and more complex cases with longer screening times. However, X-ray is much better at visualizing interventional devices and dense structures compared to vasculature. To visualise vasculature, angiography screening is essential but requires the use of iodinated contrast medium (ICM) which is nephrotoxic. Acute kidney injury is the main life-threatening complication of ICM. Digital subtraction angiography (DSA) is also often a major contributor to overall patient radiation dose (81% reported). Furthermore, a DSA image is only valid for the current interventional view and not the new view once the C-arm is moved. In this paper, we propose the use of 2D-3D image registration between intraoperative images and the preoperative CT volume to facilitate DSA remapping using a standard fluoroscopy system. This allows repeated ICM-free DSA and has the potential to enable a reduction in ICM usage and radiation dose. Experiments were carried out using 9 clinical datasets. In total, 41 DSA images were remapped. For each dataset, the maximum and averaged remapping accuracy error were calculated and presented. Numerical results showed an overall averaged error of 2.50 mm, with 7 patients scoring averaged errors < 3 mm and 2 patients < 6 mm.

  11. General solution of 2D and 3D superconducting quasiclassical systems: coalescing vortices and nanoisland geometries

    PubMed Central

    Amundsen, Morten; Linder, Jacob

    2016-01-01

    An extension of quasiclassical Keldysh-Usadel theory to higher spatial dimensions than one is crucial in order to describe physical phenomena like charge/spin Hall effects and topological excitations like vortices and skyrmions, none of which are captured in one-dimensional models. We here present a numerical finite element method which solves the non-linearized 2D and 3D quasiclassical Usadel equation relevant for the diffusive regime. We show the application of this on three model systems with non-trivial geometries: (i) a bottlenecked Josephson junction with external flux, (ii) a nanodisk ferromagnet deposited on top of a superconductor and (iii) superconducting islands in contact with a ferromagnet. In case (i), we demonstrate that one may control externally not only the geometrical array in which superconducting vortices arrange themselves, but also to cause coalescence and tune the number of vortices. In case (iii), we show that the supercurrent path can be tailored by incorporating magnetic elements in planar Josephson junctions which also lead to a strong modulation of the density of states. The finite element method presented herein paves the way for gaining insight in physical phenomena which have remained largely unexplored due to the complexity of solving the full quasiclassical equations in higher dimensions. PMID:26961921

  12. Feasibility of MatriXX 2D detector array for HDR brachytherapy planning system assessment

    NASA Astrophysics Data System (ADS)

    Zeman, Jozef; Valenta, Jiri; Gabris, Frantisek; Grezdo, Jozef; Stastna, Simona

    2012-10-01

    IBA Dosimetry GmbH participated in the Joint Research Project ‘Increasing cancer treatment efficacy using 3D brachytherapy’ as a non-funded partner in the work package which was mostly dedicated to the determination of dose-to-water distribution from a high-dose-rate (HDR) brachytherapy source. The dose distribution was measured with a MatriXX (MXX) 2D detector array and compared with Dose Cube Data, calculated by treatment planning systems (TPS). All measurements and calculations were performed in cooperation with OUSA, Bratislava and FNB, Prague. The comparison has been carried out for three irradiation geometries: single source position, single line and four line motions of the source, and with the effective point of measurement in a plane at 6 mm, 10 mm and 20 mm distance from the source position. The comparison of the MXX measurements and the TPS calculations was evaluated by the commercial IBA Dosimetry software OmniPro I'mRT (1) as the difference between maximum of measured and calculated values and (2) as the maximum difference between the two-dimensional distributions of measured and calculated values. The dose distribution was evaluated by the gamma method with parameters 3 mm and 3%. All differences of comparison of the MXX measurements and TPS calculations were within the range ±10% and the γ-index was less than 1 for 96% (or 97%, respectively) of the dose distribution in the plane at 10 mm distance from the source position.

  13. Boundary Layer Control of Rotating Convection Systems: the Transition from 2D to 3D Turbulence

    NASA Astrophysics Data System (ADS)

    King, Eric; Stellmach, S.; Noir, J.; Hansen, U.; Aurnou, J.

    2008-09-01

    Recent studies have reproduced the patterns of zonal flow and thermal emission on the Giant Planets using deep convection models. For example, it has been shown that the fundamental differences between the winds of the Ice Giants, Uranus and Neptune, and the Gas Giants, Jupiter and Saturn, may be explained by the breakdown of the influence of rotation on convection. Here, we present results from a coupled suite of laboratory experiments and numerical simulations of rotating convection which span a broad range of parameter space. We observe distinct transitions from rotationally controlled, quasi-2D dynamics to strongly 3D, non-rotating style convection. We quantify the boundary between these two regimes as a function of the Rayleigh and Ekman numbers. The transition is not determined, as long assumed, by the convective Rossby number, but instead is controlled by boundary layer dynamics. It may then be easier than previously thought for convection systems to break free from the constraints of rotation. We are presently investigating how this transition correlates with zonal flows and magnetic field generation on the Giant Planets. Funding provided by NSF Geophysics Program (EAR/IF) and NASA Planetary Atmospheres Program.

  14. System for connecting fluid couplings

    NASA Technical Reports Server (NTRS)

    Cody, Joseph C. (Inventor); Matthews, Paul R. (Inventor)

    1990-01-01

    A system for mating fluid transfer couplings is constructed having a male connector which is provided with a pair of opposed rollers mounted to an exterior region thereof. A male half of a fluid transfer coupling is rotatably supported in an opening in an end of the connector and is equipped with an outwardly extending forward portion. The forward portion locks into an engagement and locking region of a female half of the fluid transfer coupling, with female half being rotatably supported in a receptacle. The receptacle has an opening aligned with locking region, with this opening having a pair of concentric, annularly disposed ramps extending around an interior portion of opening. These ramps are inclined toward the interior of the receptacle and are provided with slots through which rollers of the connector pass. After the connector is inserted into the receptacle (engaging forward portion into engagement region), relative rotation between the connector and receptacle causes the rollers to traverse ramps until the rollers abut and are gripped by retainers. This axially forces the forward portion into locked, sealed engagement with the engagement region.

  15. Variable FOV optical illumination system with constant aspect ratio for 2-D array lasers diodes

    NASA Astrophysics Data System (ADS)

    Arasa, J.; de la Fuente, M. C.; Ibañez, C.

    2008-09-01

    In this contribution we present a compact system to create an illumination distribution with a constant aspect ratio 3:4 and FOV from 0.4 to 1 degree. Besides, the system must delivery 40 W from 170 individual laser diodes placed in a regular 2-D array distribution of 10 x 20 mm. The main problem that must be solved is the high asymmetry of the individual sources; emission divergence's ratio 3:73 (0.3 vs. 7.4 degree) combined with the flux holes due to the laser's heat drain. In one axis (divergence of 0.3º) the best design strategy approach is a Galileo telescope but in the other axis a collimator configuration is the best solution. To manage both solutions at the same time is the aim of this contribution. Unfortunately for the Galileo strategy, source dimensions are too large so aspheric surfaces are needed, and the collimator configuration requires an EFL that must change from 573 to 1432 mm. The presented solution uses a set of three fixed anamorphic lenses, two of them pure cylinders, combined with a wheel of anamorphic lenses that have the function to change the FOV of the system. The most important contribution of the design is to obtain a constant final ratio 3:4 from an initial ratio of 3:73 with no losses of energy. The proposed solution produces an illumination pattern with peaks and valleys lower than 40%. This pattern distribution might be unacceptable for a standard illumination solution. However, the actual FOV is used to illuminate far away targets thus air turbulence is enough to homogenize the distribution on the target.

  16. Study on the Multi-phase Flow and Fluid Saturation in 2D Fractured Media by Light Transmission Technique

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Ye, S.; Wu, J.

    2013-12-01

    Immiscible two-phase flows in fractured media are encountered in many engineering processes such as recovery of oil and gas, exploitation of geothermal energy, and groundwater contamination by immiscible chemicals. A two-dimensional rough wall parallel plate fracture model was set up and light transmission method (LTM) was applied to study two-phase flow system in fractured media. The fracture model stood with up and bottom flow and no flow on other two sides. A charge-coupled device (CCD) camera was used to monitor the migration of DNAPL and gas bubbles in the fracture model. To simulate two-phase system in fracture media, air was injected into the water saturated cell (C1) through the middle of the bottom and NAPL was injected into another water saturated cell (C2) through the middle of the top of the cell. The results show LTM was an effective way in monitoring the migration of DNAPL and gas bubbles in the fracture models. Gas moved upwards quickly to the top of C1 in the way of air bubbles generated at the injection position and formed a continuous distribution. The migration of TCE was controlled by its own weight and fracture aperture. TCE migrated to large aperture firstly when moving downwards, and intruded into smaller one with accumulation of TCE. Light Intensity-Saturation Models (LISMs) were developed to estimate the gas or NAPL saturation in two-phase system. The volume amount of infiltration of gas bubbles or NAPL could be estimated from light intensities by LISMs. There were strong correlations between the added and calculated amounts of gas or TCE. It is feasible to use the light transmission method to characterize the movement and spatial distribution of gas or NAPL in fractured media.

  17. A three-dimensional measuring system based on 2D laser displacement sensor

    NASA Astrophysics Data System (ADS)

    Jiang, Sulun; Fu, Yuegang; Zhu, Wangbin; Zhang, Yingwei; Wang, Weichen

    2014-12-01

    3D(Three-dimensional) measurement has found its applications in the fields of automation process, Reverse engineering(RE), machine vision, as well as medical diagnostic. There are some disadvantages in the present 3D measurement methods. In this paper, a 2D laser displacement sensor-based and fast-dimensional surface measurement method for small size objects was proposed after analyzing the existing three-dimensional measurement methods. This method uses the information collected by 2D laser displacement sensor and encoder in pan-tilt to three-dimensional reconstruct 3D model. And then discuss the restrictive relation between angular velocity of pan-tilt and parameters (measurement range, signal sample rate, precision, etc.) of 2D laser displacement sensor. The sources of error and methods of improving precision were analyzed. Theoretical analyses and experiments have proved the feasibility, high-precision and practical of this method.

  18. Parametric Modeling for Fluid Systems

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Martinez, Jonathan

    2013-01-01

    Fluid Systems involves different projects that require parametric modeling, which is a model that maintains consistent relationships between elements as is manipulated. One of these projects is the Neo Liquid Propellant Testbed, which is part of Rocket U. As part of Rocket U (Rocket University), engineers at NASA's Kennedy Space Center in Florida have the opportunity to develop critical flight skills as they design, build and launch high-powered rockets. To build the Neo testbed; hardware from the Space Shuttle Program was repurposed. Modeling for Neo, included: fittings, valves, frames and tubing, between others. These models help in the review process, to make sure regulations are being followed. Another fluid systems project that required modeling is Plant Habitat's TCUI test project. Plant Habitat is a plan to develop a large growth chamber to learn the effects of long-duration microgravity exposure to plants in space. Work for this project included the design and modeling of a duct vent for flow test. Parametric Modeling for these projects was done using Creo Parametric 2.0.

  19. Determining ice water content from 2D crystal images in convective cloud systems

    NASA Astrophysics Data System (ADS)

    Leroy, Delphine; Coutris, Pierre; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter

    2016-04-01

    Cloud microphysical in-situ instrumentation measures bulk parameters like total water content (TWC) and/or derives particle size distributions (PSD) (utilizing optical spectrometers and optical array probes (OAP)). The goal of this work is to introduce a comprehensive methodology to compute TWC from OAP measurements, based on the dataset collected during recent HAIC (High Altitude Ice Crystals)/HIWC (High Ice Water Content) field campaigns. Indeed, the HAIC/HIWC field campaigns in Darwin (2014) and Cayenne (2015) provide a unique opportunity to explore the complex relationship between cloud particle mass and size in ice crystal environments. Numerous mesoscale convective systems (MCSs) were sampled with the French Falcon 20 research aircraft at different temperature levels from -10°C up to 50°C. The aircraft instrumentation included an IKP-2 (isokinetic probe) to get reliable measurements of TWC and the optical array probes 2D-S and PIP recording images over the entire ice crystal size range. Based on the known principle relating crystal mass and size with a power law (m=α•Dβ), Fontaine et al. (2014) performed extended 3D crystal simulations and thereby demonstrated that it is possible to estimate the value of the exponent β from OAP data, by analyzing the surface-size relationship for the 2D images as a function of time. Leroy et al. (2015) proposed an extended version of this method that produces estimates of β from the analysis of both the surface-size and perimeter-size relationships. Knowing the value of β, α then is deduced from the simultaneous IKP-2 TWC measurements for the entire HAIC/HIWC dataset. The statistical analysis of α and β values for the HAIC/HIWC dataset firstly shows that α is closely linked to β and that this link changes with temperature. From these trends, a generalized parameterization for α is proposed. Finally, the comparison with the initial IKP-2 measurements demonstrates that the method is able to predict TWC values

  20. Colloids in Flatland: a perspective on 2D phase-separated systems, characterisation methods, and lineactant design.

    PubMed

    Bernardini, C; Stoyanov, S D; Arnaudov, L N; Cohen Stuart, M A

    2013-03-01

    In 1861 Thomas Graham gave birth to a new field of science, today known as colloid science. Nowadays, the notion "colloid" is often used referring to systems consisting of two immiscible phases, one of which is finely dispersed into the other. Research on colloids deals mostly with sols (solids dispersed in a liquid), emulsions (liquids dispersed in liquid), and foams (gas dispersed in a liquid). Because the dispersed particles are small, there is a lot of interface per unit mass. Not surprisingly, therefore, the properties of the interface have often a decisive effect on the behaviour of colloids. Water-air interfaces have a special relevance in this field: many water-insoluble molecules can be spread on water and, given the right spreading conditions and enough available surface area, their spreading proceeds until a monolayer (a one-molecule thick layer) eventually remains. Several 2D phases have been identified for such monolayers, like "gas", "liquid expanded", "liquid condensed", and "solid". The central question of this review is whether these 2D phases can also exist as colloidal systems, and what stabilizes the dispersed state in such systems. We shall present several systems capable of yielding 2D phase separation, from those based on either natural or fluorinated amphiphiles, to polymer-based ones. We shall seek for analogies in 3D and we shall try to clarify if the lines between these 2D objects play a similar role as the interfaces between 3D colloidal systems. In particular, we shall consider the special role of molecules that tend to accumulate at the phase boundaries, that is, at the contact lines, which will therefore be denoted "line-actants" (molecules that adsorb at a 1D interface, separating two 2D colloidal entities), by analogy to the term "surfactant" (which indicates a molecule that adsorbs at a 2D interface separating two 3D colloidal entities).

  1. Closed-loop control of a 2-D mems micromirror with sidewall electrodes for a laser scanning microscope system

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Chen, Albert; Jie Sun, Wei; Sun, Zhen Dong; Yeow, John TW

    2016-01-01

    This article presents the development and implementation of a robust nonlinear control scheme for a 2-D micromirror-based laser scanning microscope system. The presented control scheme, built around sliding mode control approach and augmented an adaptive algorithm, is proposed to improve the tracking accuracy in presence of cross-axis effect. The closed-loop controlled imaging system is developed through integrating a 2-D micromirror with sidewall electrodes (SW), a laser source, NI field-programmable gate array (FPGA) hardware, the optics, position sensing detector (PSD) and photo detector (PD). The experimental results demonstrated that the proposed scheme is able to achieve accurate tracking of a reference triangular signal. Compared with open-loop control, the scanning performance is significantly improved, and a better 2-D image is obtained using the micromirror with the proposed scheme.

  2. Evaluation of storage phosphor imaging for quantitative analysis of 2-D gels using the Quest II system.

    PubMed

    Patterson, S D; Latter, G I

    1993-12-01

    The advent of storage phosphor technology has been of considerable benefit to the imaging of gel-separated radiolabeled proteins due to the rapid and quantitative nature of the data acquisition process. Previously, times over one month were required to obtain fluorographs of the same gel to yield data of sufficient dynamic range for quantitative analysis of high-resolution two-dimensional (2-D) gels. As we are in the process of building a human 2-D gel protein database, and therefore have a high throughput of 2-D gels both to image and quantitate using the Quest II software, we undertook an evaluation of a storage phosphor imager, including an evaluation of signal fade. The results of this evaluation demonstrate the feasibility of using such a system, and we describe the procedures that allow us to use this technique for quantitative analysis of many complex 2-D gel patterns. These procedures include a useful batch printing program that allows printing of many images in a non-interactive mode. Examples will be presented of how autoradiography, using storage phosphor plates and the Quest II system, have enabled us to begin building a human 2-D gel protein database including posttranslational modification information, without the previous time constraints associated with such a project.

  3. a Field-Theoretical Investigation of 2-D Coulomb Systems with Short-Range Yukawa Repulsion.

    NASA Astrophysics Data System (ADS)

    Jargocki, Krzysztof Piotr

    correspond to the two-dimensional Coulomb dipole gas in the functional integral formulation. A different type of a field theory is found for the dipole gas using the collective field formalism. A comparison is made with the critical behavior in the nonlinear sigma model, the 2-D Heisenberg model, and the nonabelian gauge theories.

  4. Interaction of an acoustical 2D-beam with an elastic cylinder with arbitrary location in a non-viscous fluid.

    PubMed

    Mitri, F G

    2015-09-01

    The classical Resonance Scattering Theory (RST) for plane waves in acoustics is generalized for the case of a 2D arbitrarily-shaped beam incident upon an elastic cylinder with arbitrary location that is immersed in a nonviscous fluid. The formulation is valid for an elastic (or viscoelastic) cylinder (or a cylindrical shell, a layered cylinder/shell, or a multilayered cylindrical shell, etc.) of any size and material. Partial-wave series expansions (PWSEs) for the incident, internal and scattered fields are derived, and numerical examples illustrate the theory. The wave-fields are expressed using a generalized PWSE involving the beam-shape coefficients (BSCs) and the scattering coefficients of the cylinder. When the beam is shifted off the center of the cylinder, the off-axial BSCs are evaluated by performing standard numerical integration. Acoustic resonance scattering directivity diagrams are calculated by subtracting an appropriate background from the expression of the scattered pressure field. The properties related to the arbitrary scattering of a zeroth-order quasi-Gaussian cylindrical beam (chosen as an example) by an elastic brass cylinder centered on the axis of wave propagation of the beam, and shifted off-axially are analyzed and discussed. Moreover, the total and resonance backscattering form function moduli are numerically computed, and the results discussed with emphasis on the contribution of the surface waves circumnavigating the cylinder circular surface to the resonance backscattering. Furthermore, the analysis is extended to derive general expressions for the axial and transverse acoustic radiation force functions for the cylinder in any 2D beam of arbitrary shape. Examples are provided for a zeroth-order quasi Gaussian cylindrical beam with different waist. Potential applications are in underwater and physical acoustics, however, ongoing research in biomedical ultrasound, non-destructive evaluation, imaging, manufacturing, instrumentation, and

  5. Extension of Generalized Fluid System Simulation Program's Fluid Property Database

    NASA Technical Reports Server (NTRS)

    Patel, Kishan

    2011-01-01

    This internship focused on the development of additional capabilities for the General Fluid Systems Simulation Program (GFSSP). GFSSP is a thermo-fluid code used to evaluate system performance by a finite volume-based network analysis method. The program was developed primarily to analyze the complex internal flow of propulsion systems and is capable of solving many problems related to thermodynamics and fluid mechanics. GFSSP is integrated with thermodynamic programs that provide fluid properties for sub-cooled, superheated, and saturation states. For fluids that are not included in the thermodynamic property program, look-up property tables can be provided. The look-up property tables of the current release version can only handle sub-cooled and superheated states. The primary purpose of the internship was to extend the look-up tables to handle saturated states. This involves a) generation of a property table using REFPROP, a thermodynamic property program that is widely used, and b) modifications of the Fortran source code to read in an additional property table containing saturation data for both saturated liquid and saturated vapor states. Also, a method was implemented to calculate the thermodynamic properties of user-fluids within the saturation region, given values of pressure and enthalpy. These additions required new code to be written, and older code had to be adjusted to accommodate the new capabilities. Ultimately, the changes will lead to the incorporation of this new capability in future versions of GFSSP. This paper describes the development and validation of the new capability.

  6. Safety drain system for fluid reservoir

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)

    2012-01-01

    A safety drain system includes a plurality of drain sections, each of which defines distinct fluid flow paths. At least a portion of the fluid flow paths commence at a side of the drain section that is in fluid communication with a reservoir's fluid. Each fluid flow path at the side communicating with the reservoir's fluid defines an opening having a smallest dimension not to exceed approximately one centimeter. The drain sections are distributed over at least one surface of the reservoir. A manifold is coupled to the drain sections.

  7. Micro-electromechanical Systems for Probing Novel Strain Physics and Innovative Strain Devices in 2D Materials

    NASA Astrophysics Data System (ADS)

    Christopher, Jason; Vutukuru, Mounika; Bishop, David; Swan, Anna; Goldberg, Bennett

    Straining 2D materials can dramatically change electrical, thermal and optical properties and can even cause unconventional behavior such as generating pseudo-magnetic fields. However attempts at probing these effects have been hindered by the difficulty involved with precisely straining these materials. Here we present micro-electromechanical systems (MEMS) as an ideal platform for straining 2D materials because they are readily compatible with existing electronics and their size makes them compatible with 2D materials. Additionally the MEMS platform does more than facilitate experimentation; by freeing us to think of strain as dynamical it makes a whole new class of devices practical for next generation technology. To demonstrate the power of this platform we have for the first time measured the strain response of the Raman and photoluminescence spectra of suspended MoS2, and measured the friction force between MoS2 and the MEMS structure. This talk will touch on the basics of designing MEMS structures for straining 2D materials, how to transfer 2D materials onto MEMS without break either, proof of concept experimental results, and next steps in developing the MEMS platform. This work is supported by NSF DMR Grant 1411008, and author J. Christopher thanks the NDSEG program for its support.

  8. A 3D Freehand Ultrasound System for Multi-view Reconstructions from Sparse 2D Scanning Planes

    PubMed Central

    2011-01-01

    Background A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. Methods We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes. For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Results Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better

  9. Simulated KWAJEX Convective Systems Using a 2D and 3D Cloud Resolving Model and Their Comparisons with Radar Observations

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Tao, Wei-Kuo; Simpson, Joanne

    2003-01-01

    The 1999 Kwajalein Atoll field experiment (KWAJEX), one of several major TRMM (Tropical Rainfall Measuring Mission) field experiments, has successfully obtained a wealth of information and observation data on tropical convective systems over the western Central Pacific region. In this paper, clouds and convective systems that developed during three active periods (Aug 7-12, Aug 17-21, and Aug 29-Sep 13) around Kwajalein Atoll site are simulated using both 2D and 3D Goddard Cumulus Ensemble (GCE) models. Based on numerical results, the clouds and cloud systems are generally unorganized and short lived. These features are validated by radar observations that support the model results. Both the 2D and 3D simulated rainfall amounts and their stratiform contribution as well as the heat, water vapor, and moist static energy budgets are examined for the three convective episodes. Rainfall amounts are quantitatively similar between the two simulations, but the stratiform contribution is considerably larger in the 2D simulation. Regardless of dimension, fo all three cases, the large-scale forcing and net condensation are the two major physical processes that account for the evolution of the budgets with surface latent heat flux and net radiation solar and long-wave radiation)being secondary processes. Quantitative budget differences between 2D and 3D as well as between various episodes will be detailed.Morover, simulated radar signatures and Q1/Q2 fields from the three simulations are compared to each other and with radar and sounding observations.

  10. Fluid management system for a zero gravity cryogenic storage system

    NASA Technical Reports Server (NTRS)

    Lak, Tibor I. (Inventor)

    1995-01-01

    The fluid management system comprises a mixing/recirculation system including an external recirculation pump for receiving fluid from a zero gravity storage system and returning an output flow of the fluid to the storage system. An internal axial spray injection system is provided for receiving a portion of the output flow from the recirculation pump. The spray injection system thermally de-stratifies liquid and gaseous cryogenic fluid stored in the storage system.

  11. Fluid sampling system for a nuclear reactor

    DOEpatents

    Lau, L.K.; Alper, N.I.

    1994-11-22

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.

  12. Fluid sampling system for a nuclear reactor

    DOEpatents

    Lau, Louis K.; Alper, Naum I.

    1994-01-01

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.

  13. A 2D finite element simulation of liquid coupled ultrasonic NDT system

    NASA Astrophysics Data System (ADS)

    Bilgunde, Prathamesh N.; Bond, Leonard J.

    2015-03-01

    The aim of this work is to improve modelling capabilities and reliability of wave propagation models using a commercial finite element package (COMSOL). The current model focusses on investigating the error and accuracy with the change in spatial and temporal discretization. To increase the reliability and inclusiveness of the finite element method, wave propagation has been modelled in solid medium with a cylindrical defect (side drilled hole), in a fluid medium and in a fluid-solid immersion model. The numerical predictions are validated through comparisons with available analytical solutions and experimental data. The model is being developed to incorporate additional complexity and ranges of properties, including operation at elevated temperature.

  14. An ESPRIT-Based Approach for 2-D Localization of Incoherently Distributed Sources in Massive MIMO Systems

    NASA Astrophysics Data System (ADS)

    Hu, Anzhong; Lv, Tiejun; Gao, Hui; Zhang, Zhang; Yang, Shaoshi

    2014-10-01

    In this paper, an approach of estimating signal parameters via rotational invariance technique (ESPRIT) is proposed for two-dimensional (2-D) localization of incoherently distributed (ID) sources in large-scale/massive multiple-input multiple-output (MIMO) systems. The traditional ESPRIT-based methods are valid only for one-dimensional (1-D) localization of the ID sources. By contrast, in the proposed approach the signal subspace is constructed for estimating the nominal azimuth and elevation direction-of-arrivals and the angular spreads. The proposed estimator enjoys closed-form expressions and hence it bypasses the searching over the entire feasible field. Therefore, it imposes significantly lower computational complexity than the conventional 2-D estimation approaches. Our analysis shows that the estimation performance of the proposed approach improves when the large-scale/massive MIMO systems are employed. The approximate Cram\\'{e}r-Rao bound of the proposed estimator for the 2-D localization is also derived. Numerical results demonstrate that albeit the proposed estimation method is comparable with the traditional 2-D estimators in terms of performance, it benefits from a remarkably lower computational complexity.

  15. Draining a 2D foam in a microfluidic system using thermocapillary stress

    NASA Astrophysics Data System (ADS)

    Jullien, Marie-Caroline; Miralles, Vincent; Selva, Bertrand; Marchalot, Julien; Cantat, Isabelle; LOF Collaboration; INL Collaboration; IPR Collaboration; MMN-ESPCI/CNRS Team

    2013-11-01

    We present an experimental configuration allowing the possibility to control the liquid fraction in a 2D microfoam located in a Hele-Shaw cell. A Marangoni stress at the air-water interface is generated by applying a constant temperature gradient in situ, and leads to the drainage of the liquid phase. First, in order to avoid gravity drainage, the cell is placed horizontally and we are able to drain up to 70 % of the liquid phase, for foams of initial liquid fraction ϕ0 ~ 15 % . Next, the cell is placed vertically and the Marangoni stress for temperature gradients above 3.1 K.mm-1 is strong enough to counterbalance gravity drainage. Finally, a mass conservation approach based on scaling arguments and numerical simulations giving access to the velocity profile in a pseudo-Plateau border happen to be in very good agreement with the experimental results, showing that we can accurately control the liquid fraction in a 2D microfoam.

  16. Forced drainage in a 2D foam in a microfluidic system using thermocapillary stress

    NASA Astrophysics Data System (ADS)

    Jullien, Marie-Caroline; Miralles, Vincent; Selva, Bertrand; Marchalot, Julien; Cantat, Isabelle; Mmn-Espci/Cnrs Team; Lof Collaboration; Inl Collaboration; Ipr Collaboration

    2013-11-01

    We present an experimental configuration allowing the possibility to control the liquid fraction in a 2D microfoam located in a Hele-Shaw cell. A Marangoni stress at the air-water interface is generated by applying a constant temperature gradient in situ, and leads to the drainage of the liquid phase. First, in order to avoid gravity drainage, the cell is placed horizontally and we are able to drain up to 70 % of the liquid phase, for foams of initial liquid fraction ϕ0 ~ 15 % . Next, the cell is placed vertically and the Marangoni stress for temperature gradients above 3.1 K.mm-1 is strong enough to counterbalance gravity drainage. Finally, a mass conservation approach based on scaling arguments and numerical simulations giving access to the velocity profile in a pseudo-Plateau border happen to be in very good agreement with the experimental results, showing that we can accurately control the liquid fraction in a 2D microfoam.

  17. Development of an open source laboratory information management system for 2-D gel electrophoresis-based proteomics workflow

    PubMed Central

    Morisawa, Hiraku; Hirota, Mikako; Toda, Tosifusa

    2006-01-01

    Background In the post-genome era, most research scientists working in the field of proteomics are confronted with difficulties in management of large volumes of data, which they are required to keep in formats suitable for subsequent data mining. Therefore, a well-developed open source laboratory information management system (LIMS) should be available for their proteomics research studies. Results We developed an open source LIMS appropriately customized for 2-D gel electrophoresis-based proteomics workflow. The main features of its design are compactness, flexibility and connectivity to public databases. It supports the handling of data imported from mass spectrometry software and 2-D gel image analysis software. The LIMS is equipped with the same input interface for 2-D gel information as a clickable map on public 2DPAGE databases. The LIMS allows researchers to follow their own experimental procedures by reviewing the illustrations of 2-D gel maps and well layouts on the digestion plates and MS sample plates. Conclusion Our new open source LIMS is now available as a basic model for proteome informatics, and is accessible for further improvement. We hope that many research scientists working in the field of proteomics will evaluate our LIMS and suggest ways in which it can be improved. PMID:17018156

  18. Space station integrated propulsion and fluid system study: Fluid systems configuration databook

    NASA Technical Reports Server (NTRS)

    Rose, L.; Bicknell, B.; Bergman, D.; Wilson, S.

    1987-01-01

    This databook contains fluid system requirements and system descriptions for Space Station program elements including the United States and International modules, integrated fluid systems, attached payloads, fluid servicers and vehicle accommodation facilities. Separate sections are devoted to each of the program elements and include a discussion of the overall system requirements, specific fluid systems requirements and systems descriptions. The systems descriptions contain configurations, fluid inventory data and component lists. In addition, a list of information sources is referenced at the end of each section.

  19. Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems

    SciTech Connect

    1994-06-20

    FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors, gasifiers, and FCC (Fluid Catalytic Cracker) reactors.

  20. Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems

    1994-06-20

    FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors,more » gasifiers, and FCC (Fluid Catalytic Cracker) reactors.« less

  1. Enhanced job control language procedures for the SIMSYS2D two-dimensional water-quality simulation system

    USGS Publications Warehouse

    Karavitis, G.A.

    1984-01-01

    The SIMSYS2D two-dimensional water-quality simulation system is a large-scale digital modeling software system used to simulate flow and transport of solutes in freshwater and estuarine environments. Due to the size, processing requirements, and complexity of the system, there is a need to easily move the system and its associated files between computer sites when required. A series of job control language (JCL) procedures was written to allow transferability between IBM and IBM-compatible computers. (USGS)

  2. Fluid systems for RICH detectors

    NASA Astrophysics Data System (ADS)

    Ullaland, O.

    2005-11-01

    The optical properties of the radiator media are of prime importance in Ring Imaging Cherenkov detectors. The main requirements for the radiator fluid are a stable refractive index and a photon absorption as low as possible. We will in this note cover some of the cleaning procedures which are required together with distillation and similar separation procedures. Thin film membranes have been introduced during the last decade. They have proven particularly interesting in separating air from some Cherenkov fluids. We will also discuss the use of molecular sieves.

  3. Ti3CrCu4: A possible 2-D ferromagnetic spin fluctuating system

    NASA Astrophysics Data System (ADS)

    Dhar, S. K.; Provino, A.; Manfrinetti, P.; Kulkarni, R.; Goyal, Neeraj; Paudyal, D.

    2016-05-01

    Ti3CrCu4 is a new ternary compound which crystallizes in the tetragonal Ti3Pd5 structure type. The Cr atoms form square nets in the a-b plane (a = 3.124 Å) which are separated by an unusually large distance c = 11.228 Å along the tetragonal axis, thus forming a -2-D Cr-sublattice. The paramagnetic susceptibility is characterized by a low effective moment, μeff = 1.1 μB, a low paramagnetic Curie temperature θP (below 7 K) and a temperature independent χ0 = 6.7 x 10-4 emu/mol. The magnetization at 1.8 K increases rapidly with field nearly saturating to 0.2 μB/f.u. The zero field heat capacity C/T shows an upturn below 7 K (˜190 mJ/mol K2 at ˜0.1K) which is suppressed in applied magnetic fields and interpreted as suggesting the presence of spin fluctuations. The resistivity at low temperatures shows non-Fermi liquid behavior. Overall, the experimental data thus reveal an unusual magnetic state in Ti3CrCu4, which likely has its origin in the layered nature of the Cr sub-lattice and ferromagnetic spin fluctuations. Density functional theoretical calculations reveal a sharp Cr density of states peak just above the Fermi level, indicating the propensity of Ti3CrCu4 to become magnetic.

  4. Development of electrokinetic remediation for caesium: A feasibility study of 2D electrode configuration system

    NASA Astrophysics Data System (ADS)

    Syah Putra, Rudy

    2016-02-01

    Agar matrix was artificially contaminated with caesium and subjected to rapid assessment of electrokinetic treatment on the basis of the 2D electrode configuration. The effect of caesium concentration on the process was investigated using different electrode configuration (i.e. rectangular, hexagonal and triangular). During treatment the in situ pH distribution, the current flow, and the potential distribution were monitored. At the end of the treatment, the caesium concentration distribution was measured. The results of these experiments showed that for caesium contamination, pH control is essential in order to create a suitable environment throughout the agar matrix to enable contaminant removal. It was found that the type of electrode configuration used to control the pH affected the rate of caesium accumulation. All of the electrode configurations tested was effective, but the highest caesium extraction was achieved when the hexagonal pattern was used to control the pH. After 72 h of treatment at 50 mA, the concentration of caesium decreased gradually from the second and first layer of agar matrix throughout the cell, suggesting that most of the caesium was concentrated on the cathode part.

  5. Novel low-cost 2D/3D switchable autostereoscopic system for notebook computers and other portable devices

    NASA Astrophysics Data System (ADS)

    Eichenlaub, Jesse B.

    1995-03-01

    Mounting a lenticular lens in front of a flat panel display is a well known, inexpensive, and easy way to create an autostereoscopic system. Such a lens produces half resolution 3D images because half the pixels on the LCD are seen by the left eye and half by the right eye. This may be acceptable for graphics, but it makes full resolution text, as displayed by common software, nearly unreadable. Very fine alignment tolerances normally preclude the possibility of removing and replacing the lens in order to switch between 2D and 3D applications. Lenticular lens based displays are therefore limited to use as dedicated 3D devices. DTI has devised a technique which removes this limitation, allowing switching between full resolution 2D and half resolution 3D imaging modes. A second element, in the form of a concave lenticular lens array whose shape is exactly the negative of the first lens, is mounted on a hinge so that it can be swung down over the first lens array. When so positioned the two lenses cancel optically, allowing the user to see full resolution 2D for text or numerical applications. The two lenses, having complementary shapes, naturally tend to nestle together and snap into perfect alignment when pressed together--thus obviating any need for user operated alignment mechanisms. This system represents an ideal solution for laptop and notebook computer applications. It was devised to meet the stringent requirements of a laptop computer manufacturer including very compact size, very low cost, little impact on existing manufacturing or assembly procedures, and compatibility with existing full resolution 2D text- oriented software as well as 3D graphics. Similar requirements apply to high and electronic calculators, several models of which now use LCDs for the display of graphics.

  6. Fluid permeability measurement system and method

    DOEpatents

    Hallman, Jr., Russell Louis; Renner, Michael John

    2008-02-05

    A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  7. Learning control system design based on 2-D theory - An application to parallel link manipulator

    NASA Technical Reports Server (NTRS)

    Geng, Z.; Carroll, R. L.; Lee, J. D.; Haynes, L. H.

    1990-01-01

    An approach to iterative learning control system design based on two-dimensional system theory is presented. A two-dimensional model for the iterative learning control system which reveals the connections between learning control systems and two-dimensional system theory is established. A learning control algorithm is proposed, and the convergence of learning using this algorithm is guaranteed by two-dimensional stability. The learning algorithm is applied successfully to the trajectory tracking control problem for a parallel link robot manipulator. The excellent performance of this learning algorithm is demonstrated by the computer simulation results.

  8. Surface cleanliness of fluid systems, specification for

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This specification establishes surface cleanliness levels, test methods, cleaning and packaging requirements, and protection and inspection procedures for determining surface cleanliness. These surfaces pertain to aerospace parts, components, assemblies, subsystems, and systems in contact with any fluid medium.

  9. LASA (Lidar Atmospheric Sounder and Altimeter) Earth Observing System. Volume 2D: Instrument Panel Report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Earth Observing System (Eos) will provide an ideal forum in which the stronly synergistic characteristics of the lidar systems can be used in concert with the characteristics of a number of other sensors to better understand the Earth as a system. Progress in the development of more efficient and long-lasting laser systems will insure their availability in the Eos time frame. The necessary remote-sensing techniques are being developed to convert the Lidar Atmospheric Sounder and Altimeter (LASA) observations into the proper scientific parameters. Each of these activities reinforces the promise that LASA and GLRS will be a reality in the Eos era.

  10. Note: Reliable and non-contact 6D motion tracking system based on 2D laser scanners for cargo transportation

    NASA Astrophysics Data System (ADS)

    Kim, Young-Keun; Kim, Kyung-Soo

    2014-10-01

    Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.

  11. Note: Reliable and non-contact 6D motion tracking system based on 2D laser scanners for cargo transportation

    SciTech Connect

    Kim, Young-Keun; Kim, Kyung-Soo

    2014-10-15

    Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.

  12. Non-fragile robust optimal guaranteed cost control of uncertain 2-D discrete state-delayed systems

    NASA Astrophysics Data System (ADS)

    Tandon, Akshata; Dhawan, Amit

    2016-10-01

    This paper is concerned with the problem of non-fragile robust optimal guaranteed cost control for a class of uncertain two-dimensional (2-D) discrete state-delayed systems described by the general model with norm-bounded uncertainties. Our attention is focused on the design of non-fragile state feedback controllers such that the resulting closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound for all admissible parameter uncertainties and controller gain variations. A sufficient condition for the existence of such controllers is established under the linear matrix inequality framework. Moreover, a convex optimisation problem is proposed to select a non-fragile robust optimal guaranteed cost controller stabilising the 2-D discrete state-delayed system as well as achieving the least guaranteed cost for the resulting closed-loop system. The proposed method is compared with the previously reported criterion. Finally, illustrative examples are given to show the potential of the proposed technique.

  13. Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging

    NASA Astrophysics Data System (ADS)

    Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas

    2016-03-01

    In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.

  14. A transputer-based list mode parallel system for digital radiography with 2D silicon detectors

    SciTech Connect

    Conti, M.; Russo, P.; Scarlatella, A. . Dipt. di Scienze Fisiche and INFN); Del Guerra, A. . Dipt. di Fisica and INFN); Mazzeo, A.; Mazzocca, N.; Russo, S. . Dipt. di Informatica e Sistemistica)

    1993-08-01

    The authors believe that a dedicated parallel computer system can represent an effective and flexible approach to the problem of list mode acquisition and reconstruction of digital radiographic images obtained with a double-sided silicon microstrip detector. They present a Transputer-based implementation of a parallel system for the data acquisition and image reconstruction from a silicon crystal with 200[mu]m read-out pitch. They are currently developing a prototype of the system connected to a detector with a 10mm[sup 2] sensitive area.

  15. Assessing HYDRUS-2D model to estimate soil water contents and olive tree transpiration fluxes under different water distribution systems

    NASA Astrophysics Data System (ADS)

    Autovino, Dario; Negm, Amro; Rallo, Giovanni; Provenzano, Giuseppe

    2016-04-01

    In Mediterranean countries characterized by limited water resources for agricultural and societal sectors, irrigation management plays a major role to improve water use efficiency at farm scale, mainly where irrigation systems are correctly designed to guarantee a suitable application efficiency and the uniform water distribution throughout the field. In the last two decades, physically-based agro-hydrological models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere (SPA) system. Mechanistic models like HYDRUS 2D/3D (Šimunek et al., 2011) have been proposed to simulate all the components of water balance, including actual crop transpiration fluxes estimated according to a soil potential-dependent sink term. Even though the suitability of these models to simulate the temporal dynamics of soil and crop water status has been reported in the literature for different horticultural crops, a few researches have been considering arboreal crops where the higher gradients of root water uptake are the combination between the localized irrigation supply and the three dimensional root system distribution. The main objective of the paper was to assess the performance of HYDRUS-2D model to evaluate soil water contents and transpiration fluxes of an olive orchard irrigated with two different water distribution systems. Experiments were carried out in Castelvetrano (Sicily) during irrigation seasons 2011 and 2012, in a commercial farm specialized in the production of table olives (Olea europaea L., var. Nocellara del Belice), representing the typical variety of the surrounding area. During the first season, irrigation water was provided by a single lateral placed along the plant row with four emitters per plant (ordinary irrigation), whereas during the second season a grid of emitters laid on the soil was installed in order to irrigate the whole soil surface around the selected trees. The model performance was assessed based on the

  16. Spin-current resonances in a magnetically inhomogeneous 2D conducting system

    NASA Astrophysics Data System (ADS)

    Charkina, O. V.; Kalinenko, A. N.; Kopeliovich, A. I.; Pyshkin, P. V.; Yanovsky, A. V.

    2016-10-01

    The high-frequency transport in a two-dimensional conducting ring having an inhomogeneous collinear magnetic structure has been considered in the hydrodynamic approximation. It is shown that the frequency dependence on the radial electric conductivity of the ring exhibits resonances corresponding to new hybrid oscillations in such systems. The oscillation frequencies are essentially dependent on the applied electromagnetic field and the spin state of the system.

  17. A neuromorphic VLSI device for implementing 2-D selective attention systems.

    PubMed

    Indiveri, G

    2001-01-01

    Selective attention is a mechanism used to sequentially select and process salient subregions of the input space, while suppressing inputs arriving from nonsalient regions. By processing small amounts of sensory information in a serial fashion, rather than attempting to process all the sensory data in parallel, this mechanism overcomes the problem of flooding limited processing capacity systems with sensory inputs. It is found in many biological systems and can be a useful engineering tool for developing artificial systems that need to process in real-time sensory data. In this paper we present a neuromorphic hardware model of a selective attention mechanism implemented on a very large scale integration (VLSI) chip, using analog circuits. The chip makes use of a spike-based representation for receiving input signals, transmitting output signals and for shifting the selection of the attended input stimulus over time. It can be interfaced to neuromorphic sensors and actuators, for implementing multichip selective attention systems. We describe the characteristics of the circuits used in the architecture and present experimental data measured from the system. PMID:18249973

  18. A 2D CMAC neural net algorithm for a positioning system of automated agriculture vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Fangming; Ying, Yibin

    2006-10-01

    In a machine vision-based guidance system, a camera must be corrected precisely to calculate the position of vehicle, however, it is not easy to obtain the intrinsic and extrinsic parameters of the camera, while neural nets have the advantage to set up a mapping relationship for a nonlinear system. We intended to use the CMAC neural net to construct two map relationships: image coordinates and offsets of the vehicle, and image coordinates and the heading angle of the vehicle. The net inputs were the coordinates of top and bottom points in the detected guidance line in the image coordinate system. The outputs were offsets and heading angles. The verified results show that the RMS of inferred offset is 10.5 mm, and the STD is 11.3 mm; the RMS of inferred heading is 1.1°, and the STD is 0.99°.

  19. An analytic approach to 2D electronic PE spectra of molecular systems

    NASA Astrophysics Data System (ADS)

    Szöcs, V.

    2011-05-01

    The three-pulse photon echo (3 P- PE) spectra of finite molecular systems and simplified line broadening models is presented. The Fourier picture of a heterodyne detected three-pulse rephasing PE signal in the δ-pulse limit of the external field is derived in analytic form. The method includes contributions of one and two-excitonic states and allows direct calculation of Fourier PE spectrogram from corresponding Hamiltonian. As an illustration, the proposed treatment is applied to simple systems, e.g. 2-site two-level system (TLS) and n-site TLS model of photosynthetic unit. The importance of relation between Fourier picture of 3 P- PE dynamics (corresponding to nonzero population time, T) and coherent inter-state coupling is emphasized.

  20. Monte Carlo entropic sampling applied to Ising-like model for 2D and 3D systems

    NASA Astrophysics Data System (ADS)

    Jureschi, C. M.; Linares, J.; Dahoo, P. R.; Alayli, Y.

    2016-08-01

    In this paper we present the Monte Carlo entropic sampling (MCES) applied to an Ising-like model for 2D and 3D system in order to show the interaction influence of the edge molecules of the system with their local environment. We show that, as for the 1D and the 2D spin crossover (SCO) systems, the origin of multi steps transition in 3D SCO is the effect of the edge interaction molecules with its local environment together with short and long range interactions. Another important result worth noting is the co-existence of step transitions with hysteresis and without hysteresis. By increasing the value of the edge interaction, L, the transition is shifted to the lower temperatures: it means that the role of edge interaction is equivalent to an applied negative pressure because the edge interaction favours the HS state while the applied pressure favours the LS state. We also analyse, in this contribution, the role of the short- and long-range interaction, J respectively G, with respect to the environment interaction, L.

  1. The evaluation of an inexpensive, 2D, video based gait assessment system for clinical use.

    PubMed

    Ugbolue, U Chris; Papi, Enrica; Kaliarntas, Konstantinos T; Kerr, Andrew; Earl, Leo; Pomeroy, Valerie M; Rowe, Philip J

    2013-07-01

    The purpose of this study was to investigate the clinical potential of an augmented-video-based-portable-system (AVPS). The AVPS included a walkway grid mat made of vinyl flooring, flat paper bull's eye markers, four photoswitches mounted on tripods, a light-indicator, a video camera, and a computer with ProTrainer System software. The AVPS output was compared to a "gold standard" 3D Vicon Motion Analysis System both statically and dynamically over a fixed range (-90° to +90°) using a two-segment-goniometric-rig marked with both bull's eye and retroreflective markers. At each segment angle position, three trials of data were captured. The reliability of the AVPS was also tested using three raters. Further twelve, young, healthy subjects participated in a concurrent validity study in which they performed six gait trials which were simultaneously recorded by both systems. Both motion analysis systems showed low levels of intra subject variability in all kinematic variables indicated by the size of the standard deviations across the six trials. There were no significant differences between the motion systems with respect to the kinematic variables (P>0.05). The results showed a high intra- and inter-rater reliability for both the kinematic and temporo-spatial parameters. With respect to gait events the lowest ICC value for the intra-rater reliability test was 0.993 for the kinematic variables, and ranged from 0.941 to 0.956 for the temporo-spatial variables and 0.731 to 0.954 for the tibia inclination angles. The validation data suggest the AVPS is capable of generating highly reliable and repeatable data when applied to normal subjects and could be used within the clinical setting. PMID:23465758

  2. Thermal stability of Ag, Al, Sn, Pb, and Hg films reinforced by 2D (C, Si) crystals and the formation of interfacial fluid states in them upon heating. MD experiment

    NASA Astrophysics Data System (ADS)

    Polukhin, V. A.; Kurbanova, E. D.

    2016-02-01

    Molecular dynamics simulation is used to study the thermal stability of the interfacial states of metallic Al, Ag, Sn, Pb, and Hg films (i.e., the structural elements of superconductor composites and conducting electrodes) reinforced by 2D graphene and silicene crystals upon heating up to disordering and to analyze the formation of nonautonomous fluid pseudophases in interfaces. The effect of perforation defects in reinforcing 2D-C and 2D-Si planes with passivated edge covalent bonds on the atomic dynamics is investigated. As compared to Al and Ag, the diffusion coefficients in Pd and Hg films increase monotonically with temperature during thermally activated disordering processes, the interatomic distances decrease, the sizes decrease, drops form, and their density profile grows along the normal. The coagulation of Pb and Hg drops is accompanied by a decrease in the contact angle, the reduction of the interface contact with graphene, and the enhancement of its corrugation (waviness).

  3. A plastic scintillator-based 2D thermal neutron mapping system for use in BNCT studies.

    PubMed

    Ghal-Eh, N; Green, S

    2016-06-01

    In this study, a scintillator-based measurement instrument is proposed which is capable of measuring a two-dimensional map of thermal neutrons within a phantom based on the detection of 2.22MeV gamma rays generated via nth+H→D+γ reaction. The proposed instrument locates around a small rectangular water phantom (14cm×15cm×20cm) used in Birmingham BNCT facility. The whole system has been simulated using MCNPX 2.6. The results confirm that the thermal flux peaks somewhere between 2cm and 4cm distance from the system entrance which is in agreement with previous studies. PMID:26986813

  4. New insights in a 2-D hard disk system under a temperature gradient

    NASA Astrophysics Data System (ADS)

    del Pozo, J. J.; Pérez-Espigares, C.; Hurtado, P. I.; Garrido, P. L.

    2011-03-01

    Hard Disks system is a paradicmatic model well suited, numericaly, to test new approaches to nonequi-librium fenomena, being also easy and fast to simulate due to efficient event driven algorithms present in the literature. In this poster we study several properties of the model under a temperature gradient on the stationary regime. In this situation the sistem has well defined gradients in temperatures and densities allowing us to calculate experimentaly the thermal conductivity. We found this result compatible with the Enskog expresion even for large gradients. We also check that Henderson's state equation, although is an expresion derived under equilibrium conditions, is valid in our system for a wide range of temperatures gradients. We explain this fact showing that the system reach a local thermal equilibrium. Finaly we focus on the role of fluctuations of the energy current finding good agreement with the, recently introduced, Isometric Fluctuation Relation (IFR). We conclude that IFR also stands in our system, although it was formulated from a much simpler case.

  5. Wireless Fluid Level Measuring System

    NASA Technical Reports Server (NTRS)

    Taylor, Bryant D. (Inventor); Woodard, Stanley E. (Inventor)

    2007-01-01

    A level-sensing probe positioned in a tank is divided into sections with each section including (i) a fluid-level capacitive sensor disposed along the length thereof, (ii) an inductor electrically coupled to the capacitive sensor, (iii) a sensor antenna positioned for inductive coupling to the inductor, and (iv) an electrical conductor coupled to the sensor antenna. An electrically non-conductive housing accessible from a position outside of the tank houses antennas arrayed in a pattern. Each antenna is electrically coupled to the electrical conductor from a corresponding one of the sections. A magnetic field response recorder has a measurement head with transceiving antennas arrayed therein to correspond to the pattern of the housing's antennas. When a measurement is to be taken, the measurement head is mechanically coupled to the housing so that each housing antenna is substantially aligned with a specific one of the transceiving antennas.

  6. Topologically robust transport of entangled photons in a 2D photonic system.

    PubMed

    Mittal, Sunil; Orre, Venkata Vikram; Hafezi, Mohammad

    2016-07-11

    We theoretically study the transport of time-bin entangled photon pairs in a two-dimensional topological photonic system of coupled ring resonators. This system implements the integer quantum Hall model using a synthetic gauge field and exhibits topologically robust edge states. We show that the transport through edge states preserves temporal correlations of entangled photons whereas bulk transport does not preserve these correlations and can lead to significant unwanted temporal bunching or anti-bunching of photons. We study the effect of disorder on the quantum transport properties; while the edge transport remains robust, bulk transport is very susceptible, and in the limit of strong disorder, bulk states become localized. We show that this localization is manifested as an enhanced bunching/anti-bunching of photons. This topologically robust transport of correlations through edge states could enable robust on-chip quantum communication channels and delay lines for information encoded in temporal correlations of photons.

  7. Application of Compressed Sensing to 2-D Ultrasonic Propagation Imaging System data

    SciTech Connect

    Mascarenas, David D.; Farrar, Charles R.; Chong, See Yenn; Lee, J.R.; Park, Gyu Hae; Flynn, Eric B.

    2012-06-29

    The Ultrasonic Propagation Imaging (UPI) System is a unique, non-contact, laser-based ultrasonic excitation and measurement system developed for structural health monitoring applications. The UPI system imparts laser-induced ultrasonic excitations at user-defined locations on a structure of interest. The response of these excitations is then measured by piezoelectric transducers. By using appropriate data reconstruction techniques, a time-evolving image of the response can be generated. A representative measurement of a plate might contain 800x800 spatial data measurement locations and each measurement location might be sampled at 500 instances in time. The result is a total of 640,000 measurement locations and 320,000,000 unique measurements. This is clearly a very large set of data to collect, store in memory and process. The value of these ultrasonic response images for structural health monitoring applications makes tackling these challenges worthwhile. Recently compressed sensing has presented itself as a candidate solution for directly collecting relevant information from sparse, high-dimensional measurements. The main idea behind compressed sensing is that by directly collecting a relatively small number of coefficients it is possible to reconstruct the original measurement. The coefficients are obtained from linear combinations of (what would have been the original direct) measurements. Often compressed sensing research is simulated by generating compressed coefficients from conventionally collected measurements. The simulation approach is necessary because the direct collection of compressed coefficients often requires compressed sensing analog front-ends that are currently not commercially available. The ability of the UPI system to make measurements at user-defined locations presents a unique capability on which compressed measurement techniques may be directly applied. The application of compressed sensing techniques on this data holds the potential to

  8. Chaotically Spiking Canards in an Excitable System with 2D Inertial Fast Manifolds

    NASA Astrophysics Data System (ADS)

    Marino, Francesco; Marin, Francesco; Balle, Salvador; Piro, Oreste

    2007-02-01

    We introduce a new class of excitable systems with two-dimensional fast dynamics that includes inertia. A novel transition from excitability to relaxation oscillations is discovered where the usual Hopf bifurcation is followed by a cascade of period doubled and chaotic small excitable attractors and, as they grow, by a new type of canard explosion where a small chaotic background erratically but deterministically triggers excitable spikes. This scenario is also found in a model for a nonlinear Fabry-Perot cavity with one pendular mirror.

  9. Control system for fluid heated steam generator

    DOEpatents

    Boland, J.F.; Koenig, J.F.

    1984-05-29

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  10. Control system for fluid heated steam generator

    DOEpatents

    Boland, James F.; Koenig, John F.

    1985-01-01

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  11. Numerical and experimental studies of the elastic enhancement factor of 2D open systems

    NASA Astrophysics Data System (ADS)

    Sirko, Leszek; Białous, Małgorzata; Yunko, Vitalii; Bauch, Szymon; Ławniczak, Michał

    We present the results of numerical and experimental studies of the elastic enhancement factor W for microwave rough and rectangular cavities simulating two-dimensional chaotic and partially chaotic quantum billiards in the presence of moderate absorption strength. We show that for the frequency range ν = 15 . 0 - 18 . 5 GHz, in which the coupling between antennas and the system is strong enough, the values of W for the microwave rough cavity lie below the predictions of random matrix theory and on average they are above the theoretical results of V. Sokolov and O. Zhirov, Phys. Rev. E, 91, 052917 (2015). We also show that the enhancement factor W of a microwave rectangular cavity coupled to the external channels via microwave antennas, simulating a partially chaotic quantum billiard, calculated by applying the Potter-Rosenzweig model with κ = 2 . 8 +/- 0 . 5 is close to the experimental one. Our numerical and experimental results suggest that the enhancement factor can be used as a measure of internal chaos which can be especially useful for systems with significant openness or absorption. This work was partially supported by the Ministry of Science and Higher Education Grants N N202 130239 and UMO-2013/09/D/ST2/03727.

  12. Time dependent inflow-outflow boundary conditions for 2D acoustic systems

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Myers, Michael K.

    1989-01-01

    An analysis of the number and form of the required inflow-outflow boundary conditions for the full two-dimensional time-dependent nonlinear acoustic system in subsonic mean flow is performed. The explicit predictor-corrector method of MacCormack (1969) is used. The methodology is tested on both uniform and sheared mean flows with plane and nonplanar sources. Results show that the acoustic system requires three physical boundary conditions on the inflow and one on the outflow boundary. The most natural choice for the inflow boundary conditions is judged to be a specification of the vorticity, the normal acoustic impedance, and a pressure gradient-density gradient relationship normal to the boundary. Specification of the acoustic pressure at the outflow boundary along with these inflow boundary conditions is found to give consistent reliable results. A set of boundary conditions developed earlier, which were intended to be nonreflecting is tested using the current method and is shown to yield unstable results for nonplanar acoustic waves.

  13. Aero/fluids database system

    NASA Technical Reports Server (NTRS)

    Reardon, John E.; Violett, Duane L., Jr.

    1991-01-01

    The AFAS Database System was developed to provide the basic structure of a comprehensive database system for the Marshall Space Flight Center (MSFC) Structures and Dynamics Laboratory Aerophysics Division. The system is intended to handle all of the Aerophysics Division Test Facilities as well as data from other sources. The system was written for the DEC VAX family of computers in FORTRAN-77 and utilizes the VMS indexed file system and screen management routines. Various aspects of the system are covered, including a description of the user interface, lists of all code structure elements, descriptions of the file structures, a description of the security system operation, a detailed description of the data retrieval tasks, a description of the session log, and a description of the archival system.

  14. Location Detection and Tracking of Moving Targets by a 2D IR-UWB Radar System

    PubMed Central

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-01-01

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking. PMID:25808773

  15. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    PubMed

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-01-01

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking. PMID:25808773

  16. Generalized two-dimensional (2D) linear system analysis metrics (GMTF, GDQE) for digital radiography systems including the effect of focal spot, magnification, scatter, and detector characteristics

    PubMed Central

    Kuhls-Gilcrist, Andrew T.; Gupta, Sandesh K.; Bednarek, Daniel R.; Rudin, Stephen

    2010-01-01

    The MTF, NNPS, and DQE are standard linear system metrics used to characterize intrinsic detector performance. To evaluate total system performance for actual clinical conditions, generalized linear system metrics (GMTF, GNNPS and GDQE) that include the effect of the focal spot distribution, scattered radiation, and geometric unsharpness are more meaningful and appropriate. In this study, a two-dimensional (2D) generalized linear system analysis was carried out for a standard flat panel detector (FPD) (194-micron pixel pitch and 600-micron thick CsI) and a newly-developed, high-resolution, micro-angiographic fluoroscope (MAF) (35-micron pixel pitch and 300-micron thick CsI). Realistic clinical parameters and x-ray spectra were used. The 2D detector MTFs were calculated using the new Noise Response method and slanted edge method and 2D focal spot distribution measurements were done using a pin-hole assembly. The scatter fraction, generated for a uniform head equivalent phantom, was measured and the scatter MTF was simulated with a theoretical model. Different magnifications and scatter fractions were used to estimate the 2D GMTF, GNNPS and GDQE for both detectors. Results show spatial non-isotropy for the 2D generalized metrics which provide a quantitative description of the performance of the complete imaging system for both detectors. This generalized analysis demonstrated that the MAF and FPD have similar capabilities at lower spatial frequencies, but that the MAF has superior performance over the FPD at higher frequencies even when considering focal spot blurring and scatter. This 2D generalized performance analysis is a valuable tool to evaluate total system capabilities and to enable optimized design for specific imaging tasks. PMID:21243038

  17. PROTEOMER: A workflow-optimized laboratory information management system for 2-D electrophoresis-centered proteomics.

    PubMed

    Nebrich, Grit; Herrmann, Marion; Hartl, Daniela; Diedrich, Madeleine; Kreitler, Thomas; Wierling, Christoph; Klose, Joachim; Giavalisco, Patrick; Zabel, Claus; Mao, Lei

    2009-04-01

    In recent years proteomics became increasingly important to functional genomics. Although a large amount of data is generated by high throughput large-scale techniques, a connection of these mostly heterogeneous data from different analytical platforms and of different experiments is limited. Data mining procedures and algorithms are often insufficient to extract meaningful results from large datasets and therefore limit the exploitation of the generated biological information. In our proteomic core facility, which almost exclusively focuses on 2-DE/MS-based proteomics, we developed a proteomic database custom tailored to our needs aiming at connecting MS protein identification information to 2-DE derived protein expression profiles. The tools developed should not only enable an automatic evaluation of single experiments, but also link multiple 2-DE experiments with MS-data on different levels and thereby helping to create a comprehensive network of our proteomics data. Therefore the key feature of our "PROTEOMER" database is its high cross-referencing capacity, enabling integration of a wide range of experimental data. To illustrate the workflow and utility of the system, two practical examples are provided to demonstrate that proper data cross-referencing can transform information into biological knowledge. PMID:19259999

  18. Association of autonomic nervous system and EEG scalp potential during playing 2D Grand Turismo 5.

    PubMed

    Subhani, Ahmad Rauf; Likun, Xia; Saeed Malik, Aamir

    2012-01-01

    Cerebral activation and autonomic nervous system have importance in studies such as mental stress. The aim of this study is to analyze variations in EEG scalp potential which may influence autonomic activation of heart while playing video games. Ten healthy participants were recruited in this study. Electroencephalogram (EEG) and electrocardiogram (ECG) signals were measured simultaneously during playing video game and rest conditions. Sympathetic and parasympathetic innervations of heart were evaluated from heart rate variability (HRV), derived from the ECG. Scalp potential was measured by the EEG. The results showed a significant upsurge in the value theta Fz/alpha Pz (p<0.001) while playing game. The results also showed tachycardia while playing video game as compared to rest condition (p<0.005). Normalized low frequency power and ratio of low frequency/high frequency power were significantly increased while playing video game and normalized high frequency power sank during video games. Results showed synchronized activity of cerebellum and sympathetic and parasympathetic innervation of heart. PMID:23366661

  19. Association of autonomic nervous system and EEG scalp potential during playing 2D Grand Turismo 5.

    PubMed

    Subhani, Ahmad Rauf; Likun, Xia; Saeed Malik, Aamir

    2012-01-01

    Cerebral activation and autonomic nervous system have importance in studies such as mental stress. The aim of this study is to analyze variations in EEG scalp potential which may influence autonomic activation of heart while playing video games. Ten healthy participants were recruited in this study. Electroencephalogram (EEG) and electrocardiogram (ECG) signals were measured simultaneously during playing video game and rest conditions. Sympathetic and parasympathetic innervations of heart were evaluated from heart rate variability (HRV), derived from the ECG. Scalp potential was measured by the EEG. The results showed a significant upsurge in the value theta Fz/alpha Pz (p<0.001) while playing game. The results also showed tachycardia while playing video game as compared to rest condition (p<0.005). Normalized low frequency power and ratio of low frequency/high frequency power were significantly increased while playing video game and normalized high frequency power sank during video games. Results showed synchronized activity of cerebellum and sympathetic and parasympathetic innervation of heart.

  20. Filling of orbital fluid management systems

    NASA Technical Reports Server (NTRS)

    Merino, F.; Blatt, M. H.; Thies, N. C.

    1978-01-01

    A study was performed with three objectives: (1) analyze fluid management system fill under orbital conditions; (2) determine what experimentation is needed; and (3) develop an experimental program. The fluid management system was a 1.06m (41.7 in) diameter pressure vessel with screen channel device. Analyses were conducted using liquid hydrogen and N2O4. The influence of helium and autogenous pressurization systems was considered. Analyses showed that fluid management system fill will be more difficult with a cryogen than with an earth storable. The key to a successful fill with cryogens is in devising techniques for filling without vent liquid, and removing trapped vapor from the screen device at tank fill completion. This will be accomplished with prechill, fill, and vapor condensation processes. Refill will require a vent and purge process, to dilute the residual helium, prior to introducing liquid. Neither prechill, chill, nor purge processes will be required for earth storables.

  1. Space station integrated propulsion and fluid systems study. Space station program fluid management systems databook

    NASA Technical Reports Server (NTRS)

    Bicknell, B.; Wilson, S.; Dennis, M.; Lydon, M.

    1988-01-01

    Commonality and integration of propulsion and fluid systems associated with the Space Station elements are being evaluated. The Space Station elements consist of the core station, which includes habitation and laboratory modules, nodes, airlocks, and trusswork; and associated vehicles, platforms, experiments, and payloads. The program is being performed as two discrete tasks. Task 1 investigated the components of the Space Station architecture to determine the feasibility and practicality of commonality and integration among the various propulsion elements. This task was completed. Task 2 is examining integration and commonality among fluid systems which were identified by the Phase B Space Station contractors as being part of the initial operating capability (IOC) and growth Space Station architectures. Requirements and descriptions for reference fluid systems were compiled from Space Station documentation and other sources. The fluid systems being examined are: an experiment gas supply system, an oxygen/hydrogen supply system, an integrated water system, the integrated nitrogen system, and the integrated waste fluids system. Definitions and descriptions of alternate systems were developed, along with analyses and discussions of their benefits and detriments. This databook includes fluid systems descriptions, requirements, schematic diagrams, component lists, and discussions of the fluid systems. In addition, cost comparison are used in some cases to determine the optimum system for a specific task.

  2. Quantization of the diagonal resistance : density gradients and the empirical resistance rule in a 2D system.

    SciTech Connect

    Pan, Wei; Stormer, H. L.; Vicente, C. L.; Sullivan, N. S.; Xia, J. S.; Adams, E. D.; West, Ken W.; Tsui, Daniel Chee; Pfeiffer, Loren N.; Baldwin, K. W.

    2005-04-01

    We have observed quantization of the diagonal resistance, R{sub xx}, at the edges of several quantum Hall states. Each quantized R{sub xx} value is close to the difference between the two adjacent Hall plateaus in the off-diagonal resistance, R{sub xy}. Peaks in R{sub xx} occur at different positions in positive and negative magnetic fields. Practically all R{sub xx} features can be explained quantitatively by a 1%/cm electron density gradient. Therefore, R{sub xx} is determined by Rxy and unrelated to the diagonal resistivity {rho}{sub xx}. Our findings throw an unexpected light on the empirical resistivity rule for 2D systems.

  3. Dynamical scaling behavior during the phase transition of a 2D system with spatially periodic ground state

    NASA Astrophysics Data System (ADS)

    Hou, Qing; Goldenfeld, Nigel; Sasa, Shin-Ichi

    1996-03-01

    We study the kinetics of a phase transition in a 2D system quenched from a uniform state to one whose ground state is spatially periodic; examples include Rayleigh-Benard convection, isotropic-smectic and nematic-smectic transitions in liquid crystals and the Swift-Hohenberg model. Computer simulation(K.R. Elder, J. Vinals and M. Grant, Phys. Rev. A), 46, 7618 (1992). shows that dynamical scaling occurs; by exploring different models, we show that power law depends upon the presence of grain-boundaries (Q. Hou, N. Goldenfeld and S. Sasa, unpublished.) We measure the scaling exponents and give a scaling theory for their dependence on defect dynamics and bulk relaxation. Crossover phenomena corresponding to different physical mechanisms for pattern relaxation are also discussed.

  4. Combining the switched-beam and beam-steering capabilities in a 2-D phased array antenna system

    NASA Astrophysics Data System (ADS)

    Tsai, Yi-Che; Chen, Yin-Bing; Hwang, Ruey-Bing

    2016-01-01

    This paper presents the development, fabrication, and measurement of a novel beam-forming system consisting of 16 subarray antennas, each containing four aperture-coupled patch antennas, and the application of this system in smart wireless communication systems. The beam patterns of each of the subarray antennas can be switched toward one of nine zones over a half space by adjusting the specific phase delay angles among the four antenna elements. Furthermore, when all subarrays are pointed at the same zone, slightly continuous beam steering in around 1° increments can be achieved by dynamically altering the progressive phase delay angle among the subarrays. Phase angle calibration was implemented by coupling each transmitter output and down converter into the in-phase/quadrature baseband to calculate the correction factor to the weight. In addition, to validate the proposed concepts and the fabricated 2-D phased array antenna system, this study measured the far-field radiation patterns of the aperture-coupled patch array integrated with feeding networks and a phase-calibration system to carefully verify its spatially switched-beam and beam-steering characteristics at a center frequency of 2.4 GHz which can cover the industrial, scientific, and medical band and some long-term evolution applications. In addition, measured results were compared with calculated results, and agreement between them was observed.

  5. Fluid Power Systems. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in fluid power systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in company-sponsored…

  6. GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 1: Theory and method

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.

    1990-01-01

    An efficient computer program, called GRID2D/3D was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no

  7. De-Li-DAQ-2D - a new data acquisition system for position-sensitive neutron detectors with delay-line readout

    NASA Astrophysics Data System (ADS)

    Levchanovskiy, F. V.; Murashkevich, S. M.

    2016-09-01

    Software for a data acquisition system of modern one- and two-dimensional position-sensitive detectors with delay-line readout, which includes a software interface to a new electronic module De-Li-DAQ-2D with a USB interface, is presented. The new system after successful tests on the stand and on several spectrometers of the IBR-2 reactor has been integrated into the software complex SONIX+ [1]. The De-Li- DAQ-2D module [2] contains an 8-channel time-code converter (TDC-GPX) with a time resolution of 80 ps, field programmable gate array (FPGA), 1 Gbyte histogram memory and high-speed interface with a fiber-optic communication line. A real count rate is no less than 106 events/s. The De-Li-DAQ-2D module is implemented in the NIM standard. The De-Li-DAQ-2D module can operate in two modes: histogram mode and list mode.

  8. Histamine-functionalized copolymer micelles as a drug delivery system in 2D and 3D models of breast cancer

    PubMed Central

    Zhang, Yuning; Lundberg, Pontus; Diether, Maren; Porsch, Christian; Janson, Caroline; Lynd, Nathaniel A.; Ducani, Cosimo; Malkoch, Michael; Malmström, Eva; Hawker, Craig J.; Nyström, Andreas M.

    2015-01-01

    Histamine functionalized block copolymers based on poly(allyl glycidyl ether)-b-poly(ethylene oxide) (PAGE-b-PEO) were prepared with different ratios of histamine and octyl or benzyl groups using UV-initiated thiol-ene click chemistry. At neutral pH, the histamine units are uncharged and hydrophobic, while in acidic environments, such as in the endosome, lysosomes, or extracellular sites of tumours, the histamine groups are positively charged and hydrophilic. pH responsible polymer drug delivery systems is a promising route to site specific delivery of drugs and offers the potential to avoid side effects of systemic treatment. Our detailed in vitro experiments of the efficacy of drug delivery and the intracellular localization characteristics of this library of NPs in 2D and 3D cultures of breast cancer revealed that the 50% histamine-modified polymer loaded with DOX exhibited rapid accumulation in the nucleus of free DOX within 2 h. Confocal studies showed enhanced mitochondrial localization and lysosomal escape when compared to controls. From these combined studies, it was shown that by accurately tuning the structure of the initial block copolymers, the resulting self-assembled NPs can be designed to exploit histamine as an endosomal escape trigger and the octyl/benzyl units give rise to a hydrophobic core resulting in highly efficacious drug delivery systems (DDS) with control over intracellular localization. Optimization and rational control of the intracellular localization of both DDS and the parent drug can give nanomedicines a substantial increase in efficacy and should be explored in future studies. PMID:26257912

  9. Breaker system for high viscosity fluids

    SciTech Connect

    Hinkel, J. J.

    1985-12-24

    A tertiary amine/persulfate breaker system is disclosed which effects complete breaks of polysaccharide based water-gels or fluids in the ambient temperature range. Induction time may be controlled over wide permissible limits. The invention claims improved compositions and methods, particularly advantageously applied to the treatment and stimulation of shallow oil and gas wells (formation temperatures from about 50/sup 0/ to 125/sup 0/ F.).

  10. Testing of the Automated Fluid Interface System

    NASA Technical Reports Server (NTRS)

    Johnston, A. S.; Tyler, Tony R.

    1998-01-01

    The Automated Fluid Interface System (AFIS) is an advanced development prototype satellite servicer. The device was designed to transfer consumables from one spacecraft to another. An engineering model was built and underwent development testing at Marshall Space Flight Center. While the current AFIS is not suitable for spaceflight, testing and evaluation of the AFIS provided significant experience which would be beneficial in building a flight unit.

  11. A systems approach to theoretical fluid mechanics: Fundamentals

    NASA Technical Reports Server (NTRS)

    Anyiwo, J. C.

    1978-01-01

    A preliminary application of the underlying principles of the investigator's general system theory to the description and analyses of the fluid flow system is presented. An attempt is made to establish practical models, or elements of the general fluid flow system from the point of view of the general system theory fundamental principles. Results obtained are applied to a simple experimental fluid flow system, as test case, with particular emphasis on the understanding of fluid flow instability, transition and turbulence.

  12. Phase change fluids for solar thermal systems

    SciTech Connect

    Sama, D.A.; Sladek, K.J.

    1981-01-01

    This study explores the use, for storage of solar energy, of phase change materials which are suspended or emulsified in an immiscible carrier fluid. Emulsions of up to 50 weight % paraffin wax in water were found to be very fluid, highly stable, and quite flame resistant. Such easily pumped emulsions allow for an increase in stored energy density while avoiding the severe heat transfer rate problems normally encountered with phase change storage. Since the suspended phase change materials can be used both to collect and store solar energy, a heat transfer step is eliminated and the energy may be stored at a higher average temperature. This in turn results in a higher thermodynamic availability which is shown to be particularly advantageous in the storage of solar energy for refrigeration or heat pump systems. 6 refs.

  13. Combined 2-D Electrical Resistivity and Self Potential Survey to Investigate the Pattern of the Watukosek Fault System Around the Lusi Eruption Site, Indonesia.

    NASA Astrophysics Data System (ADS)

    Mazzini, A.; Husein, A.; Mauri, G.; Lupi, M.; Hadi, S.; Kemna, A.

    2015-12-01

    The Lusi mud eruption is located in the Sidoarjo area, Indonesia and is continuously erupting hot mud since its birth in May 2006. A comprehensive combined electrical resistivity and self-potential (SP) survey was performed in the 7 km2 area inside the Lusi embankment that had been built to contain the erupted mud and to prevent flooding of the surrounding roads and settlements. The goal of the geophysical survey is to map the near-surface occurrence of the Watukosek fault system, upon which LUSI resides, delineate its spatial pattern and monitor its development. We completed six lines of measurements combining resistivity measurement using Wenner configuration and SP measurements using roll-along technique. Three subparallel lines were located either to the north and to the south of the main crater. Each line was approximately W-E oriented extending for ~1.26 km. The surveyed regions consist of dried mud breccia (containing clayey-silty-sandy admixture with clast up to ~ 10 cm in size). The thickness of the dry walkable mud is approximately 2-3 m and the deeper layer consist of water saturated mud that could be vulnerable to a liquefaction scenario in case of significant seismic activity in the region. The resistivity data were inverted into 2-D resistivity images with a maximum exploration depth of almost 200 m. The resistivity images consistently reveal a region of about 300 m in width (between 30-90 m depth) characterized by anomalous resistivities, which are lower than the value observed in the surounding area. The position of these anomalies is also supported by the SP data, which suggests that their origin is related to fluid flow path in the subsurface. Thus the combined resistivity and SP results allow inference of an improved model of the Watukosek fault system.

  14. Fluid flow dynamics in MAS systems.

    PubMed

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor. PMID:26073599

  15. 14 CFR 23.1097 - Carburetor deicing fluid system capacity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor deicing fluid system capacity... Powerplant Induction System § 23.1097 Carburetor deicing fluid system capacity. (a) The capacity of each carburetor deicing fluid system— (1) May not be less than the greater of— (i) That required to provide...

  16. Precision Clean Hardware: Maintenance of Fluid Systems Cleanliness

    NASA Technical Reports Server (NTRS)

    Sharp, Sheila; Pedley, Mike; Bond, Tim; Quaglino, Joseph; Lorenz, Mary Jo; Bentz, Michael; Banta, Richard; Tolliver, Nancy; Golden, John; Levesque, Ray

    2003-01-01

    The ISS fluid systems are so complex that fluid system cleanliness cannot be verified at the assembly level. A "build clean / maintain clean" approach was used by all major fluid systems: Verify cleanliness at the detail and subassembly level. Maintain cleanliness during assembly.

  17. Telerobotic on-orbit remote fluid resupply system

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The development of a telerobotic on-orbit fluid resupply demonstration system is described. A fluid transfer demonstration system was developed which functionally simulates operations required to remotely transfer fluids (liquids or gases) from a servicing spacecraft to a receiving spacecraft through the use of telerobotic manipulations. The fluid system is representative of systems used by current or planned spacecraft and propulsion stages requiring on-orbit remote resupply. The system was integrated with an existing MSFC remotely controlled manipulator arm to mate/demate couplings for demonstration and evaluation of a complete remotely operated fluid transfer system.

  18. Sensitivity and System Response of Pin Power Peaking in VVER-1000 Fuel Assembly Using TSUNAMI-2D

    NASA Astrophysics Data System (ADS)

    Frybort, J.

    2014-04-01

    Pin power peaking in a VVER-1000 fuel assembly and its sensitivity and uncertainty was analyzed by TSUNAMI-2D code. Several types of fuel assemblies were considered. They differ in number and position of gadolinium fuel pins. The calculations were repeated for several fuel compositions obtained by fuel depletion calculation. The results are quantified sensitivity data, which can be used for enrichment profiling.

  19. Robust design of feedback feed-forward iterative learning control based on 2D system theory for linear uncertain systems

    NASA Astrophysics Data System (ADS)

    Li, Zhifu; Hu, Yueming; Li, Di

    2016-08-01

    For a class of linear discrete-time uncertain systems, a feedback feed-forward iterative learning control (ILC) scheme is proposed, which is comprised of an iterative learning controller and two current iteration feedback controllers. The iterative learning controller is used to improve the performance along the iteration direction and the feedback controllers are used to improve the performance along the time direction. First of all, the uncertain feedback feed-forward ILC system is presented by an uncertain two-dimensional Roesser model system. Then, two robust control schemes are proposed. One can ensure that the feedback feed-forward ILC system is bounded-input bounded-output stable along time direction, and the other can ensure that the feedback feed-forward ILC system is asymptotically stable along time direction. Both schemes can guarantee the system is robust monotonically convergent along the iteration direction. Third, the robust convergent sufficient conditions are given, which contains a linear matrix inequality (LMI). Moreover, the LMI can be used to determine the gain matrix of the feedback feed-forward iterative learning controller. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed schemes.

  20. A New Blind 2D-RAKE Receiver Based on CMA Criteria for Spread Spectrum Systems Suitable for Software Defined Radio Architecture

    NASA Astrophysics Data System (ADS)

    Takayama, Kei; Kamiya, Yukihiro; Fujii, Takeo; Suzuki, Yasuo

    Spread Spectrum (SS) has been widely used for various wireless systems such as cellular systems, wireless local area network (LAN) and so on. Using multiple antennas at the receiver, two-dimensional (2D) RAKE is realized over the time- and the space-domain. However, it should be noted that the 2D-RAKE receiver must detect the bit timing prior to the RAKE combining. In case of deep fading, it is often difficult to detect it due to low signal-to-noise power ratio (SNR). To solve this problem, we propose a new blind 2D-RAKE receiver based on the constant modulus algorithm (CMA). Since it does not need a priori bit timing detection, it is possible to compensate frequency selective fading even in very low SNR environments. The proposed method is particularly suitable for the software defined radio (SDR) architecture. The performance of the proposed method is investigated through computer simulations.

  1. Carbon and sulfur isotopes as tracers of fluid-fluid and fluid-rock interaction in geothermal systems

    NASA Astrophysics Data System (ADS)

    Stefansson, A.; Keller, N. S.; Gunnarsson Robin, J.; Kjartansdottir, R.; Ono, S.; Sveinbjörnsdottir, A. E.

    2014-12-01

    Carbon and sulfur are among major components in geothermal systems. They are found in various oxidation state and present in solid phases and fluids (water and vapor). In order to study the reactions and mass movement within multiphase geothermal systems, we have combined geochemical fluid-fluid and fluid-rock modelling with sulfur and carbon isotope fractionation modelling and compared the results with measured carbon and sulfur isotopes in geothermal fluids (water and vapor) for selected low- and high-enthalpy geothermal systems in Iceland. In this study we have focused on δ34S for H2S in vapor and water and SO4 in water as well as δ13C for CO2 in vapor and water phases. Isotope fractionations for CO2 and H2S between vapor and liquid water, upon aqueous speciation and upon carbonate and sulfide mineral formation were revised. These were combined with reaction modelling involving closed system boiling and progressive water-rock interaction to constrain the mass movement and isotope abundance between various phases. The results indicate that for a closed system, carbon and sulfur isotope abundance is largely dependent on progressive fluid-fluid and fluid-rock interaction and the initial total δ34S and δ13C value of the system. Initially, upon progressive fluid rock interaction the δ34S and δ13C values for the bulk aqueous phase approach that of the host rocks. Secondary mineral formation may alter these values, the exact isotope value of the mineral and resulting aqueous phase depending on aqueous speciation and isotope fractionation factor. In turn, aqueous speciation and mineral saturation depends on progressive fluid-rock interaction, fluid-fluid interaction, temperature and acid supply to the system. Depressurization boiling also results in isotope fractionation, the exact isotope value of the vapor and aqueous phase depending on aqueous speciation and isotope fractionation fractor. In this way, carbon and sulfur isotopes may be used combined with

  2. Heat pipe systems using new working fluids

    NASA Technical Reports Server (NTRS)

    Chao, David F. (Inventor); Zhang, Nengli (Inventor)

    2004-01-01

    The performance of a heat pipe system is greatly improved by the use of a dilute aqueous solution of about 0.0005 and about 0.005 moles per liter of a long chain alcohol as the working fluid. The surface tension-temperature gradient of the long-chain alcohol solutions turns positive as the temperature exceeds a certain value, for example about 40.degree. C. for n-heptanol solutions. Consequently, the Marangoni effect does not impede, but rather aids in bubble departure from the heating surface. Thus, the bubble size at departure is substantially reduced at higher frequencies and, therefore, increases the boiling limit of heat pipes. This feature is useful in microgravity conditions. In addition to microgravity applications, the heat pipe system may be used for commercial, residential and vehicular air conditioning systems, micro heat pipes for electronic devices, refrigeration and heat exchangers, and chemistry and cryogenics.

  3. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 2: 2D NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Deshmukh, Ashish P.; Pacheco, Carlos; Hay, Michael B.; Myneni, Satish C. B.

    2007-07-01

    Carboxyl groups are abundant in natural organic molecules (NOM) and play a major role in their reactivity. The structural environments of carboxyl groups in IHSS soil and river humic samples were investigated using 2D NMR (heteronuclear and homonuclear correlation) spectroscopy. Based on the 1H- 13C heteronuclear multiple-bond correlation (HMBC) spectroscopy results, the carboxyl environments in NOM were categorized as Type I (unsubstituted and alkyl-substituted aliphatic/alicyclic), Type II (functionalized carbon substituted), Type IIIa, b (heteroatom and olefin substituted), and Type IVa, b (5-membered heterocyclic aromatic and 6-membered aromatic). The most intense signal in the HMBC spectra comes from the Type I carboxyl groups, including the 2JCH and 3JCH couplings of unsubstituted aliphatic and alicyclic acids, though this spectral region also includes the 3JCH couplings of Type II and III structures. Type II and III carboxyls have small but detectable 2JCH correlations in all NOM samples except for the Suwannee River humic acid. Signals from carboxyls bonded to 5-membered aromatic heterocyclic fragments (Type IVa) are observed in the soil HA and Suwannee River FA, while correlations to 6-membered aromatics (Type IVb) are only observed in Suwannee River HA. In general, aromatic carboxylic acids may be present at concentrations lower than previously imagined in these samples. Vibrational spectroscopy results for these NOM samples, described in an accompanying paper [Hay M. B. and Myneni S. C. B. (2007) Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochim. Cosmochim. Acta (in press)], suggest that Type II and Type III carboxylic acids with α substituents (e.g., -OH, -OR, or -CO 2H) constitute the majority of carboxyl structures in all humic substances examined. Furoic and salicylic acid structures (Type IV) are also feasible fragments, albeit as minor constituents. The

  4. Fluid injection device for high-pressure systems

    NASA Technical Reports Server (NTRS)

    Copeland, E. J.; Ward, J. B.

    1970-01-01

    Screw activated device, consisting of a compressor, shielded replaceable ampules, a multiple-element rubber gland, and a specially constructed fluid line fitting, injects measured amounts of fluids into a pressurized system. It is sturdy and easily manipulated.

  5. FLUFIXMOD2. Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems

    SciTech Connect

    Lyczkowski, R.W.; Bouillard, J.X.; Folga, S.M.

    1992-04-01

    FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors, gasifiers, and FCC (Fluid Catalytic Cracker) reactors.

  6. Phase transitions in fluids and biological systems

    NASA Astrophysics Data System (ADS)

    Sipos, Maksim

    In this thesis, I consider systems from two seemingly different fields: fluid dynamics and microbial ecology. In these systems, the unifying features are the existences of global non-equilibrium steady states. I consider generic and statistical models for transitions between these global states, and I relate the model results with experimental data. A theme of this thesis is that these rather simple, minimal models are able to capture a lot of functional detail about complex dynamical systems. In Part I, I consider the transition between laminar and turbulent flow. I find that quantitative and qualitative features of pipe flow experiments, the superexponential lifetime and the splitting of turbulent puffs, and the growth rate of turbulent slugs, can all be explained by a coarse-grained, phenomenological model in the directed percolation universality class. To relate this critical phenomena approach closer to the fluid dynamics, I consider the transition to turbulence in the Burgers equation, a simplified model for Navier-Stokes equations. Via a transformation to a model of directed polymers in a random medium, I find that the transition to Burgers turbulence may also be in the directed percolation universality class. This evidence implies that the turbulent-to-laminar transition is statistical in nature and does not depend on details of the Navier-Stokes equations describing the fluid flow. In Part II, I consider the disparate subject of microbial ecology where the complex interactions within microbial ecosystems produce observable patterns in microbe abundance, diversity and genotype. In order to be able to study these patterns, I develop a bioinformatics pipeline to multiply align and quickly cluster large microbial metagenomics datasets. I also develop a novel metric that quantifies the degree of interactions underlying the assembly of a microbial ecosystem, particularly the transition between neutral (random) and niche (deterministic) assembly. I apply this

  7. Experimental investigation of compound-specific dilution of solute plumes in saturated porous media: 2-D vs. 3-D flow-through systems.

    PubMed

    Ye, Yu; Chiogna, Gabriele; Cirpka, Olaf; Grathwohl, Peter; Rolle, Massimo

    2015-01-01

    Dilution of solute plumes in groundwater strongly depends on transverse mixing. Thus, the correct parameterization of transverse dispersion is of critical importance for the quantitative description of solute transport. In this study we perform flow-through laboratory experiments to investigate the influence of transport dimensionality on transverse mixing. We present a high-resolution experimental setup to study solute dilution and transverse dispersion in three-dimensional porous media. We conduct multi-tracer experiments in the new 3-D setup and compare the results with the outcomes of analogous tracer experiments performed in a quasi 2-D system. We work under steady-state flow and transport conditions and consider a range of velocities relevant for groundwater flow (0.5-8 m/day). Transverse dispersion coefficients are determined from high-resolution concentration profiles at the outlet of the flow-through chambers (7×7 ports in the 3-D setup and 7 ports in the quasi 2-D system), considering conservative tracers with significantly different aqueous diffusion coefficients, namely fluorescein and dissolved oxygen. To quantify dilution in the 2-D and 3-D systems, we experimentally determine the flux-related dilution index using the flow rates and the concentrations measured at the inlet and outlet ports, and we propose semi-analytical expressions to predict its evolution with travel distance in uniform groundwater flow. The experimental results in the quasi 2-D and 3-D flow-through systems are consistent and show a compound-specific behavior of the transverse dispersion coefficient and its non-linear dependence on the seepage velocity in both setups. The degree of dilution and the compound-specific effects of transverse dispersion are considerably more pronounced in 3-D than in quasi 2-D transport systems.

  8. A flexible micro fluid transport system featuring magnetorheological elastomer

    NASA Astrophysics Data System (ADS)

    Behrooz, Majid; Gordaninejad, Faramarz

    2016-02-01

    This study presents a flexible magnetically-actuated micro fluid transport system utilizing an isotropic magnetorheological elastomer (MRE). Theoretical modeling and analysis of this system is presented for a two-dimensional model. This fluid transport system can propel the fluid by applying a fluctuating magnetic field on the MRE. The magneto-fluid-structure interaction analysis is employed to determine movement of the solid domain and the velocity of the fluid under a controllable magnetic field. The effects of key material, geometric, and magnetic parameters on the behavior of this system are examined. It is demonstrated that the proposed system can propel the fluid unidirectionally, and the volume of the transported fluid is significantly affected by some of the design parameters.

  9. Safety features of subcritical fluid fueled systems

    NASA Astrophysics Data System (ADS)

    Bell, Charles R.

    1995-09-01

    Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitative in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved is very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible.

  10. Mantle fluids in the San Andreas fault system, California

    USGS Publications Warehouse

    Kennedy, B.M.; Kharaka, Y.K.; Evans, William C.; Ellwood, A.; DePaolo, D.J.; Thordsen, J.; Ambats, G.; Mariner, R.H.

    1997-01-01

    Fluids associated with the San Andreas and companion faults n central and south-central California have high 3He/4He ratios. The lack of correlation between helium isotopes and fluid chemistry or local geology requires that fluids enter the fault system from the mantle. Mantle fluids passing through the ductile lower crust must enter the brittle fault zone at or near lithostatic pressures; estimates of fluid flux based on helium isotopes suggest that they may thus contribute directly to fault-weakening high-fluid pressures at seismogenic depths.

  11. Computational Studies of Condensed Matter Systems: Manganese Vanadium Oxide and 2D attractive Hubbard model with spin-dependent disorder

    NASA Astrophysics Data System (ADS)

    Nanguneri, Ravindra

    -dependent disorder. Further, the finite temperature phase diagram for the 2D attractive fermion Hubbard model with spin-dependent disorder is also considered within BdG mean field theory. Three types of disorder are studied. In the first, only one species is coupled to a random site energy; in the second, the two species both move in random site energy landscapes which are of the same amplitude, but different realizations; and finally, in the third, the disorder is in the hopping rather than the site energy. For all three cases we find that, unlike the case of spin-symmetric randomness, where the energy gap and average order parameter do not vanish as the disorder strength increases, a critical disorder strength exists separating distinct phases. In fact, the energy gap and the average order parameter vanish at distinct transitions, Vcgap and Vc op, allowing for a gapless superconducting (gSC) phase. The gSC phase becomes smaller with increasing temperature, until it vanishes at a temperature T*.

  12. Collagen esterification enhances the function and survival of pancreatic β cells in 2D and 3D culture systems

    SciTech Connect

    Ko, Jae Hyung; Kim, Yang Hee; Jeong, Seong Hee; Lee, Song; Park, Si-Nae; Shim, In Kyong; Kim, Song Cheol

    2015-08-07

    Collagen, one of the most important components of the extracellular matrix (ECM), may play a role in the survival of pancreatic islet cells. In addition, chemical modifications that change the collagen charge profile to a net positive charge by esterification have been shown to increase the adhesion and proliferation of various cell types. The purpose of this study was to characterize and compare the effects of native collagen (NC) and esterified collagen (EC) on β cell function and survival. After isolation by the collagenase digestion technique, rat islets were cultured with NC and EC in 2 dimensional (2D) and 3 dimensional (3D) environments for a long-term duration in vitro. The cells were assessed for islet adhesion, morphology, viability, glucose-induced insulin secretion, and mRNA expression of glucose metabolism-related genes, and visualized by scanning electron microscopy (SEM). Islet cells attached tightly in the NC group, but islet cell viability was similar in both the NC and EC groups. Glucose-stimulated insulin secretion was higher in the EC group than in the NC group in both 2D and 3D culture. Furthermore, the mRNA expression levels of glucokinase in the EC group were higher than those in the NC group and were associated with glucose metabolism and insulin secretion. Finally, SEM observation confirmed that islets had more intact component cells on EC sponges than on NC sponges. These results indicate that modification of collagen may offer opportunities to improve function and viability of islet cells. - Highlights: • We changed the collagen charge profile to a net positive charge by esterification. • Islets cultured on esterified collagen improved survival in both 2D and 3D culture. • Islets cultured on esterified collagen enhanced glucose-stimulated insulin release. • High levels of glucokinase mRNA may be associated with increased insulin release.

  13. Method of calibrating a fluid-level measurement system

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2010-01-01

    A method of calibrating a fluid-level measurement system is provided. A first response of the system is recorded when the system's sensor(s) is (are) not in contact with a fluid of interest. A second response of the system is recorded when the system's sensor(s) is (are) fully immersed in the fluid of interest. Using the first and second responses, a plurality of expected responses of the system's sensor(s) is (are) generated for a corresponding plurality of levels of immersion of the sensor(s) in the fluid of interest.

  14. Modeling water flow and nitrate dynamics in a plastic mulch vegetable cultivation system using HYDRUS-2D

    NASA Astrophysics Data System (ADS)

    Filipović, Vilim; Romić, Davor; Romić, Marija; Matijević, Lana; Mallmann, Fábio J. K.; Robinson, David A.

    2016-04-01

    Growing vegetables commercially requires intensive management and involves high irrigation demands and input of agrochemicals. Plastic mulch application in combination with drip irrigation is a common agricultural management technique practiced due to variety of benefits to the crop, mostly vegetable biomass production. However, the use of these techniques can result in various impacts on water and nutrient distribution in underlying soil and consequently affect nutrient leaching towards groundwater resources. The aim of this work is to estimate the effect of plastic mulch cover in combination with drip irrigation on water and nitrate dynamics in soil using HYDRUS-2D model. The field site was located in Croatian costal karst area on a Gleysol (WRB). The experiment was designed according to the split-plot design in three repetitions and was divided into plots with plastic mulch cover (MULCH) and control plots with bare soil (CONT). Each of these plots received applications of three levels of nitrogen fertilizer: 70, 140, and 210 kg per ha. All plots were equipped with drip irrigation and cropped with bell pepper (Capsicum annuum L. cv. Bianca F1). Lysimeters were installed at 90 cm depth in all plots and were used for monitoring the water and nitrate outflow. HYDRUS-2D was used for modeling the water and nitrogen outflow in the MULCH and CONT plots, implementing the proper boundary conditions. HYDRUS-2D simulated results showed good fitting to the field site observed data in both cumulative water and nitrate outflow, with high level of agreement. Water flow simulations produced model efficiency of 0.84 for CONT and 0.56 for MULCH plots, while nitrate simulations showed model efficiency ranging from 0.67 to 0.83 and from 0.70 to 0.93, respectively. Additional simulations were performed with the absence of the lysimeter, revealing faster transport of nitrates below drip line in the CONT plots, mostly because of the increased surface area subjected to precipitation

  15. Concept of planetary gear system to control fluid mixture ratio

    NASA Technical Reports Server (NTRS)

    Mcgroarty, J. D.

    1966-01-01

    Mechanical device senses and corrects for fluid flow departures from the selected flow ratio of two fluids. This system has been considered for control of rocket engine propellant mixture control but could find use wherever control of the flow ratio of any two fluids is desired.

  16. System and Method for Wirelessly Determining Fluid Volume

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2009-01-01

    A system and method are provided for determining the volume of a fluid in container. Sensors are positioned at distinct locations in a container of a fluid. Each sensor is sensitive to an interface defined by the top surface of the fluid. Interfaces associated with at least three of the sensors are determined and used to find the volume of the fluid in the container in a geometric process.

  17. High gliding fluid power generation system with fluid component separation and multiple condensers

    SciTech Connect

    Mahmoud, Ahmad M; Lee, Jaeseon; Radcliff, Thomas D

    2014-10-14

    An example power generation system includes a vapor generator, a turbine, a separator and a pump. In the separator, the multiple components of the working fluid are separated from each other and sent to separate condensers. Each of the separate condensers is configured for condensing a single component of the working fluid. Once each of the components condense back into a liquid form they are recombined and exhausted to a pump that in turn drives the working fluid back to the vapor generator.

  18. Tracing Injection Fluids in Engineered Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Rose, P. E.; Leecaster, K.; Mella, M.; Ayling, B.; Bartl, M. H.

    2011-12-01

    The reinjection of produced fluids is crucial to the effective management of geothermal reservoirs, since it provides a mechanism for maintaining reservoir pressures while allowing for the disposal of a toxic byproduct. Tracers are essential to the proper location of injection wells since they are the only known tool for reliably characterizing the flow patterns of recirculated fluids. If injection wells are placed too close to production wells, then reinjected fluids do not have sufficient residence time to extract heat from the reservoir and premature thermal breakthrough results. If injection wells are placed too far away, then the reservoir risks unacceptable pressure loss. Several thermally stable compounds from a family of very detectable fluorescent organic compounds (the naphthalene sulfonates) were characterized and found to be effective for use as geothermal tracers. Through batch-autoclave reactions, their Arrhenius pseudo-first-order decay-rate constants were determined. An analytical method was developed that allows for the laboratory determination of concentrations in the low parts-per-trillion range. Field experiments in numerous geothermal reservoirs throughout the world have confirmed the laboratory findings. Whereas conservative tracers such as the naphthalene sulfonates are effective tools for indicating interwell flow patterns and for measuring reservoir pore volumes, 'reactive' tracers can be used to constrain fracture surface area, which is the effective area for heat extraction. This is especially important for engineered geothermal system (EGS) wells, since reactive tracers can be used to measure fracture surface area immediately after drilling and while the well stimulation equipment is still on site. The reactive properties of these tracers that can be exploited to constrain fracture surface area are reversible sorption, contrasting diffusivity, and thermal decay. Laboratory batch- and flow-reactor experiments in combination with numerical

  19. Fluid dynamics of double diffusive systems

    SciTech Connect

    Koseff, J.R.

    1989-04-07

    A study of mixing processes in doubly diffusive systems is being conducted. Continuous gradients of two diffusing components (heat and salinity in our case) are being used as initial conditions, and forcing is introduced by lateral heating and surface shear. The goals of the proposed work include: (1) quantification of the effects of finite amplitude disturbances on stable, double diffusive systems, particularly with respect to lateral heating, (2) development of an improved understanding of the physical phenomena present in wind-driven shear flows in double diffusive stratified environments, (3) increasing our knowledge-base on turbulent flow in stratified environments and how to represent it, and (4) formulation of a numerical code for such flows. The work is being carried out in an experimental facility which is located in the Stanford Environmental Fluid Mechanics Laboratory, and on laboratory minicomputers and CRAY computers. In particular we are focusing on the following key issues: (1) the formation and propagation of double diffusive intrusions away from a heated wall and the effects of lateral heating on the double diffusive system; (2) the interaction between the double diffusively influenced fluxes and the turbulence induced fluxes; (3) the measurement of heat and mass fluxes; and (4) the influence of double diffusive gradients on mixed layer deepening. 1 fig.

  20. Longevity of duct tape in residential air distribution systems: 1-D, 2-D, and 3-D joints

    SciTech Connect

    Abushakra, Bass

    2002-05-30

    The aging tests conducted so far showed that duct tape tends to degrade in its performance as the joint it is applied to requires a geometrical description of a higher number of space dimensions (1-D, 2-D, 3-D). One-dimensional joints are the easiest to seal with duct tape, and thus the least to experience failure. Two-dimensional joints, such as the flexible duct core-to-collar joints tested in this study, are less likely to fail than three-dimensional collar-to-plenum joints, as the shrinkage could have a positive effect in tightening the joint. Three-dimensional joints are the toughest to seal and the most likely to experience failure. The 2-D flexible duct core-to-collar joints passed the six-month period of the aging test in terms of leakage, but with the exception of the foil-butyl tape, showed degradation in terms hardening, brittleness, partial peeling, shrinkage, wrinkling, delamination of the tape layers, flaking, cracking, bubbling, oozing and discoloration. The baking test results showed that the failure in the duct tape joints could be attributed to the type of combination of the duct tape and the material it is applied to, as the duct tape behaves differently with different substrates. Overall, the foil-butyl tape (Tape 4) had the best results, while the film tape (Tape 3) showed the most deterioration. The conventional duct tapes tested (Tape 1 and Tape 2) were between these two extremes, with Tape 2 performing better than Tape 1. Lastly, we found that plastic straps became discolored and brittle during the tests, and a couple of straps broke completely. Therefore, we recommend that clamping the duct-taped flexible core-to-collar joints should be done with metallic adjustable straps.

  1. Collagen esterification enhances the function and survival of pancreatic β cells in 2D and 3D culture systems.

    PubMed

    Ko, Jae Hyung; Kim, Yang Hee; Jeong, Seong Hee; Lee, Song; Park, Si-Nae; Shim, In Kyong; Kim, Song Cheol

    2015-08-01

    Collagen, one of the most important components of the extracellular matrix (ECM), may play a role in the survival of pancreatic islet cells. In addition, chemical modifications that change the collagen charge profile to a net positive charge by esterification have been shown to increase the adhesion and proliferation of various cell types. The purpose of this study was to characterize and compare the effects of native collagen (NC) and esterified collagen (EC) on β cell function and survival. After isolation by the collagenase digestion technique, rat islets were cultured with NC and EC in 2 dimensional (2D) and 3 dimensional (3D) environments for a long-term duration in vitro. The cells were assessed for islet adhesion, morphology, viability, glucose-induced insulin secretion, and mRNA expression of glucose metabolism-related genes, and visualized by scanning electron microscopy (SEM). Islet cells attached tightly in the NC group, but islet cell viability was similar in both the NC and EC groups. Glucose-stimulated insulin secretion was higher in the EC group than in the NC group in both 2D and 3D culture. Furthermore, the mRNA expression levels of glucokinase in the EC group were higher than those in the NC group and were associated with glucose metabolism and insulin secretion. Finally, SEM observation confirmed that islets had more intact component cells on EC sponges than on NC sponges. These results indicate that modification of collagen may offer opportunities to improve function and viability of islet cells.

  2. Detailed characterization of 2D and 3D scatter-to-primary ratios of various breast geometries using a dedicated CT mammotomography system

    NASA Astrophysics Data System (ADS)

    Shah, Jainil; Pachon, Jan H.; Madhav, Priti; Tornai, Martin P.

    2011-03-01

    With a dedicated breast CT system using a quasi-monochromatic x-ray source and flat-panel digital detector, the 2D and 3D scatter to primary ratios (SPR) of various geometric phantoms having different densities were characterized in detail. Projections were acquired using geometric and anthropomorphic breast phantoms. Each phantom was filled with 700ml of 5 different water-methanol concentrations to simulate effective boundary densities of breast compositions from 100% glandular (1.0g/cm3) to 100% fat (0.79g/cm3). Projections were acquired with and without a beam stop array. For each projection, 2D scatter was determined by cubic spline interpolating the values behind the shadow of each beam stop through the object. Scatter-corrected projections were obtained by subtracting the scatter, and the 2D SPRs were obtained as a ratio of the scatter to scatter-corrected projections. Additionally the (un)corrected data were individually iteratively reconstructed. The (un)corrected 3D volumes were subsequently subtracted, and the 3D SPRs obtained from the ratio of the scatter volume-to-scatter-corrected (or primary) volume. Results show that the 2D SPR values peak in the center of the volumes, and were overall highest for the simulated 100% glandular composition. Consequently, scatter corrected reconstructions have visibly reduced cupping regardless of the phantom geometry, as well as more accurate linear attenuation coefficients. The corresponding 3D SPRs have increased central density, which reduces radially. Not surprisingly, for both 2D and 3D SPRs there was a dependency on both phantom geometry and object density on the measured SPR values, with geometry dominating for 3D SPRs. Overall, these results indicate the need for scatter correction given different geometries and breast densities that will be encountered with 3D cone beam breast CT.

  3. SINFAC - SYSTEMS IMPROVED NUMERICAL FLUIDS ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Costello, F. A.

    1994-01-01

    The Systems Improved Numerical Fluids Analysis Code, SINFAC, consists of additional routines added to the April 1983 revision of SINDA, a general thermal analyzer program. The purpose of the additional routines is to allow for the modeling of active heat transfer loops. The modeler can simulate the steady-state and pseudo-transient operations of 16 different heat transfer loop components including radiators, evaporators, condensers, mechanical pumps, reservoirs and many types of valves and fittings. In addition, the program contains a property analysis routine that can be used to compute the thermodynamic properties of 20 different refrigerants. SINFAC can simulate the response to transient boundary conditions. SINFAC was first developed as a method for computing the steady-state performance of two phase systems. It was then modified using CNFRWD, SINDA's explicit time-integration scheme, to accommodate transient thermal models. However, SINFAC cannot simulate pressure drops due to time-dependent fluid acceleration, transient boil-out, or transient fill-up, except in the accumulator. SINFAC also requires the user to be familiar with SINDA. The solution procedure used by SINFAC is similar to that which an engineer would use to solve a system manually. The solution to a system requires the determination of all of the outlet conditions of each component such as the flow rate, pressure, and enthalpy. To obtain these values, the user first estimates the inlet conditions to the first component of the system, then computes the outlet conditions from the data supplied by the manufacturer of the first component. The user then estimates the temperature at the outlet of the third component and computes the corresponding flow resistance of the second component. With the flow resistance of the second component, the user computes the conditions down stream, namely the inlet conditions of the third. The computations follow for the rest of the system, back to the first component

  4. 14 CFR 23.1097 - Carburetor deicing fluid system capacity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor deicing fluid system capacity... Powerplant Induction System § 23.1097 Carburetor deicing fluid system capacity. (a) The capacity of each... operation. (b) If the available preheat exceeds 50 °F. but is less than 100 °F., the capacity of the...

  5. 14 CFR 23.1097 - Carburetor deicing fluid system capacity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor deicing fluid system capacity... Powerplant Induction System § 23.1097 Carburetor deicing fluid system capacity. (a) The capacity of each... operation. (b) If the available preheat exceeds 50 °F. but is less than 100 °F., the capacity of the...

  6. 14 CFR 23.1097 - Carburetor deicing fluid system capacity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor deicing fluid system capacity... Powerplant Induction System § 23.1097 Carburetor deicing fluid system capacity. (a) The capacity of each... operation. (b) If the available preheat exceeds 50 °F. but is less than 100 °F., the capacity of the...

  7. Systems, compositions, and methods for fluid purification

    DOEpatents

    Ho, W.S. Winston; Verweij, Hendrik; Shqau, Krenar; Ramasubranian, Kartik

    2015-12-22

    Disclosed herein are membranes comprising a substrate, a support layer, and a selective layer. In some embodiments the membrane may further comprise a permeable layer. Methods of forming membranes are also disclosed comprising forming a support layer on a substrate, removing adsorbed species from the support layer, preparing a solution containing inorganic materials of a selective layer, contacting the support layer with the solution, drying the membrane, and exposing the membrane to rapid thermal processing. Also disclosed are methods of fluid purification comprising providing a membrane having a feed side and a permeable side, passing a fluid mixture across the feed side of the membrane, providing a driving force for transmembrane permeation, removing from the permeate side a permeate stream enriched in a purified fluid, and withdrawing from the feed side a fluid that is depleted in a purified fluid.

  8. Controlled differential pressure system for an enhanced fluid blending apparatus

    DOEpatents

    Hallman, Jr., Russell Louis

    2009-02-24

    A system and method for producing a controlled blend of two or more fluids. Thermally-induced permeation through a permeable tube is used to mix a first fluid from outside the tube with a second fluid flowing through the tube. Mixture ratios may be controlled by adjusting the temperature of the first fluid or by adjusting the pressure drop through the permeable tube. The combination of a back pressure control valve and a differential regulator is used to control the output pressure of the blended fluid. The combination of the back pressure control valve and differential regulator provides superior flow control of the second dry gas. A valve manifold system may be used to mix multiple fluids, and to adjust the volume of blended fluid produced, and to further modify the mixture ratio.

  9. Fluid Mechanics of Liquid-Liquid Systems.

    NASA Astrophysics Data System (ADS)

    Richards, John Reed

    The detailed hydrodynamics of selected liquid -liquid flow systems are investigated to provide a firm foundation for the rational design of separation processes. The implementation of this objective centers on the development of a robust code to simulate liquid-liquid flows. We have applied this code to the realistic simulation of aspects of the complex fluid mechanical behavior, and developed quantitative insight into the underlying processes involved. The Volume of Fluid (VOF) method is combined with the Continuous Surface Force (CSF) algorithm to provide a numerically stable code capable of solving high Reynolds numbers free surface flows. One of the developments during the testing was an efficient method for solving the Young-Laplace equation describing the shape of the meniscus in a vertical cylinder for a constrained liquid volume. The steady-state region near the nozzle for the laminar flow of a Newtonian liquid jet injected vertically into another immiscible Newtonian liquid is investigated for various Reynolds numbers by solving the axisymmetric transient equations of motion and continuity. The analysis takes into account pressure, viscous, inertial, gravitational, and surface tension forces, and comparison with previous experimental measurements shows good agreement. Comparisons of the present numerical method with the numerical results of previous boundary-layer methods help establish their range of validity. A new approximate equation for the shape of the interface of the steady jet, based on an overall momentum balance, is also developed. The full transient from liquid-liquid jet startup to breakup into drops is also simulated numerically. In comparison with experiment, the results of the present numerical method show a greater sensitivity of the jet length to the Reynolds number than the best predictions of previous linear stability analyses. The formation of drops is investigated at low to high Reynolds numbers before and after jet formation. The

  10. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  11. Towards 2D nanocomposites

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Sook; Yu, Changqian; Hayes, Robert; Granick, Steve

    2015-03-01

    Polymer vesicles (``polymersomes'') are an intriguing class of soft materials, commonly used to encapsulate small molecules or particles. Here we reveal they can also effectively incorporate nanoparticles inside their polymer membrane, leading to novel ``2D nanocomposites.'' The embedded nanoparticles alter the capacity of the polymersomes to bend and to stretch upon external stimuli.

  12. COTHERM: Modelling fluid-rock interactions in Icelandic geothermal systems

    NASA Astrophysics Data System (ADS)

    Thien, Bruno; Kosakowski, Georg; Kulik, Dmitrii

    2014-05-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced geothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. We model the mineralogical and porosity evolution of Icelandic geothermal systems with 1D and 2D reactive transport models. These geothermal systems are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. The shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. We investigate two contrasting geothermal systems: Krafla, for which the water recharge consists of meteoritic water; and Reykjanes, for which the water recharge mainly consists of seawater. The initial rock composition is a fresh basalt. We use the GEM-Selektor geochemical modeling package [1] for calculation of kinetically controlled mineral equilibria between the rock and the ingression water. We consider basalt minerals dissolution kinetics according to Palandri & Kharaka [2]. Reactive surface areas are assumed to be geometric surface areas, and are corrected using a spherical-particle surface/mass relationship. For secondary minerals, we consider the partial equilibrium assuming that the primary mineral dissolution is slow, and the secondary mineral precipitation is fast. Comparison of our modeling results with the mineralogical assemblages observed in the

  13. The infrared spectrum of (12)C2D2: the stretching-bending band system up to 5500 cm(-1).

    PubMed

    Villa, Mattia; Canè, Elisabetta; Tamassia, Filippo; Di Lonardo, Gianfranco; Fusina, Luciano

    2013-04-01

    The infrared spectrum of the perdeuterated acetylene, (12)C2D2, has been recorded from 900 cm(-1) to 5500 cm(-1) by Fourier transform spectroscopy at a resolution ranging between 0.004 and 0.009 cm(-1). Ninety-two bands involving the ν1, ν2, and ν3 stretching modes, also associated with the ν4 and ν5 bending vibrations and 9 bands involving pure bending transitions have been observed and analysed. In total, 8345 transitions for the stretching-bending, and 862 for the pure bending modes have been assigned in the investigated spectral region. All the transitions relative to each stretching mode, i.e. the fundamental, its first overtone, and associated hot and combination bands involving bending states up to v4 + v5 = 2, were fitted simultaneously. The Hamiltonian adopted for the analysis is that appropriate to a linear molecule and includes vibration and rotation l-type interactions. The Darling-Dennison interaction between v4 = 2 and v5 = 2 levels associated with the various stretching states was also considered. The standard deviation for each global fit is smaller than 0.0006 cm(-1), of the same order of magnitude of the measurement precision.

  14. Microstructure development in viscoelastic fluid systems

    NASA Astrophysics Data System (ADS)

    Li, Huaping

    This thesis deals with the mechanisms of microstructure development in polymer blends. Much work has been performed on the breakup process of immiscible systems where the dispersed phase is suspended inside another matrix. The fluids used were polymer melts or model viscoelastic fluids, and the processing flows were model shear flow or processing flows seen in industry. It is found that in industrial extruders or batch mixers, the morphology of the dispersed polymer evolves from pellets to films, and subsequently to fibers and particles. In this thesis, it is demonstrated based on force analysis that the in-situ graft reactive compatibilization facilitates breakup of the dispersed phase by suppressing slip at the interface of the dispersed phase and matrix phase. The morphology development of polymer blends in industrial mixers was simulated by performing experiments of model viscoelastic drop deformation and breakup under shear flow. Two distinct modes of drop deformation and breakup were observed. Namely, viscoelastic drops can elongate and breakup either in (1) the flow direction or (2) the vorticity direction. The first normal stress difference N1 plays a decisive role in the conditions and modes of drop breakup. Drop size is an important factor which determines to a great extent the mode of drop breakup and the critical point when the drop breakup mechanism changes. Small drops break along the vorticity direction, whereas large drops break in the flow direction. A dramatic change in the critical shear rate was found when going from one breakup mode to another. Polymer melts processed under shear flow present different morphology development mechanisms: films, fibers, vorticity elongation and surface instability. The mechanisms depend greatly on the rheological properties of both the dispersed and matrix phases, namely the viscosity ratio and elasticity ratio. High viscosity ratio and high elasticity ratio result elongation of the dispersed phase in the

  15. Lithium isotope traces magmatic fluid in a seafloor hydrothermal system.

    PubMed

    Yang, Dan; Hou, Zengqian; Zhao, Yue; Hou, Kejun; Yang, Zhiming; Tian, Shihong; Fu, Qiang

    2015-01-01

    Lithium isotopic compositions of fluid inclusions and hosted gangue quartz from a giant volcanogenic massive sulfide deposit in China provide robust evidence for inputting of magmatic fluids into a Triassic submarine hydrothermal system. The δ(7)Li results vary from +4.5‰ to +13.8‰ for fluid inclusions and from +6.7‰ to +21.0‰ for the hosted gangue quartz(9 gangue quartz samples containing primary fluid inclusions). These data confirm the temperature-dependent Li isotopic fractionation between hydrothermal quartz and fluid (i.e., Δδ(7)Liquartz-fluid = -8.9382 × (1000/T) + 22.22(R(2) = 0.98; 175 °C-340 °C)), which suggests that the fluid inclusions are in equilibrium with their hosted quartz, thus allowing to determine the composition of the fluids by using δ(7)Liquartz data. Accordingly, we estimate that the ore-forming fluids have a δ(7)Li range from -0.7‰ to +18.4‰ at temperatures of 175-340 °C. This δ(7)Li range, together with Li-O modeling , suggest that magmatic fluid played a significant role in the ore formation. This study demonstrates that Li isotope can be effectively used to trace magmatic fluids in a seafloor hydrothermal system and has the potential to monitor fluid mixing and ore-forming process. PMID:26347051

  16. Lithium isotope traces magmatic fluid in a seafloor hydrothermal system.

    PubMed

    Yang, Dan; Hou, Zengqian; Zhao, Yue; Hou, Kejun; Yang, Zhiming; Tian, Shihong; Fu, Qiang

    2015-09-08

    Lithium isotopic compositions of fluid inclusions and hosted gangue quartz from a giant volcanogenic massive sulfide deposit in China provide robust evidence for inputting of magmatic fluids into a Triassic submarine hydrothermal system. The δ(7)Li results vary from +4.5‰ to +13.8‰ for fluid inclusions and from +6.7‰ to +21.0‰ for the hosted gangue quartz(9 gangue quartz samples containing primary fluid inclusions). These data confirm the temperature-dependent Li isotopic fractionation between hydrothermal quartz and fluid (i.e., Δδ(7)Liquartz-fluid = -8.9382 × (1000/T) + 22.22(R(2) = 0.98; 175 °C-340 °C)), which suggests that the fluid inclusions are in equilibrium with their hosted quartz, thus allowing to determine the composition of the fluids by using δ(7)Liquartz data. Accordingly, we estimate that the ore-forming fluids have a δ(7)Li range from -0.7‰ to +18.4‰ at temperatures of 175-340 °C. This δ(7)Li range, together with Li-O modeling , suggest that magmatic fluid played a significant role in the ore formation. This study demonstrates that Li isotope can be effectively used to trace magmatic fluids in a seafloor hydrothermal system and has the potential to monitor fluid mixing and ore-forming process.

  17. Transient thermal analysis of fluid systems

    NASA Technical Reports Server (NTRS)

    Chandler, G. D.; Trust, R. D.

    1977-01-01

    Computer program performs transient thermal analysis of any 2-node to 200-node-thermal network, which transports heat by fluid flow convection. Program can be modified to add conduction along tubes and radiation.

  18. Quantum-Carnot engine for particle confined to 2D symmetric potential well

    NASA Astrophysics Data System (ADS)

    Belfaqih, Idrus Husin; Sutantyo, Trengginas Eka Putra; Prayitno, T. B.; Sulaksono, Anto

    2015-09-01

    Carnot model of heat engine is the most efficient cycle consisting of isothermal and adiabatic processes which are reversible. Although ideal gas usually used as a working fluid in the Carnot engine, Bender used quantum particle confined in 1D potential well as a working fluid. In this paper, by following Bender we generalize the situation to 2D symmetric potential well. The efficiency is express as the ratio of the initial length of the system to the final length of the compressed system. The result then is shown that for the same ratio, 2D potential well is more efficient than 1D potential well.

  19. Quantum-Carnot engine for particle confined to 2D symmetric potential well

    SciTech Connect

    Belfaqih, Idrus Husin Sutantyo, Trengginas Eka Putra Prayitno, T. B.; Sulaksono, Anto

    2015-09-30

    Carnot model of heat engine is the most efficient cycle consisting of isothermal and adiabatic processes which are reversible. Although ideal gas usually used as a working fluid in the Carnot engine, Bender used quantum particle confined in 1D potential well as a working fluid. In this paper, by following Bender we generalize the situation to 2D symmetric potential well. The efficiency is express as the ratio of the initial length of the system to the final length of the compressed system. The result then is shown that for the same ratio, 2D potential well is more efficient than 1D potential well.

  20. Thermal fluids in low temperature systems. Part 2

    SciTech Connect

    Lynde, P.G.; Yonkers, E.D.

    1996-02-01

    This article focuses on the lifeblood of these systems, the thermal transfer fluid itself. Low-temperature heat-transfer fluids are used to condition engine fluids, test chambers, cooling fluids, or a combination of these in environmental test facilities. To meet the specific test criteria, these fluids may be required to maintain pumpability and function with thermal efficiency at temperatures as low as {minus}120 F. This article presents information related to heat-transfer fluids used in low-temperature cooling applications. Three general groups of fluids are discussed: water-based antifreezes (ethylene and propylene glycol solutions); chlorinated solvents (methylene chloride and trichloroethylene); organic and synthetic coolants (diethylbenzene, two forms of dimethylpolysiloxane, heavy naphtha hydrotreated, and citrus terpene).

  1. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  2. SU-E-CAMPUS-T-05: Preliminary Results On a 2D Dosimetry System Based On the Optically Stimulated Luminescence of Al2O3

    SciTech Connect

    Ahmed, M; Eller, S; Yukihara, E; Schnell, E; Ahmad, S; Akselrod, M; Hanson, O

    2014-06-15

    Purpose: To develop a precise 2D dose mapping technique based on the optically stimulated luminescence (OSL) from Al{sub 2}O{sub 3} films for medical applications. Methods: A 2D laser scanning reader was developed using fast F{sup +}-center (lifetime of <7 ns) and slow F-center (lifetime of 35 ms) OSL emission from newly developed Al{sub 2}O{sub 3} films (Landauer Inc.). An algorithm was developed to correct images for both material and system properties. Since greater contribution of the F??-center emission in the recorded signal increases the readout efficiency and robustness of image corrections, Al{sub 2}O{sub 3}:C,Mg film samples are being investigated in addition to Al{sub 2}O{sub 3}:C samples. Preliminary investigations include exposure of the films to a 6 MV photon beam at 10 cm depth in solid water phantom with an SSD of 100 cm, using a 10 cm × 10 cm flat field or a 4 cm × 4 cm field with a 60° wedge filter. Kodak EDR2 radiographic film and EBT2 Gafchromic film were also exposed for comparison. Results: The results indicate that the algorithm is able to correct images and calculate 2D dose. For the wedge field irradiation, the calculated dose at the center of the field was 0.9 Gy for Al{sub 2}O{sub 3}:C and 0.87 Gy for Al{sub 2}O{sub 3}:C,Mg, whereas, the delivered dose was 0.95 Gy. A good qualitative agreement of the dose profiles was obtained between the OSL films and EDR2 and EBT2 films. Laboratory tests using a beta source suggest that a large dynamic range (10{sup −2}−10{sup 2} Gy) can be achieved using this technique. Conclusion: A 2D dosimetry system and an in-house image correction algorithm were developed for 2D film dosimetry in medical applications. The system is in the preliminary stage of development, but the data demonstrates the feasibility of this approach. This work was supported by Landauer, Inc.

  3. Administration of exogenous 1,25(OH)2D3 normalizes overactivation of the central renin-angiotensin system in 1α(OH)ase knockout mice.

    PubMed

    Zhang, Wei; Chen, Lulu; Zhang, Luqing; Xiao, Ming; Ding, Jiong; Goltzman, David; Miao, Dengshun

    2015-02-19

    Previously, we reported that active vitamin D deficiency in mice causes secondary hypertension and cardiac dysfunction, but the underlying mechanism remains largely unknown. To clarify whether exogenous active vitamin D rescues hypertension by normalizing the altered central renin-angiotensin system (RAS) via an antioxidative stress mechanism, 1-alpha-hydroxylase [1α(OH)ase] knockout mice [1α(OH)ase(-/-)] and their wild-type littermates were fed a normal diet alone or with 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], or a high-calcium, high-phosphorus "rescue" diet with or without antioxidant N-acetyl-l-cysteine (NAC) supplementation for 4 weeks. Compared with their wild-type littermates, 1α(OH)ase(-/-)mice had high mean arterial pressure, increased levels of renin, angiotensin II (Ang II), and Ang II type 1 receptor, and increased malondialdehyde levels, but decreased anti-peroxiredoxin I and IV proteins and the antioxidative genes glutathione reductase (Gsr) and glutathione peroxidase 4 (Gpx4) in the brain samples. Except Ang II type 1 receptor, these pathophysiological changes were rescued by exogenous 1,25(OH)2D3 or NAC plus rescue diet, but not by rescue diet alone. We conclude that 1,25(OH)2D3 normalizes the altered central RAS in 1α(OH)ase(-/-)mice, at least partially, through a central antioxidative mechanism.

  4. Registration of 2D C-Arm and 3D CT Images for a C-Arm Image-Assisted Navigation System for Spinal Surgery

    PubMed Central

    Chang, Chih-Ju; Lin, Geng-Li; Tse, Alex; Chu, Hong-Yu; Tseng, Ching-Shiow

    2015-01-01

    C-Arm image-assisted surgical navigation system has been broadly applied to spinal surgery. However, accurate path planning on the C-Arm AP-view image is difficult. This research studies 2D-3D image registration methods to obtain the optimum transformation matrix between C-Arm and CT image frames. Through the transformation matrix, the surgical path planned on preoperative CT images can be transformed and displayed on the C-Arm images for surgical guidance. The positions of surgical instruments will also be displayed on both CT and C-Arm in the real time. Five similarity measure methods of 2D-3D image registration including Normalized Cross-Correlation, Gradient Correlation, Pattern Intensity, Gradient Difference Correlation, and Mutual Information combined with three optimization methods including Powell's method, Downhill simplex algorithm, and genetic algorithm are applied to evaluate their performance in converge range, efficiency, and accuracy. Experimental results show that the combination of Normalized Cross-Correlation measure method with Downhill simplex algorithm obtains maximum correlation and similarity in C-Arm and Digital Reconstructed Radiograph (DRR) images. Spine saw bones are used in the experiment to evaluate 2D-3D image registration accuracy. The average error in displacement is 0.22 mm. The success rate is approximately 90% and average registration time takes 16 seconds. PMID:27018859

  5. Registration of 2D C-Arm and 3D CT Images for a C-Arm Image-Assisted Navigation System for Spinal Surgery.

    PubMed

    Chang, Chih-Ju; Lin, Geng-Li; Tse, Alex; Chu, Hong-Yu; Tseng, Ching-Shiow

    2015-01-01

    C-Arm image-assisted surgical navigation system has been broadly applied to spinal surgery. However, accurate path planning on the C-Arm AP-view image is difficult. This research studies 2D-3D image registration methods to obtain the optimum transformation matrix between C-Arm and CT image frames. Through the transformation matrix, the surgical path planned on preoperative CT images can be transformed and displayed on the C-Arm images for surgical guidance. The positions of surgical instruments will also be displayed on both CT and C-Arm in the real time. Five similarity measure methods of 2D-3D image registration including Normalized Cross-Correlation, Gradient Correlation, Pattern Intensity, Gradient Difference Correlation, and Mutual Information combined with three optimization methods including Powell's method, Downhill simplex algorithm, and genetic algorithm are applied to evaluate their performance in converge range, efficiency, and accuracy. Experimental results show that the combination of Normalized Cross-Correlation measure method with Downhill simplex algorithm obtains maximum correlation and similarity in C-Arm and Digital Reconstructed Radiograph (DRR) images. Spine saw bones are used in the experiment to evaluate 2D-3D image registration accuracy. The average error in displacement is 0.22 mm. The success rate is approximately 90% and average registration time takes 16 seconds.

  6. Registration of 2D C-Arm and 3D CT Images for a C-Arm Image-Assisted Navigation System for Spinal Surgery.

    PubMed

    Chang, Chih-Ju; Lin, Geng-Li; Tse, Alex; Chu, Hong-Yu; Tseng, Ching-Shiow

    2015-01-01

    C-Arm image-assisted surgical navigation system has been broadly applied to spinal surgery. However, accurate path planning on the C-Arm AP-view image is difficult. This research studies 2D-3D image registration methods to obtain the optimum transformation matrix between C-Arm and CT image frames. Through the transformation matrix, the surgical path planned on preoperative CT images can be transformed and displayed on the C-Arm images for surgical guidance. The positions of surgical instruments will also be displayed on both CT and C-Arm in the real time. Five similarity measure methods of 2D-3D image registration including Normalized Cross-Correlation, Gradient Correlation, Pattern Intensity, Gradient Difference Correlation, and Mutual Information combined with three optimization methods including Powell's method, Downhill simplex algorithm, and genetic algorithm are applied to evaluate their performance in converge range, efficiency, and accuracy. Experimental results show that the combination of Normalized Cross-Correlation measure method with Downhill simplex algorithm obtains maximum correlation and similarity in C-Arm and Digital Reconstructed Radiograph (DRR) images. Spine saw bones are used in the experiment to evaluate 2D-3D image registration accuracy. The average error in displacement is 0.22 mm. The success rate is approximately 90% and average registration time takes 16 seconds. PMID:27018859

  7. Statistical mechanics of homogeneous partly pinned fluid systems.

    PubMed

    Krakoviack, Vincent

    2010-12-01

    The homogeneous partly pinned fluid systems are simple models of a fluid confined in a disordered porous matrix obtained by arresting randomly chosen particles in a one-component bulk fluid or one of the two components of a binary mixture. In this paper, their configurational properties are investigated. It is shown that a peculiar complementarity exists between the mobile and immobile phases, which originates from the fact that the solid is prepared in presence of and in equilibrium with the adsorbed fluid. Simple identities follow, which connect different types of configurational averages, either relative to the fluid-matrix system or to the bulk fluid from which it is prepared. Crucial simplifications result for the computation of important structural quantities, both in computer simulations and in theoretical approaches. Finally, possible applications of the model in the field of dynamics in confinement or in strongly asymmetric mixtures are suggested.

  8. Space station integrated propulsion and fluid systems study

    NASA Technical Reports Server (NTRS)

    Bicknell, B.; Wilson, S.; Dennis, M.; Shepard, D.; Rossier, R.

    1988-01-01

    The program study was performed in two tasks: Task 1 addressed propulsion systems and Task 2 addressed all fluid systems associated with the Space Station elements, which also included propulsion and pressurant systems. Program results indicated a substantial reduction in life cycle costs through integrating the oxygen/hydrogen propulsion system with the environmental control and life support system, and through supplying nitrogen in a cryogenic gaseous supercritical or subcritical liquid state. A water sensitivity analysis showed that increasing the food water content would substantially increase the amount of water available for propulsion use and in all cases, the implementation of the BOSCH CO2 reduction process would reduce overall life cycle costs to the station and minimize risk. An investigation of fluid systems and associated requirements revealed a delicate balance between the individual propulsion and fluid systems across work packages and a strong interdependence between all other fluid systems.

  9. System for Dispensing a Precise Amount of Fluid

    DOEpatents

    Benett, William J.; Krulevitch, Peter A.; Visuri, Steven R.; Dzenitis, John M.; Ness, Kevin D.

    2008-08-12

    A dispensing system delivers a precise amount of fluid for biological or chemical processing and/or analysis. Dispensing means moves the fluid. The dispensing means is operated by a pneumatic force. Connection means delivers the fluid to the desired location. An actuator means provides the pneumatic force to the dispensing means. Valving means transmits the pneumatic force from the actuator means to the dispensing means.

  10. Upgrade of the tangentially viewing vacuum ultraviolet (VUV) telescope system for 2D fluctuation measurement in the large helical device

    NASA Astrophysics Data System (ADS)

    Wang, Z. J.; Ming, T. F.; Gao, X.; Du, X. D.; Ohdachi, S.

    2016-11-01

    A high-speed tangentially viewing vacuum ultraviolet (VUV) telescope system, using an inverse Schwarzschild-type optic system was developed to study fluctuations in the Large Helical Device (LHD). However, for the original system, the sampling rate was restricted to below 2000 Hz due to the low signal to noise (S/N) ratio in the experiment. In order to improve the S/N ratio, upgrade of the system was made. With this upgraded optical system, the maximum framing rate is improved to 6000 fps with a similar spatial resolution. Rotation of the m = 2 structure caused by the magnetohydrodynamic (MHD) instability is measured by the upgraded system. The spatial structure of the image is consistent with the synthetic image assuming the interchange mode type displacement of the flux surfaces.

  11. GeoBuilder: a geometric algorithm visualization and debugging system for 2D and 3D geometric computing.

    PubMed

    Wei, Jyh-Da; Tsai, Ming-Hung; Lee, Gen-Cher; Huang, Jeng-Hung; Lee, Der-Tsai

    2009-01-01

    Algorithm visualization is a unique research topic that integrates engineering skills such as computer graphics, system programming, database management, computer networks, etc., to facilitate algorithmic researchers in testing their ideas, demonstrating new findings, and teaching algorithm design in the classroom. Within the broad applications of algorithm visualization, there still remain performance issues that deserve further research, e.g., system portability, collaboration capability, and animation effect in 3D environments. Using modern technologies of Java programming, we develop an algorithm visualization and debugging system, dubbed GeoBuilder, for geometric computing. The GeoBuilder system features Java's promising portability, engagement of collaboration in algorithm development, and automatic camera positioning for tracking 3D geometric objects. In this paper, we describe the design of the GeoBuilder system and demonstrate its applications. PMID:19147888

  12. Numerical Modeling of Fluid Transient in Cryogenic Fluid Network of Rocket Propulsion System

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Flachbart, Robin

    2003-01-01

    Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicles propulsion systems. These transients often occur at system activation and shut down. For ground safety reasons, many spacecrafts are launched with the propellant lines dry. These lines are often evacuated by the time the spacecraft reaches orbit. When the propellant isolation valve opens during propulsion system activation, propellant rushes into lines creating a pressure surge. During propellant system shutdown, a pressure surge is created due to sudden closure of a valve. During both activation and shutdown, pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. The method of characteristics is the most widely used method of calculating fluid transients in pipeline [ 1,2]. The method of characteristics, however, has limited applications in calculating flow distribution in complex flow circuits with phase change, heat transfer and rotational effects. A robust cryogenic propulsion system analyzer must have the capability to handle phase change, heat transfer, chemical reaction, rotational effects and fluid transients in conjunction with subsystem flow model for pumps, valves and various pipe fittings. In recent years, such a task has been undertaken at Marshall Space Flight Center with the development of the Generalized Fluid System Simulation Program (GFSSP), which is based on finite volume method in fluid network [3]. GFSSP has been extensively verified and validated by comparing its predictions with test data and other numerical methods for various applications such as internal flow of turbo-pump [4], propellant tank pressurization [5,6], chilldown of cryogenic transfer line [7] and squeeze film damper rotordynamics [8]. The purpose of the present paper is to investigate the applicability of the finite volume method to predict fluid transient in cryogenic flow

  13. A novel low-cost targeting system (LCTS) based upon a high-resolution 2D imaging laser radar

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Odhner, Jefferson E.; Wikman, John C.; Skaluba, Fred W.; Dippel, George F.; McDaniel, Robert V.; Ferrell, David S.; Seibel, William

    2005-10-01

    BAE SYSTEMS has developed a Low Cost Targeting System (LCTS) consisting of a FLIR for target detection, laser-illuminated, gated imaging for target identification, laser rangefinder and designator, GPS positioning, and auto-tracking capability within a small compact system size. This system has proven its ability to acquire targets, range and identify these targets, and designate or provide precise geo-location coordinates to these targets. The system is based upon BAE Systems proven micro-bolometer passive LWIR camera coupled with Intevac's new EBAPS camera. A dual wavelength diode pumped laser provides eyesafe ranging and target illumination, as well as designation; a custom detector module senses the return pulse for target ranging and to set the range gates for the gated camera. Intevac's camera is a CMOS based device with used selectable gate widths and can read at up to 28 frames/second when operated in VGA mode. The Transferred Electron photocathode enables high performance imaging in the SWIR band by enabling single photon detection at high quantum efficiency. Trials show that the current detectors offer complete extinction of signals outside of the gated range, thus, providing high resolution within the gated region. The images have shown high spatial resolution arising from the use of solid state focal plane array technology. Imagery has been collected in both the laboratory and the field to verify system performance during a variety of operating conditions.

  14. UAH/NASA Workshop on Fluids Experiment System

    NASA Technical Reports Server (NTRS)

    Hendricks, J. (Editor); Askins, B. (Editor)

    1979-01-01

    The Fluids Experiment System is being developed to fit into a Spacelab rack. Papers presented at this workshop describe a variety of fluid and chemical experiments that would be of great benefit to researchers of processes in a low gravity environment.

  15. Power systems utilizing the heat of produced formation fluid

    DOEpatents

    Lambirth, Gene Richard

    2011-01-11

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method includes treating a hydrocarbon containing formation. The method may include providing heat to the formation; producing heated fluid from the formation; and generating electricity from at least a portion of the heated fluid using a Kalina cycle.

  16. Fluid Power Systems Maintenance and Operation. Instructor's Guide.

    ERIC Educational Resources Information Center

    Paule, Bob A.

    Written to complement the Fluid Power/Basic Hydraulic and Basic Pneumatics guides, this curriculum guide contains materials for a seven-unit course in fluid power systems maintenance and operation. Units, which consist of one to eight lessons, cover these topics: preventive maintenance, repair machine malfunctions, overhaul/recondition hydraulic…

  17. Stabilizing a solution of the 2D Navier-Stokes system in the exterior of a bounded domain by means of a control on the boundary

    SciTech Connect

    Gorshkov, Aleksei V

    2012-09-30

    The problem of stabilizing a solution of the 2D Navier-Stokes system defined in the exterior of a bounded domain with smooth boundary is investigated. For a given initial velocity field a control on the boundary of the domain must be constructed such that the solution stabilizes to a prescribed vortex solution or trivial solution at the rate of 1/t{sup k}. On the way, related questions are investigated, concerning the behaviour of the spectrum of an operator under a relatively compact perturbation and the existence of attracting invariant manifolds. Bibliography: 21 titles.

  18. Time-dependent resonant UHF CI approach for the photo-induced dynamics of the multi-electron system confined in 2D QD

    SciTech Connect

    Okunishi, Takuma; Clark, Richard; Takeda, Kyozaburo; Kusakabe, Kouichi; Tomita, Norikazu

    2013-12-04

    We extend the static multi-reference description (resonant UHF) to the dynamic system in order to include the correlation effect over time, and simplify the TD Schrödinger equation (TD-CI) into a time-developed rate equation where the TD external field Ĥ′(t) is then incorporated directly in the Hamiltonian without any approximations. We apply this TD-CI method to the two-electron ground state of a 2D quantum dot (QD) under photon injection and study the resulting two-electron Rabi oscillation.

  19. Methods and systems for integrating fluid dispensing technology with stereolithography

    DOEpatents

    Medina, Francisco; Wicker, Ryan; Palmer, Jeremy A.; Davis, Don W.; Chavez, Bart D.; Gallegos, Phillip L.

    2010-02-09

    An integrated system and method of integrating fluid dispensing technologies (e.g., direct-write (DW)) with rapid prototyping (RP) technologies (e.g., stereolithography (SL)) without part registration comprising: an SL apparatus and a fluid dispensing apparatus further comprising a translation mechanism adapted to translate the fluid dispensing apparatus along the Z-, Y- and Z-axes. The fluid dispensing apparatus comprises: a pressurized fluid container; a valve mechanism adapted to control the flow of fluid from the pressurized fluid container; and a dispensing nozzle adapted to deposit the fluid in a desired location. To aid in calibration, the integrated system includes a laser sensor and a mechanical switch. The method further comprises building a second part layer on top of the fluid deposits and optionally accommodating multi-layered circuitry by incorporating a connector trace. Thus, the present invention is capable of efficiently building single and multi-material SL fabricated parts embedded with complex three-dimensional circuitry using DW.

  20. Accuracy and precision of a custom camera-based system for 2D and 3D motion tracking during speech and nonspeech motor tasks

    PubMed Central

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories, and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and sub-millimeter accuracy. Method We examined the accuracy and precision of 2D and 3D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially-available computer software (APAS, Ariel Dynamics), and a custom calibration device. Results Overall mean error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3 vs. 6 mm diameter) was negligible at all frame rates for both 2D and 3D data. Conclusion Motion tracking with consumer-grade digital cameras and the APAS software can achieve sub-millimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484

  1. Investigations on mobility of carbon colloid supported nanoscale zero-valent iron (nZVI) in a column experiment and a laboratory 2D-aquifer test system.

    PubMed

    Busch, Jan; Meißner, Tobias; Potthoff, Annegret; Oswald, Sascha E

    2014-09-01

    Nanoscale zero-valent iron (nZVI) has recently gained great interest in the scientific community as in situ reagent for installation of permeable reactive barriers in aquifer systems, since nZVI is highly reactive with chlorinated compounds and may render them to harmless substances. However, nZVI has a high tendency to agglomerate and sediment; therefore it shows very limited transport ranges. One new approach to overcome the limited transport of nZVI in porous media is using a suited carrier colloid. In this study we tested mobility of a carbon colloid supported nZVI particle "Carbo-Iron Colloids" (CIC) with a mean size of 0.63 μm in a column experiment of 40 cm length and an experiment in a two-dimensional (2D) aquifer test system with dimensions of 110 × 40 × 5 cm. Results show a breakthrough maximum of 82 % of the input concentration in the column experiment and 58 % in the 2D-aquifer test system. Detected residuals in porous media suggest a strong particle deposition in the first centimeters and few depositions in the porous media in the further travel path. Overall, this suggests a high mobility in porous media which might be a significant enhancement compared to bare or polyanionic stabilized nZVI.

  2. 3-D and quasi-2-D discrete element modeling of grain commingling in a bucket elevator boot system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unwanted grain commingling impedes new quality-based grain handling systems and has proven to be an expensive and time consuming issue to study experimentally. Experimentally validated models may reduce the time and expense of studying grain commingling while providing additional insight into detail...

  3. Fault-tolerant quantum computation and communication on a distributed 2D array of small local systems

    SciTech Connect

    Fujii, K.; Yamamoto, T.; Imoto, N.; Koashi, M.

    2014-12-04

    We propose a scheme for distributed quantum computation with small local systems connected via noisy quantum channels. We show that the proposed scheme tolerates errors with probabilities ∼30% and ∼ 0.1% in quantum channels and local operations, respectively, both of which are improved substantially compared to the previous works.

  4. Generalized Fluid System Simulation Program (GFSSP) Version 6 - General Purpose Thermo-Fluid Network Analysis Software

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Leclair, Andre; Moore, Ric; Schallhorn, Paul

    2011-01-01

    GFSSP stands for Generalized Fluid System Simulation Program. It is a general-purpose computer program to compute pressure, temperature and flow distribution in a flow network. GFSSP calculates pressure, temperature, and concentrations at nodes and calculates flow rates through branches. It was primarily developed to analyze Internal Flow Analysis of a Turbopump Transient Flow Analysis of a Propulsion System. GFSSP development started in 1994 with an objective to provide a generalized and easy to use flow analysis tool for thermo-fluid systems.

  5. Principles of Design of Fluid Transport Systems in Zoology

    NASA Astrophysics Data System (ADS)

    Labarbera, Michael

    1990-08-01

    Fluid transport systems mediate the transfer of materials both within an organism and between an organism and its environment. The architecture of fluid transport systems is determined by the small distances over which transfer processes are effective and by hydrodynamic and energetic constraints. All fluid transport systems within organisms exhibit one of two geometries, a simple tube interrupted by a planar transfer region or a branched network of vessels linking widely distributed transfer regions; each is determined by different morphogenetic processes. By exploiting the signal inherent in local shear stress on the vessel walls, animals have repeatedly evolved a complex branching hierarchy of vessels approximating a globally optimal system that minimizes the costs of the construction and maintenance of the fluid transport system.

  6. String-fluid transition in systems with aligned anisotropic interactions.

    PubMed

    Brandt, P C; Ivlev, A V; Morfill, G E

    2010-06-21

    Systems with aligned anisotropic interactions between particles exhibit numerous phase transitions. A remarkable example of the fluid phase transition occurring in such systems is the formation of particle strings--the so-called "string" or "chain" fluids. We employ an approach based on the Ornstein-Zernike (OZ) equation, which allows us to calculate structural properties of fluids with aligned anisotropic interactions. We show that the string-fluid transition can be associated with the bifurcation of the "isotropic" correlation length into two distinct scales which characterize the longitudinal and transverse order in string fluids and, hence, may be used as a fingerprint of this transition. The comparison of the proposed OZ theory with the Monte Carlo simulations reveals fairly good agreement.

  7. String-fluid transition in systems with aligned anisotropic interactions.

    PubMed

    Brandt, P C; Ivlev, A V; Morfill, G E

    2010-06-21

    Systems with aligned anisotropic interactions between particles exhibit numerous phase transitions. A remarkable example of the fluid phase transition occurring in such systems is the formation of particle strings--the so-called "string" or "chain" fluids. We employ an approach based on the Ornstein-Zernike (OZ) equation, which allows us to calculate structural properties of fluids with aligned anisotropic interactions. We show that the string-fluid transition can be associated with the bifurcation of the "isotropic" correlation length into two distinct scales which characterize the longitudinal and transverse order in string fluids and, hence, may be used as a fingerprint of this transition. The comparison of the proposed OZ theory with the Monte Carlo simulations reveals fairly good agreement. PMID:20572736

  8. System and method measuring fluid flow in a conduit

    DOEpatents

    Ortiz, Marcos German; Kidd, Terrel G.

    1999-01-01

    A system for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements.

  9. System and method measuring fluid flow in a conduit

    DOEpatents

    Ortiz, M.G.; Kidd, T.G.

    1999-05-18

    A system is described for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements. 3 figs.

  10. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  11. An admissibility and asymptotic-preserving scheme for systems of conservation laws with source term on 2D unstructured meshes

    NASA Astrophysics Data System (ADS)

    Blachère, F.; Turpault, R.

    2016-06-01

    The objective of this work is to design explicit finite volumes schemes for specific systems of conservations laws with stiff source terms, which degenerate into diffusion equations. We propose a general framework to design an asymptotic preserving scheme, that is stable and consistent under a classical hyperbolic CFL condition in both hyperbolic and diffusive regime, for any two-dimensional unstructured mesh. Moreover, the scheme developed also preserves the set of admissible states, which is mandatory to keep physical solutions in stiff configurations. This construction is achieved by using a non-linear scheme as a target scheme for the diffusive equation, which gives the form of the global scheme for the complete system of conservation laws. Numerical results are provided to validate the scheme in both regimes.

  12. 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage.

    PubMed

    Bonaccorso, Francesco; Colombo, Luigi; Yu, Guihua; Stoller, Meryl; Tozzini, Valentina; Ferrari, Andrea C; Ruoff, Rodney S; Pellegrini, Vittorio

    2015-01-01

    Graphene and related two-dimensional crystals and hybrid systems showcase several key properties that can address emerging energy needs, in particular for the ever growing market of portable and wearable energy conversion and storage devices. Graphene's flexibility, large surface area, and chemical stability, combined with its excellent electrical and thermal conductivity, make it promising as a catalyst in fuel and dye-sensitized solar cells. Chemically functionalized graphene can also improve storage and diffusion of ionic species and electric charge in batteries and supercapacitors. Two-dimensional crystals provide optoelectronic and photocatalytic properties complementing those of graphene, enabling the realization of ultrathin-film photovoltaic devices or systems for hydrogen production. Here, we review the use of graphene and related materials for energy conversion and storage, outlining the roadmap for future applications.

  13. Many-body GW calculations of ground-state properties: quasi-2D electron systems and van der Waals forces.

    PubMed

    García-González, P; Godby, R W

    2002-02-01

    We present GW many-body results for ground-state properties of two simple but very distinct families of inhomogeneous systems in which traditional implementations of density-functional theory (DFT) fail drastically. The GW approach gives notably better results than the well-known random-phase approximation, at a similar computational cost. These results establish GW as a superior alternative to standard DFT schemes without the expensive numerical effort required by quantum Monte Carlo simulations.

  14. 2D soft x-ray system on DIII-D for imaging the magnetic topology in the pedestal region

    SciTech Connect

    Shafer, M.W.; Battaglia, D. J.; Unterberg, Ezekial A; Evans, T. E.; Hillis, Donald Lee; Maingi, R.

    2010-01-01

    A new tangential two-dimensional soft x-ray imaging system (SXRIS) is being designed to examine the edge island structure in the lower X-point region of DIII-D. Plasma shielding and/or amplification of the calculated vacuum islands may play a role in the suppression of edge-localized modes via resonant magnetic perturbations (RMPs). The SXRIS is intended to improve the understanding of three-dimensional (3D) phenomena associated with RMPs. This system utilizes a tangential view with a pinhole imaging system and spectral filtering with beryllium foils. SXR emission is chosen to avoid line radiation and allows suitable signal at the top of a H-mode pedestal where T(e) similar to 1-2 keV. A synthetic diagnostic calculation based on 3D SXR emissivity estimates is used to help assess signal levels and resolution of the design. A signal-to-noise ratio of 10 at 1 cm resolution is expected for the perturbed signals, which are sufficient to resolve most of the predicted vacuum island sizes.

  15. Laboratory Experiments On Continually Forced 2d Turbulence

    NASA Astrophysics Data System (ADS)

    Wells, M. G.; Clercx, H. J. H.; Van Heijst, G. J. F.

    There has been much recent interest in the advection of tracers by 2D turbulence in geophysical flows. While there is a large body of literature on decaying 2D turbulence or forced 2D turbulence in unbounded domains, there have been very few studies of forced turbulence in bounded domains. In this study we present new experimental results from a continuously forced quasi 2D turbulent field. The experiments are performed in a square Perspex tank filled with water. The flow is made quasi 2D by a steady background rotation. The rotation rate of the tank has a small (<8 %) sinusoidal perturbation which leads to the periodic formation of eddies in the corners of the tank. When the oscillation period of the perturbation is greater than an eddy roll-up time-scale, dipole structures are observed to form. The dipoles can migrate away from the walls, and the interior of the tank is continually filled with vortexs. From experimental visualizations the length scale of the vortexs appears to be largely controlled by the initial formation mechanism and large scale structures are not observed to form at large times. Thus the experiments provide a simple way of cre- ating a continuously forced 2D turbulent field. The resulting structures are in contrast with most previous laboratory experiments on 2D turbulence which have investigated decaying turbulence and have observed the formations of large scale structure. In these experiments, decaying turbulence had been produced by a variety of methods such as the decaying turbulence in the wake of a comb of rods (Massen et al 1999), organiza- tion of vortices in thin conducting liquids (Cardoso et al 1994) or in rotating systems where there are sudden changes in angular rotation rate (Konijnenberg et al 1998). Results of dye visualizations, particle tracking experiments and a direct numerical simulation will be presented and discussed in terms of their oceanographic application. Bibliography Cardoso,O. Marteau, D. &Tabeling, P

  16. Analysis of bell-shape negative giant-magnetoresistance in high mobility GaAs/AlGaAs 2D electron systems using multi-conduction model

    NASA Astrophysics Data System (ADS)

    Samaraweera, Rasanga; Liu, Han-Chun; Wegscheider, Werner; Mani, Ramesh

    Recent advancements in the growth techniques of the GaAs/AlGaAs two dimensional electron system (2DES) routinely yield high quality heterostructures with enhanced physical and electrical properties, including devices with 2D electron mobilities well above 107 cm2/Vs. These improvements have opened new pathways to study interesting physical phenomena associated with the 2D electron system. Negative giant-magnetoresistance (GMR) is one such phenomenon which can observed in the high mobility 2DES. However, the negative GMR in the GaAs/AlGaAs 2DES is still not fully understood. In this contribution, we present an experimental study of the bell-shape negative GMR in high mobility GaAs/AlGaAs devices and quantitatively analyze the results utilizing the multi-conduction model. The multi-conduction model includes interesting physical characteristics such as negative diagonal conductivity, non-vanishing off-diagonal conductivity, etc. The aim of the study is to examine GMR over a wider experimental parameter space and determine whether the multi-conduction model serves to describe the experimental results.

  17. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    SciTech Connect

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  18. Fitting of Diverging Thermoelectric Power in a Strongly Interacting 2D Electron System of Si-MOSFETs

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Tak

    2013-03-01

    The diverging-effective mass (DEM) in a metallic system is evidence of strong correlation between fermions in strongly correlated systems. The identification of the DEM still remains to be revealed The effective mass, m* =mo/(1-ρ4) where ρ is band filling helps clarify the diverging thermoelectric power, S, measured in inhomogeneous Si-MOSFET systems. As a carrier density ns decreases, S increases rapidly This is regarded as the metal-insulator transition (MIT) near nc ~ 79x10-1cm-2, where nc is about 0.02% to nSi ~ 3.4x10-14cm-2 in Si. This can be solved in assuming that ρ = nc/ns increases as ns decreases. nc is an excited(doped) carrier density in the semiconductor induced by gate and can be also regarded as a metallic carrier density, that is, nc ≡ nseminon = nmetal. ns is given as ntot ≡ ns = nc + nseminon where nseminon is a carrier density in a nonmetallic phase. The carrier density measured by Hall effect is the sum of carriers both induced by gate field and generated by MIT. Moreover, a larger metallic phase is not made due to a conducting path in the field-effect structure after a metallic phase is formed. Thus, increasing ns indicates increasing nnon; this corresponds to an over-doping to increase inhomogeneity. It's fitting is given from S = (απ3 kB2T/3e)(1/EF)= (α 8π3kB2T/3h2)(m*/e*nc) =So(1/ ρ) (1/(1-ρ4)) , where e* = ρ e, ρ = nc/ns, T =0.8K, m* =mo/(1-ρ4), α = 0.6, and So = (α 8π3kB2T/3h2)(mo/enc) ~12.36 are used. The data S are closely fitted by m*

  19. Lithium isotope traces magmatic fluid in a seafloor hydrothermal system

    PubMed Central

    Yang, Dan; Hou, Zengqian; Zhao, Yue; Hou, Kejun; Yang, Zhiming; Tian, Shihong; Fu, Qiang

    2015-01-01

    Lithium isotopic compositions of fluid inclusions and hosted gangue quartz from a giant volcanogenic massive sulfide deposit in China provide robust evidence for inputting of magmatic fluids into a Triassic submarine hydrothermal system. The δ7Li results vary from +4.5‰ to +13.8‰ for fluid inclusions and from +6.7‰ to +21.0‰ for the hosted gangue quartz(9 gangue quartz samples containing primary fluid inclusions). These data confirm the temperature-dependent Li isotopic fractionation between hydrothermal quartz and fluid (i.e., Δδ7Liquartz-fluid = –8.9382 × (1000/T) + 22.22(R2 = 0.98; 175 °C–340 °C)), which suggests that the fluid inclusions are in equilibrium with their hosted quartz, thus allowing to determine the composition of the fluids by using δ7Liquartz data. Accordingly, we estimate that the ore-forming fluids have a δ7Li range from −0.7‰ to +18.4‰ at temperatures of 175–340 °C. This δ7Li range, together with Li–O modeling , suggest that magmatic fluid played a significant role in the ore formation. This study demonstrates that Li isotope can be effectively used to trace magmatic fluids in a seafloor hydrothermal system and has the potential to monitor fluid mixing and ore-forming process. PMID:26347051

  20. 3He Bilayer Film Adsorbed on Graphite Plated with a Bilayer of 4He: a New Frustrated 2D Magnetic System

    NASA Astrophysics Data System (ADS)

    Neumann, Michael; Nyéki, Ján; Cowan, Brian; Saunders, John

    2006-09-01

    The heat capacity and NMR response of a 3He bilayer adsorbed on graphite plated with a bilayer of 4He have been measured over the temperature range 1-80 mK. We find that the first 3He layer requires the presence of a 3He fluid overlayer before it solidifies. Solidification is completed at a total coverage close to 9.85 nm-2, On further increasing the coverage the heat capacity maximum grows from `antiferromagnetic-like' (AFM-like) to `ferromagnetic-like' (FM-like). On the other hand, when the 3He layer first solidifies, it has a low temperature saturation magnetisation corresponding to a significant fraction of full polarisation, and this increases with increasing coverage. Furthermore the effective exchange constant inferred from the high temperature magnetisation data is always ferromagnetic. The effective exchange constants inferred from the heat capacity and magnetisation are significantly larger than those observed in the second layer of pure 3He films adsorbed on bare graphite. Otherwise there are strong similarities in the coverage dependence of the heat capacity and magnetisation, providing fresh insights into how the magnetic ground state of such 2D magnets evolves as the frustration is tuned with increasing coverage.

  1. Reconfigurable microfluidic systems with reversible seals compatible with 2D and 3D surfaces of arbitrary chemical composition.

    PubMed

    Konda, Abhiteja; Taylor, Jay M; Stoller, Michael A; Morin, Stephen A

    2015-05-01

    Microfluidic channels are typically fabricated in polydimethylsiloxane (PDMS) using soft lithography and sealed against a support substrate using various irreversible/reversible techniques-the most widely used method is the irreversible bonding of PDMS to glass using oxygen plasma. These techniques are limited in their ability to seal channels against rough, uneven, and/or three-dimensional substrates. This manuscript describes the design and fabrication of soft microfluidic systems from combinations of silicone elastomers that can be reversibly sealed against an array of materials of various topographies/geometries using compression. These soft systems have channels with cross-sectional dimensions that can be decreased, reversibly, by hundreds of microns using compressive stress, and the ability to interface with virtually any support substrate. These capabilities go beyond that achievable with devices fabricated in PDMS alone and enable the integration of microfluidic functionality directly with rough and/or 3D surfaces, providing new opportunities in solution processing useful to, for example, materials science and the analytical/forensic sciences.

  2. 2D Lattice Boltzmann Simulation Of Chemical Reactions Within Rayleigh-Bénard And Poiseuille-Bénard Convection Systems

    NASA Astrophysics Data System (ADS)

    Amaya-Ventura, Gilberto; Rodríguez-Romo, Suemi

    2011-09-01

    This paper deals with the computational simulation of the reaction-diffusion-advection phenomena emerging in Rayleigh-Bénard (RB) and Poiseuille-Bénard reactive convection systems. We use the Boussinesq's approximation for buoyancy forces and the Lattice Boltzmann method (LBM). The first kinetic mesoscopic model proposed here is based on the discrete Boltzmann equation needed to solve the momentum balance coupled with buoyancy forces. Then, a second lattice Boltzmann algorithm is applied to solve the reaction-diffusion-advection equation to calculate the evolution of the chemical species concentration. We use a reactive system composed by nitrous oxide (so call laughing gas) in air as an example; its spatio-temporal decomposition is calculated. Two cases are considered, a rectangular enclosed cavity and an open channel. The simulations are performed at low Reynolds numbers and in a steady state between the first and second thermo-hydrodynamic instabilities. The results presented here, for the thermo-hydrodynamic behavior, are in good agreement with experimental data; while our| chemical kinetics simulation yields expected results. Some applications of our approach are related to chemical reactors and atmospheric phenomena, among others.

  3. Experimental Investigation of the 2D Ion Beam Profile Generated by an ESI Octopole-QMS System

    NASA Astrophysics Data System (ADS)

    Syed, Sarfaraz U. A. H.; Eijkel, Gert B.; Kistemaker, Piet; Ellis, Shane; Maher, Simon; Smith, Donald F.; Heeren, Ron M. A.

    2014-10-01

    In this paper, we have employed an ion imaging approach to investigate the behavior of ions exiting from a quadrupole mass spectrometer (QMS) system that employs a radio frequency octopole ion guide before the QMS. An in-vacuum active pixel detector (Timepix) is employed at the exit of the QMS to image the ion patterns. The detector assembly simultaneously records the ion impact position and number of ions per pixel in every measurement frame. The transmission characteristics of the ion beam exiting the QMS are studied using this imaging detector under different operating conditions. Experimental results confirm that the ion spatial distribution exiting the QMS is heavily influenced by ion injection conditions. Furthermore, ion images from Timepix measurements of protein standards demonstrate the capability to enhance the quality of the mass spectral information and provide a detailed insight in the spatial distribution of different charge states (and hence different m/z) ions exiting the QMS.

  4. Method for controlling clathrate hydrates in fluid systems

    DOEpatents

    Sloan, Jr., Earle D.

    1995-01-01

    Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member and/or six member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone.

  5. A MODIFIED LIGHT TRANSMISSION VISUALIZATION METHOD FOR DNAPL SATURATION MEASUREMENTS IN 2-D MODELS

    EPA Science Inventory

    In this research, a light transmission visualization (LTV) method was used to quantify dense non-aqueous phase liquids (DNAPL) saturation in two-dimensional (2-D), two fluid phase systems. The method is an expansion of earlier LTV methods and takes into account both absorption an...

  6. Longitudinal left ventricular myocardial dysfunction assessed by 2D colour tissue Doppler imaging in a dog with systemic hypertension and severe arteriosclerosis.

    PubMed

    Nicolle, A P; Carlos Sampedrano, C; Fontaine, J J; Tessier-Vetzel, D; Goumi, V; Pelligand, L; Pouchelon, J-L; Chetboul, V

    2005-03-01

    A 12-year-old sexually intact male Vendee Griffon Basset was presented for acute pulmonary oedema. Severe systemic systolic arterial hypertension (SAH) was diagnosed (290 mmHg). Despite blood and abdominal ultrasound tests, the underlying cause of the systemic hypertension could not be determined, and primary SAH was therefore suspected. Conventional echocardiography showed eccentric left ventricular hypertrophy with normal fractional shortening. Despite this apparent normal systolic function, 2D colour tissue Doppler imaging (TDI) identified a marked longitudinal systolic left ventricular myocardial alteration, whereas radial function was still preserved. Three months later, the dog underwent euthanasia because of an acute episode of distal aortic thromboembolism. Necropsy revealed severe aortic and iliac arteriosclerosis. SAH related to arteriosclerosis is a common finding in humans, but has not been previously described in dogs. Moreover, its consequence on longitudinal myocardial function using TDI has never been documented before in this species.

  7. Your fate is in your hands? Handedness, digit ratio (2D:4D), and selection to a national talent development system.

    PubMed

    Baker, Joseph; Kungl, Ann-Marie; Pabst, Jan; Strauß, Bernd; Büsch, Dirk; Schorer, Jörg

    2013-01-01

    Over the past decade a small evidence base has highlighted the potential importance of seemingly innocuous variables related to one's hands, such as hand dominance and the relative length of the second and fourth digits (2D:4D ratio), to success in sport. This study compared 2D:4D digit ratio and handedness among handball players selected to advance in a national talent development system with those not selected. Participants included 480 youth handball players (240 females and 240 males) being considered as part of the talent selection programme for the German Youth National team. Hand dominance and digit ratio were compared to age-matched control data using standard t-tests. There was a greater proportion of left-handers compared to the normal population in males but not in females. There was also a lower digit ratio in both females and males. However, there were no differences between those selected for the next stage of talent development and those not selected on either handedness or digit ratio. These results add support for general effects for both digit ratio and handedness in elite handball; however, these factors seem inadequate to explain talent selection decisions at this level.

  8. Ice Detector and Deicing Fluid Effectiveness Monitoring System

    NASA Technical Reports Server (NTRS)

    Seegmiller, H. Lee B. (Inventor)

    1996-01-01

    An ice detector and deicing fluid effectiveness monitoring system for an aircraft is disclosed. The ice detection portion is particularly suited for use in flight to notify the flight crew of an accumulation of ice on an aircraft lifting and control surfaces, or helicopter rotors, whereas the deicing fluid effectiveness monitoring portion is particularly suited for use on the ground to notify the flight crew of the possible loss of the effectiveness of the deicing fluid. The ice detection portion comprises a temperature sensor and a parallel arrangement of electrodes whose coefficient of coupling is indicative of the formation of the ice, as well as the thickness of the formed ice. The fluid effectiveness monitoring portion comprises a temperature sensor and an ionic-conduction cell array that measures the conductivity of the deicing fluid which is indicative of its concentration and, thus, its freezing point. By measuring the temperature and having knowledge of the freezing point of the deicing fluid, the fluid effectiveness monitoring portion predicts when the deicing fluid may lose its effectiveness because its freezing point may correspond to the temperature of the ambient.

  9. Space station integrated propulsion and fluid systems study

    NASA Technical Reports Server (NTRS)

    Rose, L.; Bergman, D.; Bicknell, B.; Wilson, S.

    1987-01-01

    This Databook addresses the integration of fluid systems of the Space Station program. It includes a catalog of components required for the Space Station elements fluid systems and information on potential hardware commonality. The components catalog is in four parts. The first part lists the components defined for all the fluid systems identified in EP 2.1, Space Station Program Fluid Systems Configuration Databook. The components are cross-referenced in three sections. Section 2.1 lists the components by the fluid system in which they are used. Section 2.2 lists the components by type. Section 2.3 lists by the type of fluid media handled by the component. The next part of the catalog provides a description of the individual component. This section (2.4) is made up of data retrieved from Martin Marietta Denver Aerospace component data base. The third part is an assessment of propulsion hardware technology requirements. Section 2.5 lists components identified during the study as requiring development prior to flight qualification. Finally, Section 2.6 presents the results of the evaluation of commonality between components. The specific requirements of each component have been reviewed and duplication eliminated.

  10. [Infection of cerebrospinal fluid shunt systems].

    PubMed

    Jiménez-Mejías, Manuel E; García-Cabrera, Emilio

    2008-04-01

    Cerebrospinal fluid (CSF) shunt infection is a cause of considerable morbidity and mortality. Shunt infection is produced mainly during surgery and by surgical wound infection. Staphylococcus spp. (> 50% methicillin-resistant) are the most common causative bacteria, although gram-negative bacilli (10%-25%) and Propionibacterium acnes are becoming increasingly implicated. Shunt malfunction syndrome and fever are the most frequent clinical manifestations, whereas signs of meningeal irritation are uncommon. Other clinical manifestations depend on the location of the distal catheter. CSF should be obtained by puncture of the shunt reservoir or the distal catheter and processed for biochemical analyses, cell count, Gram stain, and aerobic and anaerobic cultures (lengthy incubation). Because of biofilm formation and to avoid recurrences, the recommended treatment is intravenous antibiotics plus removal of all components of the infected shunt, followed by placement of an external drainage catheter and a new shunt. Prophylaxis is important and can include antimicrobial prophylaxis and/or antibiotic-impregnated catheters.

  11. Generalized Fluid System Simulation Program (GFSSP) - Version 6

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul

    2015-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.

  12. Generalized Fluid System Simulation Program, Version 6.0

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; LeClair, A. C.; Moore, A.; Schallhorn, P. A.

    2013-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependant flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 25 demonstrated example problems.

  13. Heat-Transfer Fluids for Solar-Energy Systems

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1982-01-01

    43-page report investigates noncorrosive heat-transport fluids compatible with both metallic and nonmetallic solar collectors and plumbing systems. Report includes tables and figures of X-ray inspections for corrosion and schematics of solar-heat transport systems and heat rejection systems.

  14. Towards a smart non-invasive fluid loss measurement system.

    PubMed

    Suryadevara, N K; Mukhopadhyay, S C; Barrack, L

    2015-04-01

    In this article, a smart wireless sensing non-invasive system for estimating the amount of fluid loss, a person experiences while physical activity is presented. The system measures three external body parameters, Heart Rate, Galvanic Skin Response (GSR, or skin conductance), and Skin Temperature. These three parameters are entered into an empirically derived formula along with the user's body mass index, and estimation for the amount of fluid lost is determined. The core benefit of the developed system is the affluence usage in combining with smart home monitoring systems to care elderly people in ambient assisted living environments as well in automobiles to monitor the body parameters of a motorist.

  15. Wireless Fluid-Level Measurement System Equips Boat Owners

    NASA Technical Reports Server (NTRS)

    2008-01-01

    While developing a measurement acquisition system to be used to retrofit aging aircraft with vehicle health monitoring capabilities, Langley Research Center developed an innovative wireless fluid-level measurement system. The NASA technology was of interest to Tidewater Sensors LLC, of Newport News, Virginia, because of its many advantages over conventional fuel management systems, including its ability to provide an accurate measurement of volume while a boat is experiencing any rocking motion due to waves or people moving about on the boat. These advantages led the company to license this novel fluid-level measurement system from NASA for marine applications.

  16. A deep crustal fluid channel into the San Andreas Fault system near Parkfield, California

    USGS Publications Warehouse

    Becken, M.; Ritter, O.; Park, S.K.; Bedrosian, P.A.; Weckmann, U.; Weber, M.

    2008-01-01

    Magnetotelluric (MT) data from 66 sites along a 45-km-long profile across the San Andreas Fault (SAF) were inverted to obtain the 2-D electrical resistivity structure of the crust near the San Andreas Fault Observatory at Depth (SAFOD). The most intriguing feature of the resistivity model is a steeply dipping upper crustal high-conductivity zone flanking the seismically defined SAF to the NE, that widens into the lower crust and appears to be connected to a broad conductivity anomaly in the upper mantle. Hypothesis tests of the inversion model suggest that upper and lower crustal and upper-mantle anomalies may be interconnected. We speculate that the high conductivities are caused by fluids and may represent a deep-rooted channel for crustal and/or mantle fluid ascent. Based on the chemical analysis of well waters, it was previously suggested that fluids can enter the brittle regime of the SAF system from the lower crust and mantle. At high pressures, these fluids can contribute to fault-weakening at seismogenic depths. These geochemical studies predicted the existence of a deep fluid source and a permeable pathway through the crust. Our resistivity model images a conductive pathway, which penetrates the entire crust, in agreement with the geochemical interpretation. However, the resistivity model also shows that the upper crustal branch of the high-conductivity zone is located NE of the seismically defined SAF, suggesting that the SAF does not itself act as a major fluid pathway. This interpretation is supported by both, the location of the upper crustal high-conductivity zone and recent studies within the SAFOD main hole, which indicate that pore pressures within the core of the SAF zone are not anomalously high, that mantle-derived fluids are minor constituents to the fault-zone fluid composition and that both the volume of mantle fluids and the fluid pressure increase to the NE of the SAF. We further infer from the MT model that the resistive Salinian block

  17. Development and testing of the Automated Fluid Interface System

    NASA Technical Reports Server (NTRS)

    Milton, Martha E.; Tyler, Tony R.

    1993-01-01

    The Automated Fluid Interface System (AFIS) is an advanced development program aimed at becoming the standard interface for satellite servicing for years to come. The AFIS will be capable of transferring propellants, fluids, gasses, power, and cryogens from a tanker to an orbiting satellite. The AFIS program currently under consideration is a joint venture between the NASA/Marshall Space Flight Center and Moog, Inc. An engineering model has been built and is undergoing development testing to investigate the mechanism's abilities.

  18. Development and testing of the Automated Fluid Interface System

    NASA Astrophysics Data System (ADS)

    Milton, Martha E.; Tyler, Tony R.

    1993-05-01

    The Automated Fluid Interface System (AFIS) is an advanced development program aimed at becoming the standard interface for satellite servicing for years to come. The AFIS will be capable of transferring propellants, fluids, gasses, power, and cryogens from a tanker to an orbiting satellite. The AFIS program currently under consideration is a joint venture between the NASA/Marshall Space Flight Center and Moog, Inc. An engineering model has been built and is undergoing development testing to investigate the mechanism's abilities.

  19. Systems and methods for separating particles and/or substances from a sample fluid

    DOEpatents

    Mariella, Jr., Raymond P.; Dougherty, George M.; Dzenitis, John M.; Miles, Robin R.; Clague, David S.

    2016-11-01

    Systems and methods for separating particles and/or toxins from a sample fluid. A method according to one embodiment comprises simultaneously passing a sample fluid and a buffer fluid through a chamber such that a fluidic interface is formed between the sample fluid and the buffer fluid as the fluids pass through the chamber, the sample fluid having particles of interest therein; applying a force to the fluids for urging the particles of interest to pass through the interface into the buffer fluid; and substantially separating the buffer fluid from the sample fluid.

  20. Fluid dynamics of double diffusive systems

    SciTech Connect

    Koseff, J.R.

    1990-04-03

    The major accomplishments of our initial research period (August 1, 1987, to March 1, 1990) are as follows; we completed construction of the experimental facility. Originally, it had been our intent to modify an existing facility in our laboratory. When this became impractical we constructed a new stand-alone facility. Modified an existing three-dimensional numerical code developed in our laboratory, SEAFLOS1, by incorporating a salinity transport equation. Developed experimental and analytical techniques, and performed both physical and numerical experiments for a wide range of initial and boundary conditions. Focused our overall research effort to answer the following four questions pertaining to the formation of convective intrusions due to lateral temperature gradients established by sidewall heating. (1) What is the internal structure of the convective intrusions as a function of the initial stratification and sidewall heating rates (2) What is the correct scaling for the initial vertical dimension of the intrusions (3) How does the merging process vary as a function of initial stratification and sidewall heating rate (4) Is the sidewall heating critical for continued propagation of the intrusions, or is it merely a trigger which releases the internal instability in the fluid

  1. ISS-CREAM Thermal and Fluid System Design and Analysis

    NASA Technical Reports Server (NTRS)

    Thorpe, Rosemary S.

    2015-01-01

    Thermal and Fluids Analysis Workshop (TFAWS), Silver Spring MD NCTS 21070-15. The ISS-CREAM (Cosmic Ray Energetics And Mass for the International Space Station) payload is being developed by an international team and will provide significant cosmic ray characterization over a long time frame. Cold fluid provided by the ISS Exposed Facility (EF) is the primary means of cooling for 5 science instruments and over 7 electronics boxes. Thermal fluid integrated design and analysis was performed for CREAM using a Thermal Desktop model. This presentation will provide some specific design and modeling examples from the fluid cooling system, complex SCD (Silicon Charge Detector) and calorimeter hardware, and integrated payload and ISS level modeling. Features of Thermal Desktop such as CAD simplification, meshing of complex hardware, External References (Xrefs), and FloCAD modeling will be discussed.

  2. Generalized Fluid System Simulation Program, Version 5.0-Educational

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.

    2011-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems.

  3. Finite element analysis of fluid-filled elastic piping systems

    NASA Technical Reports Server (NTRS)

    Everstine, G. C.; Marcus, M. S.; Quezon, A. J.

    1983-01-01

    Two finite element procedures are described for predicting the dynamic response of general 3-D fluid-filled elastic piping systems. The first approach, a low frequency procedure, models each straight pipe or elbow as a sequence of beams. The contained fluid is modeled as a separate coincident sequence axial members (rods) which are tied to the pipe in the lateral direction. The model includes the pipe hoop strain correction to the fluid sound speed and the flexibility factor correction to the elbow flexibility. The second modeling approach, an intermediate frequency procedure, follows generally the original Zienkiewicz-Newton scheme for coupled fluid-structure problems except that the velocity potential is used as the fundamental fluid unknown to symmetrize the coefficient matrices. From comparisons of the beam model predictions to both experimental data and the 3-D model, the beam model is validated for frequencies up to about two-thirds of the lowest fluid-filled labor pipe mode. Accurate elbow flexibility factors are seen to be crucial for effective beam modeling of piping systems.

  4. Construction of Metabolism Prediction Models for CYP450 3A4, 2D6, and 2C9 Based on Microsomal Metabolic Reaction System

    PubMed Central

    He, Shuai-Bing; Li, Man-Man; Zhang, Bai-Xia; Ye, Xiao-Tong; Du, Ran-Feng; Wang, Yun; Qiao, Yan-Jiang

    2016-01-01

    During the past decades, there have been continuous attempts in the prediction of metabolism mediated by cytochrome P450s (CYP450s) 3A4, 2D6, and 2C9. However, it has indeed remained a huge challenge to accurately predict the metabolism of xenobiotics mediated by these enzymes. To address this issue, microsomal metabolic reaction system (MMRS)—a novel concept, which integrates information about site of metabolism (SOM) and enzyme—was introduced. By incorporating the use of multiple feature selection (FS) techniques (ChiSquared (CHI), InfoGain (IG), GainRatio (GR), Relief) and hybrid classification procedures (Kstar, Bayes (BN), K-nearest neighbours (IBK), C4.5 decision tree (J48), RandomForest (RF), Support vector machines (SVM), AdaBoostM1, Bagging), metabolism prediction models were established based on metabolism data released by Sheridan et al. Four major biotransformations, including aliphatic C-hydroxylation, aromatic C-hydroxylation, N-dealkylation and O-dealkylation, were involved. For validation, the overall accuracies of all four biotransformations exceeded 0.95. For receiver operating characteristic (ROC) analysis, each of these models gave a significant area under curve (AUC) value >0.98. In addition, an external test was performed based on dataset published previously. As a result, 87.7% of the potential SOMs were correctly identified by our four models. In summary, four MMRS-based models were established, which can be used to predict the metabolism mediated by CYP3A4, 2D6, and 2C9 with high accuracy. PMID:27735849

  5. 21 CFR 866.5860 - Total spinal fluid immuno-logical test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Total spinal fluid immuno-logical test system. 866....5860 Total spinal fluid immuno-logical test system. (a) Identification. A total spinal fluid... the total protein in cerebrospinal fluid. Measurement of spinal fluid proteins may aid in...

  6. Fluid Delivery System For Capillary Electrophoretic Applications.

    DOEpatents

    Li, Qingbo; Liu, Changsheng; Kane, Thomas E.; Kernan, John R.; Sonnenschein, Bernard; Sharer, Michael V.

    2002-04-23

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  7. Determination of gas volume trapped in a closed fluid system

    NASA Technical Reports Server (NTRS)

    Hunter, W. F.; Jolley, J. E.

    1971-01-01

    Technique involves extracting known volume of fluid and measuring system before and after extraction, volume of entrapped gas is then computed. Formula derived from ideal gas laws is basis of this method. Technique is applicable to thermodynamic cycles and hydraulic systems.

  8. Propagator-resolved 2D exchange in porous media in the inhomogeneous magnetic field.

    PubMed

    Burcaw, Lauren M; Hunter, Mark W; Callaghan, Paul T

    2010-08-01

    We present a propagator-resolved 2D exchange spectroscopy technique for observing fluid motion in a porous medium. The susceptibility difference between the matrix and the fluid is exploited to produce an inhomogeneous internal magnetic field, causing the Larmor frequency to change as molecules migrate. We test our method using a randomly packed monodisperse 100 microm diameter glass bead matrix saturated with distilled water. Building upon previous 2D exchange spectroscopy work we add a displacement dimension which allows us to obtain 2D exchange spectra that are defined by both mixing time and spatial displacement rather than by mixing time alone. We also simulate our system using a Monte Carlo process in a random nonpenetrating monodisperse bead pack, finding good agreement with experiment. A simple analytic model is used to interpret the NMR data in terms of a characteristic length scale over which molecules must diffuse to sample the inhomogeneous field distribution. PMID:20554230

  9. A Generalized Fluid System Simulation Program to Model Flow Distribution in Fluid Networks

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Bailey, John W.; Schallhorn, Paul; Steadman, Todd

    1998-01-01

    This paper describes a general purpose computer program for analyzing steady state and transient flow in a complex network. The program is capable of modeling phase changes, compressibility, mixture thermodynamics and external body forces such as gravity and centrifugal. The program's preprocessor allows the user to interactively develop a fluid network simulation consisting of nodes and branches. Mass, energy and specie conservation equations are solved at the nodes; the momentum conservation equations are solved in the branches. The program contains subroutines for computing "real fluid" thermodynamic and thermophysical properties for 33 fluids. The fluids are: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutane, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride and ammonia. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. Seventeen different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include: pipe flow, flow through a restriction, non-circular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct, labyrinth seal, parallel plates, common fittings and valves, pump characteristics, pump power, valve with a given loss coefficient, and a Joule-Thompson device. The system of equations describing the fluid network is solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods. This paper also illustrates the application and verification of the code by comparison with Hardy Cross method for steady state flow and analytical solution for unsteady flow.

  10. Parallel-plate fluid flow systems for bone cell stimulation.

    PubMed

    Huesa, Carmen; Helfrich, Miep H; Aspden, Richard M

    2010-04-19

    Bone responds to changes in its mechanical environment, but the mechanisms by which it does so are poorly understood. One hypothesis of mechanosensing in bone states that osteocytes can sense the flow of fluid through the canalicular system. To study this in vitro a number of fluid flow devices have been designed in which cells are placed between parallel plates in sealed chambers. Fluid flows through the chambers at controlled rates, most commonly driven by a peristaltic pump. In addition to fluid flow, high pressures have been observed in these chambers, but the effect of this on the cellular responses has generally been ignored or considered irrelevant, something challenged by recent cellular experiments using pressure only. We have, therefore, devised a system in which we can considerably reduce the pressure while maintaining the flow rate to enable study of their effects individually and in combination. As reducing pressure also reduces the risk of leaks in flow chambers, our system is suitable for real-time microscopical experiments. We present details of the new systems and of experiments with osteoblasts to illustrate the effects of fluid flow with and without additional pressure on the translocation of beta-catenin to the nucleus.

  11. Monte Carlo simulation of the dose response of a novel 2D silicon diode array for use in hybrid MRI–LINAC systems

    SciTech Connect

    Gargett, Maegan Rosenfeld, Anatoly; Oborn, Brad; Metcalfe, Peter

    2015-02-15

    Purpose: MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named “magic plate,” for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. Methods: GEANT4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-line and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm{sup 3}) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm{sup 2} area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm{sup 2} photon field size. Results: The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. Conclusions: A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI

  12. A Laser Absorption Spectroscopy System for 2D Mapping of CO2 Over Large Spatial Areas for Monitoring, Reporting and Verification of Ground Carbon Storage Sites

    NASA Astrophysics Data System (ADS)

    Dobler, J. T.; Braun, M.; Blume, N.; McGregor, D.; Zaccheo, T. S.; Pernini, T.; Botos, C.

    2014-12-01

    We will present the development of the Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE). GreenLITE consists of two laser based transceivers and a number of retro-reflectors to measure differential transmission (DT) of a number of overlapping chords in a plane over the site being monitored. The transceivers use the Intensity Modulated Continuous Wave (IM-CW) approach, which is a technique that allows simultaneous transmission/reception of multiple fixed wavelength lasers and a lock-in, or matched filter, to measure amplitude and phase of the different wavelengths in the digital domain. The technique was developed by Exelis and has been evaluated using an airborne demonstrator for the past 10 years by NASA Langley Research Center. The method has demonstrated high accuracy and high precision measurements as compared to an in situ monitor tracable to WMO standards, agreeing to 0.65 ppm +/-1.7 ppm. The GreenLITE system is coupled to a cloud-based data storage and processing system that takes the measured chord data, along with auxiliary data to retrieve an average CO2 concentration per chord and which combines the chords to provide an estimate of the spatial distribution of CO2 concentration in the plane. A web-based interface allows users to view real-time CO2 concentrations and 2D concentration maps of the area being monitored. The 2D maps can be differenced as a function of time for an estimate of the flux across the plane measured by the system. The system is designed to operate autonomously from semi-remote locations with a very low maintenance cycle. Initial instrument tests, conducted in June, showed signal to noise in the measured ratio of >3000 for 10 s averages. Additional local field testing and a quantifiable field testing at the Zero Emissions Research and Technology (ZERT) site in Bozeman, MT are planned for this fall. We will present details on the instrument and software tools that have been developed, along with results from the local

  13. Space Station Freedom external fluid utilities system design and integration

    NASA Astrophysics Data System (ADS)

    Reinhard, Dawn M.

    1993-02-01

    This paper presents the current Space Station Freedom External Fluid System Design, which is an integrated design of numerous criteria, such as safety, reliability, availability, manufacturability, commonality and compatibility with Extravehicular Activity (EVA). McDonnell Douglas engineers are working to meet a Critical Design Review (CDR) in 1993 and to begin production of fluid system hardware for first launch in 1996, with successive launches continuing through the decade. The fluid system design hardware, such as the 316L Stainless Steel tubing, Inconel, flexible metal hoses, tee fittings, clamping systems and quick disconnect couplings will be presented, with special emphasis on how they were selected in the early phases of the design process. Fabrication and assembly of the Space Station Freedom fluid utility system, using the Numerically Controlled (NC) tube bender and Orbital Welder will be discussed. The Extravehicular Activity (EVA) on-orbit assembly and maintenance techniques of this system will also be briefly explained. Recommendations which have contributed to the success of this design effort include: Consistent communications between groups. a centralized computer-aided drafting/Computer-aided manufacturing (CAD/CAM) system with Electronic Development Fixture (EDF) capability, and technical review boards to control and minimize changes to the design baseline.

  14. LHC II system sensitivity to magnetic fluids

    NASA Astrophysics Data System (ADS)

    Cotae, Vlad; Creanga, Ioan

    2005-03-01

    Experiments have been designed to reveal the influences of ferrofluid treatment and static magnetic field exposure on the photosynthetic system II, where the light harvesting complex (LHC II) controls the ratio chlorophyll a/ chlorophyll b (revealing, indirectly, the photosynthesis rate). Spectrophotometric measurement of chlorophyll content revealed different influences for relatively low ferrofluid concentrations (10-30 μl/l) in comparison to higher concentrations (70-100 μl/l). The overlapped effect of the static magnetic field shaped better the stimulatory ferrofluid action on LHC II system in young poppy plantlets.

  15. GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 2: User's manual and program listing

    NASA Technical Reports Server (NTRS)

    Bailey, R. T.; Shih, T. I.-P.; Nguyen, H. L.; Roelke, R. J.

    1990-01-01

    An efficient computer program, called GRID2D/3D, was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no

  16. 2D materials for nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  17. Rotation of a rod system containing inertial fluid flow

    NASA Astrophysics Data System (ADS)

    Sergeev, A. D.

    2012-11-01

    This paper considers a rod system for which it is possible to correctly formulate and solve the problem of three-dimensional motion in the physical space of an elastic pipeline area containing inertial incompressible fluid flow. The precession of the axis of an elastic pipeline along which inertial incompressible fluid flows is described, a physical phenomenon which has not been previously studied. With the use of rigid body dynamics, it was theoretically established that a three-dimensional dynamic process is possible in an open (exchanging mass with the environment) elastic-inertial rod system.

  18. Enhancement of biomixing by swimming cells in 2D films

    NASA Astrophysics Data System (ADS)

    Gollub, Jerry; Kurtuldu, Huseyin; Guasto, Jeffrey; Johnson, Karl

    2011-11-01

    Fluid mixing in active suspensions of microorganisms is important to ecological phenomena and shows surprising statistical behavior. We investigate the mixing produced by swimming unicellular algal cells (Chlamydomonas) in quasi-2D films by tracking the motions of cells and of microscopic passive tracer particles advected by the fluid. The reduced spatial dimension of the system leads to long-range flows and a surprisingly strong dependence of tracer transport on the swimmer concentration. The mean square displacements are well described by a stochastic Langevin model, with an effective diffusion coefficient D growing as the 3/2 power of the swimmer concentration, due to the interaction of tracer particles with multiple swimmers. We also discuss the anomalous probability distributions of tracer displacements, which become Gaussian at high concentration, but show strong power-law tails at low concentration. Supported by NSF Grant DMR-0803153.

  19. 46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control... with § 58.30-1(a)(14). (2) The hydraulic fluid used in the system must comply with § 58.30-10. (3)...

  20. 46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control... with § 58.30-1(a)(14). (2) The hydraulic fluid used in the system must comply with § 58.30-10. (3)...

  1. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  2. Fluid-bed air-supply system

    DOEpatents

    Atabay, Keramettin

    1979-01-01

    The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.

  3. Method for controlling clathrate hydrates in fluid systems

    DOEpatents

    Sloan, Jr., Earle D.

    1995-01-01

    Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone. Additives can also contain multiple cyclic chemical groupings having different size rings. One such additive is sold under the name Gaffix VC-713.

  4. Method for controlling clathrate hydrates in fluid systems

    DOEpatents

    Sloan, E.D. Jr.

    1995-07-11

    Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone. Additives can also contain multiple cyclic chemical groupings having different size rings. One such additive is sold under the name Gaffix VC-713.

  5. Theory and realization of a 2D high resolution and high sensitivity SPECT system with an angle-encoding attenuator pattern

    NASA Astrophysics Data System (ADS)

    Feng, Tao; Wang, Jizhe; Tsui, Benjamin M. W.

    2016-04-01

    The camera of the conventional SPECT system requires a collimator to allow incoming photons from a specific range of incident angle to reach the detector. It is the major factor that determines the spatial resolution of the camera. Moreover, it also greatly reduces the number of detected photons and hence increases statistical fluctuations in the acquired image data. The goal of this paper is to propose a theory and design for a novel high resolution and high sensitivity SPECT system without conventional collimators. The key is to resolve the incident photons from all directional angles and detected by every detector bin. Special ‘attenuators’ were designed to ‘encode’ the incoming photons from different directions similar to coded aperture to form projection data for image reconstruction. Each encoded angular pattern of detected photons was recorded as one measurement. Different angular patterns were achieved by changing the configurations of the attenuators so that angular pattern of different measurements or measurement matrix (MM) is invertible, which guarantee a unique reconstructed image. In simulation, the attenuators were fitted on a virtual full-ring gamma camera, as an alternative to the collimators in conventional SPECT systems. To evaluate the performance of the new SPECT system, analytical simulated projection data in 2D scenario were generated from the XCAT phantom. Noisy simulation using 100 noise realizations suggests that the new attenuator design provides much improved image quality in terms of contrast-noise trade-offs (~30% improvement). The results suggest that the new design of using attenuators to replace collimator is feasible and could potentially improve sensitivity without sacrificing resolution in today’s SPECT systems.

  6. NUBOW-2D Inelastic

    2002-01-31

    This program solves the two-dimensional mechanical equilbrium configuration of a core restraint system, which is subjected to radial temperature and flux gradients, on a time increment basis. At each time increment, the code calculates the irradiation creep and swelling strains for each duct from user-specified creep and swelling correlations. Using the calculated thermal bowing, inelastic bowing and the duct dilation, the corresponding equilibrium forces, beam deflections, total beam displacements, and structural reactivity changes are calculated.

  7. Generalized Fluid System Simulation Program, Version 6.0

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; LeClair, A. C.; Moore, R.; Schallhorn, P. A.

    2016-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a general purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. Two thermodynamic property programs (GASP/WASP and GASPAK) provide required thermodynamic and thermophysical properties for 36 fluids: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutene, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride, ammonia, hydrogen peroxide, and air. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. The users can also supply property tables for fluids that are not in the library. Twenty-four different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include pipe flow, flow through a restriction, noncircular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct

  8. Multifunctional Nanofluids with 2D Nanosheets for thermal management and tribological applications

    NASA Astrophysics Data System (ADS)

    Taha Tijerina, Jose Jaime

    Conventional heat-transfer fluids such as water, ethylene glycol, standard oils and other lubricants are typically low-efficiency heat-transfer fluids. Thermal management plays a critical factor in many applications where these fluids can be used, such as in motors/engines, solar cells, biopharmaceuticals, fuel cells, high voltage power transmission systems, micro/nanoelectronics mechanical systems (MEMS/NEMS), and nuclear cooling among others. These insulating fluids require superb filler dispersion, high thermal conduction, and for certain applications as in electrical/electronic devices also electrical insulation. The miniaturization and high efficiency of electrical/electronic devices in these fields demand successful heat management and energy-efficient fluid-based heat-transfer systems. Recent advances in layered materials enable large scale synthesis of various two-dimensional (2D) structures. Some of these 2D materials are good choices as nanofillers in heat transfer fluids; mainly due to their inherent high thermal conductivity (TC) and high surface area available for thermal energy transport. Among various 2D-nanostructures, hexagonal boron nitride (h-BN) and graphene (G) exhibit versatile properties such as outstanding TC, excellent mechanical stability, and remarkable chemical inertness. The following research, even though investigate various conventional fluids, will focus on dielectric insulating nanofluids (mineral oil -- MO) with significant thermal performance. It is presented the plan for synthesis and characterization of stable high-thermal conductivity nanofluids using 2D-nanostructures of h-BN, which will be further incorporated at diverse filler concentrations to conventional fluids for cooling applications, without compromising its electrical insulating property. For comparison, properties of h-BN based fluids are compared with conductive fillers such as graphene; where graphene has similar crystal structure of h-BN and also has similar bulk

  9. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  10. Control system for cheng dual-fluid cycle engine system

    SciTech Connect

    Cheng, D.Y.

    1987-07-21

    A dual-fluid heat engine is described which is operated to produce co-generated process steam having: a chamber; compressor means for introducing a first gaseous working fluid comprising air into the chamber, the compressor means having a predetermined pressure ratio (CPR); means for introducing a second liquid-vapor working fluid comprising water in the form of a vapor within the chamber at a defined water/air working fluid ratio (XMIX); means for heating the water vapor and air in the chamber at a defined specific heat input rate (SHIR); turbine means responsive to the mixture of the first and second working fluids for converting the energy associated with the mixture to mechanical energy, the temperature of the mixture entering the turbine means defining the turbine inlet temperature (TIT) and having a design maximum turbine inlet temperature (TITmax); counterflow heat exchanger means for transferring residual thermal energy from the exhausted mixture of first and second working fluids to the incoming working fluid water to thereby preheat the same to water vapor prior to its introduction within the chamber; means for diverting water vapor from the chamber, if desired, for co-generated process steam; and wherein the improvement comprises: means for operating the engine under partial load conditions such that when substantially no co-generated process steam is required. The engine control path follows a locus of peak efficiency points resulting in declining TIT as the load decreases, and such that XMIX and SHIR are selected so that for a given value of TIT, XMIX is at or near XMIX peak, where XMIX peak occurs when conditions are met simultaneously.

  11. 14 CFR 23.1097 - Carburetor deicing fluid system capacity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor deicing fluid system capacity. 23.1097 Section 23.1097 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... at the rate specified in § 23.1095 for a time equal to three percent of the maximum endurance of...

  12. System proportions fluid-flow in response to demand signals

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Control system provides proportioned fluid flow rates in response to demand signals. It compares a digital signal, representing a flow demand, with a reference signal to yield a control voltage to one or more solenoid valves connected to orifices of a predetermined size.

  13. A System for True and False Memory Prediction Based on 2D and 3D Educational Contents and EEG Brain Signals.

    PubMed

    Bamatraf, Saeed; Hussain, Muhammad; Aboalsamh, Hatim; Qazi, Emad-Ul-Haq; Malik, Amir Saeed; Amin, Hafeez Ullah; Mathkour, Hassan; Muhammad, Ghulam; Imran, Hafiz Muhammad

    2016-01-01

    We studied the impact of 2D and 3D educational contents on learning and memory recall using electroencephalography (EEG) brain signals. For this purpose, we adopted a classification approach that predicts true and false memories in case of both short term memory (STM) and long term memory (LTM) and helps to decide whether there is a difference between the impact of 2D and 3D educational contents. In this approach, EEG brain signals are converted into topomaps and then discriminative features are extracted from them and finally support vector machine (SVM) which is employed to predict brain states. For data collection, half of sixty-eight healthy individuals watched the learning material in 2D format whereas the rest watched the same material in 3D format. After learning task, memory recall tasks were performed after 30 minutes (STM) and two months (LTM), and EEG signals were recorded. In case of STM, 97.5% prediction accuracy was achieved for 3D and 96.6% for 2D and, in case of LTM, it was 100% for both 2D and 3D. The statistical analysis of the results suggested that for learning and memory recall both 2D and 3D materials do not have much difference in case of STM and LTM.

  14. A System for True and False Memory Prediction Based on 2D and 3D Educational Contents and EEG Brain Signals

    PubMed Central

    2016-01-01

    We studied the impact of 2D and 3D educational contents on learning and memory recall using electroencephalography (EEG) brain signals. For this purpose, we adopted a classification approach that predicts true and false memories in case of both short term memory (STM) and long term memory (LTM) and helps to decide whether there is a difference between the impact of 2D and 3D educational contents. In this approach, EEG brain signals are converted into topomaps and then discriminative features are extracted from them and finally support vector machine (SVM) which is employed to predict brain states. For data collection, half of sixty-eight healthy individuals watched the learning material in 2D format whereas the rest watched the same material in 3D format. After learning task, memory recall tasks were performed after 30 minutes (STM) and two months (LTM), and EEG signals were recorded. In case of STM, 97.5% prediction accuracy was achieved for 3D and 96.6% for 2D and, in case of LTM, it was 100% for both 2D and 3D. The statistical analysis of the results suggested that for learning and memory recall both 2D and 3D materials do not have much difference in case of STM and LTM. PMID:26819593

  15. Cellular Biotechnology Operations Support System Fluid Dynamics Investigation

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Aboard the International Space Station (ISS), the Tissue Culture Medium (TCM) is the bioreactor vessel in which cell cultures are grown. With its two syringe ports, it is much like a bag used to administer intravenous fluid, except it allows gas exchange needed for life. The TCM contains cell culture medium, and when frozen cells are flown to the ISS, they are thawed and introduced to the TCM through the syringe ports. In the Cellular Biotechnology Operations Support System-Fluid Dynamics Investigation (CBOSS-FDI) experiment, several mixing procedures are being assessed to determine which method achieves the most uniform mixing of growing cells and culture medium.

  16. Investigation of 2D photonic crystal structure based channel drop filter using quad shaped photonic crystal ring resonator for CWDM system

    NASA Astrophysics Data System (ADS)

    Chhipa, Mayur Kumar; Dusad, Lalit Kumar

    2016-05-01

    In this paper, the design & performance of two dimensional (2-D) photonic crystal structure based channel drop filter is investigated using quad shaped photonic crystal ring resonator. In this paper, Photonic Crystal (PhC) based on square lattice periodic arrays of Gallium Indium Phosphide (GaInP) rods in air structure have been investigated using Finite Difference Time Domain (FDTD) method and photonic band gap is being calculated using Plane Wave Expansion (PWE) method. The PhC designs have been optimized for telecommunication wavelength λ= 1571 nm by varying the rods lattice constant. The number of rods in Z and X directions is 21 and 20, with lattice constant 0.540 nm it illustrates that the arrangement of Gallium Indium Phosphide (GaInP) rods in the structure which gives the overall size of the device around 11.4 µm × 10.8 µm. The designed filter gives good dropping efficiency using 3.298, refractive index. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm2.

  17. Internal fluid mechanics research on supercomputers for aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Miller, Brent A.; Anderson, Bernhard H.; Szuch, John R.

    1988-01-01

    The Internal Fluid Mechanics Division of the NASA Lewis Research Center is combining the key elements of computational fluid dynamics, aerothermodynamic experiments, and advanced computational technology to bring internal computational fluid mechanics (ICFM) to a state of practical application for aerospace propulsion systems. The strategies used to achieve this goal are to: (1) pursue an understanding of flow physics, surface heat transfer, and combustion via analysis and fundamental experiments, (2) incorporate improved understanding of these phenomena into verified 3-D CFD codes, and (3) utilize state-of-the-art computational technology to enhance experimental and CFD research. Presented is an overview of the ICFM program in high-speed propulsion, including work in inlets, turbomachinery, and chemical reacting flows. Ongoing efforts to integrate new computer technologies, such as parallel computing and artificial intelligence, into high-speed aeropropulsion research are described.

  18. Code System for Fluid-Structure Interaction Analysis.

    2001-05-30

    Version 00 PELE-IC is a two-dimensional semi-implicit Eulerian hydrodynamics program for the solution of incompressible flow coupled to flexible structures. The code was developed to calculate fluid-structure interactions and bubble dynamics of a pressure-suppression system following a loss-of-coolant accident (LOCA). The fluid, structure, and coupling algorithms have been verified by calculation of benchmark problems and air and steam blowdown experiments. The code is written for both plane and cylindrical coordinates. The coupling algorithm is generalmore » enough to handle a wide variety of structural shapes. The concepts of void fractions and interface orientation are used to track the movement of free surfaces, allowing great versatility in following fluid-gas interfaces both for bubble definition and water surface motion without the use of marker particles.« less

  19. Sustainable fouling management for spacecraft fluid handling systems

    NASA Astrophysics Data System (ADS)

    Thomas, Evan Alexander Beirne

    Current technologies for microgravity fluid management utilize centripetal acceleration or capillary action to separate liquids from gases without gravity buoyancy. Centripetal acceleration hardware is prone to failure from fouling, while capillary technologies have only been utilized in favorable wetting environments, wherein the contact angle of the liquid, Qadv, a key design parameter, is reliably low. In this work, the impact of wastewater fouling on Qadv, is characterized, and the results applied to the development of a capillary static phase separator. Mean wastewater Qadv, on clean surfaces are between ≈78° and ≈89° on hydrophilic surfaces, and up to over ≈105° on hydrophobic surfaces. Small crystalline growth on the order of 10microm can lower advancing contact angles Qadv, by approximately 30°, while biofilm growth can lower them by approximately 15o. Vacuum drying of fouled surfaces increased Qadv, by about 8°, and defects greater in height than 5% of the capillary length increased Qadv, by approximately 30°. Interestingly, the promotion of wastewater fouling may even improve the performance of capillary dependent fluid management systems, and designs attempting to exploit wastewater wetting must account for highly variable wetting conditions. Reduced gravity flight tests demonstrated a static phase separator that achieved nearly 100% separation of gas from fluids with widely varying Qadv. The system uses centrifugal force to coalesce droplets via a circular path; collects bulk fluid via capillary geometries (wetting) or air drag (non-wetting); and contains bulk fluid by capillary force; while minimizing liquid carryover into the air stream by pinning edges (wetting) or tortuous path (non-wetting). Instead of attempting to prevent or reduce wastewater fouling, sustainable fluid management systems can be designed to accommodate fouling. For example, a lunar outpost water recovery system could be encouraged to foul regolith media and form

  20. Glitter in a 2D monolayer.

    PubMed

    Yang, Li-Ming; Dornfeld, Matthew; Frauenheim, Thomas; Ganz, Eric

    2015-10-21

    We predict a highly stable and robust atomically thin gold monolayer with a hexagonal close packed lattice stabilized by metallic bonding with contributions from strong relativistic effects and aurophilic interactions. We have shown that the framework of the Au monolayer can survive 10 ps MD annealing simulations up to 1400 K. The framework is also able to survive large motions out of the plane. Due to the smaller number of bonds per atom in the 2D layer compared to the 3D bulk we observe significantly enhanced energy per bond (0.94 vs. 0.52 eV per bond). This is similar to the increase in bond strength going from 3D diamond to 2D graphene. It is a non-magnetic metal, and was found to be the global minima in the 2D space. Phonon dispersion calculations demonstrate high kinetic stability with no negative modes. This 2D gold monolayer corresponds to the top monolayer of the bulk Au(111) face-centered cubic lattice. The close-packed lattice maximizes the aurophilic interactions. We find that the electrons are completely delocalized in the plane and behave as 2D nearly free electron gas. We hope that the present work can inspire the experimental fabrication of novel free standing 2D metal systems.

  1. 2d index and surface operators

    NASA Astrophysics Data System (ADS)

    Gadde, Abhijit; Gukov, Sergei

    2014-03-01

    In this paper we compute the superconformal index of 2d (2, 2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in = 2 super-conformal gauge theories. They are engineered by coupling the 2d (2, 2) supersymmetric gauge theory living on the support of the surface operator to the 4d = 2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role.

  2. A gun recoil system employing a magnetorheological fluid damper

    NASA Astrophysics Data System (ADS)

    Li, Z. C.; Wang, J.

    2012-10-01

    This research aims to design and control a full scale gun recoil buffering system which works under real firing impact loading conditions. A conventional gun recoil absorber is replaced with a controllable magnetorheological (MR) fluid damper. Through dynamic analysis of the gun recoil system, a theoretical model for optimal design and control of the MR fluid damper for impact loadings is derived. The optimal displacement, velocity and optimal design rules are obtained. By applying the optimal design theory to protect against impact loadings, an MR fluid damper for a full scale gun recoil system is designed and manufactured. An experimental study is carried out on a firing test rig which consists of a 30 mm caliber, multi-action automatic gun with an MR damper mounted to the fixed base through a sliding guide. Experimental buffering results under passive control and optimal control are obtained. By comparison, optimal control is better than passive control, because it produces smaller variation in the recoil force while achieving less displacement of the recoil body. The optimal control strategy presented in this paper is open-loop with no feedback system needed. This means that the control process is sensor-free. This is a great benefit for a buffering system under impact loading, especially for a gun recoil system which usually works in a harsh environment.

  3. State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems

    NASA Astrophysics Data System (ADS)

    Lyczkowski, R. W.; Bouillard, J. X.; Ding, J.; Chang, S. L.; Burge, S. W.

    1994-05-01

    As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBR's) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBR's and pneumatic and slurry components are computed by ANL's EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre- and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale, and biomass as energy sources; to retain energy security; and to remediate waste and ecological problems.

  4. State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems

    SciTech Connect

    Lyczkowski, R.W.; Bouillard, J.X.; Ding, J.; Chang, S.L.; Burge, S.W.

    1994-05-12

    As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBRS) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBRs and pneumatic and slurry components are computed by ANL`s EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale and biomass as energy sources, to retain energy security, and to remediate waste and ecological problems.

  5. An annotation system for 3D fluid flow visualization

    NASA Technical Reports Server (NTRS)

    Loughlin, Maria M.; Hughes, John F.

    1995-01-01

    Annotation is a key activity of data analysis. However, current systems for data analysis focus almost exclusively on visualization. We propose a system which integrates annotations into a visualization system. Annotations are embedded in 3D data space, using the Post-it metaphor. This embedding allows contextual-based information storage and retrieval, and facilitates information sharing in collaborative environments. We provide a traditional database filter and a Magic Lens filter to create specialized views of the data. The system has been customized for fluid flow applications, with features which allow users to store parameters of visualization tools and sketch 3D volumes.

  6. Ultrafast 2D IR microscopy

    PubMed Central

    Baiz, Carlos R.; Schach, Denise; Tokmakoff, Andrei

    2014-01-01

    We describe a microscope for measuring two-dimensional infrared (2D IR) spectra of heterogeneous samples with μm-scale spatial resolution, sub-picosecond time resolution, and the molecular structure information of 2D IR, enabling the measurement of vibrational dynamics through correlations in frequency, time, and space. The setup is based on a fully collinear “one beam” geometry in which all pulses propagate along the same optics. Polarization, chopping, and phase cycling are used to isolate the 2D IR signals of interest. In addition, we demonstrate the use of vibrational lifetime as a contrast agent for imaging microscopic variations in molecular environments. PMID:25089490

  7. 2D correlation spectroscopy and multivariate curve resolution in analyzing pH-dependent evolving systems monitored by FT-IR spectroscopy, a comparative study.

    PubMed

    Diewok, Josef; Ayora-Cañada, María Jose; Lendl, Bernhard

    2002-10-01

    Multivariate curve resolution (MCR) and 2D correlation spectroscopy (2D-CoS), including sample-sample correlation, have been applied to the analysis of evolving midinfrared spectroscopic data sets obtained from titrations of organic acids in aqueous solution. In these data sets, well-defined species with significant differences in their spectra are responsible for the spectral variation observed. The two fundamentally different chemometric techniques have been evaluated and discussed on the basis of experimental and supportive simulated data sets. MCR gives information that can be directly related to the chemical species that is of importance from a practical point of view, whereas 2D-CoS results normally require more interpretation. The obtained conclusions are regarded valid for similar evolving data, which are increasingly being encountered in analytical chemistry when multivariate detectors are used to follow dynamic processes, including separations as well as chemical reactions, among others.

  8. STEALTH - a Lagrange explicit finite-difference code for solid, structural, and thermohydraulic analysis. Volume 8A: STEALTH/WHAMSE - a 2-D fluid-structure interaction code. Computer code manual

    SciTech Connect

    Gross, M.B.

    1984-10-01

    STEALTH is a family of computer codes that can be used to calculate a variety of physical processes in which the dynamic behavior of a continuum is involved. The version of STEALTH described in this volume is designed for calculations of fluid-structure interaction. This version of the program consists of a hydrodynamic version of STEALTH which has been coupled to a finite-element code, WHAMSE. STEALTH computes the transient response of the fluid continuum, while WHAMSE computes the transient response of shell and beam structures under external fluid loadings. The coupling between STEALTH and WHAMSE is performed during each cycle or step of a calculation. Separate calculations of fluid response and structural response are avoided, thereby giving a more accurate model of the dynamic coupling between fluid and structure. This volume provides the theoretical background, the finite-difference equations, the finite-element equations, a discussion of several sample problems, a listing of the input decks for the sample problems, a programmer's manual and a description of the input records for the STEALTH/WHAMSE computer program.

  9. 14 CFR 23.1099 - Carburetor deicing fluid system detail design.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor deicing fluid system detail... Powerplant Induction System § 23.1099 Carburetor deicing fluid system detail design. Each carburetor deicing fluid system must meet the applicable requirements for the design of a fuel system, except as...

  10. 14 CFR 23.1099 - Carburetor deicing fluid system detail design.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor deicing fluid system detail... Powerplant Induction System § 23.1099 Carburetor deicing fluid system detail design. Each carburetor deicing fluid system must meet the applicable requirements for the design of a fuel system, except as...

  11. 14 CFR 23.1099 - Carburetor deicing fluid system detail design.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor deicing fluid system detail... Powerplant Induction System § 23.1099 Carburetor deicing fluid system detail design. Each carburetor deicing fluid system must meet the applicable requirements for the design of a fuel system, except as...

  12. 14 CFR 23.1099 - Carburetor deicing fluid system detail design.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor deicing fluid system detail... Powerplant Induction System § 23.1099 Carburetor deicing fluid system detail design. Each carburetor deicing fluid system must meet the applicable requirements for the design of a fuel system, except as...

  13. 14 CFR 23.1099 - Carburetor deicing fluid system detail design.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor deicing fluid system detail... Powerplant Induction System § 23.1099 Carburetor deicing fluid system detail design. Each carburetor deicing fluid system must meet the applicable requirements for the design of a fuel system, except as...

  14. Differential expression of H-2K and H-2D in the central nervous system of mice infected with Theiler's virus.

    PubMed

    Altintas, A; Cai, Z; Pease, L R; Rodriguez, M

    1993-09-01

    A model of demyelination induced by Theiler's murine encephalomyelitis virus (TMEV) was used to study differential regulation of class I MHC gene products in the brain and spinal cord of resistant (B10) and susceptible (B10.Q and B10.RBQ) mice. Allelic polymorphisms in the H-2D region, but not the H-2K region, play a primary role in determining susceptibility to late demyelinating disease. However, even though significant structural diversity distinguishes class I alleles, there are no discernible K or D-specific patterns of structural diversity within the peptide binding domains of these glycoproteins. Our hypothesis was that D region association of susceptibility to demyelination was related to differences in the expression of the K and D Ag in the central nervous system (CNS) after TMEV infection. Using allele-specific mAb and an immunoperoxidase technique, we demonstrated transient but equivalent increases in K and D Ag expression in the brain and spinal cord of resistant mice beginning 7 days after TMEV infection, which returned to baseline by 90 days. However, when genetically susceptible animals were examined, a significantly greater increase in D expression relative to K expression was seen in the brain and spinal cord at all post-infection observation periods. Immunosuppression of genetically resistant animals before TMEV infection, which results in viral persistence, was accompanied by equivalent increases in both the K and D Ag. Depletion of CD8+ T cells, but not CD4+ T cells, in susceptible mice ablated class I expression in the CNS in response to TMEV infection, implying that CD8+ cells contribute to the differential regulation of K and D Ag in the CNS. These findings are consistent with the hypothesis that differences in gene regulation may account for different roles of the K and D loci play in determining resistance and susceptibility to TMEV-induced demyelinating disease.

  15. Synthesis and characterization of a new metal organic framework structure with a 2D porous system: (H 2NEt 2) 2[Zn 3(BDC) 4]ṡ3DEF

    NASA Astrophysics Data System (ADS)

    Biemmi, Enrica; Bein, Thomas; Stock, Norbert

    2006-03-01

    A new open-framework zinc terephthalate (H 2NEt 2) 2[Zn 3(BDC) 4]ṡ3DEF (BDC = 1,4-benzendicarboxylate, DEF=N,N-diethylformamide) was obtained under slightly acidic condition by reacting 1,4-benzendicarboxylic acid (H 2BDC) with ZnO in a DEF solution. The structure was obtained by single crystal X-ray diffraction and consists of trimetallic zinc building units, that are interconnected by eight BDC units each (crystal data: monoclinic, C2/c, a=3337.24(5), b=983.17(2), c=1819.67(2) pm, β=92.455(1, V=5965.0(2)×10 pm, Z=4, R=0.0395, wR=0.0843 for 4533 reflections I>2σ(I)). Six BDC ions together with the trimetallic zinc units form a two-dimensional (3,6)-net while the other two BDC unit pillar these layers. Thus a three-dimensional anionic framework with a 2D pore system is formed. The pore space is occupied by solvent molecules (DEF) and diethylammonium ions, produced by in situ hydrolysis of DEF. These are interconnected as well as connected to the framework by hydrogen-bonds. The TG investigation in combination with powder X-ray diffraction and vibrational-spectroscopy show a two-step loss of the pore filling molecules as well as one H 2BDC molecule leading to crystalline phases which are stable up to 250 and 400 °C, respectively. In addition, 13C MAS-NMR data of the title compound is presented.

  16. Boron isotope systematics of hydrothermal fluids from submarine hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Yamaoka, K.; Hong, E.; Ishikawa, T.; Gamo, T.; Kawahata, H.

    2013-12-01

    Boron is highly mobile in submarine hydrothermal systems and useful to trace the process of water-rock reaction. In this study, we measured the boron content and isotopic composition of vent fluids collected from arc-backarc hydrothermal systems in the western Pacific. In sediment-starved hydrothermal systems (Manus Basin, Suiyo Seamount, and Mariana Trough), the boron content and isotopic composition of vent fluids are dependent on type of host rock. The end member fluids from MORB-like basalt-hosted Vienna Woods in the Manus Basin showed low boron content and high δ11B value (0.53 mM, 29.8‰), while dacite-hosted PACMANUS and the Suiyo Seamount showed high boron contents and low δ11B values (1.45 and 1.52 mM, 13.6 and 18.5‰, respectively). The Alice Springs and Forecast Vent field in the Mariana Trough showed values intermediate between them (0.72 and 0.63 mM, 19.9 and 24.0‰, respectively), reflecting reaction of seawater and basalt influenced by slab material. In phase separated hydrothermal systems (North Fiji Basin), boron content and isotopic composition of vent fluids (0.44-0.56 mM, 34.5-35.9‰) were similar to those in the Vienna Woods. Considering little fractionation of boron and boron isotope during phase separation demonstrated by the previous experimental studies, it is suggested that the host rock in the North Fiji Basin is MORB-like basalt. In sediment-hosted hydrothermal system (Okinawa Trough), the reaction with boron-enriched sediment following seawater-rock reaction resulted in significantly high boron contents and low δ11B values of vent fluids (4.4-5.9 mM, 1.5-2.6‰). The water-sediment ratio was estimated to be ~2. In spite of the different geological settings, the end member fuids from all vent fields are enriched in B relative to seawater (0.41 mM, 39.6‰) and the δ11B values are inversely propotional to the boron concentrations. It suggests that boron isotopic composition of vent fluid predominantly depends on the amount of

  17. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  18. AnisWave 2D

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  19. Analysis of Direct Samples of Early Solar System Aqueous Fluids

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Bodnar, R J.; Fedele, L.; Yurimoto,H.; Itoh, S.; Fries, M.; Steele, A.

    2012-01-01

    Over the past three decades we have become increasingly aware of the fundamental importance of water, and aqueous alteration, on primitive solar-system bodies. Some carbonaceous and ordinary chondrites have been altered by interactions with liquid water within the first 10 million years after formation of their parent asteroids. Millimeter to centimeter-sized aggregates of purple halite containing aqueous fluid inclusions were found in the matrix of two freshly-fallen brecciated H chondrite falls, Monahans (1998, hereafter simply "Monahans") (H5) and Zag (H3-6) (Zolensky et al., 1999; Whitby et al., 2000; Bogard et al., 2001) In order to understand origin and evolution of the aqueous fluids inside these inclusions we much measure the actual fluid composition, and also learn the O and H isotopic composition of the water. It has taken a decade for laboratory analytical techniques to catch up to these particular nanomole-sized aqueous samples. We have recently been successful in (1) measuring the isotopic composition of H and O in the water in a few fluid inclusions from the Zag and Monahans halite, (2) mineralogical characterization of the solid mineral phases associated with the aqueous fluids within the halite, and (3) the first minor element analyses of the fluid itself. A Cameca ims-1270 equipped with a cryo-sample-stage of Hokkaido University was specially prepared for the O and H isotopic measurements. The cryo-sample-stage (Techno. I. S. Corp.) was cooled down to c.a. -190 C using liquid nitrogen at which the aqueous fluid in inclusions was frozen. We excavated the salt crystal surfaces to expose the frozen fluids using a 15 keV Cs+ beam and measured negative secondary ions. The secondary ions from deep craters of approximately 10 m in depth emitted stably but the intensities changed gradually during measurement cycles because of shifting states of charge compensation, resulting in rather poor reproducibility of multiple measurements of standard fluid

  20. Modular microfluidic systems using reversibly attached PDMS fluid control modules

    NASA Astrophysics Data System (ADS)

    Skafte-Pedersen, Peder; Sip, Christopher G.; Folch, Albert; Dufva, Martin

    2013-05-01

    The use of soft lithography-based poly(dimethylsiloxane) (PDMS) valve systems is the dominating approach for high-density microscale fluidic control. Integrated systems enable complex flow control and large-scale integration, but lack modularity. In contrast, modular systems are attractive alternatives to integration because they can be tailored for different applications piecewise and without redesigning every element of the system. We present a method for reversibly coupling hard materials to soft lithography defined systems through self-aligning O-ring features thereby enabling easy interfacing of complex-valve-based systems with simpler detachable units. Using this scheme, we demonstrate the seamless interfacing of a PDMS-based fluid control module with hard polymer chips. In our system, 32 self-aligning O-ring features protruding from the PDMS fluid control module form chip-to-control module interconnections which are sealed by tightening four screws. The interconnection method is robust and supports complex fluidic operations in the reversibly attached passive chip. In addition, we developed a double-sided molding method for fabricating PDMS devices with integrated through-holes. The versatile system facilitates a wide range of applications due to the modular approach, where application specific passive chips can be readily attached to the flow control module.

  1. Fluid technology (selected components, devices, and systems): A compilation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Developments in fluid technology and hydraulic equipment are presented. The subjects considered are: (1) the use of fluids in the operation of switches, amplifiers, and servo devices, (2) devices and data for laboratory use in the study of fluid dynamics, and (3) the use of fluids as controls and certain methods of controlling fluids.

  2. Network Flow Simulation of Fluid Transients in Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, Alak; Hamill, Brian; Ramachandran, Narayanan; Majumdar, Alok

    2011-01-01

    Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicle propulsion systems. These transients often occur at system activation and shutdown. The pressure rise due to sudden opening and closing of valves of propulsion feed lines can cause serious damage during activation and shutdown of propulsion systems. During activation (valve opening) and shutdown (valve closing), pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. In the current work, a network flow simulation software (Generalized Fluid System Simulation Program) based on Finite Volume Method has been used to predict the pressure surges in the feed line due to both valve closing and valve opening using two separate geometrical configurations. The valve opening pressure surge results are compared with experimental data available in the literature and the numerical results compared very well within reasonable accuracy (< 5%) for a wide range of inlet-to-initial pressure ratios. A Fast Fourier Transform is preformed on the pressure oscillations to predict the various modal frequencies of the pressure wave. The shutdown problem, i.e. valve closing problem, the simulation results are compared with the results of Method of Characteristics. Most rocket engines experience a longitudinal acceleration, known as "pogo" during the later stage of engine burn. In the shutdown example problem, an accumulator has been used in the feed system to demonstrate the "pogo" mitigation effects in the feed system of propellant. The simulation results using GFSSP compared very well with the results of Method of Characteristics.

  3. Thermodynamic analysis of endogeneous fluid systems: The paradigm shift of the 21st century

    NASA Astrophysics Data System (ADS)

    Letnikov, F. A.

    2016-06-01

    At the end of the 20th century, the methods of equilibrium thermodynamics in studying natural fluid systems were replaced by synergetics, a more general paradigm. The main difference of the synergetic approach is its interdisciplinary character, and one of its achievements is understanding the role of governing parameters in particular fluid systems and introducing the concept of endogeneous fluid systems as polystationary systems.

  4. 2D Spinodal Decomposition in Forced Turbulence

    NASA Astrophysics Data System (ADS)

    Fan, Xiang; Diamond, Patrick; Chacon, Luis; Li, Hui

    2015-11-01

    Spinodal decomposition is a second order phase transition for binary fluid mixture, from one thermodynamic phase to form two coexisting phases. The governing equation for this coarsening process below critical temperature, Cahn-Hilliard Equation, is very similar to 2D MHD Equation, especially the conserved quantities have a close correspondence between each other, so theories for MHD turbulence are used to study spinodal decomposition in forced turbulence. Domain size is increased with time along with the inverse cascade, and the length scale can be arrested by a forced turbulence with direct cascade. The two competing mechanisms lead to a stabilized domain size length scale, which can be characterized by Hinze Scale. The 2D spinodal decomposition in forced turbulence is studied by both theory and simulation with ``pixie2d.'' This work focuses on the relation between Hinze scale and spectra and cascades. Similarities and differences between spinodal decomposition and MHD are investigated. Also some transport properties are studied following MHD theories. This work is supported by the Department of Energy under Award Number DE-FG02-04ER54738.

  5. Microgravity fluid management requirements of advanced solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Migra, Robert P.

    1987-01-01

    The advanced solar dynamic system (ASDS) program is aimed at developing the technology for highly efficient, lightweight space power systems. The approach is to evaluate Stirling, Brayton and liquid metal Rankine power conversion systems (PCS) over the temperature range of 1025 to 1400K, identify the critical technologies and develop these technologies. Microgravity fluid management technology is required in several areas of this program, namely, thermal energy storage (TES), heat pipe applications and liquid metal, two phase flow Rankine systems. Utilization of the heat of fusion of phase change materials offers potential for smaller, lighter TES systems. The candidate TES materials exhibit large volume change with the phase change. The heat pipe is an energy dense heat transfer device. A high temperature application may transfer heat from the solar receiver to the PCS working fluid and/or TES. A low temperature application may transfer waste heat from the PCS to the radiator. The liquid metal Rankine PCS requires management of the boiling/condensing process typical of two phase flow systems.

  6. Nonlinear dynamics of fluid-structure systems. Annual technical report

    SciTech Connect

    Moon, F.C.; Muntean, G.

    1994-01-01

    We are investigating the nonlinear dynamics of a row of cylindrical tubes excited by the cross flow of fluid. Both experimental and analytical/numerical studies have been conducted. The goal of this research is to look for low dimensional dynamic models in flow- induced vibrations using modern methods of dynamical systems and chaos theory. The experimental study uses a 25 cm {times} 25 cm wind tunnel with flow velocity in the range of 15 m/sec. The use of a wind tunnel to explore dynamic phenomenon compliments the work of Chen at Argonne National Laboratory who also is conducting experiments with a water tunnel. The principal nonlinearities studies are impact constraints due to gaps in the cylinder supports and nonlinear fluid forces.

  7. Valve latch device for drilling fluid telemetry systems

    SciTech Connect

    Larronde, M. L.; Hoos, R. G.

    1985-07-30

    A latch device for controlling a valve in a mud pulse telemetry system for imparting data pulses to drilling fluids circulating in a drill string is disclosed. A latch device and valve arrangement including an improved shear type, solenoid operated valve for modulating the pressure of the circulating drilling fluid is disclosed. A latching solenoid armature is connected to the valve gate through separate open and close solenoids having their armatures operatively connected to act as a single unit. The single unit armature is normally restrained from movement by the solenoid deactivated latch device. The latch device is arranged so that the vibrational and impact loads on the drill string serve to further maintain the modulating valve in a closed position.

  8. Method, apparatus and system for controlling fluid flow

    DOEpatents

    McMurtrey, Ryan D.; Ginosar, Daniel M.; Burch, Joesph V.

    2007-10-30

    A system, apparatus and method of controlling the flow of a fluid are provided. In accordance with one embodiment of the present invention, a flow control device includes a valve having a flow path defined therethrough and a valve seat in communication with the flow path with a valve stem disposed in the valve seat. The valve stem and valve seat are cooperatively configured to cause mutual relative linear displacement thereof in response to rotation of the valve stem. A gear member is coupled with the rotary stem and a linear positioning member includes a portion which complementarily engages the gear member. Upon displacement of the linear positioning member along a first axis, the gear member and rotary valve stem are rotated about a second axis and the valve stem and valve seat are mutually linearly displaced to alter the flow of fluid through the valve.

  9. A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds

    SciTech Connect

    Li, Tingwen; Zhang, Yongmin

    2013-10-11

    Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.

  10. Instabilities of a spatial system of articulated pipes conveying fluid

    NASA Technical Reports Server (NTRS)

    Bohn, M. P.; Herrmann, G.

    1974-01-01

    A spatial system of two articulated pipes conveying fluid is examined analytically and experimentally. As the flow rate is increased, stable equilibrium may be lost by either divergence (static buckling) or by flutter (oscillations with increasing amplitude), depending upon the value of an angle beta which measures the 'out-of-planeness' of the system. It is found that in the range O less than beta less than 90 deg there exists a transition value below which stability is lost by flutter and above which stability is lost by divergence.

  11. Design of Advanced Photocatalysis System by Adatom Decoration in 2D Nanosheets of Group-IV and III–V Binary Compounds

    PubMed Central

    Jin, Hao; Dai, Ying; Huang, Bai-Biao

    2016-01-01

    Searching for novel photocatalysts is one of the most important topic in photocatalytic fields. In the present work, we propose a feasible approach to improve the photocatalytic activities of 2D bilayers through surface decoration, i.e. hydrogenation, halogenation, and hydroxylation. Our investigations demonstrate that after surface modification, the optical adsorption expands into the visible region, while a built-in electric field is induced due to the interlayer coupling, which can promote the charge separation for photogenerated electron-hole pairs. Our results show that the indirect-direct band gap transition of SiC, SnC, BN and GaN can be realised through adatom decoration. Furthermore, the surface-modified 2D bilayers have suitable VBM and CBM alignments with the oxidation and reduction potentials for water splitting, suggesting powerful potentials in energy and environmental applications. PMID:26983908

  12. High-efficiency exfoliation of layered materials into 2D nanosheets in switchable CO2/Surfactant/H2O system

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Xu, Qun; Xu, Shanshan; Qi, Yuhang; Chen, Meng; Li, Hongxiang; Han, Buxing

    2015-11-01

    Layered materials present attractive and important properties due to their two-dimensional (2D) structure, allowing potential applications including electronics, optoelectronics, and catalysis. However, fully exploiting the outstanding properties will require a method for their efficient exfoliation. Here we present that a series of layered materials can be successfully exfoliated into single- and few-layer nanosheets using the driving forces coming from the phase inversion, i.e., from micelles to reverse micelles in the emulsion microenvironment built by supercritical carbon dioxide (SC CO2). The effect of variable experimental parameters including CO2 pressure, ethanol/water ratio, and initial concentration of bulk materials on the exfoliation yield have been investigated. Moreover, we demonstrate that the exfoliated 2D nanosheets have their worthwhile applications, for example, graphene can be used to prepare conductive paper, MoS2 can be used as fluorescent label to perform cellular labelling, and BN can effectively reinforce polymers leading to the promising mechanical properties.

  13. An intelligent data acquisition system for fluid mechanics research

    NASA Technical Reports Server (NTRS)

    Cantwell, E. R.; Zilliac, G.; Fukunishi, Y.

    1989-01-01

    This paper describes a novel data acquisition system for use with wind-tunnel probe-based measurements, which incorporates a degree of specific fluid dynamics knowledge into a simple expert system-like control program. The concept was developed with a rudimentary expert system coupled to a probe positioning mechanism operating in a small-scale research wind tunnel. The software consisted of two basic elements, a general-purpose data acquisition system and the rulebased control element to take and analyze data and supplying decisions as to where to measure, how many data points to take, and when to stop. The system was validated in an experiment involving a vortical flow field, showing that it was possible to increase the resolution of the experiment or, alternatively, reduce the total number of data points required, to achieve parity with the results of most conventional data acquisition approaches.

  14. Performance of a Multispectral Optoacoustic Tomography (MSOT) System equipped with 2D vs. 3D Handheld Probes for Potential Clinical Translation

    PubMed Central

    Neuschmelting, Volker; Burton, Neal C.; Lockau, Hannah; Urich, Alexander; Harmsen, Stefan; Ntziachristos, Vasilis; Kircher, Moritz F.

    2015-01-01

    A handheld approach to optoacoustic imaging is essential for the clinical translation. The first 2- and 3-dimensional handheld multispectral optoacoustic tomography (MSOT) probes featuring real-time unmixing have recently been developed. Imaging performance of both probes was determined in vitro and in a brain melanoma metastasis mouse model in vivo. T1-weighted MR images were acquired for anatomical reference. The limit of detection of melanoma cells in vitro was significantly lower using the 2D than the 3D probe. The signal decrease was more profound in relation to depth with the 3D versus the 2D probe. Both approaches were capable of imaging the melanoma tumors qualitatively at all time points. Quantitatively, the 2D approach enabled closer anatomical resemblance of the tumor compared to the 3D probe, particularly at depths beyond 3 mm. The 3D probe was shown to be superior for rapid 3D imaging and, thus, holds promise for more superficial target structures. PMID:27069872

  15. Steady propagation of Bingham plugs in 2D channels

    NASA Astrophysics Data System (ADS)

    Zamankhan, Parsa; Takayama, Shuichi; Grotberg, James

    2009-11-01

    The displacement of the yield-stress liquid plugs in channels and tubes occur in many biological systems and industrial processes. Among them is the propagation of mucus plugs in the respiratory tracts as may occur in asthma, cystic fibrosis, or emphysema. In this work the steady propagation of mucus plugs in a 2D channel is studied numerically, assuming that the mucus is a pure Bingham fluid. The governing equations are solved by a mixed-discontinuous finite element formulation and the free surface is resolved with the method of spines. The constitutive equation for a pure Bingham fluid is modeled by a regularization method. Fluid inertia is neglected, so the controlling parameters in a steady displacement are; the capillary number, Ca, Bingham number ,Bn, and the plug length. According to the numerical results, the yield stress behavior of the plug modifies the plug shape, the pattern of the streamlines and the distribution of stresses in the plug domain and along the walls in a significant way. The distribution along the walls is a major factor in studying cell injuries. This work is supported through the grant NIH HL84370.

  16. Ruggedness of 2D code printed on grain tracers for implementing a prospective grain traceability system to the bulk grain delivery system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food-grade tracers were printed with two-dimensional Data Matrix (DM) barcode so that they could carry simulated identifying information about grain as part of a prospective traceability system. The key factor in evaluating the tracers was their ability to be read with a code scanner after being rem...

  17. Cerebrospinal fluid flow dynamics in the central nervous system.

    PubMed

    Sweetman, Brian; Linninger, Andreas A

    2011-01-01

    Cine-phase-contrast-MRI was used to measure the three-dimensional cerebrospinal fluid (CSF) flow field inside the central nervous system (CNS) of a healthy subject. Image reconstruction and grid generation tools were then used to develop a three-dimensional fluid-structure interaction model of the CSF flow inside the CNS. The CSF spaces were discretized using the finite-element method and the constitutive equations for fluid and solid motion solved in ADINA-FSI 8.6. Model predictions of CSF velocity magnitude and stroke volume were found to be in excellent agreement with the experimental data. CSF pressure gradients and amplitudes were computed in all regions of the CNS. The computed pressure gradients and amplitudes closely match values obtained clinically. The highest pressure amplitude of 77 Pa was predicted to occur in the lateral ventricles. The pressure gradient between the lateral ventricles and the lumbar region of the spinal canal did not exceed 132 Pa (~1 mmHg) at any time during the cardiac cycle. The pressure wave speed in the spinal canal was predicted and found to agree closely with values previously reported in the literature. Finally, the forward and backward motion of the CSF in the ventricles was visualized, revealing the complex mixing patterns in the CSF spaces. The mathematical model presented in this article is a prerequisite for developing a mechanistic understanding of the relationships among vasculature pulsations, CSF flow, and CSF pressure waves in the CNS.

  18. Modeling interfacial area transport in multi-fluid systems

    SciTech Connect

    Yarbro, S.L.

    1996-11-01

    Many typical chemical engineering operations are multi-fluid systems. They are carried out in distillation columns (vapor/liquid), liquid-liquid contactors (liquid/liquid) and other similar devices. An important parameter is interfacial area concentration, which determines the rate of interfluid heat, mass and momentum transfer and ultimately, the overall performance of the equipment. In many cases, the models for determining interfacial area concentration are empirical and can only describe the cases for which there is experimental data. In an effort to understand multiphase reactors and the mixing process better, a multi-fluid model has been developed as part of a research effort to calculate interfacial area transport in several different types of in-line static mixers. For this work, the ensemble-averaged property conservation equations have been derived for each fluid and for the mixture. These equations were then combined to derive a transport equation for the interfacial area concentration. The final, one-dimensional model was compared to interfacial area concentration data from two sizes of Kenics in-line mixer, two sizes of concurrent jet and a Tee mixer. In all cases, the calculated and experimental data compared well with the highest scatter being with the Tee mixer comparison.

  19. Design Considerations for Artificial Lifting of Enhanced Geothermal System Fluids

    SciTech Connect

    Xina Xie; K. K. Bloomfield; G. L. Mines; G. M. Shook

    2005-07-01

    This work evaluates the effect of production well pumping requirements on power generation. The amount of work that can be extracted from a geothermal fluid and the rate at which this work is converted to power increase as the reservoir temperature increases. Artificial lifting is an important issue in this process. The results presented are based on a configuration comprising one production well and one injection well, representing an enhanced geothermal system. The effects of the hydraulic conductivity of the geothermal reservoir, the flow rate, and the size of the production casing are considered in the study. Besides submersible pumps, the possibility of using lineshaft pumps is also discussed.

  20. DYNA2D96. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Whirley, R.G.

    1992-04-01

    DYNA2D is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  1. In vitro inhibition of the cytochrome P450 (CYP450) system by the antiplatelet drug ticlopidine: potent effect on CYP2C19 and CYP2D6

    PubMed Central

    Ko, Jae Wook; Desta, Zeruesenay; Soukhova, Nadia V; Tracy, Timothy; Flockhart, David A

    2000-01-01

    Aims To examine the potency of ticlopidine (TCL) as an inhibitor of cytochrome P450s (CYP450s) in vitro using human liver microsomes (HLMs) and recombinant human CYP450s. Methods Isoform-specific substrate probes of CYP1A2, 2C19, 2C9, 2D6, 2E1 and 3A4 were incubated in HLMs or recombinant CYPs with or without TCL. Preliminary data were generated to simulate an appropriate range of substrate and inhibitor concentrations to construct Dixon plots. In order to estimate accurately inhibition constants (Ki values) of TCL and determine the type of inhibition, data from experiments with three different HLMs for each isoform were fitted to relevant nonlinear regression enzyme inhibition models by WinNonlin. Results TCL was a potent, competitive inhibitor of CYP2C19 (Ki = 1.2 ± 0.5 µm) and of CYP2D6 (Ki = 3.4 ± 0.3 µm). These Ki values fell within the therapeutic steady-state plasma concentrations of TCL (1–3 µm). TCL was also a moderate inhibitor of CYP1A2 (Ki = 49 ± 19 µm) and a weak inhibitor of CYP2C9 (Ki > 75 µm), but its effect on the activities of CYP2E1 (Ki = 584 ± 48 µm) and CYP3A (> 1000 µm) was marginal. Conclusions TCL appears to be a broad-spectrum inhibitor of the CYP isoforms, but clinically significant adverse drug interactions are most likely with drugs that are substrates of CYP2C19 or CYP2D6. PMID:10759690

  2. The efficiency of using a seismic base isolation system for a 2D concrete frame founded upon improved soft soil with rigid inclusions

    NASA Astrophysics Data System (ADS)

    Awwad, Talal; Donia, Modar

    2016-03-01

    2D finite element models were developed to analyze the effect of improved soft-soil foundation on the efficiency of a base-isolated concrete frame. Static and dynamic analyses were performed for a frame on raft foundation. Non-improved and improved soft-soil foundation using rigid inclusions were considered, as well as the use of high damping rubber bearing as base isolation. Results show that the use of rigid inclusions increases the efficiency of base isolation; base shear is reduced by 38% and maximum acceleration at the top of the frame by 30%.

  3. A comprehensive approach using fuzzy logic to select fracture fluid systems

    SciTech Connect

    Xiong, H.; Davidson, B.; Holditch, S.A.; Saunders, B.

    1997-01-01

    This system, which consists of several fuzzy logic evaluators, can also be applied to similar problems associated with drilling, completing and working over wells. With formation information, the fuzzy logic system first determines base fluid, viscosifying method and energization method before choosing the 3--5 best combinations of possible fluids. The system then determines polymer type and loading, crosslinker, gas type if necessary, and other additives for the fluid systems. Also using fuzzy logic, this system checks the compatibility of the fluid and additives with formation fluids and composition.

  4. SU-E-J-13: Six Degree of Freedom Image Fusion Accuracy for Cranial Target Localization On the Varian Edge Stereotactic Radiosurgery System: Comparison Between 2D/3D and KV CBCT Image Registration

    SciTech Connect

    Xu, H; Song, K; Chetty, I; Kim, J; Wen, N

    2015-06-15

    Purpose: To determine the 6 degree of freedom systematic deviations between 2D/3D and CBCT image registration with various imaging setups and fusion algorithms on the Varian Edge Linac. Methods: An anthropomorphic head phantom with radio opaque targets embedded was scanned with CT slice thicknesses of 0.8, 1, 2, and 3mm. The 6 DOF systematic errors were assessed by comparing 2D/3D (kV/MV with CT) with 3D/3D (CBCT with CT) image registrations with different offset positions, similarity measures, image filters, and CBCT slice thicknesses (1 and 2 mm). The 2D/3D registration accuracy of 51 fractions for 26 cranial SRS patients was also evaluated by analyzing 2D/3D pre-treatment verification taken after 3D/3D image registrations. Results: The systematic deviations of 2D/3D image registration using kV- kV, MV-kV and MV-MV image pairs were within ±0.3mm and ±0.3° for translations and rotations with 95% confidence interval (CI) for a reference CT with 0.8 mm slice thickness. No significant difference (P>0.05) on target localization was observed between 0.8mm, 1mm, and 2mm CT slice thicknesses with CBCT slice thicknesses of 1mm and 2mm. With 3mm CT slice thickness, both 2D/3D and 3D/3D registrations performed less accurately in longitudinal direction than thinner CT slice thickness (0.60±0.12mm and 0.63±0.07mm off, respectively). Using content filter and using similarity measure of pattern intensity instead of mutual information, improved the 2D/3D registration accuracy significantly (P=0.02 and P=0.01, respectively). For the patient study, means and standard deviations of residual errors were 0.09±0.32mm, −0.22±0.51mm and −0.07±0.32mm in VRT, LNG and LAT directions, respectively, and 0.12°±0.46°, −0.12°±0.39° and 0.06°±0.28° in RTN, PITCH, and ROLL directions, respectively. 95% CI of translational and rotational deviations were comparable to those in phantom study. Conclusion: 2D/3D image registration provided on the Varian Edge radiosurgery, 6 DOF

  5. 21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... fluid are used in evaluating fetal maturity. (b) Classification. Class II. ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lecithin/sphingomyelin ratio in amniotic fluid... Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system....

  6. 21 CFR 866.5800 - Seminal fluid (sperm) immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Seminal fluid (sperm) immunological test system....5800 Seminal fluid (sperm) immunological test system. (a) Identification. A seminal fluid (sperm... rape and other sex-related crimes. (b) Classification. Class I (general controls). The device is...

  7. 21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... fluid are used in evaluating fetal maturity. (b) Classification. Class II. ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lecithin/sphingomyelin ratio in amniotic fluid... Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system....

  8. 21 CFR 866.5800 - Seminal fluid (sperm) immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Seminal fluid (sperm) immunological test system....5800 Seminal fluid (sperm) immunological test system. (a) Identification. A seminal fluid (sperm... rape and other sex-related crimes. (b) Classification. Class I (general controls). The device is...

  9. 21 CFR 866.5800 - Seminal fluid (sperm) immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Seminal fluid (sperm) immunological test system. 866.5800 Section 866.5800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....5800 Seminal fluid (sperm) immunological test system. (a) Identification. A seminal fluid...

  10. 21 CFR 866.5800 - Seminal fluid (sperm) immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Seminal fluid (sperm) immunological test system. 866.5800 Section 866.5800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....5800 Seminal fluid (sperm) immunological test system. (a) Identification. A seminal fluid...

  11. 21 CFR 866.5800 - Seminal fluid (sperm) immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Seminal fluid (sperm) immunological test system. 866.5800 Section 866.5800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....5800 Seminal fluid (sperm) immunological test system. (a) Identification. A seminal fluid...

  12. GBL-2D Version 1.0: a 2D geometry boolean library.

    SciTech Connect

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J.

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  13. High-efficiency exfoliation of layered materials into 2D nanosheets in switchable CO2/Surfactant/H2O system

    PubMed Central

    Wang, Nan; Xu, Qun; Xu, Shanshan; Qi, Yuhang; Chen, Meng; Li, Hongxiang; Han, Buxing

    2015-01-01

    Layered materials present attractive and important properties due to their two-dimensional (2D) structure, allowing potential applications including electronics, optoelectronics, and catalysis. However, fully exploiting the outstanding properties will require a method for their efficient exfoliation. Here we present that a series of layered materials can be successfully exfoliated into single- and few-layer nanosheets using the driving forces coming from the phase inversion, i.e., from micelles to reverse micelles in the emulsion microenvironment built by supercritical carbon dioxide (SC CO2). The effect of variable experimental parameters including CO2 pressure, ethanol/water ratio, and initial concentration of bulk materials on the exfoliation yield have been investigated. Moreover, we demonstrate that the exfoliated 2D nanosheets have their worthwhile applications, for example, graphene can be used to prepare conductive paper, MoS2 can be used as fluorescent label to perform cellular labelling, and BN can effectively reinforce polymers leading to the promising mechanical properties. PMID:26568039

  14. Systems Improved Numerical Differencing Analyzer And Fluid Integrator (SINDA '85/FLUINT)

    NASA Technical Reports Server (NTRS)

    Goble, Richard; Cullimore, Brent; Ring, Steven; Jensen, Carl

    1993-01-01

    Comprehensive thermal analysis system handles complex models such as evaporators and permits interaction of thermal and fluid problems. Design flexibility provided by 20,000 nodes, 100,000 conductors, 100 thermal submodels, and 10 fluid submodels.

  15. 21 CFR 866.5860 - Total spinal fluid immuno-logical test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the total protein in cerebrospinal fluid. Measurement of spinal fluid proteins may aid in the diagnosis of multiple sclerosis and other diseases of the nervous system. (b) Classification. Class...

  16. 21 CFR 866.5860 - Total spinal fluid immuno-logical test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the total protein in cerebrospinal fluid. Measurement of spinal fluid proteins may aid in the diagnosis of multiple sclerosis and other diseases of the nervous system. (b) Classification. Class...

  17. MOSS2D V1

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  18. A scintillator purification plant and fluid handling system for SNO+

    NASA Astrophysics Data System (ADS)

    Ford, Richard J.

    2015-08-01

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with 130Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  19. A scintillator purification plant and fluid handling system for SNO+

    SciTech Connect

    Ford, Richard J.

    2015-08-17

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with {sup 130}Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  20. Fluid Flow Prediction with Development System Interwell Connectivity Influence

    NASA Astrophysics Data System (ADS)

    Bolshakov, M.; Deeva, T.; Pustovskikh, A.

    2016-03-01

    In this paper interwell connectivity has been studied. First of all, literature review of existing methods was made which is divided into three groups: Statistically-Based Methods, Material (fluid) Propagation-Based Methods and Potential (pressure) Change Propagation-Based Method. The disadvantages of the first and second groups are as follows: methods do not involve fluid flow through porous media, ignore any changes of well conditions (BHP, skin factor, etc.). The last group considers changes of well conditions and fluid flow through porous media. In this work Capacitance method (CM) has been chosen for research. This method is based on material balance and uses weight coefficients lambdas to assess well influence. In the next step synthetic model was created for examining CM. This model consists of an injection well and a production well. CM gave good results, it means that flow rates which were calculated by analytical method (CM) show matching with flow rate in model. Further new synthetic model was created which includes six production and one injection wells. This model represents seven-spot pattern. To obtain lambdas weight coefficients, the delta function was entered using by minimization algorithm. Also synthetic model which has three injectors and thirteen producer wells was created. This model simulates seven-spot pattern production system. Finally Capacitance method (CM) has been adjusted on real data of oil Field Ω. In this case CM does not give enough satisfying results in terms of field data liquid rate. In conclusion, recommendations to simplify CM calculations were given. Field Ω is assumed to have one injection and one production wells. In this case, satisfying results for production rates and cumulative production were obtained.

  1. Microgravity fluid management in two-phase thermal systems

    NASA Technical Reports Server (NTRS)

    Parish, Richard C.

    1987-01-01

    Initial studies have indicated that in comparison to an all liquid single phase system, a two-phase liquid/vapor thermal control system requires significantly lower pumping power, demonstrates more isothermal control characteristics, and allows greater operational flexibility in heat load placement. As a function of JSC's Work Package responsibility for thermal management of space station equipment external to the pressurized modules, prototype development programs were initiated on the Two-Phase Thermal Bus System (TBS) and the Space Erectable Radiator System (SERS). JSC currently has several programs underway to enhance the understanding of two-phase fluid flow characteristics. The objective of one of these programs (sponsored by the Microgravity Science and Applications Division at NASA-Headquarters) is to design, fabricate, and fly a two-phase flow regime mapping experiment in the Shuttle vehicle mid-deck. Another program, sponsored by OAST, involves the testing of a two-phase thermal transport loop aboard the KC-135 reduced gravity aircraft to identify system implications of pressure drop variation as a function of the flow quality and flow regime present in a representative thermal system.

  2. Computational fluid dynamics applications to improve crop production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Computational fluid dynamics (CFD), numerical analysis and simulation tools of fluid flow processes have emerged from the development stage and become nowadays a robust design tool. It is widely used to study various transport phenomena which involve fluid flow, heat and mass transfer, providing det...

  3. Detection of Leptomeningeal Metastasis by Contrast-Enhanced 3D T1-SPACE: Comparison with 2D FLAIR and Contrast-Enhanced 2D T1-Weighted Images

    PubMed Central

    Gil, Bomi; Hwang, Eo-Jin; Lee, Song; Jang, Jinhee; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-soo

    2016-01-01

    Introduction To compare the diagnostic accuracy of contrast-enhanced 3D(dimensional) T1-weighted sampling perfection with application-optimized contrasts by using different flip angle evolutions (T1-SPACE), 2D fluid attenuated inversion recovery (FLAIR) images and 2D contrast-enhanced T1-weighted image in detection of leptomeningeal metastasis except for invasive procedures such as a CSF tapping. Materials and Methods Three groups of patients were included retrospectively for 9 months (from 2013-04-01 to 2013-12-31). Group 1 patients with positive malignant cells in CSF cytology (n = 22); group 2, stroke patients with steno-occlusion in ICA or MCA (n = 16); and group 3, patients with negative results on MRI, whose symptom were dizziness or headache (n = 25). A total of 63 sets of MR images are separately collected and randomly arranged: (1) CE 3D T1-SPACE; (2) 2D FLAIR; and (3) CE T1-GRE using a 3-Tesla MR system. A faculty neuroradiologist with 8-year-experience and another 2nd grade trainee in radiology reviewed each MR image- blinded by the results of CSF cytology and coded their observations as positives or negatives of leptomeningeal metastasis. The CSF cytology result was considered as a gold standard. Sensitivity and specificity of each MR images were calculated. Diagnostic accuracy was compared using a McNemar’s test. A Cohen's kappa analysis was performed to assess inter-observer agreements. Results Diagnostic accuracy was not different between 3D T1-SPACE and CSF cytology by both raters. However, the accuracy test of 2D FLAIR and 2D contrast-enhanced T1-weighted GRE was inconsistent by the two raters. The Kappa statistic results were 0.657 (3D T1-SPACE), 0.420 (2D FLAIR), and 0.160 (2D contrast-enhanced T1-weighted GRE). The 3D T1-SPACE images showed the highest inter-observer agreements between the raters. Conclusions Compared to 2D FLAIR and 2D contrast-enhanced T1-weighted GRE, contrast-enhanced 3D T1 SPACE showed a better detection rate of

  4. Therapeutic Options for Controlling Fluids in the Visual System

    NASA Technical Reports Server (NTRS)

    Curry, Kristina M.; Wotring, Virginia E.

    2014-01-01

    Visual Impairment/Intracranial Pressure (VIIP) is a newly recognized risk at NASA. The VIIP project examines the effect of long-term exposure to microgravity on vision of crewmembers before and after they return to Earth. Diamox (acetazolamide) is a medication which is used to decrease intraocular pressure; however, it carries a 3% risk of kidney stones. Astronauts are at a higher risk of kidney stones during spaceflight and the use Diamox would only increase the risk; therefore alternative therapies were investigated. Histamine 2 (H2) antagonist acid blockers such as cimetidine, ranitidine, famotidine and nizatidine are typically used to relieve the symptoms of gastroesophageal reflux disease (GERD). H2 receptors have been found in the human visual system, which has led to research on the use of H2 antagonist blockers to control fluid production in the human eye. Another potential therapeutic strategy is targeted at aquaporins, which are water channels that help maintain fluid homeostasis. Aquaporin antagonists are also known to affect intracranial pressure which can in turn alter intraocular pressure. Studies on aquaporin antagonists suggest high potential for effective treatment. The primary objective of this investigation is to review existing research on alternate medications or therapy to significantly reduce intracranial and intraocular pressure. A literature review was conducted. Even though we do not have all the answers quite yet, a considerable amount of information was discovered, and findings were narrowed, which should allow for more conclusive answers to be found in the near future.

  5. Working fluid selection for space-based two-phase heat transport systems

    NASA Technical Reports Server (NTRS)

    Mclinden, Mark O.

    1988-01-01

    The working fluid for externally-mounted, space-based two-phase heat transport systems is considered. A sequence of screening criteria involving freezing and critical point temperatures and latent heat of vaporization and vapor density are applied to a data base of 860 fluids. The thermal performance of the 52 fluids which pass this preliminary screening are then ranked according to their impact on the weight of a reference system. Upon considering other nonthermal criteria (flammability, toxicity, and chemical stability) a final set of 10 preferred fluids is obtained. The effects of variations in system parameters is investigated for these 10 fluids by means of a factorial design.

  6. High-resolution simulations of multi-phase flow in magmatic-hydrothermal systems with realistic fluid properties

    NASA Astrophysics Data System (ADS)

    Geiger, S.; Driesner, T.; Matthai, S.; Heinrich, C.

    2002-12-01

    Realistic modelling of multi-phase fluid flow, energy and component transport in magmatic-hydrothermal systems is very challenging because hydrological properties of fluids and rocks vary over many orders of magnitude and the geometric complexities of such systems. Furthermore, density dependent component transport and transient permeability variations due to P-T changes and fluid-rock interactions introduce additional difficulties. As a result, the governing equations for the hydrodynamics, energy and component transport, and thermodynamics in magmatic hydrothermal systems are highly non-linear and strongly coupled. Essential requirements of a numerical formulation for such a system are: (1) a treatment of the hydrodynamics that can accurately resolve complex geological structures and represent the highly variable fluid velocities herein, (2) a realistic thermodynamic representation of the fluid properties including the wide P-T-X range of liquid+vapour coexistence for the highly saline fluids, and (3) an accurate handling of the highly contrasting transport properties of the two fluids. We are combining higher order finite-element (FE) methods with total variation diminishing finite volume (TVDFV) methods to model the hydrodynamics and energy and component transport of magmatic hydrothermal systems. Combined FE and TVDFV methods are mass and shock preserving, yield great geometric flexibility in 2D and 3D [2]. Furthermore, efficient matrix solvers can be employed to model fluid flow in geologically realistic structures [5]. The governing equations are linearized by operator-splitting and solved sequentially using a Picard iteration scheme. We chose the system water-NaCl as a realistic proxy for natural fluids occurring in magmatic-hydrothermal systems. An in-depth evaluation of the available experimental and theoretical data led to a consistent and accurate set of formulations for the PVTXH relations that are valid from 0 to 800 C, 0 to 500 MPa, and 0 to 1 XNa

  7. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  8. Thermally induced instabilities of two-layer fluid systems

    NASA Astrophysics Data System (ADS)

    Ingber, M. S.

    Thermally induced instabilities of two layer fluid systems are studied by the use of both a linear and nonlinear analysis. Two essentially different destabilizing mechanisms are identified, namely buoyancy and surface tension. A general procedure is developed to determine the relative importance of each mechanism. The interfacial boundary conditions are comparisons with experiment are performed to attain a level of confidence. The investigation is motivated from the study of the geophysical problem of a body of water cooled by the atmosphere. The effects of surface tension and surface curvature are explored in depth. The reinforcing nature of the destabilizing mechanisms, surface tension and buoyancy is demonstrated. The relationship between the mean surface tension and surface curvature is also investigated.

  9. Safety System for Controlling Fluid Flow into a Suction Line

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)

    2015-01-01

    A safety system includes a sleeve fitted within a pool's suction line at the inlet thereof. An open end of the sleeve is approximately aligned with the suction line's inlet. The sleeve terminates with a plate that resides within the suction line. The plate has holes formed therethrough. A housing defining a plurality of distinct channels is fitted in the sleeve so that the distinct channels lie within the sleeve. Each of the distinct channels has a first opening on one end thereof and a second opening on another end thereof. The second openings reside in the sleeve. Each of the distinct channels is at least approximately three feet in length. The first openings are in fluid communication with the water in the pool, and are distributed around a periphery of an area of the housing that prevents coverage of all the first openings when a human interacts therewith.

  10. Effects of temperature on performance of a compressible magnetorheological fluid damper-liquid spring suspension system

    NASA Astrophysics Data System (ADS)

    McKee, Michael; Wang, Xiaojie; Gordaninejad, Faramarz

    2011-03-01

    A compact compressible magnetorheological (MR) fluid damper-liquid spring (CMRFD-LS) suspension system is designed, developed and tested. The performances of the CMRFD-LS are investigated under room temperature. However, MR fluids are temperature dependent. The effect of temperature is observed in both the viscosity and the compressibility of the MR fluid. This study is to experimentally determine how temperature affects the performance of a CMRFD-LS device. A test setup is developed to measure the stiffness and energy dissipated by the system under various frequency loadings, magnetic fields and temperatures. The experimental results demonstrate that both the stiffness and the energy dissipated by the CMRFD-LS are inversely related to the temperature of the MR fluid. These changes in damper characteristics show that the compressibility of MR fluid is proportional to the fluid temperature, while the viscosity of the MR fluid is inversely related to the fluid temperature.

  11. EXPERIMENTAL BUBBLE FORMATION IN A LARGE SCALE SYSTEM FOR NEWTONIAN AND NONNEWTONIAN FLUIDS

    SciTech Connect

    Leishear, R; Michael Restivo, M

    2008-06-26

    The complexities of bubble formation in liquids increase as the system size increases, and a photographic study is presented here to provide some insight into the dynamics of bubble formation for large systems. Air was injected at the bottom of a 28 feet tall by 30 inch diameter column. Different fluids were subjected to different air flow rates at different fluid depths. The fluids were water and non-Newtonian, Bingham plastic fluids, which have yield stresses requiring an applied force to initiate movement, or shearing, of the fluid. Tests showed that bubble formation was significantly different in the two types of fluids. In water, a field of bubbles was formed, which consisted of numerous, distributed, 1/4 to 3/8 inch diameter bubbles. In the Bingham fluid, large bubbles of 6 to 12 inches in diameter were formed, which depended on the air flow rate. This paper provides comprehensive photographic results related to bubble formation in these fluids.

  12. 21 CFR 866.5860 - Total spinal fluid immuno-logical test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Total spinal fluid immuno-logical test system. 866.5860 Section 866.5860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... the total protein in cerebrospinal fluid. Measurement of spinal fluid proteins may aid in...

  13. Computational fluid dynamics for turbomachinery internal air systems.

    PubMed

    Chew, John W; Hills, Nicholas J

    2007-10-15

    Considerable progress in development and application of computational fluid dynamics (CFD) for aeroengine internal flow systems has been made in recent years. CFD is regularly used in industry for assessment of air systems, and the performance of CFD for basic axisymmetric rotor/rotor and stator/rotor disc cavities with radial throughflow is largely understood and documented. Incorporation of three-dimensional geometrical features and calculation of unsteady flows are becoming commonplace. Automation of CFD, coupling with thermal models of the solid components, and extension of CFD models to include both air system and main gas path flows are current areas of development. CFD is also being used as a research tool to investigate a number of flow phenomena that are not yet fully understood. These include buoyancy-affected flows in rotating cavities, rim seal flows and mixed air/oil flows. Large eddy simulation has shown considerable promise for the buoyancy-driven flows and its use for air system flows is expected to expand in the future.

  14. Stochastic Inversion of 2D Magnetotelluric Data

    SciTech Connect

    Chen, Jinsong

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows

  15. Stochastic Inversion of 2D Magnetotelluric Data

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less

  16. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  17. Method and apparatus for continuous fluid leak monitoring and detection in analytical instruments and instrument systems

    DOEpatents

    Weitz, Karl K.; Moore, Ronald J.

    2010-07-13

    A method and device are disclosed that provide for detection of fluid leaks in analytical instruments and instrument systems. The leak detection device includes a collection tube, a fluid absorbing material, and a circuit that electrically couples to an indicator device. When assembled, the leak detection device detects and monitors for fluid leaks, providing a preselected response in conjunction with the indicator device when contacted by a fluid.

  18. A new methodology in fast and accurate matching of the 2D and 3D point clouds extracted by laser scanner systems

    NASA Astrophysics Data System (ADS)

    Torabi, M.; Mousavi G., S. M.; Younesian, D.

    2015-03-01

    Registration of the point clouds is a conventional challenge in computer vision related applications. As an application, matching of train wheel profiles extracted from two viewpoints is studied in this paper. The registration problem is formulated into an optimization problem. An error minimization function for registration of the two partially overlapping point clouds is presented. The error function is defined as the sum of the squared distance between the source points and their corresponding pairs which should be minimized. The corresponding pairs are obtained thorough Iterative Closest Point (ICP) variants. Here, a point-to-plane ICP variant is employed. Principal Component Analysis (PCA) is used to obtain tangent planes. Thus it is shown that minimization of the proposed objective function diminishes point-to-plane ICP variant. We utilized this algorithm to register point clouds of two partially overlapping profiles of wheel train extracted from two viewpoints in 2D. Also, a number of synthetic point clouds and a number of real point clouds in 3D are studied to evaluate the reliability and rate of convergence in our method compared with other registration methods.

  19. Controls on mound formation and effects of fluid ascent on the gas hydrate system of mound structures offshore Costa Rica

    NASA Astrophysics Data System (ADS)

    Planert, L.; Klaeschen, D.; Berndt, C.; Hensen, C.; Brueckmann, W.

    2010-12-01

    Our analysis of 2D MCS seismic data from the Middle America margin provides an insight into the buildup and formation mechanisms of mound structures and the effects of fluid ascent on the gas hydrate system observed on the continental slope offshore Costa Rica. Our targets, Mounds 11&12, are the sites of IODP drilling proposal 633-Full2, which aims to enhance the general understanding of complex forearc dewatering processes of the erosive subduction system off Costa Rica. Major sites of dewatering planned for drilling are mounds, related to mud diapirism/volcanism and precipitation of authigenic carbonates, and large-scale slides related to the subduction of seamounts. Geochemical analysis of methane hydrate and chloride anomalies as well as heat flow modeling of the mounds indicate deeply sourced fluids discharged by clay dehydration at the decollement. Hence, the hydrogeological system at this margin appears to be dominated by the fracture porosity of faults which extend through the overriding plate and provide the paths for fluids liberated by early dehydration reactions from the plate boundary. In order to test the hypothesis of deeply sourced and fault-controlled dewatering sites and to better understand the interactions between gas hydrate formation and dissociation with the fluid ascent from the deep sources, new pre-site survey seismic profiles were acquired using the 36-gun, four-string linear gun array of R/V Marcus Langseth, and a 240 channel streamer with 3000 m of active length. The seismic lines were prestack depth migrated, in which the velocity model is iteratively improved using depth focusing analysis and residual moveout correction on common image point gathers. Improvement of the deep imaging involved multiple attenuation and detailed velocity analysis of the lower sedimentary portions and beneath the basement down to the plate boundary. Our results reveal an upward bending of the bottom simulating reflection (BSR) directly beneath the mounds

  20. Cryogenic Fluid Management Technologies for Advanced Green Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Meyer, Michael L.; Tucker, Stephen P.

    2007-01-01

    In support of the Exploration Vision for returning to the Moon and beyond, NASA and its partners are developing and testing critical cryogenic fluid propellant technologies that will meet the need for high performance propellants on long-term missions. Reliable knowledge of low-gravity cryogenic fluid management behavior is lacking and yet is critical in the areas of tank thermal and pressure control, fluid acquisition, mass gauging, and fluid transfer. Such knowledge can significantly reduce or even eliminate tank fluid boil-off losses for long term missions, reduce propellant launch mass and required on-orbit margins, and simplify vehicle operations. The Propulsion and Cryogenic Advanced Development (PCAD) Project is performing experimental and analytical evaluation of several areas within Cryogenic Fluid Management (CFM) to enable NASA's Exploration Vision. This paper discusses the status of the PCAD CFM technology focus areas relative to the anticipated CFM requirements to enable execution of the Vision for Space Exploration.

  1. System and method for determining velocity of electrically conductive fluid

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A. (Inventor); Korman, Valentin (Inventor); Markusic, Thomas E. (Inventor); Stanojev, Boris Johann (Inventor)

    2008-01-01

    A flowing electrically-conductive fluid is controlled between an upstream and downstream location thereof to insure that a convection timescale of the flowing fluid is less than a thermal diffusion timescale of the flowing fluid. First and second nodes of a current-carrying circuit are coupled to the fluid at the upstream location. A current pulse is applied to the current-carrying circuit so that the current pulse travels through the flowing fluid to thereby generate a thermal feature therein at the upstream location. The thermal feature is convected to the downstream location where it is monitored to detect a peak associated with the thermal feature so-convected. The velocity of the fluid flow is determined using a time-of-flight analysis.

  2. Seismic and infrasonic source processes in volcanic fluid systems

    NASA Astrophysics Data System (ADS)

    Matoza, Robin S.

    Volcanoes exhibit a spectacular diversity in fluid oscillation processes, which lead to distinct seismic and acoustic signals in the solid earth and atmosphere. Volcano seismic waveforms contain rich information on the geometry of fluid migration, resonance effects, and transient and sustained pressure oscillations resulting from unsteady flow through subsurface cracks, fissures and conduits. Volcanic sounds contain information on shallow fluid flow, resonance in near-surface cavities, and degassing dynamics into the atmosphere. Since volcanoes have large spatial scales, the vast majority of their radiated atmospheric acoustic energy is infrasonic (<20 Hz). This dissertation presents observations from joint broadband seismic and infrasound array deployments at Mount St. Helens (MSH, Washington State, USA), Tungurahua (Ecuador), and Kilauea Volcano (Hawaii, USA), each providing data for several years. These volcanoes represent a broad spectrum of eruption styles ranging from hawaiian to plinian in nature. The catalogue of recorded infrasonic signals includes continuous broadband and harmonic tremor from persistent degassing at basaltic lava vents and tubes at Pu'u O'o (Kilauea), thousands of repetitive impulsive signals associated with seismic longperiod (0.5-5 Hz) events and the dynamics of the shallow hydrothermal system at MSH, rockfall signals from the unstable dacite dome at MSH, energetic explosion blast waves and gliding infrasonic harmonic tremor at Tungurahua volcano, and large-amplitude and long-duration broadband signals associated with jetting during vulcanian, subplinian and plinian eruptions at MSH and Tungurahua. We develop models for a selection of these infrasonic signals. For infrasonic long-period (LP) events at MSH, we investigate seismic-acoustic coupling from various buried source configurations as a means to excite infrasound waves in the atmosphere. We find that linear elastic seismic-acoustic transmission from the ground to atmosphere is

  3. Waste heat recovery fluids for heavy-duty transportation bottoming cycle systems: a summary report

    SciTech Connect

    Krazinski, J.L.; Uherka, K.L.; Holtz, R.E.; Ash, J.E.

    1984-07-01

    Working fluids used in Rankine bottoming cycle systems for heat recovery from long-haul trucks, marine vessels, and railroad locomotives are examined. Rankine bottoming cycle systems improve fuel economy by converting the exhaust heat from the prime mover into useful power. The report assesses fluid property requirements on the basis of previous experience with bottoming cycle systems. Also, the exhaust gas characteristics for the transportation modes of interest are summarized and compared. Candidate working fluids are discussed with respect to their potential for use in Rankine bottoming cycle systems. Analytical techniques are presented for calculating the thermodynamic properties of single-component working fluids. The resulting equations have been incorporated into a computer code for predicting the performance of Rankine bottoming cycle systems. In evaluating candidate working fluids, the code requires the user to input only a minimal amount of fluid property data.

  4. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  5. Solar heat transport fluids for solar energy collection systems: A collection of quarterly reports

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Noncorrosive fluid subsystem is being developed that is compatible with closed-loop solar heating and combined heating and hot water systems. The system is also to be compatible with both metallic and nonmetallic plumbing systems, and any combination of these. At least 100 gallons of each type of fluid recommended by the contractor will be delivered.

  6. 46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Requirements for miscellaneous fluid power and control systems. 58.30-50 Section 58.30-50 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous...

  7. 46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Requirements for miscellaneous fluid power and control systems. 58.30-50 Section 58.30-50 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous...

  8. Test instrumentation evaluates electrostatic hazards in fluid system

    NASA Technical Reports Server (NTRS)

    Collins, L. H.; Henry, R.; Krebs, D.

    1967-01-01

    RJ-1 fuel surface potential is measured with a probe to determine the degree of hazard originating from static electricity buildup in the hydraulic fluid. The probe is mounted in contact with the fluid surface and connected to an electrostatic voltmeter.

  9. SU-E-T-35: An Investigation of the Accuracy of Cervical IMRT Dose Distribution Using 2D/3D Ionization Chamber Arrays System and Monte Carlo Simulation

    SciTech Connect

    Zhang, Y; Yang, J; Liu, H; Liu, D

    2014-06-01

    Purpose: The purpose of this work is to compare the verification results of three solutions (2D/3D ionization chamber arrays measurement and Monte Carlo simulation), the results will help make a clinical decision as how to do our cervical IMRT verification. Methods: Seven cervical cases were planned with Pinnacle 8.0m to meet the clinical acceptance criteria. The plans were recalculated in the Matrixx and Delta4 phantom with the accurate plans parameters. The plans were also recalculated by Monte Carlo using leaf sequences and MUs for individual plans of every patient, Matrixx and Delta4 phantom. All plans of Matrixx and Delta4 phantom were delivered and measured. The dose distribution of iso slice, dose profiles, gamma maps of every beam were used to evaluate the agreement. Dose-volume histograms were also compared. Results: The dose distribution of iso slice and dose profiles from Pinnacle calculation were in agreement with the Monte Carlo simulation, Matrixx and Delta4 measurement. A 95.2%/91.3% gamma pass ratio was obtained between the Matrixx/Delta4 measurement and Pinnacle distributions within 3mm/3% gamma criteria. A 96.4%/95.6% gamma pass ratio was obtained between the Matrixx/Delta4 measurement and Monte Carlo simulation within 2mm/2% gamma criteria, almost 100% gamma pass ratio within 3mm/3% gamma criteria. The DVH plot have slightly differences between Pinnacle and Delta4 measurement as well as Pinnacle and Monte Carlo simulation, but have excellent agreement between Delta4 measurement and Monte Carlo simulation. Conclusion: It was shown that Matrixx/Delta4 and Monte Carlo simulation can be used very efficiently to verify cervical IMRT delivery. In terms of Gamma value the pass ratio of Matrixx was little higher, however, Delta4 showed more problem fields. The primary advantage of Delta4 is the fact it can measure true 3D dosimetry while Monte Carlo can simulate in patients CT images but not in phantom.

  10. System and method for improving performance of a fluid sensor for an internal combustion engine

    DOEpatents

    Kubinski, David; Zawacki, Garry

    2009-03-03

    A system and method for improving sensor performance of an on-board vehicle sensor, such as an exhaust gas sensor, while sensing a predetermined substance in a fluid flowing through a pipe include a structure for extending into the pipe and having at least one inlet for receiving fluid flowing through the pipe and at least one outlet generally opposite the at least one inlet, wherein the structure redirects substantially all fluid flowing from the at least one inlet to the sensor to provide a representative sample of the fluid to the sensor before returning the fluid through the at least one outlet.

  11. A review of progress in understanding the fluid geochemistry of the Cerro Prieto geothermal system

    USGS Publications Warehouse

    Truesdell, A.H.; Nehring, N.L.; Thompson, J.M.; Janik, C.J.; Coplen, T.B.

    1984-01-01

    Fluid geochemistry has played a major role in our present understanding of the Cerro Prieto geothermal system. Fluid chemical and isotopic compositions have been used to indicate the origin of water, salts and gases, original subsurface temperature and fluid flow, fluid-production mechanisms, and production-induced aquifer boiling and cold-water entry. The extensive geochemical data and interpretations for Cerro Prieto published from 1964 to 1981 are reviewed and discussed. Fluid geochemistry must continue to play an important role in the further development of the Cerro Prieto field. ?? 1984.

  12. Time Variation of Fluid Chemistry at Iheya North Seafloor Hydrothermal System, mid-Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Chiba, H.; Ishibashi, J.; Kataoka, S.; Umeki, Y.; Kouzuma, F.; Nakayama, N.; Tsunogai, U.

    2002-12-01

    Seafloor hydrothermal system at Iheya North, mid-Okinawa Trough, was discovered by the deep tow camera system in 1995. It is located at 27°47.2"N, 126°63.9"E and water depth of 1000m. The first fluid samples were collected by "Shinkai 2000" in 1996. Since then, fluid samples have been collected almost every year till 2002. Iheya North seafloor hydrothermal system extends about 200m in NS and 150m in EW directions. There are at least 9 hydrothermal vents in the area. Some of them are several tens meters high sulfide chimney emitting hydrothermal fluid from their top and side wall. The maximum temperature measured was 311°C at the center part of this field. The temperatures of venting fluids at the peripheral parts of the system are lower than that at the central part. The chemical compositions of hydrothermal fluids have spatial and time variations. Before 1999, salinities of hydrothermal fluids tend to be lower at the peripheral part of the system. The relationships between K and Cl concentrations lie on a single line originating from the origin. It means that the phase separation of the hydrothermal fluids under the seafloor influences the spatial variation of the hydrothermal fluids in this system. The line indicates that the chemistry of the hydrothermal fluid is K-rich compared to those of the sediment-starved mid-ocean ridge hydrothermal fluids. It means that the fluids are reacted with hot acidic rock of the mid-Okinawa Trough. High concentrations of other components, such as NH4 and Li, indicate that the fluid is also reacted with the sediment of the mid-Okinawa Trough. After 2000, there were large decreases in salinities of the hydrothermal fluids in the southern part of this system. Hydrothermal fluid of one of the vent in southern part of the system becomes almost zero salinity. This sudden change in salinity indicates the big change in sub-seafloor hydrology in this hydrothermal system. When the hydrothermal system was aged and the path way of the

  13. Accuracy and Precision of a Custom Camera-Based System for 2-D and 3-D Motion Tracking during Speech and Nonspeech Motor Tasks

    ERIC Educational Resources Information Center

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose: Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable…

  14. 2D quantum gravity from quantum entanglement.

    PubMed

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  15. System for concentrating and analyzing particles suspended in a fluid

    DOEpatents

    Fiechtner, Gregory J.; Cummings, Eric B.; Singh, Anup K.

    2011-04-26

    Disclosed is a device for separating and concentrating particles suspended in a fluid stream by using dielectrophoresis (DEP) to trap and/or deflect those particles as they migrate through a fluid channel. The method uses fluid channels designed to constrain a liquid flowing through it to uniform electrokinetic flow velocities. This behavior is achieved by connecting deep and shallow sections of channels, with the channel depth varying abruptly along an interface. By careful design of abrupt changes in specific permeability at the interface, an abrupt and spatially uniform change in electrokinetic force can be selected. Because these abrupt interfaces also cause a sharp gradient in applied electric fields, a DEP force also can be established along the interface. Depending on the complex conductivity of the suspended particles and the immersion liquid, the DEP force can controllably complement or oppose the local electrokinetic force transporting the fluid through the channel allowing for manipulation of particles suspended in the transporting liquid.

  16. 21 CFR 866.5860 - Total spinal fluid immuno-logical test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Total spinal fluid immuno-logical test system. 866.5860 Section 866.5860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....5860 Total spinal fluid immuno-logical test system. (a) Identification. A total spinal...

  17. Three-dimensional wire-mesh capacitor system measures fluid density

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Gaging system automatically measures the bulk density of a stored, electrically nonconductive fluid containing varying portions of liquid and vapor. The system employs a three-dimensional wire-mesh capacitor whose capacitance varies with the bulk density of the fluid dielectric medium between the capacitor plates.

  18. Development of a prototype fluid volume measurement system. [for urine volume measurement on space missions

    NASA Technical Reports Server (NTRS)

    Poppendiek, H. F.; Sabin, C. M.; Meckel, P. T.

    1974-01-01

    The research is reported in applying the axial fluid temperature differential flowmeter to a urine volume measurement system for space missions. The fluid volume measurement system is described along with the prototype equipment package. Flowmeter calibration, electronic signal processing, and typical void volume measurements are also described.

  19. System and method for filling a plurality of isolated vehicle fluid circuits through a common fluid fill port

    SciTech Connect

    Sullivan, Scott C; Fansler, Douglas

    2014-10-14

    A vehicle having multiple isolated fluid circuits configured to be filled through a common fill port includes a first fluid circuit disposed within the vehicle, the first fluid circuit having a first fill port, a second fluid circuit disposed within the vehicle, and a conduit defining a fluid passageway between the first fluid circuit and second fluid circuit, the conduit including a valve. The valve is configured such that the first and second fluid circuits are fluidly coupled via the passageway when the valve is open, and are fluidly isolated when the valve is closed.

  20. Van der Waals stacked 2D layered materials for optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.

    2016-06-01

    The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.

  1. Existence of global solutions for a chemotaxis-fluid system with nonlinear diffusion

    NASA Astrophysics Data System (ADS)

    Chung, Yun-Sung; Kang, Kyungkeun

    2016-04-01

    We consider a coupled system consisting of the Navier-Stokes equations and a porous medium type of Keller-Segel system that model the motion of swimming bacteria living in fluid and consuming oxygen. We establish the global-in-time existence of weak solutions for the Cauchy problem of the system in dimension three. In addition, if the Stokes system, instead Navier-Stokes system, is considered for the fluid equation, we prove that bounded weak solutions exist globally in time.

  2. 2D potential measurements by applying automatic beam adjustment system to heavy ion beam probe diagnostic on the Large Helical Devicea)

    NASA Astrophysics Data System (ADS)

    Shimizu, A.; Ido, T.; Kurachi, M.; Makino, R.; Nishiura, M.; Kato, S.; Nishizawa, A.; Hamada, Y.

    2014-11-01

    Two-dimensional potential profiles in the Large Helical Device (LHD) were measured with heavy ion beam probe (HIBP). To measure the two-dimensional profile, the probe beam energy has to be changed. However, this task is not easy, because the beam transport line of LHD-HIBP system is very long (˜20 m), and the required beam adjustment consumes much time. To reduce the probe beam energy adjustment time, an automatic beam adjustment system has been developed. Using this system, required time to change the probe beam energy is dramatically reduced, such that two-dimensional potential profiles were able to be successfully measured with HIBP by changing the probe beam energy shot to shot.

  3. 2D potential measurements by applying automatic beam adjustment system to heavy ion beam probe diagnostic on the Large Helical Device

    SciTech Connect

    Shimizu, A. Ido, T.; Kato, S.; Hamada, Y.; Kurachi, M.; Makino, R.; Nishiura, M.; Nishizawa, A.

    2014-11-15

    Two-dimensional potential profiles in the Large Helical Device (LHD) were measured with heavy ion beam probe (HIBP). To measure the two-dimensional profile, the probe beam energy has to be changed. However, this task is not easy, because the beam transport line of LHD-HIBP system is very long (∼20 m), and the required beam adjustment consumes much time. To reduce the probe beam energy adjustment time, an automatic beam adjustment system has been developed. Using this system, required time to change the probe beam energy is dramatically reduced, such that two-dimensional potential profiles were able to be successfully measured with HIBP by changing the probe beam energy shot to shot.

  4. Effects of the electron-electron interaction in the spin resonance in 2D systems with Dresselhaus spin-orbit coupling

    SciTech Connect

    Krishtopenko, S. S.

    2015-02-15

    The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system.

  5. Pilot Study on the Detection of Simulated Lesions Using a 2D and 3D Digital Full-Field Mammography System with a Newly Developed High Resolution Detector Based on Two Shifts of a-Se.

    PubMed

    Schulz-Wendtland, R; Bani, M; Lux, M P; Schwab, S; Loehberg, C R; Jud, S M; Rauh, C; Bayer, C M; Beckmann, M W; Uder, M; Fasching, P A; Adamietz, B; Meier-Meitinger, M

    2012-05-01

    Purpose: Experimental study of a new system for digital 2D and 3D full-field mammography (FFDM) using a high resolution detector based on two shifts of a-Se. Material and Methods: Images were acquired using the new FFDM system Amulet® (FujiFilm, Tokio, Japan), an a-Se detector (receptor 24 × 30 cm(2), pixel size 50 µm, memory depth 12 bit, spatial resolution 10 lp/mm, DQE > 0.50). Integrated in the detector is a new method for data transfer, based on optical switch technology. The object of investigation was the Wisconsin Mammographic Random Phantom, Model 152A (Radiation Measurement Inc., Middleton, WI, USA) and the same parameters and exposure data (Tungsten, 100 mAs, 30 kV) were consistently used. We acquired 3 different pairs of images in the c-c and ml planes (2D) and in the c-c and c-c planes with an angle of 4 degrees (3D). Five radiologists experienced in mammography (experience ranging from 3 months to more than 5 years) analyzed the images (monitoring) which had been randomly encoded (random generator) with regard to the recognition of details such as specks of aluminum oxide (200-740 µm), nylon fibers (0.4-1.6 mm) and round lesions/masses (diameters 5-14 mm), using special linear glasses for 3D visualization, and compared the results. Results: A total of 225 correct positive decisions could be detected: we found 222 (98.7 %) correct positive results for 2D and 3D visualization in each case. Conclusion: The results of this phantom study showed the same detection rates for both 2D and 3D imaging using full field digital mammography. Our results must be confirmed in further clinical trials.

  6. 2D spatiotemporal visualization system of expired gaseous ethanol after oral administration for real-time illustrated analysis of alcohol metabolism.

    PubMed

    Wang, Xin; Ando, Eri; Takahashi, Daishi; Arakawa, Takahiro; Kudo, Hiroyuki; Saito, Hirokazu; Mitsubayashi, Kohji

    2010-08-15

    A novel 2-dimensional spatiotemporal visualization system of expired gaseous ethanol after oral administration for real-time illustrated analysis of alcohol metabolism has been developed, which employed a low level light CCD camera to detect chemiluminescence (CL) generated by catalytic reactions of standard gaseous ethanol and expired gaseous ethanol after oral administration. First, the optimization of the substrates for visualization and the concentration of luminol solution for CL were investigated. The cotton mesh and 5.0 mmol L(-1) luminol solution were selected for further investigations and this system is useful for 0.1-20.0 mmol L(-1) of H(2)O(2) solution. Then, the effect of pH condition of Tris-HCl buffer solution was also evaluated with CL intensity and under the Tris-HCl buffer solution pH 10.1, a wide calibration range of standard gaseous ethanol (30-400 ppm) was obtained. Finally, expired air of 5 healthy volunteers after oral administration was measured at 15, 30, 45, 60, 75, 90, 105 and 120 min after oral administration, and this system showed a good sensitivity on expired gaseous ethanol for alcohol metabolism. The peaks of expired gaseous ethanol concentration appeared within 30 min after oral administration. During the 30 min after oral administration, the time variation profile based on mean values showed the absorption and distribution function, and the values onward showed the elimination function. The absorption and distribution of expired gaseous ethanol in 5 healthy volunteers following first-order absorption process were faster than the elimination process, which proves efficacious of this system for described alcohol metabolism in healthy volunteers. This system is expected to be used as a non-invasive method to detect VOCs as well as several other drugs in expired air for clinical purpose.

  7. Numerical studies of fluid-rock interactions in EnhancedGeothermal Systems (EGS) with CO2 as working fluid

    SciTech Connect

    Xu, Tianfu; Pruess, Karsten; Apps, John

    2008-01-17

    There is growing interest in the novel concept of operating Enhanced Geothermal Systems (EGS) with CO{sub 2} instead of water as heat transmission fluid. Initial studies have suggested that CO{sub 2} will achieve larger rates of heat extraction, and can offer geologic storage of carbon as an ancillary benefit. Fluid-rock interactions in EGS operated with CO{sub 2} are expected to be vastly different in zones with an aqueous phase present, as compared to the central reservoir zone with anhydrous supercritical CO{sub 2}. Our numerical simulations of chemically reactive transport show a combination of mineral dissolution and precipitation effects in the peripheral zone of the systems. These could impact reservoir growth and longevity, with important ramifications for sustaining energy recovery, for estimating CO{sub 2} loss rates, and for figuring tradeoffs between power generation and geologic storage of CO{sub 2}.

  8. Cryogenic cavitating flow in 2D laval nozzle

    NASA Astrophysics Data System (ADS)

    Tani, Naoki; Nagashima, Toshio

    2003-05-01

    Cavitation is one of the troublesome problems in rocket turbo pumps, and since most of high-efficiency rocket propellants are cryogenic fluids, so called “thermodynamic effect” becomes more evident than in water. In the present study, numerical and experimental study of liquid nitrogen cavitation in 2D Laval nozzle was carried out, so that the influence of thermodynamic effect was examined. It was revealed that temperature and cavitation have strong inter-relationship with each other in thermo-sensitive cryogenic fluids.

  9. Superfluid {sup 3}He, a two-fluid system, with the normal-fluid dynamics dominated by Andreev reflection

    SciTech Connect

    Pickett, G. R.

    2014-12-15

    As a specific offering towards his festschrift, we present a review the various properties of the excitation gas in superfluid {sup 3}He, which depend on Andreev reflection. This phenomenon dominates many of the properties of the normal fluid, especially at the lowest temperatures. We outline the ideas behind this dominance and describe a sample of the many experiments in this system which the operation of Andreev reflection has made possible, from temperature measurement, particle detection, vortex imaging to cosmological analogues.

  10. Developing a flow control strategy to reduce nutrient load in a reclaimed multi-reservoir system using a 2D hydrodynamic and water quality model.

    PubMed

    Park, Yongeun; Cho, Kyung Hwa; Kang, Joo-Hyon; Lee, Seung Won; Kim, Joon Ha

    2014-01-01

    Blocking the natural bi-directional flow in an estuarine system using an artificial dyke has commonly caused serious water quality problems. In the southwestern part of South Korea, a parallel triple-reservoir system was constructed by blocking the mouth of three different rivers (Yeongsan, Okcheon, and Kumja), which were then interconnected using two open channels. This system has experienced a deterioration in water quality due to pollutants accumulated from the upper watershed, and has continually discharged pollutant loads to the outer ocean. Therefore, the objective of this study is to establish an effective dam operation plan for reducing nutrient loads released from the integrated reservoir. In this study, the CE-QUAL-W2 model, which is a 2-dimentional hydrodynamic and water quality model, was applied to predict the pollutant load released from each reservoir in response to different flow scenarios for the interconnecting channel. The model was calibrated using two novel methods: a sensitivity analysis to determine meaningful model parameters, and a pattern search to optimize the parameters. From the scenario analysis using flow control, it was determined that the total nitrogen (TN) and total phosphorus (TP) loadings could be reduced by 27.2% and 6.6%, respectively, under the optimal channel flow scenario by regulating the chlorophyll-a concentration in the reservoir. The results confirm that effective dam operation could contribute to a decrease in pollutant loads in the receiving seawater body. As such, this study suggests operational strategies for a multi-reservoir system that can be used to reduce the nutrient load being discharged from reservoirs.

  11. Flow transitions in a 2D directional solidification model

    NASA Technical Reports Server (NTRS)

    Larroude, Philippe; Ouazzani, Jalil; Alexander, J. Iwan D.

    1992-01-01

    Flow transitions in a Two Dimensional (2D) model of crystal growth were examined using the Bridgman-Stockbarger me thod. Using a pseudo-spectral Chebyshev collocation method, the governing equations yield solutions which exhibit a symmetry breaking flow tansition and oscillatory behavior indicative of a Hopf bifurcation at higher values of Ra. The results are discussed from fluid dynamic viewpoint, and broader implications for process models are also addressed.

  12. Product operator descriptions of the 2D DEPT J-resolved NMR experiment for weakly coupled ISn (I=\\frac{1}{2}, S=\\frac{3}{2}; n=1, 2, 3) spin systems

    NASA Astrophysics Data System (ADS)

    Tokatlı, Ahmet; Bahçeli, Semiha

    2010-02-01

    There are a variety of multi-pulse nuclear magnetic resonance (NMR) experiments for spectral assignment of complex molecules in a solution. The two-dimensional (2D) distortionless enhancement by polarization transfer (DEPT) J-resolved NMR experiment is a 13C-detected, spectral editing polarization transfer technique. The product operator theory is widely used for an analytical description of the multi-pulse NMR experiment for weakly coupled spin systems. In this study, analytical descriptions of the 2D DEPT J-resolved NMR experiment for weakly coupled ISn (I=\\textstyle{\\frac{1}{2}}, S=\\textstyle{\\frac{3}{2}} ; n=1, 2, 3) spin systems using the product operator theory have been introduced for the first time. The calculated intensities and positions of the observable signals are simulated for molecules containing [13C (I=\\textstyle{\\frac{1}{2}}) , 81Br (S=\\textstyle{\\frac{3}{2}})] nuclei by using a MAPLE program on a computer. Finally, we present a theoretical discussion and experimental suggestions.

  13. Fluid flow and chemical reaction kinetics in metamorphic systems

    SciTech Connect

    Lasaga, A.C.; Rye, D.M. )

    1993-05-01

    The treatment and effects of chemical reaction kinetics during metamorphism are developed along with the incorporation of fluid flow, diffusion, and thermal evolution. The interplay of fluid flow and surface reaction rates, the distinction between steady state and equilibrium, and the possible overstepping of metamorphic reactions are discussed using a simple analytic model. This model serves as an introduction to the second part of the paper, which develops a reaction model that solves the coupled temperature-fluid flow-chemical composition differential equations relevant to metamorphic processes. Consideration of stable isotopic evidence requires that such a kinetic model be considered for the chemical evolution of a metamorphic aureole. A general numerical scheme is discussed to handle the solution of the model. The results of this kinetic model allow us to reach several important conclusions regarding the factors controlling the chemical evolution of mineral assemblages during a metamorphic event. 41 refs., 19 figs., 5 tabs.

  14. Microwave polarization angle study of the radiation-induced magnetoresistance oscillations in the GaAs/AlGaAs 2D electron system under dc current bias

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad-Zahir; Liu, Han-Chun; Heimbeck, Martin S.; Everitt, Henry O.; Wegscheider, Werner; Mani, Ramesh G.

    Microwave-induced magnetoresistance oscillations followed by the vanishing resistance states are a prime representation of non-equilibrium transport phenomena in two-dimensional electron systems (2DES). The effect of a dc current bias on the nonlinear response of 2DES with microwave polarization angle under magnetic field is a subject of interest. Here, we have studied the effect of various dc current bias on microwave radiation-induced magnetoresistance oscillations in a high mobility 2DES. Further, we systematically investigate the effect of the microwave polarization angle on the magneto-resistance oscillations at two different frequencies 152.78 GHz and 185.76 GHz. This study aims to better understand the effects of both dc current and microwave polarization angle in the GaAs/AlGaAs system, both of which modify the observed magneto-transport properties DOE-BES, Mat'l. Sci. & Eng. Div., DE-SC0001762; ARO W911NF-14-2-0076; ARO W911NF-15-1-0433.

  15. Study of microwave reflection in the regime of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs 2D electron system

    NASA Astrophysics Data System (ADS)

    Kriisa, Annika; Liu, H.-C.; Samaraweera, R. L.; Heimbeck, M. S.; Everitt, H. O.; Wegscheider, W.; Mani, R. G.

    Microwave-induced zero-resistance-states in the photo-excited GaAs/AlGaAs system evolve from the minima of microwave photo-excited ``quarter-cycle shifted'' magnetoresistance oscillations. Such magnetoresistance oscillations are known to exhibit nodes at cyclotron resonance (hf = ℏωc) and cyclotron resonance harmonics (hf = nℏωc). Further, the effective mass extracted from the radiation-induced magnetoresistance oscillations is known to differ from the canonical effective mass ratio for electrons in the GaAs/AlGaAs system. In an effort to reconcile this difference, we have looked for cyclotron resonance in the microwave reflection from the high mobility 2DES and attempted to correlate the observations with observed oscillatory magnetoresistance over the 30 <= f <= 330 GHz band. The results of such a study will be reported here. DOE-BES, Mat'l. Sci. & Eng. Div., DE-SC0001762; ARO W911NF-14-2-0076; ARO W911NF-15-1-0433.

  16. A new approach to reservoir heterogeneity modelling: conditional simulation of 2-D parasequences in shallow marine depositional systems using an attributed controlled grammar

    NASA Astrophysics Data System (ADS)

    Duan, Taizhong; Griffiths, Cedric M.; Johnsen, Sverre O.

    1999-07-01

    An attributed controlled grammar (ACG) has been formally used to represent the parasequences of a clastic shallow-marine system. The lithofacies distribution has been conditionally simulated in two dimensions using the ACG. In knowledge representation, the ACG has been shown to have several advantages over context-free, programmed and attributed grammars. The ACG for the parasequences is manually constructed by domain experts based on a conditioning dataset, combined with related sedimentological knowledge. The dataset includes several geological sections measured from outcrops and interpreted from boreholes. A parasequence is decomposed into coastal plain, foreshore, upper shoreface, lower shoreface and offshore facies tracts and their boundaries. Within each tract, lithofacies distribution is described by the facies transition relationship, which can be constructed directly from the dataset and adjusted in terms of related sedimentological knowledge. The boundaries between the tracts are represented by point chains, whereas the facies transitions are controlled by a transitional probability matrix and both vertical and horizontal extensions of the corresponding lithofacies. The simulation results show the following features: (1) the simulation honors the conditioning dataset, (2) the lithofacies distribution simulated from the ACG shows increased variability compared to traditional interpolations between geological sections and (3) the simulated lithofacies distribution is controlled mainly by the uncertainty of the vertical and horizontal extension of each lithofacies, which cannot usually be obtained directly from the conditional dataset, and is not formally considered in traditional geological correlation and interpretation. Work is underway to quantify such lateral and vertical extension in present-day systems.

  17. Systems and methods for separating a multiphase fluid

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark M. (Inventor); Thomas, Evan A. (Inventor); Graf, John C. (Inventor)

    2011-01-01

    Apparatus and methods for separating a fluid are provided. The apparatus can include a separator and a collector having an internal volume defined at least in part by one or more surfaces narrowing toward a bottom portion of the volume. The separator can include an exit port oriented toward the bottom portion of the volume. The internal volume can receive a fluid expelled from the separator into a flow path in the collector and the flow path can include at least two directional transitions within the collector.

  18. Documenting the Effectiveness of Cosorption of Airborne Contaminants by a Field-Installed Active Desiccant System: Final Report - Phase 2D

    SciTech Connect

    Fischer, J

    2003-01-23

    The final report for Phase 1 of this research effort (ORNL/SUB/94-SV004/1) concluded that a significant market opportunity would exist for active desiccant systems if it could be demonstrated that they can remove a significant proportion of common airborne contaminants while simultaneously performing the primary function of dehumidifying a stream of outdoor air or recirculated building air. If the engineering community begins to follow the intent of ASHRAE Standard 62, now part of all major building codes, the outdoor air in many major cities may need to be pre-cleaned before it is introduced into occupied spaces. Common air contaminant cosorption capability would provide a solution to three important aspects of the ASHRAE 62-89 standard that have yet to be effectively addressed by heating, ventilation, and air-conditioning (HVAC) equipment manufacturers: (1) The ASHRAE standard defines acceptable outdoor air quality. If the outdoor air contains unacceptable levels of certain common outdoor air contaminants (e.g., sulfur dioxide, ozone), then the standard requires that these contaminants be removed from the outdoor air stream to reach compliance with the acceptable outdoor air quality guidelines. (2) Some engineers prefer to apply a filtration or prescriptive approach rather than a ventilation approach to solving indoor air quality problems. The ASHRAE standard recognizes this approach provided that the filtration technology exists to remove the gaseous contaminants encountered. The performance of current gaseous filtration technologies is not well documented, and they can be costly to maintain because the life of the filter is limited and the cost is high. Moreover, it is not easy to determine when the filters need changing. In such applications, an additional advantage provided by the active desiccant system would be that the same piece of equipment could control space humidity and provide filtration, even during unoccupied periods, if the active desiccant system

  19. 2D-QSPR/DFT studies of aryl-substituted PNP-Cr-based catalyst systems for highly selective ethylene oligomerization.

    PubMed

    Tang, Siyang; Liu, Zhen; Zhan, Xingwen; Cheng, Ruihua; He, Xuelian; Liu, Boping

    2014-03-01

    1-Hexene and 1-octene are important comonomers for the synthesis of high performance polyolefins. Recently, various N-substituted Cr-bis(diphenylphosphino)amine (PNP-Cr) catalysts show the potential as excellent candidates for highly selective ethylene trimerization/tetramerization. In this work, a series of aryl-substituted PNP-Cr catalysts were studied by two-dimensional quantitative structure-property relationship (QSPR) method based on density functional theory (DFT) calculations. The heuristic method (HM) and best multi-linear regression (BMLR) were used to establish the best linear regression models to describe the relationship between selectivities and catalyst structures. Both Cr(I) and Cr(II) active site models for ethylene trimerization/tetramerization were considered. It was found that 1) the relativity and stability of the models were increased by using self-defined descriptors based on DFT calculations; 2) Cr(I)/Cr(III) centers were the most plausible active sites for ethylene trimerization, while Cr(II)/Cr(IV) active sites were most possibly responsible for ethylene tetramerization; and 3) the skeleton structures of the PNP-Cr system with good complanation and symmetry were crucial for achieving excellent catalytic selectivity of 1-octene, while the PNP-Cr backbone with a large steric effect on N atom would benefit ethylene trimerization. Six new PNP ligands with high selectivity toward ethylene trimerization/tetramerization were predicted based on descriptor analysis and the best linear regression models providing a good basis for further development of novel catalyst systems with better performance. PMID:24554126

  20. Vein mineralizations - archives of paleo-fluid systems in the Thuringian basin (Germany)

    NASA Astrophysics Data System (ADS)

    Abratis, M.; Brey, M.; Fritsch, S.; Majzlan, J.; Viereck-Götte, L.

    2012-04-01

    We investigate vein mineralizations within and around the Thuringian basin (Germany) in order to characterize paleo-fluid systems that have been active in the basin. By investigating the composition, temperature, origin, age and evolution of paleo-fluids in the Thuringian basin as a model case, we aim for comprehensive understanding of the character of mineralized fluid systems in sedimentary basins in general and their evolution over geological time scales. Mineralizations along faults are archives for the composition of fluids which intruded the basin and circulated within it millions of years ago. These mineralizations give information on the physical and chemical characteristics of the related fluids as well as on their evolution with time during basin evolution. Mapping of mineralizations in space and time and comparison with the present-day fluid circulation system allows for recognition of the paleo-fluid dynamics and high temperature fluid influx pathways. The chemical characteristics of vein-related mineralizations are proxies for the paleo-fluid sources and their solution load. Methods implied comprise bulk rock analyses (petrography, XRD, XRF, ICP-MS), mineral analyses (EPMA, LA-ICP-MS), fluid inclusion measurements (microthermometry, Raman spectroscopy, ion chromatography) and isotope studies (O, H, C, S, Sr). Vein-related mineralizations within the Mesozoic sediments of the basin occur predominantly along WNW-ESE trending fault systems and comprise mainly carbonates and sulfates. Mineralizations within the basin-confining uplifted Variscan basement rocks and lowermost sedimentary units (Zechstein) show also (Fe-, Cu-, Zn-, As-, Sb-) sulfides, (Fe-, Mn-) oxides, fluorite and barite. The present study is part of INFLUINS, a BMBF-funded project bundle which is dedicated to comprehensive description and understanding of the fluid systems within the Thuringian basin in time and space.

  1. 2D electron cyclotron emission imaging at ASDEX Upgrade (invited)

    SciTech Connect

    Classen, I. G. J.; Boom, J. E.; Vries, P. C. de; Suttrop, W.; Schmid, E.; Garcia-Munoz, M.; Schneider, P. A.; Tobias, B.; Domier, C. W.; Luhmann, N. C. Jr.; Donne, A. J. H.; Jaspers, R. J. E.; Park, H. K.; Munsat, T.

    2010-10-15

    The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfven eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.

  2. Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System

    SciTech Connect

    Ellis, Richard K.

    2013-01-01

    The Humboldt House-Rye Patch geothermal resource area (HH-RP) comprises approximately 12,000 acres along and west of the Humboldt Range, adjacent to the Rye Patch Reservoir (Figure 1). A Federal Geothermal Unit covers essentially all of the known shallow thermal anomaly at the site, and the Operator, Presco Energy, is in the process of completing wellfield development adjacent to the Rye Patch binary plant, a nominal 17-megawatt system in the southern Unit area (Figure 1). DOE award EE0002840, made under the auspices of the Geothermal Technologies Program, was originally approved in January of 2010, and used a VSP profiling technology to improve seismic imaging in the Basin and Range. Phase I field activities were conducted in the 3rd quarter of 2010, and both the Phase I report and a supplemental report were completed in March and April of 2011. Two targets were identified for tests of upflow structures, both using existing wellbores, originally the 51-21 and 52-28, in the Rye Patch wellfield. The Phase II validation was approved by DOE in May of 2011.

  3. Effect of Initial Conditions on 2D Rayleigh-Taylor Instability and Transition to Turbulence in Planar Blast-wave-driven Systems

    SciTech Connect

    Miles, A R; Edwards, M J; Greenough, J A

    2004-03-26

    Perturbations on an interface driven by a strong blast wave grow in time due to a combination of Rayleigh-Taylor, Richtmyer-Meshkov, and decompression effects. In this paper, we present the first results from a computational study of such a system under drive conditions to be attainable on the National Ignition Facility. Using the multiphysics, AMR, higher order Godunov Eulerian hydrocode, Raptor, we consider the late nonlinear instability evolution for multiple amplitude and phase realizations of a variety of multimode spectral types. We show that compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions by allowing for memory of the initial conditions to be retained in the mix width at all times. The loss of transverse spectral information is demonstrated, however, along with the existence of a quasi-self-similar regime over short time intervals. Certain aspects of the initial conditions, including the rms amplitude, are shown to have a strong effect on the time to transition to the quasi-self-similar regime.

  4. Development of a filter regeneration system for advanced spacecraft fluid systems

    NASA Technical Reports Server (NTRS)

    Behrend, A. F., Jr.; Descamp, V. A.

    1974-01-01

    The development of a filter regeneration system for efficiently cleaning fluid particulate filters is presented. Based on a backflush/jet impingement technique, the regeneration system demonstrated a cleaning efficiency of 98.7 to 100%. The operating principles and design features are discussed with emphasis on the primary system components that include a regenerable filter, vortex particle separator, and zero-g particle trap. Techniques and equipment used for ground and zero-g performance tests are described. Test results and conclusions, as well as possible areas for commercial application, are included.

  5. Method for resisting corrosion in geothermal fluid handling systems

    SciTech Connect

    Love, W.W.; Cron, C.J.

    1988-05-24

    A method for resisting corrosion while conducting a flow of hot, corrosive geothermal fluid is described comprising the steps of: (a) forming a fluid conducting element of a beta and alpha titanium-base product produced by heating to form a metastable beta titantium matrix, and thereafter heat treating the matrix to form sufficient alpha phase therein providing an increase in ultimate tensile strength of at least about 10,000 psi over that of the matrix before the heat treating, the beta and alpha titantium-base product so formed having an average valence electron density of between about 4.15 and about 4.35. The composition consisting essentially of: (i) a total of between about 2 and about 10 weight percent of one or more beta eutectoid elements; (ii) between about 4 and about 10 weight percent of vanadium; (iii) between about 3 and about 6 weight percent of molybdenum; (iv) between about 2 and about 5 weight percent of aluminum; and (v) the balance titanium; and (b) following the geothermal fluid through the fluid conducting element.

  6. Pumping fluids in microfluidic systems using the elastic deformation of poly(dimethylsiloxane).

    PubMed

    Weibel, Douglas B; Siegel, Adam C; Lee, Andrew; George, Alexander H; Whitesides, George M

    2007-12-01

    This paper demonstrates a methodology for storing and pumping fluids that provide a useful capability for microfluidic devices. It uses microfluidic screw valves to isolate fluids in poly(dimethylsiloxane) (PDMS) microcompartments, in which the pressure of the liquid is stored in the elastic deformation of the walls and ceiling of the compartments. Fluids can be stored under pressure in these structures for months. When the valves are opened, the walls and ceiling push the fluid out of the compartments into microfluidic channels. The system has five useful characteristics: (i) it is made using soft lithographic techniques; (ii) it allows multiple reagents to be preloaded in devices and stored under pressure without any additional user intervention; (iii) it makes it possible to meter out fluids in devices, and to control rates of flow of fluids; (iv) it prevents the user from exposure to potentially toxic reagents; and (v) it is hand-operated and does not require additional equipment or resources. PMID:18030408

  7. Waste heat recovery fluids for heavy-duty transportation bottoming cycle systems

    SciTech Connect

    Holtz, R.E.; Uherka, K.L.; Krazinski, J.L.

    1983-01-01

    The work effort associated with the Waste Heat Recovery Fluids for Heavy-Duty Transportation Bottoming Cycle Systems Project at Argonne National Laboratory (ANL) is summarized. As part of this effort, information on fluid properties and bottoming cycle requirements was obtained from the following sources: a literature search, conversations with researchers, and site visits. It was found that adequate thermophysical property data are available for the more commonly used organic fluids, which have stability temperatures below approx. 750/sup 0/F, but that a technology gap exists for higher temperature fluids. A single-component fluid property subroutine has been developed and integrated into Argonne's Rankine bottoming cycle (RBC) Performance Code. Current efforts focus on documenting and integrating a multicomponent fluid property subroutine into the code.

  8. Systems and methods for thermal imaging technique for measuring mixing of fluids

    DOEpatents

    Booten, Charles; Tomerlin, Jeff; Winkler, Jon

    2016-06-14

    Systems and methods for thermal imaging for measuring mixing of fluids are provided. In one embodiment, a method for measuring mixing of gaseous fluids using thermal imaging comprises: positioning a thermal test medium parallel to a direction gaseous fluid flow from an outlet vent of a momentum source, wherein when the source is operating, the fluid flows across a surface of the medium; obtaining an ambient temperature value from a baseline thermal image of the surface; obtaining at least one operational thermal image of the surface when the fluid is flowing from the outlet vent across the surface, wherein the fluid has a temperature different than the ambient temperature; and calculating at least one temperature-difference fraction associated with at least a first position on the surface based on a difference between temperature measurements obtained from the at least one operational thermal image and the ambient temperature value.

  9. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Central nervous system fluid shunt and components. 882.5550 Section 882.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... shunt is a device or combination of devices used to divert fluid from the brain or other part of...

  10. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Central nervous system fluid shunt and components. 882.5550 Section 882.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... shunt is a device or combination of devices used to divert fluid from the brain or other part of...

  11. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Central nervous system fluid shunt and components. 882.5550 Section 882.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... shunt is a device or combination of devices used to divert fluid from the brain or other part of...

  12. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Central nervous system fluid shunt and components. 882.5550 Section 882.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... shunt is a device or combination of devices used to divert fluid from the brain or other part of...

  13. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Central nervous system fluid shunt and components. 882.5550 Section 882.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... shunt is a device or combination of devices used to divert fluid from the brain or other part of...

  14. Modeling deformation-induced fluid flow in cortical bone's canalicular-lacunar system.

    PubMed

    Gururaja, S; Kim, H J; Swan, C C; Brand, R A; Lakes, R S

    2005-01-01

    To explore the potential role that load-induced fluid flow plays as a mechano-transduction mechanism in bone adaptation, a lacunar-canalicular scale bone poroelasticity model is developed and implemented. The model uses micromechanics to homogenize the pericanalicular bone matrix, a system of straight circular cylinders in the bone matrix through which bone fluids can flow, as a locally anisotropic poroelastic medium. In this work, a simplified two-dimensional model of a periodic array of lacunae and their surrounding systems of canaliculi is used to quantify local fluid flow characteristics in the vicinity of a single lacuna. When the cortical bone model is loaded, microscale stress, and strain concentrations occur in the vicinity of individual lacunae and give rise to microscale spatial variations in the pore fluid pressure field. Furthermore, loading of the bone matrix containing canaliculi generates fluid pressures in the contained fluids. Consequently, loading of cortical bone induces fluid flow in the canaliculi and exchange of fluid between canaliculi and lacunae. For realistic bone morphology parameters, and a range of loading frequencies, fluid pressures and fluid-solid drag forces in the canalicular bone are computed and the associated energy dissipation in the models compared to that measured in physical in vitro experiments on human cortical bone. The proposed model indicates that deformation-induced fluid pressures in the lacunar-canalicular system have relaxation times on the order of milliseconds as opposed to the much shorter times (hundredths of milliseconds) associated with deformation-induced pressures in the Haversian system.

  15. Physical and Chemical Roles of Metalworking Fluids in a Vibration-Assisted Tapping System

    NASA Astrophysics Data System (ADS)

    Nogami, Takeshi; Nakano, Ken

    A vibration-assisted tapping system has been developed in which a piezoelectric-zirconate-titanate (PZT) oscillator applies small-amplitude vibrations to a workpiece and a torque transducer measures the time-evolving torque during the tapping process. To investigate the roles of metalworking fluids, four different metalworking conditions have been examined: without metalworking fluids (dry), with an additive-free fluid (base oil), with an oiliness-agent-containing fluid (fluid A), and with an extreme-pressure-agent-containing fluid (fluid B). The time evolutions of the tapping torque have been obtained for tapping M3 threads in S45C steel with varying vibration amplitudes, vibration frequencies, and tapping speed. It has been found that the present system decreases the tapping torque; in particular, a decrement of up to 14% in the tapping torque is obtained for fluid A using 800-Hz vibrations with an amplitude of 5 μm at a tapping speed of 3 rpm. Increments in the vibration amplitude and frequency lead to decrements in the tapping torque, but the effect of the vibration tends to fade with increasing tapping speeds. It appears that vibrations enhance not only the physical effects but also the chemical effects of metalworking fluids.

  16. Emerging and potential opportunities for 2D flexible nanoelectronics

    NASA Astrophysics Data System (ADS)

    Zhu, Weinan; Park, Saungeun; Akinwande, Deji

    2016-05-01

    The last 10 years have seen the emergence of two-dimensional (2D) nanomaterials such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP) among the growing portfolio of layered van der Waals thin films. Graphene, the prototypical 2D material has advanced rapidly in device, circuit and system studies that has resulted in commercial large-area applications. In this work, we provide a perspective of the emerging and potential translational applications of 2D materials including semiconductors, semimetals, and insulators that comprise the basic material set for diverse nanosystems. Applications include RF transceivers, smart systems, the so-called internet of things, and neurotechnology. We will review the DC and RF electronic performance of graphene and BP thin film transistors. 2D materials at sub-um channel length have so far enabled cut-off frequencies from baseband to 100GHz suitable for low-power RF and sub-THz concepts.

  17. Critical elements in the design of piping systems for toxic fluids

    SciTech Connect

    Getz, R.C.

    1996-09-01

    While releases of hazardous/toxic fluids from pressurized pipelines are infrequent, the potential for a catastrophic event resulting from such a release warrants extraordinary care of the hazardous/toxic piping systems containing these fluids, during the entire plant life cycle. System identification, segregation, material and component selection, construction techniques, and preventative maintenance programs all contribute to improved system reliability, and are discussed herein. Methods to mitigate damages in the event of a failure are also discussed.

  18. Preheating of fluid in a supercritical Brayton cycle power generation system at cold startup

    DOEpatents

    Wright, Steven A.; Fuller, Robert L.

    2016-07-12

    Various technologies pertaining to causing fluid in a supercritical Brayton cycle power generation system to flow in a desired direction at cold startup of the system are described herein. A sensor is positioned at an inlet of a turbine, wherein the sensor is configured to output sensed temperatures of fluid at the inlet of the turbine. If the sensed temperature surpasses a predefined threshold, at least one operating parameter of the power generation system is altered.

  19. Vitamin D delays breast cancer progression in the PyVMT transgenic mouse model: local conversion of the precursor 25(OH)D3 into 1,25(OH)2D3 is safer and more effective than systemic administration of 1,25(OH)2D3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolic activation of 1,25(OH)2D3 occurs at extra renal sites in several organs, including the breast. The purpose of this study was to determine if this local tumoral 25OHD3-1alphahydroxylase expression modulates any or all of the stages of breast tumor progression. For this purpose we used the...

  20. Silica Transport and Distribution in Saline, Immiscible Fluids: Application to Subseafloor Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Steele-Macinnis, M.; Bodnar, R. J.; Lowell, R.; Rimstidt, J. D.

    2009-05-01

    Quartz is a nearly ubiquitous gangue mineral in hydrothermal mineral deposits, most often constituting the bulk of hydrothermal mineralization. The dissolution, transport and precipitation of quartz is controlled by the solubility of silica; in particular, in hot hydrothermal fluids in contact with quartz, silica saturation can generally be assumed, as rates of dissolution and precipitation are generally much faster than fluid flow rates. The solubility of silica in aqueous fluids can be used to understand the evolution of hydrothermal systems by tracing the silica distribution in these systems through time. The solubility of quartz in an aqueous fluid is dependent upon the pressure, temperature and composition (PTX) of the fluid. Silica solubility in pure water as a function of pressure and temperature is well understood. However, natural fluids contain variable amounts of dissolved ionic species, thus it is necessary to include the effects of salinity on silica solubility to accurately predict quartz distribution in hydrothermal systems. In particular, addition of NaCl results in enhanced quartz solubility over a wide range of PT conditions. Furthermore, if phase separation occurs in saline fluids, silica is preferentially partitioned into the higher salinity brine phase; if vapor is removed from the system, the bulk salinity in the system evolves towards the brine end member, and overall silica solubility is enhanced. There is abundant evidence from natural fluid inclusions for fluid immiscibility in hydrothermal ore deposits. Additionally, recent hydrothermal models that include fluid phase equilibria effects predict that phase separation may be an important control on the distribution of dissolved components in seafloor hydrothermal systems. An empirical equation describing the solubility of silica in salt-bearing hydrothermal solutions over a wide range of PTX conditions has been incorporated into a multiphase fluid flow model for seafloor hydrothermal

  1. Evaluation of isolator system and large-volume centrifugation method for culturing body fluids.

    PubMed Central

    Elston, H R; Wang, M; Philip, A

    1990-01-01

    The Isolator system was compared with the large-volume centrifugation method for processing and recovering organisms from body fluids other than blood, cerebrospinal fluid, and urine. A total of 155 body fluid samples were processed for the recovery of clinically significant organisms. Of the 55 positive cultures, Isolator detected 94% and the large-volume centrifugation method detected 64%. The time necessary to indicate positivity was not significantly different in the two methods; however, in five cases, the Isolator system yielded clinically significant organisms 24 h sooner than the conventional method. The Isolator system was found to be a more sensitive alternative than the conventional large-volume centrifugation method. PMID:2405006

  2. Creeping motion and deformation of liquid drops in flow through 2D model porous media

    SciTech Connect

    Fong, I. )

    1988-01-01

    The motion, deformation and breakup of immiscible drops suspended in low Reynolds number flow through cylinder arrays has been studied experimentally to assess the applicability of the 2D model as a prototype for 2-phase flow through porous media. Both Newtonian and non-Newtonian fluid systems are considered. The relationship between key flow and geometric parameters and the critical condition for breakup, the resulting drop site distribution and the drop mobility is investigated. It is observed that the headon impact of a drop with a cylinder is an effective precursor to severe drop deformation and even breakup. The sequence of flow leading to impact is also important in determining the effectiveness of impact to result in breakup. When many drops fragments are present, the interaction between nearby drops strongly influences the final disposition of the fragments. Fluid elasticity appears to enhance the elongation of drops to form strands, but also to stabilize the strand against breakup.

  3. A simultaneous 2D/3D autostereo workstation

    NASA Astrophysics Data System (ADS)

    Chau, Dennis; McGinnis, Bradley; Talandis, Jonas; Leigh, Jason; Peterka, Tom; Knoll, Aaron; Sumer, Aslihan; Papka, Michael; Jellinek, Julius

    2012-03-01

    We present a novel immersive workstation environment that scientists can use for 3D data exploration and as their everyday 2D computer monitor. Our implementation is based on an autostereoscopic dynamic parallax barrier 2D/3D display, interactive input devices, and a software infrastructure that allows client/server software modules to couple the workstation to scientists' visualization applications. This paper describes the hardware construction and calibration, software components, and a demonstration of our system in nanoscale materials science exploration.

  4. Hysteresis and multiple stable configurations in a magnetic fluid system

    NASA Astrophysics Data System (ADS)

    Jackson, D. P.

    2008-05-01

    A magnetic liquid in a horizontal Hele-Shaw cell is subjected to a vertical magnetic field. The width of the magnetic fluid finger is measured as a function of applied field and compared to a theoretical model. The theoretical model uses an energy minimization procedure and predicts a double energy minimum, hysteresis, and discontinuous transitions between a circle and a finger. The experimental data set agrees very well with the theory for a well-defined magnetic fluid finger. Near the transitions, the experiments show hysteresis and support for a double energy minimum; however, the agreement is not quite so good. The discrepancy between theory and experiment near the transition region is likely due to the simplified finger model used in the theory.

  5. Hysteresis and multiple stable configurations in a magnetic fluid system.

    PubMed

    Jackson, D P

    2008-05-21

    A magnetic liquid in a horizontal Hele-Shaw cell is subjected to a vertical magnetic field. The width of the magnetic fluid finger is measured as a function of applied field and compared to a theoretical model. The theoretical model uses an energy minimization procedure and predicts a double energy minimum, hysteresis, and discontinuous transitions between a circle and a finger. The experimental data set agrees very well with the theory for a well-defined magnetic fluid finger. Near the transitions, the experiments show hysteresis and support for a double energy minimum; however, the agreement is not quite so good. The discrepancy between theory and experiment near the transition region is likely due to the simplified finger model used in the theory.

  6. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  7. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  8. Perspectives for spintronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  9. Balanced Flow Metering and Conditioning: Technology for Fluid Systems

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R.

    2006-01-01

    Revolutionary new technology that creates balanced conditions across the face of a multi-hole orifice plate has been developed, patented and exclusively licensed for commercialization. This balanced flow technology simultaneously measures mass flow rate, volumetric flow rate, and fluid density with little or no straight pipe run requirements. Initially, the balanced plate was a drop in replacement for a traditional orifice plate, but testing revealed substantially better performance as compared to the orifice plate such as, 10 times better accuracy, 2 times faster (shorter distance) pressure recovery, 15 times less acoustic noise energy generation, and 2.5 times less permanent pressure loss. During 2004 testing at MSFC, testing revealed several configurations of the balanced flow meter that match the accuracy of Venturi meters while having only slightly more permanent pressure loss. However, the balanced meter only requires a 0.25 inch plate and has no upstream or downstream straight pipe requirements. As a fluid conditioning device, the fluid usually reaches fully developed flow within 1 pipe diameter of the balanced conditioning plate. This paper will describe the basic balanced flow metering technology, provide performance details generated by testing to date and provide implementation details along with calculations required for differing degrees of flow metering accuracy.

  10. Wavelet characterization of 2D turbulence and intermittency in magnetized electron plasmas

    NASA Astrophysics Data System (ADS)

    Romé, M.; Chen, S.; Maero, G.

    2016-06-01

    A study of the free relaxation of turbulence in a two-dimensional (2D) flow is presented, with a focus on the role of the initial vorticity conditions. Exploiting a well-known analogy with 2D inviscid incompressible fluids, the system investigated here is a magnetized pure electron plasma. The dynamics of this system are simulated by means of a 2D particle-in-cell code, starting from different spiral density (vorticity) distributions. A wavelet multiresolution analysis is adopted, which allows the coherent and incoherent parts of the flow to be separated. Comparison of the turbulent evolution in the different cases is based on the investigation of the time evolution of statistical properties, including the probability distribution functions and structure functions of the vorticity increments. It is also based on an analysis of the enstrophy evolution and its spectrum for the two components. In particular, while the statistical features assess the degree of flow intermittency, spectral analysis allows us not only to estimate the time required to reach a state of fully developed turbulence, but also estimate its dependence on the thickness of the initial spiral density distribution, accurately tracking the dynamics of both the coherent structures and the turbulent background. The results are compared with those relevant to annular initial vorticity distributions (Chen et al 2015 J. Plasma Phys. 81 495810511).

  11. Phase Behavior of 2D Charged Hydrophobic Colloids in Flat and Curved Space

    NASA Astrophysics Data System (ADS)

    Kelleher, Colm; Guerra, Rodrigo; Chaikin, Paul

    Charged hydrophobic colloids, when dispersed in oil with a relatively high dielectric constant, can become highly charged. In the presence of an interface with a conducting aqueous phase, particles bind strongly to the interface via image-charge attraction. At sufficiently high density, these charged interfacial particles self-organize into a 2D repulsive (Wigner) crystalline solid phase, while at lower densities, the particles form a 2D fluid. By observing samples prepared at different densities, we can probe various points in the phase diagram of this soft 2D material, and compare our results with applicable theory and simulations. In this talk, we present two sets of experiments we have performed on this system: first, we show how we can use gravity as an external force to create a controlled density gradient, and thereby directly measure the equation of state and other quantities of interest. Second, we discuss how, by observing particles which are bound to the surface of spherical droplets, we can explore how the presence of finite background curvature affects the phase behavior of the system.

  12. Compartmentalized Fluid Flow In The Nevado Del Ruiz Volcano Hydrothermal System(S)

    NASA Astrophysics Data System (ADS)

    Zuluaga, C. A.; Mejia, E.

    2011-12-01

    Combination of several extensive and compressive fault/fracture systems with different lithologic units compartmentalized the hydrothermal system(s) in the vicinity of the Nevado del Ruiz volcano. Three main fault/fracture systems are observed in the Ruiz volcano area, a N10°-20°E system (San Jerónimo and Palestina faults), a N40°-60°W system (Villamaría-Termales, San Ramón, Nereidas, Río Claro, San Eugenio and Campoalegrito faults), and a N60°-80°E system (Santa Rosa fault). The NW trend system act as the main path for fluid circulation, location of faults and fractures belonging to this system and their intersections with other fault systems and/or with lithologic contacts control hot springs location. The observed fault location and hot spring location pattern allow to subdivide the hydrothermal system(s) in at least five blocks. In the southernmost block, hot springs are mostly located in one of the four quadrants originated by fault intersections suggesting that there is a compartmentalization into higher and lower permeability quadrants. It is still unknown if all blocks belong to the same hydrothermal system or if there is more than one hydrothermal system.

  13. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  14. Fluid evolution in submarine magna-hydrothermal systems at the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Kelley, Deborah S.; Gillis, Kathryn M.; Thompson, Geoff

    1993-11-01

    Fluid inclusion in a suite of gabbro, quartz-breccia, and metabasalt samples recovered from the Mid-Atlantic Ridge Kane Fracture Zone (MARK) area on the Mid-Atlanitc Ridge are the product of a complex hydrothermal history involving late stage magmatic fluids at temperatures greater than 700 C and penetration by modified seawater at 300-400 C. The evolution of volatiles during the early stage of solidification and cooling of magma bodies near the ridge-transform intersection is marked by exsolution of a CO2 fluid, entrapped within primary inclusions in fluorapatites. Attendant with progressive melt fractionation, residual evolved melts reached water saturation, and locally, supercritical CO2+H2O+NaCl+/-Fe brines (greater than 50 wt % NaCl) and cogenetic H2O+CO2-rich vapors (1-2 wt % NaCl) were exsolved as immiscible phases. Concomitant or subsequent fracturing, perhaps in response to volatile exsolution from the melts, allowed migration of these fluids along microfracture networks at greater than 700 C. Trondhjemitic-hosted inclusions, which homogenize by halite dissolution, indicate that the last fluids exsolved from the melts may have been 35-40 wt % brines. The transition from magmatic to seawater-dominated hydrothermal conditions in the gabbros is marked by initial penetration of lower salinity fluids (1-7 wt % NaCl) at temperatures in excess of 400 C, with the general cessation of fluid flow occurring at minimum temperatures of approximately = 250 C. The relative enrichment and depletion of NaCl with respect to seawater in these fluids may record supercitical phases separation of seawater or boiling of hydrothermal fluids enriched in NaCl. Migration along microfracture networks of Ch4-rich, 350 C fluids, may reflect deeper seated hydrothermal processes involving hydration of underlying mantle material in response to fluid flow along deeply penetrating fault systems. In shallow crustal rocks, circulation of seawater-derived fluids fluids occurred at temperatures

  15. Development and testing of heat transport fluids for use in active solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1981-01-01

    Work on heat transport fluids for use with active solar heating and cooling systems is described. Program objectives and how they were accomplished including problems encountered during testing are discussed.

  16. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  17. Laser beam manifold and particle photography system for use in fluid velocity measurements

    NASA Technical Reports Server (NTRS)

    Owen, R. B.; Campbell, C. W.

    1980-01-01

    A laser beam manifold and particle photography system has been developed for use in fluid velocity measurements. The laser manifold is a device which transforms a single laser beam into several uniform parallel beams. By orienting two manifolds mutually perpendicular, an optical grid can be formed which acts as a reference for fluid velocity measurements. This optical grid is for all practical purposes totally nonperturbing to the flow. Tracer particles moving in the plane of the grid are then photographed to yield fluid velocities that can be measured relative to the optical grid. System construction and theory are presented.

  18. Magnetohydrodynamic pump with a system for promoting flow of fluid in one direction

    DOEpatents

    Lemoff, Asuncion V.; Lee, Abraham P.

    2010-07-13

    A magnetohydrodynamic pump for pumping a fluid. The pump includes a microfluidic channel for channeling the fluid, a MHD electrode/magnet system operatively connected to the microfluidic channel, and a system for promoting flow of the fluid in one direction in the microfluidic channel. The pump has uses in the medical and biotechnology industries for blood-cell-separation equipment, biochemical assays, chemical synthesis, genetic analysis, drug screening, an array of antigen-antibody reactions, combinatorial chemistry, drug testing, medical and biological diagnostics, and combinatorial chemistry. The pump also has uses in electrochromatography, surface micromachining, laser ablation, inkjet printers, and mechanical micromilling.

  19. Development and Implementation of a Design Metric for Systems Containing Long-Term Fluid Loops

    NASA Technical Reports Server (NTRS)

    Steele, John W.

    2016-01-01

    John Steele, a chemist and technical fellow from United Technologies Corporation, provided a water quality module to assist engineers and scientists with a metric tool to evaluate risks associated with the design of space systems with fluid loops. This design metric is a methodical, quantitative, lessons-learned based means to evaluate the robustness of a long-term fluid loop system design. The tool was developed by a cross-section of engineering disciplines who had decades of experience and problem resolution.

  20. Method and apparatus for removing non-condensible gas from a working fluid in a binary power system

    DOEpatents

    Mohr, Charles M.; Mines, Gregory L.; Bloomfield, K. Kit

    2002-01-01

    Apparatus for removing non-condensible gas from a working fluid utilized in a thermodynamic system comprises a membrane having an upstream side operatively connected to the thermodynamic system so that the upstream side of the membrane receives a portion of the working fluid. The first membrane separates the non-condensible gas from the working fluid. A pump operatively associated with the membrane causes the portion of the working fluid to contact the membrane and to be returned to the thermodynamic system.