Science.gov

Sample records for 2d fluorescence spectroscopy

  1. Quantum process tomography by 2D fluorescence spectroscopy

    SciTech Connect

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  2. Quantum process tomography by 2D fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-06-01

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  3. Solution conformation of 2-aminopurine (2-AP) dinucleotide determined by ultraviolet 2D fluorescence spectroscopy (UV-2D FS)

    PubMed Central

    Widom, Julia R.; Johnson, Neil P.; von Hippel, Peter H.; Marcus, Andrew H.

    2013-01-01

    We have observed the conformation-dependent electronic coupling between the monomeric subunits of a dinucleotide of 2-aminopurine (2-AP), a fluorescent analog of the nucleic acid base adenine. This was accomplished by extending two-dimensional fluorescence spectroscopy (2D FS) – a fluorescence-detected variation of 2D electronic spectroscopy – to excite molecular transitions in the ultraviolet (UV) regime. A collinear sequence of four ultrafast laser pulses centered at 323 nm was used to resonantly excite the coupled transitions of 2-AP dinucleotide. The phases of the optical pulses were continuously swept at kilohertz frequencies, and the ensuing nonlinear fluorescence was phase-synchronously detected at 370 nm. Upon optimization of a point-dipole coupling model to our data, we found that in aqueous buffer the 2-AP dinucleotide adopts an average conformation in which the purine bases are non-helically stacked (center-to-center distance R12 = 3.5 Å ± 0.5 Å, twist angle θ12 = 5° ± 5°), which differs from the conformation of such adjacent bases in duplex DNA. These experiments establish UV-2D FS as a method for examining the local conformations of an adjacent pair of fluorescent nucleotides substituted into specific DNA or RNA constructs, which will serve as a powerful probe to interpret, in structural terms, biologically significant local conformational changes within the nucleic acid framework of protein-nucleic acid complexes. PMID:24223491

  4. 2D fluorescence spectroscopy for monitoring ion-exchange membrane based technologies - Reverse electrodialysis (RED).

    PubMed

    Pawlowski, Sylwin; Galinha, Claudia F; Crespo, João G; Velizarov, Svetlozar

    2016-01-01

    Reverse electrodialysis (RED) is one of the emerging, membrane-based technologies for harvesting salinity gradient energy. In RED process, fouling is an undesirable operation constraint since it leads to a decrease of the obtainable net power density due to increasing stack electric resistance and pressure drop. Therefore, early fouling detection is one of the main challenges for successful RED technology implementation. In the present study, two-dimensional (2D) fluorescence spectroscopy was used, for the first time, as a tool for fouling monitoring in RED. Fluorescence excitation-emission matrices (EEMs) of ion-exchange membrane surfaces and of natural aqueous streams were acquired during one month of a RED stack operation. Fouling evolvement on the ion-exchange membrane surfaces was successfully followed by 2D fluorescence spectroscopy and quantified using principal components analysis (PCA). Additionally, the efficiency of cleaning strategy was assessed by measuring the membrane fluorescence emission intensity before and after cleaning. The anion-exchange membrane (AEM) surface in contact with river water showed to be significantly affected due to fouling by humic compounds, which were found to cross through the membrane from the lower salinity (river water) to higher salinity (sea water) stream. The results obtained show that the combined approach of using 2D fluorescence spectroscopy and PCA has a high potential for studying fouling development and membrane cleaning efficiency in ion exchange membrane processes.

  5. Internal Photoemission Spectroscopy of 2-D Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  6. Investigation of kinetics and thermodynamics of DNA hybridization by means of 2-D fluorescence spectroscopy and soft/hard modeling techniques.

    PubMed

    Ebrahimi, Sara; Kompany-Zareh, Mohsen

    2016-02-01

    Reversible hybridization reaction plays a key role in fundamental biological processes, in many laboratory techniques, and also in DNA based sensing devices. Comprehensive investigation of this process is, therefore, essential for the development of more sophisticated applications. Kinetics and thermodynamics of the hybridization reaction, as a second order process, are systematically investigated with the aid of the soft and hard chemometric methods. Labeling two complementary 21 mer DNA single strands with FAM and Texas red fluorophores, enabled recording of the florescence excitation-emission matrices during the experiments which led to three-way data sets. The presence of fluorescence resonance energy transfer in excitation and emission modes and the closure in concentration mode, made the three-way data arrays rank deficient. To acquire primary chemical information, restricted Tucker3 as a soft method was employed. Herein a model-based method, hard restricted trilinear decomposition, is introduced for in depth analysis of rank deficient three-way data sets. By employing proposed hard method, the nonlinear model parameters as well as the correct profiles could be estimated. In addition, a simple constraint is presented to extract chemically reasonable output profiles regarding the core elements of restricted Tucker3 model.

  7. Nanosecond fluorescence spectroscopy

    SciTech Connect

    Leskovar, B.

    1985-03-01

    This article is a summary of a short course lecture given in conjunction with the 1984 Nuclear Science Symposium. Measuring systems for nanosecond fluorescence spectroscopy using single-photon counting techniques are presented. These involve systems based on relaxation-type spark gap light pulser and synchronously pumped mode-locked dye lasers. Furthermore, typical characteristics and optimization of operating conditions of the critical components responsible for the system time resolution are discussed. A short comparison of the most important deconvolution methods for numerical analysis of experimental data is given particularly with respect to the signal-to-noise ratio of the fluorescence signal. 22 refs., 8 figs.

  8. Ultrafast 2D NMR: an emerging tool in analytical spectroscopy.

    PubMed

    Giraudeau, Patrick; Frydman, Lucio

    2014-01-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry--from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  9. Broadband THz Spectroscopy of 2D Nanoscale Materials

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Tripathi, Shivendra; Huang, Mengchen; Hsu, Jen-Feng; D'Urso, Brian; Lee, Hyungwoo; Eom, Chang-Beom; Irvin, Patrick; Levy, Jeremy

    Two-dimensional (2D) materials such as graphene and transition-metal dichalcogenides (TMDC) have attracted intense research interest in the past decade. Their unique electronic and optical properties offer the promise of novel optoelectronic applications in the terahertz regime. Recently, generation and detection of broadband terahertz (10 THz bandwidth) emission from 10-nm-scale LaAlO3/SrTiO3 nanostructures created by conductive atomic force microscope (c-AFM) lithography has been demonstrated . This unprecedented control of THz emission at 10 nm length scales creates a pathway toward hybrid THz functionality in 2D-material/LaAlO3/SrTiO3 heterostructures. Here we report initial efforts in THz spectroscopy of 2D nanoscale materials with resolution comparable to the dimensions of the nanowire (10 nm). Systems under investigation include graphene, single-layer molybdenum disulfide (MoS2), and tungsten diselenide (WSe2) nanoflakes. 1. Y. Ma, et al., Nano Lett. 13, 2884 (2013). We gratefully acknowledge financial support from the following agencies and grants: AFOSR (FA9550-12-1-0268 (JL, PRI), FA9550-12-1-0342 (CBE)), ONR (N00014-13-1-0806 (JL, CBE), N00014-15-1-2847 (JL)), NSF DMR-1124131 (JL, CBE) and DMR-1234096 (CBE).

  10. Smartphone fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Hojoeng; Tan, Yafang; Cunningham, Brian T.

    2014-03-01

    We demonstrate the first use of smartphone spectrophotometry for readout of fluorescence-based biological assays. We evaluated the smartphone fluorimeter in the context of a fluorescent molecular beacon (MB) assay for detection of a specific nucleic acid sequences in a liquid test sample. The capability of distinguishing a one-point mismatch is also demonstrated by detecting single-base mutation in target nucleic acids. Our approach offers a route towards portable biomolecular assays for viral/bacterial pathogens, disease biomarkers, and toxins.

  11. Smartphone fluorescence spectroscopy.

    PubMed

    Yu, Hojeong; Tan, Yafang; Cunningham, Brian T

    2014-09-01

    We demonstrate the first use of smartphone spectrophotometry for readout of fluorescence-based biological assays. We evaluated the smartphone fluorimeter in the context of a fluorescent molecular beacon (MB) assay for detection of specific nucleic acid sequences in a liquid test sample and compared performance against a conventional laboratory fluorimeter. The capability of distinguishing a one-point mismatch is also demonstrated by detecting single-base mutation in target nucleic acids. Our approach offers a route toward portable biomolecular assays for viral/bacterial pathogens, disease biomarkers, and toxins.

  12. Peak width issues with generalised 2D correlation NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kirwan, Gemma M.; Adams, Michael J.

    2008-12-01

    Two-dimensional spectral correlation analysis is shown to be sensitive to fluctuations in spectral peak width as a function of perturbation variable. This is particularly significant where peak width fluctuations are of similar order of magnitude as the peak width values themselves and where changes in peak width are not random but are, for example, proportional to intensity. In such cases these trends appear in the asynchronous matrix as false peaks that serve to interfere with interpretation of the data. Complex, narrow band spectra such as provided by 1H NMR spectroscopy are demonstrated to be prone to such interference. 2D correlation analysis was applied to a series of NMR spectra corresponding to a commercial wine fermentation, in which the samples collected over a period of several days exhibit dramatic changes in concentration of minor and major components. The interference due to changing peak width effects is eliminated by synthesizing the recorded spectra using a constant peak width value prior to performing 2D correlation analysis.

  13. Coherent 2D Spectroscopy and Control of Molecular Complexes

    NASA Astrophysics Data System (ADS)

    Brixner, Tobias

    2007-03-01

    Coherent two-dimensional femtosecond spectroscopy is used to investigate electronic couplings within molecular complexes. Third-order optical response functions are measured in a non-collinear three-pulse photon echo geometry with heterodyne signal detection. In combination with suitable simulations this allows recovering the delocalization of excited-state wavefunctions, their coupling, and the corresponding energy transport pathways, with nanometer spatial and femtosecond temporal resolution. Examples of multichromophoric systems are the FMO and the LH3 light-harvesting complexes from green sulfur bacteria and purple bacteria, respectively, for which energy transfer processes have been determined. Additional challenges arise if one is interested in the spectroscopy of photochemical rather than photophysical processes in molecular complexes: The product yields attained by a single femtosecond laser pulse are often very small, and hence time-dependent signals are hard to measure with good signal-to-noise ratio. In the context of coherent control, this implies that bond-breaking photochemistry in liquids is still difficult despite the many successes of optimal control in gas-phase photodissociation. In a novel accumulative scheme, macroscopic amounts of stable photoproducts are generated in an optimal fashion and with high product detection sensitivity. In connection with time-resolved spectroscopy, the accumulative scheme furthermore provides kinetic information on the pathways of low-efficiency chemical reaction channels. This was applied to investigate the photoconversion of green fluorescent protein.

  14. Two dimensional spectroscopy of Liquids in THz-domain: THz analogue of 2D Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Okumura, K.; Tanimura, Y.

    1998-03-01

    After the initial proposal(Y. Tanimura and S. Mukamel, J. Chem. Phys. 99, 9496 (1993)), the two dimensional Raman spectroscopy in the liquid phase has been received a considerable attention. Both experimental and theoretical activity of this field has been quite high. Since we have two controllable delay times, we can obtain more information than the lower-order experiments such as OKE. The new information includes that on heterogeneous distribution in liquids. Recently, it is found that the coupling between the modes in liquids can be investigated by the technique, both experimentally and theoretically(A. Tokmakoff, M.J. Lang, D.S. Larsen, G.R. Fleming, V. Chernyak, and S. Mukamel, Phys. Rev. Lett. (in press))^,(K. Okumura and Y. Tanimura, Chem. Phys. Lett. 278, 175 (1997)) In this talk, we will emphasize that we can perform the THz analogue of the 2D Raman spectroscopy if the THz short-pulse laser becomes available, which may not be in the far future. Theoretically, we can formulate this novel THz spectroscopy on the same footing as the 2D Raman spectroscopy. We will clarify new aspects of this technique comparing with the 2D Raman spectroscopy--- the reason it worth trying the tough experiment. See

  15. Double resonance rotational spectroscopy of CH2D+

    NASA Astrophysics Data System (ADS)

    Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2016-09-01

    Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.

  16. Fluorescence Spectroscopy in a Shoebox

    NASA Astrophysics Data System (ADS)

    Farooq Wahab, M.

    2007-08-01

    This article describes construction of a simple, inexpensive fluorometer. It utilizes a flashlight or sunlight source, highlighter marker ink, bowl of water with mirror as dispersing element, and colored cellophane sheets as filters. The human eye is used as a detector. This apparatus is used to demonstrate important concepts related to fluorescence spectroscopy. Using ink from a highlighter marker, one can demonstrate the difference between light scattering and fluorescence emission, the need for an intense light source, phenomenon of the Stokes shift, the choice of filters, the preferred geometry of excitation source and emission detector, and the low detection limits that can be achieved by fluorescence measurements. By reflecting the fluorescence emission from a compact disk, it can be seen that the light emitted by molecules is not monochromatic. Furthermore, a spectrofluorometer is constructed using gratings made from a DVD or a CD. The shoebox fluorometer and spectrofluorometer can serve as useful teaching aids in places where commercial instruments are not available, and it avoids the black box problem of modern instruments.

  17. Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy.

    PubMed

    Consani, Cristina; Auböck, Gerald; van Mourik, Frank; Chergui, Majed

    2013-03-29

    Tryptophan is commonly used to study protein structure and dynamics, such as protein folding, as a donor in fluorescence resonant energy transfer (FRET) studies. By using ultra-broadband ultrafast two-dimensional (2D) spectroscopy in the ultraviolet (UV) and transient absorption in the visible range, we have disentangled the excited state decay pathways of the tryptophan amino acid residues in ferric myoglobins (MbCN and metMb). Whereas the more distant tryptophan (Trp(7)) relaxes by energy transfer to the heme, Trp(14) excitation predominantly decays by electron transfer to the heme. The excited Trp(14)→heme electron transfer occurs in <40 picoseconds with a quantum yield of more than 60%, over an edge-to-edge distance below ~10 angstroms, outcompeting the FRET process. Our results raise the question of whether such electron transfer pathways occur in a larger class of proteins.

  18. Human erythrocytes analyzed by generalized 2D Raman correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wesełucha-Birczyńska, Aleksandra; Kozicki, Mateusz; Czepiel, Jacek; Łabanowska, Maria; Nowak, Piotr; Kowalczyk, Grzegorz; Kurdziel, Magdalena; Birczyńska, Malwina; Biesiada, Grażyna; Mach, Tomasz; Garlicki, Aleksander

    2014-07-01

    The most numerous elements of the blood cells, erythrocytes, consist mainly of two components: homogeneous interior filled with hemoglobin and closure which is the cell membrane. To gain insight into their specific properties we studied the process of disintegration, considering these two constituents, and comparing the natural aging process of human healthy blood cells. MicroRaman spectra of hemoglobin within the single RBC were recorded using 514.5, and 785 nm laser lines. The generalized 2D correlation method was applied to analyze the collected spectra. The time passed from blood donation was regarded as an external perturbation. The time was no more than 40 days according to the current storage limit of blood banks, although, the average RBC life span is 120 days. An analysis of the prominent synchronous and asynchronous cross peaks allow us to get insight into the mechanism of hemoglobin decomposition. Appearing asynchronous cross-peaks point towards globin and heme separation from each other, while synchronous shows already broken globin into individual amino acids. Raman scattering analysis of hemoglobin “wrapping”, i.e. healthy erythrocyte ghosts, allows for the following peculiarity of their behavior. The increasing power of the excitation laser induced alterations in the assemblage of membrane lipids. 2D correlation maps, obtained with increasing laser power recognized as an external perturbation, allows for the consideration of alterations in the erythrocyte membrane structure and composition, which occurs first in the proteins. Cross-peaks were observed indicating an asynchronous correlation between the senescent-cell antigen (SCA) and heme or proteins vibrations. The EPR spectra of the whole blood was analyzed regarding time as an external stimulus. The 2D correlation spectra points towards participation of the selected metal ion centers in the disintegration process.

  19. 2D-hyperfine sublevel correlation spectroscopy of tyrosyl radicals.

    PubMed

    Deligiannakis, Y; Ivancich, A; Rutherord, A W

    2002-04-01

    Hyperfine sublevel correlation (HYSCORE) spectroscopy has been used to study the tyrosyl radicals in Photosystem II and bovine liver catalase. The HYSCORE data allow a complete resolution of all the 1H hyperfine tensors of these radicals. The present work shows that the proper analysis of the HYSCORE data allows the complete assignment of the 1H-hyperfine tensors in tyrosine radicals and this offers an alternative experimental tool relative to ENDOR. PMID:11993467

  20. Fluorescence spectroscopy applied to orange trees

    NASA Astrophysics Data System (ADS)

    Marcassa, L. G.; Gasparoto, M. C. G.; Belasque, J., Jr.; Lins, E. C.; Dias Nunes, F.; Bagnato, V. S.

    2006-05-01

    In this work, we have applied laser-induced fluorescence spectroscopy to investigate biological processes in orange trees (Citrus aurantium L.). We have chosen to investigate water stress and Citrus Canker, which is a disease caused by the Xanthomonas axonopodis pv. citri bacteria. The fluorescence spectroscopy was investigated by using as an excitation source a 442-nm 15-mW HeCd gas multimode discharge laser and a 532-nm 10-mW Nd3+:YAG laser. The stress manifestation was detected by the variation of fluorescence ratios of the leaves at different wavelengths. The fluorescence ratios present a significant variation, showing the possibility to observe water stress by fluorescence spectrum. The Citrus Canker’s contaminated leaves were discriminated from the healthy leaves using a more complex analysis of the fluorescence spectra. However, we were unable to discriminate it from another disease, and new fluorescence experiments are planned for the future.

  1. Accurate fluorescence quantum yield determination by fluorescence correlation spectroscopy.

    PubMed

    Kempe, Daryan; Schöne, Antonie; Fitter, Jörg; Gabba, Matteo

    2015-04-01

    Here, we present a comparative method for the accurate determination of fluorescence quantum yields (QYs) by fluorescence correlation spectroscopy. By exploiting the high sensitivity of single-molecule spectroscopy, we obtain the QYs of samples in the microliter range and at (sub)nanomolar concentrations. Additionally, in combination with fluorescence lifetime measurements, our method allows the quantification of both static and collisional quenching constants. Thus, besides being simple and fast, our method opens up the possibility to photophysically characterize labeled biomolecules under application-relevant conditions and with low sample consumption, which is often important in single-molecule studies.

  2. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-01

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples.

  3. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  4. Probing dipole-dipole interaction in a rubidium gas via double-quantum 2D spectroscopy.

    PubMed

    Gao, Feng; Cundiff, Steven T; Li, Hebin

    2016-07-01

    We have implemented double-quantum 2D spectroscopy on a rubidium vapor and shown that this technique provides sensitive and background-free detection of the dipole-dipole interaction. The 2D spectra include signals from both individual atoms and interatomic interactions, allowing quantitative studies of the interaction. A theoretical model based on the optical Bloch equations is used to reproduce the experimental spectrum and confirm the origin of double-quantum signals. PMID:27367074

  5. Fluorescence spectroscopy for neoplasms control

    NASA Astrophysics Data System (ADS)

    Bratchenko, I. A.; Kristoforova, Yu. A.; Myakinin, O. O.; Artemyev, D. N.; Kozlov, S. V.; Moryatov, A. A.; Zakharov, V. P.

    2016-04-01

    Investigation of malignant skin tumors diagnosis was performed involving two setups for native tissues fluorescence control in visible and near infrared regions. Combined fluorescence analysis for skin malignant melanomas and basal cell carcinomas was performed. Autofluorescence spectra of normal skin and oncological pathologies stimulated by 457 nm and 785 nm lasers were registered for 74 skin tissue samples. Spectra of 10 melanomas and 27 basal cell carcinomas were registered ex vivo. Skin tumors analysis was made on the basis of autofluorescence spectra intensity and curvature for analysis of porphyrins, lipo-pigments, flavins and melanin. Separation of melanomas and basal cell carcinomas was performed on the basis of discriminant analysis. Overall accuracy of basal cell carcinomas and malignant melanomas separation in current study reached 86.5% with 70% sensitivity and 92.6% specificity.

  6. 2D-Cosy NMR Spectroscopy as a Quantitative Tool in Biological Matrix: Application to Cyclodextrins.

    PubMed

    Dufour, Gilles; Evrard, Brigitte; de Tullio, Pascal

    2015-11-01

    Classical analytical quantifications in biological matrices require time-consuming sample pre-treatments and extractions. Nuclear magnetic resonance (NMR) analysis does not require heavy sample treatments or extractions which therefore increases its accuracy in quantification. In this study, even if quantitative (q)NMR could not be applied to 2D spectra, we demonstrated that cross-correlations and diagonal peak intensities have a linear relationship with the analyzed pharmaceutical compound concentration. This work presents the validation process of a 2D-correlation spectroscopy (COSY) NMR quantification of 2-hydroxypropyl-β-cyclodextrin in plasma. Specificity, linearity, precision (repeatability and intermediate precision), trueness, limits of quantification (LOQs), and accuracy were used as validation criteria. 2D-NMR could therefore be used as a valuable and accurate analytical technique for the quantification of pharmaceutical compounds, including hardly detectable compounds such as cyclodextrins or poloxamers, in complex biological matrices based on a calibration curve approach.

  7. Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy.

    PubMed

    Spokoyny, Boris; Koh, Christine J; Harel, Elad

    2015-03-15

    Broadband supercontinuum (SC) pulses in the few cycle regime are a promising source for spectroscopic and imaging applications. However, SC sources are plagued by poor stability, greatly limiting their utility in phase-resolved nonlinear experiments such as 2D photon echo spectroscopy (2D PES). Here, we generated SC by two-stage filamentation in argon and air starting from 100 fs input pulses, which are sufficiently high-power and stable to record time-resolved 2D PE spectra in a single laser shot. We obtain a total power of 400 μJ/pulse in the visible spectral range of 500-850 nm and, after compression, yield pulses with duration of 6 fs according to transient-grating frequency-resolved optical gating (TG-FROG) measurements. We demonstrate the method on the laser dye, Cresyl Violet, and observe coherent oscillations indicative of nuclear wavepacket dynamics.

  8. Transient 2D IR spectroscopy of charge injection in dye-sensitized nanocrystalline thin films.

    PubMed

    Xiong, Wei; Laaser, Jennifer E; Paoprasert, Peerasak; Franking, Ryan A; Hamers, Robert J; Gopalan, Padma; Zanni, Martin T

    2009-12-23

    We use nonlinear 2D IR spectroscopy to study TiO(2) nanocrystalline thin films sensitized with a Re dye. We find that the free electron signal, which often obscures the vibrational features in the transient absorption spectrum, is not observed in the 2D IR spectra. Its absence allows the vibrational features of the dye to be much better resolved than with the typical IR absorption probe. We observe multiple absorption bands but no cross peaks in the 2D IR spectra, which indicates that the dyes have at least three conformations. Furthermore, by using a pulse sequence in which we initiate electron transfer in the middle of the infrared pulse train, we are able to assign the excited state features by correlating them to the ground state vibrational modes and determine that the three conformations have different time scales and cross sections for electron injection. 2D IR spectroscopy is proving to be very useful in disentangling overlapping structural distributions in biological and chemical physics processes. These experiments demonstrate that nonlinear infrared probes are also a powerful new tool for studying charge transfer at interfaces.

  9. Ultraviolet, Visible, and Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Penner, Michael H.

    Spectroscopy in the ultraviolet-visible (UV-Vis) range is one of the most commonly encountered laboratory techniques in food analysis. Diverse examples, such as the quantification of macrocomponents (total carbohydrate by the phenol-sulfuric acid method), quantification of microcomponents, (thiamin by the thiochrome fluorometric procedure), estimates of rancidity (lipid oxidation status by the thiobarbituric acid test), and surveillance testing (enzyme-linked immunoassays), are presented in this text. In each of these cases, the analytical signal for which the assay is based is either the emission or absorption of radiation in the UV-Vis range. This signal may be inherent in the analyte, such as the absorbance of radiation in the visible range by pigments, or a result of a chemical reaction involving the analyte, such as the colorimetric copper-based Lowry method for the analysis of soluble protein.

  10. Single-scan 2D NMR: An Emerging Tool in Analytical Spectroscopy

    PubMed Central

    Giraudeau, Patrick; Frydman, Lucio

    2016-01-01

    Two-dimensional Nuclear Magnetic Resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing an increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago a so-called “ultrafast” (UF) approach was proposed, capable to deliver arbitrary 2D NMR spectra involving any kind of homo- or hetero-nuclear correlations, in a single scan. During the intervening years the performance of this sub-second 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool witnessing an expanded scope of applications. The present reviews summarizes the principles and the main developments which have contributed to the success of this approach, and focuses on applications which have been recently demonstrated in various areas of analytical chemistry –from the real time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  11. Differentiating tissue by fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Woessner, Stefan; Huen, Julien; Malthan, Dirk

    2004-03-01

    A common problem in several surgical applications is the lack of navigational information. Most often, the only source of information about the location of crucial structures, in relation to the surgical instrument, is the visible and tactile sensory input of the surgeon. In some cases, this leads to time-consuming procedures and a high risk for the patient. Therefore, we developed a spectroscopic sensor system for automatic differentiation between several tissue types. For example in milling processes, a sensor that is able to detect bone in contrast to nerve or vein tissue can be used to control the milling process. We showed exemplarily for the cochlea implant, a typical ENT-surgery, that with the help of our sensor system, the milling of bone can be accelerated without increasing the risk for the patient. It is also possible to use this type of sensor system in the area of medical robotics in soft-tissue applications. With real-time information, a continuous registration can take place, in contrast to a registration that is done using static preoperatively acquired images. We showed that our sensor system can be used to dynamically update the location of the patient in relation to CT or MR-images. In conclusion, we have been able to show that well-known spectroscopy sensors can be used to open new possibilities in medical treatment with and without the use of robotics.

  12. Fluorescence spectroscopy for wastewater monitoring: A review.

    PubMed

    Carstea, Elfrida M; Bridgeman, John; Baker, Andy; Reynolds, Darren M

    2016-05-15

    Wastewater quality is usually assessed using physical, chemical and microbiological tests, which are not suitable for online monitoring, provide unreliable results, or use hazardous chemicals. Hence, there is an urgent need to find a rapid and effective method for the evaluation of water quality in natural and engineered systems and for providing an early warning of pollution events. Fluorescence spectroscopy has been shown to be a valuable technique to characterize and monitor wastewater in surface waters for tracking sources of pollution, and in treatment works for process control and optimization. This paper reviews the current progress in applying fluorescence to assess wastewater quality. Studies have shown that, in general, wastewater presents higher fluorescence intensity compared to natural waters for the components associated with peak T (living and dead cellular material and their exudates) and peak C (microbially reprocessed organic matter). Furthermore, peak T fluorescence is significantly reduced after the biological treatment process and peak C is almost completely removed after the chlorination and reverse osmosis stages. Thus, simple fluorometers with appropriate wavelength selectivity, particularly for peaks T and C could be used for online monitoring in wastewater treatment works. This review also shows that care should be taken in any attempt to identify wastewater pollution sources due to potential overlapping fluorophores. Correlations between fluorescence intensity and water quality parameters such as biochemical oxygen demand (BOD) and total organic carbon (TOC) have been developed and dilution of samples, typically up to ×10, has been shown to be useful to limit inner filter effect. It has been concluded that the following research gaps need to be filled: lack of studies on the on-line application of fluorescence spectroscopy in wastewater treatment works and lack of data processing tools suitable for rapid correction and extraction of

  13. Dye aggregation identified by vibrational coupling using 2D IR spectroscopy

    SciTech Connect

    Oudenhoven, Tracey A.; Laaser, Jennifer E.; Zanni, Martin T.; Joo, Yongho; Gopalan, Padma

    2015-06-07

    We report that a model dye, Re(CO){sub 3}(bypy)CO{sub 2}H, aggregates into clusters on TiO{sub 2} nanoparticles regardless of our preparation conditions. Using two-dimensional infrared (2D IR) spectroscopy, we have identified characteristic frequencies of monomers, dimers, and trimers. A comparison of 2D IR spectra in solution versus those deposited on TiO{sub 2} shows that the propensity to dimerize in solution leads to higher dimer formation on TiO{sub 2}, but that dimers are formed even if there are only monomers in solution. Aggregates cannot be washed off with standard protocols and are present even at submonolayer coverages. We observe cross peaks between aggregates of different sizes, primarily dimers and trimers, indicating that clusters consist of microdomains in close proximity. 2D IR spectroscopy is used to draw these conclusions from measurements of vibrational couplings, but if molecules are close enough to be vibrationally coupled, then they are also likely to be electronically coupled, which could alter charge transfer.

  14. Amide I'-II' 2D IR spectroscopy provides enhanced protein secondary structural sensitivity.

    PubMed

    Deflores, Lauren P; Ganim, Ziad; Nicodemus, Rebecca A; Tokmakoff, Andrei

    2009-03-11

    We demonstrate how multimode 2D IR spectroscopy of the protein amide I' and II' vibrations can be used to distinguish protein secondary structure. Polarization-dependent amide I'-II' 2D IR experiments on poly-l-lysine in the beta-sheet, alpha-helix, and random coil conformations show that a combination of amide I' and II' diagonal and cross peaks can effectively distinguish between secondary structural content, where amide I' infrared spectroscopy alone cannot. The enhanced sensitivity arises from frequency and amplitude correlations between amide II' and amide I' spectra that reflect the symmetry of secondary structures. 2D IR surfaces are used to parametrize an excitonic model for the amide I'-II' manifold suitable to predict protein amide I'-II' spectra. This model reveals that the dominant vibrational interaction contributing to this sensitivity is a combination of negative amide II'-II' through-bond coupling and amide I'-II' coupling within the peptide unit. The empirically determined amide II'-II' couplings do not significantly vary with secondary structure: -8.5 cm(-1) for the beta sheet, -8.7 cm(-1) for the alpha helix, and -5 cm(-1) for the coil.

  15. Nonlinear 2D-IR spectroscopy as a tool to study peptide dynamics

    NASA Astrophysics Data System (ADS)

    Hamm, Peter

    2000-03-01

    The structure of bio-macromolecules (peptides, proteins, enzymes and DNA) crucially defines their function and it is the enormous progress in structure-sensitive methods (NMR, x-ray) which has lead to an extremely detailed microscopic understanding of reactions in biological systems. Our knowledge on the dynamics of these structures, which presumably is as important for the function as the structure itself, is essentially based on computer simulations with essentially no or very indirect experimental feedback. Nonlinear 2D vibrational spectroscopy (2D-IR) on the amide I mode of small globular peptides has been demonstrated recently and a detailed relationship between the static 3D structure and the strength of cross peaks has been established (in analogy to COSY in 2D-NMR spectroscopy). An extension of this technique allows to observe equilibrium fluctuations of model helices by incorporating an additional population period (i.e. 'mixing time'), giving rise to spectral diffusion of the diagonal peaks and incoherent population transfer between excitonic states (the latter being equivalent to the nuclear Overhauser effect, NOESY). In contrast to spin transitions, however, the processes are not in the 'motional narrowing limit' (i. e. τ_c>=T_2) so that the timescales of protein fluctuation can be measured directly on a picosecond timescale and in a site specific manner.

  16. Terahertz Spectroscopy and Global Analysis of the Bending Vibrations of Acetylene 12C2D2

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Drouin, Brian J.; Pearson, John C.; Pickett, Herbert M.; Lattanzi, Valerio; Walters, Adam

    2009-06-01

    Two hundred and fifty-one 12C2D2 transitions have been measured in the 0.2-1.6 THz region of its ν5-ν4 difference band and 202 of them were observed for the first time. The accuracy of these measurements is estimated to be ranging from 50 kHz to 100 kHz. The 12C2D2 molecules were generated under room temperature by passing 120-150 mTorr D2O vapor through calcium carbide (CaC2) powder. A multistate analysis was carried out for the bending vibrational modes ν4 and ν5 of 12C2D2, which includes the lines observed in this work and prior microwave, far-infrared and infrared data on the pure bending levels. Significantly improved molecular parameters were obtained for 12C2D2 by adding the new measurements to the old data set, which had only 10 lines with microwave measurement precision. New frequency and intensity predictions have been made based on the obtained molecular parameters. The more precise measurements and new predictions reported here will support the analyses of astronomical observations by the future high-resolution spectroscopy telescopes such as Herschel, SOFIA, and ALMA, which will work in the terahertz spectral region.

  17. The separation of overlapping transitions in β-carotene with broadband 2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Calhoun, Tessa R.; Davis, Jeffrey A.; Graham, Matthew W.; Fleming, Graham R.

    2012-01-01

    Broadband 2D electronic spectroscopy is applied to β-carotene, revealing new insight into the excited state dynamics of carotenoids by exploring the full energetic range encompassing the S0→S2 and S1→S1n transitions at 77 K. Multiple signals are observed in the regime associated with the proposed S∗ state and isolated through separate analysis of rephasing and nonrephasing contributions. Peaks in rephasing pathways display dynamic lineshapes characteristic of coupling to high energy vibrational modes, and simulation with a simple model supports their assignment to impulsive stimulated Raman scattering. A signal persisting beyond 10 ps in the nonrephasing spectra is still under investigation.

  18. Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria.

    PubMed

    Ostroumov, Evgeny E; Mulvaney, Rachel M; Cogdell, Richard J; Scholes, Gregory D

    2013-04-01

    Although the energy transfer processes in natural light-harvesting systems have been intensively studied for the past 60 years, certain details of the underlying mechanisms remain controversial. We performed broadband two-dimensional (2D) electronic spectroscopy measurements on light-harvesting proteins from purple bacteria and isolated carotenoids in order to characterize in more detail the excited-state manifold of carotenoids, which channel energy to bacteriochlorophyll molecules. The data revealed a well-resolved signal consistent with a previously postulated carotenoid dark state, the presence of which was confirmed by global kinetic analysis. The results point to this state's role in mediating energy flow from carotenoid to bacteriochlorophyll.

  19. Investigation on the overlapping bands of syndiotactic polystyrene by using 2D-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Qianhong; Zhao, Ying; Zhang, Chunbo; Yang, Jian; Wang, Dujin

    2016-11-01

    In this work, WAXD and FTIR spectroscopy were utilized to investigate the phase transition of syndiotactic polystyrene (sPS) from amorphous phase to mesophase during the isothermal annealing process at 130 °C. Two dimensional (2D) correlation infrared spectroscopy was applied to reveal the sub-bands from the highly overlapping bands. The ∼900 cm-1 band is shown to be composed of two sub-bands. One band located around 906 cm-1 corresponds to the amorphous phase, another peak that occurs around 900 cm-1 is associated with mesophase. The trans-planar conformation band at 1223 cm-1 turns out to consist of two bands which might be related to trans-planar conformation with different sequence lengths.

  20. 2D exchange 31P NMR spectroscopy of bacteriophage M13 and tobacco mosaic virus.

    PubMed Central

    Magusin, P C; Hemminga, M A

    1995-01-01

    Two-dimensional (2D) exchange 31P nuclear magnetic resonance spectroscopy is used to study the slow overall motion of the rod-shaped viruses M13 and tobacco mosaic virus in concentrated gels. Even for short mixing times, observed diagonal spectra differ remarkably from projection spectra and one-dimensional spectra. Our model readily explains this to be a consequence of the T2e anisotropy caused by slow overall rotation of the viruses about their length axis. 2D exchange spectra recorded for 30% (w/w) tobacco mosaic virus with mixing times < 1 s do not show any off-diagonal broadening, indicating that its overall motion occurs in the sub-Hz frequency range. In contrast, the exchange spectra obtained for 30% M13 show significant off-diagonal intensity for mixing times of 0.01 s and higher. A log-gaussian distribution around 25 Hz of overall diffusion coefficients mainly spread between 1 and 10(3) Hz faithfully reproduces the 2D exchange spectra of 30% M13 recorded at various mixing times in a consistent way. A small but notable change in diagonal spectra at increasing mixing time is not well accounted for by our model and is probably caused by 31P spin diffusion. PMID:7756532

  1. Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates

    PubMed Central

    Swisher, Christine Leon; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder

    2015-01-01

    In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate–lactate, pyruvate–alanine, and pyruvate–hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines. PMID:26117655

  2. Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates

    NASA Astrophysics Data System (ADS)

    Leon Swisher, Christine; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder

    2015-08-01

    In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate-lactate, pyruvate-alanine, and pyruvate-hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines.

  3. High resolution spectroscopy of the Cs2 D 1Sigma u + -X 1Sigma g + transition and hyperfine structure

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tooru; Usui, Takashi; Kumauchi, Takahiro; Baba, Masaaki; Ishikawa, Kiyoshi; Katô, Hajime

    1993-02-01

    The Doppler-free high resolution laser spectroscopy of Cs2 D 1Σu+-X 1Σg+ transition is extended up to v'=65. By comparing the spectral linewidth and the time-resolved fluorescence intensity, the line broadening observed for transitions to the D 1Σu+(v'=63,J'≤70) levels is identified as the lifetime broadening originating from the predissociation. Line splittings are observed for the D 1Σu+(v'=46,J'≥95)-X 1Σg+(v`= 1,J`) transitions and are identified as the hyperfine splitting due to a magnetic dipole interaction between nuclear spin and electron. The hyperfine splitting is attributed to mixing of the (2) 3Πu state, whose wave function changes from Hund's case (a) to case (b) at large J. The dependence of the electric dipole transition moment on the internuclear distance for the D 1Σu+-X 1Σg+ transition is determined by comparing the observed and calculated line intensities of the dispersed fluorescence.

  4. Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy.

    PubMed

    Lakowicz, Joseph R; Ray, Krishanu; Chowdhury, Mustafa; Szmacinski, Henryk; Fu, Yi; Zhang, Jian; Nowaczyk, Kazimierz

    2008-10-01

    Fluorescence spectroscopy is widely used in biological research. Until recently, essentially all fluorescence experiments were performed using optical energy which has radiated to the far-field. By far-field we mean at least several wavelengths from the fluorophore, but propagating far-field radiation is usually detected at larger macroscopic distances from the sample. In recent years there has been a growing interest in the interactions of fluorophores with metallic surfaces or particles. Near-field interactions are those occurring within a wavelength distance of an excited fluorophore. The spectral properties of fluorophores can be dramatically altered by near-field interactions with the electron clouds present in metals. These interactions modify the emission in ways not seen in classical fluorescence experiments. In this review we provide an intuitive description of the complex physics of plasmons and near-field interactions. Additionally, we summarize the recent work on metal-fluorophore interactions and suggest how these effects will result in new classes of experimental procedures, novel probes, bioassays and devices.

  5. Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy

    PubMed Central

    Lakowicz, Joseph R.; Ray, Krishanu; Chowdhury, Mustafa; Szmacinski, Henryk; Fu, Yi; Zhang, Jian; Nowaczyk, Kazimierz

    2009-01-01

    Fluorescence spectroscopy is widely used in biological research. Until recently, essentially all fluorescence experiments were performed using optical energy which has radiated to the far-field. By far-field we mean at least several wavelengths from the fluorophore, but propagating far-field radiation is usually detected at larger macroscopic distances from the sample. In recent years there has been a growing interest in the interactions of fluorophores with metallic surfaces or particles. Near-field interactions are those occurring within a wavelength distance of an excited fluorophore. The spectral properties of fluorophores can be dramatically altered by near-field interactions with the electron clouds present in metals. These interactions modify the emission in ways not seen in classical fluorescence experiments. In this review we provide an intuitive description of the complex physics of plasmons and near-field interactions. Additionally, we summarize the recent work on metal–fluorophore interactions and suggest how these effects will result in new classes of experimental procedures, novel probes, bioassays and devices. PMID:18810279

  6. Water of Hydration Dynamics in Minerals Gypsum and Bassanite: Ultrafast 2D IR Spectroscopy of Rocks.

    PubMed

    Yan, Chang; Nishida, Jun; Yuan, Rongfeng; Fayer, Michael D

    2016-08-01

    Water of hydration plays an important role in minerals, determining their crystal structures and physical properties. Here ultrafast nonlinear infrared (IR) techniques, two-dimensional infrared (2D IR) and polarization selective pump-probe (PSPP) spectroscopies, were used to measure the dynamics and disorder of water of hydration in two minerals, gypsum (CaSO4·2H2O) and bassanite (CaSO4·0.5H2O). 2D IR spectra revealed that water arrangement in freshly precipitated gypsum contained a small amount of inhomogeneity. Following annealing at 348 K, water molecules became highly ordered; the 2D IR spectrum became homogeneously broadened (motional narrowed). PSPP measurements observed only inertial orientational relaxation. In contrast, water in bassanite's tubular channels is dynamically disordered. 2D IR spectra showed a significant amount of inhomogeneous broadening caused by a range of water configurations. At 298 K, water dynamics cause spectral diffusion that sampled a portion of the inhomogeneous line width on the time scale of ∼30 ps, while the rest of inhomogeneity is static on the time scale of the measurements. At higher temperature, the dynamics become faster. Spectral diffusion accelerates, and a portion of the lower temperature spectral diffusion became motionally narrowed. At sufficiently high temperature, all of the dynamics that produced spectral diffusion at lower temperatures became motionally narrowed, and only homogeneous broadening and static inhomogeneity were observed. Water angular motions in bassanite exhibit temperature-dependent diffusive orientational relaxation in a restricted cone of angles. The experiments were made possible by eliminating the vast amount of scattered light produced by the granulated powder samples using phase cycling methods. PMID:27385320

  7. Investigation on the spectral properties of 2D asynchronous fluorescence spectra generated by using variable excitation wavelengths as a perturbation

    NASA Astrophysics Data System (ADS)

    Wang, Jingdan; He, Anqi; Guo, Ran; Wei, Yongju; Feng, Juan; Xu, Yizhuang; Noda, Isao; Wu, Jinguang

    2016-11-01

    Properties of 2D asynchronous spectra generated from a series of fluorescence emission spectra are investigated. Variable excitation wavelengths are utilized as an external perturbation. Based on the results of mathematical analysis and computer simulation, we find that no cross peak will be produced on the 2D asynchronous spectrum if the fluorescent solute under investigation occurs in a single micro-environment. The observation of cross peaks implies that the fluorescent molecule may occur in different micro-environments in a solution. Based on these results, we use 2D asynchronous spectra to investigate the emission spectra of anthracene dissolved in cyclohexane. When the concentration of anthracene is low, no cross peak is produced in the resultant 2D asynchronous spectrum, confirming that anthracene is dissolved as single molecule in the solution. As the concentration elevated, cross peaks appear in the corresponding 2D asynchronous spectra. A plausible explanation of this phenomenon is that anthracene may undergo aggregation via π-π interaction or π-C-H interaction.

  8. Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm

    NASA Technical Reports Server (NTRS)

    Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.

    1988-01-01

    Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.

  9. Earle K. Plyler Prize for Molecular Spectroscopy and Dynamics Lecture: 2D IR Spectroscopy of Peptide Conformation

    NASA Astrophysics Data System (ADS)

    Tokmakoff, Andrei

    2012-02-01

    Descriptions of protein and peptide conformation are colored by the methods we use to study them. Protein x-ray and NMR structures often lead to impressions of rigid or well-defined conformations, even though these are dynamic molecules. The conformational fluctuations and disorder of proteins and peptides is more difficult to quantify. This presentation will describe an approach toward characterizing and quantifying structural heterogeneity and disorder in peptides using 2D IR spectroscopy. Using amide I vibrational spectroscopy, isotope labeling strategies, and computational modeling based on molecular dynamics simulations and Markov state models allows us to characterize distinct peptide conformers and conformational variation. The examples illustrated include the beta-hairpin tripzip2 and elastin-like peptides.

  10. Ultrafast Nonlinear Spectroscopy of Red Fluorescent Proteins

    NASA Astrophysics Data System (ADS)

    Konold, Patrick Eugene

    Red-emitting homologues (RFPs) of the native Green Fluorescent Protein (GFP) with emission wavelengths beyond 650 nm are desirable probes for in vivo imaging experiments. They offer the potential for deeper tissue penetration and lower background scatter given a cleaner spectral window. However, bioimaging applications are hindered by poor photophysics ( e.g. low fluorescence quantum yield, high photobleaching), which limits experimental resolution and represents a significant obstacle towards utilization for low copy-number, long-duration imaging applications. In this thesis, a variety of femtosecond nonlinear electronic spectroscopies were employed jointly with site-directed mutagenesis to investigate the photophysical properties of RFPs. In one study, the molecular mechanism of red emission was pursued in two notable RFPs, mPlum and TagRFP675. Solvation dynamics observed with time-resolved transient grating spectroscopy were interpreted with the aid of molecular dynamics simulations to indicate that their red-emission is correlated with the ability of specific chromophore-sidechain hydrogen-bonding interactions to interconvert between direct and water-mediated states. In a second set of studies, two-dimensional double quantum coherence spectroscopy was used to probe the electronic transitions of mPlum. It was discovered that it displayed a response distinctly different from an organic dye in bulk solvent. Modeling indicate of these spectra indicate the spectral features may be attributed to the existence of multiple high-lying (n>1) excited states. The results provide new insight into the electronic structure of these widely used fluorescent probes.

  11. Spectroscopy and Thermometry of Drumhead Modes in a Mesoscopic 2D Coulomb Crystal of ^9Be^+

    NASA Astrophysics Data System (ADS)

    Sawyer, Brian; Britton, Joseph; Teale, Carson; Keith, Adam; Wang, Joseph; Freericks, James; Bollinger, John

    2013-04-01

    We demonstrate spectroscopy and thermometry of individual motional modes in a mesoscopic 2D ion array using entanglement between ion valence electron spins and collective motion. Our system is a ˜400 μm-diameter planar crystal of several hundred ^9Be^+ ions exhibiting complex drumhead modes in the confining potential of a Penning trap. Exploiting precise control over the ^9Be^+ valence electron spins, we apply a homogeneous spin-dependent optical dipole force to excite arbitrary transverse modes with wavelengths ranging from the array diameter to the interparticle spacing of ˜20 μm. In addition to temperature measurements, this spin-motion entanglement induced by the spin-dependent optical dipole force allows for extremely sensitive detection of external forces (˜100 yN) acting on the ion crystal. Characterization of mode frequencies and temperatures is critical for quantum simulation experiments that make use of the ion spins.

  12. Fast acquisition of high-resolution 2D NMR spectroscopy in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Lin, Liangjie; Wei, Zhiliang; Zeng, Qing; Yang, Jian; Lin, Yanqin; Chen, Zhong

    2016-05-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy plays an important role in chemical and biological analyses. In this study, we combine the J-coupling coherence transfer module with the echo-train acquisition technique for fast acquisition of high-resolution 2D NMR spectra in magnetic fields with unknown spatial variations. The proposed method shows satisfactory performance on a 5 mM ethyl 3-bromopropionate sample, under a 5-kHz (10 ppm at 11.7 T) B0 inhomogeneous field, as well as under varying degrees of pulse-flip-angle deviations. Moreover, a simulative ex situ NMR measurement is also conducted to show the effectiveness of the proposed pulse sequence.

  13. Ultrasensitive hybridization analysis using fluorescence correlation spectroscopy.

    PubMed

    Kinjo, M; Rigler, R

    1995-05-25

    The hybridization of fluorescently tagged 18mer deoxyribonucleotides with complementary DNA templates was analysed by fluorescence correlation spectroscopy (FCS) in a droplet under an epi-illuminated fluorescence microscope at the level of single molecules. The interaction can be monitored by the change in the translational diffusion time of the smaller (18mer) primer when binding to the bigger (7.5 kb) DNA containing the complementary sequence. The hybridization process in the presence of template M13mp18 ssDNA was monitored in a small volume (2 x 10(-16)I) at various temperatures. The Arrhenius plot of the association rate constant shows that the activation energy was 38.8 kcal/mol, but the hybridization process may involve several components. The titration experiment suggested that approximately 2 primers can be associated with one template DNA at 40 degrees C. Results of a simple homology search for the sequences complementary to the primer indicate the existence of additional sites of lower specificity.

  14. Detection of 2D phase transitions at the electrode/electrolyte interface using electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Tymoczko, Jakub; Colic, Viktor; Bandarenka, Aliaksandr S.; Schuhmann, Wolfgang

    2015-01-01

    The capacitance of the electric double layer, CDL, formed at the electrode/electrolyte interface is generally determined by electrochemical impedance spectroscopy (EIS). However, CDL values obtained using EIS data often depend on the ac frequency of the potential perturbation used in EIS. The reasons for the observed frequency dispersions can be various, and hence extracting valuable information about the status of the electrified interface is not possible with the required certainty. In this work, using well-understood electrochemical systems, namely Pt(111) electrodes in contact with a series of acidic sulfate ions containing electrolytes, we provide strong evidence that 2D phase transitions in the adsorbate layers and, in general, structural effects at the electrode/electrolyte interface are in many cases responsible for the frequency dispersion of the double layer capacitance. These empirical findings open new opportunities for the detection and evaluation of 2D phase transition processes and other structural effects using EIS, even in presence of simultaneously occurring electrochemical processes. However, further theoretical elaboration of this effect is necessary.

  15. pH-induced structural changes of ovalbumin studied by 2D correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kang, Daehoon; Ryu, Soo Ryeon; Park, Yeonju; Czarnik-Matusewicz, Bogusława; Jung, Young Mee

    2014-07-01

    The secondary structural changes of pH-induced ovalbumin during the transition from native state into intermediate state were studied with the use of 2D correlation spectroscopy and principal component analysis. 2D correlation spectra constructed from the pH-dependent IR spectra of ovalbumin solution revealed the following scenario of the intensity changes with pH decrease. When pH decreased from 5.5 and 3.6 intensity of components attributed to the β-turns, the α-helical elements, and native β-sheets increased. It was caused by protonation induced changes in environment of these elements. When the protonation of the acidic groups were finalized the system adopted the intermediate structure. It was accompanied by weak structural changes that mainly included the β-turns and the α-helices. In extreme acidic conditions at pH below pH 2 the intermediate structure was no longer stable and oligomers rich in the β-sheet structure were formed.

  16. Saturation effects in fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Davis, Lloyd M.; Shen, Guoqing; Ball, David A.

    2005-03-01

    Fluorescence correlation spectroscopy (FCS) could provide a more useful tool for intracellular studies and biological sample characterization if measurement times could be reduced. While an increase in laser power can enable an autocorrelation function (ACF) with adequate signal-to-noise to be acquired within a shorter measurement time, excitation saturation then leads to distortion of the ACF and systematic errors in the measurement results. An empirical method for achieving reduced systematic errors by employing a fitting function with an additional adjustable parameter has been previously introduced for two-photon FCS. Here we provide a unified physical explanation of excitation saturation effects for the three cases of continuous-wave, pulsed one-photon excitation, and two-photon excitation FCS. When the time between laser pulses is longer than the fluorescence lifetime, the signal rate at which excitation saturation occurs is lower for pulsed excitation than for cw excitation, and due to the disparate timescales of the photophysical processes following excitation, it is lower still for two-photon excitation. We use a single-molecule description of FCS to obtain improved analytical ACF fitting functions for the three cases. The fitting functions more accurately account for saturation effects than those previously employed without the need for an additional empirical parameter. Use of these fitting functions removes systematic errors and enables measurements to be acquired more quickly by use of higher laser powers. Increase of background, triplet photophysics, and the cases of scanning FCS and fluorescence cross-correlation spectroscopy are also discussed. Experimental results acquired with a custom built apparatus are presented.

  17. A 2D correlation Raman spectroscopy analysis of a human cataractous lens

    NASA Astrophysics Data System (ADS)

    Sacharz, Julia; Wesełucha-Birczyńska, Aleksandra; Paluszkiewicz, Czesława; Chaniecki, Piotr; Błażewicz, Marta

    2016-11-01

    This work is a continuation of our study of a cataractous human eye lens removed after phacoemulsification surgery. There are clear differences in the lens colors that allowed for distinguishing two opaque phases in the obtained biological material: the white- and yellow-phase. The Raman spectroscopy and 2D correlation spectroscopy method were used to trace a pathologically altered human cataract lens at a molecular level. Although the Raman spectra of these two phases are relatively similar, taking advantage of 2D correlation, and considering time as an external perturbation, the synchronous and asynchronous spectra were obtained showing completely different patterns. Prominent synchronous auto-peaks appear at 3340, 2920, 1736, 1665 and 1083 cm-1 for the white-, and at 2929 and 1670 cm-1 for the yellow phase. The white phase is characterized by intensive asynchronous peaks at -(2936, 3360), -(1650, 1674) and +(1620,1678). The modifications in the water contained in the white phase structure are ahead of the changes in the protein (CH3-groups), furthermore changes in β-conformation are asynchronous with respect to the α-structure. The yellow phase demonstrates asynchronous peaks: +(2857, 2928), +(1645,1673), +(1663, 1679), and +(1672,1707). These illustrate concomitant modifications in the β- and unordered conformation. Both forms of cataractous human eye lens, white- and yellow-phases, are degenerate forms of the eye lens proteins, both are arranged in a different way. The main differences are observed for the amide I, methyl, methylene and Osbnd H vibrational band region. The effect of Asp, Glu and Tyr amino acids in cataractous lens transformations was observed.

  18. APD detectors for biological fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Mazères, S.; Borrel, V.; Magenc, C.; Courrech, J. L.; Bazer-Bachi, R.

    2006-11-01

    Fluorescence spectroscopy is a very convenient and widely used method for studying the molecular background of biological processes [L. Salomé, J.L. Cazeil, A. Lopez, J.F. Tocanne, Eur. Biophys. J. 27 (1998) 391-402]. Chromophores are included in the structure under study and a flash of laser light induces fluorescence (Fluorescence Recovery After Photo-bleaching), the decay of which yields information on the polarity, the speed of rotation, and the speed of diffusion as well as on the temporal and spatial evolution of interactions between molecular species. The method can even be used to study living cells [J.F. Tocanne, L. Cézanne, A. Lopez, Prog. Lipid Res. 33 (1994) 203-237, L. Cezanne, A. Lopez, F. Loste, G. Parnaud, O. Saurel, P. Demange, J.F. Tocanne, Biochemistry 38 (1999) 2779-2786]. This is classically performed with a PM-based system. For biological reasons a decrease of the excitation of the cells is highly desirable. Because the fluorescence response then becomes fainter a significant improvement in detector capability would be welcome. We present here results obtained with an Avalanche Photo Diode (APD)-based system. The small sensitive area of detection allows a very significant improvement in signal/noise ratio, improvement in gain, and the opening-up of a new parameter space. With these new detectors we can begin the study of information transmission between cells through morphine receptors. This work involves both electronics engineers and biophysicists, so results and techniques in both fields will be presented here.

  19. Accelerated 2D magnetic resonance spectroscopy of single spins using matrix completion

    PubMed Central

    Scheuer, Jochen; Stark, Alexander; Kost, Matthias; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2015-01-01

    Two dimensional nuclear magnetic resonance (NMR) spectroscopy is one of the major tools for analysing the chemical structure of organic molecules and proteins. Despite its power, this technique requires long measurement times, which, particularly in the recently emerging diamond based single molecule NMR, limits its application to stable samples. Here we demonstrate a method which allows to obtain the spectrum by collecting only a small fraction of the experimental data. Our method is based on matrix completion which can recover the full spectral information from randomly sampled data points. We confirm experimentally the applicability of this technique by performing two dimensional electron spin echo envelope modulation (ESEEM) experiments on a two spin system consisting of a single nitrogen vacancy (NV) centre in diamond coupled to a single 13C nuclear spin. The signal to noise ratio of the recovered 2D spectrum is compared to the Fourier transform of randomly subsampled data, where we observe a strong suppression of the noise when the matrix completion algorithm is applied. We show that the peaks in the spectrum can be obtained with only 10% of the total number of the data points. We believe that our results reported here can find an application in all types of two dimensional spectroscopy, as long as the measured matrices have a low rank. PMID:26631593

  20. Crystal structure and temperature-dependent fluorescent property of a 2D cadmium (II) complex based on 3,6-dibromobenzene-1,2,4,5-tetracarboxylic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Liang-Liang; Guo, Yu; Wei, Yan-Hui; Guo, Jie; Wang, Xing-Po; Sun, Dao-Feng

    2013-04-01

    A new cadmium (II) organic coordination polymers [Cd(dbtec)0.5(H2O)3]·H2O (1), has been constructed based on 3,6-dibromobenzene-1,2,4,5-tetracarboxylic acid (H4dbtec), and characterized by elemental analysis (EA), infrared spectroscopy (IR), powder X-ray diffraction (PXRD), and single crystal X-ray diffraction. In 1, μ2-η1:η1 and μ4-η2:η2 dbtec ligands link four hepta-coordinated CdII ions to form a 2D 44 topological layer structure, which is further connected into an interesting 3D network by hydrogen bond and Br⋯O halogen bond. Moreover, the thermal stabilities, solid ultraviolet spectroscopy and temperature-dependent fluorescent properties of 1 were investigated.

  1. Intraluminal fluorescence spectroscopy catheter with ultrasound guidance

    NASA Astrophysics Data System (ADS)

    Stephens, Douglas N.; Park, Jesung; Sun, Yang; Papaioannou, Thanassis; Marcu, Laura

    2009-05-01

    We demonstrate the feasibility of a time-resolved fluorescence spectroscopy (TRFS) technique for intraluminal investigation of arterial vessel composition under intravascular ultrasound (IVUS) guidance. A prototype 1.8-mm (5.4 Fr) catheter combining a side-viewing optical fiber (SVOF) and an IVUS catheter was constructed and tested with in vitro vessel phantoms. The prototype catheter can locate a fluorophore in the phantom vessel wall, steer the SVOF in place, perform blood flushing under flow conditions, and acquire high-quality TRFS data using 337-nm wavelength excitation. The catheter steering capability used for the coregistration of the IVUS image plane and the SVOF beam produce a guiding precision to an arterial phantom wall site location of 0.53+/-0.16 mm. This new intravascular multimodal catheter enables the potential for in vivo arterial plaque composition identification using TRFS.

  2. Glucose Recognition in Vitro Using Fluorescent Spectroscopy

    SciTech Connect

    Noronha, G; Heiss, A M; Reilly, J R; Vachon, Jr, D J; Cary, D R; Zaitseva, N P; Reibold, R A; Lane, S M; Peyser, T A; Satcher, J H

    2001-04-25

    Diabetes is a disease that affects over 16 million people in the USA at a cost of 100 billion dollars annually. The ability to regulate insulin delivery in people with Type 1 diabetes is imperative as is the need to manage glucose levels in all people with this disease. Our current method for monitoring glucose is a (FDA approved) minimally invasive enzymatic sensor that can measure glucose levels in vivo for three days. We are focused on developing a noninvasive implantable glucose sensor that will be interrogated by an external device. The material must be robust, easy to process, biocompatible and resistant to biofouling. In this Presentation we will discuss the development of a new polymeric matrix that can recognize physiological levels of glucose in vitro using fluorescent spectroscopy.

  3. Study of aging in oil paintings by 1D and 2D NMR spectroscopy.

    PubMed

    Spyros, Apostolos; Anglos, Demetrios

    2004-09-01

    Nuclear magnetic resonance spectroscopy is proposed as an efficient analytical tool in the study of painted artworks. The binding medium from two original oil paintings, dated from the early 20th and the late 17th century, was studied via high-resolution 1D and 2D NMR, establishing the advanced state of hydrolysis and oxidation of the oil paint. Studies of the solvent-extractable component from model samples of various drying oils, raw oil paints, and aged oil paints allowed the definition of several markers based on the integral ratios of various chemical species present in the 1H and 13C NMR spectra. These markers are sensitive to hydrolytic and oxidative processes that reflect the extent of aging in oil paintings. The rapidity, simplicity, and nondestructive nature of the proposed analytical NMR methodology represents a great advantage, since the usually minute sample quantities available from original artwork can be subsequently analyzed further by other analytical techniques, if necessary. PMID:15373425

  4. Changes and characteristics of dissolved organic matter in a constructed wetland system using fluorescence spectroscopy.

    PubMed

    Yao, Yuan; Li, Yun-Zhen; Guo, Xu-Jing; Huang, Tao; Gao, Ping-Ping; Zhang, Ying-Pei; Yuan, Feng

    2016-06-01

    Domestic wastewater was treated by five constructed wetland beds in series. Dissolved organic matter (DOM) collected from influent and effluent samples from the constructed wetland was investigated using fluorescence spectroscopy combined with fluorescence regional integration (FRI), parallel factor (PARAFAC) analysis, and two-dimensional correlation spectroscopy (2D-COS). This study evaluates the capability of these methods in detecting the spectral characteristics of fluorescent DOM fractions and their changes in constructed wetlands. Fluorescence excitation-emission matrix (EEM) combined with FRI analysis showed that protein-like materials displayed a higher removal ratio compared to humic-like substances. The PARAFAC analysis of wastewater DOM indicated that six fluorescent components, i.e., two protein-like substances (C1 and C6), three humic-like substances (C2, C3 and C5), and one non-humic component (C4), could be identified. Tryptophan-like C1 was the dominant component in the influent DOM. The removal ratios of six fluorescent components (C1-C6) were 56.21, 32.05, 49.19, 39.90, 29.60, and 45.87 %, respectively, after the constructed wetland treatment. Furthermore, 2D-COS demonstrated that the sequencing of spectral changes for fluorescent DOM followed the order 298 nm → 403 nm → 283 nm (310-360 nm) in the constructed wetland, suggesting that the peak at 298 nm is associated with preferential tryptophan fluorescence removal. Variation of the fluorescence index (FI) and the ratio of fluorescence components indicated that the constructed wetland treatment resulted in the decrease of fluorescent organic pollutant with increasing the humification and chemical stability of the DOM. PMID:26976008

  5. 2D ratiometric fluorescent pH sensor for tracking of cells proliferation and metabolism.

    PubMed

    Ma, Jun; Ding, Changqin; Zhou, Jie; Tian, Yang

    2015-08-15

    Extracellular pH plays a vital role no matter in physiological or pathological studies. In this work, a hydrogel, CD@Nile-FITC@Gel (Gel sensor), entrapping the ratiometric fluorescent probe CD@Nile-FITC was developed. The Gel sensor was successfully used for real-time extracellular pH monitoring. In the case of CD@Nile-FITC, pH-sensitive fluorescent dye fluorescein isothiocyanate (FITC) was chosen as the response signal for H(+) and Nile blue chloride (Nile) as the reference signal. The developed fluorescent probe exhibited high selectivity for pH over other metal ions and amino acids. Meanwhile, the carbon-dots-based inorganic-organic probe demonstrated excellent photostability against long-term light illumination. In order to study the extracellular pH change in processes of cell proliferation and metabolism, CD@Nile-FITC probe was entrapped in sodium alginate gel and consequently formed CD@Nile-FITC@Gel. The MTT assay showed low cytotoxicity of the Gel and the pH titration indicated that it could monitor the pH fluctuations linearly and rapidly within the pH range of 6.0-9.0, which is valuable for physiological pH determination. As expected, the real-time bioimaging of the probe was successfully achieved.

  6. VLT/VIMOS integral field spectroscopy of luminous and ultraluminous infrared galaxies: 2D kinematic properties

    NASA Astrophysics Data System (ADS)

    Bellocchi, Enrica; Arribas, Santiago; Colina, Luis; Miralles-Caballero, Daniel

    2013-09-01

    Context. (Ultra) Luminous infrared galaxies [(U)LIRGs] host the most extreme star-forming events in the present universe and are places where a significant fraction of the past star formation beyond z ~ 1 has occurred. The kinematic characterization of this population is important to constrain the processes that govern such events. Aims: We present and discuss the 2D kinematic properties of the ionized gas (Hα) in sample local (U)LIRGs, for which relatively high linear resolution and signal-to-noise (S/N) ratio can be obtained. Methods: We have obtained Very Large Telescope VIMOS optical integral field spectroscopy (IFS) for 38 local (z < 0.1) (U)LIRGs (31 LIRGs and 7 ULIRGs, 51 individual galaxies). This sample covers well the less studied LIRG luminosity range, and it includes the morphological types corresponding to the different phases along the merging process (i.e., isolated disks, interacting and merging systems). Results: The vast majority of objects have two main kinematically distinct components. One component (i.e., narrow or systemic) extends over the whole line-emitting region and is characterized by small-to-intermediate velocity dispersions (i.e., σ from 30 to 160 km s-1). The second component (broad) has a larger velocity dispersion (up to 320 km s-1); it is mainly found in the inner regions and is generally blueshifted with respect to the systemic component. The largest extensions and extreme kinematic properties are observed in interacting and merging systems, and they are likely associated with nuclear outflows. The systemic component traces the overall velocity field, showing a large variety of kinematic 2D structures, from very regular velocity patterns typical of pure rotating disks (29%) to kinematically perturbed disks (47%) and highly disrupted and complex velocity fields (24%). Thus, most of the objects (76%) are dominated by rotation. We find that rotation is more relevant in LIRGs than in ULIRGs. There is a clear correlation between

  7. An algorithm to correct 2D near-infrared fluorescence signals using 3D intravascular ultrasound architectural information

    NASA Astrophysics Data System (ADS)

    Mallas, Georgios; Brooks, Dana H.; Rosenthal, Amir; Vinegoni, Claudio; Calfon, Marcella A.; Razansky, R. Nika; Jaffer, Farouc A.; Ntziachristos, Vasilis

    2011-03-01

    Intravascular Near-Infrared Fluorescence (NIRF) imaging is a promising imaging modality to image vessel biology and high-risk plaques in vivo. We have developed a NIRF fiber optic catheter and have presented the ability to image atherosclerotic plaques in vivo, using appropriate NIR fluorescent probes. Our catheter consists of a 100/140 μm core/clad diameter housed in polyethylene tubing, emitting NIR laser light at a 90 degree angle compared to the fiber's axis. The system utilizes a rotational and a translational motor for true 2D imaging and operates in conjunction with a coaxial intravascular ultrasound (IVUS) device. IVUS datasets provide 3D images of the internal structure of arteries and are used in our system for anatomical mapping. Using the IVUS images, we are building an accurate hybrid fluorescence-IVUS data inversion scheme that takes into account photon propagation through the blood filled lumen. This hybrid imaging approach can then correct for the non-linear dependence of light intensity on the distance of the fluorescence region from the fiber tip, leading to quantitative imaging. The experimental and algorithmic developments will be presented and the effectiveness of the algorithm showcased with experimental results in both saline and blood-like preparations. The combined structural and molecular information obtained from these two imaging modalities are positioned to enable the accurate diagnosis of biologically high-risk atherosclerotic plaques in the coronary arteries that are responsible for heart attacks.

  8. Single Scan 2D NMR Spectroscopy on a 25 T Bitter Magnet.

    PubMed

    Shapira, Boaz; Shetty, Kiran; Brey, William W; Gan, Zhehong; Frydman, Lucio

    2007-07-16

    2D NMR relies on monitoring systematic changes in the phases incurred by spin coherences as a function of an encoding time t(1), whose value changes over the course of independent experiments. The intrinsic multiscan nature of such protocols implies that resistive and/or hybrid magnets, capable of delivering the highest magnetic field strengths but possessing poor temporal stabilities, become unsuitable for 2D NMR acquisitions. It is here shown with a series of homo- and hetero-nuclear examples that such limitations can be bypassed using recently proposed 2D "ultrafast" acquisition schemes, which correlate interactions along all spectral dimensions within a single scan.

  9. Single Scan 2D NMR Spectroscopy on a 25 T Bitter Magnet

    PubMed Central

    Shapira, Boaz; Shetty, Kiran; Brey, William W.; Gan, Zhehong; Frydman, Lucio

    2007-01-01

    2D NMR relies on monitoring systematic changes in the phases incurred by spin coherences as a function of an encoding time t1, whose value changes over the course of independent experiments. The intrinsic multiscan nature of such protocols implies that resistive and/or hybrid magnets, capable of delivering the highest magnetic field strengths but possessing poor temporal stabilities, become unsuitable for 2D NMR acquisitions. It is here shown with a series of homo- and hetero-nuclear examples that such limitations can be bypassed using recently proposed 2D “ultrafast” acquisition schemes, which correlate interactions along all spectral dimensions within a single scan. PMID:18037970

  10. Quantitative Determination of DNA-Ligand Binding Using Fluorescence Spectroscopy

    ERIC Educational Resources Information Center

    Healy, Eamonn F.

    2007-01-01

    The effective use of fluorescence spectroscopy for determining the binding of the intercalcating agent crhidium bromide to DNA is being described. The analysis used simple measurement techniques and hence can be easily adopted by the students for a better understanding.

  11. Native fluorescence spectroscopy of thymus and fat tissues

    NASA Astrophysics Data System (ADS)

    Tang, Gui C.; Oz, Mehmet C.; Reid, V.; Steinglass, K.; Ginsberg, Mark D.; Jacobowitz, Larry; Alfano, Robert R.

    1993-08-01

    Fluorescence spectroscopy of the human thymus gland and surrounding mediastinal fat were measured to evaluate this approach in distinguishing between thymus and fat tissues during therapeutic surgery for myasthenia gravis disease.

  12. 2D laser-collision induced fluorescence in low-pressure argon discharges

    DOE PAGES

    Barnat, E. V.; Weatherford, B. R.

    2015-09-25

    Development and application of laser-collision induced fluorescence (LCIF) diagnostic technique is presented for the use of interrogating argon plasma discharges. Key atomic states of argon utilized for the LCIF method are identified. A simplified two-state collisional radiative model is then used to establish scaling relations between the LCIF, electron density, and reduced electric fields (E/N). The procedure used to generate, detect and calibrate the LCIF in controlled plasma environments is discussed in detail. LCIF emanating from an argon discharge is then presented for electron densities spanning 109 e cm–3 to 1012 e cm–3 and reduced electric fields spanning 0.1 Tdmore » to 40 Td. Lastly, application of the LCIF technique for measuring the spatial distribution of both electron densities and reduced electric field is demonstrated.« less

  13. 2D laser-collision induced fluorescence in low-pressure argon discharges

    SciTech Connect

    Barnat, E. V.; Weatherford, B. R.

    2015-09-25

    Development and application of laser-collision induced fluorescence (LCIF) diagnostic technique is presented for the use of interrogating argon plasma discharges. Key atomic states of argon utilized for the LCIF method are identified. A simplified two-state collisional radiative model is then used to establish scaling relations between the LCIF, electron density, and reduced electric fields (E/N). The procedure used to generate, detect and calibrate the LCIF in controlled plasma environments is discussed in detail. LCIF emanating from an argon discharge is then presented for electron densities spanning 109 e cm–3 to 1012 e cm–3 and reduced electric fields spanning 0.1 Td to 40 Td. Lastly, application of the LCIF technique for measuring the spatial distribution of both electron densities and reduced electric field is demonstrated.

  14. Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollow-core fiber compression.

    PubMed

    Ma, Xiaonan; Dostál, Jakub; Brixner, Tobias

    2016-09-01

    We demonstrate noncollinear coherent two-dimensional (2D) electronic spectroscopy for which broadband pulses are generated in an argon-filled hollow-core fiber pumped by a 1-kHz Ti:Sapphire laser. Compression is achieved to 7 fs duration (TG-FROG) using dispersive mirrors. The hollow fiber provides a clean spatial profile and smooth spectral shape in the 500-700 nm region. The diffractive-optic-based design of the 2D spectrometer avoids directional filtering distortions and temporal broadening from time smearing. For demonstration we record data of cresyl-violet perchlorate in ethanol and use phasing to obtain broadband absorptive 2D spectra. The resulting quantum beating as a function of population time is consistent with literature data. PMID:27607681

  15. Complex formation in liquid diethyl ether-chloroform mixtures examined by 2D correlation MID-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kutsyk, Andrii; Ilchenko, Oleksii; Pilgun, Yuriy; Obukhovsky, Vyacheslav; Nikonova, Viktoria

    2016-11-01

    Molecular complexes formation in diethyl ether-chloroform liquid solution is investigated by Mid-IR absorbance spectroscopy. The spectra were measured in spectral ranges of 1000-1550 cm-1 and 2650-3100 cm-1. 2D correlation analysis of spectral data indicates the presence of a third component in the solution. Excess spectroscopy shows that maximum of complex concentration is concentrated at around of 55% (vol.) of diethyl ether. 2D codistribution analysis supports such conclusion and provides the order of species distribution. Three-components MCR decomposition of spectral data was performed for the determination of concentration and spectral profiles of mixture components. Spectral transformations due to intermolecular interactions are in full agreement with those calculated according to density functional theory with B3LYP functional and cc-pVTz basis set for the case of equimolecular complex.

  16. Hydrogen Bond Lifetimes and Energetics for Solute-Solvent Complexes Studied with 2D-IR Vibrational Echo Spectroscopy

    PubMed Central

    Zheng, Junrong; Fayer, Michael D.

    2008-01-01

    Weak π hydrogen bonded solute-solvent complexes are studied with ultrafast two dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy, temperature dependent IR absorption spectroscopy, and density functional theory calculations. Eight solute-solvent complexes composed of a number of phenol derivatives and various benzene derivatives are investigated. The complexes are formed between the phenol derivative (solute) in a mixed solvent of the benzene derivative and CCl4. The time dependence of the 2D-IR vibrational echo spectra of the phenol hydroxyl stretch is used to directly determine the dissociation and formation rates of the hydrogen bonded complexes. The dissociation rates of the weak hydrogen bonds are found to be strongly correlated with their formation enthalpies. The correlation can be described with an equation similar to the Arrhenius equation. The results are discussed in terms of transition state theory. PMID:17373792

  17. Fluorescence correlation spectroscopy using quantum dots: advances, challenges and opportunities.

    PubMed

    Heuff, Romey F; Swift, Jody L; Cramb, David T

    2007-04-28

    Semiconductor nanocrystals (quantum dots) have been increasingly employed in measuring the dynamic behavior of biomacromolecules using fluorescence correlation spectroscopy. This poses a challenge, because quantum dots display their own dynamic behavior in the form of intermittent photoluminescence, also known as blinking. In this review, the manifestation of blinking in correlation spectroscopy will be explored, preceded by an examination of quantum dot blinking in general.

  18. Multiphoton cascade absorption in single molecule fluorescence saturation spectroscopy.

    PubMed

    Winckler, Pascale; Jaffiol, Rodolphe

    2013-05-01

    Saturation spectroscopy is a relevant method to investigate photophysical parameters of single fluorescent molecules. Nevertheless, the impact of a gradual increase, over a broad range, of the laser excitation on the intramolecular dynamics is not completely understood, particularly concerning their fluorescence emission (the so-called brightness). Thus, we propose a comprehensive theoretical and experimental study to interpret the unexpected evolution of the brightness with the laser power taking into account the cascade absorption of two and three photons. Furthermore, we highlight the key role played by the confocal observation volume in fluorescence saturation spectroscopy of single molecules in solution.

  19. Low frequency 2D Raman-THz spectroscopy of ionic solution: A simulation study

    NASA Astrophysics Data System (ADS)

    Pan, Zhijun; Wu, Tianmin; Jin, Tan; Liu, Yong; Nagata, Yuki; Zhang, Ruiting; Zhuang, Wei

    2015-06-01

    The 2D Raman-THz spectrum of the MgCl2 solution was simulated using the molecular dynamics simulation and the stability matrix method and compared with that of the pure water. The 2D Raman-THz signal provides more information on the ion effects on the collective water motion than the conventional 1D signal. The presence of MgCl2 suppresses the cross peak of water between the hydrogen bond bending and the other intermolecular vibrational mode, which clearly illustrates that the water hydrogen bending motion is affected by the confining effect of the ions. Our theoretical work thus demonstrates that the 2D Raman-THz technique can become a valuable nonlinear vibrational probe for the molecular dynamics in the ionic solutions.

  20. 2D-Raman-THz spectroscopy: a sensitive test of polarizable water models.

    PubMed

    Hamm, Peter

    2014-11-14

    In a recent paper, the experimental 2D-Raman-THz response of liquid water at ambient conditions has been presented [J. Savolainen, S. Ahmed, and P. Hamm, Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)]. Here, all-atom molecular dynamics simulations are performed with the goal to reproduce the experimental results. To that end, the molecular response functions are calculated in a first step, and are then convoluted with the laser pulses in order to enable a direct comparison with the experimental results. The molecular dynamics simulation are performed with several different water models: TIP4P/2005, SWM4-NDP, and TL4P. As polarizability is essential to describe the 2D-Raman-THz response, the TIP4P/2005 water molecules are amended with either an isotropic or a anisotropic polarizability a posteriori after the molecular dynamics simulation. In contrast, SWM4-NDP and TL4P are intrinsically polarizable, and hence the 2D-Raman-THz response can be calculated in a self-consistent way, using the same force field as during the molecular dynamics simulation. It is found that the 2D-Raman-THz response depends extremely sensitively on details of the water model, and in particular on details of the description of polarizability. Despite the limited time resolution of the experiment, it could easily distinguish between various water models. Albeit not perfect, the overall best agreement with the experimental data is obtained for the TL4P water model.

  1. 2D-Raman-THz spectroscopy: A sensitive test of polarizable water models

    NASA Astrophysics Data System (ADS)

    Hamm, Peter

    2014-11-01

    In a recent paper, the experimental 2D-Raman-THz response of liquid water at ambient conditions has been presented [J. Savolainen, S. Ahmed, and P. Hamm, Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)]. Here, all-atom molecular dynamics simulations are performed with the goal to reproduce the experimental results. To that end, the molecular response functions are calculated in a first step, and are then convoluted with the laser pulses in order to enable a direct comparison with the experimental results. The molecular dynamics simulation are performed with several different water models: TIP4P/2005, SWM4-NDP, and TL4P. As polarizability is essential to describe the 2D-Raman-THz response, the TIP4P/2005 water molecules are amended with either an isotropic or a anisotropic polarizability a posteriori after the molecular dynamics simulation. In contrast, SWM4-NDP and TL4P are intrinsically polarizable, and hence the 2D-Raman-THz response can be calculated in a self-consistent way, using the same force field as during the molecular dynamics simulation. It is found that the 2D-Raman-THz response depends extremely sensitively on details of the water model, and in particular on details of the description of polarizability. Despite the limited time resolution of the experiment, it could easily distinguish between various water models. Albeit not perfect, the overall best agreement with the experimental data is obtained for the TL4P water model.

  2. 2D-Raman-THz spectroscopy: A sensitive test of polarizable water models

    SciTech Connect

    Hamm, Peter

    2014-11-14

    In a recent paper, the experimental 2D-Raman-THz response of liquid water at ambient conditions has been presented [J. Savolainen, S. Ahmed, and P. Hamm, Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)]. Here, all-atom molecular dynamics simulations are performed with the goal to reproduce the experimental results. To that end, the molecular response functions are calculated in a first step, and are then convoluted with the laser pulses in order to enable a direct comparison with the experimental results. The molecular dynamics simulation are performed with several different water models: TIP4P/2005, SWM4-NDP, and TL4P. As polarizability is essential to describe the 2D-Raman-THz response, the TIP4P/2005 water molecules are amended with either an isotropic or a anisotropic polarizability a posteriori after the molecular dynamics simulation. In contrast, SWM4-NDP and TL4P are intrinsically polarizable, and hence the 2D-Raman-THz response can be calculated in a self-consistent way, using the same force field as during the molecular dynamics simulation. It is found that the 2D-Raman-THz response depends extremely sensitively on details of the water model, and in particular on details of the description of polarizability. Despite the limited time resolution of the experiment, it could easily distinguish between various water models. Albeit not perfect, the overall best agreement with the experimental data is obtained for the TL4P water model.

  3. Overtone spectroscopy of H2D+ and D2H+ using laser induced reactions

    NASA Astrophysics Data System (ADS)

    Asvany, Oskar; Hugo, Edouard; Müller, Frank; Kühnemann, Frank; Schiller, Stephan; Tennyson, Jonathan; Schlemmer, Stephan

    2007-10-01

    The method of laser induced reaction is used to obtain high-resolution IR spectra of H2D+ and D2H+ in collision with n-H2 at a nominal temperature of 17K. For this purpose three cw-laser systems have been coupled to a 22-pole ion trap apparatus, two commercial diode laser systems in the ranges of 6100-6600cm-1 and 6760-7300cm-1, respectively, and a high-power optical parametric oscillator tunable in the range of 2600-3200cm-1. In total, 27 new overtone and combination transitions have been detected for H2D + and D2H+, as well as a weak line in the ν1 vibrational band of H2D+ (220←101) at 3164.118cm-1. The line positions are compared to high accuracy ab initio calculations, showing small but mode-dependent differences, being largest for three vibrational quanta in the ν2 symmetric bending of H2D+. Within the experimental accuracy, the relative values of the ab initio predicted Einstein B coefficients are confirmed.

  4. In vivo 1D and 2D correlation MR spectroscopy of the soleus muscle at 7T

    NASA Astrophysics Data System (ADS)

    Ramadan, Saadallah; Ratai, Eva-Maria; Wald, Lawrence L.; Mountford, Carolyn E.

    2010-05-01

    AimThis study aims to (1) undertake and analyse 1D and 2D MR correlation spectroscopy from human soleus muscle in vivo at 7T, and (2) determine T1 and T2 relaxation time constants at 7T field strength due to their importance in sequence design and spectral quantitation. MethodSix healthy, male volunteers were consented and scanned on a 7T whole-body scanner (Siemens AG, Erlangen, Germany). Experiments were undertaken using a 28 cm diameter detunable birdcage coil for signal excitation and an 8.5 cm diameter surface coil for signal reception. The relaxation time constants, T1 and T2 were recorded using a STEAM sequence, using the 'progressive saturation' method for the T1 and multiple echo times for T2. The 2D L-Correlated SpectroscopY (L-COSY) method was employed with 64 increments (0.4 ms increment size) and eight averages per scan, with a total time of 17 min. ResultsT1 and T2 values for the metabolites of interest were determined. The L-COSY spectra obtained from the soleus muscle provided information on lipid content and chemical structure not available, in vivo, at lower field strengths. All molecular fragments within multiple lipid compartments were chemically shifted by 0.20-0.26 ppm at this field strength. 1D and 2D L-COSY spectra were assigned and proton connectivities were confirmed with the 2D method. ConclusionIn vivo 1D and 2D spectroscopic examination of muscle can be successfully recorded at 7T and is now available to assess lipid alterations as well as other metabolites present with disease. T1 and T2 values were also determined in soleus muscle of male healthy volunteers.

  5. Assessment of skin flap viability using visible diffuse reflectance spectroscopy and auto-fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Caigang; Chen, Shuo; Chui, Christopher Hoe-Kong; Liu, Quan

    2012-12-01

    The accurate assessment of skin flap viability is vitally important in reconstructive surgery. Early identification of vascular compromise increases the change of successful flap salvage. The ability to determine tissue viability intraoperatively is also extremely useful when the reconstructive surgeon must decide how to inset the flap and whether any tissue must be discarded. Visible diffuse reflectance and auto-fluorescence spectroscopy, which yield different sets of biochemical information, have not been used in the characterization of skin flap viability simultaneously to our best knowledge. We performed both diffuse reflectance and fluorescence measurements on a reverse MacFarlane rat dorsal skin flap model to identify the additional value of auto-fluorescence spectroscopy to the assessment of flap viability. Our result suggests that auto-fluorescence spectroscopy appears to be more sensitive to early biochemical changes in a failed flap than diffuse reflectance spectroscopy, which could be a valuable complement to diffuse reflectance spectroscopy for the assessment of flap viability.

  6. Absorption and fluorescence spectroscopy on a smartphone

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Arafat; Canning, John; Cook, Kevin; Ast, Sandra; Rutledge, Peter J.; Jamalipour, Abbas

    2015-07-01

    A self-powered smartphone-based field-portable "dual" spectrometer has been developed for both absorption and fluorescence measurements. The smartphone's existing flash LED has sufficient optical irradiance to undertake absorption measurements within a 3D-printed case containing a low cost nano-imprinted polymer diffraction grating. A UV (λex ~ 370 nm) and VIS (λex ~ 450 nm) LED are wired into the circuit of the flash LED to provide an excitation source for fluorescence measurements. Using a customized app on the smartphone, measurements of absorption and fluorescence spectra are demonstrated using pH-sensitive and Zn2+-responsive probes. Detection over a 300 nm span with 0.42 nm/pixel spectral resolution is demonstrated. Despite the low cost and small size of the portable spectrometer, the results compare well with bench top instruments.

  7. Laser-induced fluorescence spectroscopy in tissue local necrosis detection

    NASA Astrophysics Data System (ADS)

    Cip, Ondrej; Buchta, Zdenek; Lesundak, Adam; Randula, Antonin; Mikel, Bretislav; Lazar, Josef; Veverkova, Lenka

    2014-03-01

    The recent effort leads to reliable imaging techniques which can help to a surgeon during operations. The fluorescence spectroscopy was selected as very useful online in vivo imaging method to organics and biological materials analysis. The presented work scopes to a laser induced fluorescence spectroscopy technique to detect tissue local necrosis in small intestine surgery. In first experiments, we tested tissue auto-fluorescence technique but a signal-to-noise ratio didn't express significant results. Then we applied a contrast dye - IndoCyanine Green (ICG) which absorbs and emits wavelengths in the near IR. We arranged the pilot experimental setup based on highly coherent extended cavity diode laser (ECDL) used for stimulating of some critical areas of the small intestine tissue with injected ICG dye. We demonstrated the distribution of the ICG exciter with the first file of shots of small intestine tissue of a rabbit that was captured by high sensitivity fluorescent cam.

  8. Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Theory.

    PubMed

    Spencer, Austin P; Li, Hebin; Cundiff, Steven T; Jonas, David M

    2015-04-30

    A solution to Maxwell's equations in the three-dimensional frequency domain is used to calculate rephasing two-dimensional Fourier transform (2DFT) spectra of the D2 line of atomic rubidium vapor in argon buffer gas. Experimental distortions from the spatial propagation of pulses through the sample are simulated in 2DFT spectra calculated for the homogeneous Bloch line shape model. Spectral features that appear at optical densities of up to 3 are investigated. As optical density increases, absorptive and dispersive distortions start with peak shape broadening, progress to peak splitting, and ultimately result in a previously unexplored coherent transient twisting of the split peaks. In contrast to the low optical density limit, where the 2D peak shape for the Bloch model depends only on the total dephasing time, these distortions of the 2D peak shape at finite optical density vary with the waiting time and the excited state lifetime through coherent transient effects. Experiment-specific conditions are explored, demonstrating the effects of varying beam overlap within the sample and of pseudo-time domain filtering. For beam overlap starting at the sample entrance, decreasing the length of beam overlap reduces the line width along the ωτ axis but also reduces signal intensity. A pseudo-time domain filter, where signal prior to the center of the last excitation pulse is excluded from the FID-referenced 2D signal, reduces propagation distortions along the ωt axis. It is demonstrated that 2DFT rephasing spectra cannot take advantage of an excitation-detection transformation that can eliminate propagation distortions in 2DFT relaxation spectra. Finally, the high optical density experimental 2DFT spectrum of rubidium vapor in argon buffer gas [J. Phys. Chem. A 2013, 117, 6279-6287] is quantitatively compared, in line width, in depth of peak splitting, and in coherent transient peak twisting, to a simulation with optical density higher than that reported.

  9. 2D attenuated total reflectance infrared spectroscopy reveals ultrafast vibrational dynamics of organic monolayers at metal-liquid interfaces

    NASA Astrophysics Data System (ADS)

    Kraack, Jan Philip; Lotti, Davide; Hamm, Peter

    2015-06-01

    We present two-dimensional infrared (2D IR) spectra of organic monolayers immobilized on thin metallic films at the solid liquid interface. The experiments are acquired under Attenuated Total Reflectance (ATR) conditions which allow a surface-sensitive measurement of spectral diffusion, sample inhomogeneity, and vibrational relaxation of the monolayers. Terminal azide functional groups are used as local probes of the environment and structural dynamics of the samples. Specifically, we investigate the influence of different alkyl chain-lengths on the ultrafast dynamics of the monolayer, revealing a smaller initial inhomogeneity and faster spectral diffusion with increasing chain-length. Furthermore, by varying the environment (i.e., in different solvents or as bare sample), we conclude that the most significant contribution to spectral diffusion stems from intra- and intermolecular dynamics within the monolayer. The obtained results demonstrate that 2D ATR IR spectroscopy is a versatile tool for measuring interfacial dynamics of adsorbed molecules.

  10. 2D attenuated total reflectance infrared spectroscopy reveals ultrafast vibrational dynamics of organic monolayers at metal-liquid interfaces.

    PubMed

    Kraack, Jan Philip; Lotti, Davide; Hamm, Peter

    2015-06-01

    We present two-dimensional infrared (2D IR) spectra of organic monolayers immobilized on thin metallic films at the solid liquid interface. The experiments are acquired under Attenuated Total Reflectance (ATR) conditions which allow a surface-sensitive measurement of spectral diffusion, sample inhomogeneity, and vibrational relaxation of the monolayers. Terminal azide functional groups are used as local probes of the environment and structural dynamics of the samples. Specifically, we investigate the influence of different alkyl chain-lengths on the ultrafast dynamics of the monolayer, revealing a smaller initial inhomogeneity and faster spectral diffusion with increasing chain-length. Furthermore, by varying the environment (i.e., in different solvents or as bare sample), we conclude that the most significant contribution to spectral diffusion stems from intra- and intermolecular dynamics within the monolayer. The obtained results demonstrate that 2D ATR IR spectroscopy is a versatile tool for measuring interfacial dynamics of adsorbed molecules.

  11. Two-Dimensional Fluorescence Difference Spectroscopy to Characterize Nanoparticles and their Interactions.

    PubMed

    Hurst, Miranda N; DeLong, Robert K

    2016-01-01

    Two dimensional fluorescence difference spectroscopy (2D FDS) detects nanoparticle interactions following surface functionalization and biomolecule loading by generating a spectral signature of the fluorescent intensity per excitation and emission wavelengths. Comparing metal oxide nanoparticles revealed a unique spectral signature per material composition. 2D FDS showed to be sensitive to changes in surface properties between ZnO NPs synthesized by different methods. ZnO NP loaded with glycol chitosan, polyacrylic acid (PAA), or methoxy polyethylene glycol (mPEG) exhibited a distinct spectral signature shift. ZnO NP loaded with Torula Yeast RNA (TYRNA)(640 nm), polyinosinic: polycytidylic acid (pIC)(680 nm), or splice switching oligonucleotide (SSO)(650 nm) each revealed a shift in emission. Ras-Binding domain (RBD) at three concentrations (25, 37.5, 50 μg/mL) showed that fluorescent intensity was inversely related to the concentration of protein loaded. These data support 2D FDS as a novel technique in identifying nanoparticles and their surface interactions as a quality assurance tool. PMID:27624316

  12. Two-Dimensional Fluorescence Difference Spectroscopy to Characterize Nanoparticles and their Interactions

    NASA Astrophysics Data System (ADS)

    Hurst, Miranda N.; Delong, Robert K.

    2016-09-01

    Two dimensional fluorescence difference spectroscopy (2D FDS) detects nanoparticle interactions following surface functionalization and biomolecule loading by generating a spectral signature of the fluorescent intensity per excitation and emission wavelengths. Comparing metal oxide nanoparticles revealed a unique spectral signature per material composition. 2D FDS showed to be sensitive to changes in surface properties between ZnO NPs synthesized by different methods. ZnO NP loaded with glycol chitosan, polyacrylic acid (PAA), or methoxy polyethylene glycol (mPEG) exhibited a distinct spectral signature shift. ZnO NP loaded with Torula Yeast RNA (TYRNA)(640 nm), polyinosinic: polycytidylic acid (pIC)(680 nm), or splice switching oligonucleotide (SSO)(650 nm) each revealed a shift in emission. Ras-Binding domain (RBD) at three concentrations (25, 37.5, 50 μg/mL) showed that fluorescent intensity was inversely related to the concentration of protein loaded. These data support 2D FDS as a novel technique in identifying nanoparticles and their surface interactions as a quality assurance tool.

  13. Two-Dimensional Fluorescence Difference Spectroscopy to Characterize Nanoparticles and their Interactions

    PubMed Central

    Hurst, Miranda N.; DeLong, Robert K.

    2016-01-01

    Two dimensional fluorescence difference spectroscopy (2D FDS) detects nanoparticle interactions following surface functionalization and biomolecule loading by generating a spectral signature of the fluorescent intensity per excitation and emission wavelengths. Comparing metal oxide nanoparticles revealed a unique spectral signature per material composition. 2D FDS showed to be sensitive to changes in surface properties between ZnO NPs synthesized by different methods. ZnO NP loaded with glycol chitosan, polyacrylic acid (PAA), or methoxy polyethylene glycol (mPEG) exhibited a distinct spectral signature shift. ZnO NP loaded with Torula Yeast RNA (TYRNA)(640 nm), polyinosinic: polycytidylic acid (pIC)(680 nm), or splice switching oligonucleotide (SSO)(650 nm) each revealed a shift in emission. Ras-Binding domain (RBD) at three concentrations (25, 37.5, 50 μg/mL) showed that fluorescent intensity was inversely related to the concentration of protein loaded. These data support 2D FDS as a novel technique in identifying nanoparticles and their surface interactions as a quality assurance tool. PMID:27624316

  14. 2D correlation spectroscopy and multivariate curve resolution in analyzing pH-dependent evolving systems monitored by FT-IR spectroscopy, a comparative study.

    PubMed

    Diewok, Josef; Ayora-Cañada, María Jose; Lendl, Bernhard

    2002-10-01

    Multivariate curve resolution (MCR) and 2D correlation spectroscopy (2D-CoS), including sample-sample correlation, have been applied to the analysis of evolving midinfrared spectroscopic data sets obtained from titrations of organic acids in aqueous solution. In these data sets, well-defined species with significant differences in their spectra are responsible for the spectral variation observed. The two fundamentally different chemometric techniques have been evaluated and discussed on the basis of experimental and supportive simulated data sets. MCR gives information that can be directly related to the chemical species that is of importance from a practical point of view, whereas 2D-CoS results normally require more interpretation. The obtained conclusions are regarded valid for similar evolving data, which are increasingly being encountered in analytical chemistry when multivariate detectors are used to follow dynamic processes, including separations as well as chemical reactions, among others.

  15. Combined fiber probe for fluorescence lifetime and Raman spectroscopy

    PubMed Central

    Dochow, Sebastian; Ma, Dinglong; Latka, Ines; Bocklitz, Thomas; Hartl, Brad; Bec, Julien; Fatakdawala, Hussain; Marple, Eric; Urmey, Kirk; Wachsmann-Hogiu, Sebastian; Schmitt, Michael; Marcu, Laura; Popp, Jürgen

    2016-01-01

    In this contribution we present a dual modality fiber optic probe combining fluorescence lifetime imaging (FLIm) and Raman spectroscopy for in vivo endoscopic applications. The presented multi-spectroscopy probe enables efficient excitation and collection of fluorescence lifetime signals for FLIm in the UV/visible wavelength region, as well as of Raman spectra in the near-IR for simultaneous Raman/FLIm imaging. The probe was characterized in terms of its lateral resolution and distance dependency of the Raman and FLIm signals. In addition, the feasibility of the probe for in vivo FLIm and Raman spectral characterization of tissue was demonstrated. PMID:26093843

  16. Pancreatic tissue assessment using fluorescence and reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Chandra, Malavika; Heidt, David; Simeone, Diane; McKenna, Barbara; Scheiman, James; Mycek, Mary-Ann

    2007-07-01

    The ability of multi-modal optical spectroscopy to detect signals from pancreatic tissue was demonstrated by studying human pancreatic cancer xenografts in mice and freshly excised human pancreatic tumor tissue. Measured optical spectra and fluorescence decays were correlated with tissue morphological and biochemical properties. The measured spectral features and decay times correlated well with expected pathological differences in normal, pancreatitis and adenocarcinoma tissue states. The observed differences between the fluorescence and reflectance properties of normal, pancreatitis and adenocarcinoma tissue indicate a possible application of multi-modal optical spectroscopy to differentiating between the three tissue classifications.

  17. Tracking-FCS: Fluorescence correlation spectroscopy of individual particles

    NASA Astrophysics Data System (ADS)

    Berglund, Andrew J.; Mabuchi, Hideo

    2005-10-01

    We exploit recent advances in single-particle tracking to perform fluorescence correlation spectroscopy on individual fluorescent particles, in contrast to traditional methods that build up statistics over a sequence of many measurements. By rapidly scanning the focus of an excitation laser in a circular pattern, demodulating the measured fluorescence, and feeding these results back to a piezoelectric translation stage, we track the Brownian motion of fluorescent polymer microspheres in aqueous solution in the plane transverse to the laser axis. We discuss the estimation of particle diffusion statistics from closed-loop position measurements, and we present a generalized theory of fluorescence correlation spectroscopy for the case that the motion of a single fluorescent particle is actively tracked by a time-dependent laser intensity. We model the motion of a tracked particle using Ornstein-Uhlenbeck statistics, using a general theory that contains a umber of existing results as specific cases. We find good agreement between our theory and experimental results, and discuss possible future applications of these techniques to passive, single-shot, single-molecule fluorescence measurements with many orders of magnitude in time resolution.

  18. The development of attenuation compensation models of fluorescence spectroscopy signals

    NASA Astrophysics Data System (ADS)

    Dremin, Victor V.; Zherebtsov, Evgeny A.; Rafailov, Ilya E.; Vinokurov, Andrey Y.; Novikova, Irina N.; Zherebtsova, Angelina I.; Litvinova, Karina S.; Dunaev, Andrey V.

    2016-04-01

    This study examines the effect of blood absorption on the endogenous fluorescence signal intensity of biological tissues. Experimental studies were conducted to identify these effects. To register the fluorescence intensity, the fluorescence spectroscopy method was employed. The intensity of the blood flow was measured by laser Doppler flowmetry. We proposed one possible implementation of the Monte Carlo method for the theoretical analysis of the effect of blood on the fluorescence signals. The simulation is constructed as a four-layer skin optical model based on the known optical parameters of the skin with different levels of blood supply. With the help of the simulation, we demonstrate how the level of blood supply can affect the appearance of the fluorescence spectra. In addition, to describe the properties of biological tissue, which may affect the fluorescence spectra, we turned to the method of diffuse reflectance spectroscopy (DRS). Using the spectral data provided by the DRS, the tissue attenuation effect can be extracted and used to correct the fluorescence spectra.

  19. Communication: two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): simultaneous planar imaging and multiplex spectroscopy in a single laser shot.

    PubMed

    Bohlin, Alexis; Kliewer, Christopher J

    2013-06-14

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15,000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm(2). PMID:23781772

  20. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    NASA Astrophysics Data System (ADS)

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-06-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15 000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm2.

  1. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    SciTech Connect

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15, 000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm2.

  2. Quantitative Analysis of Metabolic Mixtures by 2D 13C-Constant-Time TOCSY NMR Spectroscopy

    PubMed Central

    Bingol, Kerem; Zhang, Fengli; Bruschweiler-Li, Lei; Brüschweiler, Rafael

    2013-01-01

    An increasing number of organisms can be fully 13C-labeled, which has the advantage that their metabolomes can be studied by high-resolution 2D NMR 13C–13C constant-time (CT) TOCSY experiments. Individual metabolites can be identified via database searching or, in the case of novel compounds, through the reconstruction of their backbone-carbon topology. Determination of quantitative metabolite concentrations is another key task. Because significant peak overlaps in 1D NMR spectra prevents straightforward quantification through 1D peak integrals, we demonstrate here the direct use of 13C–13C CT-TOCSY spectra for metabolite quantification. This is accomplished through the quantum-mechanical treatment of the TOCSY magnetization transfer at short and long mixing times or by the use of analytical approximations, which are solely based on the knowledge of the carbon-backbone topologies. The methods are demonstrated for carbohydrate and amino-acid mixtures. PMID:23773204

  3. A Study of Two Dimensional Electron Gas Using 2D Fourier Transform Spectroscopy

    NASA Astrophysics Data System (ADS)

    McIntyre, Carl; Paul, Jagannath; Karaiskaj, Denis

    2015-03-01

    The dephasing of FES was measured in a symmetrically modulation doped 12 nm single quantum well GaAs/AlGaAs two dimensional electron gas system using time integrated four wave mixing (TIFWM) and a two dimensional Fourier transform spectroscopy (2DFTS). At high in-well carrier densities of ~4 x 1011 cm-2, many body effects that are prevalent and measurable with non-linear optical spectroscopy. Effects of exciton-exciton and exciton-phonon scattering events, exciton populations, and biexciton formation are detectable at these carrier concentrations. Homogeneous linewidths obtained from 2DFT and TIFWM yield a zero Kelvin linewidth of 1.42 meV and an acoustic phonon scattering coefficient of 158 μ eV/K. These observations indicate a rapid increase in homogeneous linewidth with increased temperature. NSF REU Grant # DMR-1263066: REU Site in Applied Physics at USF.

  4. Electrostatic interactions in phospholipid membranes revealed by coherent 2D IR spectroscopy

    PubMed Central

    Volkov, V. V.; Chelli, R.; Zhuang, W.; Nuti, F.; Takaoka, Y.; Papini, A. M.; Mukamel, S.; Righini, R.

    2007-01-01

    The inter- and intramolecular interactions of the carbonyl moieties at the polar interface of a phospholipid membrane are probed by using nonlinear femtosecond infrared spectroscopy. Two-dimensional IR correlation spectra separate homogeneous and inhomogeneous broadenings and show a distinct cross-peak pattern controlled by electrostatic interactions. The inter- and intramolecular electrostatic interactions determine the inhomogeneous character of the optical response. Using molecular dynamics simulation and the nonlinear exciton equations approach, we extract from the spectra short-range structural correlations between carbonyls at the interface. PMID:17881567

  5. Direct MD Simulations of Terahertz Absorption and 2D Spectroscopy Applied to Explosive Crystals.

    PubMed

    Katz, G; Zybin, S; Goddard, W A; Zeiri, Y; Kosloff, R

    2014-03-01

    A direct molecular dynamics simulation of the THz spectrum of a molecular crystal is presented. A time-dependent electric field is added to a molecular dynamics simulation of a crystal slab. The absorption spectrum is composed from the energy dissipated calculated from a series of applied pulses characterized by a carrier frequency. The spectrum of crystalline cyclotrimethylenetrinitramine (RDX) and triacetone triperoxide (TATP) were simulated with the ReaxFF force field. The proposed direct method avoids the linear response and harmonic approximations. A multidimensional extension of the spectroscopy is suggested and simulated based on the nonlinear response to a single polarized pulse of radiation in the perpendicular polarization direction. PMID:26274066

  6. "FluSpec": A Simulated Experiment in Fluorescence Spectroscopy

    ERIC Educational Resources Information Center

    Bigger, Stephen W.; Bigger, Andrew S.; Ghiggino, Kenneth P.

    2014-01-01

    The "FluSpec" educational software package is a fully contained tutorial on the technique of fluorescence spectroscopy as well as a simulator on which experiments can be performed. The procedure for each of the experiments is also contained within the package along with example analyses of results that are obtained using the software.

  7. (13)C NMR assignments of regenerated cellulose from solid-state 2D NMR spectroscopy.

    PubMed

    Idström, Alexander; Schantz, Staffan; Sundberg, Johan; Chmelka, Bradley F; Gatenholm, Paul; Nordstierna, Lars

    2016-10-20

    From the assignment of the solid-state (13)C NMR signals in the C4 region, distinct types of crystalline cellulose, cellulose at crystalline surfaces, and disordered cellulose can be identified and quantified. For regenerated cellulose, complete (13)C assignments of the other carbon regions have not previously been attainable, due to signal overlap. In this study, two-dimensional (2D) NMR correlation methods were used to resolve and assign (13)C signals for all carbon atoms in regenerated cellulose. (13)C-enriched bacterial nanocellulose was biosynthesized, dissolved, and coagulated as highly crystalline cellulose II. Specifically, four distinct (13)C signals were observed corresponding to conformationally different anhydroglucose units: two signals assigned to crystalline moieties and two signals assigned to non-crystalline species. The C1, C4 and C6 regions for cellulose II were fully examined by global spectral deconvolution, which yielded qualitative trends of the relative populations of the different cellulose moieties, as a function of wetting and drying treatments. PMID:27474592

  8. Ionic Liquid–Solute Interactions Studied by 2D NOE NMR Spectroscopy

    SciTech Connect

    Khatun, Sufia; Castner, Edward W.

    2014-11-26

    Intermolecular interactions between a Ru²⁺(bpy)₃ solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {¹H-¹⁹F} HOESY and {¹H-¹H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru²⁺(bpy)₃ solute is rather different from the bulk IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru²⁺(bpy)₃ solute interacts with both the polar head and the nonpolar tail groups of the 1- butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.

  9. Ionic Liquid–Solute Interactions Studied by 2D NOE NMR Spectroscopy

    DOE PAGES

    Khatun, Sufia; Castner, Edward W.

    2014-11-26

    Intermolecular interactions between a Ru²⁺(bpy)₃ solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {¹H-¹⁹F} HOESY and {¹H-¹H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru²⁺(bpy)₃ solute is rather different from the bulkmore » IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru²⁺(bpy)₃ solute interacts with both the polar head and the nonpolar tail groups of the 1- butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.« less

  10. High-resolution 2D NMR spectroscopy of bicelles to measure the membrane interaction of ligands.

    PubMed

    Dvinskikh, Sergey V; Dürr, Ulrich H N; Yamamoto, Kazutoshi; Ramamoorthy, Ayyalusamy

    2007-01-31

    Magnetically aligned bicelles are increasingly being used as model membranes in solution- and solid-state NMR studies of the structure, dynamics, topology, and interaction of membrane-associated peptides and proteins. These studies commonly utilize the PISEMA pulse sequence to measure dipolar coupling and chemical shift, the two key parameters used in subsequent structural analysis. In the present study, we demonstrate that the PISEMA and other rotating-frame pulse sequences are not suitable for the measurement of long-range heteronuclear dipolar couplings, and that they provide inaccurate values when multiple protons are coupled to a 13C nucleus. Furthermore, we demonstrate that a laboratory-frame separated-local-field experiment is capable of overcoming these difficulties in magnetically aligned bicelles. An extension of this approach to accurately measure 13C-31P and 1H-31P couplings from phospholipids, which are useful to understand the interaction of molecules with the membrane, is also described. In these 2D experiments, natural abundance 13C was observed from bicelles containing DMPC and DHPC lipid molecules. As a first application, these solid-state NMR approaches were utilized to probe the membrane interaction of an antidepressant molecule, desipramine, and its location in the membrane.

  11. Interactions in two-component liposomes studied by 2D correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Murawska, Agnieszka; Cieślik-Boczula, Katarzyna; Czarnik-Matusewicz, Bogusława

    2010-06-01

    The effect of dipping amphiphilic ICPANs (1-Alkylaminium, N-[2-[3-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropoxy]ethyl]-N,N-dimethyl-, bromide) homologues, characterized by varying alkyl chain length ( n = 8, 10, 12, and 16), into large multilamellar vesicles (MLVs) of dipalmitoylphosphatidylcholine (DPPC) was studied. Attenuated total reflectance infrared (ATR-IR) spectroscopy combined with 31P-NMR enabled observing a cut-off effect for the longest homologue. By employing two-dimensional correlation spectroscopy (2DCOS) for monitoring spectral changes induced by the heating process, detailed information about structural changes was obtained. They confirmed the substantial reorganization in the structure of the interfacial region in the ICPAN-C16/DPPC vesicles compared with the shorter homologues, where mainly the alkyl chains experience significant trans-to-gauche reorganization. Absorbance changes around 1400 cm -1 assigned to the symmetric deformation mode δsym ( +N(CH 3) 3) are a good marker of changes in vesicle shape and are sensitive to the percentage of DPPC molecules directly interacting with the surface of the ATR crystal. This study clearly demonstrates the potential of 2DCOS in investigating interactions in two-component liposomes.

  12. Computational Amide I 2D IR Spectroscopy as a Probe of Protein Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Reppert, Mike; Tokmakoff, Andrei

    2016-05-01

    Two-dimensional infrared spectroscopy of amide I vibrations is increasingly being used to study the structure and dynamics of proteins and peptides. Amide I, a primarily carbonyl stretching vibration of the protein backbone, provides information on secondary structures as a result of vibrational couplings and on hydrogen-bonding contacts when isotope labeling is used to isolate specific sites. In parallel with experiments, computational models of amide I spectra that use atomistic structures from molecular dynamics simulations have evolved to calculate experimental spectra. Mixed quantum-classical models use spectroscopic maps to translate the structural information into a quantum-mechanical Hamiltonian for the spectroscopically observed vibrations. This allows one to model the spectroscopy of large proteins, disordered states, and protein conformational dynamics. With improvements in amide I models, quantitative modeling of time-dependent structural ensembles and of direct feedback between experiments and simulations is possible. We review the advances in developing these models, their theoretical basis, and current and future applications.

  13. Fluorescence spectroscopy: a rapid tool for analyzing dairy products.

    PubMed

    Andersen, Charlotte Møller; Mortensen, Grith

    2008-02-13

    This paper gives a critical evaluation of the use of fluorescence spectroscopy for measuring chemical and physical changes in dairy products caused by processing and storage. Fluorescence spectroscopy is able to determine various properties of foods without use of chemicals and time-consuming sample preparation. This is shown by examples where the measurement of a given chemical parameter has been appropriately described and validated, as well as situations showing potential applications, but where further research and validation is required. The interpretation of fluorescence spectroscopic data is complex due to absorbance by other molecular groups, changes caused by variation in the sample matrix, etc. It is illustrated how advanced data analytical techniques are required to obtain optimal interpretation of the data. Even though the review focuses on examples from the dairy industry, the principles are broader and can be applied to other fields of food and agricultural research.

  14. Rapid identification of Pterocarpus santalinus and Dalbergia louvelii by FTIR and 2D correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Fang-Da; Xu, Chang-Hua; Li, Ming-Yu; Huang, An-Min; Sun, Su-Qin

    2014-07-01

    Since Pterocarpus santalinus and Dalbergia louvelii, which are of precious Rosewood, are very similar in their appearance and anatomy characteristics, cheaper Hongmu D. louvelii is often illegally used to impersonate valuable P. santalinus, especially in Chinese furniture manufacture. In order to develop a rapid and effective method for easy confused wood furniture differentiation, we applied tri-step identification method, i.e., conventional infrared spectroscopy (FT-IR), second derivative infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2DCOS-IR) spectroscopy to investigate P. santalinus and D. louvelii furniture. According to FT-IR and SD-IR spectra, it has been found two unconditional stable difference at 848 cm-1 and 700 cm-1 and relative stable differences at 1735 cm-1, 1623 cm-1, 1614 cm-1, 1602 cm-1, 1509 cm-1, 1456 cm-1, 1200 cm-1, 1158 cm-1, 1055 cm-1, 1034 cm-1 and 895 cm-1 between D. louvelii and P. santalinus IR spectra. The stable discrepancy indicates that the category of extractives is different between the two species. Besides, the relative stable differences imply that the content of holocellulose in P. santalinus is more than that of D. louvelii, whereas the quantity of extractives in D. louvelii is higher. Furthermore, evident differences have been observed in their 2DCOS-IR spectra of 1550-1415 cm-1 and 1325-1030 cm-1. P. santalinus has two strong auto-peaks at 1459 cm-1 and 1467 cm-1, three mid-strong auto-peaks at 1518 cm-1, 1089 cm-1 and 1100 cm-1 and five weak auto-peaks at 1432 cm-1, 1437 cm-1, 1046 cm-1, 1056 cm-1 and 1307 cm-1 while D. louvelii has four strong auto-peaks at 1465 cm-1, 1523 cm-1, 1084 cm-1 and 1100 cm-1, four mid-strong auto-peaks at 1430 cm-1, 1499 cm-1, 1505 cm-1 and 1056 cm-1 and two auto-peaks at 1540 cm-1 and 1284 cm-1. This study has proved that FT-IR integrated with 2DCOS-IR could be applicable for precious wood furniture authentication in a direct, rapid and holistic manner.

  15. Peak separation and sorting by coherent 2D resonance Raman spectroscopy.

    PubMed

    Chen, Peter C; Joyner, Candace C

    2005-09-01

    The ability to separate and sort peaks is explored using a new coherent two-dimensional form of resonance Raman spectroscopy. This experimental technique distributes normally congested rotational-vibrational peaks along a series of curved lines according to vibrational sequence, rotational quantum number, and selection rule. Each line consists of rotational-vibrational peaks that have the same vibrational sequence and the same value for DeltaJ, distributed in order by rotational quantum number. For diatomic molecules, these lines originate from points where they initially travel in opposite or orthogonal directions in two-dimensional space, which helps facilitate the separation between lines. Simulations and experimental results on C2 in a flame confirm the ability to separate and sort these normally congested rotational-vibrational peaks. This method appears to provide a solution to the long-standing problems of spectral congestion and disorder in gas-phase electronic spectra.

  16. Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS)

    NASA Astrophysics Data System (ADS)

    Choi, Doo-Won; Jeon, Min-Gyu; Cho, Gyeong-Rae; Kamimoto, Takahiro; Deguchi, Yoshihiro; Doh, Deog-Hee

    2016-02-01

    Performance improvement was attained in data reconstructions of 2-dimensional tunable diode laser absorption spectroscopy (TDLAS). Multiplicative Algebraic Reconstruction Technique (MART) algorithm was adopted for data reconstruction. The data obtained in an experiment for the measurement of temperature and concentration fields of gas flows were used. The measurement theory is based upon the Beer-Lambert law, and the measurement system consists of a tunable laser, collimators, detectors, and an analyzer. Methane was used as a fuel for combustion with air in the Bunsen-type burner. The data used for the reconstruction are from the optical signals of 8-laser beams passed on a cross-section of the methane flame. The performances of MART algorithm in data reconstruction were validated and compared with those obtained by Algebraic Reconstruction Technique (ART) algorithm.

  17. Laser Induced Fluorescence Spectroscopy of Cobalt Monoboride

    NASA Astrophysics Data System (ADS)

    Pang, H. F.; Ng, Y. W.; Cheung, A. S.-C.

    2011-06-01

    Laser induced fluorescence spectrum of cobalt monoboride (CoB) in the visible region between 465 and 560 nm has been observed. CoB molecule was produced by the reaction of laser ablated cobalt atom and diborane (B_2H_6) seeded in argon. Over twenty five vibronic bands have been recorded, and both Co10B and Co11B isotopic species have been observed and analyzed. Preliminary analysis of the rotational lines showed that the observed vibronic bands belong to two categories namely: the Ω' = 2 - Ω'' = 2 and the Ω' = 3 - Ω'' = 3 transitions, which indicated the ground state of CoB is consistent with an assignment of a ^3Δ_i state predicted from ab initio calculations. Unresolved hyperfine structure arising from the Co nucleus (I = 7/2) causes a broadening of spectral lines. This work represents the first experimental investigation of the spectrum of the CoB molecule. Financial support from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. HKU 701008P) is gratefully acknowledged.

  18. Fluorescence spectroscopy to assess apoptosis in myocardium

    NASA Astrophysics Data System (ADS)

    Ranji, Mahsa; Matsubara, Muneaki; Grosso, Michael A.; Jaggard, Dwight L.; Chance, Britton; Gorman, Robert C.; Gorman, Joseph H., III

    2007-02-01

    Apoptosis induced mitochondrial destruction and dysfunction has been shown to play an important role in the pathogenesis of both acute cardiac ischemia-reperfusion injury and chronic myocardial infarction-induced ventricular remodeling. Unfortunately this understanding has not translated into effective therapeutic strategies for either condition-mostly due to an inability to assess mitochondrial dysfunction/apoptosis effectively in humans. All current measures of apoptosis are pseudo-quantitative and require invasive tissue biopsy. Our group has developed an optical, non-tissue destructive catheter based device that allows the quantitative regional assessment of this pathological process in vivo. This instrument has been designed to acquire fluorescence signals of intrinsic mitochondrial fluorophores, Nicotinamide Adenine Dinucleotide (NAD) and Flavoprotein (FP). The normalized ratio of these fluorophores (FP/FP+NADH) called the redox ratio, is an indicator of the in vivo mitochondrial dysfunction. 1-3 We have demonstrated in a rabbit reperfusion model of apoptotic myocyte injury that this redox ratio is drastically increased which is consistent with profound apoptosis-induced "unhinging" of the mitochondrial respiratory function.

  19. Water dynamics in salt solutions studied with ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy.

    PubMed

    Fayer, Michael D; Moilanen, David E; Wong, Daryl; Rosenfeld, Daniel E; Fenn, Emily E; Park, Sungnam

    2009-09-15

    Water is ubiquitous in nature, but it exists as pure water infrequently. From the ocean to biology, water molecules interact with a wide variety of dissolved species. Many of these species are charged. In the ocean, water interacts with dissolved salts. In biological systems, water interacts with dissolved salts as well as charged amino acids, the zwitterionic head groups of membranes, and other biological groups that carry charges. Water plays a central role in a vast number of chemical processes because of its dynamic hydrogen-bond network. A water molecule can form up to four hydrogen bonds in an approximately tetrahedral arrangement. These hydrogen bonds are continually being broken, and new bonds are being formed on a picosecond time scale. The ability of the hydrogen-bond network of water to rapidly reconfigure enables water to accommodate and facilitate chemical processes. Therefore, the influence of charged species on water hydrogen-bond dynamics is important. Recent advances in ultrafast coherent infrared spectroscopy have greatly expanded our understanding of water dynamics. Two-dimensional infrared (2D IR) vibrational echo spectroscopy is providing new observables that yield direct information on the fast dynamics of molecules in their ground electronic state under thermal equilibrium conditions. The 2D IR vibrational echoes are akin to 2D nuclear magnetic resonance (NMR) but operate on time scales that are many orders of magnitude shorter. In a 2D IR vibrational echo experiment (see the Conspectus figure), three IR pulses are tuned to the vibrational frequency of interest, which in this case is the frequency of the hydroxyl stretching mode of water. The first two pulses "label" the initial molecular structures by their vibrational frequencies. The system evolves between pulses two and three, and the third pulse stimulates the emission of the vibrational echo pulse, which is the signal. The vibrational echo pulse is heterodyne, detected by combining it

  20. Spectroscopy of emergent states in strongly interacting 2D electron systems

    NASA Astrophysics Data System (ADS)

    Hirjibehedin, Cyrus Farokh

    In this dissertation I present my recent resonant inelastic light scattering studies of the remarkable emergent states formed by strongly interacting 2D electron systems. I describe the first experimental determinations of long wavelength, low energy dispersions in the fractional quantum Hall (FQH) regime. The demonstration of existence of well defined modes at small wavevectors for the nu = 1/3 state gives a measure of the macroscopic extent of the quantum fluid beyond the micron length scale. I report evidence of a novel splitting of modes and discuss interpretations of these modes as two-roton states. I report the first studies to probe the boundary between different FQH sequences that occurs at nu = 1/3. Evidence of the coexistence of excitations from both sequences at distinct energy scales is uncovered. The abrupt appearance of lower energy modes at nu ≲ 1/3 suggests a change in the quantum ground state on crossing the nu = 1/3 boundary. The coexistence of excitations indicates a layered set of excitations of different quasiparticle flavors from a single ground state. I discuss the resonant enhancements of light scattering for spin excitations at nu = 1/3, which are strongest near photoluminescence bands assigned in the literature to negatively charged excitons. The observed enhancement profiles are interpreted by scattering mechanisms with intermediate transitions to states with charged excitonic excitations. We fabricated the first ultra-low density quantum structures and were able to show that light scattering methods are sensitive enough to probe systems currently reaching as low as n = 7.7 x 108cm -2 at wavevectors large enough to show correlation and non-local effects. I find well-defined plasmons with dispersions that deviate from the long wavelength q limit, suggesting evidence of large correlation effects. I discuss the use of light scattering to measure the electron temperature through the anti-Stokes/Stokes scattering ratio, highlighting the

  1. Synthesis of fluorescent dye-tagged nanomachines for single-molecule fluorescence spectroscopy.

    PubMed

    Vives, Guillaume; Guerrero, Jason M; Godoy, Jazmin; Khatua, Saumyakanti; Wang, Yu-Pu; Kiappes, J L; Link, Stephan; Tour, James M

    2010-10-01

    In an effort to elucidate the mechanism of movement of nanovehicles on nonconducting surfaces, the synthesis and optical properties of five fluorescently tagged nanocars are reported. The nanocars were specifically designed for studies by single-molecule fluorescence spectroscopy and bear a tetramethylrhodamine isothiocyanate fluorescent tag for excitation at 532 nm. The molecules were designed such that the arrangement of their molecular axles and p-carborane wheels relative to the chassis would be conducive to the control of directionality in the motion of these nanovehicles.

  2. Positron spectroscopy of 2D materials using an advanced high intensity positron beam

    NASA Astrophysics Data System (ADS)

    McDonald, A.; Chirayath, V.; Lim, Z.; Gladen, R.; Chrysler, M.; Fairchild, A.; Koymen, A.; Weiss, A.

    An advanced high intensity variable energy positron beam(~1eV to 20keV) has been designed, tested and utilized for the first coincidence Doppler broadening (CDB) measurements on 6-8 layers graphene on polycrystalline Cu sample. The system is capable of simultaneous Positron annihilation induced Auger electron Spectroscopy (PAES) and CDB measurements giving it unparalleled sensitivity to chemical structure at external surfaces, interfaces and internal pore surfaces. The system has a 3m flight path up to a micro channel plate (MCP) for the Auger electrons emitted from the sample. This gives a superior energy resolution for PAES. A solid rare gas(Neon) moderator was used for the generation of the monoenergetic positron beam. The positrons were successfully transported to the sample chamber using axial magnetic field generated with a series of Helmholtz coils. We will discuss the PAES and coincidence Doppler broadening measurements on graphene -Cu sample and present an analysis of the gamma spectra which indicates that a fraction of the positrons implanted at energies 7-60eV can become trapped at the graphene/metal interface. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  3. Synthesis of Ag clusters in microemulsions: A time-resolved UV vis and fluorescence spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ledo, Ana; Martínez, F.; López-Quintela, M. A.; Rivas, J.

    2007-09-01

    The combined use of the microemulsion technique and the kinetic control allows the preparation of small silver clusters. By using UV-vis and fluorescence spectroscopy the main stages by which the clusters grow, before the formation of nanoparticles, were elucidated. Transmission electron microscopy (TEM) and scanning tunnelling microscopy (STM) were used to further characterize the samples. Two main stages were clearly identified, which are associated with: (1) the formation of Ag n clusters with n<10, which self-aggregate into one atom high 2D nanodiscs of 3.2 nm size and (2) Ag n clusters, which self-aggregate into 3D nanostructures of 1.5 nm in size. The fluorescence properties observed with both stages show that the formed clusters are small enough to display a molecule-like behaviour.

  4. Fluorescence correlation spectroscopy: Diagnostics for sparse molecules

    PubMed Central

    Maiti, Sudipta; Haupts, Ulrich; Webb, Watt W.

    1997-01-01

    The robust glow of molecular fluorescence renders even sparse molecules detectable and susceptible to analysis for concentration, mobility, chemistry, and photophysics. Correlation spectroscopy, a statistical-physics-based tool, gleans quantitative information from the spontaneously fluctuating fluorescence signals obtained from small molecular ensembles. This analytical power is available for studying molecules present at minuscule concentrations in liquid solutions (less than one nanomolar), or even on the surfaces of living cells at less than one macromolecule per square micrometer. Indeed, routines are becoming common to detect, locate, and examine individual molecules under favorable conditions. PMID:9342306

  5. Femtosecond broadband fluorescence upconversion spectroscopy: Improved setup and photometric correction

    SciTech Connect

    Zhang, X.-X.; Wuerth, C.; Resch-Genger, U.; Zhao, L.; Ernsting, N. P.; Sajadi, M.

    2011-06-15

    A setup for fluorescence upconversion spectroscopy (FLUPS) is described which has 80 fs temporal response (fwhm) for emission in the spectral range 425-750 nm. Broadband phase matching is achieved with tilted gate pulses at 1340 nm. Background from harmonics of the gate pulse is removed and sensitivity increased compared to previous designs. Photometric calibration of the upconversion process is performed with a set of fluorescent dyes. For Coumarin 153 in methanol the peak position, bandwidth, and asymmetry depending on delay time are reported.

  6. Two-dimensional (2D) infrared (IR) correlation spectroscopy for dynamic absorption behavior of oleic acid (OA) onto silica gel

    NASA Astrophysics Data System (ADS)

    Genkawa, Takuma; Kanematsu, Wataru; Shinzawa, Hideyuki

    2014-07-01

    Dynamic absorption behavior of oleic acid (OA) onto silica gel was probed by infrared (IR) spectroscopy. Once OA is injected into silica gel placed on a horizontal attenuated total reflectance prism, the silica gel starts to absorb the OA molecules due to the molecular-level interaction based on hydrogen bonding between the COOH of OA and the OH of silica gel. The substantial level of variation of spectral feature is readily observed during the absorption of OA onto silica gel. 2D correlation analysis of the time-dependent IR spectra reveals fine details of absorption dynamics of OA molecules depending on the molecular structure. The predominant absorption of the monomers occurs at the onset of the absorption, and it is then quickly followed by the decrease in the dimers. In other words, the dissociation of the liquid crystals occurs via the disuniting of the tightly packed OA dimers.

  7. Near-infrared (NIR) monitoring of Nylon 6 during quenching studied by projection two-dimensional (2D) correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Mizukado, Junji

    2016-11-01

    Evolutionary change in supermolecular structure of Nylon 6 during its melt-quenched process was studied by Near-infrared (NIR) spectroscopy. Time-resolved NIR spectra was measured by taking the advantage of high-speed NIR monitoring based on an acousto-optic tunable filter (AOTF). Fine spectral features associated with the variation of crystalline and amorphous structure occurring in relatively short time scale were readily captured. For example, synchronous and asynchronous 2D correlation spectra reveal the initial decrease in the contribution of the NIR band at 1485 nm due to the amorphous structure, predominantly existing in the melt Nylon 6. This is then followed by the emerging contribution of the band intensity at 1535 nm associated with the crystalline structure. Consequently, the results clearly demonstrate a definite advantage of the high-speed NIR monitoring for analyzing fleeting phenomena.

  8. Two-dimensional (2D) Chemiluminescence (CL) correlation spectroscopy for studying thermal oxidation of isotactic polypropylene (iPP)

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Hagihara, Hideaki; Suda, Hiroyuki; Mizukado, Jyunji

    2016-11-01

    Application of the two-dimensional (2D) correlation spectroscopy is extended to Chemiluminescence (CL) spectra of isotactic polypropylene (iPP) under thermally induced oxidation. Upon heating, the polymer chains of the iPP undergoes scissoring and fragmentation to develop several intermediates. While different chemical species provides the emission at different wavelength regions, entire feature of the time-dependent CL spectra of the iPP samples were complicated by the presence of overlapped contributions from singlet oxygen (1O2) and carbonyl species within sample. 2D correlation spectra showed notable enhancement of the spectral resolution to provide penetrating insight into the thermodynamics of the polymer system. For example, the, oxidation induce scissoring and fragmentation of the polymer chains to develop the carbonyl group. Further reaction results in the consumption of the carbonyl species and subsequent production of different 1O2 species each developed in different manner. Consequently, key information on the thermal oxidation can be extracted in a surprisingly simple manner without any analytical expression for the actual response curves of spectral intensity signals during the reaction.

  9. Fluorescence suppression using micro-scale spatially offset Raman spectroscopy.

    PubMed

    Conti, Claudia; Botteon, Alessandra; Colombo, Chiara; Realini, Marco; Matousek, Pavel

    2016-09-21

    We present a new concept of fluorescence suppression in Raman microscopy based on micro-spatially offset Raman spectroscopy which is applicable to thin stratified turbid (diffusely scattering) matrices permitting the retrieval of the Raman signals of sublayers below intensely fluorescing turbid over-layers. The method is demonstrated to yield good quality Raman spectra with dramatically suppressed fluorescence backgrounds enabling the retrieval of Raman sublayer signals even in situations where conventional Raman microscopy spectra are fully overwhelmed by intense fluorescence. The concept performance was studied theoretically using Monte Carlo simulations indicating the potential of up to an order or two of magnitude suppression of overlayer fluorescence backgrounds relative to the Raman sublayer signals. The technique applicability was conceptually demonstrated on layered samples involving paints, polymers and stones yielding fluorescence suppression factors between 12 to above 430. The technique has potential applications in a number of analytical areas including cultural heritage, archaeology, polymers, food, pharmaceutical, biological, biomedical, forensics and catalytic sciences and quality control in manufacture.

  10. Fluorescence suppression using micro-scale spatially offset Raman spectroscopy.

    PubMed

    Conti, Claudia; Botteon, Alessandra; Colombo, Chiara; Realini, Marco; Matousek, Pavel

    2016-09-21

    We present a new concept of fluorescence suppression in Raman microscopy based on micro-spatially offset Raman spectroscopy which is applicable to thin stratified turbid (diffusely scattering) matrices permitting the retrieval of the Raman signals of sublayers below intensely fluorescing turbid over-layers. The method is demonstrated to yield good quality Raman spectra with dramatically suppressed fluorescence backgrounds enabling the retrieval of Raman sublayer signals even in situations where conventional Raman microscopy spectra are fully overwhelmed by intense fluorescence. The concept performance was studied theoretically using Monte Carlo simulations indicating the potential of up to an order or two of magnitude suppression of overlayer fluorescence backgrounds relative to the Raman sublayer signals. The technique applicability was conceptually demonstrated on layered samples involving paints, polymers and stones yielding fluorescence suppression factors between 12 to above 430. The technique has potential applications in a number of analytical areas including cultural heritage, archaeology, polymers, food, pharmaceutical, biological, biomedical, forensics and catalytic sciences and quality control in manufacture. PMID:27338230

  11. Fluorescence spectroscopy of excitation transfer in Photosystem 1

    SciTech Connect

    Mukerji, I.

    1990-12-01

    This thesis centers on the study of excitation transfer in a photosynthetic antenna array. The spectroscopic properties of two pigment-protein complexes were investigated. These complexes, isolated from higher plants, display an unusual temperature dependent fluorescence behavior. The author have chosen to study this fluorescence behavior with respect to energy transfer to the reaction center and in an isolated intact antenna preparation. A Photosystem 1 complex, PSI-200, was isolated from spinach. We have characterized this system by both steady state and time-resolved fluorescence spectroscopy. Fluorescence polarization measurements indicate that this emission arises from pigments which absorb in the long wavelength region of the spectrum and comprise a relatively small portion of the antenna population. Comparison of spectral characteristics were made with a PSI complex isolated from the thermophilic cyanobacterium, Synechococcus, sp. To address the role of Chl b in stimulating long wavelength fluorescence and the temperature dependence of the system, we have studied the energy transfer dynamics in an antenna complex, LHC-I isolated from PSI-200. Kinetic measurements indicate that initially absorbed excitation is rapidly redistributed to longer wavelength emitting pigments within 40 ps. The temperature dependence of F685 results from increased back transfer from long wavelength emitters to F685. We suggest that changes in excitation transfer between the various emitting species and a non-radiative fluorescence quenching mechanism account for the temperature dependence of the system. 144 refs., 50 figs., 3 tabs.

  12. Rapid discrimination of extracts of Chinese propolis and poplar buds by FT-IR and 2D IR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Yan-Wen; Sun, Su-Qin; Zhao, Jing; Li, Yi; Zhou, Qun

    2008-07-01

    The extract of Chinese propolis (ECP) has recently been adulterated with that of poplar buds (EPB), because most of ECP is derived from the poplar plant, and ECP and EPB have almost identical chemical compositions. It is very difficult to differentiate them by using the chromatographic methods such as high performance liquid chromatography (HPLC) and gas chromatography (GC). Therefore, how to effectively discriminate these two mixtures is a problem to be solved urgently. In this paper, a rapid method for discriminating ECP and EPB was established by the Fourier transform infrared (FT-IR) spectra combined with the two-dimensional infrared correlation (2D IR) analysis. Forty-three ECP and five EPB samples collected from different areas of China were analyzed by the FT-IR spectroscopy. All the ECP and EPB samples tested show similar IR spectral profiles. The significant differences between ECP and EPB appear in the region of 3000-2800 cm -1 of the spectra. Based on such differences, the two species were successfully classified with the soft independent modeling of class analogy (SIMCA) pattern recognition technique. Furthermore, these differences were well validated by a series of temperature-dependent dynamic FT-IR spectra and the corresponding 2D IR plots. The results indicate that the differences in these two natural products are caused by the amounts of long-chain alkyl compounds (including long-chain alkanes, long-chain alkyl esters and long chain alkyl alcohols) in them, rather than the flavonoid compounds, generally recognized as the bioactive substances of propolis. There are much more long-chain alkyl compounds in ECP than those in EPB, and the carbon atoms of the compounds in ECP remain in an order Z-shaped array, but those in EPB are disorder. It suggests that FT-IR and 2D IR spectroscopy can provide a valuable method for the rapid differentiation of similar natural products, ECP and EPB. The IR spectra could directly reflect the integrated chemical

  13. Principles and applications of fluorescence lifetime correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Beranová, Lenka; Humpolícková, Jana; Hof, Martin

    2009-05-01

    Two fluorescence spectroscopy concepts, fluorescence correlation spectroscopy and time correlated single photon counting (TCSPC) are employed in fluorescence lifetime correlation spectroscopy (FLCS) - a relatively new technique with several experimental benefits. In FLCS experiments, pulsed excitation is used and data are stored in a special time-tagged time-resolved mode. Mathematical treatment of TCSPC decay patterns of distinct fluorophores and their mixture enables to calculate autocorrelation functions of each of the fluorophores and thus their diffusion properties and concentrations can be determined separately. Moreover, crosscorrelation of the two signals can be performed and information on interaction of the species can be obtained. This technique is particularly helpful for distinguishing different states of the same fluorophore in different microenvironments. The first application of that concept represents the simultaneous determination of two-dimensional diffusion in planar lipid layers and three-dimensional vesicle diffusion in bulk above the lipid layers. The lifetime in both investigated systems differed because the lifetime of the dye is considerably quenched in the layer near the light-absorbing surface. This concept was also used in other applications: a) investigation of a conformational change of a labeled protein, b) detection of small amounts of labeled oligonucleotides bound to metal particles or c) elucidation of the compaction mechanism of different sized labeled DNA molecules. Moreover, it was demonstrated that FLCS can help to overcome some FCS experimental drawbacks.

  14. In Vivo Fluorescence Correlation and Cross-Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mütze, Jörg; Ohrt, Thomas; Petrášek, Zdeněk; Schwille, Petra

    In this manuscript, we describe the application of Fluorescence Correlation Spectroscopy (FCS), Fluorescence Cross-Correlation Spectroscopy (FCCS), and scanning FCS (sFCS) to two in vivo systems. In the first part, we describe the application of two-photon standard and scanning FCS in Caenorhabditis elegans embryos. The differentiation of a single fertilized egg into a complex organism in C. elegans is regulated by a number of protein-dependent processes. The oocyte divides asymmetrically into two daughter cells of different developmental fate. Two of the involved proteins, PAR-2 and NMY-2, are studied. The second investigated system is the mechanism of RNA interference in human cells. An EGFP based cell line that allows to study the dynamics and localization of the RNA-induced silencing complex (RISC) with FCS in vivo is created, which has so far been inaccessible with other experimental methods. Furthermore, Fluorescence Cross-Correlation Spectroscopy is employed to highlight the asymmetric incorporation of labeled siRNAs into RISC.

  15. Fluorescence spectroscopy using indocyanine green for lymph node mapping

    NASA Astrophysics Data System (ADS)

    Haj-Hosseini, Neda; Behm, Pascal; Shabo, Ivan; Wârdell, Karin

    2014-02-01

    The principles of cancer treatment has for years been radical resection of the primary tumor. In the oncologic surgeries where the affected cancer site is close to the lymphatic system, it is as important to detect the draining lymph nodes for metastasis (lymph node mapping). As a replacement for conventional radioactive labeling, indocyanine green (ICG) has shown successful results in lymph node mapping; however, most of the ICG fluorescence detection techniques developed are based on camera imaging. In this work, fluorescence spectroscopy using a fiber-optical probe was evaluated on a tissue-like ICG phantom with ICG concentrations of 6-64 μM and on breast tissue from five patients. Fiber-optical based spectroscopy was able to detect ICG fluorescence at low intensities; therefore, it is expected to increase the detection threshold of the conventional imaging systems when used intraoperatively. The probe allows spectral characterization of the fluorescence and navigation in the tissue as opposed to camera imaging which is limited to the view on the surface of the tissue.

  16. Electrostatic Interactions of Fluorescent Molecules with Dielectric Interfaces Studied by Total Internal Reflection Fluorescence Correlation Spectroscopy

    PubMed Central

    Blom, Hans; Hassler, Kai; Chmyrov, Andriy; Widengren, Jerker

    2010-01-01

    Electrostatic interactions between dielectric surfaces and different fluorophores used in ultrasensitive fluorescence microscopy are investigated using objective-based Total Internal Reflection Fluorescence Correlation Spectroscopy (TIR-FCS). The interfacial dynamics of cationic rhodamine 123 and rhodamine 6G, anionic/dianionic fluorescein, zwitterionic rhodamine 110 and neutral ATTO 488 are monitored at various ionic strengths at physiological pH. As analyzed by means of the amplitude and time-evolution of the autocorrelation function, the fluorescent molecules experience electrostatic attraction or repulsion at the glass surface depending on their charges. Influences of the electrostatic interactions are also monitored through the triplet-state population and triplet relaxation time, including the amount of detected fluorescence or the count-rate-per-molecule parameter. These TIR-FCS results provide an increased understanding of how fluorophores are influenced by the microenvironment of a glass surface, and show a promising approach for characterizing electrostatic interactions at interfaces. PMID:20386645

  17. Structural modifications of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Popescu, Maria-Cristina; Froidevaux, Julien; Navi, Parviz; Popescu, Carmen-Mihaela

    2013-02-01

    It is known that heat treatment of wood combined with a low percent of relative humidity causes transformations in the chemical composition of it. The modifications and/or degradation of wood components occur by hydrolysis, oxidation, and decarboxylation reactions. The aim of this study was to give better insights on wood chemical modifications during wood heat treatment under low temperature at about 140 °C and 10% percentage of relative humidity, by infrared, principal component analysis and two dimensional infrared correlation spectroscopy. For this purpose, hardwood samples of lime (Tilia cordata) were investigated and analysed. The infrared spectra of treated samples were compared with the reference ones, the most important differences being observed in the "fingerprint" region. Due to the complexity of this region, which have contributions from all the wood constituents the chemical changes during hydro-thermal treatment were examined in detail using principal component analysis and 2D IR correlation spectroscopy. By hydro-thermal treatment of wood results the formation of acetic acid, which catalyse the hydrolysis reactions of hemicelluloses and amorphous cellulose. The cleavage of the β-O-4 linkages and splitting of the aliphatic methoxyl chains from the aromatic lignin ring was also observed. For the first treatment interval, a higher extent of carbohydrates degradation was observed, then an increase of the extent of the lignin degradation also took place.

  18. Stark Spectroscopy of Rubrene. II. Stark Fluorescence Spectroscopy and Fluorescence Quenching Induced by an External Electric Field.

    PubMed

    Iimori, Toshifumi; Ito, Ryuichi; Ohta, Nobuhiro

    2016-07-21

    We report Stark fluorescence spectroscopy investigation of rubrene dispersed in a poly(methyl methacrylate) film. The features of the fluorescence spectrum are analogous to those in solutions. In the Stark fluorescence spectrum, the decrease of the fluorescence quantum yield in the presence of an external electric field is observed. This result shows that the yield of nonradiative decay processes is increased by the application of an external electric field. It is known that the fluorescence quantum yield for rubrene, which is nearly unity at room temperature, depends on temperature, and a major nonradiative decay process in photoexcited rubrene is ascribed to a thermally activated intersystem crossing (ISC). Equations that express the field-induced fluorescence quenching in terms of the molecular parameters are derived from the ensemble average of electric field effects on the activation energy of the reaction rate constant in random orientation systems. The molecular parameters are then extracted from the observed data. It is inferred that the field-induced increase in the yield of other intramolecular and intermolecular photophysical processes in addition to the ISC should be taken into account. PMID:27341859

  19. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 2: 2D NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Deshmukh, Ashish P.; Pacheco, Carlos; Hay, Michael B.; Myneni, Satish C. B.

    2007-07-01

    Carboxyl groups are abundant in natural organic molecules (NOM) and play a major role in their reactivity. The structural environments of carboxyl groups in IHSS soil and river humic samples were investigated using 2D NMR (heteronuclear and homonuclear correlation) spectroscopy. Based on the 1H- 13C heteronuclear multiple-bond correlation (HMBC) spectroscopy results, the carboxyl environments in NOM were categorized as Type I (unsubstituted and alkyl-substituted aliphatic/alicyclic), Type II (functionalized carbon substituted), Type IIIa, b (heteroatom and olefin substituted), and Type IVa, b (5-membered heterocyclic aromatic and 6-membered aromatic). The most intense signal in the HMBC spectra comes from the Type I carboxyl groups, including the 2JCH and 3JCH couplings of unsubstituted aliphatic and alicyclic acids, though this spectral region also includes the 3JCH couplings of Type II and III structures. Type II and III carboxyls have small but detectable 2JCH correlations in all NOM samples except for the Suwannee River humic acid. Signals from carboxyls bonded to 5-membered aromatic heterocyclic fragments (Type IVa) are observed in the soil HA and Suwannee River FA, while correlations to 6-membered aromatics (Type IVb) are only observed in Suwannee River HA. In general, aromatic carboxylic acids may be present at concentrations lower than previously imagined in these samples. Vibrational spectroscopy results for these NOM samples, described in an accompanying paper [Hay M. B. and Myneni S. C. B. (2007) Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochim. Cosmochim. Acta (in press)], suggest that Type II and Type III carboxylic acids with α substituents (e.g., -OH, -OR, or -CO 2H) constitute the majority of carboxyl structures in all humic substances examined. Furoic and salicylic acid structures (Type IV) are also feasible fragments, albeit as minor constituents. The

  20. Synchronous fluorescence spectroscopy for analysis of wine and wine distillates

    NASA Astrophysics Data System (ADS)

    Andreeva, Ya.; Borisova, E.; Genova, Ts.; Zhelyazkova, Al.; Avramov, L.

    2015-01-01

    Wine and brandies are multicomponent systems and conventional fluorescence techniques, relying on recording of single emission or excitation spectra, are often insufficient. In such cases synchronous fluorescence spectra can be used for revealing the potential of the fluorescence techniques. The technique is based on simultaneously scanning of the excitation and emission wavelength with constant difference (Δλ) maintained between them. In this study the measurements were made using FluoroLog3 spectrofluorimeter (HORIBA Jobin Yvon, France) and collected for excitation and emission in the wavelength region 220 - 700 nm using wavelength interval Δλ from 10 to 100 nm in 10 nm steps. This research includes the results obtained for brandy and red wine samples. Fluorescence analysis takes advantage in the presence of natural fluorophores in wines and brandies, such as gallic, vanillic, p-coumaric, syringic, ferulic acid, umbelliferone, scopoletin and etc. Applying of synchronous fluorescence spectroscopy for analysis of these types of alcohols allows us to estimate the quality of wines and also to detect adulteration of brandies like adding of a caramel to wine distillates for imitating the quality of the original product aged in oak casks.

  1. Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging

    PubMed Central

    Yankelevich, Diego R.; Ma, Dinglong; Liu, Jing; Sun, Yang; Sun, Yinghua; Bec, Julien; Elson, Daniel S.; Marcu, Laura

    2014-01-01

    The application of time-resolved fluorescence spectroscopy (TRFS) to in vivo tissue diagnosis requires a method for fast acquisition of fluorescence decay profiles in multiple spectral bands. This study focusses on development of a clinically compatible fiber-optic based multispectral TRFS (ms-TRFS) system together with validation of its accuracy and precision for fluorescence lifetime measurements. It also presents the expansion of this technique into an imaging spectroscopy method. A tandem array of dichroic beamsplitters and filters was used to record TRFS decay profiles at four distinct spectral bands where biological tissue typically presents fluorescence emission maxima, namely, 390, 452, 542, and 629 nm. Each emission channel was temporally separated by using transmission delays through 200 μm diameter multimode optical fibers of 1, 10, 19, and 28 m lengths. A Laguerre-expansion deconvolution algorithm was used to compensate for modal dispersion inherent to large diameter optical fibers and the finite bandwidth of detectors and digitizers. The system was found to be highly efficient and fast requiring a few nano-Joule of laser pulse energy and <1 ms per point measurement, respectively, for the detection of tissue autofluorescent components. Organic and biological chromophores with lifetimes that spanned a 0.8–7 ns range were used for system validation, and the measured lifetimes from the organic fluorophores deviated by less than 10% from values reported in the literature. Multi-spectral lifetime images of organic dye solutions contained in glass capillary tubes were recorded by raster scanning the single fiber probe in a 2D plane to validate the system as an imaging tool. The lifetime measurement variability was measured indicating that the system provides reproducible results with a standard deviation smaller than 50 ps. The ms-TRFS is a compact apparatus that makes possible the fast, accurate, and precise multispectral time-resolved fluorescence

  2. Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging.

    PubMed

    Yankelevich, Diego R; Ma, Dinglong; Liu, Jing; Sun, Yang; Sun, Yinghua; Bec, Julien; Elson, Daniel S; Marcu, Laura

    2014-03-01

    The application of time-resolved fluorescence spectroscopy (TRFS) to in vivo tissue diagnosis requires a method for fast acquisition of fluorescence decay profiles in multiple spectral bands. This study focusses on development of a clinically compatible fiber-optic based multispectral TRFS (ms-TRFS) system together with validation of its accuracy and precision for fluorescence lifetime measurements. It also presents the expansion of this technique into an imaging spectroscopy method. A tandem array of dichroic beamsplitters and filters was used to record TRFS decay profiles at four distinct spectral bands where biological tissue typically presents fluorescence emission maxima, namely, 390, 452, 542, and 629 nm. Each emission channel was temporally separated by using transmission delays through 200 μm diameter multimode optical fibers of 1, 10, 19, and 28 m lengths. A Laguerre-expansion deconvolution algorithm was used to compensate for modal dispersion inherent to large diameter optical fibers and the finite bandwidth of detectors and digitizers. The system was found to be highly efficient and fast requiring a few nano-Joule of laser pulse energy and <1 ms per point measurement, respectively, for the detection of tissue autofluorescent components. Organic and biological chromophores with lifetimes that spanned a 0.8-7 ns range were used for system validation, and the measured lifetimes from the organic fluorophores deviated by less than 10% from values reported in the literature. Multi-spectral lifetime images of organic dye solutions contained in glass capillary tubes were recorded by raster scanning the single fiber probe in a 2D plane to validate the system as an imaging tool. The lifetime measurement variability was measured indicating that the system provides reproducible results with a standard deviation smaller than 50 ps. The ms-TRFS is a compact apparatus that makes possible the fast, accurate, and precise multispectral time-resolved fluorescence lifetime

  3. Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging

    SciTech Connect

    Yankelevich, Diego R.; Ma, Dinglong; Liu, Jing; Sun, Yang; Sun, Yinghua; Bec, Julien; Marcu, Laura; Elson, Daniel S.

    2014-03-15

    The application of time-resolved fluorescence spectroscopy (TRFS) to in vivo tissue diagnosis requires a method for fast acquisition of fluorescence decay profiles in multiple spectral bands. This study focusses on development of a clinically compatible fiber-optic based multispectral TRFS (ms-TRFS) system together with validation of its accuracy and precision for fluorescence lifetime measurements. It also presents the expansion of this technique into an imaging spectroscopy method. A tandem array of dichroic beamsplitters and filters was used to record TRFS decay profiles at four distinct spectral bands where biological tissue typically presents fluorescence emission maxima, namely, 390, 452, 542, and 629 nm. Each emission channel was temporally separated by using transmission delays through 200 μm diameter multimode optical fibers of 1, 10, 19, and 28 m lengths. A Laguerre-expansion deconvolution algorithm was used to compensate for modal dispersion inherent to large diameter optical fibers and the finite bandwidth of detectors and digitizers. The system was found to be highly efficient and fast requiring a few nano-Joule of laser pulse energy and <1 ms per point measurement, respectively, for the detection of tissue autofluorescent components. Organic and biological chromophores with lifetimes that spanned a 0.8–7 ns range were used for system validation, and the measured lifetimes from the organic fluorophores deviated by less than 10% from values reported in the literature. Multi-spectral lifetime images of organic dye solutions contained in glass capillary tubes were recorded by raster scanning the single fiber probe in a 2D plane to validate the system as an imaging tool. The lifetime measurement variability was measured indicating that the system provides reproducible results with a standard deviation smaller than 50 ps. The ms-TRFS is a compact apparatus that makes possible the fast, accurate, and precise multispectral time-resolved fluorescence

  4. Fluorescence Spectroscopy of Gas-phase Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Thomas, J. D.; Witt, A. N.

    2006-01-01

    The purpose of this investigation was to produce fluorescence spectra of polycyclic aromatic hydrocarbon (PAH) molecules in the gas-phase for comparison with blue luminescence (BL) emission observed in astrophysical sources Vijh et al. (2004, 2005a,b). The BL occurs roughly from 350 to 450 nm, with a sharp peak near 380 nm. PAHs with three to four rings, e.g. anthracene and pyrene, were found to produce luminescence in the appropriate spectral region, based on existing studies. Relatively few studies of the gas-phase fluorescence of PAHs exist; those that do exist have dealt primarily with the same samples commonly available for purchase such as pyrene and anthracene. In an attempt to understand the chemistry of the nebular environment we also obtained several nitrogen substituted PAHs from our colleagues at NASA Ames. In order to simulate the astrophysical environment we also took spectra by heating the PAHs in a flame. The flame environment counteracts the formation of eximers and permits the spectroscopy of free-flying neutral molecules. Experiments with coal tar demonstrate that fluorescence spectroscopy reveals primarily the presence of the smallest molecules, which are most abundant and which possess the highest fluorescence efficiencies. One gas-phase PAH that seems to fit the BL spectrum most closely is phenanthridine. In view of the results from the spectroscopy of coal tar, a compound containing a mixture of PAHs ranging from small to very large PAH molecules, we can not preclude the presence of larger PAHs in interstellar sources exhibiting BL.

  5. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy.

    PubMed

    Enriquez, Miriam M; Akhtar, Parveen; Zhang, Cheng; Garab, Győző; Lambrev, Petar H; Tan, Howe-Siang

    2015-06-01

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Qy band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240-270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet-singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.

  6. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy

    SciTech Connect

    Enriquez, Miriam M.; Zhang, Cheng; Tan, Howe-Siang; Akhtar, Parveen; Garab, Győző; Lambrev, Petar H.

    2015-06-07

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Q{sub y} band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240–270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet–singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.

  7. Two-dimensional fluorescence spectroscopy of laser-produced plasmas.

    PubMed

    Harilal, S S; LaHaye, N L; Phillips, M C

    2016-08-01

    We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of a solid aluminum target at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous wave (cw) Ti:sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the cw laser at one transition. Time-delayed, gated detection of the emission spectrum is used to isolate resonantly excited fluorescence emission from thermally excited emission from the plasma. In addition, the tunable cw laser measures the absorption spectrum of the Al transition with ultrahigh resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing cw laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods. PMID:27472615

  8. Quantitative confocal fluorescence microscopy of dynamic processes by multifocal fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Krmpot, Aleksandar J.; Nikolić, Stanko N.; Vitali, Marco; Papadopoulos, Dimitrios K.; Oasa, Sho; Thyberg, Per; Tisa, Simone; Kinjo, Masataka; Nilsson, Lennart; Gehring, Walter J.; Terenius, Lars; Rigler, Rudolf; Vukojevic, Vladana

    2015-07-01

    Quantitative confocal fluorescence microscopy imaging without scanning is developed for the study of fast dynamical processes. The method relies on the use of massively parallel Fluorescence Correlation Spectroscopy (mpFCS). Simultaneous excitation of fluorescent molecules across the specimen is achieved by passing a single laser beam through a Diffractive Optical Element (DOE) to generate a quadratic illumination matrix of 32×32 light sources. Fluorescence from 1024 illuminated spots is detected in a confocal arrangement by a matching matrix detector consisting of the same number of single-photon avalanche photodiodes (SPADs). Software was developed for data acquisition and fast autoand cross-correlation analysis by parallel signal processing using a Graphic Processing Unit (GPU). Instrumental performance was assessed using a conventional single-beam FCS instrument as a reference. Versatility of the approach for application in biomedical research was evaluated using ex vivo salivary glands from Drosophila third instar larvae expressing a fluorescently-tagged transcription factor Sex Combs Reduced (Scr) and live PC12 cells stably expressing the fluorescently tagged mu-opioid receptor (MOPeGFP). We show that quantitative mapping of local concentration and mobility of transcription factor molecules across the specimen can be achieved using this approach, which paves the way for future quantitative characterization of dynamical reaction-diffusion landscapes across live cells/tissue with a submillisecond temporal resolution (presently 21 μs/frame) and single-molecule sensitivity.

  9. Microenviromental investigation of polymer-bound fluorescent chelator by fluorescence microscopy and optical spectroscopy.

    PubMed

    Wang, Y; Astilean, S; Haran, G; Warshawsky, A

    2001-09-01

    8-Hydroxyquinoline-5-sulfonic acid (HQS) was immobilized onto a strong-base anion-exchange resin AG MP-1 for the purpose of microenvironment investigation, resin characterization, and possibly sensing cadmium. The maximum loading of HQS was found to be 0.9340 mmol/g of AG MP-1. A plateau for Cd complex capacity was already obtained for 0.5500 mmol of HQS/g of AG MP-1. A minicolumn experiment showed an influence of influent Cd concentration on column capacity. IR and Raman spectra proved an electrostatic mode for HQS immobilization and Cd complex formation. UV spectroscopy showed significant differences between solution and solid state for both HQS and Cd complex. A fluorescence microscopy technique was used for fluorescence spectral measurement, microdistribution imaging, and study of photobleaching of HQS and the HQS-Cd complex in the resin phase. The fluorescence of immobilized HQS was found to be red-shifted with regard to the solid-state HQS. The microdistribution of uncomplexed and Cd-complexed AG MP-1-HQS was directly visualized by fluorescence imaging, showing a nonuniform distribution. Cadmium complexation modifies the fluorescence emission of uncomplexed AG MP-1-HQS, exhibiting an increased and red-shifted emission. Significant photobleaching of the fluorescence from the Cd complex was recorded, indicating the occurrence of photochemical reactions within the microenvironment of the resin phase.

  10. Highly-accelerated quantitative 2D and 3D localized spectroscopy with linear algebraic modeling (SLAM) and sensitivity encoding

    PubMed Central

    Zhang, Yi; Gabr, Refaat E.; Zhou, Jinyuan; Weiss, Robert G.; Bottomley, Paul A.

    2013-01-01

    Noninvasive magnetic resonance spectroscopy (MRS) with chemical shift imaging (CSI) provides valuable metabolic information for research and clinical studies, but is often limited by long scan times. Recently, spectroscopy with linear algebraic modeling (SLAM) was shown to provide compartment-averaged spectra resolved in one spatial dimension with many-fold reductions in scan-time. This was achieved using a small subset of the CSI phase-encoding steps from central image k-space that maximized the signal-to-noise ratio. Here, SLAM is extended to two- and three-dimensions (2D, 3D). In addition, SLAM is combined with sensitivity-encoded (SENSE) parallel imaging techniques, enabling the replacement of even more CSI phase-encoding steps to further accelerate scan-speed. A modified SLAM reconstruction algorithm is introduced that significantly reduces the effects of signal nonuniformity within compartments. Finally, main-field inhomogeneity corrections are provided, analogous to CSI. These methods are all tested on brain proton MRS data from a total of 24 patients with brain tumors, and in a human cardiac phosphorus 3D SLAM study at 3T. Acceleration factors of up to 120-fold versus CSI are demonstrated, including speed-up factors of 5-fold relative to already-accelerated SENSE CSI. Brain metabolites are quantified in SLAM and SENSE SLAM spectra and found to be indistinguishable from CSI measures from the same compartments. The modified reconstruction algorithm demonstrated immunity to maladjusted segmentation and errors from signal heterogeneity in brain data. In conclusion, SLAM demonstrates the potential to supplant CSI in studies requiring compartment-average spectra or large volume coverage, by dramatically reducing scan-time while providing essentially the same quantitative results. PMID:24188921

  11. Highly-accelerated quantitative 2D and 3D localized spectroscopy with linear algebraic modeling (SLAM) and sensitivity encoding

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Gabr, Refaat E.; Zhou, Jinyuan; Weiss, Robert G.; Bottomley, Paul A.

    2013-12-01

    Noninvasive magnetic resonance spectroscopy (MRS) with chemical shift imaging (CSI) provides valuable metabolic information for research and clinical studies, but is often limited by long scan times. Recently, spectroscopy with linear algebraic modeling (SLAM) was shown to provide compartment-averaged spectra resolved in one spatial dimension with many-fold reductions in scan-time. This was achieved using a small subset of the CSI phase-encoding steps from central image k-space that maximized the signal-to-noise ratio. Here, SLAM is extended to two- and three-dimensions (2D, 3D). In addition, SLAM is combined with sensitivity-encoded (SENSE) parallel imaging techniques, enabling the replacement of even more CSI phase-encoding steps to further accelerate scan-speed. A modified SLAM reconstruction algorithm is introduced that significantly reduces the effects of signal nonuniformity within compartments. Finally, main-field inhomogeneity corrections are provided, analogous to CSI. These methods are all tested on brain proton MRS data from a total of 24 patients with brain tumors, and in a human cardiac phosphorus 3D SLAM study at 3T. Acceleration factors of up to 120-fold versus CSI are demonstrated, including speed-up factors of 5-fold relative to already-accelerated SENSE CSI. Brain metabolites are quantified in SLAM and SENSE SLAM spectra and found to be indistinguishable from CSI measures from the same compartments. The modified reconstruction algorithm demonstrated immunity to maladjusted segmentation and errors from signal heterogeneity in brain data. In conclusion, SLAM demonstrates the potential to supplant CSI in studies requiring compartment-average spectra or large volume coverage, by dramatically reducing scan-time while providing essentially the same quantitative results.

  12. Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy.

    PubMed

    Widengren, Jerker; Chmyrov, Andriy; Eggeling, Christian; Löfdahl, Per-Ake; Seidel, Claus A M

    2007-01-25

    Given the particular importance of dye photostability for single-molecule and fluorescence fluctuation spectroscopy investigations, refined strategies were explored for how to chemically retard dye photobleaching. These strategies will be useful for fluorescence correlation spectroscopy (FCS), fluorescence-based confocal single-molecule detection (SMD) and related techniques. In particular, the effects on the addition of two main categories of antifading compounds, antioxidants (n-propyl gallate, nPG, ascorbic acid, AA) and triplet state quenchers (mercaptoethylamine, MEA, cyclo-octatetraene, COT), were investigated, and the relevant rate parameters involved were determined for the dye Rhodamine 6G. Addition of each of the compound categories resulted in significant improvements in the fluorescence brightness of the monitored fluorescent molecules in FCS measurements. For antioxidants, we identify the balance between reduction of photoionized fluorophores on the one hand and that of intact fluorophores on the other as an important guideline for what concentrations to be added for optimal fluorescence generation in FCS and SMD experiments. For nPG/AA, this optimal concentration was found to be in the lower micromolar range, which is considerably less than what has previously been suggested. Also, for MEA, which is a compound known as a triplet state quencher, it is eventually its antioxidative properties and the balance between reduction of fluorophore cation radicals and that of intact fluorophores that defines the optimal added concentration. Interestingly, in this optimal concentration range the triplet state quenching is still far from sufficient to fully minimize the triplet populations. We identify photoionization as the main mechanism of photobleaching within typical transit times of fluorescent molecules through the detection volume in a confocal FCS or SMD instrument (<1-20 ms), and demonstrate its generation via both one- and multistep excitation processes

  13. Frequency-domain fluorescence spectroscopy of human stratum corneum

    NASA Astrophysics Data System (ADS)

    Garrison, Michael D.; Potts, Russell O.; Abraham, William

    1994-08-01

    The intercellular lipid lamellae of mammalian stratum corneum (SC) constitute the major barrier to percutaneous penetration of drugs and other solute molecules. In order to understand the barrier property of skin on a molecular level, we have initiated fluorescence spectroscopic investigation of the membranous structures of the SC and related model systems using the lipophilic probe 1,6-diphenyl-1,3,5-hexatriene (DPH). Incorporated into distearoylphosphatidylcholine and stratum corneum bilayers, DPH fluorescence reflected the change in lipid structure under thermal and chemical perturbations. Using a multiharmonic frequency approach, we measured the fluorescence lifetime and rotational correlation times for DPH in these systems. Our data indicated that a biexponential decay ((tau) 1 approximately equals 9 ns, (tau) 2 approximately equals 1.5 ns) described the intensity decay, while a hindered rotor model ((phi) approximately equals 5 ns, r(infinity ) approximately equals 0.3) described the anisotropy decay. These parameters reported the known thermotropic phase transition in porcine stratum corneum, and the influence of the penetration enhancer oleic acid in human epidermis. Thus, we have shown frequency- domain fluorescence spectroscopy to be a facile and powerful tool for monitoring the permeability of a solid tissue such as the SC.

  14. Brain cancer probed by native fluorescence and stokes shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; He, Yong; Pu, Yang; Li, Qingbo; Wang, Wei; Alfano, Robert R.

    2012-12-01

    Optical biopsy spectroscopy was applied to diagnosis human brain cancer in vitro. The spectra of native fluorescence, Stokes shift and excitation spectra were obtained from malignant meningioma, benign, normal meningeal tissues and acoustic neuroma benign tissues. The wide excitation wavelength ranges were used to establish the criterion for distinguishing brain diseases. The alteration of fluorescence spectra between normal and abnormal brain tissues were identified by the characteristic fluorophores under the excitation with UV to visible wavelength range. It was found that the ratios of the peak intensities and peak position in both spectra of fluorescence and Stokes shift may be used to diagnose human brain meninges diseases. The preliminary analysis of fluorescence spectral data from cancer and normal meningeal tissues by basic biochemical component analysis model (BBCA) and Bayes classification model based on statistical methods revealed the changes of components, and classified the difference between cancer and normal human brain meningeal tissues in a predictions accuracy rate is 0.93 in comparison with histopathology and immunohistochemistry reports (gold standard).

  15. An analog filter approach to frequency domain fluorescence spectroscopy

    DOE PAGES

    Trainham, Clifford P.; O'Neill, Mary D.; McKenna, Ian J.

    2015-10-01

    The rate equations found in frequency domain fluorescence spectroscopy are the same as those found in electronics under analog filter theory. Laplace transform methods are a natural way to solve the equations, and the methods can provide solutions for arbitrary excitation functions. The fluorescence terms can be modeled as circuit components and cascaded with drive and detection electronics to produce a global transfer function. Electronics design tools such as Spicea can be used to model fluorescence problems. In applications, such as remote sensing, where detection electronics are operated at high gain and limited bandwidth, a global modeling of the entiremore » system is important, since the filter terms of the drive and detection electronics affect the measured response of the fluorescence signals. Furthermore, the techniques described here can be used to separate signals from fast and slow fluorophores emitting into the same spectral band, and data collection can be greatly accelerated by means of a frequency comb driver waveform and appropriate signal processing of the response.« less

  16. Fluorescence spectroscopy for endogenous porphyrins in human facial skin

    NASA Astrophysics Data System (ADS)

    Seo, I.; Tseng, S. H.; Cula, G. O.; Bargo, P. R.; Kollias, N.

    2009-02-01

    The activity of certain bacteria in skin is known to correlate to the presence of porphyrins. In particular the presence of coproporphyrin produced by P.acnes inside plugged pores has been correlated to acne vulgaris. Another porphyrin encountered in skin is protoporphyrin IX, which is produced by the body in the pathway for production of heme. In the present work, a fluorescence spectroscopy system was developed to measure the characteristic spectrum and quantify the two types of porphyrins commonly present in human facial skin. The system is comprised of a Xe lamp both for fluorescence excitation and broadband light source for diffuse reflectance measurements. A computer-controlled filter wheel enables acquisition of sequential spectra, first excited by blue light at 405 nm then followed by the broadband light source, at the same location. The diffuse reflectance spectrum was used to correct the fluorescence spectrum due to the presence of skin chromophores, such as blood and melanin. The resulting fluorescence spectra were employed for the quantification of porphyrin concentration in a population of healthy subjects. The results show great variability on the concentration of these porphyrins and further studies are being conducted to correlate them with skin conditions such as inflammation and acne vulgaris.

  17. An Analog Filter Approach to Frequency Domain Fluorescence Spectroscopy.

    PubMed

    Trainham, R; O'Neill, M; McKenna, I J

    2015-11-01

    The rate equations found in frequency domain fluorescence spectroscopy are the same as those found in electronics under analog filter theory. Laplace transform methods are a natural way to solve the equations, and the methods can provide solutions for arbitrary excitation functions. The fluorescence terms can be modelled as circuit components and cascaded with drive and detection electronics to produce a global transfer function. Electronics design tools such as SPICE can be used to model fluorescence problems. In applications, such as remote sensing, where detection electronics are operated at high gain and limited bandwidth, a global modelling of the entire system is important, since the filter terms of the drive and detection electronics affect the measured response of the fluorescence signals. The techniques described here can be used to separate signals from fast and slow fluorophores emitting into the same spectral band, and data collection can be greatly accelerated by means of a frequency comb driver waveform and appropriate signal processing of the response. The simplification of the analysis mathematics, and the ability to model the entire detection chain, make it possible to develop more compact instruments for remote sensing applications. PMID:26429345

  18. An analog filter approach to frequency domain fluorescence spectroscopy

    SciTech Connect

    Trainham, Clifford P.; O'Neill, Mary D.; McKenna, Ian J.

    2015-10-01

    The rate equations found in frequency domain fluorescence spectroscopy are the same as those found in electronics under analog filter theory. Laplace transform methods are a natural way to solve the equations, and the methods can provide solutions for arbitrary excitation functions. The fluorescence terms can be modeled as circuit components and cascaded with drive and detection electronics to produce a global transfer function. Electronics design tools such as Spicea can be used to model fluorescence problems. In applications, such as remote sensing, where detection electronics are operated at high gain and limited bandwidth, a global modeling of the entire system is important, since the filter terms of the drive and detection electronics affect the measured response of the fluorescence signals. Furthermore, the techniques described here can be used to separate signals from fast and slow fluorophores emitting into the same spectral band, and data collection can be greatly accelerated by means of a frequency comb driver waveform and appropriate signal processing of the response.

  19. Hydrogen bonding and Raman, IR, and 2D-IR spectroscopy of dilute HOD in liquid D2O.

    PubMed

    Auer, B; Kumar, R; Schmidt, J R; Skinner, J L

    2007-09-01

    We present improvements on our previous approaches for calculating vibrational spectroscopy observables for the OH stretch region of dilute HOD in liquid D2O. These revised approaches are implemented to calculate IR and isotropic Raman spectra, using the SPC/E simulation model, and the results are in good agreement with experiment. We also calculate observables associated with three-pulse IR echoes: the peak shift and 2D-IR spectrum. The agreement with experiment for the former is improved over our previous calculations, but discrepancies between theory and experiment still exist. Using our proposed definition for hydrogen bonding in liquid water, we decompose the distribution of frequencies in the OH stretch region in terms of subensembles of HOD molecules with different local hydrogen-bonding environments. Such a decomposition allows us to make the connection with experiments and calculations on water clusters and more generally to understand the extent of the relationship between transition frequency and local structure in the liquid.

  20. The study of blue LED to induce fluorescence spectroscopy and fluorescence imaging for oral carcinoma detection

    NASA Astrophysics Data System (ADS)

    Zheng, Longjiang; Hu, Yuanting

    2009-07-01

    Fluorescence spectroscopy and fluorescence imaging diagnosis of malignant lesions provides us with a new method to diagnose diseases in precancerous stage. Early diagnosis of disease has significant importance in cancer treatment, because most cancers can be cured well in precancerous, especially when the diffusion of cancer is limited in a restricted region. In this study, Golden hamster models were applied to 5% 9, 10 dimethyl-1, 2-benzanthracene (DMBA) to induce hamster buccal cheek pouch carcinoma three times a week. Rose Bengal, which has been used in clinican for years and avoids visible side-effect to human was chosen as photosensitizer. 405 nm blue LED was used to induce the fluorescence of photosensitizer. After topical application of photosensitizer, characteristic red emission fluorescence peak was observed around 600nm. Similar, normal oral cavity has special luminescence around 480nm. Fluorescence spectroscopy technology is based on analysing emission peaks of photosensitizer in the areas of oral carcinoma, moreover, red-to-green (IR/IG) intensity ratio is also applied as a diagnostic algorithm. A CCD which is connected with a computer is used to take pictures at carcinoma areas through different filters. Fluorescence images from normal hamster buccal cheek pouch are compared with those from carcinogen-induced models of carcinoma, and morphological differences between normal and lesion tissue can be distinguished. The pictures are analyzed by Matlab and shown on the screen of computer. This paper demonstrates that Rose Bengal could be used as photosensitizer to detect oral carcinoma, and blue LED as excitation source could not only have a good effect to diagnose oral carcinoma, but also decrease cost greatly.

  1. How to turn your pump–probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping

    PubMed Central

    Shim, Sang-Hee; Zanni, Martin T.

    2010-01-01

    We have recently developed a new and simple way of collecting 2D infrared and visible spectra that utilizes a pulse shaper and a partly collinear beam geometry. 2D IR and Vis spectroscopies are powerful tools for studying molecular structures and their dynamics. They can be used to correlate vibrational or electronic eigenstates, measure energy transfer rates, and quantify the dynamics of lineshapes, for instance, all with femtosecond time-resolution. As a result, they are finding use in systems that exhibit fast dynamics, such as sub-millisecond chemical and biological dynamics, and in hard-to-study environments, such as in membranes. While powerful, these techniques have been difficult to implement because they require a series of femtosecond pulses to be spatially and temporally overlapped with precise time-resolution and interferometric phase stability. However, many of the difficulties associated with implementing 2D spectroscopies are eliminated by using a pulse shaper and a simple beam geometry, which substantially lowers the technical barriers required for researchers to enter this exciting field while simultaneously providing many new capabilities. The aim of this paper is to provide an overview of the methods for collecting 2D spectra so that an outsider considering using 2D spectroscopy in their own research can judge which approach would be most suitable for their research aims. This paper focuses primarily on 2D IR spectroscopy, but also includes our recent work on adapting this technology to collecting 2D Vis spectra. We review work that has already been published as well as cover several topics that we have not reported previously, including phase cycling methods to remove background signals, eliminate unwanted scatter, and shift data collection into the rotating frame. PMID:19290321

  2. Fluorescence-excitation and Emission Spectroscopy on Single FMO Complexes.

    PubMed

    Löhner, Alexander; Ashraf, Khuram; Cogdell, Richard J; Köhler, Jürgen

    2016-08-22

    In green-sulfur bacteria sunlight is absorbed by antenna structures termed chlorosomes, and transferred to the RC via the Fenna-Matthews-Olson (FMO) complex. FMO consists of three monomers arranged in C3 symmetry where each monomer accommodates eight Bacteriochlorophyll a (BChl a) molecules. It was the first pigment-protein complex for which the structure has been determined with high resolution and since then this complex has been the subject of numerous studies both experimentally and theoretically. Here we report about fluorescence-excitation spectroscopy as well as emission spectroscopy from individual FMO complexes at low temperatures. The individual FMO complexes are subjected to very fast spectral fluctuations smearing out any possible different information from the ensemble data that were recorded under the same experimental conditions. In other words, on the time scales that are experimentally accessible by single-molecule techniques, the FMO complex exhibits ergodic behaviour.

  3. Detectors for single-molecule fluorescence imaging and spectroscopy

    PubMed Central

    MICHALET, X.; SIEGMUND, O.H.W.; VALLERGA, J.V.; JELINSKY, P.; MILLAUD, J.E.; WEISS, S.

    2010-01-01

    Single-molecule observation, characterization and manipulation techniques have recently come to the forefront of several research domains spanning chemistry, biology and physics. Due to the exquisite sensitivity, specificity, and unmasking of ensemble averaging, single-molecule fluorescence imaging and spectroscopy have become, in a short period of time, important tools in cell biology, biochemistry and biophysics. These methods led to new ways of thinking about biological processes such as viral infection, receptor diffusion and oligomerization, cellular signaling, protein-protein or protein-nucleic acid interactions, and molecular machines. Such achievements require a combination of several factors to be met, among which detector sensitivity and bandwidth are crucial. We examine here the needed performance of photodetectors used in these types of experiments, the current state of the art for different categories of detectors, and actual and future developments of single-photon counting detectors for single-molecule imaging and spectroscopy. PMID:20157633

  4. Fluorescence-excitation and Emission Spectroscopy on Single FMO Complexes

    PubMed Central

    Löhner, Alexander; Ashraf , Khuram; Cogdell, Richard J.; Köhler, Jürgen

    2016-01-01

    In green-sulfur bacteria sunlight is absorbed by antenna structures termed chlorosomes, and transferred to the RC via the Fenna-Matthews-Olson (FMO) complex. FMO consists of three monomers arranged in C3 symmetry where each monomer accommodates eight Bacteriochlorophyll a (BChl a) molecules. It was the first pigment-protein complex for which the structure has been determined with high resolution and since then this complex has been the subject of numerous studies both experimentally and theoretically. Here we report about fluorescence-excitation spectroscopy as well as emission spectroscopy from individual FMO complexes at low temperatures. The individual FMO complexes are subjected to very fast spectral fluctuations smearing out any possible different information from the ensemble data that were recorded under the same experimental conditions. In other words, on the time scales that are experimentally accessible by single-molecule techniques, the FMO complex exhibits ergodic behaviour. PMID:27545197

  5. Identification of active fluorescence stained bacteria by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Krause, Mario; Beyer, Beatrice; Pietsch, Christian; Radt, Benno; Harz, Michaela; Rösch, Petra; Popp, Jürgen

    2008-04-01

    Microorganisms can be found everywhere e.g. in food both as useful ingredients or harmful contaminations causing food spoilage. Therefore, a fast and easy to handle analysis method is needed to detect bacteria in different kinds of samples like meat, juice or air to decide if the sample is contaminated by harmful microorganisms. Conventional identification methods in microbiology require always cultivation and therefore are time consuming. In this contribution we present an analysis approach to identify fluorescence stained bacteria on strain level by means of Raman spectroscopy. The stained bacteria are highlighted and can be localized easier against a complex sample environment e.g. in food. The use of Raman spectroscopy in combination with chemometrical methods allows the identification of single bacteria within minutes.

  6. Identification of Atherosclerotic Plaques in Carotid Artery by Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rocha, Rick; Villaverde, Antonio Balbin; Silveira, Landulfo; Costa, Maricília Silva; Alves, Leandro Procópio; Pasqualucci, Carlos Augusto; Brugnera, Aldo

    2008-04-01

    The aim of this work was to identify the presence of atherosclerotic plaques in carotid artery using the Fluorescence Spectroscopy. The most important pathogeny in the cardiovascular disorders is the atherosclerosis, which may affect even younger individuals. With approximately 1.2 million heart attacks and 750,000 strokes afflicting an aging American population each year, cardiovascular disease remains the number one cause of death. Carotid artery samples were obtained from the Autopsy Service at the University of São Paulo (São Paulo, SP, Brazil) taken from cadavers. After a histopathological analysis the 60 carotid artery samples were divided into two groups: normal (26) and atherosclerotic plaques (34). Samples were irradiated with the wavelength of 488 nm from an Argon laser. A 600 μm core optical fiber, coupled to the Argon laser, was used for excitation of the sample, whereas another 600 optical fiber, coupled to the spectrograph entrance slit, was used for collecting the fluorescence from the sample. Measurements were taken at different points on each sample and then averaged. Fluorescence spectra showed a single broad line centered at 549 nm. The fluorescence intensity for each sample was calculated by subtracting the intensity at the peak (550 nm) and at the bottom (510 nm) and then data were statistically analyzed, looking for differences between both groups of samples. ANOVA statistical test showed a significant difference (p<0,05) between both types of tissues, with regard to the fluorescence peak intensities. Our results indicate that this technique could be used to detect the presence of the atherosclerotic in carotid tissue.

  7. Classification of plum spirit drinks by synchronous fluorescence spectroscopy.

    PubMed

    Sádecká, J; Jakubíková, M; Májek, P; Kleinová, A

    2016-04-01

    Synchronous fluorescence spectroscopy was used in combination with principal component analysis (PCA) and linear discriminant analysis (LDA) for the differentiation of plum spirits according to their geographical origin. A total of 14 Czech, 12 Hungarian and 18 Slovak plum spirit samples were used. The samples were divided in two categories: colorless (22 samples) and colored (22 samples). Synchronous fluorescence spectra (SFS) obtained at a wavelength difference of 60 nm provided the best results. Considering the PCA-LDA applied to the SFS of all samples, Czech, Hungarian and Slovak colorless samples were properly classified in both the calibration and prediction sets. 100% of correct classification was also obtained for Czech and Hungarian colored samples. However, one group of Slovak colored samples was classified as belonging to the Hungarian group in the calibration set. Thus, the total correct classifications obtained were 94% and 100% for the calibration and prediction steps, respectively. The results were compared with those obtained using near-infrared (NIR) spectroscopy. Applying PCA-LDA to NIR spectra (5500-6000 cm(-1)), the total correct classifications were 91% and 92% for the calibration and prediction steps, respectively, which were slightly lower than those obtained using SFS.

  8. Moving-window 2D correlation spectroscopy in studies of fluphenazine-DPPC dehydrated film as a function of temperature

    NASA Astrophysics Data System (ADS)

    Szwed, Joanna; Cieślik-Boczula, Katarzyna; Czarnik-Matusewicz, Bogusława; Jaszczyszyn, Agata; Gąsiorowski, Kazimierz; Świątek, Piotr; Malinka, Wiesław

    2010-06-01

    The effect of incorporating fluphenazine (FPh) into the dipalmitoylphosphatidylcholine (DPPC) multibilayers was studied by means of two-dimensional correlation spectroscopy (2DCOS) applied to attenuated total reflection (ATR) infrared spectra. DPPC is used as a model membrane that mimics the organization of lipids in biological membranes and their interaction with FPh. ATR-IR spectra for both DPPC dry film alone and the film doped with FPh were recorded as a function of temperature to provide information about the interaction between FPh molecules and DPPC lipid. The chain-melting phase-transition temperature changes are strictly correlated with the conformational order of the lipid hydrocarbon chains. To gain deeper insight into the accompanying spectral changes, we employed moving-window 2D correlation spectroscopy. Subdividing all the measurements from 10 to 90 °C into 20° subsets enables a detailed identification of spectral features induced by embedding FPh into DPPC multilayers. Moving-window analysis of the power spectra for the ν asym,symCH 2, δ sCH 2, and δ rCH 2 vibrations provides evidence that FPh is embedded in the region between the bilayers, penetrating their hydrophilic part, which destabilizes the interchain interaction. Above 60 °C the FPh-DPPC system reaches the liquid crystalline phase with the well-established location of FPh. A further temperature increase to 90 °C has little effect on the intrachain conformational order and the packing character of the FPh-DPPC system in the liquid crystalline phase. In addition, FPh hinders the formation of large domains. Comparison of the moving-window analysis done by using slice spectra for DPPC and FPh-doped DPPC dry film for ν asym,symCH 2, νC dbnd O, and νPO2- shows that the interaction between the DPPC and FPh molecules is accompanied by very distinct spectral changes located in a both lower and narrower temperature range than those observed in pure DPPC film.

  9. Fluorescence Spectroscopy and Chemometric Modeling for Bioprocess Monitoring

    PubMed Central

    Faassen, Saskia M.; Hitzmann, Bernd

    2015-01-01

    On-line sensors for the detection of crucial process parameters are desirable for the monitoring, control and automation of processes in the biotechnology, food and pharma industry. Fluorescence spectroscopy as a highly developed and non-invasive technique that enables the on-line measurements of substrate and product concentrations or the identification of characteristic process states. During a cultivation process significant changes occur in the fluorescence spectra. By means of chemometric modeling, prediction models can be calculated and applied for process supervision and control to provide increased quality and the productivity of bioprocesses. A range of applications for different microorganisms and analytes has been proposed during the last years. This contribution provides an overview of different analysis methods for the measured fluorescence spectra and the model-building chemometric methods used for various microbial cultivations. Most of these processes are observed using the BioView® Sensor, thanks to its robustness and insensitivity to adverse process conditions. Beyond that, the PLS-method is the most frequently used chemometric method for the calculation of process models and prediction of process variables. PMID:25942644

  10. Fluorescence spectroscopy and chemometric modeling for bioprocess monitoring.

    PubMed

    Faassen, Saskia M; Hitzmann, Bernd

    2015-01-01

    On-line sensors for the detection of crucial process parameters are desirable for the monitoring, control and automation of processes in the biotechnology, food and pharma industry. Fluorescence spectroscopy as a highly developed and non-invasive technique that enables the on-line measurements of substrate and product concentrations or the identification of characteristic process states. During a cultivation process significant changes occur in the fluorescence spectra. By means of chemometric modeling, prediction models can be calculated and applied for process supervision and control to provide increased quality and the productivity of bioprocesses. A range of applications for different microorganisms and analytes has been proposed during the last years. This contribution provides an overview of different analysis methods for the measured fluorescence spectra and the model-building chemometric methods used for various microbial cultivations. Most of these processes are observed using the BioView® Sensor, thanks to its robustness and insensitivity to adverse process conditions. Beyond that, the PLS-method is the most frequently used chemometric method for the calculation of process models and prediction of process variables.

  11. Fluorescence spectroscopy and chemometric modeling for bioprocess monitoring.

    PubMed

    Faassen, Saskia M; Hitzmann, Bernd

    2015-01-01

    On-line sensors for the detection of crucial process parameters are desirable for the monitoring, control and automation of processes in the biotechnology, food and pharma industry. Fluorescence spectroscopy as a highly developed and non-invasive technique that enables the on-line measurements of substrate and product concentrations or the identification of characteristic process states. During a cultivation process significant changes occur in the fluorescence spectra. By means of chemometric modeling, prediction models can be calculated and applied for process supervision and control to provide increased quality and the productivity of bioprocesses. A range of applications for different microorganisms and analytes has been proposed during the last years. This contribution provides an overview of different analysis methods for the measured fluorescence spectra and the model-building chemometric methods used for various microbial cultivations. Most of these processes are observed using the BioView® Sensor, thanks to its robustness and insensitivity to adverse process conditions. Beyond that, the PLS-method is the most frequently used chemometric method for the calculation of process models and prediction of process variables. PMID:25942644

  12. Remote excitation fluorescence correlation spectroscopy using silver nanowires

    NASA Astrophysics Data System (ADS)

    Su, Liang; Yuan, Haifeng; Lu, Gang; Hofkens, Johan; Roeffaers, Maarten; Uji-i, Hiroshi

    2014-11-01

    Fluorescence correlation spectroscopy (FCS), a powerful tool to resolve local properties, dynamical process of molecules, rotational and translational diffusion motions, relies on the fluctuations of florescence observables in the observation volume. In the case of rare transition events or small dynamical fluctuations, FCS requires few molecules or even single molecules in the observation volume at a time to minimize the background signals. Metal nanoparticle which possess unique localized surface plasmon resonance (LSPR) have been used to reduce the observation volume down to sub-diffraction limited scale while maintain at high analyst concentration up to tens of micromolar. Nevertheless, the applications of functionalized nanoparticles in living cell are limited due to the continuous diffusion after cell uptake, which makes it difficult to target the region of interests in the cell. In this work, we demonstrate the use of silver nanowires for remote excitation FCS on fluorescent molecules in solution. By using propagation surface plasmon polaritons (SPPs) which supported by the silver nanowire to excite the fluorescence, both illumination and observation volume can be reduced simultaneously. In such a way, less perturbation is induced to the target region, and this will broaden the application scope of silver nanowire as tip in single cell endoscopy.

  13. Dynamics-based selective 2D 1H/1H chemical shift correlation spectroscopy under ultrafast MAS conditions

    PubMed Central

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-01-01

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of 1H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of 1H/1H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials. PMID:26026440

  14. Laser-induced fluorescence and dispersed fluorescence spectroscopy of jet-cooled 1-phenylpropargyl radical

    NASA Astrophysics Data System (ADS)

    Reilly, Neil J.; Nakajima, Masakazu; Gibson, Bligh A.; Schmidt, Timothy W.; Kable, Scott H.

    2009-04-01

    The D1(A2″)-D0(A2″) electronic transition of the resonance-stabilized 1-phenylpropargyl radicalooled discharge of 3-phenyl-1-propyne, has been investigated in detail by laser-induced fluorescence excitation and dispersed single vibronic level fluorescence (SVLF) spectroscopy. The transition is dominated by the origin band at 21 007 cm-1, with weaker Franck-Condon activity observed in a' fundamentals and even overtones and combinations of a″ symmetry. Ab initio and density functional theory calculations of the D0 and D1 geometries and frequencies were performed to support and guide the experimental assignments throughout. Analysis of SVLF spectra from 16 D1 vibronic levels has led to the assignment of 15 fundamental frequencies in the excited state and 19 fundamental frequencies in the ground state; assignments for many more normal modes not probed directly by fluorescence spectroscopy are also suggested. Duschinsky mixing, in which the excited state normal modes are rotated with respect to the ground state modes, is prevalent throughout, in vibrations of both a' and a″ symmetry.

  15. Live-cell multiphoton fluorescence correlation spectroscopy with an improved large Stokes shift fluorescent protein

    PubMed Central

    Guan, Yinghua; Meurer, Matthias; Raghavan, Sarada; Rebane, Aleksander; Lindquist, Jake R.; Santos, Sofia; Kats, Ilia; Davidson, Michael W.; Mazitschek, Ralph; Hughes, Thomas E.; Drobizhev, Mikhail; Knop, Michael; Shah, Jagesh V.

    2015-01-01

    We report an improved variant of mKeima, a monomeric long Stokes shift red fluorescent protein, hmKeima8.5. The increased intracellular brightness and large Stokes shift (∼180 nm) make it an excellent partner with teal fluorescent protein (mTFP1) for multiphoton, multicolor applications. Excitation of this pair by a single multiphoton excitation wavelength (MPE, 850 nm) yields well-separable emission peaks (∼120-nm separation). Using this pair, we measure homo- and hetero-oligomerization interactions in living cells via multiphoton excitation fluorescence correlation spectroscopy (MPE-FCS). Using tandem dimer proteins and small-molecule inducible dimerization domains, we demonstrate robust and quantitative detection of intracellular protein–protein interactions. We also use MPE-FCCS to detect drug–protein interactions in the intracellular environment using a Coumarin 343 (C343)-conjugated drug and hmKeima8.5 as a fluorescence pair. The mTFP1/hmKeima8.5 and C343/hmKeima8.5 combinations, together with our calibration constructs, provide a practical and broadly applicable toolbox for the investigation of molecular interactions in the cytoplasm of living cells. PMID:25877871

  16. Assessing Raw and Treated Water Quality Using Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bridgeman, J.; Baker, A.

    2006-12-01

    To date, much fluorescence spectroscopy work has focused on the use of techniques to characterize pollution in river water and to fingerprint pollutants such as, inter alia, treated and raw sewage effluent. In the face of tightening water quality standards associated with disinfection byproducts, there exists the need for a surrogate THM parameter which can be measured accurately and quickly at the water treatment works and which will give a satisfactory indication of the THM concentration leaving the water treatment works. In addition, water treatment works and distribution system managers require tools which are simple and quick, yet robust, to monitor plant and unit process performance. We extend the use of fluorescence techniques from raw water quality monitoring to (1) the monitoring of water treatment works intakes and the assessment of water treatment works performance by (2) assessing the removal of dissolved organic matter (DOM) through the unit process stages of various water treatment works treating different raw waters and (3) examining the prevalence of microbiological activity found at service reservoirs in the downstream distribution system. 16 surface water treatment works were selected in the central region of the UK and samples taken at works' intakes, downstream of each unit process, and in the distribution systems. The intakes selected abstract water from a broad range of upland and lowland water sources with varying natural and anthropogenic pollutant inputs and significantly different flows. The treatment works selected offer a range of different, but relatively standard, unit processes. The results demonstrate that raw waters exhibit more fluorescence than (partially) treated waters. However, noticeable differences between each site are observed. Furthermore, differences in unit process performance between works are also identified and quantified. Across all sites, treatment with Granular Activated Carbon is found to yield a significant

  17. Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy

    PubMed Central

    Díaz-Visurraga, Judith; Daza, Carla; Pozo, Claudio; Becerra, Abraham; von Plessing, Carlos; García, Apolinaria

    2012-01-01

    Background The objective of this study was to clarify the intermolecular interaction between antibacterial copper nanoparticles (Cu NPs) and sodium alginate (NaAlg) by Fourier transform infrared spectroscopy (FT-IR) and to process the spectra applying two-dimensional infrared (2D-IR) correlation analysis. To our knowledge, the addition of NaAlg as a stabilizer of copper nanoparticles has not been previously reported. It is expected that the obtained results will provide valuable additional information on: (1) the influence of reducing agent ratio on the formation of copper nanoparticles in order to design functional nanomaterials with increased antibacterial activity, and (2) structural changes related to the incorporation of Cu NPs into the polymer matrix. Methods Cu NPs were prepared by microwave heating using ascorbic acid as reducing agent and NaAlg as stabilizing agent. The characterization of synthesized Cu NPs by ultraviolet visible spectroscopy, transmission electron microscopy (TEM), electron diffraction analysis, X-ray diffraction (XRD), and semiquantitative analysis of the weight percentage composition indicated that the average particle sizes of Cu NPs are about 3–10 nm, they are spherical in shape, and consist of zerovalent Cu and Cu2O. Also, crystallite size and relative particle size of stabilized Cu NPs were calculated by XRD using Scherrer’s formula and FT from the X-ray diffraction data. Thermogravimetric analysis, differential thermal analysis, differential scanning calorimetry (DSC), FT-IR, second-derivative spectra, and 2D-IR correlation analysis were applied to studying the stabilization mechanism of Cu NPs by NaAlg molecules. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of stabilized Cu NPs against five bacterial strains (Staphylococccus aureus ATCC 6538P, Escherichia coli ATCC 25922 and O157: H7, and Salmonella enterica serovar Typhimurium ATCC 13311 and 14028) were evaluated with macrodilution

  18. Quantitative Fluorescence Studies in Living Cells: Extending Fluorescence Fluctuation Spectroscopy to Peripheral Membrane Proteins

    NASA Astrophysics Data System (ADS)

    Smith, Elizabeth Myhra

    The interactions of peripheral membrane proteins with both membrane lipids and proteins are vital for many cellular processes including membrane trafficking, cellular signaling, and cell growth/regulation. Building accurate biophysical models of these processes requires quantitative characterization of the behavior of peripheral membrane proteins, yet methods to quantify their interactions inside living cells are very limited. Because peripheral membrane proteins usually exist both in membrane-bound and cytoplasmic forms, the separation of these two populations is a key challenge. This thesis aims at addressing this challenge by extending fluorescence fluctuation spectroscopy (FFS) to simultaneously measure the oligomeric state of peripheral membrane proteins in the cytoplasm and at the plasma membrane. We developed a new method based on z-scan FFS that accounts for the fluorescence contributions from cytoplasmic and membrane layers by incorporating a fluorescence intensity z-scan through the cell. H-Ras-EGFP served as a model system to demonstrate the feasibility of the technique. The resolvability and stability of z-scanning was determined as well as the oligomeric state of H-Ras-EGFP at the plasma membrane and in the cytoplasm. Further, we successfully characterized the binding affinity of a variety of proteins to the plasma membrane by quantitative analysis of the z-scan fluorescence intensity profile. This analysis method, which we refer to as z-scan fluorescence profile deconvoution, was further used in combination with dual-color competition studies to determine the lipid specificity of protein binding. Finally, we applied z-scan FFS to provide insight into the early assembly steps of the HTLV-1 retrovirus.

  19. Detecting Nanodomains in Living Cell Membrane by Fluorescence Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Hai-Tao; Marguet, Didier

    2011-05-01

    Cell membranes actively participate in numerous cellular functions. Inasmuch as bioactivities of cell membranes are known to depend crucially on their lateral organization, much effort has been focused on deciphering this organization on different length scales. Within this context, the concept of lipid rafts has been intensively discussed over recent years. In line with its ability to measure diffusion parameters with great precision, fluorescence correlation spectroscopy (FCS) measurements have been made in association with innovative experimental strategies to monitor modes of molecular lateral diffusion within the plasma membrane of living cells. These investigations have allowed significant progress in the characterization of the cell membrane lateral organization at the suboptical level and have provided compelling evidence for the in vivo existence of raft nanodomains. We review these FCS-based studies and the characteristic structural features of raft nanodomains. We also discuss the findings in regards to the current view of lipid rafts as a general membrane-organizing principle.

  20. Fluorescence correlation spectroscopy evidence for structural heterogeneity in ionic liquids

    SciTech Connect

    Guo, J C; Baker, G. A.; Hillesheim, P. C.; Dai, S.; Shaw, R. W.; Mahurin, S., M.

    2011-01-01

    In this work, we provide new experimental evidence for chain length-dependent self-aggregation in room temperature ionic liquids (RTILs) using fluorescence correlation spectroscopy (FCS). In studying a homologous series of N-alkyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide, [C{sub n}MPy][Tf{sub 2}N] RTILs of varying alkyl chain length (n = 3, 4, 6, 8, and 10), biphasic rhodamine 6G solute diffusion dynamics were observed; both the fast and slow diffusion coefficients decreased with increasing alkyl chain length, with the relative contribution from slower diffusion increasing for longer-chain [C{sub n}MPy][Tf{sub 2}N]. We propose that the biphasic diffusion dynamics originate from self-aggregation of the nonpolar alkyl chains in the cationic [CnMPy]{sup +}.

  1. Shedding light on azopolymer brush dynamics by fluorescence correlation spectroscopy.

    PubMed

    Kollarigowda, R H; De Santo, I; Rianna, C; Fedele, C; Manikas, A C; Cavalli, S; Netti, P A

    2016-09-14

    Understanding the response to illumination at a molecular level as well as characterising polymer brush dynamics are key features that guide the engineering of new light-stimuli responsive materials. Here, we report on the use of a confocal microscopy technique that was exploited to discern how a single molecular event such as the photoinduced isomerisation of azobenzene can affect an entire polymeric material at a macroscopic level leading to photodriven mass-migration. For this reason, a set of polymer brushes, containing azobenzene (Disperse Red 1, DR) on the side chains of poly(methacrylic acid), was synthesised and the influence of DR on the polymer brush dynamics was investigated for the first time by Fluorescence Correlation Spectroscopy (FCS). Briefly, two dynamics were observed, a short one coming from the isomerisation of DR and a long one related to the brush main chain. Interestingly, photoinduced polymer aggregation in the confocal volume was observed. PMID:27491890

  2. Fluorescence Correlation Spectroscopy at Micromolar Concentrations without Optical Nanoconfinement

    SciTech Connect

    Laurence, Ted A.; Ly, Sonny; Bourguet, Feliza; Fischer, Nicholas O.; Coleman, Matthew A.

    2014-08-14

    Fluorescence correlation spectroscopy (FCS) is an important technique for studying biochemical interactions dynamically that may be used in vitro and in cell-based studies. It is generally claimed that FCS may only be used at nM concentrations. We show that this general consensus is incorrect and that the limitation to nM concentrations is not fundamental but due to detector limits as well as laser fluctuations. With a high count rate detector system and applying laser fluctuation corrections, we demonstrate FCS measurements up to 38 μM with the same signal-to-noise as at lower concentrations. Optical nanoconfinement approaches previously used to increase the concentration range of FCS are not necessary, and further increases above 38 μM may be expected using detectors and detector arrays with higher saturation rates and better laser fluctuation corrections. This approach greatly widens the possibilities of dynamic measurements of biochemical interactions using FCS at physiological concentrations.

  3. Fluorescence spectroscopy, exciton dynamics, and photochemistry of single allophycocyanin trimers

    SciTech Connect

    Ying, L.; Sie, X.S.

    1998-12-10

    The authors report a study of the allophycocyanin trimer (APC), a light-harvesting protein complex from cyanobacteria, by room-temperature single-molecule measurements of fluorescence spectra, lifetimes, intensity trajectories, and polarization modulation. Emission spectra of individual APC trimers are found to be homogeneous on the time scale of seconds. In contrast, their emission lifetimes are found to be widely distributed because of generation of long-lived exciton traps during the course of measurements. The intensity trajectories and polarization modulation experiments indicate reversible exciton trap formation within the three quasi-independent pairs of strong interacting {alpha}84 and {beta}84 chromophores in APC, as well as photobleaching of individual chromophores. Comparison experiments under continuous-wave and pulsed excitation reveal a two-photon mechanism for generating exciton traps and/or photobleaching, which involves exciton-exciton annihilation. These single-molecule experiments provide new insights into the spectroscopy, exciton dynamics, and photochemistry of light-harvesting complexes.

  4. Electrically induced microflows probed by fluorescence correlation spectroscopy.

    PubMed

    Ybert, C; Nadal, F; Salomé, R; Argoul, F; Bourdieu, L

    2005-03-01

    We report on the experimental characterisation of electrically induced flows at the micrometer scale through Fluorescence Correlation Spectroscopy (FCS) measurements. We stress the potential of FCS as a useful characterisation technique in microfluidics devices for transport properties cartography. The experimental results obtained in a model situation are in agreement with previous calculations (F. Nadal, F. Argoul, P. Kestener, B. Pouligny, C. Ybert, A. Ajdari, Eur. Phys. J. E 9, 387 (2002)) predicting the structure and electric-field dependency of the induced flow. Additionally, the present study evidences a complex behaviour of the probe nanobeads under electric field whose precise understanding might prove relevant for situations where nano-objects interact with an external electric field.

  5. Optical biopsy fiber-based fluorescence spectroscopy instrumentation

    NASA Astrophysics Data System (ADS)

    Katz, Alvin; Ganesan, Singaravelu; Yang, Yuanlong; Tang, Gui C.; Budansky, Yury; Celmer, Edward J.; Savage, Howard E.; Schantz, Stimson P.; Alfano, Robert R.

    1996-04-01

    Native fluorescence spectroscopy of biomolecules has emerged as a new modality to the medical community in characterizing the various physiological conditions of tissues. In the past several years, many groups have been working to introduce the spectroscopic methods to diagnose cancer. Researchers have successfully used native fluorescence to distinguish cancerous from normal tissue samples in rat and human tissue. We have developed three generations of instruments, called the CD-scan, CD-ratiometer and CD-map, to allow the medical community to use optics for diagnosing tissue. Using ultraviolet excitation and emission spectral measurements on both normal and cancerous tissue of the breast, gynecology, colon, and aerodigestive tract can be separated. For example, from emission intensities at 340 nm to 440 nm (300 nm excitation), a statistically consistent difference between malignant tissue and normal or benign tissue is observed. In order to utilize optical biopsy techniques in a clinical setting, the CD-scan instrument was developed, which allows for rapid and reliable in-vitro and in-vivo florescence measurements of the aerodigestive tract with high accuracy. The instrumentation employs high sensitivity detection techniques which allows for lamp excitation, small diameter optical fiber probes; the higher spatial resolution afforded by the small diameter probes can increase the ability to detect smaller tumors. The fiber optic probes allow for usage in the aerodigestive tract, cervix and colon. Needle based fiber probes have been developed for in-vivo detection of breast cancer.

  6. Dynamic and unique nucleolar microenvironment revealed by fluorescence correlation spectroscopy.

    PubMed

    Park, Hweon; Han, Sung-Sik; Sako, Yasushi; Pack, Chan-Gi

    2015-03-01

    Organization and functions of the nucleolus is maintained by mobilities and interactions of nucleolar factors. Because the nucleolus is a densely packed structure, molecular crowding effects determined by the molecular concentrations and mobilities in the nucleolus should also be important for regulating nucleolar organization and functions. However, such molecular property of nucleolar organization is not fully understood. To understand the biophysical property of nucleolar organization, the diffusional behaviors of inert green fluorescent protein (GFP) oligomers with or without nuclear localization signals (NLSs) were analyzed under various conditions by fluorescence correlation spectroscopy. Our result demonstrates that the mobility of GFPs inside the nucleolus and the nucleoplasm can be represented by single free diffusion under normal conditions, even though the mobility in the nucleolus is considerably slower than that in the chromatin region. Moreover, the free diffusion of GFPs is found to be significantly size- and NLS-dependent only in the nucleolus. Interestingly, the mobility in the nucleolus is highly sensitive to ATP depletion, as well as actinomycin D (ActD) treatment. In contrast, the ultra-structure of the nucleolus was not significantly changed by ATP depletion but was changed by ActD treatment. These results suggest that the nucleolus behaves similarly to an open aqueous-phase medium with an increased molecular crowding effect that depends on both energy and transcription.

  7. Fluorescence Correlation Spectroscopy Close to a Fluctuating Membrane

    PubMed Central

    Fradin, Cécile; Abu-Arish, Asmahan; Granek, Rony; Elbaum, Michael

    2003-01-01

    Compartmentalization of the cytoplasm by membranes should have a strong influence on the diffusion of macromolecules inside a cell, and we have studied how this could be reflected in fluorescence correlation spectroscopy (FCS) experiments. We derived the autocorrelation function measured by FCS for fluorescent particles diffusing close to a soft membrane, and show it to be the sum of two contributions: short timescale correlations come from the diffusion of the particles (differing from free diffusion because of the presence of an obstacle), whereas long timescale correlations arise from fluctuations of the membrane itself (which create intensity fluctuations by modulating the number of detected particles). In the case of thermal fluctuations this second type of correlation depends on the elasticity of the membrane. To illustrate this calculation, we report the results of FCS experiments carried out close to a vesicle membrane. The measured autocorrelation functions display very distinctly the two expected contributions, and allow both to recover the diffusion coefficient of the fluorophore and to characterize the membrane fluctuations in term of a bending rigidity. Our results show that FCS measurements inside cells can lead to erroneous values of the diffusion coefficient if the influence of membranes is not recognized. PMID:12609903

  8. Evaluation of actinic cheilitis using fluorescence lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Saito Nogueira, Marcelo; Cosci, Alessandro; Pratavieira, Sebastião.; Takahama, Ademar; Souza Azevedo, Rebeca; Kurachi, Cristina

    2016-03-01

    Actinic cheilitis is a potentially malignant disorder that mostly affects the vermilion border of the lower lip and can lead to squamous cell carcinoma. Because of its heterogeneous clinical aspect, it is difficult to indicate representative biopsy area. Late diagnosis is a limiting factor of therapeutic possibilities available to treat oral cancer. The diagnosis of actinic cheilitis is mainly based on clinical and histopathological analysis and it is a time consuming procedure to get the results. Information about the organization and chemical composition of the tissues can be obtained using fluorescence lifetime spectroscopy techniques without the need for biopsy. The main targeted fluorophores are NADH (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide), which have free and bound states, each one with different average lifetimes. The average lifetimes for free and bound NADH and FAD change according to tissue metabolic alterations and allow a quick and non-invasive clinical investigation of injuries and to help clinicians with the early diagnosis of actinic cheilitis. This study aims to evaluate the fluorescence lifetime parameters at the discrimination of three degrees of epithelial dysplasia, the most important predictor of malignant development, described in up to 100% of actinic cheilitis cases.

  9. Nucleoplasmic viscosity of living cells investigated by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Liang, Lifang; Xing, Da; Chen, Tongshen; Pei, Yihui

    2007-11-01

    Fluorescence correlation spectroscopy (FCS) is a new kind of real-time, high-speed and single-molecule technique. It is used to detect the kinetic characteristics of fluorescent dye such as diffusion coefficient in the aqueous solution. Combined with confocal microscope optics, it has been now widely applied in cell biological research. Through a time correlation analysis of spontaneous intensity fluctuations, this technique with EGFP as a probe is capable of determining viscosity of fluids according to Stokes-Einstein equation. Nucleoplasmic viscosity is an important physical parameter to quantify the rheological characteristics of the nucleoplasm. Investigation on nucleoplasmic viscosity plays an important role in further understanding intranuclear environment. In this paper, FCS is introduced to noninvasively investigate nucleoplasmic viscosity of living cells. The results show that nucleoplasmic viscosity of lung adenocarcinoma (ASTC-a-1) cells is 2.55+/-0.61 cP and nucleoplasmic viscosity is larger than cytoplasmic viscosity at 37 °C (pH 7.4). In addition, significant changes in nucleoplasmic viscosity are detected by FCS when cells are exposed to hyper or hypotonic medium. Our study suggests that FCS can be used to detect the kinetic characteristics of biomolecules in living cells and thus helps to investigate the dynamic changes of the microenvironment in the cell.

  10. Continuous fluorescence microphotolysis and correlation spectroscopy using 4Pi microscopy.

    PubMed

    Arkhipov, Anton; Hüve, Jana; Kahms, Martin; Peters, Reiner; Schulten, Klaus

    2007-12-01

    Continuous fluorescence microphotolysis (CFM) and fluorescence correlation spectroscopy (FCS) permit measurement of molecular mobility and association reactions in single living cells. CFM and FCS complement each other ideally and can be realized using identical equipment. So far, the spatial resolution of CFM and FCS was restricted by the resolution of the light microscope to the micrometer scale. However, cellular functions generally occur on the nanometer scale. Here, we develop the theoretical and computational framework for CFM and FCS experiments using 4Pi microscopy, which features an axial resolution of approximately 100 nm. The framework, taking the actual 4Pi point spread function of the instrument into account, was validated by measurements on model systems, employing 4Pi conditions or normal confocal conditions together with either single- or two-photon excitation. In all cases experimental data could be well fitted by computed curves for expected diffusion coefficients, even when the signal/noise ratio was small due to the small number of fluorophores involved.

  11. Fluorescence correlation spectroscopy reveals strong fluorescence quenching of FITC adducts on PEGylated gold nanoparticles in water and the presence of fluorescent aggregates of desorbed thiolate ligands.

    PubMed

    Loumaigne, Matthieu; Praho, Raïssa; Nutarelli, Daniele; Werts, Martinus H V; Débarre, Anne

    2010-09-28

    Colloidal gold particles functionalised with oligoethylene-glycolated disulfide ligands and fluorescent moieties derived from fluorescein isothiocyanate (FITC) have been prepared and studied in aqueous suspension using fluorescence correlation spectroscopy (FCS). FCS probes the dynamics of the particles at the single object level, and reveals the desorption of fluorescent ligands which subsequently aggregate into larger (slower diffusing) objects. Cross-correlation spectroscopy of the FITC fluorescence and the Rayleigh-Mie scattering (RM-FCCS) of the gold cores shows that the only detectable fluorescent objects are free ligands and aggregates not associated with a gold particle. The fluorescence of bound fluorophores is quenched making their fluorescence too weak to be detected. FCS and RM-FCCS are useful tools for characterising functionalised noble metal particles in solution, under conditions similar to those used in optical bio-imaging. Desorption of thiolates from gold nanoparticles needs to be taken into account when working with these materials at low concentration.

  12. Residue-Specific Structural Kinetics of Proteins through the Union of Isotope Labeling, Mid-IR Pulse Shaping, and Coherent 2D IR Spectroscopy

    PubMed Central

    Middleton, Chris T.; Woys, Ann Marie; Mukherjee, Sudipta S.; Zanni, Martin T.

    2010-01-01

    We describe a methodology for studying protein kinetics using a rapid-scan technology for collecting 2D IR spectra. In conjunction with isotope labeling, 2D IR spectroscopy is able to probe the secondary structure and environment of individual residues in polypeptides and proteins. It is particularly useful for membrane and aggregate proteins. Our rapid-scan technology relies on a mid-IR pulse shaper that computer generates the pulse shapes, much like in an NMR spectrometer. With this device, data collection is faster, easier, and more accurate. We describe our 2D IR spectrometer, as well as protocols for 13C=18O isotope labeling, and then illustrate the technique with an application to the aggregation of the human islet amyloid polypeptide form type 2 diabetes. PMID:20472067

  13. Heat-induced unfolding of apo-CP43 studied by fluorescence spectroscopy and CD spectroscopy.

    PubMed

    Xiao, Qing-Jie; Li, Zai-Geng; Yang, Jiao; He, Qing; Xi, Lei; Du, Lin-Fang

    2015-12-01

    CP43 is a chlorophyll-binding protein, which acts as a conduit for the excitation energy transfer. The thermal stability of apo-CP43 was studied by intrinsic fluorescence, exogenous ANS fluorescence, and circular dichroism spectroscopy. Under heat treatment, the structure of apo-CP43 changed and existed transition state occurred between 56 and 62 °C by the intrinsic, exogenous ANS fluorescence and the analysis of hydrophobicity. Besides, the isosbestic point of the sigmoidal curve was 58.10 ± 1.02 °C by calculating α-helix transition and the Tm was 56.45 ± 0.52 and 55.59 ± 0.68 °C by calculating the unfolded fraction of tryptophan and tyrosine fluorescence, respectively. During the process of unfolding, the hydrophobic structure of C-terminal segment firstly started to expose at 40 °C, and then the hydrophobic cluster adjacent to the N-terminal segment also gradually exposed to hydrophilic environment with increasing temperature. Our results indicated that heat treatment, especially above 40 °C, has an important impact on the structural stability of apo-CP43.

  14. Adsorption Behavior of Extracellular Polymeric Substances on Graphene Materials Explored by Fluorescence Spectroscopy and Two-Dimensional Fourier Transform Infrared Correlation Spectroscopy.

    PubMed

    Lee, Bo-Mi; Hur, Jin

    2016-07-19

    Adsorption isotherms of extracellular polymeric substances (EPS) on graphene oxide (GO) and reduced GO (rGO) were studied using fluorescence excitation-emission matrix-parallel factor analysis (EEM-PARAFAC) and two-dimensional correlation spectroscopy (2D-COS) combined with Fourier transform infrared spectroscopy (FTIR). Chemical reduction of GO resulted in a greater extent of carbon adsorption with a higher degree of isotherm nonlinearity, suggesting that heterogeneous adsorption sites were additionally created by GO reduction. Two protein-like and two humic-like components were identified from EPS by EEM-PARAFAC. Adsorption of protein-like components was greater than that of humic-like components, and the preferential adsorption was more pronounced for GO versus rGO. Adsorption of protein-like components was more governed by site-limiting mechanisms than humic-like components as shown by the higher isotherm nonlinearity. 2D-COS provided further information on the adsorption of secondary protein structures. Adsorption of the EPS structures related to amide I and aromatic C-C bands was greater for rGO versus GO. Protein structures of EPS were more favorable for adsorption in the order of α-helix → amide II → β-sheet structures with increasing site limitation. Our results revealed successful applicability of EEM-PARAFAC and 2D-COS in examining the adsorption behavior of heterogeneous biological materials on graphene materials.

  15. The structure of salt bridges between Arg(+) and Glu(-) in peptides investigated with 2D-IR spectroscopy: Evidence for two distinct hydrogen-bond geometries.

    PubMed

    Huerta-Viga, Adriana; Amirjalayer, Saeed; Domingos, Sérgio R; Meuzelaar, Heleen; Rupenyan, Alisa; Woutersen, Sander

    2015-06-01

    Salt bridges play an important role in protein folding and in supramolecular chemistry, but they are difficult to detect and characterize in solution. Here, we investigate salt bridges between glutamate (Glu(-)) and arginine (Arg(+)) using two-dimensional infrared (2D-IR) spectroscopy. The 2D-IR spectrum of a salt-bridged dimer shows cross peaks between the vibrational modes of Glu(-) and Arg(+), which provide a sensitive structural probe of Glu(-)⋯Arg(+) salt bridges. We use this probe to investigate a β-turn locked by a salt bridge, an α-helical peptide whose structure is stabilized by salt bridges, and a coiled coil that is stabilized by intra- and intermolecular salt bridges. We detect a bidentate salt bridge in the β-turn, a monodentate one in the α-helical peptide, and both salt-bridge geometries in the coiled coil. To our knowledge, this is the first time 2D-IR has been used to probe tertiary side chain interactions in peptides, and our results show that 2D-IR spectroscopy is a powerful method for investigating salt bridges in solution.

  16. The structure of salt bridges between Arg+ and Glu- in peptides investigated with 2D-IR spectroscopy: Evidence for two distinct hydrogen-bond geometries

    NASA Astrophysics Data System (ADS)

    Huerta-Viga, Adriana; Amirjalayer, Saeed; Domingos, Sérgio R.; Meuzelaar, Heleen; Rupenyan, Alisa; Woutersen, Sander

    2015-06-01

    Salt bridges play an important role in protein folding and in supramolecular chemistry, but they are difficult to detect and characterize in solution. Here, we investigate salt bridges between glutamate (Glu-) and arginine (Arg+) using two-dimensional infrared (2D-IR) spectroscopy. The 2D-IR spectrum of a salt-bridged dimer shows cross peaks between the vibrational modes of Glu- and Arg+, which provide a sensitive structural probe of Glu-⋯Arg+ salt bridges. We use this probe to investigate a β-turn locked by a salt bridge, an α-helical peptide whose structure is stabilized by salt bridges, and a coiled coil that is stabilized by intra- and intermolecular salt bridges. We detect a bidentate salt bridge in the β-turn, a monodentate one in the α-helical peptide, and both salt-bridge geometries in the coiled coil. To our knowledge, this is the first time 2D-IR has been used to probe tertiary side chain interactions in peptides, and our results show that 2D-IR spectroscopy is a powerful method for investigating salt bridges in solution.

  17. Molecular aggregation characterized by high order autocorrelation in fluorescence correlation spectroscopy.

    PubMed Central

    Palmer, A G; Thompson, N L

    1987-01-01

    The use of high order autocorrelation in fluorescence correlation spectroscopy for investigating aggregation in a sample that contains fluorescent molecules is described. Theoretical expressions for the fluorescence fluctuation autocorrelation functions defined by gm,n(tau) = [(delta fm(t + tau)delta fm(t] - (delta Fm(t] (delta Fn(t

  18. [Analysis and identification of Poria cocos peels harvested from different producing areas by FTIR and 2D-IR correlation spectroscopy].

    PubMed

    Ma, Fang; Zhang, Fang; Tang, Jin; Chen, Ping; Chen, Jian-Bo; Zhou, Qun; Sun, Su-Qin

    2014-02-01

    Different geographical regions of traditional Chinese medicine (TCM), its chemical composition is different, the accumulation of drug and medicinal properties is different. The accurate identification and analysis of different production area of medicinal herbs is critical for the quality control and pharmacological research of TCM. In this paper, a tri-step infrared spectroscopy (Fourier transform infrared spectroscopy (FTIR) combined with second derivative spectra and two-dimensional correlation infrared spectroscopy (2D-COS) were employed to identify and analyze the main components of Hubei (HB), Anhui (AH), Yun-nan (YN) genuine Poria Cocos peels. The emergence of several characteristic absorption peaks of carbohydrates including 1149, 1079 1036 cm(-1), peaks around 1619, 1315, 780 cm(-1) belonged to calcium oxalate suggested that HB and AH Poria Cocos peels contained calcium oxalate, but peaks around 797, 779, 537, 470 cm(-1) belonged to kaoline suggested that YN Poria Cocos peels contained kaoline. Their carbohydrates were different by comparing the second derivative infrared spectra in the range of 1640-450 cm(-1) and Yongping come from YN contains both calcium oxalate and kaoline. Furthermore, the above differences were visually validated by two-dimensional correlation spectroscopy (2D-COS). It was demonstrated that the Tri-step infrared spectroscopy were successfully applied to fast analyze and identify Poria Cocos peels from different geographical regions and subsequently would be applicable to explain the relevance of geographical regions and medicinal properties for the TCM.

  19. Fluorescence spectroscopy of fulvic acids from fen peatlands

    NASA Astrophysics Data System (ADS)

    Maryganova, Victoria; Wojciech Szajdak, Lech

    2010-05-01

    Intensive cultivation and agricultural use of peatlands lead to the degradation and mineralization of peat. Fulvic acids (FA) as the most mobile part of peat organic matter can be considered as an early indicator of its changes. One of the most sensitive and simple methods for studying the structural chemistry of humic substances is fluorescence spectroscopy. The objective of this study was to analyze comparatively the fluorescence properties of FA from low-moor peats of different genesis and decomposition degree with respect to the peculiarities of their chemical structure. FA were isolated from 4 peat samples collected from different fen peatlands of Belarus. Fluorescence spectra were obtained on water solutions of FA at a concentration of 50 mg/L after adjustment to pH=2, 6 and 13 on a MSL-4800 spectrofluorimeter (Perkin Elmer, USA.) at 20 ± 2 oC. Emission spectra were obtained using an excitation wavelength of 365 nm. Excitation spectra were recorded by varying the excitation wavelength from 260 to 520 nm and measuring the fluorescence emission at a fixed wavelength of 520 nm. Elemental composition of FA and optical density at 465 nm (D465) of FA solutions in 0.1 N NaOH were determined. Emission spectra of FA are characterized by a broad featureless band of the maximum wavelengths at λ=460-475 nm. Excitation spectra of FA have three peaks localized in different wavelength regions. The maximum wavelengths and intensities of the excitation peaks depend on the pH values. The highest intensities are observed at pH=6. FA exhibit a main excitation peak at λ=355-370 nm, a minor peak at λ=395-400 nm, and a weak band at λ=430-440 nm. At pH=2, all the peaks decrease in intensity. With increasing the pH to 13, the excitation maximum at λ=355-370 nm shifts from 10 to 20 nm towards longer wavelengths compared to acidic solutions. A general decrease in fluorescence intensity is observed, the intensity decline of the peak at λ=355-370 nm being more marked than of the

  20. DNA binding and oligomerization of NtrC studied by fluorescence anisotropy and fluorescence correlation spectroscopy.

    PubMed Central

    Sevenich, F W; Langowski, J; Weiss, V; Rippe, K

    1998-01-01

    Fluorescence anisotropy and fluorescence correlation spectroscopy measurements of rhodamine-labeled DNA oligonucleotide duplexes have been used to determine equilibrium binding constants for DNA binding of the prokaryotic transcription activator protein NtrC. Measurements were made with wild-type NtrC from Escherichia coli and the constitutively active mutant NtrCS160Ffrom Salmonella using DNA duplexes with one or two binding sites. The following results were obtained: (i) the dissociation constant K d for binding of one NtrC dimer to a single binding site was the same for the wild-type and mutant proteins within the error of measurement. (ii) The value of K d decreased from 1.4 +/- 0.7 x 10(-11) M at 15 mM K acetate to 5.8 +/- 2.6 x 10(-9) M at 600 mM K acetate. From the salt dependence of the dissociation constant we calculated that two ion pairs form upon binding of one dimeric protein to the DNA. (iii) Binding of two NtrC dimers to the DNA duplex with two binding sites occured with essentially no cooperativity. Titration curves of NtrCS160Fbinding to the same duplex demonstrated that more than two protein dimers of the mutant protein could bind to the DNA. PMID:9490780

  1. Tubulin equilibrium unfolding followed by time-resolved fluorescence and fluorescence correlation spectroscopy

    PubMed Central

    Sánchez, Susana A.; Brunet, Juan E.; Jameson, David M.; Lagos, Rosalba; Monasterio, Octavio

    2004-01-01

    The pathway for the in vitro equilibrium unfolding of the tubulin heterodimer by guanidinium chloride (GdmCl) has been studied using several spectroscopic techniques, specifically circular dichroism (CD), two-photon Fluorescence Correlation Spectroscopy (FCS), and time-resolved fluorescence, including lifetime and dynamic polarization. The results show that tubulin unfolding is characterized by distinct processes that occur in different GdmCl concentration ranges. From 0 to 0.5 M GdmCl, a slight alteration of the tubulin heterodimer occurs, as evidenced by a small, but reproducible increase in the rotational correlation time of the protein and a sharp decrease in the secondary structure monitored by CD. In the range 0.5–1.5 M GdmCl, significant decreases in the steady-state anisotropy and average lifetime of the intrinsic tryptophan fluorescence occur, as well as a decrease in the rotational correlation time, from 48 to 26 nsec. In the same GdmCl range, the number of protein molecules (labeled with Alexa 488), as determined by two-photon FCS measurements, increases by a factor of two, indicating dissociation of the tubulin dimer into monomers. From 1.5 to 4 M GdmCl, these monomers unfold, as evidenced by the continual decrease in the tryptophan steady-state anisotropy, average lifetime, and rotational correlation time, concomitant with secondary structural changes. These results help to elucidate the unfolding pathway of the tubulin heterodimer and demonstrate the value of FCS measurements in studies on oligomeric protein systems. PMID:14691224

  2. Fluorescence spectroscopy and confocal microscopy of the mycotoxin citrinin in condensed phase and hydrogel films.

    PubMed

    Lauer, Milena H; Gehlen, Marcelo H; de Jesus, Karen; Berlinck, Roberto G S

    2014-05-01

    The emission spectra, quantum yields and fluorescence lifetimes of citrinin in organic solvents and hydrogel films have been determined. Citrinin shows complex fluorescence decays due to the presence of two tautomers in solution and interconversion from excited-state double proton transfer (ESDPT) process. The fluorescence decay times associated with the two tautomers have values near 1 and 5 ns depending on the medium. In hydrogel films of agarose and alginate, fluorescence imaging showed that citrinin is not homogeneously dispersed and highly emissive micrometer spots may be formed. Fluorescence spectrum and decay analysis are used to recognize the presence of citrinin in hydrogel films using confocal fluorescence microscopy and spectroscopy.

  3. Structured illumination fluorescence correlation spectroscopy for velocimetry in Zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Pozzi, Paolo; Rossetti, Leone; Sironi, Laura; Freddi, Stefano; D'Alfonso, Laura; Caccia, Michele; Bouzin, Margaux; Collini, Maddalena; Chirico, Giuseppe

    2013-02-01

    The vascular system of Zebrafish embryos is studied by means of Fluorescence Correlation and Image Correlation Spectroscopy. The long term project addresses biologically relevant issues concerning vasculogenesis and cardiogenesis and in particular mechanical interaction between blood flow and endothelial cells. To this purpose we use Zebrafish as a model system since the transparency of its embryos facilitates morphological observation of internal organs in-vivo. The correlation analysis provides quantitative characterization of fluxes in blood vessels in vivo. We have pursued and compared two complementary routes. In a first one we developed a two-spots two-photon setup in which the spots are spaced at adjustable micron-size distances (1-40 μm) along a vessel and the endogenous (autofluorescence) or exogenous (dsRed transgenic erythrocytes) signal is captured with an EM-CCD and cross-correlated. In this way we are able to follow the morphology of the Zebrafish embryo, simultaneously measure the heart pulsation, the velocity of red cells and of small plasma proteins. These data are compared to those obtained by image correlations on Zebrafish vessels. The two methods allows to characterize the motion of plasma fluids and erythrocytes in healthy Zebrafish embryos to be compared in the future to pathogenic ones.

  4. The Intermediate Scattering Function in Fluorescence Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guerra, Rodrigo; Andrews, Ballard; Sen, Pabitra

    2006-03-01

    We formulate the autocorrelation function for Fluorescence Correlation Spectroscopy (FCS) GD(τ) in reciprocal space in terms of the of the Intermediate Scattering Function ISF(k,t) and the fourier transform of the Optical Response Function ORF(k). In this way we may extend the use of FCS to processes that have been studied using NMR, DLS, and neutron scattering. This formalism is useful for the complicated propagators involved in confined systems and in the study of diffusion in cells: where diffusion is either restricted or permeation through membrane is important. Calculations in k-space produce approximate expressions for the ORF using cumulant expansions that are accurate for small wavevectors. This provides descriptions for longer timescales better suited for studying time-dependent diffusion ISF(k,t)->exp[-tD(t)k^2] and provides a natural separation of contributions from system dynamics and from optical artifacts and aberrations. We will show an explicit derivation of a semi-analytical fit function for free diffusion based on standard electromagnetic analysis of a confocal optical apparatus. This fit function is then used to analyze a representative data set and has no free fit parameters other than the diffusion constant.

  5. Resonance fluorescence spectroscopy in laser-induced cavitation bubbles.

    PubMed

    Koch, Sandra; Garen, Walter; Neu, Walter; Reuter, Rainer

    2006-05-01

    Laser-induced breakdown spectroscopy (LIBS) in liquids using a double-pulse Q-switched Nd:YAG laser system has provided reliable results that give trace detection limits in water. Resonant laser excitation has been added to enhance detection sensitivity. A primary laser pulse (at 532 nm), transmitted via an optical fiber, induces a cavitation bubble and shockwave at a target immersed in a 10 mg l(-1)-100 mg l(-1) indium (In) water suspension. The low-pressure rear of the shockwave induces bubble expansion and a resulting reduction in cavity pressure as it extends away from the target. Shortly before the maximum diameter is expected, a secondary laser pulse (also at 532 nm) is fed into the bubble in order to reduce quenching processes. The plasma field generated is then resonantly excited by a fiber-guided dye laser beam to increase detection selectivity. The resulting resonance fluorescence emission is optically detected and processed by an intensified optical multichannel analyzer system.

  6. Fluorescence Correlation Spectroscopy Evidence for Structural Heterogeneity in Ionic Liquids

    SciTech Connect

    Guo, Jianchang; Baker, Gary A; Hillesheim, Patrick C; Dai, Sheng; Shaw, Robert W; Mahurin, Shannon Mark

    2011-01-01

    Self-aggregation in room temperature ionic liquids (RTILs) has been a subject of intense interest in recent years. In this work, we provide new experimental evidence for chain length-dependent self-aggregation in RTILs using fluorescence correlation spectroscopy (FCS). In studying a homologous series of N-alkyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide, [CnMPy][Tf2N] RTILs of varying alkyl chain length (n = 3, 4, 6, 8, and 10), biphasic rhodamine 6G solute diffusion dynamics were observed; both the fast and slow diffusion coefficients decrease with increasing alkyl chain length, with the relative contribution from slower diffusion increasing for longer-chained [CnMPy][Tf2N]. We propose that the biphasic diffusion dynamics originate from self-aggregation of the nonpolar alkyl chains in the cationic [CnMPy]+. The presence of this local liquid structuring provides important insight into the behavior of RTILs relevant to their application in photovoltaics, fuel cells, and batteries.

  7. DOM transformations in stream biofilms shown by fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Burns, N. R.; Rosentreter, J. A.; Bengtsson, M. M.; Wagner, K.; Herberg, E. R.; Battin, T. J.

    2012-04-01

    Alpine streams are hotspots of biogeochemical activity, where dissolved organic matter (DOM) is mineralised and transformed by heterotrophic microorganisms while travelling downstream. The chemical composition of DOM strongly affects the rate and type of transformations that occur, and a portion of the DOM is thought to be chemically resistant to decomposition by biofilm microorganisms. In soil studies, interactions between decomposition rates of recalcitrant soil organic matter (SOM) and labile rhizodeposits have often been described as 'priming effects'. Labile substrate additions have been observed both to stimulate and to suppress mineralisation of recalcitrant substrates under different conditions, due to substrate co-metabolism or microbial community dynamics. Although the same principles are likely to apply to decomposition of recalcitrant DOM and labile algal exudates, few studies so far have investigated priming effects in an aquatic context. In this presentation, we describe results from a microcosm experiment. Streamwater with added recalcitrant DOM was passed through bioreactors mimicking streambed heterotrophic biofilms. Three potential priming treatments were applied; glucose (G), glucose with nitrate and phosphate (GNP) or an algal extract with nitrate and phosphate (ANP). We used fluorescence emission-excitation matrices (EEM) and UV spectroscopy on the DOM input to and output from the bioreactors to unravel potential interactions between recalcitrant and labile DOM during priming in biofilms.

  8. Fluorescence Correlation Spectroscopy at Micromolar Concentrations without Optical Nanoconfinement

    DOE PAGES

    Laurence, Ted A.; Ly, Sonny; Bourguet, Feliza; Fischer, Nicholas O.; Coleman, Matthew A.

    2014-08-14

    Fluorescence correlation spectroscopy (FCS) is an important technique for studying biochemical interactions dynamically that may be used in vitro and in cell-based studies. It is generally claimed that FCS may only be used at nM concentrations. We show that this general consensus is incorrect and that the limitation to nM concentrations is not fundamental but due to detector limits as well as laser fluctuations. With a high count rate detector system and applying laser fluctuation corrections, we demonstrate FCS measurements up to 38 μM with the same signal-to-noise as at lower concentrations. Optical nanoconfinement approaches previously used to increase themore » concentration range of FCS are not necessary, and further increases above 38 μM may be expected using detectors and detector arrays with higher saturation rates and better laser fluctuation corrections. This approach greatly widens the possibilities of dynamic measurements of biochemical interactions using FCS at physiological concentrations.« less

  9. Fluorescence Correlation Spectroscopy and Nonlinear Stochastic Reaction-Diffusion

    SciTech Connect

    Del Razo, Mauricio; Pan, Wenxiao; Qian, Hong; Lin, Guang

    2014-05-30

    The currently existing theory of fluorescence correlation spectroscopy (FCS) is based on the linear fluctuation theory originally developed by Einstein, Onsager, Lax, and others as a phenomenological approach to equilibrium fluctuations in bulk solutions. For mesoscopic reaction-diffusion systems with nonlinear chemical reactions among a small number of molecules, a situation often encountered in single-cell biochemistry, it is expected that FCS time correlation functions of a reaction-diffusion system can deviate from the classic results of Elson and Magde [Biopolymers (1974) 13:1-27]. We first discuss this nonlinear effect for reaction systems without diffusion. For nonlinear stochastic reaction-diffusion systems there are no closed solutions; therefore, stochastic Monte-Carlo simulations are carried out. We show that the deviation is small for a simple bimolecular reaction; the most significant deviations occur when the number of molecules is small and of the same order. Extending Delbrück-Gillespie’s theory for stochastic nonlinear reactions with rapidly stirring to reaction-diffusion systems provides a mesoscopic model for chemical and biochemical reactions at nanometric and mesoscopic level such as a single biological cell.

  10. Noninvasive determination of cell nucleoplasmic viscosity by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Liang, Lifang; Wang, Xichao; Xing, Da; Chen, Tongsheng; Chen, Wei R.

    2009-03-01

    Noninvasive and reliable quantification of rheological characteristics in the nucleus is extremely useful for fundamental research and practical applications in medicine and biology. This study examines the use of fluorescence correlation spectroscopy (FCS) to noninvasively determine nucleoplasmic viscosity (ɛnu), an important parameter of nucleoplasmic rheology. Our FCS analyses show that ɛnu of lung adenocarcinoma (ASTC-a-1) and HeLa cells are 1.77+/-0.42 cP and 1.40+/-0.27 cP, respectively, about three to four times larger than the water viscosity at 37 °C. ɛnu was reduced by 31 to 36% upon hypotonic exposure and increased by 28 to 52% from 37 to 24 °C. In addition, we found that ɛnu of HeLa cells reached the lowest value in the S phase and that there was no significant difference of ɛnu between in the G1 and G2 phases. Last, nucleoplasmic viscosity was found to be larger than cytoplasmic viscosity in both HeLa and ASTC-a-1 cells. These results indicate that FCS can be used as a noninvasive tool to investigate the microenvironment of living cells. This is the first report on the measurement of ɛnu in living cells synchronized in the G1, S, and G2 phases.

  11. 2D IR spectroscopy at 100 kHz utilizing a Mid-IR OPCPA laser source.

    PubMed

    Luther, Bradley M; Tracy, Kathryn M; Gerrity, Michael; Brown, Susannah; Krummel, Amber T

    2016-02-22

    We present a 100 kHz 2D IR spectrometer. The system utilizes a ytterbium all normal dispersion fiber oscillator as a common source for the pump and seed beams of a MgO:PPLN OPCPA. The 1030 nm OPCPA pump is generated by amplification of the oscillator in cryocooled Yb:YAG amplifiers, while the 1.68 μm seed is generated in a OPO pumped by the oscillator. The OPCPA outputs are used in a ZGP DFG stage to generate 4.65 μm pulses. A mid-IR pulse shaper delivers pulse pairs to a 2D IR spectrometer allowing for data collection at 100 kHz. PMID:26907062

  12. Four divalent transition metal carboxyarylphosphonate compounds: Hydrothermal synthesis, structural chemistry and generalized 2D FTIR correlation spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Lei, Ran; Chai, Xiaochuan; Mei, Hongxin; Zhang, Hanhui; Chen, Yiping; Sun, Yanqiong

    2010-07-01

    Four divalent transition metal carboxyarylphosphonates, [Ni(4,4'-bipy)H 2L 1(HL 1) 2(H 2O) 2]·2H 2O 1, [Ni 2(4,4'-bipy)(L 2)(OH)(H 2O) 2]·3H 2O 2, Mn(phen) 2(H 2L 1) 23 and Mn(phen)(HL 2) 4 (H 3L 1= p-H 2O 3PCH 2-C 6H 4-COOH, H 3L 2= m-H 2O 3PCH 2-C 6H 4-COOH, 4,4'-bipy=4,4'-bipyridine, phen=1,10-phenanthroline) were synthesized under hydrothermal conditions. 1 features 1D linear chains built from Ni(II) ions bridging 4,4'-bipy. In 2, neighboring Ni 4 cluster units are connected by pairs of H 3L 2 ligands to form 1D double-crankshaft chains, which are interconnected by pairs of 4,4'-bipy into 2D sheets. 3 exhibits 2D supramolecular layers via the R 22(8) ringed hydrogen bonding units. 4 has 1D ladderlike chains, in which the 4-membered rings are cross-linked by the organic moieties of the H 3L 2 ligands. Additionally, 2D FTIR correlation analysis is applied with thermal and magnetic perturbation to clarify the structural changes of functional groups from H 3L 1 and H 3L 2 ligands in the compounds more efficiently.

  13. Excimer laser fragmentation fluorescence spectroscopy for real-time monitoring of combustion generated pollutants

    NASA Astrophysics Data System (ADS)

    Damm, Christopher John

    Toxic pollutant emissions from combustion pose a hazard to public and environmental health. Better diagnostic techniques would benefit emissions monitoring programs and aid research aimed at understanding toxic pollutant formation and behavior. Excimer Laser Fragmentation Fluorescence Spectroscopy (ELFFS) provides sensitive, real-time, in situ measurements of several important combustion related pollutants. This thesis demonstrates the capabilities of ELFFS for detecting amines in combustion exhausts and carbonaceous particulate matter from engines. ELFFS photofragments target species using a 193 nm excimer laser to form fluorescent signature species. The NH (A--X) band at 336 nm is used to monitor ammonia, ammonium nitrate and ammonium sulfate. There are no major interferences in this spectral region. The sensitivity is approximately 100 ppb (1 second measurement) for ammonia in post flame gases and 100 ppb (mole fraction) for ammonium nitrate/sulfate in ambient air. Quenching of NH by the major combustion products does not limit the applicability of the detection method. Fluorescence from excited carbon atoms at 248 nm (1P 0 → 1S0) following photofragmentation measures particulate matter in a two-stroke gasoline engine and a four-stroke diesel engine. Fluorescence from CH (A2Delta → X 2pi, 431 nm) C2 (d3pig → a3piu, 468 nm) fragments is also observed. The atomic carbon fluorescence signal is proportional to the mass concentration of particles in the laser interrogation region. The 100-shot (1 second) detection limit for particles in the two-stroke gasoline engine exhaust is 0.5 ppb (volume fraction). The 100-shot detection limit for four-stroke diesel particulate matter is 0.2 ppb. Interferences from carbon monoxide and carbon dioxide are negligible. The ratios of atomic carbon, C2, and CH peaks provide information on the molecular forms of compounds condensed on or contained within the particles measured. The C/C2 signal ratio can be used to distinguish

  14. Analyses of the Dynamic Properties of Nuclear Lamins by Fluorescence Recovery After Photobleaching (FRAP) and Fluorescence Correlation Spectroscopy (FCS).

    PubMed

    Takeshi, Shimi; Pack, Chan-Gi; Goldman, Robert D

    2016-01-01

    The major structural components of the nuclear lamina are the A- and B-type nuclear lamin proteins which are also present in the nucleoplasm. Studies of molecular movements of the lamins in both the lamina and nucleoplasm of living cell nuclei have provided insights into their roles in maintaining nuclear architecture. In this chapter, we present protocols for quantitatively measuring the mobilities of lamin proteins by fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS) in mammalian cell nuclei. PMID:27147036

  15. Unraveling the heterogeneity in N butyl-N-methylpiperidinium trifluromethanesulfonimide ionic liquid by 1D and 2D NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tripathi, Neha; Saha, Satyen

    2014-06-01

    Room temperature ionic liquids are one of the most exciting classes of materials in the last decade. In particular piperidinium (PIP) cation based ionic liquid (IL) (such as PIP14NTf2) have found application in electrochemistry/batteries. In this Letter, 2D NMR (NOESY and HOESY) is employed for studying the interactions present between cations and anions. HOESY spectrum shows that fluorine of NTf2 unusually interacts with all proton of the cation (PIP14). Combined HOESY and NOESY indicate that NTf2 anion is distributed heterogeneously in liquid. Existence of micro heterogeneity in this important class of IL is proposed.

  16. Four divalent transition metal carboxyarylphosphonate compounds: Hydrothermal synthesis, structural chemistry and generalized 2D FTIR correlation spectroscopy studies

    SciTech Connect

    Lei Ran; Chai Xiaochuan; Mei Hongxin; Zhang Hanhui; Chen Yiping; Sun Yanqiong

    2010-07-15

    Four divalent transition metal carboxyarylphosphonates, [Ni(4,4'-bipy)H{sub 2}L{sup 1}(HL{sup 1}){sub 2}(H{sub 2}O){sub 2}].2H{sub 2}O 1, [Ni{sub 2}(4,4'-bipy)(L{sup 2})(OH)(H{sub 2}O){sub 2}].3H{sub 2}O 2, Mn(phen){sub 2}(H{sub 2}L{sup 1}){sub 2}3 and Mn(phen)(HL{sup 2}) 4 (H{sub 3}L{sup 1}=p-H{sub 2}O{sub 3}PCH{sub 2}-C{sub 6}H{sub 4}-COOH, H{sub 3}L{sup 2}=m-H{sub 2}O{sub 3}PCH{sub 2}-C{sub 6}H{sub 4}-COOH, 4,4'-bipy=4,4'-bipyridine, phen=1,10-phenanthroline) were synthesized under hydrothermal conditions. 1 features 1D linear chains built from Ni(II) ions bridging 4,4'-bipy. In 2, neighboring Ni{sub 4} cluster units are connected by pairs of H{sub 3}L{sup 2} ligands to form 1D double-crankshaft chains, which are interconnected by pairs of 4,4'-bipy into 2D sheets. 3 exhibits 2D supramolecular layers via the R{sub 2}{sup 2}(8) ringed hydrogen bonding units. 4 has 1D ladderlike chains, in which the 4-membered rings are cross-linked by the organic moieties of the H{sub 3}L{sup 2} ligands. Additionally, 2D FTIR correlation analysis is applied with thermal and magnetic perturbation to clarify the structural changes of functional groups from H{sub 3}L{sup 1} and H{sub 3}L{sup 2} ligands in the compounds more efficiently. - Graphical abstract: A series of divalent transition metal carboxyarylphosphonate compounds were synthesized under hydrothermal conditions. The figure displays 2D sheet structure with large windows in compound 2.

  17. Two dimensional laser induced fluorescence spectroscopy: A powerful technique for elucidating rovibronic structure in electronic transitions of polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Gascooke, Jason R.; Alexander, Ula N.; Lawrance, Warren D.

    2011-05-01

    We demonstrate the power of high resolution, two dimensional laser induced fluorescence (2D-LIF) spectroscopy for observing rovibronic transitions of polyatomic molecules. The technique involves scanning a tunable laser over absorption features in the electronic spectrum while monitoring a segment, in our case 100 cm-1 wide, of the dispersed fluorescence spectrum. 2D-LIF images separate features that overlap in the usual laser induced fluorescence spectrum. The technique is illustrated by application to the S1-S0 transition in fluorobenzene. Images of room temperature samples show that overlap of rotational contours by sequence band structure is minimized with 2D-LIF allowing a much larger range of rotational transitions to be observed and high precision rotational constants to be extracted. A significant advantage of 2D-LIF imaging is that the rotational contours separate into their constituent branches and these can be targeted to determine the three rotational constants individually. The rotational constants determined are an order of magnitude more precise than those extracted from the analysis of the rotational contour and we find the previously determined values to be in error by as much as 5% [G. H. Kirby, Mol. Phys. 19, 289 (1970), 10.1080/00268977000101291]. Comparison with earlier ab initio calculations of the S0 and S1 geometries [I. Pugliesi, N. M. Tonge, and M. C. R. Cockett, J. Chem. Phys. 129, 104303 (2008), 10.1063/1.2970092] reveals that the CCSD/6-311G** and RI-CC2/def2-TZVPP levels of theory predict the rotational constants, and hence geometries, with comparable accuracy. Two ground state Fermi resonances were identified by the distinctive patterns that such resonances produce in the images. 2D-LIF imaging is demonstrated to be a sensitive method capable of detecting weak spectral features, particularly those that are otherwise hidden beneath stronger bands. The sensitivity is demonstrated by observation of the three isotopomers of fluorobenzene

  18. 2D IR Spectroscopy using Four-Wave Mixing, Pulse Shaping, and IR Upconversion: A Quantitative Comparison

    PubMed Central

    Rock, William; Li, Yun-Liang; Pagano, Philip; Cheatum, Christopher M.

    2013-01-01

    Recent technological advances have led to major changes in the apparatuses used to collect 2D IR spectra. Pulse shaping offers several advantages including rapid data collection, inherent phase stability, and phase cycling capabilities. Visible array detection via upconversion allows the use of visible detectors that are cheaper, faster, more sensitive, and less noisy than IR detectors. However, despite these advantages, many researchers are reluctant to implement these technologies. Here we present a quantitative study of the S/N of 2D IR spectra collected with a traditional four-wave mixing (FWM) apparatus, with a pulse shaping apparatus, and with visible detection via upconversion to address the question of whether or not weak chromophores at low concentrations are still accessible with such an apparatus. We find that the enhanced averaging capability of the pulse shaping apparatus enables the detection of small signals that would be challenging to measure even with the traditional FWM apparatus, and we demonstrate this ability on a sample of cyanylated dihydrofolate reductase (DHFR). PMID:23687988

  19. Fluorescence lifetime spectroscopy for breast cancer margins assessment

    NASA Astrophysics Data System (ADS)

    Gorpas, Dimitris; Fatakdawala, Hussain; Zhang, Yanhong; Bold, Richard; Marcu, Laura

    2015-03-01

    During breast conserving surgery (BCS), which is the preferred approach to treat most early stage breast cancers, the surgeon attempts to excise the tumor volume, surrounded by thin margin of normal tissue. The intra-operative assessment of cancerous areas is a challenging procedure, with the surgeon usually relying on visual or tactile guidance. This study evaluates whether time-resolved fluorescence spectroscopy (TRFS) presents the potential to address this problem. Point TRFS measurements were obtained from 19 fresh tissue slices (7 patients) and parameters that characterize the transient signals were quantified via constrained least squares deconvolution scheme. Fibrotic tissue (FT, n=69), adipose tissue (AT, n=76), and invasive ductal carcinoma (IDC, n=27) were identified in histology and univariate statistical analysis, followed by multi-comparison test, was applied to the corresponding lifetime data. Significant differentiation between the three tissue types exists at 390 nm and 500 nm bands. The average lifetime is 3.23+/-0.74 ns for AT, 4.21+/-0.83 ns for FT and 4.71+/-0.35 ns (p<0.05) for IDC at 390 nm. Due to the smaller contribution of collagen in AT the average lifetime value is different from FT and IDC. Additionally, although intensity measurements do not show difference between FT and IDC, lifetime can distinguish them. Similarly, in 500 nm these values are 7.01+/-1.08 ns, 5.43+/-1.05 ns and 4.39+/-0.88 ns correspondingly (p<0.05) and this contrast is due to differentiation in retinol or flavins relative concentration, mostly contributing to AT. Results demonstrate the potential of TRFS to intra-operatively characterize BCS breast excised tissue in real-time and assess tumor margins.

  20. Terahertz Spectroscopy and Global Analysis of the Bending Vibrations of ^{12}C_2H_2 and ^{12}C_2D_2

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Drouin, Brian J.; Pearson, John C.; Pickett, Herbert M.; Lattanzi, Valerio; Walters, Adam

    2009-06-01

    Symmetric molecules have no permanent dipole moment and are undetectable by rotational spectroscopy. Their interstellar observations have previously been limited to mid-infrared vibration-rotation spectroscopy. Although relatively weak, vibrational difference bands provide a means for detection of non polar molecules by terahertz techniques with microwave precision. Herschel, SOFIA, and ALMA have the potential to identify a number of difference bands of light symmetric species, e.g., C_2H_2, CH_4 and C_3. This paper reports the results of the laboratory study on ^{12}C_2H_2 and ^{12}C_2D_2. The symmetric isotopomers of acetylene have two bending modes, the trans bending ν_4 (^1{π}_g), and the cis bending ν_5 (^1{π}_u). For ^{12}C_2H_2, the two bending modes occur at 612 and 729 cm^{-1}, respectively. For ^{12}C_2D_2, the two bending modes occur at 511 and 538 cm^{-1}. The ν_5-ν_4 difference bands are allowed and occur in the microwave, terahertz, and far-infrared wavelengths, with band origins at 117 cm^{-1} (3500 GHz) for ^{12}C_2H_2 and 27 cm^{-1} (900 GHz) for ^{12}C_2D_2. Two hundred and fifty-one ^{12}C_2D_2 transitions, which are from ν_5-ν_4, (ν_5+ν_4)-2ν_4 and 2ν_5-(ν_5+ν_4) bands, have been measured in the 0.2-1.6 THz region, and 202 of them were observed for the first time. The precision of these measurements is estimated to be from 50 kHz to 100 kHz. A multistate analysis was carried out for the bending vibrational modes ν_4 and ν_5 of ^{12}C_2D_2, which includes the lines observed in this work and prior microwave, far-infrared and infrared data on the pure bending levels. Significantly improved molecular parameters were obtained for ^{12}C_2D_2 by adding the new measurements to the old data set which had only 10 lines with microwave measurement precision. The experiments on ^{12}C_2H_2 are in progress and ten P branch lines have been observed. We will present the ^{12}C_2H_2 results to date.

  1. In-vivo pharmacokinetic study of two fluorescein derivatives by fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Soulie-Begu, Sylvie; Devoisselle, Jean-Marie; Mordon, Serge R.

    1995-12-01

    We have already demonstrated the ability of fluorescence spectroscopy and imaging to measure the pH of superficial tissues using pH sensitive fluorescent probes. The purpose of this study was to investigate the in vivo behavior of such fluorescent probes. We report the monitoring of tissue fluorescence after injection of two fluorescein derivatives (carboxyfluorescein and biscarboxyethyl-carboxyfluorescein). The in vivo study was performed on anaesthetized adult Wistar rats. After laparotomy, CF or BCECF solution was injected into the penial vein. Fluorescence spectra were recorded during one hour using an optical multichannel analyzer coupled to a CCD camera. Fiber optic was placed alternatively on the liver area or on the skin. Blood samples were collected and fluorescence was measured in vitro. A clear linear relationship between dose and fluorescence intensity was found in liver for these fluorescent markers. Concerning spectral characteristics, it was found that CF and BCECF spectra show a shift compared to in vivo maximum emission peak and BCECF emission peak was different when recorded in the liver and in the skin. Differences of kinetic profiles are also observed between CF and BCECF. The BCECF derivative displays a fluorescence peak in the liver two minutes after injection, while CF fluorescence peak is observed seven minutes after injection. Clearance of skin fluorescence is slower than the plasmatic one indicating that dye elimination in superficial blood vessels does not follow the same pharmacokinetic behavior. Based on these preliminary findings, fluorescence spectroscopy appears as a tool in pharmacokinetic study in situ and in vivo.

  2. Synthesis and structure elucidation of a series of pyranochromene chalcones and flavanones using 1D and 2D NMR spectroscopy and X-ray crystallography.

    PubMed

    Pawar, Sunayna S; Koorbanally, Neil A

    2014-06-01

    A series of novel pyranochromene chalcones and corresponding flavanones were synthesized. This is the first report on the confirmation of the absolute configuration of chromene-based flavanones using X-ray crystallography. These compounds were characterized by 2D NMR spectroscopy, and their assignments are reported herein. The 3D structure of the chalcone 3b and flavanone 4g was determined by X-ray crystallography, and the structure of the flavanone was confirmed to be in the S configuration at C-2.

  3. Polarization shaping in the mid-IR and polarization-based balanced heterodyne detection with application to 2D IR spectroscopy

    PubMed Central

    Middleton, Chris T.; Strasfeld, David B.; Zanni, Martin T.

    2010-01-01

    We demonstrate amplitude, phase and polarization shaping of femtosecond mid-IR pulses using a germanium acousto-optical modulator by independently shaping the frequency-dependent amplitudes and phases of two orthogonally polarized pulses which are then collinearly overlapped using a wire-grid polarizer. We use a feedback loop to set and stabilize the relative phase of the orthogonal pulses. We have also used a wire-grid polarizer to implement polarization-based balanced heterodyne detection for improved signal-to-noise of 2D IR spectra collected in a pump-probe geometry. Applications include coherent control of molecular vibrations and improvements in multidimensional IR spectroscopy. PMID:19687931

  4. Characterization of thermal shock damage in a 2D-woven fiber CVI SiC composite using resonant ultrasound spectroscopy

    SciTech Connect

    Webb, J.E.; Singh, R.N.; Cari, H.; Ferber, M.K.

    1996-12-31

    Thermal shock damage was generated by a water quench technique in 2-D woven-Nicalon{trademark} fiber chemical vapor infiltrated (CVI) SiC composite bars. In this study, resonant ultrasound spectroscopy (RUS) was used as a nondestructive evaluation (NDE) technique to quantify such damage. RUS spectra were measured for each specimen before and after quenching. The results show a clear correlation between the quench temperature difference ({Delta}T) and changes in the RUS spectra. Both the resonant frequencies and the resonance quality factor decreased with increasing magnitude of {Delta}T, thus, providing quantitative measures for the degree of thermal shock damage.

  5. Exploring doxorubicin localization in eluting TiO2 nanotube arrays through fluorescence correlation spectroscopy analysis.

    PubMed

    De Santo, Ilaria; Sanguigno, Luigi; Causa, Filippo; Monetta, Tullio; Netti, Paolo A

    2012-11-01

    Drug elution properties of TiO(2) nanotube arrays have been largely investigated by means of solely macroscopic observations. Controversial elution performances have been reported so far and a clear comprehension of these phenomena is still missing as a consequence of a lack of molecular investigation methods. Here we propose a way to discern drug elution properties of nanotubes through the evaluation of drug localization by Fluorescence Correlation Spectroscopy (FCS) analysis. We verified this method upon doxorubicin elution from differently loaded TiO(2) nanotubes. Diverse elution profiles were obtained from nanotubes filled by soaking and wet vacuum impregnation methods. Impregnated nanotubes controlled drug diffusion up to thirty days, while soaked samples completed elution in seven days. FCS analysis of doxorubicin motion in loaded nanotubes clarified that more than 90% of drugs dwell preferentially in inter-nanotube spaces in soaked samples due to decorrelation in a 2D fashion, while a 97% fraction of molecules showed 1D mobility ascribable to displacements along the nanotube vertical axis of wet vacuum impregnated nanotubes. The diverse drug localizations inferred from FCS measurements, together with distinct drug-surface interaction strengths resulting from diverse drug filling techniques, could explain the variability in elution kinetics.

  6. Multiple stimulated emission fluorescence photoacoustic sensing and spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Gaoming; Gao, Fei; Qiu, Yishen; Feng, Xiaohua; Zheng, Yuanjin

    2016-07-01

    Multiple stimulated emission fluorescence photoacoustic (MSEF-PA) phenomenon is demonstrated in this letter. Under simultaneous illumination of pumping light and stimulated emission light, the fluorescence emission process is speeded up by the stimulated emission effect. This leads to nonlinear enhancement of photoacoustic signal while the quantity of absorbed photons is more than that of fluorescent molecules illuminated by pumping light. The electronic states' specificity of fluorescent molecular can also be labelled by the MSEF-PA signals, which can potentially be used to obtain fluorescence excitation spectrum in deep scattering tissue with nonlinearly enhanced photoacoustic detection. In this preliminary study, the fluorescence excitation spectrum is reconstructed by MSEF-PA signals through sweeping the wavelength of exciting light, which confirms the theoretical derivation well.

  7. Fluorescent spectroscopy, a technique for characterizing surface films

    USGS Publications Warehouse

    Goldberg, Marvin C.; Devonald, David H.

    1973-01-01

    A relationship is established between fluorescent spectra obtained by using a light path through the liquid solution and the fluorescent spectra obtained by a direct reading of surface reflection (remote sensing). A brief review of quantum fundamentals provides the necessary information to conclude that "see-through" and reflectance spectra are identical in wavelength response. Many floating films contain fluorescent materials; thus fluorescent spectroscopic techniques were used to obtain the fluorescent spectra of lube oil, crude oil, andlignosulfonie acid in an effort to detect, identify, and quantify these representative fluorescent materials in water solutions. For each material tested the emission maximum was established. The emission maximum was then held constant while the absorption spectrum was recorded and the absorption maximum established. The complete spectral curves are presented.

  8. High volume confinement in two-photon fluorescence correlation spectroscopy with radially polarized light

    NASA Astrophysics Data System (ADS)

    Ivanov, D.; Shcheslavskiy, V.; Märki, I.; Leutenegger, M.; Lasser, T.

    2009-02-01

    We present the results on two-photon total-internal-reflection fluorescence correlation spectroscopy. The combination of liquid crystal spatial light modulator, providing radial polarization, with ultrafast laser (picosecond Nd:GdVO4 laser) allowed us to take the advantage of nonlinear optical contrast mechanisms to suppress the side-lobe energy specific for radial polarization and reduce the effective excited volume twice compared to one-photon evanescent wave excitation in fluorescence correlation spectroscopy.

  9. High volume confinement in two-photon total-internal-reflection fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Ivanov, D.; Shcheslavskiy, V.; Märki, I.; Leutenegger, M.; Lasser, T.

    2009-02-01

    We report results on two-photon total-internal-reflection fluorescence correlation spectroscopy with radially polarized light. The combination of liquid crystal spatial light modulator, providing radial polarization with ultrafast laser (picosecond Nd:GdVO4 laser), allowed us to take the advantage of nonlinear optical contrast mechanisms to suppress the side-lobe energy specific for radial polarization and reduce the effective excited volume twice compared to one-photon evanescent wave excitation in fluorescence correlation spectroscopy.

  10. Excitation–emission matrices and synchronous fluorescence spectroscopy for the diagnosis of gastrointestinal cancers

    NASA Astrophysics Data System (ADS)

    Genova, Ts; Borisova, E.; Penkov, N.; Vladimirov, B.; Zhelyazkova, A.; Avramov, L.

    2016-06-01

    We report the development of an improved fluorescence technique for cancer diagnostics in the gastrointestinal tract. We investigate the fluorescence of ex vivo colorectal (cancerous and healthy) tissue samples using excitation–emission matrix (EEM) and synchronous fluorescence spectroscopy (SFS) steady-state approaches. The obtained results are processed for revealing characteristic fluorescence spectral features with a valuable diagnostic meaning. The main tissue fluorophores, contributing to the observed fluorescence, are tyrosine, tryptophan, NADH, FAD, collagen and elastin. Based on the results of the Mann–Whitney test as useful parameters for differentiation of gastrointestinal cancer from normal mucosa, we suggest using excitation wavelengths in the range 300 – 360 nm for fluorescence spectroscopy and wavelengths intervals of 60 nm and 90 nm for SFS.

  11. Excitation-emission matrices and synchronous fluorescence spectroscopy for the diagnosis of gastrointestinal cancers

    NASA Astrophysics Data System (ADS)

    Genova, Ts; Borisova, E.; Penkov, N.; Vladimirov, B.; Zhelyazkova, A.; Avramov, L.

    2016-06-01

    We report the development of an improved fluorescence technique for cancer diagnostics in the gastrointestinal tract. We investigate the fluorescence of ex vivo colorectal (cancerous and healthy) tissue samples using excitation-emission matrix (EEM) and synchronous fluorescence spectroscopy (SFS) steady-state approaches. The obtained results are processed for revealing characteristic fluorescence spectral features with a valuable diagnostic meaning. The main tissue fluorophores, contributing to the observed fluorescence, are tyrosine, tryptophan, NADH, FAD, collagen and elastin. Based on the results of the Mann-Whitney test as useful parameters for differentiation of gastrointestinal cancer from normal mucosa, we suggest using excitation wavelengths in the range 300 - 360 nm for fluorescence spectroscopy and wavelengths intervals of 60 nm and 90 nm for SFS.

  12. Studies on the mechanism of the peroxyoxalate chemiluminescence reaction: part 2. Further identification of intermediates using 2D EXSY 13C nuclear magnetic resonance spectroscopy.

    PubMed

    Tonkin, Sarah A; Bos, Richard; Dyson, Gail A; Lim, Kieran F; Russell, Richard A; Watson, Simon P; Hindson, Christopher M; Barnett, Neil W

    2008-05-01

    Further consideration has been given to the reaction pathway of a model peroxyoxalate chemiluminescence system. Again utilising doubly labelled oxalyl chloride and anhydrous hydrogen peroxide, 2D EXSY (13)C nuclear magnetic resonance (NMR) spectroscopy experiments allowed for the characterisation of unknown products and key intermediate species on the dark side of the peroxyoxalate chemiluminescence reaction. Exchange spectroscopy afforded elucidation of a scheme comprised of two distinct mechanistic pathways, one of which contributes to chemiluminescence. (13)C NMR experiments carried out at varied reagent molar ratios demonstrated that excess amounts of hydrogen peroxide favoured formation of 1,2-dioxetanedione: the intermediate that, upon thermolysis, has been long thought to interact with a fluorophore to produce light. PMID:18420048

  13. Tryptophan content for monitoring breast cancer cell aggressiveness by native fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Pu, Yang; Xue, Jianpeng; Pratavieira, Sebastião.; Xu, Baogang; Achilefu, Samuel; Alfano, R. R.

    2014-03-01

    This study shows tryptophan as the key native marker in cells to determine the level of aggressive cancer in breast cell lines using native fluorescence spectroscopy. An algorithm based on the ratio of tryptophan fluorescence intensity at 340 nm to intensity at 460 nm is associated with aggressiveness of the cancer cells. The higher the ratio is, the more aggressive the tumor towards metastasis.

  14. Evaluation on intrinsic quality of licorice influenced by environmental factors by using FTIR combined with 2D-IR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Ying-qun; Yu, Hua; Zhang, Yan-ling; Sun, Su-qin; Chen, Shi-lin; Zhao, Run-huai; Zhou, Qun; Noda, Isao

    2010-06-01

    To evaluate the intrinsic quality of licorice influenced by environmental factors, the spectral comparison of licorice from two typical ecological habitats was conducted by using FTIR and 2D-IR correlation spectroscopy. There were differences in the peak intensities of 1155, 1076 and 1048 cm -1 of FTIR profiles. The difference was amplified by the second derivative spectrum for the peak intensities at 1370, 1365 and 1317 cm -1 and the peak shape in 958-920 cm -1 and 1050-988 cm -1. The synchronous 2D-IR spectra within the range of 860-1300 cm -1 were classified into type I and type II and their frequency in the two groups was noticeably different. Although the chemical compounds of licorice samples from two areas were generally similar, the contents of starch, calcium oxalate, and some chemical compounds containing alcohol hydroxyl group were different, indicating the influence of precipitation and temperature. This study demonstrates that the systematical analysis of FTIR, the second derivative spectrum and 2D-IR can effectively determine the differences in licorice samples from different ecological habitats.

  15. A fluorescence spectroscopy study of traditional Chinese medicine Angelica

    NASA Astrophysics Data System (ADS)

    Zhao, Hongyan; Song, Feng; Liu, Shujing; Chen, Guiyang; Wei, Chen; Liu, Yanling; Liu, Jiadong

    2013-10-01

    By measuring the fluorescence spectra of Chinese medicine (CM) Angelica water solutions with different concentrations from 0.025 to 2.5 mg/mL, results showed that the fluorescence intensity was proportional to the concentration. Through fluorescence spectra of Angelica solution under different pH values, results indicated coumarin compounds were the active ingredients of Angelica. We also observed fluorescence quenching of the Angelica solution in the presence of spherical silver nanoparticles with radius of 12 nm. Keeping a certain value for the volume of the silver nanoparticles, the fluorescence intensity at 402 nm was linearly proportional to the Angelica in the range of 1-3 mg/mL.

  16. Two Keggin-type heteropolytungstates with transition metal as a central atom: Crystal structure and magnetic study with 2D-IR correlation spectroscopy

    SciTech Connect

    Chai, Feng; Chen, YiPing; You, ZhuChai; Xia, ZeMin; Ge, SuZhi; Sun, YanQiong; Huang, BiHua

    2013-06-01

    Two Keggin-type heteropolytungstates, [Co(phen)₃]₃[CoW₁₂O₄₀]·9H₂O 1 (phen=1,10-phenanthroline) and [Fe(phen)₃]₂[FeW₁₂O₄₀]·H₃O·H₂O 2, have been synthesized via the hydrothermal technique and characterized by single crystal X-ray diffraction analyses, IR, XPS, TG analysis, UV–DRS, XRD, thermal-dependent and magnetic-dependent 2D-COS IR (two-dimensional infrared correlation spectroscopy). Crystal structure analysis reveals that the polyanions in compound 1 are linked into 3D supramolecule through hydrogen bonding interactions between lattice water molecules and terminal oxygen atoms of polyanion units, and [Co(phen)₃]²⁺ cations distributed in the polyanion framework with many hydrogen bonding interactions. The XPS spectra indicate that all the Co atoms in 1 are +2 oxidation state, the Fe atoms in 2 existing with +2 and +3 mixed oxidation states. - Graphical abstract: The magnetic-dependent synchronous 2D correlation IR spectra of 1 (a), 2 (b) over 0–50 mT in the range of 600–1000 cm⁻¹, the obvious response indicate two Keggin polyanions skeleton susceptible to applied magnetic field. Highlights: • Two Keggin-type heteropolytungstates with transition metal as a central atom has been obtained. • Compound 1 forms into 3D supramolecular architecture through hydrogen bonding between water molecules and polyanions. • Magnetic-dependent 2D-IR correlation spectroscopy was introduced to discuss the magnetism of polyoxometalate.

  17. Single gold nanoparticles to enhance the detection of single fluorescent molecules at micromolar concentration using fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Punj, Deep; Rigneault, Hervé; Wenger, Jérôme

    2014-05-01

    Single nanoparticles made of noble metals are strongly appealing to develop practical applications to detect fluorescent molecules in solution. Here, we detail the use of a single gold nanoparticle of 100 nm diameter to enhance the detection of single Alex Fluor 647 fluorescent molecules at high concentrations of several micromolar. We discuss the implementation of fluorescence correlation spectroscopy, and provide a new method to reliably extract the enhanced fluorescence signal stemming from the nanoparticle near-field from the background generated in the confocal volume. The applicability of our method is checked by reporting the invariance of the single molecule results as function of the molecular concentration, and the experimental data is found in good agreement with numerical simulations.

  18. Solvation of fluoro-acetonitrile in water by 2D-IR spectroscopy: A combined experimental-computational study

    SciTech Connect

    Cazade, Pierre-André; Das, Akshaya K.; Tran, Halina; Kläsi, Felix; Hamm, Peter; Bereau, Tristan; Meuwly, Markus

    2015-06-07

    The solvent dynamics around fluorinated acetonitrile is characterized by 2-dimensional infrared spectroscopy and atomistic simulations. The lineshape of the linear infrared spectrum is better captured by semiempirical (density functional tight binding) mixed quantum mechanical/molecular mechanics simulations, whereas force field simulations with multipolar interactions yield lineshapes that are significantly too narrow. For the solvent dynamics, a relatively slow time scale of 2 ps is found from the experiments and supported by the mixed quantum mechanical/molecular mechanics simulations. With multipolar force fields fitted to the available thermodynamical data, the time scale is considerably faster—on the 0.5 ps time scale. The simulations provide evidence for a well established CF–HOH hydrogen bond (population of 25%) which is found from the radial distribution function g(r) from both, force field and quantum mechanics/molecular mechanics simulations.

  19. Volcanic SO2 and SiF4 visualization and their ratio monitored using 2-D thermal emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Stremme, W.; Krueger, A.; Harig, R.; Grutter, M.

    2011-09-01

    The composition and emission rates of volcanic gas plumes provide insight of the geologic internal activity, atmospheric chemistry, aerosol formation and radiative processes around it. Observations are necessary for public security and the aviation industry. Ground-based thermal emission infrared spectroscopy, which uses the radiation of the volcanic gas itself, allows for continuously monitoring during day and night from a save distance. We present measurements on Popocatépetl volcano based on thermal emission spectroscopy during different campaigns between 2006-2009 using a Scanning Infrared Gas Imaging System (SIGIS). The experimental set-up, measurement geometries and analytical algorithms are described. The equipment was operated from a safe distance of 12 km from the volcano at two different spectral resolutions: 0.5 and 4 cm-1. The 2-dimensional scanning capability of the instrument allows for an on-line visualization of the volcanic SO2 plume, animation and determination of its propagation speed. SiF4 was also identified in the infrared spectra recorded at both resolutions. The SiF4/SO2 molecular ratio can be calculated from each image and used as a highly useful parameter to follow changes in volcanic activity. A small Vulcanian eruption was monitored during the night of 16 to 17 November 2008 which was confirmed from the strong ash emission registered around 01:00 a.m. LST (Local Standard Time) and a pronounced SO2 cloud was registered. Enhanced SiF4/SO2 ratios were observed before and after the eruption. A validation of the results from thermal emission measurements with those from absorption spectra of the moon taken at the same time, as well as an error analysis, are presented. The inferred propagation speed from sequential imagees is used to calculate the emission rates at different distances from the crater.

  20. Optical spectroscopy of a highly fluorescent aggregate of bacteriochlorophyll c

    NASA Technical Reports Server (NTRS)

    Causgrove, T. P.; Cheng, P.; Brune, D. C.; Blankenship, R. E.

    1993-01-01

    Bacteriochlorophyll (BChl) c and a similar model compound, Mg-methyl bacteriopheophorbide d, form several types of aggregates in nonpolar solvents. One of these aggregates is highly fluorescent, with a quantum yield higher than that of the monomer. This aggregate is also unusual in that it shows a rise time in its fluorescence emission decay at certain wavelengths, which is ascribed to a change in conformation of the aggregate. An analysis of fluorescence depolarization data is consistent with either a linear aggregate of four or five monomers or preferably a cyclic arrangement of three dimers.

  1. Laser-induced fluorescence spectroscopy of the secondary cataract

    NASA Astrophysics Data System (ADS)

    Maslov, N. A.; Larionov, P. M.; Rozhin, I. A.; Druzhinin, I. B.; Chernykh, V. V.

    2016-06-01

    Excitation-emission matrices of laser-induced fluorescence of lens capsule epithelium, the lens nucleus, and the lens capsule are investigated. A solid-state laser in combination with an optical parametric generator tunable in the range from 210 to 350 nm was used for excitation of fluorescence. The spectra of fluorescence of all three types of tissues exhibit typical features that are specific to them and drastically differ from one another. This effect can be used for intrasurgical control of presence of residual lens capsule epithelium cells in the capsular bag after surgical treatment of a cataract.

  2. Detection of mechanical and disease stresses in citrus plants by fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Belasque, J., Jr.; Gasparoto, M. C. G.; Marcassa, L. G.

    2008-04-01

    We have investigated the detection of mechanical and disease stresses in citrus plants (Citrus limonia [L.] Osbeck) using laser-induced fluorescence spectroscopy. Due to its economic importance we have chosen to investigate the citrus canker disease, which is caused by the Xanthomonas axonopodis pv. citri bacteria. Mechanical stress was also studied because it plays an important role in the plant's infection by such bacteria. A laser-induced fluorescence spectroscopy system, composed of a spectrometer and a 532 nm10 mW excitation laser was used to perform fluorescence spectroscopy. The ratio of two chlorophyll fluorescence bands allows us to detect and discriminate between mechanical and disease stresses. This ability to discriminate may have an important application in the field to detect citrus canker infected trees.

  3. Anabaena cell ageing monitored with confocal fluorescence spectroscopy.

    PubMed

    Ke, Shan; Bindokas, Vytas; Haselkorn, Robert

    2015-01-01

    Cyanobacteria use a sophisticated system of pigments to collect light energy across the visible spectrum for photosynthesis. The pigments are assembled in structures called phycobilisomes, composed of phycoerythrocyanin, phycocyanin and allophycocyanin, which absorb energy and transfer it to chlorophyll in photosystem II reaction centres. All of the components of this system are fluorescent, allowing sensitive measurements of energy transfer using single cell confocal fluorescence microscopy. The native pigments can be interrogated without the use of reporters. Here, we use confocal fluorescence microscopy to monitor changes in the efficiency of energy transfer as single cells age, between the time they are born at cell division until they are ready to divide again. Alteration of fluorescence was demonstrated to change with the age of the cyanobacterial cell.

  4. Excitation emission and time-resolved fluorescence spectroscopy of selected varnishes used in historical musical instruments.

    PubMed

    Nevin, Austin; Echard, Jean-Philippe; Thoury, Mathieu; Comelli, Daniela; Valentini, Gianluca; Cubeddu, Rinaldo

    2009-11-15

    The analysis of various varnishes from different origins, which are commonly found on historical musical instruments was carried out for the first time with both fluorescence excitation emission spectroscopy and laser-induced time-resolved fluorescence spectroscopy. Samples studied include varnishes prepared using shellac, and selected diterpenoid and triterpenoid resins from plants, and mixtures of these materials. Fluorescence excitation emission spectra have been collected from films of naturally aged varnishes. In parallel, time-resolved fluorescence spectroscopy of varnishes provides means for discriminating between short- (less than 2.0 ns) and long-lived (greater than 7.5 ns) fluorescence emissions in each of these complex materials. Results suggest that complementary use of the two non destructive techniques allows a better understanding of the main fluorophores responsible for the emission in shellac, and further provides means for distinguishing the main classes of other varnishes based on differences in fluorescence lifetime behaviour. Spectrofluorimetric data and time resolved spectra presented here may form the basis for the interpretation of results from future in situ fluorescence examination and time resolved fluorescence imaging of varnished musical instruments.

  5. Comparative studies on the interaction of cefixime with bovine serum albumin by fluorescence quenching spectroscopy and synchronous fluorescence spectroscopy.

    PubMed

    Zhang, Lihui; Liu, Baosheng; Li, Zhiyun; Guo, Ying

    2015-08-01

    Under simulated physiological conditions, the reaction mechanism between cefixime and bovine serum albumin at different temperatures (293, 303 and 310 K) was investigated using a fluorescence quenching method and synchronous fluorescence method, respectively. The results indicated that the fluorescence intensity and synchronous fluorescence intensity of bovine serum albumin decreased regularly on the addition of cefixime. In addition, the quenching mechanism, binding constants, number of binding sites, type of interaction force and energy-transfer parameters of cefixime with bovine serum albumin obtained from two methods using the same equation were consistent. The results indicated that the synchronous fluorescence spectrometry could be used to study the binding mechanism between drug and protein, and was a useful supplement to the conventional method.

  6. Two-photon fluorescence correlation spectroscopy with high count rates and low background using dielectric microspheres

    PubMed Central

    Aouani, Heykel; Schön, Peter; Brasselet, Sophie; Rigneault, Hervé; Wenger, Jérôme

    2010-01-01

    Two-photon excitation fluorescence is a powerful technique commonly used for biological imaging. However, the low absorption cross section of this non-linear process is a critical issue for performing biomolecular spectroscopy at the single molecule level. Enhancing the two-photon fluorescence signal would greatly improve the effectiveness of this technique, yet current methods struggle with medium enhancement factors and/or high background noise. Here, we show that the two-photon fluorescence signal from single Alexa Fluor 488 molecules can be enhanced up to 10 times by using a 3 µm diameter latex sphere while adding almost no photoluminescence background. We report a full characterization of the two-photon fluorescence enhancement by a single microsphere using fluorescence correlation spectroscopy. This opens new routes to enhance non-linear optical signals and extend biophotonic applications. PMID:21258531

  7. Pin-Hole Array Correlation Imaging: Highly Parallel Fluorescence Correlation Spectroscopy

    PubMed Central

    Needleman, Daniel J.; Xu, Yangqing; Mitchison, Timothy J.

    2009-01-01

    Abstract In this work, we describe pin-hole array correlation imaging, a multipoint version of fluorescence correlation spectroscopy, based upon a stationary Nipkow disk and a high-speed electron multiplying charged coupled detector. We characterize the system and test its performance on a variety of samples, including 40 nm colloids, a fluorescent protein complex, a membrane dye, and a fluorescence fusion protein. Our results demonstrate that pin-hole array correlation imaging is capable of simultaneously performing tens or hundreds of fluorescence correlation spectroscopy-style measurements in cells, with sufficient sensitivity and temporal resolution to study the behaviors of membrane-bound and soluble molecules labeled with conventional chemical dyes or fluorescent proteins. PMID:19527665

  8. Ultrafast fluorescence spectroscopy via upconversion applications to biophysics.

    PubMed

    Xu, Jianhua; Knutson, Jay R

    2008-01-01

    This chapter reviews basic concepts of nonlinear fluorescence upconversion, a technique whose temporal resolution is essentially limited only by the pulse width of the ultrafast laser. Design aspects for upconversion spectrophotofluorometers are discussed, and a recently developed system is described. We discuss applications in biophysics, particularly the measurement of time-resolved fluorescence spectra of proteins (with subpicosecond time resolution). Application of this technique to biophysical problems such as dynamics of tryptophan, peptides, proteins, and nucleic acids is reviewed.

  9. Fluorescence spectroscopy of anisole at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Tran, K. H.; Morin, C.; Kühni, M.; Guibert, P.

    2014-06-01

    Laser-induced fluorescence of anisole as tracer of isooctane at an excitation wavelength of 266 nm was investigated for conditions relevant to rapid compression machine studies and for more general application of internal combustion engines regarding temperature, pressure, and ambient gas composition. An optically accessible high pressure and high temperature chamber was operated by using different ambient gases (Ar, N2, CO2, air, and gas mixtures). Fluorescence experiments were investigated at a large range of pressure and temperature (0.2-4 MPa and 473-823 K). Anisole fluorescence quantum yield decreases strongly with temperature for every considered ambient gas, due to efficient radiative mechanisms of intersystem crossing. Concerning the pressure effect, the fluorescence signal decreases with increasing pressure, because increasing the collisional rate leads to more important non-radiative collisional relaxation. The quenching effect is strongly efficient in oxygen, with a fluorescence evolution described by Stern-Volmer relation. The dependence of anisole fluorescence versus thermodynamic parameters suggests the use of this tracer for temperature imaging in specific conditions detailed in this paper. The calibration procedure for temperature measurements is established for the single-excitation wavelength and two-color detection technique.

  10. Time-resolved fluorescence spectroscopy of spinach chloroplast.

    PubMed

    Yu, W; Pellegrino, F; Alfano, R R

    1977-04-11

    Picosecond fluorescent kinetics and time-resolved spectra of spinach chloroplast were measured at room temperature and low temperatures. The measurement is conducted with 530 nm excitation at an average intensity of 2-10(14) photons/cm2, pluse and at a pulse separation of 6 ns for the 100 pulses used. The 685 nm fluorescent kinetics was found to decay with two components, a fast component with a 56 ps lifetime, and a slow component with a 220 ps lifetime. The 730 nm fluorescent kinetics at room temperature is a single exponential decay with a 100 ps lifetime. The 730 nm fluorescence lifetime was found to increase by a factor of 6 when the temperature was lowered from room temperature to 90 K, while the 685 and 695 nm fluorescent kinetics were unchanged. The time-resolved spectra data obtained within 10 ps after excitation is consistent with the kinetic data reported here. A two-level fluorescence scheme is proposed to explain the kinetics. The effect of excitation with high light intensity and multiple pulses is discussed.

  11. Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy.

    PubMed

    Bakulin, Artem A; Morgan, Sarah E; Kehoe, Tom B; Wilson, Mark W B; Chin, Alex W; Zigmantas, Donatas; Egorova, Dassia; Rao, Akshay

    2016-01-01

    Singlet fission is the spin-allowed conversion of a spin-singlet exciton into a pair of spin-triplet excitons residing on neighbouring molecules. To rationalize this phenomenon, a multiexcitonic spin-zero triplet-pair state has been hypothesized as an intermediate in singlet fission. However, the nature of the intermediate states and the underlying mechanism of ultrafast fission have not been elucidated experimentally. Here, we study a series of pentacene derivatives using ultrafast two-dimensional electronic spectroscopy and unravel the origin of the states involved in fission. Our data reveal the crucial role of vibrational degrees of freedom coupled to electronic excitations that facilitate the mixing of multiexcitonic states with singlet excitons. The resulting manifold of vibronic states drives sub-100 fs fission with unity efficiency. Our results provide a framework for understanding singlet fission and show how the formation of vibronic manifolds with a high density of states facilitates fast and efficient electronic processes in molecular systems.

  12. Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Bakulin, Artem A.; Morgan, Sarah E.; Kehoe, Tom B.; Wilson, Mark W. B.; Chin, Alex W.; Zigmantas, Donatas; Egorova, Dassia; Rao, Akshay

    2016-01-01

    Singlet fission is the spin-allowed conversion of a spin-singlet exciton into a pair of spin-triplet excitons residing on neighbouring molecules. To rationalize this phenomenon, a multiexcitonic spin-zero triplet-pair state has been hypothesized as an intermediate in singlet fission. However, the nature of the intermediate states and the underlying mechanism of ultrafast fission have not been elucidated experimentally. Here, we study a series of pentacene derivatives using ultrafast two-dimensional electronic spectroscopy and unravel the origin of the states involved in fission. Our data reveal the crucial role of vibrational degrees of freedom coupled to electronic excitations that facilitate the mixing of multiexcitonic states with singlet excitons. The resulting manifold of vibronic states drives sub-100 fs fission with unity efficiency. Our results provide a framework for understanding singlet fission and show how the formation of vibronic manifolds with a high density of states facilitates fast and efficient electronic processes in molecular systems.

  13. Hyperfine structure and lifetime measurements in the 4s2nd 2D3/2 Rydberg sequence of Ga I by time-resolved laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Chunqing; Tian, Yanshan; Yu, Qi; Bai, Wanshuang; Wang, Xinghao; Wang, Chong; Dai, Zhenwen

    2016-05-01

    The hyperfine structure (HFS) constants of the 4s2nd 2D3/2 (n=6-18) Rydberg sequence and the 4s26p 2P3/2 level for two isotopes of 69Ga and 71Ga atoms were measured by means of the time-resolved laser-induced fluorescence (TR-LIF) technique and the quantum beat method. The observed hyperfine quantum beat spectra were analyzed and the magnetic-dipole HFS constants A as well as the electric-quadrupole HFS constants B of these levels were obtained by Fourier transform and a program for multiple regression analysis. Also using TR-LIF method radiative lifetimes of the above sequence states were determined at room temperature. The measured lifetime values range from 69 to 2279 ns with uncertainties no more than 10%. To our knowledge, the HFS constants of this Rydberg sequence and the lifetimes of the 4s2nd 2D3/2 (n=10-18) levels are reported for the first time. Good agreement between our results and the previous is achieved.

  14. Comparing Compositions of Modern Cast Bronze Sculptures: Optical Emission Spectroscopy Versus x-Ray Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Young, M. L.; Dunand, D. C.

    2015-07-01

    Bulk elemental compositions of 74 modern cast bronze sculptures from the collection at the Art Institute of Chicago, the Philadelphia Museum of Art, and the Rodin Museum (Philadelphia, PA) were determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and a handheld x-ray fluorescence (XRF) spectrometer. The elemental compositions of the cast sculptures as measured previously by ICP-OES and presently by XRF are compared: A good match is found between the two methods for the base metal (Cu) and the two majority alloying elements (Zn and Sn). For both ICP-OES and XRF data, when the Zn composition is plotted versus the Sn composition, three discernable clusters are found that are related to the artist, foundry, casting date, and casting method; they consist of (A) high-zinc brass, (B) low-zinc, low-tin brass, and (C) low-zinc, tin bronze. Thus, our study confirms that the relatively fast, nondestructive XRF spectrometry can be used effectively over slower and invasive, but more accurate, ICP-OES to help determine a sculpture's artist, foundry, date of creation, date of casting, and casting method.

  15. Intracellular distribution of fluorescent copper and zinc bis(thiosemicarbazonato) complexes measured with fluorescence lifetime spectroscopy.

    PubMed

    Hickey, James L; James, Janine L; Henderson, Clare A; Price, Katherine A; Mot, Alexandra I; Buncic, Gojko; Crouch, Peter J; White, Jonathan M; White, Anthony R; Smith, Trevor A; Donnelly, Paul S

    2015-10-01

    The intracellular distribution of fluorescently labeled copper and zinc bis(thiosemicarbazonato) complexes was investigated in M17 neuroblastoma cells and primary cortical neurons with a view to providing insights into the neuroprotective activity of a copper bis(thiosemicarbazonato) complex known as Cu(II)(atsm). Time-resolved fluorescence measurements allowed the identification of the Cu(II) and Zn(II) complexes as well as the free ligand inside the cells by virtue of the distinct fluorescence lifetime of each species. Confocal fluorescent microscopy of cells treated with the fluorescent copper(II)bis(thiosemicarbazonato) complex revealed significant fluorescence associated with cytoplasmic puncta that were identified to be lysosomes in primary cortical neurons and both lipid droplets and lysosomes in M17 neuroblastoma cells. Fluorescence lifetime imaging microscopy confirmed that the fluorescence signal emanating from the lipid droplets could be attributed to the copper(II) complex but also that some degree of loss of the metal ion led to diffuse cytosolic fluorescence that could be attributed to the metal-free ligand. The accumulation of the copper(II) complex in lipid droplets could be relevant to the neuroprotective activity of Cu(II)(atsm) in models of amyotrophic lateral sclerosis and Parkinson's disease.

  16. Intracellular distribution of fluorescent copper and zinc bis(thiosemicarbazonato) complexes measured with fluorescence lifetime spectroscopy.

    PubMed

    Hickey, James L; James, Janine L; Henderson, Clare A; Price, Katherine A; Mot, Alexandra I; Buncic, Gojko; Crouch, Peter J; White, Jonathan M; White, Anthony R; Smith, Trevor A; Donnelly, Paul S

    2015-10-01

    The intracellular distribution of fluorescently labeled copper and zinc bis(thiosemicarbazonato) complexes was investigated in M17 neuroblastoma cells and primary cortical neurons with a view to providing insights into the neuroprotective activity of a copper bis(thiosemicarbazonato) complex known as Cu(II)(atsm). Time-resolved fluorescence measurements allowed the identification of the Cu(II) and Zn(II) complexes as well as the free ligand inside the cells by virtue of the distinct fluorescence lifetime of each species. Confocal fluorescent microscopy of cells treated with the fluorescent copper(II)bis(thiosemicarbazonato) complex revealed significant fluorescence associated with cytoplasmic puncta that were identified to be lysosomes in primary cortical neurons and both lipid droplets and lysosomes in M17 neuroblastoma cells. Fluorescence lifetime imaging microscopy confirmed that the fluorescence signal emanating from the lipid droplets could be attributed to the copper(II) complex but also that some degree of loss of the metal ion led to diffuse cytosolic fluorescence that could be attributed to the metal-free ligand. The accumulation of the copper(II) complex in lipid droplets could be relevant to the neuroprotective activity of Cu(II)(atsm) in models of amyotrophic lateral sclerosis and Parkinson's disease. PMID:26397162

  17. Research of the interaction between kangai injection and human serum albumin by fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Ye, Changbin; Lin, Xiaogang; Zhu, Hao; Li, Wenchao; Wu, Jie

    2015-10-01

    The interaction between drugs and serum albumin is the theoretical basis of pharmacology research. Kangai injection with invigorating Qi, enhancing the immune function, is widely used for a variety of malignant tumor treatment. Fluorescence spectroscopy was adopted due to its high sensitivity and other advantages. The interaction between kangai injection and human serum albumin (HSA) in physiological buffer (pH 7.4) was investigated by fluorescence spectroscopy and UV-Vis absorption spectroscopy. The results of fluorescence spectrum at three temperature (296K, 303K and 310K) showed the degree of binding at 310K is the highest. Also, the maximum emission peak has a slight blue shift, which indicates that the interaction between kangai injection and HSA has an effect on the conformation of HSA. That is, the microenvironment of tryptophan increase hydrophobic due to the increase of the concentration of kangai injection. Results obtained from analysis of fluorescence spectrum and fluorescence intensity indicated that kangai injection has a strong ability to quench the intrinsic fluorescence of HSA. And according to the Stern-Volume equation, the quenching mechanism is static quenching, which is further proved by the UV-Vis absorption spectroscopy.

  18. Fluorescence polarization standard for near infrared spectroscopy and microscopy.

    PubMed

    Luchowski, Rafal; Sarkar, Pabak; Bharill, Shashank; Laczko, Gabor; Borejdo, Julian; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2008-11-20

    We present studies of polarized absorption [linear dichroism (LD)] and fluorescence polarization of the styryl derivative (LDS 798) embedded in oriented poly(vinyl alcohol) (PVA) films. These films were oriented by progressive stretching up to eight folds. Both vertical and horizontal components of absorptions and fluorescence were measured and dichroic ratios were determined for different film stretching ratios. The dichroic ratio and fluorescence anisotropy values were analyzed as a function of PVA film stretching ratio by fitting according to the previously developed theory. For maximum stretching ratios, exceptionally high anisotropy (approximately 0.8) and polarization (approximately 0.9) values have been measured. The stretched films have high polarization values also for isotropic excitation in a wide spectral range (500-700 nm). Such films can be conveniently used as high polarization standards and we envision they will also have applications in near infrared (NIR) imaging microscopy, where they can be used for correcting an instrumental factor in polarization measurements.

  19. Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Liu, Quan; Grant, Gerald; Li, Jianjun; Zhang, Yan; Hu, Fangyao; Li, Shuqin; Wilson, Christy; Chen, Kui; Bigner, Darell; Vo-Dinh, Tuan

    2011-03-01

    We report the development of a compact point-detection fluorescence spectroscopy system and two data analysis methods to quantify the intrinsic fluorescence redox ratio and diagnose brain cancer in an orthotopic brain tumor rat model. Our system employs one compact cw diode laser (407 nm) to excite two primary endogenous fluorophores, reduced nicotinamide adenine dinucleotide, and flavin adenine dinucleotide. The spectra were first analyzed using a spectral filtering modulation method developed previously to derive the intrinsic fluorescence redox ratio, which has the advantages of insensitivty to optical coupling and rapid data acquisition and analysis. This method represents a convenient and rapid alternative for achieving intrinsic fluorescence-based redox measurements as compared to those complicated model-based methods. It is worth noting that the method can also extract total hemoglobin concentration at the same time but only if the emission path length of fluorescence light, which depends on the illumination and collection geometry of the optical probe, is long enough so that the effect of absorption on fluorescence intensity due to hemoglobin is significant. Then a multivariate method was used to statistically classify normal tissues and tumors. Although the first method offers quantitative tissue metabolism information, the second method provides high overall classification accuracy. The two methods provide complementary capabilities for understanding cancer development and noninvasively diagnosing brain cancer. The results of our study suggest that this portable system can be potentially used to demarcate the elusive boundary between a brain tumor and the surrounding normal tissue during surgical resection.

  20. Time-resolved and steady-state fluorescence spectroscopy for the assessment of skin photoaging process

    NASA Astrophysics Data System (ADS)

    D´Almeida, Camila de Paula; Campos, Carolina; Saito Nogueira, Marcelo; Pratavieira, Sebastião.; Kurachi, Cristina

    2015-06-01

    pathology. The optical properties of these intrinsic fluorophores respond to the microenvironment and the metabolic status, thus making fluorescence spectroscopy a valuable tool to study the conditions of biological tissues. The purpose of this study is to investigate the hairless mice skin metabolic changes during the photoaging process through lifetime and fluorescence measurements targeting NADH and FAD. Two lasers centered at 378 nm and 445 nm, respectively, perform excitation of NADH and FAD. The fluorescence acquisition is carried out at mice dorsal and ventral regions throughout the photoaging protocol and aging process. Differences in fluorescence and lifetime data between young and photoaged mice measurements were observed. The endogenous fluorescence spectrum of photoaged dorsal skin showed an increase compared to young and aged skin. Lifetime of bound NADH and free FAD presented an increase in the first week that continued until the end of the protocol. Aging process is being investigated to complement the information obtained from fluorescence data and lifetime of photoaging process.

  1. Near-infrared (NIR) imaging analysis of polylactic acid (PLA) nanocomposite by multiple-perturbation two-dimensional (2D) correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Murakami, Takurou N.; Nishida, Masakazu; Kanematsu, Wataru; Noda, Isao

    2014-07-01

    Multiple-perturbation two-dimensional (2D) correlation spectroscopy was applied to sets of near-infrared (NIR) imaging data of polylactic acid (PLA) nanocomposite samples undergoing UV degradation. Incorporation of clay nanoparticles substantially lowers the surface free energy barrier for the nucleation of PLA and eventually increases the frequency of the spontaneous nucleation of PLA crystals. Thus, when exposed to external stimuli such as UV light, PLA nanocomposite may show different structure alternation depending on the clay dispersion. Multiple-perturbation 2D correlation analysis of the PLA nanocomposite samples revealed different spatial variation between crystalline and amorphous structure of PLA, and the phenomenon especially becomes acute in the region where the clay particles are coagulated. The incorporation of the clay leads to the cleavage-induced crystallization of PLA when the sample is subjected to the UV light. The additional development of the ordered crystalline structure then works favorably to restrict the initial degradation of the polymer, providing the delay in the weight loss of the PLA.

  2. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel

    SciTech Connect

    Ghosh, Ayanjeet E-mail: gai@sas.upenn.edu; Gai, Feng E-mail: gai@sas.upenn.edu; Hochstrasser, Robin M.; Wang, Jun; DeGrado, William F.; Moroz, Yurii S.; Korendovych, Ivan V.; Zanni, Martin

    2014-06-21

    Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs.

  3. Excitons and exciton-phonon interactions in 2D MoS2 , WS2 and WSe2 studied by resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pimenta, Marcos; Del Corro, Elena; Carvalho, Bruno; Malard, Leandro; Alves, Juliana; Fantini, Cristiano; Terrones, Humberto; Elias, Ana Laura; Terrones, Mauricio

    The 2D materials exhibit a very strong exciton binding energy, and the exciton-phonon coupling plays an important role in their optical properties. Resonance Raman spectroscopy (RRS) is a very useful tool to provide information about excitons and their couplings with phonons. We will present in this work a RRS study of different samples of 2D transition metal dichalcogenides (MoS2, WS2 and WSe2) with one, two and three layers (1L, 2L, 3L) and bulk samples, using more than 30 different laser excitation lines covering the visible range. We have observed that all Raman features are enhanced by resonances with excitonic transitions. From the laser energy dependence of the Raman excitation profile (REP) we obtained the energies of the excitonic states and their dependence with the number of atomic layers.. In the case of MoS2, we observed that the electron-phonon coupling is symmetry dependent, and our results provide experimental evidence of the C exciton recently predicted theoretically. The RRS results WSe2 show that the Raman modes are enhanced by the excited excitonic states and we will present the dependence of the excited states energies on the number of layers.

  4. Synthesis, structure and temperature-depended 2D IR correlation spectroscopy of an organo-bismuth benzoate with 1,10-phenanthroline

    NASA Astrophysics Data System (ADS)

    Sun, Yan-Qiong; Zhong, Jie-Cen; Liu, Le-Hui; Qiu, Xing-Tai; Chen, Yi-Ping

    2016-11-01

    An organo-bismuth benzoate with phen as auxiliary ligand, [Bi(phen)(C6H5COO)(C6H4COO)] (1) (phen = 1,10-phenanthroline) has been hydrothermally synthesized from bismuth nitrate, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, PXRD, IR spectra, TG analyses, temperature-depended 2D-IR COS (two-dimensional infrared correlation spectroscopy). Interestingly, benzoate anions in 1 came from the desulfuration reaction of 2-mercaptonbenzoic acid under hydrothermal condition. Compound 1 is a discrete organo-bismuth compound with benzoate and phen ligands. The offset face-to-face π-π stacking interactions and C-H⋯O hydrogen bonds link the isolate complex into a 3D supramolecular network. The temperature-depended 2D-IR COS indicates that the stretching vibrations of Cdbnd C/Cdbnd N of aromatic rings and Cdbnd O bonds are sensitive to the temperature change.

  5. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel

    PubMed Central

    Ghosh, Ayanjeet; Wang, Jun; Moroz, Yurii S.; Korendovych, Ivan V.; Zanni, Martin; DeGrado, William F.; Gai, Feng; Hochstrasser, Robin M.

    2014-01-01

    Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs. PMID:24952572

  6. Variation of fluorescence spectroscopy during the menstrual cycle

    NASA Astrophysics Data System (ADS)

    Macaulay, Calum; Richards-Kortum, Rebecca; Utzinger, Urs; Fedyk, Amanda; Neely Atkinson, E.; Cox, Dennis; Follen, Michele

    2002-06-01

    Cervical autofluorescence has been demonstrated to have potential for real-time diagnosis. Inter-patient and intra-patient variations in fluorescence intensity have been measured. Inter-patient measurements may vary by a factor of ten, while intra-patient measurements may vary by a factor of two. Age and menopausal status have been demonstrated to account for some of the variations, while race and smoking have not. In order to explore in detail the role of the menstrual cycle in intra-patient variation, a study was designed to measure fluorescence excitation emission matrices (EEMs) in patients daily throughout one cycle. Ten patients with a history of normal menstrual cycles and normal Papanicolaou smears underwent daily measurements of fluorescence EEMs from three colposcopically normal sites throughout one menstrual cycle. Changes in signals from porphyrin, NADH, and FAD fluorescence and blood absorption were noted when the data was viewed in a graphical format. Visually interpreted features of the EEMs in this graphical format did not appear to correlate with the day of the menstrual cycle with the exception that blood absorption features were more prominent during the menstrual phase (during which bleeding occurs), suggesting that measurements during the menstrual phase should be avoided. Variations in cycle date likely do not account for inter- or intra-patient variations.

  7. Quantitative Tissue Spectroscopy of Near Infrared Fluorescent Nanosensor Implants.

    PubMed

    Iverson, Nicole M; Bisker, Gili; Farias, Edgardo; Ivanov, Vsevolod; Ahn, Jiyoung; Wogan, Gerald N; Strano, Michael S

    2016-05-01

    Implantable, near infrared (nIR) fluorescent nanosensors are advantageous for in vivo monitoring of biological analytes since they can be rendered selective for a particular target molecule while utilizing their unique optical properties and the nIR tissue transparency window for information transfer without an internal power source or telemetry. However, basic questions remain regarding the optimal encapsulation platform, geometrical properties, and concentration ranges required for high signal to noise ratio and effective detection through biological tissue. In this work, we systematically explore these variables quantitatively to optimize the performance of such optical nanosensors for biomedical applications. We investigate both alginate and polyethylene glycol (PEG) as model hydrogel systems, encapsulating d(GT)15 ssDNA-wrapped single-walled carbon nanotubes (SWNT) as model fluorescent nanoparticle sensors, responsive to riboflavin. Hydrogel sensors implanted 0.5 mm into thick tissue samples exhibit 50% reduction of initial fluorescence intensity, allowing an optical detection limit of 5.4 mm and 5.1 mm depth in tissue for alginate and PEG gels, respectively, at a SWNT concentration of 10 mg L(-1), and 785 nm laser excitation of 80 mW and 30 s exposure. These findings are supported with in vivo nIR fluorescent imaging of SWNT hydrogels implanted subcutaneously in mice. For the case of SWNT, we find that the alginate system is preferable in terms of emission intensity, sensor response, rheological properties, and shelf life. PMID:27305824

  8. Plasmonic antennas and zero-mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy toward physiological concentrations.

    PubMed

    Punj, Deep; Ghenuche, Petru; Moparthi, Satish Babu; de Torres, Juan; Grigoriev, Victor; Rigneault, Hervé; Wenger, Jérôme

    2014-01-01

    Single-molecule approaches to biology offer a powerful new vision to elucidate the mechanisms that underpin the functioning of living cells. However, conventional optical single molecule spectroscopy techniques such as Förster fluorescence resonance energy transfer (FRET) or fluorescence correlation spectroscopy (FCS) are limited by diffraction to the nanomolar concentration range, far below the physiological micromolar concentration range where most biological reaction occur. To breach the diffraction limit, zero-mode waveguides (ZMW) and plasmonic antennas exploit the surface plasmon resonances to confine and enhance light down to the nanometer scale. The ability of plasmonics to achieve extreme light concentration unlocks an enormous potential to enhance fluorescence detection, FRET, and FCS. Single molecule spectroscopy techniques greatly benefit from ZMW and plasmonic antennas to enter a new dimension of molecular concentration reaching physiological conditions. The application of nano-optics to biological problems with FRET and FCS is an emerging and exciting field, and is promising to reveal new insights on biological functions and dynamics.

  9. Optical spectroscopy of the bladder washout fluid to optimize fluorescence cystoscopy with Hexvix®

    NASA Astrophysics Data System (ADS)

    Martoccia, Carla; Zellweger, Matthieu; Lovisa, Blaise; Jichlinski, Patrice; van den Bergh, Hubert; Wagnières, Georges

    2014-09-01

    Fluorescence cystoscopy enhances detection of early bladder cancer. Water used to inflate the bladder during the procedure rapidly contains urine, which may contain fluorochromes. This frequently degrades fluorescence images. Samples of bladder washout fluid (BWF) or urine were collected (15 subjects). We studied their fluorescence properties and assessed changes induced by pH (4 to 9) and temperature (15°C to 41°C). A typical fluorescence spectrum of BWF features a main peak (excitation/emission: 320/420 nm, FWHM=50/100 nm) and a weaker (5% to 20% of main peak intensity), secondary peak (excitation/emission: 455/525 nm, FWHM=80/50 nm). Interpatient fluctuations of fluorescence intensity are observed. Fluorescence intensity decreases when temperature increases (max 30%) or pH values vary (max 25%). Neither approach is compatible with clinical settings. Fluorescence lifetime measurements suggest that 4-pyridoxic acid/riboflavin is the most likely molecule responsible for urine's main/secondary fluorescence peak. Our measurements give an insight into the spectroscopy of the detrimental background fluorescence. This should be included in the optical design of fluorescence cystoscopes. We estimate that restricting the excitation range from 370-430 nm to 395-415 nm would reduce the BWF background by a factor 2.

  10. Time-resolved fluorescence spectroscopy for chemical sensors

    NASA Astrophysics Data System (ADS)

    Draxler, Sonja; Lippitsch, Max E.

    1996-07-01

    A family of sensors is presented with fluorescence decay-time measurements used as the sensing technique. The concept is to take a single fluorophore with a suitably long fluorescence decay time as the basic building block for numerous different sensors. Analyte recognition can be performed by different functional groups that are necessary for selective interaction with the analyte. To achieve this, the principle of excited-state electron transfer is applied with pyrene as the fluorophore. Therefore the same instrumentation based on a small, ambient air-nitrogen laser and solid-state electronics can be used to measure different analytes, for example, oxygen, pH, carbon dioxide, potassium, ammonium, lead, cadmium, zinc, and phosphate.

  11. A scanning fluorescence spectroscopy of decorin under high pressure

    NASA Astrophysics Data System (ADS)

    Komoda, Takahito; Kim, Yun-Jung; Suzuki, Atsushi; Nishiumi, Tadayuki

    2013-06-01

    High pressure processing is able to tenderize not only meat but also intramuscular connective tissue, which is mainly composed of collagen. Decorin, one of the proteoglycans, binds to and stabilizes collagen fibrils. It has been suggested that structural weakening of intramuscular connective tissue may result from the disappearance of the decorin-collagen interaction. In this study, the fluorescence spectra and the surface hydrophobicity of decorin molecules were measured under high pressure in order to examine the resulting change in the tertiary structure. The fluorescence intensity and the surface hydrophobicity of decorin molecules both decreased with increasing applied pressure and with applied time at the constant applied pressure, respectively. The observations indicate that the native structure of decorin is maintained during 200 MPa pressurization for less than 30 min.

  12. Surface modified single molecules free-diffusion evidenced by fluorescence correlation spectroscopy.

    PubMed

    Boutin, Céline; Jaffiol, Rodolphe; Plain, Jérôme; Royer, Pascal

    2008-11-01

    We report on the free diffusion of single molecule near an interface studied using fluorescence correlation spectroscopy. In particular, we show that the chemical nature of the substrate may modify the free diffusion of a widely used molecule (rhodamine 6G), thus inducing unexpected effects in fluorescence correlation spectroscopy measurements. Our results show a strong influence, up to a few micrometer from the interface, of the surface polarity. This effect is assessed through the relative weight of the two dimensions diffusion process observed close to the surface. Our results are discussed in terms of competition between surface-solvent, solvent-molecule and molecule-surface specific interactions.

  13. Quantitative frequency-domain fluorescence spectroscopy in tissues and tissue-like media

    NASA Astrophysics Data System (ADS)

    Cerussi, Albert Edward

    1999-09-01

    In the never-ending quest for improved medical technology at lower cost, modern near-infrared optical spectroscopy offers the possibility of inexpensive technology for quantitative and non-invasive diagnoses. Hemoglobin is the dominant chromophore in the 700-900 nm spectral region and as such it allows for the optical assessment of hemoglobin concentration and tissue oxygenation by absorption spectroscopy. However, there are many other important physiologically relevant compounds or physiological states that cannot be effectively sensed via optical methods because of poor optical contrast. In such cases, contrast enhancements are required. Fluorescence spectroscopy is an attractive component of optical tissue spectroscopy. Exogenous fluorophores, as well as some endogenous ones, may furnish the desperately needed sensitivity and specificity that is lacking in near-infrared optical tissue spectroscopy. The main focus of this thesis was to investigate the generation and propagation of fluorescence photons inside tissues and tissue-like media (i.e., scattering dominated media). The standard concepts of fluorescence spectroscopy have been incorporated into a diffusion-based picture that is sometimes referred to as photon migration. The novelty of this work lies in the successful quantitative recovery of fluorescence lifetimes, absolute fluorescence quantum yields, fluorophore concentrations, emission spectra, and both scattering and absorption coefficients at the emission wavelength from a tissue-like medium. All of these parameters are sensitive to the fluorophore local environment and hence are indicators of the tissue's physiological state. One application demonstrating the capabilities of frequency-domain lifetime spectroscopy in tissue-like media is a study of the binding of ethidium bromide to bovine leukocytes in fresh milk. Ethidium bromide is a fluorescent dye that is commonly used to label DNA, and hence visualize chromosomes in cells. The lifetime of

  14. Impurity studies in fusion devices using laser-fluorescence-spectroscopy

    SciTech Connect

    Husinsky, W.R.

    1980-08-01

    Resonance fluorescence excitation of neutral atoms using tunable radiation from dye lasers offers a number of unique advantages for impurity studies in fusion devices. Using this technique, it is possible to perform local, time-resolved measurements of the densities and velocity distributions of metallic impurities in fusion devices without disturbing the plasma. Velocities are measured by monitoring the fluorescence intensity while tuning narrow bandwidth laser radiation through the Doppler - broadened absorbtion spectrum of the transition. The knowledge of the velocity distribution of neutral impurities is particularly useful for the determination of impurity introduction mechanisms. The laser fluorescence technique will be described in terms of its application to metallic impurities in fusion devices and related laboratory experiments. Particular attention will be given to recent results from the ISX-B tokamak using pulsed dye lasers where detection sensitivities for neutral Fe of 10/sup 6/ atoms/cm/sup 3/ with a velocity resolution of 600 m/sec (0.1 eV) have been achieved. Techniques for exciting plasma particles (H,D) will also be discussed.

  15. Design optimization of fiber optic probes for remote fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Bhowmick, G. K.; Gautam, Nutan; Gantayet, L. M.

    2009-07-01

    Fiber optic probes are designed, developed and fabricated in the laboratories for remote fluorescence spectroscopic studies in various fields such as investigation of tissues, environmental monitoring, and analysis of samples in hostile environment. Optimized probe design is very much important for efficient transport and collection of photons, which ultimately helps in quantifying resultant emission and understanding light-matter interaction. Instead of the conventional ray optics, Monte Carlo technique has been used to optimize the design of fiber optic probes, comprising only of flat tipped fibers with and without focusing lenses, for remote fluorescence measurement in three different types of target media having different optical properties. Typical probe geometry consists of one excitation fiber surrounded by a ring of collection fibers. The effects of fiber parameters like fiber diameter, numerical aperture, core-clad ratio, arrangement of collection fibers around the excitation fiber and dead space between them, and optical properties of the medium on the performance of probes have been analysed and compared with the results of previous observations, wherever the data are available. The results show a significant difference between the collected emission with and without consideration of dead space, which plays a very significant role in probe design and is dependent on the number of collection fibers in the geometry, relative dimension of collection and excitation fibers and separation between the two. Introduction of a convex lens in the probe increases the amount of fluorescence signal for a given probe arrangement.

  16. Noncontact point spectroscopy guided by two-channel fluorescence imaging in a hamster cheek pouch model

    NASA Astrophysics Data System (ADS)

    Yang, Victor X.; Yeow, Jenny; Lilge, Lothar D.; Kost, James; Mang, Thomas S.; Wilson, Brian C.

    1999-07-01

    A system for in vivo, fluorescence image-guided, non-contact point fluorescence spectroscopy is presented. A 442 nm HeCd laser is used as the fluorescence excitation source. An intensified CCD serves as the detector for both imaging and spectroscopy, on which two regions of 300 X 300 pixels were used for green (500 +/- 18 nm) and red (630 +/- 18 nm) imaging channels, and a strip of 600 X 120 pixels are used for emission spectroscopy (450 - 750 nm). At a working distance of 40 mm, the system has a spatial resolution of 0.16 mm and a spectral resolution of 5 nm. System performance is demonstrated in a carcinogenesis model in hamsters, where tumors were induced by painting DMBA in the cheek pouch. Autofluorescence and Photofrin-induced fluorescence measurements were performed every 2 weeks during the 18 weeks of tumor induction. Punch biopsies on selected animals were taken for histological staging. The results show that autofluorescence fluorescence can distinguish dysplasia from normal mucosal tissue model, utilizing the peak red intensity (or the red-to-green intensity ratio). Photofrin-induced fluorescence was superior to autofluorescence for differentiating high grade dysplasia from invasive cancer.

  17. Laser Induced Fluorescence Spectroscopy of Soft Tissues of the Oral Cavity

    NASA Astrophysics Data System (ADS)

    Patil, Ajeetkumar; Unnikrishnan, V. K.; Bernard, Rodney; Pai, Keerthilatha M.; Ongole, Ravikiran; Kartha, V. B.; Chidangil, Santhosh

    2011-07-01

    The present study deals with the in vivo measurement of auto-fluorescence from different anatomical sites of oral cavities of healthy volunteers, using a homebuilt Laser Induced Fluorescence (LIF) Spectroscopy setup. Excitation wave length of 325 nm from a He-Cd laser was used as the source. From the 7 anatomical sites (say buccal mucosa, tongue, palate etc) of each oral cavity of 113 subjects, 1266 fluorescence spectra were recorded. The spectra were analysed using Principal Component Analysis (PCA) to see the correlation between different sites.

  18. Fluorescence spectroscopy of kerosene vapour at high temperatures and pressures: potential for gas turbines measurements

    NASA Astrophysics Data System (ADS)

    Orain, M.; Baranger, P.; Ledier, C.; Apeloig, J.; Grisch, F.

    2014-09-01

    Laser-induced fluorescence spectroscopy of kerosene vapour was performed in a heated test cell operating between 450 and 900 K, at pressure from 0.1 to 3.0 MPa, for oxygen molar fraction between 0 and 21 %, with different laser excitation wavelengths (248, 266, 282 and 308 nm). Results show that, depending on the laser excitation scheme, kerosene fluorescence spectrum exhibits one or two fluorescence bands in the UV-visible range (attributed to aromatics naturally present in kerosene fuel). Fluorescence intensity of these bands decreases with increasing temperature, pressure and oxygen molar fraction. Different imaging strategies were derived from spectroscopic findings to simultaneously measure temperature and equivalence ratio fields in kerosene/air sprays, or flame structure and fuel spatial distribution in kerosene/air aeronautical combustors, by means of planar laser-induced fluorescence on kerosene vapour (K-PLIF).

  19. The roles of carbohydrates, proteins and lipids in the process of aggregation of natural marine organic matter investigated by means of 2D correlation spectroscopy applied to infrared spectra

    NASA Astrophysics Data System (ADS)

    Mecozzi, Mauro; Pietrantonio, Eva; Pietroletti, Marco

    2009-01-01

    In this paper the marine organic matter soluble in an alkaline medium called extractable humic substance (EHS), was extracted from three sediment samples of Tyrrhenian Sea and separated by precipitation at pH 2 in the two fractions of fulvic acids (FAs) and humic acids (HAs). FAs were further fractionated in seven sub-samples of different molecular weight (mw) by means of seven different ultrafiltration membranes operating in the range between mw < 1 kDa and mw > 100 kDa. Then the qualitative composition of each sample of fractionated FAs and HAs was studied by means of one-dimensional Fourier transform infrared spectroscopy in reflectance mode (FTIR-DRIFT) and by two-dimensional (2D) correlation spectroscopy both in wavelength-wavelength (WW) and in sample-sample (SS) mode. The application of 2D correlation WW spectroscopy allows to elucidate the different roles played by carbohydrates and proteins with respect to some lipid compounds such as fatty acids and ester fatty acids during the process of aggregate formations from mw ˜1 kDa to higher size aggregates. In addition, 2D correlation WW spectroscopy allows to observe some peculiar interactions between carbohydrates and proteins in the formation of EHS aggregates, interactions which vary from a sample to another sample. The results of 2D correlation SS spectroscopy confirm the general evidences obtained by 2D WW spectroscopy and moreover, they also describe the formation of EHS aggregates as a complex process where evolutionary links and connectivity between aggregates of neighbour molecular size ranges are not evident. Two-dimensional correlation spectroscopy applied to FTIR spectroscopy shows to be a powerful tool for the investigation of the mechanisms involved in EHS aggregation because it supports the acquisition of structural information which sometimes can be hardly obtained by one-dimensional FTIR spectroscopy.

  20. Determination of dissolved organic matter removal efficiency in wastewater treatment works using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Carstea, Elfrida M.; Bridgeman, John

    2015-04-01

    Fluorescence spectroscopy was used to investigate the removal efficiency of dissolved organic matter (DOM) in several wastewater treatment works, at different processing stages. The correlation between fluorescence values and biochemical oxygen demand (BOD), chemical oxygen demand (COD) and total organic carbon (TOC) has been examined. Fluorescence was measured for unfiltered and filtered (0.45 and 0.20 μm) samples of crude, settled and secondary treated wastewater (activated sludge), and final effluent. Moreover, the potential of using portable fluorimeters has been explored in a laboratory scale activated sludge process. Good correlations were observed for filtered and unfiltered wastewater samples between protein-like fluorescence intensity (excitation 280 nm, emission 350 nm) and BOD (r = 0.78), COD (r = 0.90) and TOC (r = 0.79). BOD displayed a higher correlation at the 0.20 μm filtered samples compared to COD and TOC. Slightly better relation was seen between fluorescence and conventional parameters at the portable fluorimeters compared to laboratory-based instruments. The results indicated that fluorescence spectroscopy, in particular protein-like fluorescence, could be used for continuous, real-time assessment of DOM removal efficiency in wastewater treatment works.

  1. Excitation-emission matrices (EEMs) and synchronous fluorescence spectroscopy (SFS) investigations of gastrointestinal tissues

    NASA Astrophysics Data System (ADS)

    Genova, Ts.; Borisova, E.; Zhelyazkova, Al.; Semyachkina-Glushkovskaya, O.; Penkov, N.; Keremedchiev, M.; Vladimirov, B.; Avramov, L.

    2015-01-01

    In this report we will present our recent investigations of the fluorescence properties of lower part gastrointestinal tissues using excitation-emission matrix and synchronous fluorescence spectroscopy measurement modalities. The spectral peculiarities observed will be discussed and the endogenous sources of the fluorescence signal will be addressed. For these fluorescence spectroscopy measurements the FluoroLog 3 system (HORIBA Jobin Yvon, France) was used. It consists of a Xe lamp (300 W, 200-650 nm), a double mono-chromators, and a PMT detector with a work region at 220- 850 nm. Autofluorescence signals were detected in the form of excitation-emission matrices for the samples of normal mucosa, dysphasia and colon carcinoma and specific spectral features for each tissue were found. Autofluorescence signals from the same samples are observed through synchronous fluorescence spectroscopy, which is a novel promising modality for fluorescence spectroscopy measurements of bio-samples. It is one of the most powerful techniques for multicomponent analysis, because of its sensitivity. In the SFS regime, the fluorescence signal is recorded while both excitation λexc and emission wavelengths λem are simultaneously scanned. A constant wavelength interval is maintained between the λexc and λem wavelengths throughout the spectrum. The resulted fluorescence spectrum shows narrower peak widths, in comparison with EEMs, which are easier for identification and minimizes the chance for false determinations or pretermission of specific spectral feature. This modality is also faster, than EEMs, a much smaller number of data points are required.1 In our measurements we use constant wavelength interval Δλ in the region of 10-200 nm. Measurements are carried out in the terms of finding Δλ, which results in a spectrum with most specific spectral features for comparison with spectral characteristics observed in EEMs. Implementing synchronous fluorescence spectroscopy in optical

  2. Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy - Part 2: Wind propagation and emission rates

    NASA Astrophysics Data System (ADS)

    Krueger, A.; Stremme, W.; Harig, R.; Grutter, M.

    2013-01-01

    A technique for measuring two-dimensional (2-D) plumes of volcanic gases with thermal emission spectroscopy was described in Part 1 by Stremme et al. (2012a). In that paper the instrumental aspects as well as retrieval strategies for obtaining the slant column images of SO2 and SiF4, as well as animations of particular events observed at the Popocatépetl volcano, were presented. This work focuses on the procedures for determining the propagation speed of the gases and estimating an emission rate from the given image sequences. A 2-D column density distribution of a volcanic gas, available as time-consecutive frames, provides information of a projected wind field and the average velocity at which the volcanic plume is propagating. This information is valuable since the largest uncertainties when calculating emission rates of the gases using remote sensing techniques arise from propagation velocities which are often inadequately assumed. The presented reconstruction method solves the equation of continuity as an ill-posed problem using mainly a Tikhonov-like regularisation. It is observed from the available data sets that if the main direction of propagation is perpendicular to the line-of-sight, the algorithm works well for SO2, which has the strongest signals, and also for SiF4 in some favourable cases. Due to the similarity of the algorithm used here with the reconstruction methods used for profile retrievals based on optimal estimation theory, diagnostic tools like the averaging kernels can be calculated in an analogous manner and the information can be quantified as degrees of freedom. Thus, it is shown that the combination of wind field and column distribution of the gas plume can provide the emission rate of the volcano both during day and night.

  3. Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy - Part 2: Wind propagation and emission fluxes

    NASA Astrophysics Data System (ADS)

    Krueger, A.; Stremme, W.; Harig, R.; Grutter, M.

    2012-07-01

    The technique for measuring two-dimensional (2-D) plumes of volcanic gases with thermal emission spectroscopy was described in Part 1 by Stremme et al. (2012). In that paper the instrumental aspects as well as retrieval strategies for obtaining the slant column images of SO2 and SiF4, as well as animations of particular events observed at the Popocatépetl volcano, were presented. This work focuses on the procedures for determining the propagation speed of the gases and estimating an emission flux from the given image sequences. A 2-D column density distribution of a volcanic gas, available as time-consecutive frames, provides information of a wind-field and the average velocity at which the volcanic plume is propagating. The presented reconstruction method solves the equation of continuity as an ill-posed problem using mainly a Tikhonov-like regularization. It is observed from the available data sets that if the main direction of propagation is perpendicular to the line-of-sight, the algorithm works well for SO2 which has the strongest signals, and also for SiF4 in some favourable cases. Due to the similarity of the algorithm used here with the reconstruction methods used for profile retrievals based on optimal estimation theory, diagnostic tools like the averaging kernels can be calculated analogously and the information can be quantified as degrees of freedom. Thus, it is shown that the combination of wind-field and column distribution of the gas plume can provide the emission flux of the volcano both during day and night.

  4. 2D and 3D imaging of the gas phase close to an operating model catalyst by planar laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Blomberg, Sara; Zhou, Jianfeng; Gustafson, Johan; Zetterberg, Johan; Lundgren, Edvin

    2016-11-01

    In recent years, efforts have been made in catalysis related surface science studies to explore the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures. Techniques such as high pressure scanning tunneling/atomic force microscopy (HPSTM/AFM), near ambient pressure x-ray photoemission spectroscopy (NAPXPS), surface x-ray diffraction (SXRD) and polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS) at semi-realistic conditions have been used to study the surface structure of model catalysts under reaction conditions, combined with simultaneous mass spectrometry (MS). These studies have provided an increased understanding of the surface dynamics and the structure of the active phase of surfaces and nano particles as a reaction occurs, providing novel information on the structure/activity relationship. However, the surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface. Therefore, the catalytic activity of the sample itself will act as a gas-source or gas-sink, and will affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, we have applied planar laser induced fluorescence (PLIF) to the gas phase in the vicinity of an active model catalysts. Our measurements demonstrate that the gas composition differs significantly close to the catalyst and at the position of the MS, which indeed should have a profound effect on the surface structure. However, PLIF applied to catalytic reactions presents several beneficial properties in addition to investigate the effect of the catalyst on the effective gas composition close to the model catalyst. The high spatial and temporal resolution of PLIF provides a unique tool to visualize the on-set of catalytic reactions and to compare different model catalysts in the same reactive environment. The technique can be

  5. 2D and 3D imaging of the gas phase close to an operating model catalyst by planar laser induced fluorescence.

    PubMed

    Blomberg, Sara; Zhou, Jianfeng; Gustafson, Johan; Zetterberg, Johan; Lundgren, Edvin

    2016-11-16

    In recent years, efforts have been made in catalysis related surface science studies to explore the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures. Techniques such as high pressure scanning tunneling/atomic force microscopy (HPSTM/AFM), near ambient pressure x-ray photoemission spectroscopy (NAPXPS), surface x-ray diffraction (SXRD) and polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS) at semi-realistic conditions have been used to study the surface structure of model catalysts under reaction conditions, combined with simultaneous mass spectrometry (MS). These studies have provided an increased understanding of the surface dynamics and the structure of the active phase of surfaces and nano particles as a reaction occurs, providing novel information on the structure/activity relationship. However, the surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface. Therefore, the catalytic activity of the sample itself will act as a gas-source or gas-sink, and will affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, we have applied planar laser induced fluorescence (PLIF) to the gas phase in the vicinity of an active model catalysts. Our measurements demonstrate that the gas composition differs significantly close to the catalyst and at the position of the MS, which indeed should have a profound effect on the surface structure. However, PLIF applied to catalytic reactions presents several beneficial properties in addition to investigate the effect of the catalyst on the effective gas composition close to the model catalyst. The high spatial and temporal resolution of PLIF provides a unique tool to visualize the on-set of catalytic reactions and to compare different model catalysts in the same reactive environment. The technique can be

  6. 2D and 3D imaging of the gas phase close to an operating model catalyst by planar laser induced fluorescence.

    PubMed

    Blomberg, Sara; Zhou, Jianfeng; Gustafson, Johan; Zetterberg, Johan; Lundgren, Edvin

    2016-11-16

    In recent years, efforts have been made in catalysis related surface science studies to explore the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures. Techniques such as high pressure scanning tunneling/atomic force microscopy (HPSTM/AFM), near ambient pressure x-ray photoemission spectroscopy (NAPXPS), surface x-ray diffraction (SXRD) and polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS) at semi-realistic conditions have been used to study the surface structure of model catalysts under reaction conditions, combined with simultaneous mass spectrometry (MS). These studies have provided an increased understanding of the surface dynamics and the structure of the active phase of surfaces and nano particles as a reaction occurs, providing novel information on the structure/activity relationship. However, the surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface. Therefore, the catalytic activity of the sample itself will act as a gas-source or gas-sink, and will affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, we have applied planar laser induced fluorescence (PLIF) to the gas phase in the vicinity of an active model catalysts. Our measurements demonstrate that the gas composition differs significantly close to the catalyst and at the position of the MS, which indeed should have a profound effect on the surface structure. However, PLIF applied to catalytic reactions presents several beneficial properties in addition to investigate the effect of the catalyst on the effective gas composition close to the model catalyst. The high spatial and temporal resolution of PLIF provides a unique tool to visualize the on-set of catalytic reactions and to compare different model catalysts in the same reactive environment. The technique can be

  7. Picosecond time-resolved fluorescence spectroscopy of phytochrome and stentorin

    NASA Astrophysics Data System (ADS)

    Song, Pill-Soon

    1991-05-01

    Phytochrome is a tetrapyrrole chromoprotein. It serves as a sensitive photosensor for red lightmediated gene expression and other developmental/morphological responses in plants. In this paper photochemical dynamics of the phytochrome molecule have been described in terms of photoisomerization of the tetrapyrrole chromophore in its singlet excited state and subsequent thermal processes in the Pr Pfr phototransformation of phytochrome. Stentorin acts as the photosensor molecule in the ciliate Stentor coeruleus. This unicellular protozoan is most sensitive to red light (610-620 urn). Stentor also senses the direction of light propagation as evidenced by their light-avoiding and negative phototactic swimming behaviors. This aneural photosensory phenomenon is triggered by the photoreceptor stentorin. The possible involvement of a light-induced transient proton release from the photoreceptor as the primary mechanism of light-signal processing has been discussed on the basis of picosecond fluorescence decays and time-resolved fluorescence spectra of stentorin in solution. An initial sensory signal generated by the primary photoprocess of stentorin then triggers subsequent transduction steps that include calcium ion influx from the extracellular medium. Calcium ion influx from the extracellular medium to the cytosol causes the Stentor cell to reverse its ciliary beating and subsequently steer away from the light trap. II.

  8. Parallel β-sheet vibrational couplings revealed by 2D IR spectroscopy of an isotopically labeled macrocycle: quantitative benchmark for the interpretation of amyloid and protein infrared spectra.

    PubMed

    Woys, Ann Marie; Almeida, Aaron M; Wang, Lu; Chiu, Chi-Cheng; McGovern, Michael; de Pablo, Juan J; Skinner, James L; Gellman, Samuel H; Zanni, Martin T

    2012-11-21

    Infrared spectroscopy is playing an important role in the elucidation of amyloid fiber formation, but the coupling models that link spectra to structure are not well tested for parallel β-sheets. Using a synthetic macrocycle that enforces a two stranded parallel β-sheet conformation, we measured the lifetimes and frequency for six combinations of doubly (13)C═(18)O labeled amide I modes using 2D IR spectroscopy. The average vibrational lifetime of the isotope labeled residues was 550 fs. The frequencies of the labels ranged from 1585 to 1595 cm(-1), with the largest frequency shift occurring for in-register amino acids. The 2D IR spectra of the coupled isotope labels were calculated from molecular dynamics simulations of a series of macrocycle structures generated from replica exchange dynamics to fully sample the conformational distribution. The models used to simulate the spectra include through-space coupling, through-bond coupling, and local frequency shifts caused by environment electrostatics and hydrogen bonding. The calculated spectra predict the line widths and frequencies nearly quantitatively. Historically, the characteristic features of β-sheet infrared spectra have been attributed to through-space couplings such as transition dipole coupling. We find that frequency shifts of the local carbonyl groups due to nearest neighbor couplings and environmental factors are more important, while the through-space couplings dictate the spectral intensities. As a result, the characteristic absorption spectra empirically used for decades to assign parallel β-sheet secondary structure arises because of a redistribution of oscillator strength, but the through-space couplings do not themselves dramatically alter the frequency distribution of eigenstates much more than already exists in random coil structures. Moreover, solvent exposed residues have amide I bands with >20 cm(-1) line width. Narrower line widths indicate that the amide I backbone is solvent

  9. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.

    PubMed

    Wang, Tuo; Yang, Hui; Kubicki, James D; Hong, Mei

    2016-06-13

    The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D (13)C-(13)C correlation spectra of uniformly (13)C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose (13)C chemical shifts differ significantly from the (13)C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing, and hydrogen bonding from celluloses of other organisms. 2D (13)C-(13)C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Celluloses f and g are well mixed chains on the microfibril surface, celluloses a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of

  10. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.

    PubMed

    Wang, Tuo; Yang, Hui; Kubicki, James D; Hong, Mei

    2016-06-13

    The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D (13)C-(13)C correlation spectra of uniformly (13)C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose (13)C chemical shifts differ significantly from the (13)C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing, and hydrogen bonding from celluloses of other organisms. 2D (13)C-(13)C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Celluloses f and g are well mixed chains on the microfibril surface, celluloses a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of

  11. Classification of aortic atherosclerotic lesions with time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Maarek, Jean-Michel I.; Marcu, Laura; Grundfest, Warren S.; Fishbein, Michael C.

    1999-07-01

    In this study, we examine the possibility of differentiating between classes of atherosclerotic lesions based on time- resolved fluorescence spectroscopy and we compare the performance of classification schemes that use either the time-resolved spectra or only the intensity spectra. Transient fluorescence emissions induced by pulsed nitrogen laser excitation was measured on 87 excised samples of human aorta. The samples were classified histologically using the AHA classification Predictor variables derived from the time-resolved spectra included the spectral intensities at 360-510 nm and parameters of a biexponential fit of the fluorescence impulse response function. Stepwise discriminant analysis using these predict variables showed that a few predictor variables sufficed to correctly classify 89 percent of the samples. Excluding the time- dependent decay and using only the spectral intensities, the percentage of correctly classified cases was significantly lower: 51 percent. These results establish that time- resolved fluorescence spectroscopy markedly improved on the performance of steady-state fluorescence spectroscopy for fine classification of atherosclerotic lesions.

  12. Studies of multifrequency phase-resolved fluorescence spectroscopy for spectral fingerprinting

    SciTech Connect

    McGown, L.B.

    1990-01-01

    During the past two project periods (7/1/88--12/31/90), we have made significant advances towards our goal of characterizing samples in terms of their dynamic spectral characteristics through the use of phase-resolved fluorescence spectroscopy. Specific achievements are discussed, each of which describes a particular area of focus in our studies.

  13. En route to traceable reference standards for surface group quantifications by XPS, NMR and fluorescence spectroscopy.

    PubMed

    Hennig, Andreas; Dietrich, Paul M; Hemmann, Felix; Thiele, Thomas; Borcherding, Heike; Hoffmann, Angelika; Schedler, Uwe; Jäger, Christian; Resch-Genger, Ute; Unger, Wolfgang E S

    2015-03-21

    The fluorine content of polymer particles labelled with 2,2,2-trifluoroethylamine was reliably quantified with overlapping sensitivity ranges by XPS and solid-state NMR. This provides a first step towards reference materials for the metrological traceability of surface group quantifications. The extension of this concept to fluorescence spectroscopy is illustrated.

  14. Fluorescence excitation and multiphoton ionization spectroscopy of 3-methylindole in a supersonic jet

    NASA Astrophysics Data System (ADS)

    Hays, T. R.; Henke, W. E.; Selzle, H. L.; Schlag, E. W.

    1983-05-01

    The fluorescence excitation and multiphoton ionization spectroscopy of 3-methylindole (skatole) is reported. One electronic origin ( 1L b) is assigned at 34875 cm -1, the second ( 1L a) suspected at 35483 cm -1. Some 1L b vibrational assignments are also made. Complex formation between skatole and some small molecules is indicated but not directly observed.

  15. Fluorescence kinetics of Trp-Trp dipeptide and its derivatives in water via ultrafast fluorescence spectroscopy.

    PubMed

    Jia, Menghui; Yi, Hua; Chang, Mengfang; Cao, Xiaodan; Li, Lei; Zhou, Zhongneng; Pan, Haifeng; Chen, Yan; Zhang, Sanjun; Xu, Jianhua

    2015-08-01

    Ultrafast fluorescence dynamics of Tryptophan-Tryptophan (Trp-Trp/Trp2) dipeptide and its derivatives in water have been investigated using a picosecond resolved time correlated single photon counting (TCSPC) apparatus together with a femtosecond resolved upconversion spectrophotofluorometer. The fluorescence decay profiles at multiple wavelengths were fitted by a global analysis technique. Nanosecond fluorescence kinetics of Trp2, N-tert-butyl carbonyl oxygen-N'-aldehyde group-l-tryptophan-l-tryptophan (NBTrp2), l-tryptophan-l-tryptophan methyl ester (Trp2Me), and N-acetyl-l-tryptophan-l-tryptophan methyl ester (NATrp2Me) exhibit multi-exponential decays with the average lifetimes of 1.99, 3.04, 0.72 and 1.22ns, respectively. Due to the intramolecular interaction between two Trp residues, the "water relaxation" lifetime was observed around 4ps, and it is noticed that Trp2 and its derivatives also exhibit a new decay with a lifetime of ∼100ps, while single-Trp fluorescence decay in dipeptides/proteins shows 20-30ps. The intramolecular interaction lifetime constants of Trp2, NBTrp2, Trp2Me and NATrp2Me were then calculated to be 3.64, 0.93, 11.52 and 2.40ns, respectively. Candidate mechanisms (including heterogeneity, solvent relaxation, quasi static self-quenching or ET/PT quenching) have been discussed.

  16. Doppler-free Yb spectroscopy with the fluorescence spot technique

    SciTech Connect

    Nizamani, Altaf H.; McLoughlin, James J.; Hensinger, Winfried K.

    2010-10-15

    We demonstrate a simple technique to measure the resonant frequency of the 398.9-nm {sup 1}S{sub 0}{leftrightarrow}{sup 1}P{sub 1} transition for the different Yb isotopes. The technique, which works by observing and aligning fluorescence spots, has enabled us to measure transition frequencies and isotope shifts with an accuracy of 60 MHz. We provide wavelength measurements for the transition that differ from previously published work. Our technique also allows for the determination of Doppler-shifted transition frequencies for photoionization experiments when the atomic beam and the laser beam are not perpendicular and furthermore allows us to determine the average velocity of the atoms along the direction of the atomic beam.

  17. Gold nephropathy: tissue analysis by X-ray fluorescent spectroscopy.

    PubMed

    Viol, G W; Minielly, J A; Bistricki, T

    1977-12-01

    Three patients developed proteinuria following gold therapy for rheumatoid arthritis. The clinical syndrome was a self-limiting proteinuria with normal renal function. By light and electron microscopic appearances the renal lesion was an epimembranous deposit form of membranous glomerulopathy. Immunofluorescent study showed granular deposits of IgG and C3 complement along glomerular basement membranes. By X-ray fluorescent spectroscopic examination, gold was seen to be present within the proximal convoluted tubular cells but was not identified in the glomerular subepithelial deposits. These findings are consistent with an immune-complex form of glomerulopathy in which gold is neither the antigen nor a hapten in the glomerular deposits, and they suggest the hypothesis that antibodies to tubular epithelial antigens induced by gold therapy may be a causative factor in the renal disease associated with gold therapy in rheumatoid arthritis. PMID:412488

  18. Hyperspectral Imaging and Spectroscopy of Fluorescently Coupled Acyl-CoA: Cholesterol Acyltransferase in Insect Cells

    NASA Technical Reports Server (NTRS)

    Malak, H.; Mahtani, H.; Herman, P.; Vecer, J.; Lu, X.; Chang, T. Y.; Richmond, Robert C.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    A high-performance hyperspectral imaging module with high throughput of light suitable for low-intensity fluorescence microscopic imaging and subsequent analysis, including single-pixel-defined emission spectroscopy, was tested on Sf21 insect cells expressing green fluorescence associated with recombinant green fluorescent protein linked or not with the membrane protein acyl-CoA:cholesterol acyltransferase. The imager utilized the phenomenon of optical activity as a new technique providing information over a spectral range of 220-1400 nm, and was inserted between the microscope and an 8-bit CCD video-rate camera. The resulting fluorescence image did not introduce observable image aberrations. The images provided parallel acquisition of well resolved concurrent spatial and spectral information such that fluorescence associated with green fluorescent protein alone was demonstrated to be diffuse within the Sf21 insect cell, and that green fluorescence associated with the membrane protein was shown to be specifically concentrated within regions of the cell cytoplasm. Emission spectra analyzed from different regions of the fluorescence image showed blue shift specific for the regions of concentration associated with the membrane protein.

  19. Nonlinear Theory of Anomalous Diffusion and Application to Fluorescence Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Boon, Jean Pierre; Lutsko, James F.

    2015-12-01

    The nonlinear theory of anomalous diffusion is based on particle interactions giving an explicit microscopic description of diffusive processes leading to sub-, normal, or super-diffusion as a result of competitive effects between attractive and repulsive interactions. We present the explicit analytical solution to the nonlinear diffusion equation which we then use to compute the correlation function which is experimentally measured by correlation spectroscopy. The theoretical results are applicable in particular to the analysis of fluorescence correlation spectroscopy of marked molecules in biological systems. More specifically we consider the cases of fluorescently labeled lipids in the plasma membrane and of fluorescent apoferritin (a spherically shaped oligomer) in a crowded dextran solution and we find that the nonlinear correlation spectra reproduce very well the experimental data indicating sub-diffusive molecular motion.

  20. Fluorescence excitation-emission matrix spectroscopy as a tool for determining quality of sparkling wines.

    PubMed

    Elcoroaristizabal, Saioa; Callejón, Raquel M; Amigo, Jose M; Ocaña-González, Juan A; Morales, M Lourdes; Ubeda, Cristina

    2016-09-01

    Browning in sparkling wines was assessed by the use of excitation-emission fluorescence spectroscopy combined with PARAllel FACtor analysis (PARAFAC). Four different cava sparkling wines were monitored during an accelerated browning process and subsequently storage. Fluorescence changes observed during the accelerated browning process were monitored and compared with other conventional parameters: absorbance at 420nm (A420) and the content of 5-hydroxymethyl-2-furfural (5-HMF). A high similarity of the spectral profiles for all sparkling wines analyzed was observed, being explained by a four component PARAFAC model. A high correlation between the third PARAFAC factor (465/530nm) and the commonly used non-enzymatic browning indicators was observed. The fourth PARAFAC factor (280/380nm) gives us also information about the browning process following a first order kinetic reaction. Hence, excitation-emission fluorescence spectroscopy, together with PARAFAC, provides a faster alternative for browning monitoring to conventional methods, as well as useful key indicators for quality control.

  1. Fluorescence spectroscopy and molecular weight distribution of extracellular polymers from full-scale activated sludge biomass.

    PubMed

    Esparza-Soto, M; Westerhoff, P K

    2001-01-01

    Two fractions of extracellular polymer substances (EPSs), soluble and readily extractable (RE), were characterised in terms of their molecular weight distributions (MWD) and 3-D excitation-emission-matrix (EEM) fluorescence spectroscopy signatures. The EPS fractions were different: the soluble EPSs were composed mainly of high molecular weight compounds, while the RE EPSs were composed of small molecular weight compounds. Contrary to previous thought, EPS may not be considered only as macromolecular because most organic matter present in both fractions had low molecular weight. Three different fluorophore peaks were identified in the EEM fluorescence spectra. Two peaks were attributed to protein-like fluorophores, and the third to a humic-like fluorophore. Fluorescence signatures were different from other previously published signatures for marine and riverine environments. EEM spectroscopy proved to be a suitable method that may be used to characterise and trace organic matter of bacterial origin in wastewater treatment operations.

  2. High-throughput single-molecule fluorescence spectroscopy using parallel detection

    PubMed Central

    Michalet, X.; Colyer, R. A.; Scalia, G.; Kim, T.; Levi, Moran; Aharoni, Daniel; Cheng, Adrian; Guerrieri, F.; Arisaka, Katsushi; Millaud, Jacques; Rech, I.; Resnati, D.; Marangoni, S.; Gulinatti, A.; Ghioni, M.; Tisa, S.; Zappa, F.; Cova, S.; Weiss, S.

    2011-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful new experimental approach with applications in all fields of natural sciences. The basic concept of this technique is to excite and collect light from a very small volume (typically femtoliter) and work in a concentration regime resulting in rare burst-like events corresponding to the transit of a single-molecule. Those events are accumulated over time to achieve proper statistical accuracy. Therefore the advantage of extreme sensitivity is somewhat counterbalanced by a very long acquisition time. One way to speed up data acquisition is parallelization. Here we will discuss a general approach to address this issue, using a multispot excitation and detection geometry that can accommodate different types of novel highly-parallel detector arrays. We will illustrate the potential of this approach with fluorescence correlation spectroscopy (FCS) and single-molecule fluorescence measurements obtained with different novel multipixel single-photon counting detectors. PMID:21625288

  3. Quantification of transition dipole strengths using 1D and 2D spectroscopy for the identification of molecular structures via exciton delocalization: Application to α-helices

    NASA Astrophysics Data System (ADS)

    Grechko, Maksim; Zanni, Martin T.

    2012-11-01

    Vibrational and electronic transition dipole strengths are often good probes of molecular structures, especially in excitonically coupled systems of chromophores. One cannot determine transition dipole strengths using linear spectroscopy unless the concentration is known, which in many cases it is not. In this paper, we report a simple method for measuring transition dipole moments from linear absorption and 2D IR spectra that does not require knowledge of concentrations. Our method is tested on several model compounds and applied to the amide I' band of a polypeptide in its random coil and α-helical conformation as modulated by the solution temperature. It is often difficult to confidently assign polypeptide and protein secondary structures to random coil or α-helix by linear spectroscopy alone, because they absorb in the same frequency range. We find that the transition dipole strength of the random coil state is 0.12 ± 0.013 D2, which is similar to a single peptide unit, indicating that the vibrational mode of random coil is localized on a single peptide unit. In an α-helix, the lower bound of transition dipole strength is 0.26 ± 0.03 D2. When taking into account the angle of the amide I' transition dipole vector with respect to the helix axis, our measurements indicate that the amide I' vibrational mode is delocalized across a minimum of 3.5 residues in an α-helix. Thus, one can confidently assign secondary structure based on exciton delocalization through its effect on the transition dipole strength. Our method will be especially useful for kinetically evolving systems, systems with overlapping molecular conformations, and other situations in which concentrations are difficult to determine.

  4. Validation of a time-resolved fluorescence spectroscopy apparatus in a rabbit atherosclerosis model

    NASA Astrophysics Data System (ADS)

    Fang, Qiyin; Jo, Javier A.; Papaioannou, Thanassis; Dorafshar, Amir; Reil, Todd; Qiao, Jian-Hua; Fishbein, Michael C.; Freischlag, Julie A.; Marcu, Laura

    2004-07-01

    Time-resolved laser-induced fluorescence spectroscopy (tr-LIFS) has been studied as a potential tool for in vivo diagnosis of atherosclerotic lesions. This study is to evaluate the potential of a compact fiber-optics based tr-LIFS instrument developed in our laboratory for in vivo analysis of atherosclerotic plaque composition. Time-resolved fluorescence spectroscopy studies were performed in vivo on fifteen New Zealand White rabbits (atherosclerotic: N=8, control: N=7). Time-resolved fluorescence spectra were acquired (range: 360-600 nm, increment: 5 nm, total acquisition time: 65 s) from normal aorta wall and lesions in the abdominal aorta. Data were analyzed in terms of fluorescence emission spectra and wavelength specific lifetimes. Following trichrome staining, tissue specimens were analyzed histopathologically in terms of intima/media thickness and biochemical composition (collagen, elastin, foam cells, and etc). Based on intimal thickness, the lesions were divided into thin and thick lesions. Each group was further separated into two categories: collagen rich lesions and foam cell rich lesions based on their biochemical composition. The obtained spectral and time domain fluorescence signatures were subsequently correlated to the histopathological findings. The results have shown that time-domain fluorescence spectral features can be used in vivo to separate atherosclerotic lesions from normal aorta wall as well discrimination within certain types of lesions.

  5. Characterising organic matter in recirculating aquaculture systems with fluorescence EEM spectroscopy.

    PubMed

    Hambly, A C; Arvin, E; Pedersen, L-F; Pedersen, P B; Seredyńska-Sobecka, B; Stedmon, C A

    2015-10-15

    The potential of recirculating aquaculture systems (RAS) in the aquaculture industry is increasingly being acknowledged. Along with intensified application, the need to better characterise and understand the accumulated dissolved organic matter (DOM) within these systems increases. Mature RASs, stocked with rainbow trout and operated at steady state at four feed loadings, were analysed by dissolved organic carbon (DOC) analysis and fluorescence excitation-emission matrix (EEM) spectroscopy. The fluorescence dataset was then decomposed by PARAFAC analysis using the drEEM toolbox. This revealed that the fluorescence character of the RAS water could be represented by five components, of which four have previously been identified in fresh water, coastal marine water, wetlands and drinking water. The fluorescence components as well as the DOC showed positive correlations with feed loading, however there was considerable variation between the five fluorescence components with respect to the degree of accumulation with feed loading. The five components were found to originate from three sources: the feed; the influent tap water (groundwater); and processes related to the fish and the water treatment system. This paper details the first application of fluorescence EEM spectroscopy to assess DOM in RAS, and highlights the potential applications of this technique within future RAS management strategies.

  6. Combined fiber probe for fluorescence lifetime and Raman spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dochow, Sebastian; Ma, Dinglong; Latka, Ines; Bocklitz, Thomas; Hartl, Brad; Bec, Julien; Fatakdawala, Hussain; Wachsmann-Hogiu, Sebastian; Marple, Eric; Urmey, Kirk; Schmitt, Michael; Marcu, Laura; Popp, Jürgen

    2016-03-01

    Raman spectroscopy has been proven to have tremendous potential as biomedical analytical tool for spectroscopic disease diagnostics. The use of fiberoptic coupled Raman spectroscopy systems can enable in-vivo characterization of suspicious lesions. However, Raman spectroscopy has the drawback of rather long acquisition times of several hundreds of milliseconds which makes scanning of larger regions quite challenging. By combining Raman spectroscopy with a fast imaging technique this problem can be alleviate in part. Fluorescence lifetime imaging (FLIm) offers a great potential for such a combination. FLIm can allow for fast tissue area pre-segmentation and location of the points for Raman spectra acquisition. Here, we introduce an optical fiber probe combining FLIm and Raman spectroscopy with an outer diameter of 2 mm. Fluorescence is generated via excitation with a fiber laser at 355 nm. The fluorescence emission is spectrally resolved using a custom-made wavelength-selection module (WSM). The Raman excitation power at 785 nm was set to 50 mW for the in-vivo measurements to prevent sample drying. The lateral probe resolution was determined to be <250 μm for both modalities. This value was taken as step size for several raster scans of different tissue types which were conducted to show the overlap of both modalities under realistic conditions. Finally the probe was used for in vivo raster scans of a rat's brain and subsequently to acquire FLIm guided Raman spectra of several tissues in and around the craniotomy.

  7. Fluorescence spectroscopy incorporating a ratiometric approach for the diagnosis and classification of urothelial carcinoma

    NASA Astrophysics Data System (ADS)

    Anand, Suresh; Cicchi, Riccardo; Crisci, Alfonso; Nesi, Gabriella; Carini, Marco; Pavone, Francesco S.

    2016-02-01

    The current most popular clinical method for the screening of urothelial carcinoma is white light cystoscopy. This method has inherent disadvantages making a strong genesis towards developing more powerful diagnostic techniques. Laser induced intrinsic fluorescence spectroscopy has been studied as an adjunct to current methods for the detection of tumors. This technique allows real time results based on the changes in spectral profile between normal and tumor tissues. We conducted a pilot study based on fluorescence spectroscopy at two wavelengths 378 and 445 nm excitation for the differentiation of urothelial carcinoma. At both the excitation wavelengths, the measured fluorescence signal showed an increased intensity at wavelengths greater than 520 nm. In addition, the emission profile showed modulation at 580 nm which is due to the reabsorption of emitted fluo- rescence due to hemoglobin. Additionally, we developed a tissue characterizing algorithm, based on fluorescence intensity ratios, F510/F600 and F520/F580 at 378 and 445 nm excitation wavelengths respectively. Further, the results were correlated with the pathologists assessment of urothelial carcinoma. This ratiometric classification algorithm yielded 81% sensitivity and 83% specificity at 378 nm and while at 445 nm excitation we achieved a sensitivity and specificity of 85% and 86% for classifying normal and tumor bladder tissues. In this study we have demonstrated the potential of a simple ratiometric algorithm based on fluorescence spectroscopy could be an alternative tool to tissue biopsy. Furthermore, this technique based fiber-based fluorescence spectroscopy could be integrated into an endoscopy system for use in the operating room.

  8. Interplay of Ion-Water and Water-Water Interactions within the Hydration Shells of Nitrate and Carbonate Directly Probed with 2D IR Spectroscopy.

    PubMed

    Fournier, Joseph A; Carpenter, William; De Marco, Luigi; Tokmakoff, Andrei

    2016-08-01

    The long-range influence of ions in solution on the water hydrogen-bond (H-bond) network remains a topic of vigorous debate. Recent spectroscopic and theoretical studies have, for the most part, reached the consensus that weakly coordinating ions only affect water molecules in the first hydration shell. Here, we apply ultrafast broadband two-dimensional infrared (2D IR) spectroscopy to aqueous nitrate and carbonate in neat H2O to study the solvation structure and dynamics of ions on opposite ends of the Hofmeister series. By exciting both the water OH stretches and ion stretches and probing the associated cross-peaks between them, we are afforded a comprehensive view into the complex nature of ion hydration. We show in aqueous nitrate that weak ion-water H-bonding leads to water-water interactions in the ion solvation shells dominating the dynamics. In contrast, the carbonate CO stretches show significant mixing with the water OH stretches due to strong ion-water H-bonding such that the water and ion modes are intimately correlated. Further, the excitonic nature of vibrations in neat H2O, which spans multiple water molecules, is an important factor in describing ion hydration. We attribute these complex dynamics to the likely presence of intermediate-range effects influenced by waters beyond the first solvation shell. PMID:27404015

  9. Multicolored two-photon fluorescent microscopy and localized two-photon fluorescent spectroscopy in living cells

    NASA Astrophysics Data System (ADS)

    Bergey, Earl J.; Wang, Xiaopeng; Krebs, Linda J.; Pudavar, Haridas E.; Kapoor, Rakesh; Friend, Christopher S.; Liebow, Charles; Prasad, Paras N.

    2001-04-01

    Imaging in biological systems has become one of the most relied upon tools in the study of human disease. Two-photon excitation methodology in laser scanning microscopy has resulted in 3D-imaging capability not easily achieved in one- photon systems. Our Institute, in conjunction with Andrew Schally (Noble Laureate, Tulane University), has used two- photon laser scanning microscopy (TPLSM) to understand the real time cellular transport of the chemotherapeutic agent, Luteinizing Hormone-Releasing Hormone-Doxorubicin (AN152) covalently coupled to a novel two-photon fluorophore (C625). At the Institute, new and highly efficient two-photon fluorophores that fluoresce at different wavelengths have been developed. The coupling of LH-RH and AN152 with two-photon fluorophores having different spectroscopic profiles allows for the simultaneous determination of their cellular compartmentalization. Coupled with the two-photon microspectrofluorometer, we acquired localized fluorescence spectra from the inside of living cells to differentiate the cytoplasmic and nuclear localization of the LH-RH and AN152 respectively. The ability of these new dyes to fluoresce at different wavelengths using the same excitation wavelength provides a major advantage over single photon dyes. This technology has great promise in imaging the dynamic changes or events occurring in living cells over short periods of time. Another approach to bioimaging at the Institute is the integration of two-photon and nanosized technologies. Nanoclinics (20 - 30 nm silica bubbles) can be fabricated to contain these two photon fluorophores and the surface functionalized with biological agents which can target specific cells. These highly fluorescent nanoclinics are sufficiently small in size to allow for tissue penetration, allowing for the multiple probing for different cellular functions in normal and cancerous tissues.

  10. Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection

    SciTech Connect

    Hybl, John D.; Tysk, Shane M.; Berry, Shaun R.; Jordan, Michael P

    2006-12-01

    Methods for accurately characterizing aerosols are required for detecting biological warfare agents. Currently, fluorescence-based biological agent sensors provide adequate detection sensitivity but suffer from high false-alarm rates. Combining single-particle fluorescence analysis with laser-induced breakdown spectroscopy (LIBS) provides additional discrimination and potentially reduces false-alarm rates. A transportable UV laser-induced fluorescence-cued LIBS test bed has been developed and used to evaluate the utility of LIBS for biological-agent detection. Analysis of these data indicates that LIBS adds discrimination capability to fluorescence-based biological-agent detectors.However, the data also show that LIBS signatures of biological agent simulants are affected by washing. This may limit the specificity of LIBS and narrow the scope of its applicability in biological-agent detection.

  11. Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection.

    PubMed

    Hybl, John D; Tysk, Shane M; Berry, Shaun R; Jordan, Michael P

    2006-12-01

    Methods for accurately characterizing aerosols are required for detecting biological warfare agents. Currently, fluorescence-based biological agent sensors provide adequate detection sensitivity but suffer from high false-alarm rates. Combining single-particle fluorescence analysis with laser-induced breakdown spectroscopy (LIBS) provides additional discrimination and potentially reduces false-alarm rates. A transportable UV laser-induced fluorescence-cued LIBS test bed has been developed and used to evaluate the utility of LIBS for biological-agent detection. Analysis of these data indicates that LIBS adds discrimination capability to fluorescence-based biological-agent detectors. However, the data also show that LIBS signatures of biological agent simulants are affected by washing. This may limit the specificity of LIBS and narrow the scope of its applicability in biological-agent detection.

  12. Rapid screening test for porphyria diagnosis using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Lang, A.; Stepp, H.; Homann, C.; Hennig, G.; Brittenham, G. M.; Vogeser, M.

    2015-07-01

    Porphyrias are rare genetic metabolic disorders, which result from deficiencies of enzymes in the heme biosynthesis pathway. Depending on the enzyme defect, different types of porphyrins and heme precursors accumulate for the different porphyria diseases in erythrocytes, liver, blood plasma, urine and stool. Patients with acute hepatic porphyrias can suffer from acute neuropathic attacks, which can lead to death when undiagnosed, but show only unspecific clinical symptoms such as abdominal pain. Therefore, in addition to chromatographic methods, a rapid screening test is required to allow for immediate identification and treatment of these patients. In this study, fluorescence spectroscopic measurements were conducted on blood plasma and phantom material, mimicking the composition of blood plasma of porphyria patients. Hydrochloric acid was used to differentiate the occurring porphyrins (uroporphyrin-III and coproporphyrin-III) spectroscopically despite their initially overlapping excitation spectra. Plasma phantom mixtures were measured using dual wavelength excitation and the corresponding concentrations of uroporphyrin-III and coproporphyrin-III were determined. Additionally, three plasma samples of porphyria patients were examined and traces of coproporphyrin-III and uroporphyrin-III were identified. This study may therefore help to establish a rapid screening test method with spectroscopic differentiation of the occurring porphyrins, which consequently allows for the distinction of different porphyrias. This may be a valuable tool for clinical porphyria diagnosis and rapid or immediate treatment.

  13. Probing Ternary Complex Equilibria of Crown Ether Ligands by Time-Resolved Fluorescence Spectroscopy

    PubMed Central

    2015-01-01

    Ternary complex formation with solvent molecules and other adventitious ligands may compromise the performance of metal-ion-selective fluorescent probes. As Ca(II) can accommodate more than 6 donors in the first coordination sphere, commonly used crown ether ligands are prone to ternary complex formation with this cation. The steric strain imposed by auxiliary ligands, however, may result in an ensemble of rapidly equilibrating coordination species with varying degrees of interaction between the cation and the specific donor atoms mediating the fluorescence response, thus diminishing the change in fluorescence properties upon Ca(II) binding. To explore the influence of ligand architecture on these equilibria, we tethered two structurally distinct aza-15-crown-5 ligands to pyrazoline fluorophores as reporters. Due to ultrafast photoinduced electron-transfer (PET) quenching of the fluorophore by the ligand moiety, the fluorescence decay profile directly reflects the species composition in the ground state. By adjusting the PET driving force through electronic tuning of the pyrazoline fluorophores, we were able to differentiate between species with only subtle variations in PET donor abilities. Concluding from a global analysis of the corresponding fluorescence decay profiles, the coordination species composition was indeed strongly dependent on the ligand architecture. Altogether, the combination of time-resolved fluorescence spectroscopy with selective tuning of the PET driving force represents an effective analytical tool to study dynamic coordination equilibria and thus to optimize ligand architectures for the design of high-contrast cation-responsive fluorescence switches. PMID:25313708

  14. Assembly and characterization of a fluorescence lifetime spectroscopy system for skin lesions diagnostic

    NASA Astrophysics Data System (ADS)

    Saito Nogueira, Marcelo; Texiera Rosa, Ramon Gabriel; Pratavieira, Sebastião.; D´Almeida, Camila de Paula; Kurachi, Cristina

    2015-06-01

    The fluorescence spectra and fluorescence lifetime analysis in biological tissues has been presented as a technique of a great potential for tissue characterization for diagnostic purposes. The objective of this study is to assemble and characterize a fluorescence lifetime spectroscopy system for diagnostic of clinically similar skin lesions in vivo. The fluorescence lifetime measurements were performed using the Time Correlated Single Photon Counting (Becker & Hickl, Berlin, Germany) technique. Two lasers, one emitting at 378 nm and another at 445 nm, are used for excitation with 20, 50 and 80 MHz repetition rate. A bifurcated optical fiber probe conducts the excitation light to the sample, the collected light is transmitted through bandpass filters and delivered to a hybrid photomultiplier tube detector. The fluorescence spectra were obtained by using a portable spectrometer (Ocean Optics USB-2000-FLG) with the same excitation sources. An instrument response function of about 300 ps was obtained and the spectrum and fluorescence lifetime of a standard fluorescent molecule (Rhodamine 6G) was measured for the calibration of the system ((4.1 +/- 0.3) ns). The assembled system was considered robust, well calibrated and will be used for clinical measurements of skin lesions.

  15. Fluorescence lifetime spectroscopy in multiple-scattering environments: an application to biotechnology

    NASA Astrophysics Data System (ADS)

    Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio

    1999-07-01

    Over the past few years, there has been significant research activity devoted to the application of fluorescence spectroscopy to strongly scattering media, where photons propagate diffusely. Much of this activity focused on fluorescence as a source of contrast enhancement in optical tomography. Our efforts have emphasized the quantitative recovery of fluorescence parameters for spectroscopy. Using a frequency-domain diffusion-based model, we have successfully recovered the lifetime, the absolute quantum yield, the fluorophore concentration, and the emission spectrum of the fluorophore, as well as the absorption and the reduced scattering coefficients at the emission wavelength of the medium in different measurements. In this contribution, we present a sensitive monitor of the binding between ethidium bromide and bovine cells in fresh milk. The spectroscopic contrast was the approximately tenfold increase in the ethidium bromide lifetime upon binding to DNA. The measurement clearly demonstrated that we could quantitatively measure the density of cells in the milk, which is an application vital to the tremendous economic burden of bovine subclinical mastitis detection. Furthermore, we may in principle use the spirit of this technique as a quantitative monitor of the binding of fluorescent drugs inside tissues. This is a first step towards lifetime spectroscopy in tissues.

  16. Intraoperative near-infrared fluorescence imaging and spectroscopy identifies residual tumor cells in wounds.

    PubMed

    Holt, David; Parthasarathy, Ashwin B; Okusanya, Olugbenga; Keating, Jane; Venegas, Ollin; Deshpande, Charuhas; Karakousis, Giorgos; Madajewski, Brian; Durham, Amy; Nie, Shuming; Yodh, Arjun G; Singhal, Sunil

    2015-07-01

    Surgery is the most effective method to cure patients with solid tumors, and 50% of all cancer patients undergo resection. Local recurrences are due to tumor cells remaining in the wound, thus we explore near-infrared (NIR) fluorescence spectroscopy and imaging to identify residual cancer cells after surgery. Fifteen canines and two human patients with spontaneously occurring sarcomas underwent intraoperative imaging. During the operation, the wounds were interrogated with NIR fluorescence imaging and spectroscopy. NIR monitoring identified the presence or absence of residual tumor cells after surgery in 14/15 canines with a mean fluorescence signal-to-background ratio (SBR) of ∼16 . Ten animals showed no residual tumor cells in the wound bed (mean SBR<2 , P<0.001 ). None had a local recurrence at >1-year follow-up. In five animals, the mean SBR of the wound was >15 , and histopathology confirmed tumor cells in the postsurgical wound in four/five canines. In the human pilot study, neither patient had residual tumor cells in the wound bed, and both remain disease free at >1.5-year follow up. Intraoperative NIR fluorescence imaging and spectroscopy identifies residual tumor cells in surgical wounds. These observations suggest that NIR imaging techniques may improve tumor resection during cancer operations.

  17. Intraoperative near-infrared fluorescence imaging and spectroscopy identifies residual tumor cells in wounds

    NASA Astrophysics Data System (ADS)

    Holt, David; Parthasarathy, Ashwin B.; Okusanya, Olugbenga; Keating, Jane; Venegas, Ollin; Deshpande, Charuhas; Karakousis, Giorgos; Madajewski, Brian; Durham, Amy; Nie, Shuming; Yodh, Arjun G.; Singhal, Sunil

    2015-07-01

    Surgery is the most effective method to cure patients with solid tumors, and 50% of all cancer patients undergo resection. Local recurrences are due to tumor cells remaining in the wound, thus we explore near-infrared (NIR) fluorescence spectroscopy and imaging to identify residual cancer cells after surgery. Fifteen canines and two human patients with spontaneously occurring sarcomas underwent intraoperative imaging. During the operation, the wounds were interrogated with NIR fluorescence imaging and spectroscopy. NIR monitoring identified the presence or absence of residual tumor cells after surgery in 14/15 canines with a mean fluorescence signal-to-background ratio (SBR) of ˜16. Ten animals showed no residual tumor cells in the wound bed (mean SBR<2, P<0.001). None had a local recurrence at >1-year follow-up. In five animals, the mean SBR of the wound was >15, and histopathology confirmed tumor cells in the postsurgical wound in four/five canines. In the human pilot study, neither patient had residual tumor cells in the wound bed, and both remain disease free at >1.5-year follow up. Intraoperative NIR fluorescence imaging and spectroscopy identifies residual tumor cells in surgical wounds. These observations suggest that NIR imaging techniques may improve tumor resection during cancer operations.

  18. Intraoperative near-infrared fluorescence imaging and spectroscopy identifies residual tumor cells in wounds

    PubMed Central

    Holt, David; Parthasarathy, Ashwin B.; Okusanya, Olugbenga; Keating, Jane; Venegas, Ollin; Deshpande, Charuhas; Karakousis, Giorgos; Madajewski, Brian; Durham, Amy; Nie, Shuming; Yodh, Arjun G.; Singhal, Sunil

    2015-01-01

    Abstract. Surgery is the most effective method to cure patients with solid tumors, and 50% of all cancer patients undergo resection. Local recurrences are due to tumor cells remaining in the wound, thus we explore near-infrared (NIR) fluorescence spectroscopy and imaging to identify residual cancer cells after surgery. Fifteen canines and two human patients with spontaneously occurring sarcomas underwent intraoperative imaging. During the operation, the wounds were interrogated with NIR fluorescence imaging and spectroscopy. NIR monitoring identified the presence or absence of residual tumor cells after surgery in 14/15 canines with a mean fluorescence signal-to-background ratio (SBR) of ∼16. Ten animals showed no residual tumor cells in the wound bed (mean SBR<2, P<0.001). None had a local recurrence at >1-year follow-up. In five animals, the mean SBR of the wound was >15, and histopathology confirmed tumor cells in the postsurgical wound in four/five canines. In the human pilot study, neither patient had residual tumor cells in the wound bed, and both remain disease free at >1.5-year follow up. Intraoperative NIR fluorescence imaging and spectroscopy identifies residual tumor cells in surgical wounds. These observations suggest that NIR imaging techniques may improve tumor resection during cancer operations. PMID:26160347

  19. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-01

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D 1H/13C/1H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond 13C/1H and 13C/13C chemical shift correlations, the 3D 1H/13C/1H experiment also provides a COSY-type 1H/1H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices (1H/1H chemical shift correlation spectrum) at different 13C chemical shift frequencies from the 3D 1H/13C/1H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D 1H/13C/1H experiment would be useful to study the structure and dynamics of a variety of chemical and biological

  20. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-21

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D (1)H/(13)C/(1)H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond (13)C/(1)H and (13)C/(13)C chemical shift correlations, the 3D (1)H/(13)C/(1)H experiment also provides a COSY-type (1)H/(1)H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ((1)H/(1)H chemical shift correlation spectrum) at different (13)C chemical shift frequencies from the 3D (1)H/(13)C/(1)H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D (1)H/(13)C/(1)H experiment would be useful to study the structure and dynamics of

  1. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry

    NASA Astrophysics Data System (ADS)

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-01

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu2 + with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15 K in 20 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu2 + ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu2 + ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu2 + ions are discussed.

  2. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry.

    PubMed

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-15

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu(2+) with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15K in 20mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu(2+) ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu(2+) ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu(2+) ions are discussed.

  3. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry.

    PubMed

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-15

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu(2+) with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15K in 20mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu(2+) ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu(2+) ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu(2+) ions are discussed. PMID:26363471

  4. Determining individual mineral contributions to U(VI) adsorption in a contaminated aquifer sediment: A fluorescence spectroscopy study

    NASA Astrophysics Data System (ADS)

    Wang, Zheming; Zachara, John M.; Boily, Jean-François; Xia, Yuanxian; Resch, Tom C.; Moore, Dean A.; Liu, C.

    2011-05-01

    The adsorption and speciation of U(VI) was investigated on contaminated, fine grained sediment materials from the Hanford 300 area (SPP1 GWF) in simulated groundwater using cryogenic laser-induced U(VI) fluorescence spectroscopy combined with chemometric analysis. A series of reference minerals (montmorillonite, illite, Michigan chlorite, North Carolina chlorite, California clinochlore, quartz and synthetic 6-line ferrihydrite) was used for comparison that represents the mineralogical constituents of SPP1 GWF. Surface area-normalized Kd values were measured at U(VI) concentrations of 5 × 10 -7 and 5 × 10 -6 mol L -1 that displayed the following affinity series: 6-line-ferrihydrite > North Carolina chlorite ≈ California clinochlore > quartz ≈ Michigan chlorite > illite > montmorillonite. Both time-resolved spectra and asynchronous two-dimensional (2D) correlation analysis of SPP1 GWF at different delay times indicated that two major adsorbed U(VI) species were present in the sediment that resembled U(VI) adsorbed on quartz and phyllosilicates. Simulations of the normalized fluorescence spectra confirmed that the speciation of SPP1 GWF was best represented by a linear combination of U(VI) adsorbed on quartz (90%) and phyllosilicates (10%). However, the fluorescence quantum yield for U(VI) adsorbed on phyllosilicates was lower than quartz and, consequently, its fractional contribution to speciation may be underestimated. Spectral comparison with literature data suggested that U(VI) exist primarily as inner-sphere complexes with surface silanol groups on quartz and as surface U(VI) tricarbonate complexes on phyllosilicates.

  5. Determining Individual Mineral Contributions To U(VI) Adsorption In A Contaminated Aquifer Sediment: A Fluorescence Spectroscopy Study

    SciTech Connect

    Wang, Zheming; Zachara, John M.; Boily, Jean F.; Xia, Yuanxian; Resch, Charles T.; Moore, Dean A.; Liu, Chongxuan

    2011-05-15

    The adsorption and speciation of U(VI) was investigated on contaminated, fine grained sediment materials from the Hanford 300 area (SPP1 GWF) in simulated groundwater using cryogenic laser-induced U(VI) fluorescence spectroscopy combined with chemometric analysis. A series of reference minerals (montmorillonite, illite, Michigan chlorite, North Carolina chlorite, California clinochlore, quartz and synthetic 6-line ferrihydrite) was used for comparison that represents the mineralogical constituents of SPP1 GWF. Surface area-normalized Kd values were measured at U(VI) concentrations of 5x10-7 mol L-1 and 5x10-6 mol L-1, respectively, that displayed the following affinity series: 6-line-ferrihydrite > North Carolina chlorite ≈ California clinochlore > Michigan chlorite ≈ quartz > montmorillonite ≈ illite ≈ SPP1 GWF. Both time-resolved spectra and asynchronous two-dimensional (2D) correlation analysis of SPP1 GWF at different delay times indicated that two major adsorbed U(VI) species were present in the sediment that resembled U(VI) adsorbed on quartz and phyllosilicates. Simulations of the normalized fluorescence spectra confirmed that the speciation of SPP1 GWF was best represented by a linear combination of U(VI) adsorbed on quartz (90%) and phyllosilicates (10%). However, the fluorescence quantum yield for U(VI) adsorbed on phyllosilicates was lower than quartz and, consequently, its fractional contribution to speciation may be underestimated. Spectral comparison with literature data suggested that U(VI) exists primarily as inner-sphere U(VI) complexes with surface silanol groups on quartz while U(VI) on phyllosilicates was consistent with the formation of surface U(VI) tricarbonate complexes.

  6. Assessing the photoaging process at sun exposed and non-exposed skin using fluorescence lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Saito Nogueira, Marcelo; Kurachi, Cristina

    2016-03-01

    Photoaging is the skin premature aging due to exposure to ultraviolet light, which damage the collagen, elastin and can induce alterations on the skin cells DNA, and, then, it may evolve to precancerous lesions, which are widely investigated by fluorescence spectroscopy and lifetime. The fluorescence spectra and fluorescence lifetime analysis has been presented as a technique of great potential for biological tissue characterization at optical diagnostics. The main targeted fluorophores are NADH (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide), which have free and bound states, each one with different average lifetimes. The average lifetimes for free and bound NADH and FAD change according to tissue metabolic alterations and may contribute to a non-invasive clinical investigation of injuries such as skin lesions. These lesions and the possible areas where they may develop can be interrogated using fluorescence lifetime spectroscopy taking into account the variability of skin phototypes and the changes related to melanin, collagen and elastin, endogenous fluorophores which have emissions that spectrally overlap to the NADH and FAD emission. The objective of this study is to assess the variation on fluorescence lifetimes of normal skin at sun exposed and non-exposed areas and associate this variation to the photoaging process.

  7. Towards in situ fluorescence spectroscopy and microscopy investigations of asphaltene precipitation kinetics.

    PubMed

    Franco, Juliana C; Gonçalves, Grasiele; Souza, Monique S; Rosa, Samantha B C; Thiegue, Larissa M; Atvars, Teresa D Z; Rosa, Paulo T V; Nome, René A

    2013-12-16

    We perform a spectroscopic analysis of asphaltene in solution and in crude oil with the goal of designing an optical probe of asphaltene precipitation inside high-pressure cells. Quantitative analysis of steady-state spectroscopic data is employed to identify fluorescence and Raman contributions to the observed signals. Time-resolved fluorescence spectroscopy indicates that fluorescence lifetime can be used as a spectroscopic probe of asphaltene in crude oil. Quantitative confocal laser-scanning microscopy studies of asphaltene in n-heptane are used to calculate particle-size distributions as a function of time, both at the sample surface and asphaltene interior. The resulting precipitation kinetics is well described by stochastic numerical simulations of diffusion-limited aggregation. Based on these results, we present the design and construction of an apparatus to optically probe the in situ precipitation of asphaltene suitable for studies inside high pressure cells. Design considerations include the use of a spatial light modulator for aberration correction in microscopy measurements, together with the design of epi-fluorescence spectrometer, both fiber-based and for remote sensing fluorescence spectroscopy. PMID:24514660

  8. Applicability of Fluorescence and Absorbance Spectroscopy to Estimate Organic Pollution in Rivers

    PubMed Central

    Knapik, Heloise Garcia; Fernandes, Cristovão Vicente Scapulatempo; de Azevedo, Júlio Cesar Rodrigues; do Amaral Porto, Monica Ferreira

    2014-01-01

    Abstract This article explores the applicability of fluorescence and absorbance spectroscopy for estimating organic pollution in polluted rivers. The relationship between absorbance, fluorescence intensity, dissolved organic carbon, biochemical oxygen demand (BOD), chemical oxygen demand (COD), and other water quality parameters were used to characterize and identify the origin and the spatial variability of the organic pollution in a highly polluted watershed. Analyses were performed for the Iguassu River, located in southern Brazil, with area about 2,700 km2 and ∼3 million inhabitants. Samples were collect at six monitoring sites covering 107 km of the main river. BOD, COD, nitrogen, and phosphorus concentration indicates a high input of sewage to the river. Specific absorbance at 254 and 285 nm (SUVA254 and A285/COD) did not show significant variation between sites monitored, indicating the presence of both dissolved compounds found in domestic effluents and humic and fulvic compounds derived from allochthonous organic matter. Correlations between BOD and tryptophan-like fluorescence peak (peak T2, r=0.7560, and peak T1, r=0.6949) and tyrosine-like fluorescence peak (peak B, r=0.7321) indicated the presence of labile organic matter and thus confirmed the presence of sewage in the river. Results showed that fluorescence and absorbance spectroscopy provide useful information on pollution in rivers from critical watersheds and together are a robust method that is simpler and more rapid than traditional methods employed by regulatory agencies. PMID:25469076

  9. Optical fluorescence spectroscopy to detect hepatic necrosis after normothermic ischemia: animal model

    NASA Astrophysics Data System (ADS)

    Romano, Renan A.; Vollet-Filho, Jose D.; Pratavieira, Sebastião.; Fernandez, Jorge L.; Kurachi, Cristina; Bagnato, Vanderlei S.; Castro-e-Silva, Orlando; Sankarankutty, Ajith K.

    2015-06-01

    Liver transplantation is a well-established treatment for liver failure. However, the success of the transplantation procedure depends on liver graft conditions. The tissue function evaluation during the several transplantation stages is relevant, in particular during the organ harvesting, when a decision is made concerning the viability of the graft. Optical fluorescence spectroscopy is a good option because it is a noninvasive and fast technique. A partial normothermic hepatic ischemia was performed in rat livers, with a vascular occlusion of both median and left lateral lobes, allowing circulation only for the right lateral lobe and the caudate lobe. Fluorescence spectra under excitation at 532 nm (doubled frequency Nd:YAG laser) were collected using a portable spectrometer (USB2000, Ocean Optics, USA). The fluorescence emission was collected before vascular occlusion, after ischemia, and 24 hours after reperfusion. A morphometric histology analysis was performed as the gold standard evaluation - liver samples were analyzed, and the percentage of necrotic tissue was obtained. The results showed that changes in the fluorescence emission after ischemia can be correlated with the amount of necrosis evaluated by a morphometric analysis, the Pearson correlation coefficient of the generated model was 0.90 and the root mean square error was around 20%. In this context, the laser-induced fluorescence spectroscopy technique after normothermic ischemia showed to be a fast and efficient method to differentiate ischemic injury from viable tissues.

  10. [Study on determination of carbaryl content in duck meat based on synchronous fluorescence spectroscopy].

    PubMed

    Xiao, Hai-Bin; Liu, Mu-Hua; Yuan, Hai-Chao; Xu, Jiang; Zhao, Jin-Hui

    2012-11-01

    For the rapid detection of carbaryl residue in duck meat, synchronous fluorescence spectroscopy was used, and GA combined with SVR was used to establish regression forecasting mode for the application of forecasting carbaryl residue in duck meat. Firstly, fluorescence spectrophotometer was used to get the 3D synchronous fluorescence spectra of carbaryl hydrolysate and duck solution containing carbaryl, and 140 nm was selected as the optimum wavelength difference delta lambda; Secondly, some concentration quenching was analysed. Finally, GA was used to optimize and choose the 3D synchronous fluorescence spectra. According to the root mean square error of cross-validation (RMSECV) 21 characteristic wavelengths were chosen, then the full wavelength and 21 characteristic wavelengths were used as input characteristic variables of SVR regression forecasting model respectively. At last the results showed that characteristic wavelengths chosen by GA can get better forecasting results, and the correlation coefficient of the prediction samples set and the root mean squared error (RMSEP) were 0.976 4 and 12.232 2, respectively. The results of experiments showed that the synchronous fluorescence spectroscopy could be used to detect carbaryl residue in duck meat efficiently and rapidly when combined with GA-SVR.

  11. Precise quantification of cellular uptake of cell-penetrating peptides using fluorescence-activated cell sorting and fluorescence correlation spectroscopy.

    PubMed

    Rezgui, Rachid; Blumer, Katy; Yeoh-Tan, Gilbert; Trexler, Adam J; Magzoub, Mazin

    2016-07-01

    Cell-penetrating peptides (CPPs) have emerged as a potentially powerful tool for drug delivery due to their ability to efficiently transport a whole host of biologically active cargoes into cells. Although concerted efforts have shed some light on the cellular internalization pathways of CPPs, quantification of CPP uptake has proved problematic. Here we describe an experimental approach that combines two powerful biophysical techniques, fluorescence-activated cell sorting (FACS) and fluorescence correlation spectroscopy (FCS), to directly, accurately and precisely measure the cellular uptake of fluorescently-labeled molecules. This rapid and technically simple approach is highly versatile and can readily be applied to characterize all major CPP properties that normally require multiple assays, including amount taken up by cells (in moles/cell), uptake efficiency, internalization pathways, intracellular distribution, intracellular degradation and toxicity threshold. The FACS-FCS approach provides a means for quantifying any intracellular biochemical entity, whether expressed in the cell or introduced exogenously and transported across the plasma membrane. PMID:27033412

  12. Strengths and Weaknesses of Recently Engineered Red Fluorescent Proteins Evaluated in Live Cells Using Fluorescence Correlation Spectroscopy

    PubMed Central

    Siegel, Amanda P.; Baird, Michelle A.; Davidson, Michael W.; Day, Richard N.

    2013-01-01

    The scientific community is still looking for a bright, stable red fluorescent protein (FP) as functional as the current best derivatives of green fluorescent protein (GFP). The red FPs exploit the reduced background of cells imaged in the red region of the visible spectrum, but photophysical short comings have limited their use for some spectroscopic approaches. Introduced nearly a decade ago, mCherry remains the most often used red FP for fluorescence correlation spectroscopy (FCS) and other single molecule techniques, despite the advent of many newer red FPs. All red FPs suffer from complex photophysics involving reversible conversions to a dark state (flickering), a property that results in fairly low red FP quantum yields and potential interference with spectroscopic analyses including FCS. The current report describes assays developed to determine the best working conditions for, and to uncover the shortcoming of, four recently engineered red FPs for use in FCS and other diffusion and spectroscopic studies. All five red FPs assayed had potential shortcomings leading to the conclusion that the current best red FP for FCS is still mCherry. The assays developed here aim to enable the rapid evaluation of new red FPs and their smooth adaptation to live cell spectroscopic microscopy and nanoscopy. PMID:24129172

  13. Cellular characterization of adenylate kinase and its isoform: two-photon excitation fluorescence imaging and fluorescence correlation spectroscopy.

    PubMed Central

    Ruan, Qiaoqiao; Chen, Yan; Gratton, Enrico; Glaser, Michael; Mantulin, William W

    2002-01-01

    Adenylate kinase (AK) is a ubiquitous enzyme that regulates the homeostasis of adenine nucleotides in the cell. AK1beta (long form) from murine cells shares the same protein sequence as AK1 (short form) except for the addition of 18 amino acid residues at its N-terminus. It is hypothesized that these residues serve as a signal for protein lipid modification and targeting of the protein to the plasma membrane. To better understand the cellular function of these AK isoforms, we have used several modern fluorescence techniques to characterize these two isoforms of AK enzyme. We fused cytosolic adenylate kinase (AK1) and its isoform (AK1beta) with enhanced green fluorescence protein (EGFP) and expressed the chimera proteins in HeLa cells. Using two-photon excitation scanning fluorescence imaging, we were able to directly visualize the localization of AK1-EGFP and AK1beta-EGFP in live cells. AK1beta-EGFP mainly localized on the plasma membrane, whereas AK1-EGFP distributed throughout the cell except for trace amounts in the nuclear membrane and some vesicles. We performed fluorescence correlation spectroscopy measurements and photon-counting histogram analysis in specific domains of live cells. For AK1-EGFP, we observed only one diffusion component in the cytoplasm. For AK1beta-EGFP, we observed two distinct diffusion components on the plasma membrane. One corresponded to the free diffusing protein, whereas the other represented the membrane-bound AK1beta-EGFP. The diffusion rate of AK1-EGFP was slowed by a factor of 1.8 with respect to that of EGFP, which was 50% more than what we would expect for a free diffusing AK1-EGFP. To rule out the possibility of oligomer formation, we performed photon-counting histogram analysis to direct analyze the brightness difference between AK1-EGFP and EGFP. From our analysis, we concluded that cytoplasmic AK1-EGFP is monomeric. fluorescence correlation spectroscopy proved to be a powerful technique for quantitatively studying the

  14. Portable fluorescence spectroscopy platform for Huanglongbing (HLB) citrus disease in situ detection

    NASA Astrophysics Data System (ADS)

    Mota, Alessandro D.; Rossi, Giuliano; de Castro, Guilherme Cunha; Ortega, Tiago A.; de Castro N., Jarbas C.

    2014-02-01

    In this work, the development of a portable fluorescence spectroscopy platform for Huanglongbing (HLB) citrus disease in situ detection is presented. The equipment consists of an excitation blue LED light source, a commercial miniature spectrometer and embedded software. Measurements of healthy, HLB-symptomatic and HLB-asymptomatic citrus leafs were performed. Leafs were excited with the blue LED and their fluorescence spectra collected. Embedded electronics and software were responsible for the spectrum processing and classification via partial least squares regression. Global success rates above 80% and 100% distinction of healthy and HLB-symptomatic leafs were obtained.

  15. In-vitro bacterial identification using fluorescence spectroscopy with an optical fiber system

    NASA Astrophysics Data System (ADS)

    Spector, Brian C.; Werkhaven, Jay A.; Smith, Dana; Reinisch, Lou

    2000-05-01

    Acute otitis media (AOM) remains a source of significant morbidity in children. With the emergence of antibiotic resistant strains of bacteria, tympanocentesis has become an important method of bacterial identification in the setting of treatment failures. Previous studies described a prototype system for the non-invasive fluorescence identification of bacteria in vitro. We demonstrate the addition of an optical fiber to allow for the identification of a specimen distant to the spectrofluorometer. Emission spectra from three bacteria, Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus were successfully obtained in vitro. This represents a necessary step prior to the study of in vivo identification of bacteria in AOM using fluorescence spectroscopy.

  16. Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy: a comparative study.

    PubMed

    Li, Bingning; Wang, Haixia; Zhao, Qiaojiao; Ouyang, Jie; Wu, Yanwen

    2015-08-15

    Fourier transform infrared (FTIR) and fluorescence spectroscopy combined with soft independent modeling of class analogies (SIMCA) and partial least square (PLS) were used to detect the authenticity of walnut oil and adulteration amount of soybean oil in walnut oil. A SIMCA model of FTIR spectra could differentiate walnut oil and other oils into separate categories; the classification limit of soybean oil in walnut oil was 10%. Fluorescence spectroscopy could differentiate oil composition by the peak position and intensity of emission spectrum without multivariate analysis. The classification limit of soybean oil adulterated in walnut oil by fluorescence spectroscopy was below 5%. The deviation of the prediction model for fluorescence spectra was lower than that for FTIR spectra. Fluorescence spectroscopy was more applicable than FTIR in the adulteration detection of walnut oil, both from the determination limit and prediction deviation.

  17. Fluorescence spectroscopy: a rapid, noninvasive method for measurement of skin surface thickness of topical agents.

    PubMed

    Rhodes, L E; Diffey, B L

    1997-01-01

    We report the quantification of skin surface thickness of topical agents by in vivo fluorescence spectroscopy, and demonstrate its potential uses for assessment of application technique and substantivity. A series of studies were performed on forearm skin of eight normal subjects using three creams which have intrinsic fluorescence: a sunscreen (Neutrogena SPF15 waterproof cream), an antiseptic (Hewlett's cream) and a steroid (Trimovate (clobetasone butyrate) cream). Initially, the dose-response relationship was established for each agent by applying a series of five doses (0.5-8 microliters/cm2) and measuring cream fluorescence using appropriate excitation and emission wavelengths. Next, the influence of application technique was examined by comparing light application of cream with firm rubbing. Substantivity of the three creams was assessed on dry skin by taking fluorescence measurements over 8 h. Finally, water resistance of 2 microliters/cm2 of sunscreen and antiseptic cream were compared by measuring fluorescence after each of four water immersions. The fluorescence intensity was strongly correlated with the logarithm of surface density. r = 1.0, 0.92 and 0.98 for sunscreen, antiseptic and steroid creams, respectively, allowing derivation of a simple expression for equivalent thickness. Surface thickness of each cream was lower following firm rubbing compared with light application (P < 0.01). The rate constants for reduction of surface density of the three creams with time on dry skin were not significantly different. However, on washed skin, the rate constant was higher for Hewlett's than Neutrogena cream (0.503 and 0.243 h. respectively, P = 0.02), with a higher rate for each cream on wet compared with dry skin (P < 0.001). Hence, fluorescence spectroscopy is a simple, rapid method for measurement of cream thickness in vivo. The many potential applications in dermatology include quantitative assessment of application technique and substantivity of topical

  18. Laser-induced fluorescence spectroscopy of benign and malignant cutaneous lesions

    NASA Astrophysics Data System (ADS)

    Borisova, Ekaterina G.; Troyanova, P. P.; Stoyanova, V. P.; Avramov, Lachezar A.

    2005-04-01

    The goals of this work were investigation of pigmented skin lesions by the method of laser-induced fluorescence spectroscopy. Fluorescence spectra were obtained from malignant and benign skin lesions after excitation with nitrogen laser at 337 nm, namely: benign nevi, dysplastic nevi, malignant melanoma (MM), keratopapilloma, base-cell papilloma and base-cell carcinoma, as well as from healthy skin areas near to the lesion that were used posteriori to reveal changes between healthy and lesion skin spectra. Initially lesions were classified by ABCD-dermatscopic method. All suspicious lesions were excised and were investigated histologically. Spectrum of healthy skin consists of one main maximum at 470-500 nm spectral region and secondary maxima at in the regions round 400 and 440 nm. In the cases of nevi and melanoma significant decrease of fluorescence intensity, which correlated with the type of pigment lesion was observed. This reduction of the signal is related to the accumulation of melanin in the lesions that re-absorb strongly the fluorescence from native skin fluorophores in whole visible spectral region. In cases of papilloma and base-cell carcinoma an intensity decrease was also observed, related to accumulation of pigments in these cutaneous lesions. An relative increase of the fluorescence peak at 440 nm were registered in the case of base-cell carcinoma, and appearance of green fluorescence, related to increase of keratin content in benign papilloma lesions were detected. The results, obtained in this investigation of the different pigment lesions could be used for better comprehension of the skin optical properties. The fluorescence spectroscopy of the human skin are very prominent for early diagnosis and differentiation of cutaneous diseases and gives a wide range of possibilities related to real-time determination of existing pathological condition.

  19. Dynamics-based selective 2D {sup 1}H/{sup 1}H chemical shift correlation spectroscopy under ultrafast MAS conditions

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-28

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of {sup 1}H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of {sup 1}H/{sup 1}H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.

  20. Fluorescence excitation-emission matrix spectroscopy of vitiligo skin in vivo (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua; Richer, Vincent; Al Jasser, Mohammed; Zandi, Soodabeh; Kollias, Nikiforos; Kalia, Sunil; Zeng, Haishan; Lui, Harvey

    2016-02-01

    Fluorescence signals depend on the intensity of the exciting light, the absorption properties of the constituent molecules, and the efficiency with which the absorbed photons are converted to fluorescence emission. The optical features and appearance of vitiligo have been explained primarily on the basis of reduced epidermal pigmentation, which results in abnormal white patches on the skin. The objective of this study is to explore the fluorescence properties of vitiligo and its adjacent normal skin using fluorescence excitation-emission matrix (EEM) spectroscopy. Thirty five (35) volunteers with vitiligo were acquired using a double-grating spectrofluorometer with excitation and emission wavelengths of 260-450 nm and 300-700 nm respectively. As expected, the most pronounced difference between the spectra obtained from vitiligo lesions compared to normally pigmented skin was that the overall fluorescence was much higher in vitiligo; these differences increased at shorter wavelengths, thus matching the characteristic spectral absorption of epidermal melanin. When comparing the fluorescence spectra from vitiligo to normal skin we detected three distinct spectral bands centered at 280nm, 310nm, and 335nm. The 280nm band may possibly be related to inflammation, whereas the 335 nm band may arise from collagen or keratin cross links. The source of the 310 nm band is uncertain; it is interesting to note its proximity to the 311 nm UV lamps used for vitiligo phototherapy. These differences are accounted for not only by changes in epidermal pigment content, but also by other optically active cutaneous biomolecules.

  1. A fast, flexible algorithm for calculating correlations in Fluorescence Correlation Spectroscopy

    SciTech Connect

    Laurence, T; Fore, S; Huser, T

    2005-10-13

    A new algorithm is introduced for computing correlations of photon arrival time data acquired in single-molecule fluorescence spectroscopy and fluorescence correlation spectroscopy (FCS). The correlation is first rewritten as a counting operation on photon pairs. For each photon, the contribution to the correlation function for each subsequent photon is calculated for arbitrary bin spacings of the correlation time lag. By retaining the bin positions in the photon sequence after each photon, the correlation can be performed efficiently. Example correlations for simulations of FCS experiments are shown, with comparable execution speed to the commonly used multiple-tau correlation technique. Also, wide bin spacings are possible that allow for real-time software calculation of correlations even for high count rates ({approx}350 kHz). The flexibility and broad applicability of the algorithm is demonstrated using results from single molecule photon antibunching experiments.

  2. Spot Variation Fluorescence Correlation Spectroscopy Allows for Superresolution Chronoscopy of Confinement Times in Membranes

    PubMed Central

    Ruprecht, Verena; Wieser, Stefan; Marguet, Didier; Schütz, Gerhard J.

    2011-01-01

    Resolving the dynamical interplay of proteins and lipids in the live-cell plasma membrane represents a central goal in current cell biology. Superresolution concepts have introduced a means of capturing spatial heterogeneity at a nanoscopic length scale. Similar concepts for detecting dynamical transitions (superresolution chronoscopy) are still lacking. Here, we show that recently introduced spot-variation fluorescence correlation spectroscopy allows for sensing transient confinement times of membrane constituents at dramatically improved resolution. Using standard diffraction-limited optics, spot-variation fluorescence correlation spectroscopy captures signatures of single retardation events far below the transit time of the tracer through the focal spot. We provide an analytical description of special cases of transient binding of a tracer to pointlike traps, or association of a tracer with nanodomains. The influence of trap mobility and the underlying binding kinetics are quantified. Experimental approaches are suggested that allow for gaining quantitative mechanistic insights into the interaction processes of membrane constituents. PMID:21641330

  3. Dynamic disorder in horseradish peroxidase observed with total internal reflection fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hassler, Kai; Rigler, Per; Blom, Hans; Rigler, Rudolf; Widengren, Jerker; Lasser, Theo

    2007-04-01

    This paper discusses the application of objective-type total internal reflection fluorescence correlation spectroscopy (TIR-FCS) to the study of the kinetics of immobilized horseradish peroxidase on a single molecule level. Objective-type TIR-FCS combines the advantages of FCS with TIRF microscopy in a way that allows for simultaneous ultra-sensitive spectroscopic measurements using a single-point detector and convenient localization of single molecules on a surface by means of parallel imaging.

  4. TOTAL INTERNAL REFLECTION WITH FLUORESCENCE CORRELATION SPECTROSCOPY: APPLICATIONS TO SUBSTRATE-SUPPORTED PLANAR MEMBRANES

    PubMed Central

    Thompson, Nancy L.; Wang, Xiang; Navaratnarajah, Punya

    2009-01-01

    In this review paper, the conceptual basis and experimental design of total internal reflection with fluorescence correlation spectroscopy (TIR-FCS) is described. The few applications to date of TIR-FCS to supported membranes are discussed, in addition to a variety of applications not directly involving supported membranes. Methods related, but not technically equivalent, to TIR-FCS are also summarized. Future directions for TIR-FCS are outlined. PMID:19269331

  5. New energy levels of atomic niobium by laser induced fluorescence spectroscopy in the near infrared

    NASA Astrophysics Data System (ADS)

    Öztürk, I. K.; Başar, Gö; Er, A.; Güzelçimen, F.; Başar, Gü; Kröger, S.

    2015-01-01

    Laser-induced fluorescence spectroscopy was applied in order to find new energy levels of the niobium atom. A continuous wave tuneable titanium-sapphire laser in the wavelength range from 750 to 865 nm and a hollow-cathode lamp were used. We discovered four energy levels of even parity, three lying levels below 19 000 cm-1 and one at much higher energy. Additionally hyperfine structure data of six levels of odd parity were determined.

  6. In vivo detection of epileptic brain tissue using static fluorescence and diffuse reflectance spectroscopy.

    PubMed

    Yadav, Nitin; Bhatia, Sanjiv; Ragheb, John; Mehta, Rupal; Jayakar, Prasanna; Yong, William; Lin, Wei-Chiang

    2013-02-01

    Diffuse reflectance and fluorescence spectroscopy are used to detect histopathological abnormalities of an epileptic brain in a human subject study. Static diffuse reflectance and fluorescence spectra are acquired from normal and epileptic brain areas, defined by electrocorticography (ECoG), from pediatric patients undergoing epilepsy surgery. Biopsy specimens are taken from the investigated sites within an abnormal brain. Spectral analysis reveals significant differences in diffuse reflectance spectra and the ratio of fluorescence and diffuse reflectance spectra from normal and epileptic brain areas defined by ECoG and histology. Using these spectral differences, tissue classification models with accuracy above 80% are developed based on linear discriminant analysis. The differences between the diffuse reflectance spectra from the normal and epileptic brain areas observed in this study are attributed to alterations in the static hemodynamic characteristics of an epileptic brain, suggesting a unique association between the histopathological and the hemodynamic abnormalities in an epileptic brain.

  7. Fluorescence Lifetime Imaging and Spectroscopy as Tools for Nondestructive Analysis of Works of Art

    NASA Astrophysics Data System (ADS)

    Comelli, Daniela; D'Andrea, Cosimo; Valentini, Gianluca; Cubeddu, Rinaldo; Colombo, Chiara; Toniolo, Lucia

    2004-04-01

    A system for advanced fluorescence investigation of works of art has been assembled and integrated in a characterization procedure that allows one to localize and identify organic compounds that are present in artworks. At the beginning of the investigation, fluorescence lifetime imaging and spectroscopy address a selective microsampling of the artwork. Then analytical measurements of microsamples identify the chemical composition of the materials under investigation. Finally, on the basis of fluorescence lifetime and amplitude maps, analytical data are extended to the whole artwork. In such a way, information on the spatial distribution of organic materials can be inferred. These concepts have been successfully applied in an extensive campaign for analysis of Renaissance fresco paintings in Castiglione Olona, Italy. Residue of various types of glue and stucco left from a restoration carried out in the early 1970s was localized and classified. Insight into the technique used by the painter to make gilded reliefs was also obtained.

  8. Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell

    PubMed Central

    Oura, Makoto; Yamamoto, Johtaro; Ishikawa, Hideto; Mikuni, Shintaro; Fukushima, Ryousuke; Kinjo, Masataka

    2016-01-01

    Rotational diffusion measurement is predicted as an important method in cell biology because the rotational properties directly reflect molecular interactions and environment in the cell. To prove this concept, polarization-dependent fluorescence correlation spectroscopy (pol-FCS) measurements of purified fluorescent proteins were conducted in viscous solution. With the comparison between the translational and rotational diffusion coefficients obtained from pol-FCS measurements, the hydrodynamic radius of an enhanced green fluorescent protein (EGFP) was estimated as a control measurement. The orientation of oligomer EGFP in living cells was also estimated by pol-FCS and compared with Monte Carlo simulations. The results of this pol-FCS experiment indicate that this method allows an estimation of the molecular orientation using the characteristics of rotational diffusion. Further, it can be applied to analyze the degree of molecular orientation and multimerization or detection of tiny aggregation of aggregate-prone proteins. PMID:27489044

  9. Fluorescence spectroscopy for assessment of liver transplantation grafts concerning graft viability and patient survival

    NASA Astrophysics Data System (ADS)

    Vollet Filho, José D.; da Silveira, Marina R.; Castro-e-Silva, Orlando; Bagnato, Vanderlei S.; Kurachi, Cristina

    2015-06-01

    Evaluating transplantation grafts at harvest is essential for its success. Laser-induced fluorescence spectroscopy (LIFS) can help monitoring changes in metabolic/structural conditions of tissue during transplantation. The aim of the present study is to correlate LIFSobtained spectra of human hepatic grafts during liver transplantation with post-operative patients' mortality rate and biochemical parameters, establishing a method to exclude nonviable grafts before implantation. Orthotopic liver transplantation, piggyback technique was performed in 15 patients. LIFS was performed under 408nm excitation. Collection was performed immediately after opening donor's abdominal cavity, after cold perfusion, end of back-table period, and 5 min and 1 h after warm perfusion at recipient. Fluorescence information was compared to lactate, creatinine, bilirubin and INR levels and to survival status. LIFS was sensitive to liver changes during transplantation stages. Study-in-progress; initial results indicate correlation between fluorescence and life/death status of patients.

  10. Revealing the photophysics of gold-nanobeacons via time-resolved fluorescence spectroscopy.

    PubMed

    Wei, Guoke; Simionesie, Dorin; Sefcik, Jan; Sutter, Jens U; Xue, Qingjiang; Yu, Jun; Wang, Jinliang; Birch, David J S; Chen, Yu

    2015-12-15

    We demonstrate that time-resolved fluorescence spectroscopy is a powerful tool to investigate the conformation states of hairpin DNA on the surface of gold nanoparticles (AuNPs) and energy transfer processes in Au-nanobeacons. Long-range fluorescence quenching of Cy5 by AuNPs has been found to be in good agreement with electrodynamics modeling. Moreover, time-correlated single-photon counting (TCSPC) is shown to be promising for real-time monitoring of the hybridization kinetics of Au-nanobeacons, with up to 60% increase in decay time component and 300% increase in component fluorescence fraction observed. Our results also indicate the importance of the stem and spacer designs for the performance of Au-nanobeacons. PMID:26670500

  11. In vivo detection of epileptic brain tissue using static fluorescence and diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Yadav, Nitin; Bhatia, Sanjiv; Ragheb, John; Mehta, Rupal; Jayakar, Prasanna; Yong, William; Lin, Wei-Chiang

    2013-02-01

    Diffuse reflectance and fluorescence spectroscopy are used to detect histopathological abnormalities of an epileptic brain in a human subject study. Static diffuse reflectance and fluorescence spectra are acquired from normal and epileptic brain areas, defined by electrocorticography (ECoG), from pediatric patients undergoing epilepsy surgery. Biopsy specimens are taken from the investigated sites within an abnormal brain. Spectral analysis reveals significant differences in diffuse reflectance spectra and the ratio of fluorescence and diffuse reflectance spectra from normal and epileptic brain areas defined by ECoG and histology. Using these spectral differences, tissue classification models with accuracy above 80% are developed based on linear discriminant analysis. The differences between the diffuse reflectance spectra from the normal and epileptic brain areas observed in this study are attributed to alterations in the static hemodynamic characteristics of an epileptic brain, suggesting a unique association between the histopathological and the hemodynamic abnormalities in an epileptic brain.

  12. Site-specific interaction of thrombin and inhibitors observed by fluorescence correlation spectroscopy.

    PubMed Central

    Klingler, J; Friedrich, T

    1997-01-01

    We report on the application of fluorescence correlation spectroscopy (FCS) to observe the interaction between thrombin and thrombin inhibitors. Two site-specific fluorescent labels were used to distinguish between inhibitors directed to the active site, the exosite, or both binding sites of thrombin. For several well-known inhibitors of thrombin, the binding sites observed by FCS correspond to previous studies. The interaction of the recently discovered thrombin inhibitor ornithodorin from the tick Ornithodorus moubata with thrombin was investigated. It was found that this inhibitor, like hirudin and rhodniin, binds to both the active site and exosite of thrombin simultaneously. This study shows the feasibility of FCS as a sensitive and selective method for observing protein-ligand interactions. As an additional technique, simultaneous labeling with both fluorescent labels was successfully demonstrated. Images FIGURE 1 PMID:9336216

  13. X-ray microprobe for micro x-ray fluorescence and absorption spectroscopies at GSECARS

    NASA Astrophysics Data System (ADS)

    Newville, M.; Sutton, S.; Rivers, M.

    2002-12-01

    The hard x-ray microprobe for x-ray fluorescence and absorption spectroscopy at GeoSoilEnviroCARS is presented. Using focused synchrotron radiation from an undulator beamline at the Advanced Photon Source at Argonne National Lab, the x-ray microprobe provides bright, monochromatic x-rays with typical spot sizes down to 1x1 μm for x-ray fluorescence and absorption spectroscopies. Quantitative x-ray fluorescence (XRF) analysis gives precise elemental composition and correlations, while x-ray absorption spectroscopy (XAS) gives the chemical state and local atomic coordination for a selected atomic species. These two techniques can be used in conjunction with one another on a wide range of samples, including minerals, glasses, fluid inclusions, soils, sediments, and plant tissue. This x-ray microprobe is part of the GeoSoilEnviroCARS user facility, available for use in all areas geological, soil, and environmental sciences, and selected examples from these fields will be given.

  14. Native fluorescence spectroscopy of cervical tissues: classification by different statistical methods

    NASA Astrophysics Data System (ADS)

    Ganesan, Singaravelu; Vengadesan, Nammalver; Anbupalam, Thalaimuthu; Hemamalini, Srinivasan; Aruna, Prakasa R.; Karkuzhali, P.

    2002-05-01

    Optical Spectroscopy in the diagnosis of diseases has attracted the medical community due to their minimally invasive nature. Among various optical spectroscopic techniques, native fluorescence spectroscopy has emerged as a potential tool in diagnostic oncology. However, still the reasons for the altered spectral signatures between normal and cancer tissues not yet completely understood. Recently, data reported that emission due to the alteration of some proteins is responsible for the transformation of normal in to malignant one. In this regard, the present study is aimed to characterize the native fluorescence spectroscopy of abnormal and normal cervical tissues, at 280nm excitation. From the study, it is observed that the normal and pathologically diseased cervical tissues have their peak emission around 339 and 336nm respectively with a secondary peak around 440nm. The FWHM value of emission spectra of abnormal tissues is lower than that of normal tissues. The fluorescence spectra of normal and various pathological conditions of cancerous tissues were analyzed by various empirical and statistical methods. Among various type of discriminant analysis, combination of ratio values and linear discrimination method provides better discrimination of normal from pre-malignant and malignant tissues.

  15. Laser-induced fluorescence and pure rotational spectroscopy of the CH2CHS (vinylthio) radical.

    PubMed

    Nakajima, Masakazu; Miyoshi, Akira; Sumiyoshi, Yoshihiro; Endo, Yasuki

    2007-01-28

    Laser-induced fluorescence (LIF) excitation spectra of the B-X (2)A(") electronic transition of the CH(2)CHS radical, which is the sulfur analog of the vinoxy (CH(2)CHO) radical, were observed under room temperature and jet-cooled conditions. The LIF excitation spectra show very poor vibronic structures, since the fluorescence quantum yields of the upper vibronic levels are too small to detect fluorescence, except for the vibrationless level in the B state. A dispersed fluorescence spectrum of jet-cooled CH(2)CHS from the vibrationless level of the B state was also observed, and vibrational frequencies in the X state were determined. Precise rotational and spin-rotation constants in the ground vibronic level of the radical were determined from pure rotational spectroscopy using a Fourier-transform microwave (FTMW) spectrometer and a FTMW-millimeter wave double-resonance technique [Y. Sumiyoshi et al., J. Chem. Phys. 123, 054324 (2005)]. The rotationally resolved LIF excitation spectrum for the vibronic origin band of the jet-cooled CH(2)CHS radical was analyzed using the ground state molecular constants determined from pure rotational spectroscopy. Determined molecular constants for the upper and lower electronic states agree well with results of ab initio calculations.

  16. Spoilage of foods monitored by native fluorescence spectroscopy with selective excitation wavelength

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Wang, Wubao; Alfano, Robert R.

    2015-03-01

    The modern food processing and storage environments require the real-time monitoring and rapid microbiological testing. Optical spectroscopy with selective excitation wavelengths can be the basis of a novel, rapid, reagent less, noncontact and non-destructive technique for monitoring the food spoilage. The native fluorescence spectra of muscle foods stored at 2-4°C (in refrigerator) and 20-24°C (in room temperature) were measured as a function of time with a selective excitation wavelength of 340nm. The contributions of the principal molecular components to the native fluorescence spectra of meat were measured spectra of each fluorophore: collagen, reduced nicotinamide adenine dinucleotide (NADH), and flavin. The responsible components were extracted using a method namely Multivariate Curve Resolution with Alternating Least-Squares (MCR-ALS). The native fluorescence combined with MCR-ALS can be used directly on the surface of meat to produce biochemically interpretable "fingerprints", which reflects the microbial spoilage of foods involved with the metabolic processes. The results show that with time elapse, the emission from NADH in meat stored at 24°C increases much faster than that at 4°C. This is because multiplying of microorganisms and catabolism are accompanied by the generation of NADH. This study presents changes of relative content of NADH may be used as criterion for detection of spoilage degree of meat using native fluorescence spectroscopy.

  17. New photon-counting detectors for single-molecule fluorescence spectroscopy and imaging

    PubMed Central

    Michalet, X.; Colyer, R. A.; Scalia, G.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Villa, F.; Guerrieri, F.; Rech, I.; Gulinatti, A.; Tisa, S.; Zappa, F.; Ghioni, M.; Cova, S.

    2013-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful new experimental approach with applications in all fields of natural sciences. Two typical geometries can be used for these experiments: point-like and widefield excitation and detection. In point-like geometries, the basic concept is to excite and collect light from a very small volume (typically femtoliter) and work in a concentration regime resulting in rare burst-like events corresponding to the transit of a single-molecule. Those events are accumulated over time to achieve proper statistical accuracy. Therefore the advantage of extreme sensitivity is somewhat counterbalanced by a very long acquisition time. One way to speed up data acquisition is parallelization. Here we will discuss a general approach to address this issue, using a multispot excitation and detection geometry that can accommodate different types of novel highly-parallel detector arrays. We will illustrate the potential of this approach with fluorescence correlation spectroscopy (FCS) and single-molecule fluorescence measurements. In widefield geometries, the same issues of background reduction and single-molecule concentration apply, but the duration of the experiment is fixed by the time scale of the process studied and the survival time of the fluorescent probe. Temporal resolution on the other hand, is limited by signal-to-noise and/or detector resolution, which calls for new detector concepts. We will briefly present our recent results in this domain. PMID:24729836

  18. In vivo characterization of myocardial infarction using fluorescence and diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Ti, Yalin; Chen, Poching; Lin, Wei-Chiang

    2010-05-01

    We explore the feasibility of using combined fluorescence and diffuse reflectance spectroscopy to characterize a myocardial infarct at different developing stages. An animal study is conducted using rats with surgically induced myocaridal infarction (MI). In vivo fluorescence spectra at 337-nm excitation and diffuse reflectance between 400 and 900 nm are measured from the heart. Spectral acquisition is performed: 1. for normal heart tissue; 2. for the area immediately surrounding the infarct; and 3. for the infarcted tissue itself, one, two, three, and four weeks into MI development. Histological and statistical analyses are used to identify unique pathohistological features and spectral alterations associated with the investigated regions. The main alterations (p<0.05) in diffuse reflectance spectra are identified primarily between 450 and 600 nm. The dominant fluorescence alterations are increases in peak fluorescence intensity at 400 and 460 nm. The extent of these spectral alterations is related to the duration of the infarction. The findings of this study support the concept that optical spectroscopy could be useful as a tool to noninvasively determine the in vivo pathophysiological features of a myocardial infarct and its surrounding tissue, thereby providing real-time feedback to surgeons during various surgical interventions for MI.

  19. Determination of Dissociation Constants in Living Zebrafish Embryos with Single Wavelength Fluorescence Cross-Correlation Spectroscopy

    PubMed Central

    Shi, Xianke; Foo, Yong Hwee; Sudhaharan, Thankiah; Chong, Shang-Wei; Korzh, Vladimir; Ahmed, Sohail; Wohland, Thorsten

    2009-01-01

    Abstract The quantification of biological interactions is very important in life sciences. Here we report for the first time, to our knowledge, the determination of a biomolecular dissociation constant (KD) in living zebrafish embryos at physiological protein expression levels. For that purpose, we extend the application of single wavelength fluorescence cross-correlation spectroscopy into small organisms and measure the interaction of Cdc42, a small Rho-GTPase, and IQGAP1, an actin-binding scaffolding protein. Cdc42 and IQGAP1 were labeled with monomeric red fluorescent protein and enhanced green fluorescent protein, respectively. Both fluorophores were excited at a single wavelength of 514 nm, simplifying the fluorescence spectroscopy measurements and allowing quantification. For the determination of the interaction, we used two Cdc42 mutants, the constitutively active Cdc42G12V which is in a predominantly GTP-bound form and the dominant-negative GDP-bound Cdc42T17N. While Cdc42G12V binds to IQGAP1 with an apparent KD of ∼100 nM, Cdc42T17N has at least a one-order-of-magnitude lower affinity for the same protein. As a comparison, we measure the same protein-protein interactions in Chinese hamster ovary cell cultures but observe significant differences in protein mobility and KD from the zebrafish measurements, supporting the notion that bimolecular interactions depend on the biological system under investigation and are best performed under physiologically relevant conditions. PMID:19619483

  20. Applications of Fluorescence Spectroscopy for dissolved organic matter characterization in wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Goffin, Angélique; Guérin, Sabrina; Rocher, Vincent; Varrault, Gilles

    2016-04-01

    Dissolved organic matter (DOM) influences wastewater treatment plants efficiency (WTTP): variations in its quality and quantity can induce a foaming phenomenon and a fouling event inside biofiltration processes. Moreover, in order to manage denitrification step (control and optimization of the nitrate recirculation), it is important to be able to estimate biodegradable organic matter quantity before biological treatment. But the current methods used to characterize organic matter quality, like biological oxygen demand are laborious, time consuming and sometimes not applicable to directly monitor organic matter in situ. In the context of MOCOPEE research program (www.mocopee.com), this study aims to assess the use of optical techniques, such as UV-Visible absorbance and more specifically fluorescence spectroscopy in order to monitor and to optimize process efficiency in WWTP. Fluorescence excitation-emission matrix (EEM) spectroscopy was employed to prospect the possibility of using this technology online and in real time to characterize dissolved organic matter in different effluents of the WWTP Seine Centre (240,000 m3/day) in Paris, France. 35 sewage water influent samples were collected on 10 days at different hours. Data treatment were performed by two methods: peak picking and parallel factor analysis (PARAFAC). An evolution of DOM quality (position of excitation - emission peaks) and quantity (intensity of fluorescence) was observed between the different treatment steps (influent, primary treatment, biological treatment, effluent). Correlations were found between fluorescence indicators and different water quality key parameters in the sewage influents. We developed different multivariate linear regression models in order to predict a variety of water quality parameters by fluorescence intensity at specific excitation-emission wavelengths. For example dissolved biological oxygen demand (r2=0,900; p<0,0001) and ammonium concentration (r2=0,898; p<0

  1. Probing the Aggregation Behavior of Neat Imidazolium-Based Alkyl Sulfate (Alkyl = Ethyl, Butyl, Hexyl, and Octyl) Ionic Liquids through Time Resolved Florescence Anisotropy and NMR and Fluorescence Correlation Spectroscopy Study.

    PubMed

    Majhi, Debashis; Pabbathi, Ashok; Sarkar, Moloy

    2016-01-14

    Aggregation behavior of a series of neat 1-ethyl 3-methylimidazolium alkyl sulfate (alkyl = ethyl, butyl, hexyl, and octyl) ionic liquids has been investigated through combined time-resolved fluorescence spectroscopy, 1-D and 2-D NMR spectroscopy, and fluorescence correlation spectroscopy (FCS). Interestingly, experimentally measured rotational relaxation times (τr) for ethyl, butyl, hexyl and octyl systems are measured to be 2.25, 1.64, 1.36, and 1.32 times higher than the estimated (from Stokes-Einstein-Debye theory) values for the same respective systems. This indicates that the emitting species is not the monomeric imidazolium moiety rather an associated species, and volume of the rotating fluorescing species decreases even though the length of the alkyl moiety on the anions is increased. The shift in the (1)H proton signal as well as a change in the width of the same signal upon dilution of the neat ionic liquids indicates that ionic liquids exist in the aggregated form. Further investigation through the 2D-ROESY experiment shows that interaction between imidazolium and sulfate is relatively stronger in the ethyl system than that of the longer octyl system. FCS measurements independently show that the hydrodynamic volume decreases with an increase in the anion chain length. The NMR and FCS results are consistent with the findings of the fluorescence anisotropy study. PMID:26654730

  2. Changes in fluorescent dissolved organic matter upon interaction with anionic surfactant as revealed by EEM-PARAFAC and two dimensional correlation spectroscopy.

    PubMed

    Maqbool, Tahir; Hur, Jin

    2016-10-01

    Surfactants are present in significant amounts in both domestic and industrial wastewater, which may interact with dissolved organic matter (DOM). The present study investigated the interactions of sodium dodecyl sulfate (SDS) with three different DOM solutions, including bovine serum albumin (BSA), humic acid (HA), and the mixture of the two (BSA-HA), based on two advanced spectroscopic tools: excitation emission matrix (EEM) combined with parallel factor analysis (EEM-PARAFAC) and two dimensional correlation spectroscopy (2D-COS). The responses of two protein-like components to the addition of SDS differed depending the presence and the absence of HA. A decreasing and an increasing trend was observed for tryptophan-like (C1) and tyrosine-like (C2) components, respectively, in the BSA solution, while the BSA-HA mixture exhibited increasing fluorescence trends for both protein-like components. The conflicting results suggest that HA plays a secondary role in the protein-SDS interactions. No interaction between the SDS and humic-like component was found. 2D-COS combined with fluorescence spectra demonstrated that the protein-SDS interaction occurred on the order of C2 > C1 for the BSA solution but C1 > C2 for the BSA-HA mixture. Analyses of Scatchard plots confirmed the sequential order interpreted from 2D-COS, showing consistent trends in the binding constants. However, the presence of HA affected the protein-SDS interactions in different manners for C1 and C2, enhancing and reducing the binding constants, respectively. Circular dichroism spectra confirmed the occurrence of conformational changes in BSA with SDS. EEM-PARAFAC and 2D-COS successfully explained different interactions of surfactant with protein-like components in the presence of HA.

  3. Identifying the origins of microbially derived aquatic DOM using fluorescence spectroscopy.

    NASA Astrophysics Data System (ADS)

    Fox, Bethany; Thorn, Robin; Anesio, Alexandre; Reynolds, Darren

    2016-04-01

    Dissolved organic matter (DOM) in aquatic systems is an essential support of the microbial population and, therefore, of the entire aquatic ecosystem. Aquatic DOM is also key for global biogeochemical cycling of nutrients and connects land processes to the marine environment via hydrological transportation. There have been multiple advances in technological assessments of the characteristics of aquatic DOM, with spectroscopy becoming widely used. The extensive use of benchtop spectroscopic instruments has led to the development of in situ sensors, improving the spatiotemporal scale of data acquisition. Whilst this has greatly improved understanding of DOM characteristics and patterns, there are still unknown variables, parameters and interactions of DOM within the aquatic environment. In particular, the interactions of aquatic DOM with the microbial population is still mostly unidentified. It is generally accepted that certain DOM fluorescence regions are autochthonous and microbially derived, such as "peak T" fluorescence. However, the origins and metabolic pathways involved in the production and release of these fluorescent molecules is, as yet, not definitively known. Our work focuses on the identification of these metabolic pathways from whence this microbially derived DOM originates. The most recent stage of the research has utilised traditional microbiological techniques, such as growth curves and chemostat experiments, alongside DOM fluorescence spectroscopic analysis and flow cytometry. The information gained regarding the microbial production and processing of DOM is central for the development of novel in situ fluorescence technology, the ultimate aim of this project.

  4. Evaluating aggregation of gold nanoparticles and humic substances using fluorescence spectroscopy.

    PubMed

    Pallem, Vasanta L; Stretz, Holly A; Wells, Martha J M

    2009-10-01

    The fate and transport of diagnostic gold nanoparticles in surface waters would significantly depend on their interactions with humic substances, which are ubiquitously found in natural aquatic systems. The current study employs UV-visible absorbance and fluorescence spectroscopy to investigate the interactions of commercial humic acid (HA) with gold nanoparticles having a core size of 5 nm and coated with two different stabilizers, beta-D-glucose and citrate. Humic substances (HS) are fluorescent in nature, providing a unique probe of nanometer-scale morphological changes for interactions between these natural polyelectrolytes and water-soluble gold nanoparticles. Quenching of fluorescence intensity was observed with beta-D-glucose-coated gold nanoparticles, whereas an enhancement effect was noticed with the citrate-coated particles when mixed with HA having concentrations of 2 and 8 ppm (surface waters typically may contain approximately 10 ppm HS). Examining the quenching and enhancement of fluorescence provides insight into the structural changes taking place at the coated gold nanoparticle-HA interface. The quenching behavior suggested ligand exchange due to nanometer-scale contact between the HA and beta-D-glucose-coated gold nanoparticles, whereas the enhancement effect with citrate particles would indicate overcoating, leading to increased transfer distances for fluorescence resonance energy transfer. PMID:19848172

  5. Applications of fluorescence spectroscopy for predicting percent wastewater in an urban stream

    USGS Publications Warehouse

    Goldman, Jami H.; Rounds, Stewart A.; Needoba, Joseph A.

    2012-01-01

    Dissolved organic carbon (DOC) is a significant organic carbon reservoir in many ecosystems, and its characteristics and sources determine many aspects of ecosystem health and water quality. Fluorescence spectroscopy methods can quantify and characterize the subset of the DOC pool that can absorb and re-emit electromagnetic energy as fluorescence and thus provide a rapid technique for environmental monitoring of DOC in lakes and rivers. Using high resolution fluorescence techniques, we characterized DOC in the Tualatin River watershed near Portland, Oregon, and identified fluorescence parameters associated with effluent from two wastewater treatment plants and samples from sites within and outside the urban region. Using a variety of statistical approaches, we developed and validated a multivariate linear regression model to predict the amount of wastewater in the river as a function of the relative abundance of specific fluorescence excitation/emission pairs. The model was tested with independent data and predicts the percentage of wastewater in a sample within 80% confidence. Model results can be used to develop in situ instrumentation, inform monitoring programs, and develop additional water quality indicators for aquatic systems.

  6. Time-resolved fluorescence polarization spectroscopy of visible and near infrared dyes in picosecond dynamics

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Alfano, Robert R.

    2015-03-01

    Near-infrared (NIR) dyes absorb and emit light within the range from 700 to 900 nm have several benefits in biological studies for one- and/or two-photon excitation for deeper penetration of tissues. These molecules undergo vibrational and rotational motion in the relaxation of the excited electronic states, Due to the less than ideal anisotropy behavior of NIR dyes stemming from the fluorophores elongated structures and short fluorescence lifetime in picosecond range, no significant efforts have been made to recognize the theory of these dyes in time-resolved polarization dynamics. In this study, the depolarization of the fluorescence due to emission from rotational deactivation in solution will be measured with the excitation of a linearly polarized femtosecond laser pulse and a streak camera. The theory, experiment and application of the ultrafast fluorescence polarization dynamics and anisotropy are illustrated with examples of two of the most important medical based dyes. One is NIR dye, namely Indocyanine Green (ICG) and is compared with Fluorescein which is in visible range with much longer lifetime. A set of first-order linear differential equations was developed to model fluorescence polarization dynamics of NIR dye in picosecond range. Using this model, the important parameters of ultrafast polarization spectroscopy were identified: risetime, initial time, fluorescence lifetime, and rotation times.

  7. On-chip integrated lensless fluorescence microscopy/spectroscopy module for cell-based sensors

    NASA Astrophysics Data System (ADS)

    Li, Wei; Knoll, Thorsten; Sossalla, Adam; Bueth, Heiko; Thielecke, Hagen

    2011-03-01

    The integration of a fluorescence microscopy/spectroscopy module in cell-based lab-on-a-chip systems is of high interest for applications in cell-based diagnostics and substance evaluation in situ. We present an on-chip integrated lensless fluorescence imaging module applying the principle of contact/proximate optical lithography. The pixel resolution is comparable with a 4 x objective microscope. The module can be used for morphology and fluorescence imaging of mammalian cells (15 - 20 μm) as well as for testing the concentration of a fluorescent substance. The biological samples or solutions are sustained in disposable sterilized microfluidic chips with 1 μm thick silicon nitride (Si3N4) membranes. These chips are assembled on the surface of a 5 megapixel colored CMOS image sensor array with 1.75 μm pixel size, which is coated with an additional interference filter. Each culturing chip consists of a MEMS cavity chip and a PDMS microfluidic interface. The surface of the CMOS image sensor is smoothened using SU-8 photoresist spin-coating for a commercial grade interference filter (optical density >= 5) coating by Plasma-Ion Assisted Deposition thereafter. The function is demonstrated by primary imaging results of the non-/fluorescent mammalian cells/microspheres as well as by differentiating different concentrations of FITC solutions.

  8. Construction, figures of merit, and testing of a single-cell fluorescence excitation spectroscopy system

    PubMed Central

    Hill, Laura S.; Richardson, Tammi L.; Profeta, Luisa T. M.; Shaw, Timothy J.; Hintz, Christopher J.; Twining, Benjamin S.; Lawrenz, Evelyn; Myrick, Michael L.

    2010-01-01

    Characterization of phytoplankton community composition is critical to understanding the ecology and biogeochemistry of the oceans. One approach to taxonomic characterization takes advantage of differing pigmentation between algal taxa and thus differences in fluorescence excitation spectra. Analyses of bulk water samples, however, may be confounded by interference from chromophoric dissolved organic matter or suspended particulate matter. Here, we describe an instrument that uses a laser trap based on a Nikon TE2000-U microscope to position individual phytoplankton cells for confocal fluorescence excitation spectroscopy, thus avoiding interference from the surrounding medium. Quantitative measurements of optical power give data in the form of photons emitted per photon of exposure for an individual phytoplankton cell. Residence times for individual phytoplankton in the instrument can be as long as several minutes with no substantial change in their fluorescence excitation spectra. The laser trap was found to generate two-photon fluorescence from the organisms so a modification was made to release the trap momentarily during data acquisition. Typical signal levels for an individual cell are in the range of 106 photons∕s of fluorescence using a monochromated 75 W Xe arc lamp excitation source with a 2% transmission neutral density filter. PMID:20113077

  9. Enhanced energy transfer in respiratory-deficient endothelial cells probed by microscopic fluorescence excitation spectroscopy

    NASA Astrophysics Data System (ADS)

    Schneckenburger, Herbert; Gschwend, Michael H.; Bauer, Manfred; Strauss, Wolfgang S. L.; Steiner, Rudolf W.

    1996-12-01

    Mitochondrial malfunction may be concomitant with changes of the redox states of the coenzymes nicotinamide adenine dinucleotide (NAD+/NADH), as well as flavin.mononucleotide or dinucleotide. The intrinsic fluorescence of these coenzymes was therefore proposed to be a measure of malfunction. Since mitochondrial fluorescence is strongly superposed by autofluorescence from various cytoplasmatic fluorophores, cultivated endothelial cells were incubated with the mitochondrial marker rhodamine 123 (R123), and after excitation of flavin molecules, energy transfer to R123 was investigated. Due to spectral overlap of flavin and R123 fluorescence, energy transfer flavin yields R123 could not be detected from their emission spectra. Therefore, the method of microscopic fluorescence excitation spectroscopy was established. When detecting R123 fluorescence, excitation maxima at 370 - 390 nm and 420-460 nm were assigned to flavins, whereas a pronounced excitation band at 465 - 490 nm was attributed to R123. Therefore, excitation at 475 nm reflected the intracellular concentration of R123, whereas excitation at 385 nm reflected flavin excitation with a subsequent energy transfer to R123 molecules. An enhanced energy transfer after inhibition of specific enzyme complexes of the respiratory chain is discussed in the present article.

  10. Photofragmentation of tetrahydrofuran molecules in the vacuum-ultraviolet region via superexcited states studied by fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Wasowicz, Tomasz J.; Kivimäki, Antti; Dampc, Marcin; Coreno, Marcello; de Simone, Monica; Zubek, Mariusz

    2011-03-01

    Photofragmentation of tetrahydrofuran molecules in the vacuum-ultraviolet region, producing excited atomic and molecular fragments, has been studied over the energy range 14-68 eV using photon-induced fluorescence spectroscopy. Excited hydrogen atoms H(n), n = 3-11, have been detected by observation of the Hα to Hı lines of the Balmer series. The diatomic CH(A2Δ), CH(B2Σ-) and C2(d3Πg) fragments, which are excited to low vibrational and high rotational levels are identified by their A2Δ→X2Πr, B2Σ-→X2Πr and d3Πg→a3Πu emission bands, respectively. Dissociation efficiency curves for CH(A2Δ) and H(n), n = 3-7, have been obtained in the photon energy ranges from their appearance thresholds up to 68 eV. The appearance energies for CH(A2Δ) and H(n), n = 3-7, have been determined and are compared with estimated fragmentation energy limits in order to discuss the possible fragmentation processes. In the present studies, superexcited states of tetrahydrofuran are found, which dissociate into the above excited atomic and molecular fragments.

  11. Fluorescence imaging and spectroscopy of ALA-induced protoporphyrin IX preferentially accumulated in tumor tissue

    NASA Astrophysics Data System (ADS)

    Stepp, Herbert G.; Baumgartner, Reinhold; Beyer, Wolfgang; Knuechel, Ruth; Koerner, T. O.; Kriegmair, M.; Rick, Kai; Steinbach, Pia; Hofstetter, Alfons G.

    1995-12-01

    In a clinical pilot study performed on 104 patients suffering from bladder cancer it could be shown that intravesical instillation of a solution of 5-aminolevulinic acid (5-ALA) induces a tumorselective accumulation of Protoporphyrin IX (PPIX). Malignant lesions could be detected with a sensitivity of 97% and a specificity of 67%. The Kr+-laser as excitation light source could successfully be replaced by a filtered short arc Xe-lamp. Its emission wavelength band (375 nm - 440 nm) leads to an efficiency of 58% for PPIX- excitation compared to the laser. Two-hundred-sixty mW of output power at the distal end of a slightly modified cystoscope could be obtained. This is sufficient for recording fluorescence images with a target integrating color CCD-camera. Red fluorescence and blue remitted light are displayed simultaneously. Standard white light observation is possible with the same instrumentation. Pharmacokinetic measurements were performed on 18 patients after different routes of 5-ALA application (oral, inhalation and intravesical instillation). PPIX-fluorescence measurements were made on the skin and on the blood plasma. Pharmacokinetic of 5-ALA could be performed on blood plasma. Endoscopical florescence spectroscopy showed the high fluorescence contrast between tumor and normal tissue with a mean value of 10.7. Forthcoming clinical multicenter studies require an objective measure of the fluorescence intensity. Monte Carlo computer simulations showed that artifacts due to observation geometry and varying absorption can largely be reduced by ratioing fluorescence (red channel of camera) to remission (blue channel). Real time image ratioing provides false color images with a reliable fluorescence information.

  12. Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy.

    PubMed

    Thompson, N L; Burghardt, T P; Axelrod, D

    1981-03-01

    The theoretical basis of a new technique for measuring equilibrium adsorption/desorption kinetics and surface diffusion of fluorescent-labeled solute molecules at solid surfaces has been developed. The technique combines total internal reflection fluorescence (TIR) with either fluorescence photobleaching recovery (FPR) or fluorescence correlation spectroscopy (FCS). A laser beam totally internally reflects at a solid/liquid interface; the shallow evanescent field in the liquid excites the fluorescence of surface adsorbed molecules. In TIR/FPR, adsorbed molecules are bleaching by a flash of the focused laser beam; subsequent fluorescence recovery is monitored as bleached molecules exchange with unbleached ones from the solution or surrounding nonilluminated regions of the surface. In TIR/FCS, spontaneous fluorescence fluctuations due to individual molecules entering and leaving a well-defined portion of the evanescent field are autocorrelated. Under appropriate experimental conditions, the rate constants and surface diffusion coefficient can be readily obtained from the TIR/FPR and TIR/FCS curves. In general, the shape of the theoretical TIR/FPR and TIR/FCS curves depends in a complex manner upon the bulk and surface diffusion coefficients, the size of the iluminated or observed region, and the adsorption/desorption/kinetic rate constants. The theory can be applied both to specific binding between immobilized receptors and soluble ligands, and to nonspecific adsorption processes. A discussion of experimental considerations and the application of this technique to the adsorption of serum proteins on quartz may be found in the accompanying paper (Burghardt and Axelrod. 1981. Biophys. J. 33:455). PMID:7225515

  13. Characterization of dissolved organic matter in fogwater by excitation-emission matrix fluorescence spectroscopy

    USGS Publications Warehouse

    Birdwell, J.E.; Valsaraj, K.T.

    2010-01-01

    Dissolved organic matter (DOM) present in fogwater samples collected in southeastern Louisiana and central-eastern China has been characterized using excitation-emission matrix fluorescence spectroscopy. The goal of the study was to illustrate the utility of fluorescence for obtaining information on the large fraction of organic carbon in fogwaters (typically >40% by weight) that defies characterization in terms of specific chemical compounds without the difficulty inherent in obtaining sufficient fogwater volume to isolate DOM for assessment using other spectroscopic and chemical analyses. Based on the findings of previous studies using other characterization methods, it was anticipated that the unidentified organic carbon fraction would have characteristic peaks associated with humic substances and fluorescent amino acids. Both humic- and protein-like fluorophores were observed in the fogwater spectra and fluorescence-derived indices for the fogwater had similar values to those of soil and sediment porewater. Greater biological character was observed in samples with higher organic carbon concentrations. Fogwaters are shown to contain a mixture of terrestrially- and microbially-derived fluorescent organic material, which is expected to be derived from an array of different sources, such as suspended soil and dust particles, biogenic emissions and organic substances generated by atmospheric processes. The fluorescence results indicate that much of the unidentified organic carbon present in fogwater can be represented by humic-like and biologically-derived substances similar to those present in other aquatic systems, though it should be noted that fluorescent signatures representative of DOM produced by atmospheric processing of organic aerosols may be contributing to or masked by humic-like fluorophores. ?? 2010.

  14. Fluorescence and UV/VIS absorption spectroscopy studies on polymer blend films for photovoltaics

    NASA Astrophysics Data System (ADS)

    van Stam, Jan; Lindqvist, Camilla; Hansson, Rickard; Ericsson, Leif; Moons, Ellen

    2015-08-01

    The quinoxaline-based polymer TQ1 (poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5- diyl]) is a promising candidate as electron donor in organic solar cells. In combination with the electron acceptor [6,6]- phenyl-C71- butyric acid methyl ester (PC70BM), TQ1 has resulted in solar cells with power conversion efficiencies of 7 %. We have studied TQ1 films, with and without PC70BM, spin-casted from different solvents, by fluorescence spectroscopy and UV/VIS absorption spectroscopy. We used chloroform (CF), chlorobenzene (CB), and odichlorobenzene (o-DCB) as solvents for the coating solutions and 1-chloronaphthalene (CN) as solvent additive. CN addition has been shown to enhance photo-conversion efficiency of these solar cells. Phase-separation causes lateral domain formation in the films and the domain size depends on the solvent . These morphological differences coincide with changes in the spectroscopic patterns of the films. From a spectroscopic point of view, TQ1 acts as fluorescent probe and PC70BM as quencher. The degree of fluorescence quenching is coupled to the morphology through the distance between TQ1 and PC70BM. Furthermore, if using a bad solvent for PC70BM, morphological regions rich in the fullerene yield emission characteristic for aggregated PC70BM. Clear differences were found, comparing the TQ1:PC70BM blend films casted from different solvents and at different ratios between the donor and acceptor. The morphology also influences the UV/VIS absorption spectra, yielding further information on the composition. The results show that fluorescence and UV/VIS absorption spectroscopy can be used to detect aggregation in blended films and that these methods extend the morphological information beyond the scale accessible with microscopy.

  15. Multiphoton microscopy, fluorescence lifetime imaging and optical spectroscopy for the diagnosis of neoplasia

    NASA Astrophysics Data System (ADS)

    Skala, Melissa Caroline

    2007-12-01

    the ultraviolet to visible wavelength range indicated that the most diagnostic optical signals originate from sub-surface tissue layers. Optical properties extracted from these spectroscopy measurements showed a significant decrease in the hemoglobin saturation, absorption coefficient, reduced scattering coefficient and fluorescence intensity (at 400 nm excitation) in neoplastic compared to normal tissues. The results from these studies indicate that multiphoton microscopy and optical spectroscopy can non-invasively provide information on tissue structure and function in vivo that is related to tissue pathology.

  16. Molar concentration from sequential 2-D water-window X-ray ptychography and X-ray fluorescence in hydrated cells

    NASA Astrophysics Data System (ADS)

    Jones, M. W. M.; Elgass, K. D.; Junker, M. D.; de Jonge, M. D.; van Riessen, G. A.

    2016-04-01

    Recent developments in biological X-ray microscopy have allowed structural information and elemental distribution to be simultaneously obtained by combining X-ray ptychography and X-ray fluorescence microscopy. Experimentally, these methods can be performed simultaneously; however, the optimal conditions for each measurement may not be compatible. Here, we combine two distinct measurements of ultrastructure and elemental distribution, with each measurement performed under optimised conditions. By combining optimised ptychography and fluorescence information we are able to determine molar concentrations from two-dimensional images, allowing an investigation into the interactions between the environment sensing filopodia in fibroblasts and extracellular calcium. Furthermore, the biological ptychography results we present illustrate a point of maturity where the technique can be applied to solve significant problems in structural biology.

  17. A simple preparation of Ag@graphene nanocomposites for surface-enhanced Raman spectroscopy of fluorescent anticancer drug

    NASA Astrophysics Data System (ADS)

    Meng, Ying; Yan, Xueying; Wang, Yi

    2016-05-01

    A simple method was developed to synthesize Ag@graphene nanocomposites with rough Ag nanoparticles (AgNPs) conjugated with graphene nanosheets, and the nanocomposites could be used as substrates for effective surface-enhanced Raman spectroscopy (SERS) of fluorescent anticancer drug (Dox) since they could not only enhance the Raman signals but also suppress the fluorescent signals.

  18. Fluorescence spectroscopy for the detection of potentially malignant disorders of the oral cavity: analysis of 30 cases

    NASA Astrophysics Data System (ADS)

    Francisco, A. L. N.; Correr, W. R.; Azevedo, L. H.; Galletta, V. K.; Pinto, C. A. L.; Kowalski, L. P.; Kurachi, C.

    2014-01-01

    Oral cancer is a major health problem worldwide and although early diagnosis of potentially malignant and malignant diseases is associated with better treatment results, a large number of cancers are initially misdiagnosed, with unfortunate consequences for long-term survival. Fluorescence spectroscopy is a noninvasive modality of diagnostic approach using induced fluorescence emission in tumors that can improve diagnostic accuracy. The objective of this study was to determine the ability to discriminate between normal oral mucosa and potentially malignant disorders by fluorescence spectroscopy. Fluorescence investigation under 408 and 532 nm excitation wavelengths was performed on 60 subjects, 30 with potentially malignant disorders and 30 volunteers with normal mucosa. Data was analyzed to correlate fluorescence patterns with clinical and histopathological diagnostics. Fluorescence spectroscopy used as a point measurement technique resulted in a great variety of spectral information. In a qualitative analysis of the fluorescence spectral characteristics of each type of injury evaluated, it was possible to discriminate between normal and abnormal oral mucosa. The results show the potential use of fluorescence spectroscopy for an improved discrimination of oral disorders.

  19. A reusable sensor for the label-free detection of specific oligonucleotides by surface plasmon fluorescence spectroscopy.

    PubMed

    Nöll, Gilbert; Su, Qiang; Heidel, Björn; Yu, Yaming

    2014-01-01

    The development of a reusable molecular beacon (MB)-based sensor for the label-free detection of specific oligonucleotides using surface plasmon fluorescence spectroscopy (SPFS) as the readout method is described. The MBs are chemisorbed at planar gold surfaces serving as fluorescence quenching units. Target oligonucleotides of 24 bases can be detected within a few minutes at high single-mismatch discrimination rates.

  20. Native fluorescence spectroscopy of blood plasma of rats with experimental diabetes: identifying fingerprints of glucose-related metabolic pathways

    NASA Astrophysics Data System (ADS)

    Shirshin, Evgeny; Cherkasova, Olga; Tikhonova, Tatiana; Berlovskaya, Elena; Priezzhev, Alexander; Fadeev, Victor

    2015-05-01

    We present the results of a native fluorescence spectroscopy study of blood plasma of rats with experimental diabetes. It was shown that the fluorescence emission band shape at 320 nm excitation is the most indicative of hyperglycemia in the blood plasma samples. We provide the interpretation of this fact based on the changes in reduced nicotinamide adenine dinucleotide phosphate concentration due to glucose-related metabolic pathways and protein fluorescent cross-linking formation following nonenzymatic glycation.

  1. Fluorescence spectroscopy of soil pellets : The use of CP/PARAFAC.

    NASA Astrophysics Data System (ADS)

    Mounier, Stéphane; Nicolodeli, Gustavo; Redon, Roland; Hacherouf, Kalhed; Milori, Debora M. B. P.

    2014-05-01

    Fluorescence spectroscopy is one of the most sensitive techniques available for analytical purposes. It is relatively easy to implement, phenomenologically straightforward and well investigated. Largely non-invasive and fast, so that it can be useful for environmental applications. Fluorescence phenomenon is highly probable in molecular systems containing atoms with lone pairs of electrons such as C=O, aromatic, phenolic, quinone and more rigid unsaturated conjugated systems. These functional groups are present in humic substances (HS) from soils (Senesi, 1990; N. Senesi et al., 1991) and represent the main fluorophors of Soil Organic Matter (SOM). The extension of the conjugated electronic system, the level of heteroatom substitution and type and number of substituting groups under the aromatic rings strongly affect the intensity and wavelength of molecular fluorescence. However, to analyse the SOM it is generally done a chemical extraction that allows measuring the fluorescence response of the liquid extract. To avoid this fractionation of the SOM, Milori et al. (2006) proposed the application of laser induced fluorescence spectroscopy (LIFS) in whole soil. This work intends to assess the technical feasibility of 3D fluorescence spectroscopy using lamp for excitation to analyse solids opaque samples prepared with different substances. Seventy four (74) solid samples were prepared from different mixtures of boric acid (BA), humic substance acid and tryptophan (TRP) powder. The compounds were mixture and a pellet was done by using pressure (8 ton). The pellets were measured using a spectrofluorimeter HITACHI F4500, and a 3D fluorescence tensor was done from emission spectra (200-600 nm) with excitation range from 200 to 500 nm. The acquisition parameters were: step at 5 nm, scan speed at 2400 nm.min-1, response time at 0.1 s, excitation and emission slits at 5 nm and photomultiplier voltage at 700 V. Furthermore, measures of Laser-induced Fluorescence were

  2. Tissue classification and diagnostics using a fiber probe for combined Raman and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Anand, Suresh; Crisci, Alfonso; Giordano, Flavio; Rossari, Susanna; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.

    2015-07-01

    Two different optical fiber probes for combined Raman and fluorescence spectroscopic measurements were designed, developed and used for tissue diagnostics. Two visible laser diodes were used for fluorescence spectroscopy, whereas a laser diode emitting in the NIR was used for Raman spectroscopy. The two probes were based on fiber bundles with a central multimode optical fiber, used for delivering light to the tissue, and 24 surrounding optical fibers for signal collection. Both fluorescence and Raman spectra were acquired using the same detection unit, based on a cooled CCD camera, connected to a spectrograph. The two probes were successfully employed for diagnostic purposes on various tissues in a good agreement with common routine histology. This study included skin, brain and bladder tissues and in particular the classification of: malignant melanoma against melanocytic lesions and healthy skin; urothelial carcinoma against healthy bladder mucosa; brain tumor against dysplastic brain tissue. The diagnostic capabilities were determined using a cross-validation method with a leave-one-out approach, finding very high sensitivity and specificity for all the examined tissues. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities. The system presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used for endoscopic inspections in the near future.

  3. The initial step of DNA hairpin folding: a kinetic analysis using fluorescence correlation spectroscopy

    PubMed Central

    Kim, Jiho; Doose, Sören; Neuweiler, Hannes; Sauer, Markus

    2006-01-01

    Conformational fluctuations of single-stranded DNA (ssDNA) oligonucleotides were studied in aqueous solution by monitoring contact-induced fluorescence quenching of the oxazine fluorophore MR121 by intrinsic guanosine residues (dG). We applied fluorescence correlation spectroscopy as well as steady-state and time-resolved fluorescence spectroscopy to analyze kinetics of DNA hairpin folding. We first characterized the reporter system by investigating bimolecular quenching interactions between MR121 and guanosine monophosphate in aqueous solution estimating rate constants, efficiency and stability for formation of quenched complexes. We then studied the kinetics of complex formation between MR121 and dG residues site-specifically incorporated in DNA hairpins. To uncover the initial steps of DNA hairpin folding we investigated complex formation in ssDNA carrying one or two complementary base pairs (dC–dG pairs) that could hybridize to form a short stem. Our data show that incorporation of a single dC–dG pair leads to non-exponential decays for opening and closing kinetics and reduces rate constants by one to two orders of magnitude. We found positive activation enthalpies independent of the number of dC–dG pairs. These results imply that the rate limiting step of DNA hairpin folding is not determined by loop dynamics, or by mismatches in the stem, but rather by interactions between stem and loop nucleotides. PMID:16687657

  4. Fluorescence light suppression in Raman spectroscopy using ultrafast time-gated CCD camera

    NASA Astrophysics Data System (ADS)

    Martyshkin, Dmitri V.; Ahuja, Ramesh C.; Kudriavtsev, Anatoliy; Mirov, Sergey B.

    2004-06-01

    A high level of fluorescence background signal rejection was achieved for solid and powder samples by using a combination of simple low-resolution spectrograph and ultrafast intensified/gated CCD camera. The unique timing characteristics of CCD camera match exceptionally well characteristics of Ti:sapphire oscillator allowing fast gated light detection at a repetition rate of up to 110 MHz, making this approach superior in terms of duty cycle in comparison with other time-resolved Raman techniques. The achieved temporal resolution was about 150 ps under 785 nm Ti:sapphire laser excitation. At an average excitation power up to 300 mW there was no noticeable sample damage observed. The strong Hexobenzocoronane (HBC) fluorescence with a lifetime about 2.1 ns was efficiently rejected and Raman spectrum revealed. The combination of spectrometer and ultrafast gated CCD camera allows simultaneous study of spectral and temporal characteristics of emitted light for the fluorophores with a fluorescence lifetime in nanosecond range. It is particularly important in biomedical spectroscopy, since the majority of endogenous fluorophores has a relatively short lifetime of about 1-5 ns. This capability opens an exciting possibility to build a universal instrument for solving multitask problems in applied laser spectroscopy.

  5. [Commercial orange juice beverages detection by fluorescence spectroscopy combined with PCA-ED and PLSR methods].

    PubMed

    Hu, Yang-jun; Zhu, Chun; Chen, Guo-qing; Zhang, Yong; Kong, Fan-biao; Li, Run; Zhu, Zhuo-wei; Wang, Xu; Gao, Shu-mei

    2014-08-01

    In order to classify the orange juiice beverages effectively, the fluorescence character differences of two kinds of orange juice beverages including 100% orange juice and orange drink were analyzed and compared, principal component analysis combined with Euclidean distance was adopted to classify two kinds of orange juice beverages, and ideal classification results were obtained. Meanwhile, the orange juice content estimation model was established by using fluorescence spectroscopy combined with partial least squares regression method, and the correlation coefficient R, root mean square error of calibration RMSEC and root mean square error of prediction RMSEP were 0.997, 0.87% and 2.05%, respectively. The experimental results indicate that the calibration model offers comparatively accurate content estimation, which reflect the actual orange juice content in the commercial orange juice beverages. The exploration to classify orange juice beverages was carried out from two aspects of qualitative and quantitative analysis by employing fluorescence spectroscopy combined with chemometrics method, which can provide a new idea for the classification and adulteration detection of commercial orange juice beverages, and also can give certain reference basis for the quality control of orange juice raw material.

  6. Fluorescence excitation-emission matrix spectroscopy as a tool for determining quality of sparkling wines.

    PubMed

    Elcoroaristizabal, Saioa; Callejón, Raquel M; Amigo, Jose M; Ocaña-González, Juan A; Morales, M Lourdes; Ubeda, Cristina

    2016-09-01

    Browning in sparkling wines was assessed by the use of excitation-emission fluorescence spectroscopy combined with PARAllel FACtor analysis (PARAFAC). Four different cava sparkling wines were monitored during an accelerated browning process and subsequently storage. Fluorescence changes observed during the accelerated browning process were monitored and compared with other conventional parameters: absorbance at 420nm (A420) and the content of 5-hydroxymethyl-2-furfural (5-HMF). A high similarity of the spectral profiles for all sparkling wines analyzed was observed, being explained by a four component PARAFAC model. A high correlation between the third PARAFAC factor (465/530nm) and the commonly used non-enzymatic browning indicators was observed. The fourth PARAFAC factor (280/380nm) gives us also information about the browning process following a first order kinetic reaction. Hence, excitation-emission fluorescence spectroscopy, together with PARAFAC, provides a faster alternative for browning monitoring to conventional methods, as well as useful key indicators for quality control. PMID:27041327

  7. Study of the interaction between N-confused porphyrin and bovine serum albumin by fluorescence spectroscopy.

    PubMed

    Yu, Xianyong; Liu, Ronghua; Yi, Rongqiong; Yang, Fengxian; Huang, Haowen; Chen, Jian; Ji, Danhong; Yang, Ying; Li, Xiaofang; Yi, Pinggui

    2011-04-01

    The fluorescence and ultraviolet spectroscopy were explored to study the interaction between N-confused porphyrins (NCP) and bovine serum albumin (BSA) under imitated physiological condition. The experimental results indicated that the fluorescence quenching mechanism between BSA and NCP was static quenching procedure at low NCP concentration at 293 and 305 K or a combined quenching (static and dynamic) procedure at higher NCP concentration at 305 K. The binding constants, binding sites and the corresponding thermodynamic parameters ΔH, ΔS, and ΔG were calculated at different temperatures. The comparison of binding potency of the three NCP to BSA showed that the substituting groups in benzene ring could enhance the binding affinity. From the thermodynamic parameters, we concluded that the action force was mainly hydrophobic interaction. The binding distances between NCP and BSA were calculated using Förster non-radiation energy transfer theory. In addition, the effect of NCP on the conformation of BSA was analyzed using synchronous fluorescence spectroscopy.

  8. High pressure sample cell for total internal reflection fluorescence spectroscopy at pressures up to 2500 bar

    NASA Astrophysics Data System (ADS)

    Koo, Juny; Czeslik, Claus

    2012-08-01

    Total internal reflection fluorescence (TIRF) spectroscopy is a surface sensitive technique that is widely used to characterize the structure and dynamics of molecules at planar liquid-solid interfaces. In particular, biomolecular systems, such as protein adsorbates and lipid membranes can easily be studied by TIRF spectroscopy. Applying pressure to molecular systems offers access to all kinds of volume changes occurring during assembly of molecules, phase transitions, and chemical reactions. So far, most of these volume changes have been characterized in bulk solution, only. Here, we describe the design and performance of a high pressure sample cell that allows for TIRF spectroscopy under high pressures up to 2500 bar (2.5 × 108 Pa), in order to expand the understanding of volume effects from the bulk phase to liquid-solid interfaces. The new sample cell is based on a cylindrical body made of Nimonic 90 alloy and incorporates a pressure transmitting sample cuvette. This cuvette is composed of a fused silica prism and a flexible rubber gasket. It contains the sample solution and ensures a complete separation of the sample from the liquid pressure medium. The sample solution is in contact with the inner wall of the prism forming the interface under study, where fluorescent molecules are immobilized. In this way, the new high pressure TIRF sample cell is very useful for studying any biomolecular layer that can be deposited at a planar water-silica interface. As examples, high pressure TIRF data of adsorbed lysozyme and two phospholipid membranes are presented.

  9. Fluorescence imaging and spectroscopy of ethyl nile blue A in animal models of (pre)malignancies.

    PubMed

    van Staveren, H J; Speelman, O C; Witjes, M J; Cincotta, L; Star, W M

    2001-01-01

    Discrimination between normal and premalignant tissues by fluorescence imaging and/or spectroscopy may be enhanced by a tumor-localizing fluorescent drug. Ethyl Nile Blue A (EtNBA), a dye with no phototoxic activity, was investigated for this purpose. The pharmacokinetics and tissue-localizing properties were investigated in a rat palate model with chemically induced premalignant mucosal lesions (0.5 mg/kg EtNBA intravenous [i.v.]), a hairless mouse model with UVB-induced premalignant skin lesions (1 mg/kg EtNBA intraperitoneal) and in a rat skin-fold observation chamber model on the back of a rat with a transplanted solid tumor (2.5 mg/kg EtNBA i.v.). Fluorescence images and spectra were recorded in vivo (600 nm excitation, 665-900 nm detection) and in frozen tissue sections at several time points after EtNBA administration. In the rat palate the EtNBA fluorescence was maximum almost immediately after injection, whereas in the mouse skin and the observation chamber the fluorescence maximum was reached between 2 and 3 h after injection. EtNBA cleared from tissues after 8-24 h. EtNBA localizes in the transplantable solid tumor, but is not targeted specifically to the dysplastic location in the rat palate and mouse skin. However, in the rat palate the EtNBA fluorescence increased significantly with increasing dysplasia, apparently due to the increasing thickness of the upper keratinized layer of the epithelium where the dye was found to localize. Localization in this layer occurred both in the rat palate and in hairless mouse skin.

  10. Histologic differences between orthotopic xenograft pancreas models affect Verteporfin uptake measured by fluorescence microscopy and spectroscopy

    NASA Astrophysics Data System (ADS)

    O'Hara, Julia A.; Samkoe, Kimberley S.; Chen, Alina; Isabelle, Martin; Hoopes, P. J.; Hasan, Tayyaba; Pogue, Brian W.

    2012-02-01

    Photodynamic therapy (PDT) that uses the second generation photosensitizer, verteporfin (VP), is a developing therapy for pancreatic cancer. The optimal timing of light delivery related to VP uptake and distribution in pancreatic tumors will be important information to obtain to improve treatment for this intractable disease. In this work we examined uptake and distribution of VP in two orthotopic pancreatic tumors with different histological structure. ASPC-1 (fast-growing) and Panc-1 (slower growing) tumors were implanted in SCID mice and studied when tumors were approximately 100mm3. In a pilot study, these tumors had been shown to differ in uptake of VP using lightinduced fluorescence spectroscopy (LIFS) in vivo and fluorescence imaging ex vivo and that work is extended here. In vivo fluorescence mean readings of tumor and liver increased rapidly up to 15 minutes after photosensitizer injection for both tumor types, and then continued to increase up to 60 minutes post injection to a higher level in ASPC-1 than in Panc-1. There was variability among animals with the same tumor type, in both liver and tumor uptake and no selectivity of tumor over liver. In this work we further examined VP uptake at multiple time points in relation to microvascular density and perfusion, using DiOC7 (to mark blood vessels) and VP fluorescence in the same tissue slices. Analysis of DiOC7 fluorescence indicates that AsPC-1 and Panc-1 have different vascular densities but AsPC-1 vasculature is more perfusive. Analysis of colocalized DiOC7 and VP fluorescence showed ASPC-1 with higher accumulation of VP 3 hrs after injection and more VP at a distance from blood vessels compared to Panc-1. This work shows the need for techniques to analyze photosensitizer distribution in order to optimize photodynamic therapy as an effective treatment for pancreatic tumors.

  11. Quantifying the flow dynamics of supercritical CO2-water displacement in a 2D porous micromodel using fluorescent microscopy and microscopic PIV

    NASA Astrophysics Data System (ADS)

    Kazemifar, Farzan; Blois, Gianluca; Kyritsis, Dimitrios C.; Christensen, Kenneth T.

    2016-09-01

    The multi-phase flow of liquid/supercritical CO2 and water (non-wetting and wetting phases, respectively) in a two-dimensional silicon micromodel was investigated at reservoir conditions (80 bar, 24 °C and 40 °C). The fluorescent microscopy and microscopic particle image velocimetry (micro-PIV) techniques were combined to quantify the flow dynamics associated with displacement of water by CO2 (drainage) in the porous matrix. To this end, water was seeded with fluorescent tracer particles, CO2 was tagged with a fluorescent dye and each phase was imaged independently using spectral separation in conjunction with microscopic imaging. This approach allowed simultaneous measurement of the spatially-resolved instantaneous velocity field in the water and quantification of the spatial configuration of the two fluid phases. The results, acquired with sufficient time resolution to follow the dynamic progression of both phases, provide a comprehensive picture of the flow physics during the migration of the CO2 front, the temporal evolution of individual menisci, and the growth of fingers within the porous microstructure. During that growth process, velocity jumps 20-25 times larger in magnitude than the bulk velocity were measured in the water phase and these bursts of water flow occurred both in-line with and against the bulk flow direction. These unsteady velocity events support the notion of pressure bursts and Haines jumps during pore drainage events as previously reported in the literature [1-3]. After passage of the CO2 front, shear-induced flow was detected in the trapped water ganglia in the form of circulation zones near the CO2-water interfaces as well as in the thin water films wetting the surfaces of the silicon micromodel. To our knowledge, the results presented herein represent the first quantitative spatially and temporally resolved velocity-field measurements at high pressure for water displacement by liquid/supercritical CO2 injection in a porous micromodel.

  12. Evaluation of a fiber-optic fluorescence spectroscopy system to assist neurosurgical tumor resections

    NASA Astrophysics Data System (ADS)

    Ilias, Michail A.; Richter, Johan; Westermark, Frida; Brantmark, Martin; Andersson-Engels, Stefan; Wårdell, Karin

    2007-07-01

    The highly malignant brain tumor, glioblastoma multiforme, is difficult to totally resect without aid due to its infiltrative way of growing and its morphological similarities to surrounding functioning brain under direct vision in the operating field. The need for an inexpensive and robust real-time visualizing system for resection guiding in neurosurgery has been formulated by research groups all over the world. The main goal is to develop a system that helps the neurosurgeon to make decisions during the surgical procedure. A compact fiber optic system using fluorescence spectroscopy has been developed for guiding neurosurgical resections. The system is based on a high power light emitting diode at 395 nm and a spectrometer. A fiber bundle arrangement is used to guide the excitation light and fluorescence light between the instrument and the tissue target. The system is controlled through a computer interface and software package especially developed for the application. This robust and simple instrument has been evaluated in vivo both on healthy skin but also during a neurosurgical resection procedure. Before surgery the patient received orally a low dose of 5-aminolevulinic acid, converted to the fluorescence tumor marker protoporphyrin IX in the malignant cells. Preliminary results indicate that PpIX fluorescence and brain tissue autofluorescence can be recorded with the help of the developed system intraoperatively during resection of glioblastoma multiforme.

  13. Metal-Enhanced Fluorescence Lifetime Imaging and Spectroscopy on a Modified SERS Substrate

    PubMed Central

    Ray, Krishanu; Lakowicz, Joseph R.

    2013-01-01

    In this paper, we developed a metal-enhanced fluorescence (MEF) substrate by modification of the commercially available surface enhanced Raman spectroscopy (SERS) substrate that may meet the reproducibility and sensitivity challenge of MEF. In spite of many studies and interest on MEF from a number of research groups, application to real-world situations and its commercial use remain challenging mainly due to the difficulties in fabricating reproducible MEF substrates. Specifically, one of the challenges is achieving a standardized MEF substrate for reproducible fluorescence intensity enhancement and/or changes in lifetime. The gold standard klarite substrates for SERS were coated with a thin layer of silver nanoparticles for MEF studies. To test the newly developed MEF substrates, a monolayer of streptavidin conjugated Alexa-647 was assembled on biotinylated-glass or MEF substrates. We observed over 50-fold increase in the fluorescence intensity from a monolayer of streptavidin conjugated Alexa-647 on the biotinylated MEF substrate compared to the same on glass substrate. A significant reduction in the lifetime and increased photostability of Alexa-647 on MEF substrate was observed. Fluorescence lifetime imaging was performed on the monolayer of dye assembled on the modified SERS substrates. We expect this study will serve as a platform to encourage the future use of a standardized MEF substrate for a plethora of sensing applications. PMID:24416457

  14. Substrate-Supported Phospholipid Membranes Studied by Surface Plasmon Resonance and Surface Plasmon Fluorescence Spectroscopy

    PubMed Central

    Tawa, Keiko; Morigaki, Kenichi

    2005-01-01

    Substrate-supported planar lipid bilayer membranes are attractive model cellular membranes for biotechnological applications such as biochips and sensors. However, reliable fabrication of the lipid membranes on solid surfaces still poses significant technological challenges. In this study, simultaneous surface plasmon resonance (SPR) and surface plasmon fluorescence spectroscopy (SPFS) measurements were applied to the monitoring of adsorption and subsequent reorganization of phospholipid vesicles on solid substrates. The fluorescence intensity of SPFS depends very sensitively on the distance between the gold substrate and the fluorophore because of the excitation energy transfer to gold. By utilizing this distance dependency, we could obtain information about the topography of the adsorbed membranes: Adsorbed vesicles could be clearly distinguished from planar bilayers due to the high fluorescence intensity. SPSF can also incorporate various analytical techniques to evaluate the physicochemical properties of the adsorbed membranes. As an example, we demonstrated that the lateral mobility of lipid molecules could be estimated by observing the recovery of fluorescence after photobleaching. Combined with the film thickness information obtained by SPR, SPR-SPFS proved to be a highly informative technique to monitor the lipid membrane assembly processes on solid substrates. PMID:16040759

  15. Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy.

    PubMed

    Laňková, Martina; Humpolíčková, Jana; Vosolsobě, Stanislav; Cit, Zdeněk; Lacek, Jozef; Čovan, Martin; Čovanová, Milada; Hof, Martin; Petrášek, Jan

    2016-04-01

    A number of fluorescence microscopy techniques are described to study dynamics of fluorescently labeled proteins, lipids, nucleic acids, and whole organelles. However, for studies of plant plasma membrane (PM) proteins, the number of these techniques is still limited because of the high complexity of processes that determine the dynamics of PM proteins and the existence of cell wall. Here, we report on the usage of raster image correlation spectroscopy (RICS) for studies of integral PM proteins in suspension-cultured tobacco cells and show its potential in comparison with the more widely used fluorescence recovery after photobleaching method. For RICS, a set of microscopy images is obtained by single-photon confocal laser scanning microscopy (CLSM). Fluorescence fluctuations are subsequently correlated between individual pixels and the information on protein mobility are extracted using a model that considers processes generating the fluctuations such as diffusion and chemical binding reactions. As we show here using an example of two integral PM transporters of the plant hormone auxin, RICS uncovered their distinct short-distance lateral mobility within the PM that is dependent on cytoskeleton and sterol composition of the PM. RICS, which is routinely accessible on modern CLSM instruments, thus represents a valuable approach for studies of dynamics of PM proteins in plants. PMID:27041337

  16. Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements.

    PubMed

    Lim, Liang; Nichols, Brandon; Rajaram, Narasimhan; Tunnell, James W

    2011-01-01

    Diffuse reflectance and fluorescence spectroscopy are popular research techniques for noninvasive disease diagnostics. Most systems include an optical fiber probe that transmits and collects optical spectra in contact with the suspected lesion. The purpose of this study is to investigate probe pressure effects on human skin spectroscopic measurements. We conduct an in-vivo experiment on human skin tissue to study the short-term (<2 s) and long-term (>30 s) effects of probe pressure on diffuse reflectance and fluorescence measurements. Short-term light probe pressure (P0<9 mN∕mm2) effects are within 0 ± 10% on all physiological properties extracted from diffuse reflectance and fluorescence measurements, and less than 0±5% for diagnostically significant physiological properties. Absorption decreases with site-specific variations due to blood being compressed out of the sampled volume. Reduced scattering coefficient variation is site specific. Intrinsic fluorescence shows a large standard error, although no specific pressure-related trend is observed. Differences in tissue structure and morphology contribute to site-specific probe pressure effects. Therefore, the effects of pressure can be minimized when the pressure is small and applied for a short amount of time; however, long-term and large pressures induce significant distortions in measured spectra. PMID:21280899

  17. Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements

    PubMed Central

    Lim, Liang; Nichols, Brandon; Rajaram, Narasimhan; Tunnell, James W.

    2011-01-01

    Diffuse reflectance and fluorescence spectroscopy are popular research techniques for noninvasive disease diagnostics. Most systems include an optical fiber probe that transmits and collects optical spectra in contact with the suspected lesion. The purpose of this study is to investigate probe pressure effects on human skin spectroscopic measurements. We conduct an in-vivo experiment on human skin tissue to study the short-term (<2 s) and long-term (>30 s) effects of probe pressure on diffuse reflectance and fluorescence measurements. Short-term light probe pressure (P0 < 9 mN∕mm2) effects are within 0 ± 10% on all physiological properties extracted from diffuse reflectance and fluorescence measurements, and less than 0 ± 5% for diagnostically significant physiological properties. Absorption decreases with site-specific variations due to blood being compressed out of the sampled volume. Reduced scattering coefficient variation is site specific. Intrinsic fluorescence shows a large standard error, although no specific pressure-related trend is observed. Differences in tissue structure and morphology contribute to site-specific probe pressure effects. Therefore, the effects of pressure can be minimized when the pressure is small and applied for a short amount of time; however, long-term and large pressures induce significant distortions in measured spectra. PMID:21280899

  18. Fluorescence spectroscopy of collagen crosslinking: non-invasive and in situ evaluation of corneal stiffness

    NASA Astrophysics Data System (ADS)

    Franco, Walfre; Ortega-Martinez, Antonio; Zhu, Hong; Wang, Ruisheng; Kochevar, Irene E.

    2015-03-01

    Collagen is a long fibrous structural protein that imparts mechanical support, strength and elasticity to many tissues. The state of the tissue mechanical environment is related to tissue physiology, disease and function. In the cornea, the collagen network is responsible for its shape and clarity; disruption of this network results in degradation of visual acuity, for example in the keratoconus eye disease. The objective of the present study is to investigate the feasibility of using the endogenous fluorescence of collagen crosslinks to evaluate variations in the mechanical state of tissue, in particular, the stiffness of cornea in response to different degrees of photo-crosslinking or RGX treatment—a novel keratoconus treatment. After removing the epithelium, rabbit corneas were stained with Rose Bengal and then irradiated with a 532 nm solid-state laser. Analysis of the excitation spectra obtained by fluorescence spectroscopy shows a correlation between the fluorescence intensity at 370/460 nm excitation/emission wavelengths and the mechanical properties. In principle, it may be feasible to use the endogenous fluorescence of collagen crosslinks to evaluate the mechanical stiffness of cornea non-invasively and in situ.

  19. Applications of time-resolved laser fluorescence spectroscopy to the environmental biogeochemistry of actinides.

    PubMed

    Collins, Richard N; Saito, Takumi; Aoyagi, Noboru; Payne, Timothy E; Kimura, Takaumi; Waite, T David

    2011-01-01

    Time-resolved laser fluorescence spectroscopy (TRLFS) is a useful means of identifying certain actinide species resulting from various biogeochemical processes. In general, TRLFS differentiates chemical species of a fluorescent metal ion through analysis of different excitation and emission spectra and decay lifetimes. Although this spectroscopic technique has largely been applied to the analysis of actinide and lanthanide ions having fluorescence decay lifetimes on the order of microseconds, such as UO , Cm, and Eu, continuing development of ultra-fast and cryogenic TRLFS systems offers the possibility to obtain speciation information on metal ions having room-temperature fluorescence decay lifetimes on the order of nanoseconds to picoseconds. The main advantage of TRLFS over other advanced spectroscopic techniques is the ability to determine in situ metal speciation at environmentally relevant micromolar to picomolar concentrations. In the context of environmental biogeochemistry, TRLFS has principally been applied to studies of (i) metal speciation in aqueous and solid phases and (ii) the coordination environment of metal ions sorbed to mineral and bacterial surfaces. In this review, the principles of TRLFS are described, and the literature reporting the application of this methodology to the speciation of actinides in systems of biogeochemical interest is assessed. Significant developments in TRLFS methodology and advanced data analysis are highlighted, and we outline how these developments have the potential to further our mechanistic understanding of actinide biogeochemistry.

  20. Multicolor whole-cell bacterial sensing using a synchronous fluorescence spectroscopy-based approach.

    PubMed

    Parrello, Damien; Mustin, Christian; Brie, David; Miron, Sebastian; Billard, Patrick

    2015-01-01

    The wide collection of currently available fluorescent proteins (FPs) offers new possibilities for multicolor reporter gene-based studies of bacterial functions. However, the simultaneous use of multiple FPs is often limited by the bleed-through of their emission spectra. Here we introduce an original approach for detection and separation of multiple overlapping fluorescent signals from mixtures of bioreporters strains. The proposed method relies on the coupling of synchronous fluorescent spectroscopy (SFS) with blind spectral decomposition achieved by the Canonical Polyadic (CP) decomposition (also known as Candecomp/Parafac) of three-dimensional data arrays. Due to the substantial narrowing of FP emission spectra and sensitive detection of multiple FPs in a one-step scan, SFS reduced spectral overlap and improved the selectivity of the CP unmixing procedure. When tested on mixtures of labeled E. coli strains, the SFS/CP approach could easily extract the contribution of at least four overlapping FPs. Furthermore, it allowed to simultaneously monitor the expression of three iron responsive genes and pyoverdine production in P. aeruginosa. Implemented in a convenient microplate format, this multiplex fluorescent reporter method provides a useful tool to study complex processes with different variables in bacterial systems. PMID:25822488

  1. Monitoring changes in sponge cakes during aging by front face fluorescence spectroscopy and instrumental techniques.

    PubMed

    Botosoa, Eliot Patrick; Chénè, Christine; Karoui, Romdhane

    2013-03-20

    In the present study, sponge cakes, produced at the pilot scale, were monitored during aging (i.e., 1, 3, 6, 9, 16, and 20 days) by three different analytical techniques. For the texture analyzer, the hardness and elasticity of crumb cakes were found to significantly increase and decrease, respectively, throughout aging. Color parameters (L*, a*, and b*) showed only slight change throughout aging, and a high correlation (R(2) = 0.88) was observed between the whiteness and the yellowness. Tryptophan fluorescence spectra (excitation, 290 nm; emission, 305-490 nm) recorded on cakes exhibited three maxima located at 382, 435, and 467 nm that were attributed to maximum emission of tryptophan (382 nm) and fluorescent Maillard reaction products (435 and 467 nm). The principal component analysis (PCA) applied to the tryptophan spectra allowed a clear discrimination of cakes aged for 1, 3, and 6 days from those aged for 9, 16, and 20 days. Finally, canonical correlation analysis (CCA) performed on the textural and tryptophan fluorescence spectral data sets showed that the two groups of variables were highly correlated because the squared canonical coefficients for canonical variates were 0.99, indicating that cake texture determined at the macroscopic level by texture analyzer is a reflection of its structure at the molecular level determined by fluorescence spectroscopy.

  2. Multicolor Whole-Cell Bacterial Sensing Using a Synchronous Fluorescence Spectroscopy-Based Approach

    PubMed Central

    Parrello, Damien; Mustin, Christian; Brie, David; Miron, Sebastian; Billard, Patrick

    2015-01-01

    The wide collection of currently available fluorescent proteins (FPs) offers new possibilities for multicolor reporter gene-based studies of bacterial functions. However, the simultaneous use of multiple FPs is often limited by the bleed-through of their emission spectra. Here we introduce an original approach for detection and separation of multiple overlapping fluorescent signals from mixtures of bioreporters strains. The proposed method relies on the coupling of synchronous fluorescent spectroscopy (SFS) with blind spectral decomposition achieved by the Canonical Polyadic (CP) decomposition (also known as Candecomp/Parafac) of three-dimensional data arrays. Due to the substantial narrowing of FP emission spectra and sensitive detection of multiple FPs in a one-step scan, SFS reduced spectral overlap and improved the selectivity of the CP unmixing procedure. When tested on mixtures of labeled E. coli strains, the SFS/CP approach could easily extract the contribution of at least four overlapping FPs. Furthermore, it allowed to simultaneously monitor the expression of three iron responsive genes and pyoverdine production in P. aeruginosa. Implemented in a convenient microplate format, this multiplex fluorescent reporter method provides a useful tool to study complex processes with different variables in bacterial systems. PMID:25822488

  3. Structure and dynamics of fluorescently labeled complex fluids by fourier imaging correlation spectroscopy

    PubMed

    Grassman; Knowles; Marcus

    2000-12-01

    We present a method of Fourier imaging correlation spectroscopy (FICS) that performs phase-sensitive measurements of modulated optical signals from fluorescently labeled complex fluids. FICS experiments probe the time-dependent trajectory of a spatial Fourier component of the fluid particle density at a specified wave number k, and provide a direct route to the intermediate scattering function. The FICS approach overcomes signal sensitivity problems associated with dynamic light scattering, while offering a means to acquire time-dependent information about spatial distributions of fluorescent particles, superior in efficiency to direct imaging methods. We describe the instrumental setup necessary to perform FICS experiments, and outline the theory that establishes the connection between FICS observables and statistical mechanical quantities describing liquid state dynamics. Test measurements on monolayer suspensions of rhodamine labeled polystyrene spheres are detailed.

  4. Comparing Raman and fluorescence lifetime spectroscopy from human atherosclerotic lesions using a bimodal probe.

    PubMed

    Dochow, Sebastian; Fatakdawala, Hussain; Phipps, Jennifer E; Ma, Dinglong; Bocklitz, Thomas; Schmitt, Michael; Bishop, John W; Margulies, Kenneth B; Marcu, Laura; Popp, Jürgen

    2016-09-01

    Fluorescence lifetime imaging (FLIm) and Raman spectroscopy are two promising methods to support morphological intravascular imaging techniques with chemical contrast. Both approaches are complementary and may also be used in combination with OCT/IVUS to add chemical specificity to these morphologic intravascular imaging modalities. In this contribution, both modalities were simultaneously acquired from two human coronary specimens using a bimodal probe. A previously trained SVM model was used to interpret the fluorescence lifetime data; integrated band intensities displayed in RGB false color images were used to interpret the Raman data. Both modalities demonstrate unique strengths and weaknesses and these will be discussed in comparison to histologic analyses from the two coronary arteries imaged. PMID:27003796

  5. Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells.

    PubMed

    Oasa, Sho; Sasaki, Akira; Yamamoto, Johtaro; Mikuni, Shintaro; Kinjo, Masataka

    2015-08-01

    Glucocorticoid receptor α (GR) binds to the promoter regions of target genes as a homodimer and activates its transcriptional process. Though the homodimerization is thought to be the initial and essential process, the dissociation constant for homodimerization of GR remains controversial. To quantify homodimerization of (enhanced green fluorescence protein) EGFP-(glucocorticoid receptor) GR, the particle brightness in lysates from single cell was estimated for the fraction of homodimeric EGFP-GR using fluorescence correlation spectroscopy and microwells. Fitting the data with a bimolecular reaction model, the dissociation constant was determined. Moreover slow-diffusion complex was observed. These results suggest that EGFP-GR forms not only a monomer-dimer equivalent state but also a large-molecular-weight complex. PMID:26183204

  6. What information is contained in the fluorescence correlation spectroscopy curves, and where

    NASA Astrophysics Data System (ADS)

    Khadem, S. M. J.; Hille, C.; Löhmannsröben, H.-G.; Sokolov, I. M.

    2016-08-01

    We discuss the application of fluorescence correlation spectroscopy (FCS) for characterization of anomalous diffusion of tracer particles in crowded environments. While the fact of anomaly may be detected by the standard fitting procedure, the value of the exponent α of anomalous diffusion may be not reproduced correctly for non-Gaussian anomalous diffusion processes. The important information is however contained in the asymptotic behavior of the fluorescence autocorrelation function at long and at short times. Thus, analysis of the short-time behavior gives reliable values of α and of lower moments of the distribution of particles' displacement, which allows us to confirm or reject its Gaussian nature. The method proposed was tested on the FCS data obtained in artificial crowded fluids and in living cells.

  7. Application of X-ray Fluorescence Spectroscopy in Analysis of Oil Paint Pigments

    NASA Astrophysics Data System (ADS)

    Major, Cassandra; Formica, Sarah

    2011-10-01

    X-ray Fluorescence (XRF) spectroscopy is a rapid, noninvasive technique for both detecting and identifying chemical elements within a given sample. At North Georgia College and State University, a sealed tube x-ray source and slightly focusing polycapillary optic are used in nondestructive XRF analysis of oil paint pigments. Oil paints contain both organic and inorganic matter, and the inorganic ingredients such as titanium, vanadium, iron, zinc, and other elements are easily detected by XRF, which can be used to uniquely differentiate between various paint pigments. To calibrate the XRF system for paint color identification, six different colors of oil paint were fluoresced and identified based off of their characteristic spectra. By scanning the paint sample in two dimensions, the characteristic XRF spectra obtained were compiled to produce an XRF replica of the painting.

  8. [Measurement and analysis of lead in soil using X-ray fluorescence spectroscopy].

    PubMed

    Zhang, Rong; Zhang, Yu-Jun; Zhang, Wei; Chen, Dong; Yu, Xiao-Ya; Gao, Yan-Wei

    2013-02-01

    The present paper analyzed the characteristics of X-ray fluorescence spectroscopy (XRF) of metal element lead in soil using the NITON XLt793 portable X-ray fluorescence spectra of heavy metal analyzer under laboratory conditions. The characteristic spectral lines of L(alpha) (energy: 10. 55 keV) and L(beta) (energy: 12. 61 keV) with different matrix elements were selected respectively for lead in the experiment. By measuring the intensities of the characteristic spectral line with different Pb concentration, the results demonstrate that the relation between concentration [mass fraction 10 x 10(-6) - 1 800 x 10(-6)] of Pb element and the intensity of the characteristic spectrum is well linear. The calibration curve of Pb was plotted based on the different concentration measurement results, and the limit of detection of 7.89 x 10(-6) was obtained for Pb in soil.

  9. Fluorescence Spectroscopy of the Retina for the Screening of Bovine Spongiform Encephalopathy.

    PubMed

    Bhattacharjee, Ujjal; Graham, Catherine; Czub, Stefanie; Dudas, Sandor; Rasmussen, Mark A; Casey, Thomas A; Petrich, Jacob W

    2016-01-13

    Transmissible spongiform encephalopathies (TSE) are progressive, neurodegenerative disorders, of which bovine spongiform encephalopathy (BSE) is of special concern because it is infectious and debilitating to humans. The possibility of using fluorescence spectroscopy to screen for BSE in cattle was explored. Fluorescence spectra from the retinas of experimentally infected BSE-positive cattle with clinical disease were compared with those from both sham-inoculated and non-inoculated BSE-negative cattle. The distinct intensity difference of about 4-10-fold between the spectra of the BSE-positive and the BSE-negative (sham-inoculated and non-inoculated) eyes suggests the basis for a means of developing a rapid, noninvasive examination of BSE in particular and TSEs in general.

  10. Fluorescence Spectroscopy of the Retina for the Screening of Bovine Spongiform Encephalopathy.

    PubMed

    Bhattacharjee, Ujjal; Graham, Catherine; Czub, Stefanie; Dudas, Sandor; Rasmussen, Mark A; Casey, Thomas A; Petrich, Jacob W

    2016-01-13

    Transmissible spongiform encephalopathies (TSE) are progressive, neurodegenerative disorders, of which bovine spongiform encephalopathy (BSE) is of special concern because it is infectious and debilitating to humans. The possibility of using fluorescence spectroscopy to screen for BSE in cattle was explored. Fluorescence spectra from the retinas of experimentally infected BSE-positive cattle with clinical disease were compared with those from both sham-inoculated and non-inoculated BSE-negative cattle. The distinct intensity difference of about 4-10-fold between the spectra of the BSE-positive and the BSE-negative (sham-inoculated and non-inoculated) eyes suggests the basis for a means of developing a rapid, noninvasive examination of BSE in particular and TSEs in general. PMID:26623498

  11. X-ray fluorescence/Auger-electron coincidence spectroscopy of vacancy cascades in atomic argon

    SciTech Connect

    Arp, U.; LeBrun, T.; Southworth, S.H.; Jung, M.; MacDonald, M.A.

    1996-12-01

    Argon L{sub 2.3}-M{sub 2.3}M{sub 2.3} Auger-electron spectra were measured in coincidence with K{alpha} fluorescent x-rays in studies of Ar K-shell vacancy decays at several photon energies above the K-threshold and on the 1s-4p resonance in atomic argon. The complex spectra recorded by conventional electron spectroscopy are greatly simplified when recorded in coincidence with fluorescent x-rays, allowing a more detailed analysis of the vacancy cascade process. The resulting coincidence spectra are compared with Hartree-Fock calculations which include shake-up transitions in the resonant case. Small energy shifts of the coincidence electron spectra are attributed to post-collision interaction with 1s photoelectrons.

  12. What information is contained in the fluorescence correlation spectroscopy curves, and where.

    PubMed

    Khadem, S M J; Hille, C; Löhmannsröben, H-G; Sokolov, I M

    2016-08-01

    We discuss the application of fluorescence correlation spectroscopy (FCS) for characterization of anomalous diffusion of tracer particles in crowded environments. While the fact of anomaly may be detected by the standard fitting procedure, the value of the exponent α of anomalous diffusion may be not reproduced correctly for non-Gaussian anomalous diffusion processes. The important information is however contained in the asymptotic behavior of the fluorescence autocorrelation function at long and at short times. Thus, analysis of the short-time behavior gives reliable values of α and of lower moments of the distribution of particles' displacement, which allows us to confirm or reject its Gaussian nature. The method proposed was tested on the FCS data obtained in artificial crowded fluids and in living cells. PMID:27627335

  13. Fluorescence spectroscopy to study dissolved organic matter interactions with agrochemicals applied in Swiss vineyards.

    PubMed

    Daouk, Silwan; Frege, Carla; Blanc, Nicolas; Mounier, Stéphane; Redon, Roland; Merdy, Patricia; Lucas, Yves; Pfeifer, Hans-Rudolf

    2015-06-01

    UV/Vis fluorescence spectroscopy was used to study the possible interactions of dissolved organic matter (DOM) with the herbicide glyphosate and copper-based fungicide used in vineyards. The study focused on the role of DOM in the transport of these micropollutants from parcels to surface waters (river, lake). Soil solution and river water samples were collected in the Lavaux vineyard area, western Switzerland. Their fluorescence excitation emission matrices (EEM) were decomposed using parallel factor (PARAFAC) analysis, and compared to their content in glyphosate and copper. PARAFAC analysis of EEM of both types of samples showed the contribution of protein-like and humic-like fluorophores. In soil water samples, complexes between fulvic-like and humic-like fluorophores of DOM, copper, and glyphosate were likely formed. In surface water, DOM-copper and glyphosate-copper interactions were observed, but not between glyphosate and DOM.

  14. Measurement of the temperature-dependent diffusion properties of nanoparticles by using fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Jung, Chanbae; Lee, Jaeran; Kang, Manil; Kim, Sok Won

    2014-10-01

    Changes in the diffusion properties of three kinds of fluorescent particles, Alexa Fluor 647, Q-dots (quantum dots), and beads, with temperature were investigated with a home-built fluorescence correlation spectroscopy (FCS) system based on a confocal microscope. In all samples, as the temperature was increased, the diffusion times were reduced, indicating an increase in the diffusion coefficient. In particular, of all the particles, Alexa Fluor 647 having the smallest size of ˜1 nm, showed a hydrodynamic radius that increased with increasing temperature of the solvent. However, for the Q-dots and beads with larger sizes, the hydrodynamic radius of the particles was inversely proportional to the temperature. These results show that diffusion coefficient obtained by changing the temperature has an influence on the hydrodynamic radius of the particles.

  15. Near-IR 2D-spectroscopy of the 4''x 4'' region around the Active Galactic Nucleus of NGC 1068 with ISAAC/VLT

    NASA Astrophysics Data System (ADS)

    Galliano, E.; Alloin, D.

    2002-10-01

    New near-IR long slit spectroscopic data obtained with ISAAC on VLT/ANTU (ESO/Paranal) complement and extend our previously published near-IR data (Alloin et al. \\cite{all01}) to produce Brgamma and H2 emission line maps and line profile grids of the central 4'' x 4'' region surrounding the central engine of NGC 1068. The seeing quality together with the use of an 0.3'' wide slit and 0.3'' slit position offsets allow one to perform 2D-spectroscopy at a spatial resolution ~ 0.5''. Slit orientations (PA = 102 degr and PA = 12 degr) were chosen so as to match respectively the equatorial plane and the axis of the suspected molecular/dusty torus in NGC 1068. The selected wavelength range from 2.1 to 2.2μm is suitable to detect and analyze the Brgamma and H2 emission lines at a spectral resolution corresponding to 35km s-1. An asymmetric distribution of H2 emission around the continuum peak is observed. No H2 emission is detected at the location of the strong 2.2μm continuum core (coincident within error-bars with the central engine location), while two conspicuous knots of H2 emission are detected at about 1'' on each side of the central engine along PA = 90 degr, with a projected velocity difference of 140km s-1: this velocity jump has been interpreted in Alloin et al. (\\cite{all01}) as the signature of a rotating disk of molecular material. From this new data set, we find that only very low intensity Brgamma emission is detected at the location of the two main knots of H2 emission. Another knot with both H2 and Brgamma emission is detected to the North of the central engine, close to the radio source C where the small scale radio jet is redirected and close to the brightest [OIII] cloud NLR-B. It has a counterpart to the South, placed almost symmetrically with respect to the central engine, although mainly visible in the Brgamma emission. The northern and southern knots appear to be related to the ionization cone. At the achieved spectral resolution, the H2

  16. Fluorescence spectroscopy as a tool for quality assessment of humic substances

    NASA Astrophysics Data System (ADS)

    Boguta, Patrycja

    2016-04-01

    *The studies were partly carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545. Fluorescence spectroscopy belongs to modern, non-destructive, rapid and relatively cheap methods, as well as for many years it was successfully used in studies of organic compounds in the fields of medicine, biology and chemistry. On the other hand, soil organic matter is a group of compounds with a complex spatial structure showing a large number of groups with different kinds of fluorophores. This could suggest the possibility of application of fluorescence spectroscopy in assessing the quality of humic substances as well as in monitoring of their chemical transformations. The aim of study was chemical description of humic and fulvic acids based on fluorescence spectra, as well as an attempt of evaluation of changes occurring under the influence of different pH and during interactions with various concentrations of metal. The humic and fulvic acids were isolated from chemically different soils. The measurements were carried out on Hitachi fluorescence spectrometer in solutions with a concentration of humic acids 40mg dm-3, at pH from 3 to 7, and for the evaluation of the metal impact: with increasing Zn concentrations (0-50mg dm-3). The fluorescence spectra were recorded in the form of synchronous and emission-excitation matrices (EEM). Studies have shown the presence of different groups of fluorophores. Synchronous spectra were characterized by a well-separated bands showing fluorescence in the area of low, medium and high wavelengths, suggesting the presence of structures, both weakly and strongly humified. EEM spectra revealed map of fluorophores within wide ranges of emission and excitation. Fluorophores differed in both position and intensity. The highest intensity was observed for compounds with the lowest humification degree which might be due to high amount

  17. Intermolecular disulfide bond formation promotes immunoglobulin aggregation: investigation by fluorescence correlation spectroscopy.

    PubMed

    Nag, Moupriya; Bera, Kallol; Basak, Soumen

    2015-01-01

    Protein aggregation generally results from association between hydrophobic regions of individual monomers. However, additional mechanisms arising from specific interactions, such as intermolecular disulfide bond formation, may also contribute to the process. The latter is proposed to be the initiating pathway for aggregation of immunoglobulin (IgG), which is essential for triggering its immune response. To test the veracity of this hypothesis, we have employed fluorescence correlation spectroscopy to measure the kinetics of aggregation of IgG in separate experiments either allowing or inhibiting disulfide formation. Fluorescence correlation spectroscopy measurements yielded a diffusion time (τ(D)) of ∼200 µsec for Rhodamine-labeled IgG, corresponding to a hydrodynamic radius (R(H)) of 56 Å for the IgG monomer. The aggregation kinetics of the protein was followed by monitoring the time evolution of τ(D) under conditions in which its cysteine residues were either free or blocked. In both cases, the progress curves confirmed that aggregation proceeded via the nucleation-dependent polymerization pathway. However, for aggregation in the presence of free cysteines, the lag times were shorter, and the aggregate sizes bigger, than their respective counterparts for aggregation in the presence of blocked cysteines. This result clearly demonstrates that formation of intermolecular disulfide bonds represents a preferred pathway in the aggregation process of IgG. Fluorescence spectroscopy showed that aggregates formed in experiments where disulfide formation was prevented denatured at lower concentration of guanidine hydrochloride than those obtained in experiments where the disulfides were free to form, indicating that intermolecular disulfide bridging is a valid pathway for IgG aggregation. PMID:25371040

  18. Fluorescence spectroscopy of soil pellets : The use of CP/PARAFAC.

    NASA Astrophysics Data System (ADS)

    Mounier, Stéphane; Nicolodeli, Gustavo; Redon, Roland; Hacherouf, Kalhed; Milori, Debora M. B. P.

    2014-05-01

    Fluorescence spectroscopy is one of the most sensitive techniques available for analytical purposes. It is relatively easy to implement, phenomenologically straightforward and well investigated. Largely non-invasive and fast, so that it can be useful for environmental applications. Fluorescence phenomenon is highly probable in molecular systems containing atoms with lone pairs of electrons such as C=O, aromatic, phenolic, quinone and more rigid unsaturated conjugated systems. These functional groups are present in humic substances (HS) from soils (Senesi, 1990; N. Senesi et al., 1991) and represent the main fluorophors of Soil Organic Matter (SOM). The extension of the conjugated electronic system, the level of heteroatom substitution and type and number of substituting groups under the aromatic rings strongly affect the intensity and wavelength of molecular fluorescence. However, to analyse the SOM it is generally done a chemical extraction that allows measuring the fluorescence response of the liquid extract. To avoid this fractionation of the SOM, Milori et al. (2006) proposed the application of laser induced fluorescence spectroscopy (LIFS) in whole soil. This work intends to assess the technical feasibility of 3D fluorescence spectroscopy using lamp for excitation to analyse solids opaque samples prepared with different substances. Seventy four (74) solid samples were prepared from different mixtures of boric acid (BA), humic substance acid and tryptophan (TRP) powder. The compounds were mixture and a pellet was done by using pressure (8 ton). The pellets were measured using a spectrofluorimeter HITACHI F4500, and a 3D fluorescence tensor was done from emission spectra (200-600 nm) with excitation range from 200 to 500 nm. The acquisition parameters were: step at 5 nm, scan speed at 2400 nm.min-1, response time at 0.1 s, excitation and emission slits at 5 nm and photomultiplier voltage at 700 V. Furthermore, measures of Laser-induced Fluorescence were

  19. Field confinement with aberration correction for solid immersion lens based fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Rao, Ramachandra; Mitic, Jelena; Serov, Alexandre; Leitgeb, Rainer A.; Lasser, Theo

    2007-03-01

    The solid immersion lens (SIL) as a tool for increasing the field confinement as well as providing optimal performance by aberration compensation in a confocal fluorescence correlation spectroscopy (FCS) system is illustrated here. Using Zernike polynomials we show that aberration compensation and the resultant pre-shaping of the incident wavefront enables near diffraction-limited performance. This is explained based on vectorial computations for high apertures in the Debye approximation. The obtained axial resolution parameters are compared with the obtained diffusion times in a SIL-FCS experiment for measurements in solutions done at the single molecule level.

  20. The Effect of the Refractive Index of the Medium in Fluorescence Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cha, Seoncheol; Kim, Sung Hyun; Kim, Doseok

    2010-03-01

    Fluorescence correlation spectroscopy (FCS) is a useful tool to study diffusional motion in liquids as it measures resident time of a dye molecule in a small excitation volume made by confocal microscopy. Some reports recently predicted that the measurement result of FCS is affected sensitively by the refractive index of liquid medium. To check for this possibility, several liquids having the same viscosity values but different refractive indices were chosen to dissolve dye molecules. The change in the observed diffusion coefficients in solutions having the same viscosity value manifests that care needs to be taken in the common practice of using sucrose to change the viscosity in the FCS experiment.

  1. Study on the interaction of anticancer drug mitoxantrone with DNA by fluorescence and Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Tang, Lingjuan; Sun, Zhenrong; Guo, Jianyu; Wang, Zugeng

    2006-02-01

    Mitoxantrone, a clinically useful antitumour antibiotic for leukaemia and breast cancer, has received more attentions. In this paper, the interaction between mitoxantrone and calf thymus DNA is investigated by Raman and fluorescence spectroscopies, and the binding site of mitoxantrone to calf thymus DNA is explored. The results showed that mitoxantrone interacts with calf thymus DNA bases by the intercalation of anthracycline into the base pair plane of adenine (A) and thymine (T), and it results in the disruption of the hydrogen bonds between calf thymus DNA bases, and thus the calf thymus DNA double-strand can be disrupted into the B-form DNA double-strand segments.

  2. Discrimination of normal and colorectal cancer using Raman spectroscopy and fluorescence

    NASA Astrophysics Data System (ADS)

    Li, Xiaozhou; Wang, Deli; Wang, Yue

    2007-07-01

    Laser-induced fluorescence spectroscopy (LIF) and Raman spectrum of serum for diagnosis of colon cancer and rectum cancer were investigated in this paper. The aim of this study was that using Raman spectrum and LIF analysis the serum of colon cancer and rectum cancer for found the difference compared to normal, the difference was found. For example: the intensity and red shift both different In this paper we investigated 82 colon cancers, 69 rectum cancers and obtained 80.7%, 82.5% accuracy to rectum cancer and colon cancer separately compared to clinical diagnostic. It is exploring that use Raman spectrum and LIF to detection of cancer.

  3. Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy.

    PubMed

    Bixler, Joel N; Cone, Michael T; Hokr, Brett H; Mason, John D; Figueroa, Eleonora; Fry, Edward S; Yakovlev, Vladislav V; Scully, Marlan O

    2014-05-20

    Clean water is paramount to human health. In this article, we present a technique for detection of trace amounts of human or animal waste products in water using fluorescence emission cavity-enhanced spectroscopy. The detection of femtomolar concentrations of urobilin, a metabolic byproduct of heme metabolism that is excreted in both human and animal waste in water, was achieved through the use of an integrating cavity. This technique could allow for real-time assessment of water quality without the need for expensive laboratory equipment.

  4. Recent Developments in Fluorescence Correlation Spectroscopy for Diffusion Measurements in Planar Lipid Membranes

    PubMed Central

    Macháň, Radek; Hof, Martin

    2010-01-01

    Fluorescence correlation spectroscopy (FCS) is a single molecule technique used mainly for determination of mobility and local concentration of molecules. This review describes the specific problems of FCS in planar systems and reviews the state of the art experimental approaches such as 2-focus, Z-scan or scanning FCS, which overcome most of the artefacts and limitations of standard FCS. We focus on diffusion measurements of lipids and proteins in planar lipid membranes and review the contributions of FCS to elucidating membrane dynamics and the factors influencing it, such as membrane composition, ionic strength, presence of membrane proteins or frictional coupling with solid support. PMID:20386647

  5. Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy

    PubMed Central

    Bixler, Joel N.; Cone, Michael T.; Hokr, Brett H.; Mason, John D.; Figueroa, Eleonora; Fry, Edward S.; Yakovlev, Vladislav V.; Scully, Marlan O.

    2014-01-01

    Clean water is paramount to human health. In this article, we present a technique for detection of trace amounts of human or animal waste products in water using fluorescence emission cavity-enhanced spectroscopy. The detection of femtomolar concentrations of urobilin, a metabolic byproduct of heme metabolism that is excreted in both human and animal waste in water, was achieved through the use of an integrating cavity. This technique could allow for real-time assessment of water quality without the need for expensive laboratory equipment. PMID:24799690

  6. Detection of orange juice frauds using front-face fluorescence spectroscopy and Independent Components Analysis.

    PubMed

    Ammari, Faten; Redjdal, Lamia; Rutledge, Douglas N

    2015-02-01

    The aim of this study was to find simple objective analytical methods to assess the adulteration of orange juice by grapefruit juice. The adulterations by addition of grapefruit juice were studied by 3D-front-face fluorescence spectroscopy followed by Independent Components Analysis (ICA) and by classical methods such as free radical scavenging activity and total flavonoid content. The results of this study clearly indicate that frauds by adding grapefruit juice to orange juice can be detected at percentages as low as 1%.

  7. Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy.

    PubMed

    Bixler, Joel N; Cone, Michael T; Hokr, Brett H; Mason, John D; Figueroa, Eleonora; Fry, Edward S; Yakovlev, Vladislav V; Scully, Marlan O

    2014-05-20

    Clean water is paramount to human health. In this article, we present a technique for detection of trace amounts of human or animal waste products in water using fluorescence emission cavity-enhanced spectroscopy. The detection of femtomolar concentrations of urobilin, a metabolic byproduct of heme metabolism that is excreted in both human and animal waste in water, was achieved through the use of an integrating cavity. This technique could allow for real-time assessment of water quality without the need for expensive laboratory equipment. PMID:24799690

  8. Transient absorption spectroscopy detection of sensitized delayed fluorescence in chiral benzophenone/naphthalene systems

    NASA Astrophysics Data System (ADS)

    Bonancía, Paula; Jiménez, M. Consuelo; Miranda, Miguel A.

    2011-10-01

    Transient absorption spectroscopy has proven to be a powerful tool to investigate the formation and decay of excited singlet states upon triplet-triplet annihilation, following T-T energy transfer from a selectively excited sensitizer. Thus, upon selective excitation of benzophenone (BZP) by laser flash photolysis (LFP) at λ = 355 nm in the presence of naphthalene (NPT), a negative band centered at 340 nm has been detected, with growth and decay in the microsecond timescale. It has been assigned to the P-type NPT delayed-fluorescence. In the case of chiral BZP/NPT systems, stereodifferentiation has been observed in the kinetics of the involved photophysical processes.

  9. Kinetic study of delta-Ala induced porphyrins in mice using photoacoustic and fluorescence spectroscopies.

    PubMed

    Stolik, Suren; Tomás, Sergio A; Ramón-Gallegos, Eva; Sánchez, Feliciano

    2002-11-01

    The production of delta-aminolevulinic acid (ALA)-induced porphyrins in mice skin and blood was studied by photoacoustic and fluorescence spectroscopies. Mice were intraperitoneally administered with 30 mg/kg of ALA. The abdominal skin was subsequently excised at specific times within an 8-h interval and its absorption spectrum obtained by photoacoustics. The highest porphyrins concentration in skin, determined from the optical absorption of the Soret band at 410 nm, was found to occur nearly 2 h after ALA administration, but a first peak was also observed at approximately 15 min. Our hypothesis that the first peak represents the porphyrins content in blood vessels within the skin, whereas the second peak corresponds to porphyrins production in skin tissue, was confirmed by analysing the evolution of protoporphyrin IX content in plasma extracted intracardiacally. By finally applying phase resolved photoacoustic spectroscopy, we were able to evaluate the mean depth at which porphyrins are generated.

  10. Raman Spectroscopy of Lithium Hydride Corrosion: Selection of an Appropriate Excitation Wavelength to Minimize Fluorescence

    SciTech Connect

    Stowe, A. C.; Smyrl, N. R.

    2011-05-26

    The recent interest in a hydrogen-based fuel economy has renewed research into metal hydride chemistry. Many of these compounds react readily with water to release hydrogen gas and form a caustic. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFT) has been used to study the hydrolysis reaction. The LiOH stretch appears at 3670 cm{sup -1}. Raman spectroscopy is a complementary technique that employs monochromatic excitation (laser) allowing access to the low energy region of the vibrational spectrum (<600 cm{sup -1}). Weak scattering and fluorescence typically prevent Raman from being used for many compounds. The role of Li{sub 2}O in the moisture reaction has not been fully studied for LiH. Li{sub 2}O can be observed by Raman while being hidden in the Infrared spectrum.

  11. Tissue diagnosis using power-sharing multifocal Raman micro-spectroscopy and auto-fluorescence imaging.

    PubMed

    Sinjab, Faris; Kong, Kenny; Gibson, Graham; Varma, Sandeep; Williams, Hywel; Padgett, Miles; Notingher, Ioan

    2016-08-01

    We describe a multifocal Raman micro-spectroscopy detection method based on a digital micromirror device, which allows for simultaneous "power-sharing" acquisition of Raman spectra from ad hoc sampling points. As the locations of the points can be rapidly updated in real-time via software control of a liquid-crystal spatial light modulator (LC-SLM), this technique is compatible with automated adaptive- and selective-sampling Raman spectroscopy techniques, the latter of which has previously been demonstrated for fast diagnosis of skin cancer tissue resections. We describe the performance of this instrument and show examples of multiplexed measurements on a range of test samples. Following this, we show the feasibility of reducing measurement time for power-shared multifocal Raman measurements combined with confocal auto-fluorescence imaging to provide guided diagnosis of tumours in human skin samples. PMID:27570692

  12. Tissue diagnosis using power-sharing multifocal Raman micro-spectroscopy and auto-fluorescence imaging

    PubMed Central

    Sinjab, Faris; Kong, Kenny; Gibson, Graham; Varma, Sandeep; Williams, Hywel; Padgett, Miles; Notingher, Ioan

    2016-01-01

    We describe a multifocal Raman micro-spectroscopy detection method based on a digital micromirror device, which allows for simultaneous “power-sharing” acquisition of Raman spectra from ad hoc sampling points. As the locations of the points can be rapidly updated in real-time via software control of a liquid-crystal spatial light modulator (LC-SLM), this technique is compatible with automated adaptive- and selective-sampling Raman spectroscopy techniques, the latter of which has previously been demonstrated for fast diagnosis of skin cancer tissue resections. We describe the performance of this instrument and show examples of multiplexed measurements on a range of test samples. Following this, we show the feasibility of reducing measurement time for power-shared multifocal Raman measurements combined with confocal auto-fluorescence imaging to provide guided diagnosis of tumours in human skin samples. PMID:27570692

  13. [Discussion on diagenesis of Xilingang pluton-constrained by X-ray Fluorescence spectroscopy, plasma mass spectrometry and Raman spectroscopy].

    PubMed

    Tang, Yu-Kun; Chen, Guo-Neng; Zhang, Ke; Huang, Hai-Hua

    2013-05-01

    The results on Xilingang pluton, mainly consisting of red beds, granites containing numerous debris of red beds and granites, obtained by X-ray fluorescence spectroscopy, plasma mass spectrometry and Raman spectroscopy show: (1) Xilingang pluton from red beds, granites containing numerous debris of red beds to granites has obvious characteristics of decreasing silicon and alkali content, and rising ignition loss, dark mineral content and oxidation index; (2) Chondrite-normalized REE distribution curves and primitive mantle-normalized spider diagram for trace elements of redbed, granites containing numerous debris of red beds and granites have a good consistency, the distribution characteristics of elements are similar to Nanling transformation-type granite; (3) The value of Raman spectrogram characteristic peak of quartz crystal in Xilingang granite decreased from the center of quartz crystal, and FWHM is steady. According to the above, the authors believe that Xilingang granite formed was related to in-situ melting of red beds and underlying strata and magma consolidation. Volatile components were discharged continuously, and oxidation index decreased gradually in the melting process. In the process of diagenesis, the top of pluton tend to be an ongoing silicon and alkali increase, while TFeO and MgO continue to migrate to bottom, and crystallization environment is a relatively closed and steady system. PMID:23905354

  14. [Discussion on diagenesis of Xilingang pluton-constrained by X-ray Fluorescence spectroscopy, plasma mass spectrometry and Raman spectroscopy].

    PubMed

    Tang, Yu-Kun; Chen, Guo-Neng; Zhang, Ke; Huang, Hai-Hua

    2013-05-01

    The results on Xilingang pluton, mainly consisting of red beds, granites containing numerous debris of red beds and granites, obtained by X-ray fluorescence spectroscopy, plasma mass spectrometry and Raman spectroscopy show: (1) Xilingang pluton from red beds, granites containing numerous debris of red beds to granites has obvious characteristics of decreasing silicon and alkali content, and rising ignition loss, dark mineral content and oxidation index; (2) Chondrite-normalized REE distribution curves and primitive mantle-normalized spider diagram for trace elements of redbed, granites containing numerous debris of red beds and granites have a good consistency, the distribution characteristics of elements are similar to Nanling transformation-type granite; (3) The value of Raman spectrogram characteristic peak of quartz crystal in Xilingang granite decreased from the center of quartz crystal, and FWHM is steady. According to the above, the authors believe that Xilingang granite formed was related to in-situ melting of red beds and underlying strata and magma consolidation. Volatile components were discharged continuously, and oxidation index decreased gradually in the melting process. In the process of diagenesis, the top of pluton tend to be an ongoing silicon and alkali increase, while TFeO and MgO continue to migrate to bottom, and crystallization environment is a relatively closed and steady system.

  15. GEL-STATE NMR OF BALL-MILLED WHOLE CELL WALLS IN DMSO-d6 USING 2D SOLUTION-STATE NMR SPECTROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant cell walls were used for obtaining 2D solution-state NMR spectra without actual solubilization or structural modification. Ball-milled whole cell walls were swelled directly in the NMR tube with DMSO-d6 where they formed a gel. There are relatively few gel-state NMR studies. Most have involved...

  16. Synthesis and Resolution of the Atropisomeric 1,1'-Bi-2-Naphthol: An Experiment in Organic Synthesis and 2-D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Mak, Kendrew K. W.

    2004-01-01

    NMR spectroscopy is presented. It is seen that the experiment regarding the synthesis and resolution of 1,1'-Bi-2-naphtol presents a good experiment for teaching organic synthesis and NMR spectroscopy and provides a strategy for obtaining enantiopure compounds from achiral starting materials.

  17. Unraveling transcription factor interactions with heterochromatin protein 1 using fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy

    PubMed Central

    Siegel, Amanda P.; Hays, Nicole M.

    2013-01-01

    Abstract. The epigenetic control of heterochromatin deposition is achieved through a network of protein interactions mediated by the heterochromatin protein 1 (HP1). In earlier studies, we showed that the CCAAT/enhancer-binding protein alpha (C/EBPα), a transcription factor that controls cell differentiation, localizes to heterochromatin, and interacts with HP1α. Here, deletion and mutagenesis are combined with live-cell imaging approaches to characterize these protein interactions. The results demonstrate that the basic region and leucine zipper (BZip) domain of C/EBPα is sufficient for the interaction with HP1α in regions of heterochromatin. Fluorescence correlation spectroscopy and cross-correlation (FCS and FCCS) revealed very different diffusion profiles for HP1α and the BZip protein, and co-expression studies indicated that the mobile fractions of these nuclear proteins diffuse independently of one another. The steady-state interactions of these proteins in regions of heterochromatin were monitored using Förster resonance energy transfer (FRET). A point mutation in HP1α, W174A, which disrupts the interactions with proteins containing the common PxVxL motif did not affect the interaction with the BZip protein. In contrast, the HP1α W41A mutation, which prevents binding to methylated histones, exhibited greatly reduced FRET efficiency when compared to the wild type HP1α or HP1αW174A. The functional significance of these interactions is discussed. PMID:23392382

  18. Photodynamic tumor therapy and on-line fluorescence spectroscopy after ALA administration using 633-nm light as therapeutic and fluorescence excitation radiation

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Kienle, Alwin; Boehncke, Wolf-Henning; Kaufmann, Roland; Rueck, Angelika C.; Meier, Thomas H.; Steiner, Rudolf W.

    1994-09-01

    Photodynamic therapy (PDT) and on-line fluorescence spectroscopy were carried out on human tumors after 5-aminolevulinic acid (ALA) administration using 633-nm light of a dye laser as therapeutic radiation and as fluorescence excitation radiation. This has the advantages of (1) enabling use of one laser for PDT and fluorescence diagnosis only, (2) enabling the possibility of on-line fluorescence measurements, and (3) exciting protoporphyrin molecules in deep tissue layers. Monte Carlo calculations were carried out to determine excitation and fluorescence phonon distribution in case of red and violet excitation radiation. The results show the possibility of depth-resolved measurements on the fluorophore distribution by variation of excitation wavelength. The high penetration depth of 633-nm radiation results in a higher ratio of the 700-nm protoporphyrin fluorescence of the xenotransplanted tumor It to Is compared with 407-nm excitation. No values greater than 1 for the ratio I/Is were found, however, in case of intravenous ALA injection even for red excitation. Therefore, a large amount of ALA will be metabolized in the skin and can cause photosensitivity of the patient when applied systematically. In contrast, protoporphyrin fluorescence limited to the pretreated skin area was detected in case of topically applied ALA to patients with mycosis funcoides and erythroplasy of Queyrat. The influence of remitted excitation light and of the spontaneous radiation from the laser as well as the possible excitation of foodbased degradation products of chlorophyll has to be considered in high-sensitivity fluorescence measurements.

  19. Diffusion, transport, and cell membrane organization investigated by imaging fluorescence cross-correlation spectroscopy.

    PubMed

    Sankaran, Jagadish; Manna, Manoj; Guo, Lin; Kraut, Rachel; Wohland, Thorsten

    2009-11-01

    Cell membrane organization is dynamic and is assumed to have different characteristic length scales. These length scales, which are influenced by lipid and protein composition as well as by the cytoskeleton, can range from below the optical resolution limit (as with rafts or microdomains) to far above the resolution limit (as with capping phenomena or the formation of lipid "platforms"). The measurement of these membrane features poses a significant problem because membrane dynamics are on the millisecond timescale and are thus beyond the time resolution of conventional imaging approaches. Fluorescence correlation spectroscopy (FCS), a widely used spectroscopic technique to measure membrane dynamics, has the required time resolution but lacks imaging capabilities. A promising solution is the recently introduced method known as imaging total internal reflection (ITIR)-FCS, which can probe diffusion phenomena in lipid membranes with good temporal and spatial resolution. In this work, we extend ITIR-FCS to perform ITIR fluorescence cross-correlation spectroscopy (ITIR-FCCS) between pixel areas of arbitrary shape and derive a generalized expression that is applicable to active transport and diffusion. ITIR-FCCS is applied to model systems exhibiting diffusion, active transport, or a combination of the two. To demonstrate its applicability to live cells, we observe the diffusion of a marker, the sphingolipid-binding domain (SBD) derived from the amyloid peptide Abeta, on live neuroblastoma cells. We investigate the organization and dynamics of SBD-bound lipid microdomains under the conditions of cholesterol removal and cytoskeleton disruption. PMID:19883607

  20. Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy.

    PubMed

    Michalet, Xavier; Ingargiola, Antonino; Colyer, Ryan A; Scalia, Giuseppe; Weiss, Shimon; Maccagnani, Piera; Gulinatti, Angelo; Rech, Ivan; Ghioni, Massimo

    2014-11-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements.

  1. Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy

    PubMed Central

    Michalet, Xavier; Ingargiola, Antonino; Colyer, Ryan A.; Scalia, Giuseppe; Weiss, Shimon; Maccagnani, Piera; Gulinatti, Angelo; Rech, Ivan; Ghioni, Massimo

    2014-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements. PMID:25309114

  2. Organic dye penetration quantification into a dental composite resin cured by LED system using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Lizarelli, Rosane de Fátima Zanirato; Silva, Maciel E., Jr.; Lins, Emery C. C. C.; Costa, Mardoqueu M.; Pelino, José Eduardo P.; Bagnato, Vanderlei S.

    2007-02-01

    A major characteristic of LEDs systems is the lower heat emission related with the kind of light generation and spectral emission band. Material temperature during photoactivation can promote different photocuring performance. Organic dye penetration could be a trace to identify the efficacy of photocured composite resin. A new method using fluorescent spectroscopy through digital image evaluation was developed in this study. In order to understand if there is a real influence of material temperature during the photoactivation procedure of a dental restorative material, a hybrid composite resin (Z250, 3M-Espe, USA) and 3 light sources, halogen lamp (510 mW/cm2) and two LED systems 470+/-10nm (345 and 1000 mW/cm2) under different temperatures and intensities were used. One thousand and five hundred samples under different associations between light sources and temperatures (0, 25, 50, 75 and 100 °C were tested and immediately kept in 6G rodamin dye solution. Dye penetration was evaluated through fluorescent spectroscopy recorded by digital image data. Pixels in gray scale showed the percentage penetration of organic dye into the composite resin mass. Time and temperature were statistically significant (p<0.05) through the ANOVA statistical test. The lowest penetration value was with 60 seconds and 25 °C. Time and temperature are important factors to promote a homogeneous structure polymerized composite resin more than the light source type, halogen or LEDs system.

  3. Branching out of single-molecule fluorescence spectroscopy: challenges for chemistry and influence on biology.

    PubMed

    Tinnefeld, Philip; Sauer, Markus

    2005-04-29

    In the last decade emerging single-molecule fluorescence-spectroscopy tools have been developed and adapted to analyze individual molecules under various conditions. Single-molecule-sensitive optical techniques are now well established and help to increase our understanding of complex problems in different disciplines ranging from materials science to cell biology. Previous dreams, such as the monitoring of the motility and structural changes of single motor proteins in living cells or the detection of single-copy genes and the determination of their distance from polymerase molecules in transcription factories in the nucleus of a living cell, no longer constitute unsolvable problems. In this Review we demonstrate that single-molecule fluorescence spectroscopy has become an independent discipline capable of solving problems in molecular biology. We outline the challenges and future prospects for optical single-molecule techniques which can be used in combination with smart labeling strategies to yield quantitative three-dimensional information about the dynamic organization of living cells. PMID:15849689

  4. UV laser-induced fluorescence spectroscopy and laser Doppler flowmetry in the diagnostics of alopecia

    NASA Astrophysics Data System (ADS)

    Skomorokha, Diana P.; Pigoreva, Yulia N.; Salmin, Vladimir V.

    2016-04-01

    Development of optical biopsy methods has a great interest for medical diagnostics. In clinical and experimental studies it is very important to analyze blood circulation quickly and accurately, thereby laser Doppler flowmetry (LDF) is widely used. UV laser-induced fluorescence spectroscopy (UV LIFS) is express highly sensitive and widely-spread method with no destructive impact, high excitation selectivity and the possibility to use in highly scattering media. The goal of this work was to assess a correlation of UV laser-induced fluorescence spectroscopy and laser Doppler flowmetry parameters, and a possibility to identify or to differentiate various types of pathological changes in tissues according to their autofluorescence spectra. Three groups of patients with diffuse (symptomatic) alopecia, androgenic alopecia, and focal alopecia have been tested. Each groups consisted of not less than 20 persons. The measurements have been done in the parietal and occipital regions of the sculls. We used the original automated spectrofluorimeter to record autofluorescence spectra, and standard laser Doppler flowmeter BLF-21 (Transonic Systems, Inc., USA) to analyze the basal levels of blood circulation. Our results show that UV LIFS accurately distinguishes the zones with different types of alopecia. We found high correlation of the basal levels of blood circulation and the integrated intensity of autofluorescence in the affected tissue.

  5. Imidization induced structural changes of 6FDA-ODA poly(amic acid) by two-dimensional (2D) infrared correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Seo, Hyemi; Chae, Boknam; Im, Ji Hyuk; Jung, Young Mee; Lee, Seung Woo

    2014-07-01

    Two-dimensional (2D) gradient mapping method and 2D correlation analysis of in situ FTIR spectra were used to probe the thermal imidization-induced spectral changes in 6FDA-ODA poly(amic acid) (PAA) films prepared by a reaction of 4,4‧-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 4,4‧-oxydianiline (ODA) in N,N‧-dimethylacetamide. Large spectral changes in the in situ FTIR spectra of 6FDA-ODA PAA film were observed in the range, 130-230 °C. The thermal imidization of 6FDA-ODA PAA films strongly affects the spectral changes in amic acid groups in the PAA unit. The spectral change in the amic acid groups occurred before those of the imide ring. The cyclic anhydrides, isoimdes and intermolecular links are present together with the imide ring in the thermally-cured 6FDA-ODA PAA films.

  6. Technique for real-time tissue characterization based on scanning multispectral fluorescence lifetime spectroscopy (ms-TRFS)

    PubMed Central

    Ma, Dinglong; Bec, Julien; Gorpas, Dimitris; Yankelevich, Diego; Marcu, Laura

    2015-01-01

    We report a novel technique for continuous acquisition, processing and display of fluorescence lifetimes enabling real-time tissue diagnosis through a single hand held or biopsy fiber-optic probe. A scanning multispectral time-resolved fluorescence spectroscopy (ms-TRFS) with self-adjustable photon detection range was developed to account for the dynamic changes of fluorescence intensity typically encountered in clinical application. A fast algorithm was implemented in the ms-TRFS software platform, providing up to 15 Hz continuous display of fluorescence lifetime values. Potential applications of this technique, including biopsy guidance, and surgical margins delineation were demonstrated in proof-of-concept experiments. Current results showed accurate display of fluorescence lifetimes values and discrimination of distinct fluorescence markers and tissue types in real-time (< 100 ms per data point). PMID:25798320

  7. Spectroscopy detection of green and red fluorescent proteins in genetically modified plants using a fiber optics system

    NASA Astrophysics Data System (ADS)

    Liew, Oi Wah; Asundi, Anand K.; Chen, Jun-Wei; Chew, Yiwen; Yu, Shangjuan; Yeo, Gare H.

    2001-05-01

    In this paper, fiber optic spectroscopy is developed to detect and quantify recombinant green (EGFP) and red (DsRED) fluorescent proteins in vitro and in vivo. The bacterial expression vectors carrying the coding regions of EGFP and DsRED were introduced into Escherichia coli host cells and fluorescent proteins were produced following induction with IPTG. Soluble EGFP and DsRED proteins were isolated from lysed bacterial cells and serially diluted for quantitative analysis by fiber optic spectroscopy. Fluorescence at the appropriate emission wavelengths could be detected up to 64X dilution for EGFP and 40X dilution for DsRED. To determine the capability of spectroscopy detection in vivo, transgenic potato hairy roots expressing EGFP and DsRED were regenerated. This was achieved by cloning the EGFP and DsRED genes into the plant binary vector, pTMV35S, to create the recombinant vectors pGLOWGreen and pGLOWRed. These latter binary vectors were introduced into Agrobacterium rhizogenes strain A4T. Infection of potato cells with transformed agrobacteria was used to insert the fluorescent protein genes into the potato genome. Genetically modified potato cells were then regenerated into hairy roots. A panel of transformed hairy roots expressing varying levels of fluorescent proteins was selected by fluorescence microscopy. We are now assessing the capability of spectroscopic detection system for in vivo quantification of green and red fluorescence levels in transformed roots.

  8. Characterization of Porous Materials by Fluorescence Correlation Spectroscopy Super-resolution Optical Fluctuation Imaging.

    PubMed

    Kisley, Lydia; Brunetti, Rachel; Tauzin, Lawrence J; Shuang, Bo; Yi, Xiyu; Kirkeminde, Alec W; Higgins, Daniel A; Weiss, Shimon; Landes, Christy F

    2015-09-22

    Porous materials such as cellular cytosol, hydrogels, and block copolymers have nanoscale features that determine macroscale properties. Characterizing the structure of nanopores is difficult with current techniques due to imaging, sample preparation, and computational challenges. We produce a super-resolution optical image that simultaneously characterizes the nanometer dimensions of and diffusion dynamics within porous structures by correlating stochastic fluctuations from diffusing fluorescent probes in the pores of the sample, dubbed here as "fluorescence correlation spectroscopy super-resolution optical fluctuation imaging" or "fcsSOFI". Simulations demonstrate that structural features and diffusion properties can be accurately obtained at sub-diffraction-limited resolution. We apply our technique to image agarose hydrogels and aqueous lyotropic liquid crystal gels. The heterogeneous pore resolution is improved by up to a factor of 2, and diffusion coefficients are accurately obtained through our method compared to diffraction-limited fluorescence imaging and single-particle tracking. Moreover, fcsSOFI allows for rapid and high-throughput characterization of porous materials. fcsSOFI could be applied to soft porous environments such hydrogels, polymers, and membranes in addition to hard materials such as zeolites and mesoporous silica.

  9. Detection of polycyclic aromatic hydrocarbons (PAHs) in raw menhaden fish oil using fluorescence spectroscopy: Method development.

    PubMed

    Pena, Edwin A; Ridley, Lauren M; Murphy, Wyatt R; Sowa, John R; Bentivegna, Carolyn S

    2015-09-01

    Raw menhaden fish oil was developed for biomonitoring polycyclic aromatic hydrocarbons (PAHs) using fluorescence spectroscopy. Menhaden (Genus Brevoortia) were collected in 2010 and/or 2011 from Delaware Bay, New Jersey, USA; James River, Virginia, USA; Vermillion Bay, Louisiana, USA (VBLA); and Barataria Bay, Louisiana, USA (BBLA). Barataria Bay, Louisiana received heavy oiling from the Deepwater Horizon oil spill. Method development included determining optimal wavelengths for PAH detection, fish oil matrix interferences, and influence of solvent concentration on extraction. Results showed that some fish oils contained high molecular weight PAH-like compounds in addition to other fluorescent compounds such as albumin and vitamin A and vitamin E. None of these naturally occurring compounds interfered with detection of high molecular weight PAHs. However, data suggested that the lipid component of fish oil was altering fluorescence spectra by supporting the formation of PAH excimers. For example, the most intense excitation wavelength for hydroxypyrene shifted from Ex285/Em430 to Ex340/Em430. Comparison of Deepwater Horizon crude oil and fish oil spectra indicated that some fish oils contained crude oil-like PAHs. Using wavelengths of Ex360/Em430, fish oil concentrations were calculated as 3.92 μg/g, 0.61 μg/g, and 0.14 μg/g for a Delaware Bay sample, BBLA 2011, and VBLA 2011, respectively. Overall, these results supported using menhaden fish oil to track PAH exposures spatially and temporally.

  10. Use of time-resolved fluorescence spectroscopy to evaluate diagnostic value of collagen degradation products.

    PubMed

    Sikora, Joanna; Cyrankiewicz, Michał; Wybranowski, Tomasz; Ziomkowska, Blanka; Ośmiałowski, Borys; Obońska, Ewa; Augustyńska, Beata; Kruszewski, Stefan; Kubica, Jacek

    2015-05-01

    The concentration of collagen degradation products (CDPs) may reflect the process of left ventricular remodeling (LVR). The aim of this study was to evaluate the potential diagnostic usefulness of time-resolved fluorescence spectroscopy (TRFS) in assessment of CDPs. The preliminary experiment was designed to establish if CDPs’ characteristics might be visible by mean fluorescence lifetime (FLT) in determined conditions. The in vitro model of CDPs was prepared by conducting the hydrolysis of type III collagen. The FLT of samples was measured by the time-resolved spectrometer Life Spec II with the subnanosecond pulsed 360-nm EPLED diode. The FLTs were obtained by deconvolution analysis of the data using a multiexponential model of fluorescence decay. In order to determine the limit of traceability of CDPs, a comparison of different collagen/plasma ratio in samples was performed. The results of our study showed that the increase of added plasma to hydrolyzed collagen extended the mean FLT. Thus, the diagnosis of LVR based on measurements using TRFS is possible. However, it is important to point out the experiment was preliminary and further investigation in this field of research is crucial. PMID:25764396

  11. Use of time-resolved fluorescence spectroscopy to evaluate diagnostic value of collagen degradation products

    NASA Astrophysics Data System (ADS)

    Sikora, Joanna; Cyrankiewicz, Michał; Wybranowski, Tomasz; Ziomkowska, Blanka; Ośmiałowski, Borys; Obońska, Ewa; Augustyńska, Beata; Kruszewski, Stefan; Kubica, Jacek

    2015-05-01

    The concentration of collagen degradation products (CDPs) may reflect the process of left ventricular remodeling (LVR). The aim of this study was to evaluate the potential diagnostic usefulness of time-resolved fluorescence spectroscopy (TRFS) in assessment of CDPs. The preliminary experiment was designed to establish if CDPs' characteristics might be visible by mean fluorescence lifetime (FLT) in determined conditions. The in vitro model of CDPs was prepared by conducting the hydrolysis of type III collagen. The FLT of samples was measured by the time-resolved spectrometer Life Spec II with the subnanosecond pulsed 360-nm EPLED diode. The FLTs were obtained by deconvolution analysis of the data using a multiexponential model of fluorescence decay. In order to determine the limit of traceability of CDPs, a comparison of different collagen/plasma ratio in samples was performed. The results of our study showed that the increase of added plasma to hydrolyzed collagen extended the mean FLT. Thus, the diagnosis of LVR based on measurements using TRFS is possible. However, it is important to point out the experiment was preliminary and further investigation in this field of research is crucial.

  12. Multimodal analysis of pearls and pearl treatments by using optical coherence tomography and fluorescence spectroscopy.

    PubMed

    Ju, Myeong Jin; Lee, Sang Jin; Kim, Yuri; Shin, Jun Geun; Kim, Hae Yeon; Lim, Yiheng; Yasuno, Yoshiaki; Lee, Byeong Ha

    2011-03-28

    We present an integrated optical system that consists of optical coherence tomography (OCT) and laser-induced fluorescence (LIF) spectroscopy for multimodal analysis of pearls and pearl treatments. The OCT source and the LIF excitation beams were aligned together to illuminate the same spot of a pearl fixed on the sample stage that was under rotation. As a result, both OCT images and LIF spectra of the pearls were detected at the same time and also at the same place. For OCT, a 1310 nm-centered swept laser source was used. For LIF, a 405 nm laser diode was used and a lensed multimode fiber was utilized as a fluorescence probe. The tomographic investigation on the internal structure of a pearl allowed us to evaluate and categorize the pearl nondestructively as was previously reported. In addition, the measurements of fluorescence spectrum and its decaying rate helped to determine the species of mother oyster. The proposed multimodal analysis made it possible to classify the pearls and also to disclose the treatments made on the pearls.

  13. Fluorescence spectroscopy as a tool for determining microbial quality in potable water applications.

    PubMed

    Cumberland, Susan; Bridgeman, John; Baker, Andy; Sterling, Mark; Ward, David

    2012-01-01

    Building on previous work where fluorescence spectroscopy has been used to detect sewage in rivers, a portable LED spectrophotometer was used for the first time to establish bacterial numbers in a range of water samples. A mixed-method approach was used with standard bacteria enumeration techniques on diluted river water and sewage works final effluent using a number of diluents (Ringer's solution, tap water and potable spring water). Fluorescence from uncultured dilutions was detected at a 280 nm excitation/360 nm emission wavelength (corresponding to the region of tryptophan and indole fluorescence) and compared with bacteria numbers on the same cultured sample. Good correlations were obtained for total coliforms, E. coli and heterotrophic bacteria with the portable LED spectrophotometer (R2 = 0.78, 0.72 and 0.81 respectively). The results indicate that the portable spectrophotometer could be applied to establish the quality of drinking water in areas of poor sanitation that are subject to faecal contamination, where infrastructure failure has occurred in the supply of clean drinking water. This would be particularly useful where laboratory facilities are not at hand.

  14. Detection of polycyclic aromatic hydrocarbons (PAHs) in raw menhaden fish oil using fluorescence spectroscopy: Method development.

    PubMed

    Pena, Edwin A; Ridley, Lauren M; Murphy, Wyatt R; Sowa, John R; Bentivegna, Carolyn S

    2015-09-01

    Raw menhaden fish oil was developed for biomonitoring polycyclic aromatic hydrocarbons (PAHs) using fluorescence spectroscopy. Menhaden (Genus Brevoortia) were collected in 2010 and/or 2011 from Delaware Bay, New Jersey, USA; James River, Virginia, USA; Vermillion Bay, Louisiana, USA (VBLA); and Barataria Bay, Louisiana, USA (BBLA). Barataria Bay, Louisiana received heavy oiling from the Deepwater Horizon oil spill. Method development included determining optimal wavelengths for PAH detection, fish oil matrix interferences, and influence of solvent concentration on extraction. Results showed that some fish oils contained high molecular weight PAH-like compounds in addition to other fluorescent compounds such as albumin and vitamin A and vitamin E. None of these naturally occurring compounds interfered with detection of high molecular weight PAHs. However, data suggested that the lipid component of fish oil was altering fluorescence spectra by supporting the formation of PAH excimers. For example, the most intense excitation wavelength for hydroxypyrene shifted from Ex285/Em430 to Ex340/Em430. Comparison of Deepwater Horizon crude oil and fish oil spectra indicated that some fish oils contained crude oil-like PAHs. Using wavelengths of Ex360/Em430, fish oil concentrations were calculated as 3.92 μg/g, 0.61 μg/g, and 0.14 μg/g for a Delaware Bay sample, BBLA 2011, and VBLA 2011, respectively. Overall, these results supported using menhaden fish oil to track PAH exposures spatially and temporally. PMID:25867932

  15. Spectroscopy, microscopy and fluorescence imaging of Origanum vulgare L. basis for nondestructive quality assessment.

    PubMed

    Novo, Johanna M; Iriel, Analia; Claudia Marchi, María; Gabriela Lagorio, María

    2013-01-01

    The organs of Origanum vulgare L. plant were examined by optical microscopy, scanning electron microscopy and autofluorescence imaging. The different organs were also studied spectroscopically. Fluorescence emission spectra were recorded for intact inflorescences, leaves and stems. Several fluorescence ratios (Blue/Red, Blue/Far-red, Green/Red and Green/Far-red), which varied depending on the considered organ of the plant, were derived. For leaves, a dependence of fluorescence spectra with water content was obtained as well. The intact samples were also analyzed by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. These spectra were transformed to the Remission function depending on the wavenumber and two absorption bands (811 and 1740 cm(-1)), which displayed differences according to the plant organ sampled, were detected. These results were consistent with higher carvacrol content in inflorescences. The spectroscopic results were connected with the microscopic observation and with the presence of relevant nutraceutics contained in the plant. The optical indexes derived in this work may serve as potential indicators to be explored in the development of nondestructive methods for oregano quality assessment.

  16. Linking fluorescence spectroscopy to diffuse soil source for dissolved humic substances in the Daning River, China.

    PubMed

    Chen, Hao; Zheng, Bing-Hui; Zhang, Lei

    2013-02-01

    Dissolved organic matter collected in Daning River (China) in July 2009 was investigated with parallel factor analysis (PARAFAC) and fluorescence spectroscopy with the aim of identifying the origin of dissolved humic substance (HS) components. Two HS-like fluorescence components (peak M and C) with excitation/emission (ex/em) maxima at 305/406 nm and 360/464 nm showed relatively uniform distribution in the vertical direction for each sampling site but a trend of accumulation down the river, independent of the highly heterogeneous water environment as implicated by water quality parameters (i.e., water temperature, algae density, chlorophyll a, dissolved oxygen, dissolved organic carbon, pH, conductivity and turbidity), while an amino acid/protein-like component (peak T; ex/em = 280/334 nm) was quite variable in its spatial distribution, implying strong influence from point sources (e.g. sewage discharge) and local microbial activities. The fluorescence intensity (F max in Raman units) at these ex/em wavelength pairs fell in the range of 0.031-0.358, 0.051-0.224 and 0.026-0.115 for peak T, M and C, respectively. In addition, the F max values of peak C covaried with M (i.e. C = 0.503 ×M, p < 0.01, R (2) = 0.973). Taken together, these results indicate that peak M and C originated primarily and directly from the same soil sources that were diffusive in the catchment, but peak T was more influenced by local point sources (e.g. wastewater discharge) and in situ microbial activities. This study presents new insights into the currently controversial origin of some HS components (e.g."peak M", as commonly referred to in the literature). This study highlights that natural water samples should be collected at various depths in addition to along a river/stream flow path so as to better evaluate the origin of HS fluorescence components.

  17. Utilization of front-face fluorescence spectroscopy for analysis of process cheese functionality.

    PubMed

    Purna, S K Garimella; Prow, L A; Metzger, L E

    2005-02-01

    The purpose of this study was to evaluate the feasibility of front-face fluorescence spectroscopy (FFFS) to predict the meltability of process cheese spreads or products. Twenty-seven commercial samples from 3 manufacturers were used in this study. Each sample was analyzed using dynamic stress rheometry, which was used to calculate the meltability index (temperature at tandelta = 1). Additionally, fluorescence spectra of tryptophan (excitation: 290 nm; emission: 305 to 400 nm) were collected on each sample at 20 degrees C using a front-face accessory. Fluorescence spectrum for each sample consisted of an average of 36 scans (6 scans performed on 6 replicates). The spectral data set consisted of normalized and mean-centered spectra from all the samples. Multivariate statistical analysis was used to correlate spectral data with cheese meltability index as measured by dynamic stress rheometry. A prediction model was developed using partial least square regression and was calibrated using a cross-validation method. A correlation coefficient of 0.93 was obtained between fluorescence spectra and cheese meltability. The regions 335 to 350 nm and 385 to 400 nm had the highest correlation to cheese meltability. A negative correlation between the peak height of tryptophan (335 to 350 nm) and cheese meltability index was observed. This correlation may be due to presence of tryptophan residues in a more hydrophobic environment in stronger emulsions as compared with a more polar environment in weak emulsions. These results indicate that the melt properties of process cheese spreads or products are related to molecular structure that can be measured using FFFS. Hence, FFFS can be used as an analysis technique to predict process cheese meltability.

  18. Immunoglobulin surface-binding kinetics studied by total internal reflection with fluorescence correlation spectroscopy.

    PubMed Central

    Thompson, N L; Axelrod, D

    1983-01-01

    An experimental application of total internal reflection with fluorescence correlation spectroscopy (TIR/FCS) is presented. TIR/FCS is a new technique for measuring the binding and unbinding rates and surface diffusion coefficient of fluorescent-labeled solute molecules in equilibrium at a surface. A laser beam totally internally reflects at the solid-liquid interface, selectively exciting surface-adsorbed molecules. Fluorescence collected by a microscope from a small, well-defined surface area approximately 5 micron2 spontaneously fluctuates as solute molecules randomly bind to, unbind from, and/or diffuse along the surface in chemical equilibrium. The fluorescence is detected by a photomultiplier and autocorrelated on-line by a minicomputer. The shape of the autocorrelation function depends on the bulk and surface diffusion coefficients, the binding rate constants, and the shape of the illuminated and observed region. The normalized amplitude of the autocorrelation function depends on the average number of molecules bound within the observed area. TIR/FCS requires no spectroscopic or thermodynamic change between dissociated and complexed states and no extrinsic perturbation from equilibrium. Using TIR/FCS, we determine that rhodamine-labeled immunoglobulin and insulin each nonspecifically adsorb to serum albumin-coated fused silica with both reversible and irreversible components. The characteristic time of the most rapidly reversible component measured is approximately 5 ms and is limited by the rate of bulk diffusion. Rhodamine-labeled bivalent antibodies to dinitrophenyl (DNP) bind to DNP-coated fused silica virtually irreversibly. Univalent Fab fragments of these same antibodies appear to specifically bind to DNP-coated fused silica, accompanied by a large amount of nonspecific binding. TIR/FCS is shown to be a feasible technique for measuring absorption/desorption kinetic rates at equilibrium. In suitable systems where nonspecific binding is low, TIR

  19. Characterization and matching of oil samples using fluorescence spectroscopy and parallel factor analysis.

    PubMed

    Christensen, Jan H; Hansen, Asger B; Mortensen, John; Andersen, Ole

    2005-04-01

    A novel approach for matching oil samples by fluorescence spectroscopy combined with three-way decomposition of spectra is presented. It offers an objective fingerprinting based on the relative composition of polycyclic aromatic compounds (PACs) in oils. The method is complementary to GC-FID for initial screening of oil samples but can also be used for prescreening in the field, onboard ships, using a portable fluorescence spectrometer. Parallel factor analysis (PARAFAC) was applied to fluorescence excitation-emission matrixes (EEMs) of heavy fuel oils (HFOs), light fuel oils, lubricating oils, crude oils, unknown oils, and a sample collected in the spill area two weeks after the Baltic Carrier oil spill (Denmark, 2001). A total of 112 EEMs were decomposed into a five-factor PARAFAC model using excitation wavelengths from 245 to 400 nm and emission wavelengths from 280 to 550 nm. The PARAFAC factors were compared to EEMs of PAC standards with two to five rings, and the comparisons indicate that each of the factors can be related to a mixture of PACs with similar fluorescence characteristics: a mixture of naphthalenes and dibenzothiophenes, fluorenes, phenanthrenes, chrysenes, and five-ring PACs, respectively. Oils were grouped in score plots according to oil type. Except for HFOs and crude oils, the method easily discriminated between the four oil types. Minor overlaps of HFOs and crude oils were observed along all five PARAFAC factors, and the variability of crude oils was large along factor 2 due to a varying content of five-ring PACs. The spill sample was correctly assigned as a HFO with similar PAC pattern as oil from the cargo tank of the Baltic Carrier by comparing the correlation coefficient of scores for the oil spill sample and possible source oils (i.e., oils in the database).

  20. Characterizing chlorine oxidation of dissolved organic matter and disinfection by-product formation with fluorescence spectroscopy and parallel factor analysis

    NASA Astrophysics Data System (ADS)

    Beggs, Katherine M. H.; Summers, R. Scott; McKnight, Diane M.

    2009-12-01

    Relationships between chlorine demand and disinfection by-product (DBP) formation during chlorination and fluorescence of dissolved organic matter (DOM) were developed. Fluorescence excitation and emission (EEM) spectroscopy was employed, and parameters including fluorescence index, redox index, and overall fluorescence intensity (OFI) were correlated to chlorine demand and DBP formation. The EEMs were also analyzed using a well established global parallel factor analysis (PARAFAC) model which resolves the fluorescence signal into 13 components, including quinone-like and protein-like components. Over an 8-day chlorination period the OFI and sum of the 13 PARAFAC loadings decreased by more than 70%. The remaining identified quinone-like compounds within the DOM were shifted to a more oxidized state. Quinone fluorescence was strongly correlated to both reduced fluorescence intensity and to chlorine demand which indicates that fluorescence may be used to track the chlorine oxidation of DOM. Quinone fluorescence was also correlated strongly with both classes of regulated DBPs: total trihalomethanes and haloacetic acids. Quinone-like components were found to be strongly correlated to overall, short-term, and long-term specific DBP formation. The results of this study show that fluorescence is a useful tool in tracking both DOM oxidation and DBP formation during chlorination.

  1. Fluorescence spectroscopy: a powerful technique for the noninvasive characterization of artwork.

    PubMed

    Romani, Aldo; Clementi, Catia; Miliani, Costanza; Favaro, Gianna

    2010-06-15

    very small amounts of sample, either in a laboratory setting or on site. Thus, a new technological highway is open to scientists; it is still difficult to navigate but offers an enormous potential for investigating objects without touching them. Fluorescence spectroscopy is one of the most important of these techniques.

  2. Evaluation of the overall quality of olive oil using fluorescence spectroscopy.

    PubMed

    Guzmán, Elena; Baeten, Vincent; Pierna, Juan Antonio Fernández; García-Mesa, José A

    2015-04-15

    The fluorescence spectra of some olive oils were examined in their natural and oxidised state, with wavelength range emissions of 300-800 nm and 300-400 nm used as excitation radiation. The fluorescence emissions were measured and an assessment was made of the relationship between them and the main quality parameters of olive oils, such as peroxide value, K232, K270 and acidity. These quality parameters (peroxide value, K232, K270 and acidity) are determined by laboratory methods, which though not too sophisticated, they are required solvents and materials as well as time consuming and sample preparation; there is a need for rapid analytical techniques and a low-cost technology for olive oil quality control. The oxidised oils studied had a strong fluorescence band at 430-450 nm. Extra virgin olive oil gave a different but interesting fluorescence spectrum, composed of three bands: one low intensity doublet at 440 and 455 nm; one strong band at 525 nm; and one of medium intensity at 681 nm. The band at 681 nm was identified as the chlorophyll band. The band at 525 nm was derived, at least partially, from vitamin E. The results presented demonstrate the ability of the fluorescence technique, combined with multivariate analysis, to characterise olive oils on the basis of all the quality parameters studied. Prediction models were obtained using various methods, such as partial least squares (PLS), N-way PLS (N-PLS) and external validation, in order to obtain an overall evaluation of oil quality. The best results were obtained for predicting K270 with a root mean square (RMS) prediction error of 0.08 and a correlation coefficient obtained with the external validation of 0.924. Fluorescence spectroscopy facilitates the detection of virgin olive oils obtained from defective or poorly maintained fruits (high acidity), fruits that are highly degraded in the early stages (with a high peroxide value) and oils in advanced stages of oxidation, with secondary oxidation compounds

  3. Microfluidity mapping using fluorescence correlation spectroscopy: a new way to investigate plasma membrane microorganization of living cells.

    PubMed

    Winckler, Pascale; Cailler, Aurélie; Deturche, Régis; Jeannesson, Pierre; Morjani, Hamid; Jaffiol, Rodolphe

    2012-11-01

    Diffusion time distribution analysis has been employed to highlight the microfluidity fingerprint of plasma membrane of living cells. Diffusion time measurements were obtained through fluorescence correlation spectroscopy performed at the single cell level, over various eukaryotic cell lines (MCF7, LR73, KB3.1, MESSA and MDCKII). The nonsymmetric profile of the diffusion time distributions established experimentally, is discussed according to Monte Carlo simulations, which reproduce the diffusion of the fluorescent probe in heterogeneous membrane.

  4. Mid-infrared pulse shaping permits the pathway of amyloid aggregation to be determined with rapid-scan 2D IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zanni, Martin

    2010-03-01

    We have developed a means for rapidly acquiring 2D IR spectra in a continuous fashion to monitoring protein kinetics. Our method relies on a mid-IR pulse shaper that generates precise pulse trains for collecting 2D IR spectra. The phase, amplitude and now the polarization of the pulse trains can be automatically generated without optical alignment, which produces higher accuracy spectra in a much easier fashion than with standard 4-wave mixing. Using this new technology as well as site-specific isotope labeling, we have measured the development of secondary structures for six residues during the aggregation process of the 37-residue polypeptide associated with type 2 diabetes, the human islet amyloid polypeptide (hIAPP), also called amylin. By monitoring the kinetics at six different labeled sites, we find that the peptides initially develop well ordered structures near the ordered loop of the fibrils, followed by formation of the two parallel β-sheets with the N-terminal β-sheet likely forming before the C-terminal sheet. This experimental approach provides residue-by-residue details on the aggregation pathway of hIAPP fibril formation as well as a general methodology for studying other amyloid forming proteins without the use of structure perturbing labels. Moreover, this approach is also applicable to membrane catalyzed amyloid formation, and experiments along these lines will be presented as well.

  5. Microneedles rollers as a potential device to increase ALA diffusion and PpIX production: evaluations by wide-field fluorescence imaging and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Gracielli Sousa, R. Phamilla; de Menezes, Priscila F. C.; Fujita, Alessandra K. L.; Requena, Michelle B.; Govone, Angelo Biassi; Escobar, André; de Nardi, Andrigo B.; Kurachi, Cristina; Bagnato, Vanderlei Salvador

    2014-03-01

    One of the limitations of topical photodynamic therapy (PDT) using 5-aminolevulinic acid (ALA) is the poor ability to penetrate biological barriers of skin and the recurrence rates in treatments. This study aimed to identify possible signs of increased diffusion of ALA-induced PpIX by fluorescence images and fluorescence spectroscopy. The research was done using in vivo porcine skin model. Before the cream application, microholes was performed with microneedles rollers in only one direction, afterward the ALA cream was applied at a 2.5cm2 area in triplicate and an occlusive dressing was placed. PpIX production was monitored using fluorescence spectroscopy collected at skin surface after 70, 100, 140, and 180 minutes of ALA incubation. About 100 fluorescence spectra of each treatment were collected, distributed by about five points for each site. Wide-field fluorescence imaging was made after 70, 90, and 170 minutes after treatment. The results obtained by imaging analysis indicated increase of the PpIX diffusion in the skin surface using the microneedles rollers (MNs) before ALA application. Circular regions of red fluorescence around the microholes were observed. In addition, the fluorescence spectra showed a greater intensity (2 times as many) in groups microneedles rollers associated. In conclusion, our data shown greater homogeneity and PpIX production in the groups pre-treated with microneedles indicating that the technique can be used to greater uniformity of PpIX production throughout the area to be treated reducing the chances of recurrent tumor as well as has potential for decreasing the time of therapy. (FUNDING SUPPORT:CAPES, CNPq and FAPESP)

  6. Towards Environmental Microbial Analysis with Deep UV fluorescence and Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wanger, G.; Bhartia, R.; Orphan, V. J.; Rowe, A. R.

    2015-12-01

    The study of microbes from the environment is often facilitated by the fixation of samples prior to analyses in the laboratory. Samples not appropriately preserved can show dramatic changes e.g. unwanted growth, loss of biomass and sample degradation between collection and analysis. To move Deep-UV Raman analyses from model lab organisms to environmental samples the effect of preservation must be evaluated. Deep UV Raman and Fluorescence (i.e. excitation <250 nm) has been shown capable discriminating various types of microbes as well as giving some information on the growth stage of the culture. The fluorescence signal is typically 3-4 orders of magnitude more intense than the Raman signal and enables rapid location of bacteria on a surface and crudely split them into categories. However it suffers from broad spectral features making discrete classification of bacteria problematic. While a far weaker phenomenon, the chemical specificity of Raman spectroscopy has been shown capable of discriminating between different bacterial species and has even shown spectral variation in same species under differing growth conditions or growth stages and has even been used to measure microbial activity by measuring the incorporation of stable isotope labeled substrates. Typically these analyses are carried out on well-studied, lab-grown model organisms and while relatively easy, these analyses are performed on cells grow under non-environmentally relevant conditions using rich media types not often found in nature. Here we show the effect on the Raman and fluorescence signal (248 nm Deep-UV excitation) from E. coli and other bacteria, grown in more nutrient limited environments, and fixed/preserved in ethanol, PFA and formalin. These fixatives not only preserve the cells for spectroscopic analysis but are compatible with many common techniques that can be used for further characterization of environmental microbial samples. Ethanol appears to heavily degrade the signals from

  7. Vectorized data acquisition and fast triple-correlation integrals for Fluorescence Triple Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ridgeway, William K.; Millar, David P.; Williamson, James R.

    2013-04-01

    Fluorescence Correlation Spectroscopy (FCS) is widely used to quantify reaction rates and concentrations of molecules in vitro and in vivo. We recently reported Fluorescence Triple Correlation Spectroscopy (F3CS), which correlates three signals together instead of two. F3CS can analyze the stoichiometries of complex mixtures and detect irreversible processes by identifying time-reversal asymmetries. Here we report the computational developments that were required for the realization of F3CS and present the results as the Triple Correlation Toolbox suite of programs. Triple Correlation Toolbox is a complete data analysis pipeline capable of acquiring, correlating and fitting large data sets. Each segment of the pipeline handles error estimates for accurate error-weighted global fitting. Data acquisition was accelerated with a combination of off-the-shelf counter-timer chips and vectorized operations on 128-bit registers. This allows desktop computers with inexpensive data acquisition cards to acquire hours of multiple-channel data with sub-microsecond time resolution. Off-line correlation integrals were implemented as a two delay time multiple-tau scheme that scales efficiently with multiple processors and provides an unprecedented view of linked dynamics. Global fitting routines are provided to fit FCS and F3CS data to models containing up to ten species. Triple Correlation Toolbox is a complete package that enables F3CS to be performed on existing microscopes. Catalogue identifier: AEOP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOP_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 50189 No. of bytes in distributed program, including test data, etc.: 6135283 Distribution format: tar.gz Programming language: C/Assembly. Computer: Any with GCC and

  8. Lasing dynamics study by femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy

    NASA Astrophysics Data System (ADS)

    Wei, Dang; Qing, Liao; Peng-Cheng, Mao; Hong-Bing, Fu; Yu-Xiang, Weng

    2016-05-01

    Femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy (FNOPAS) is a versatile technique with advantages of high sensitivity, broad detection bandwidth, and intrinsic spectrum correction function. These advantages should benefit the study of coherent emission, such as measurement of lasing dynamics. In this letter, the FNOPAS was used to trace the lasing process in Rhodamine 6G (R6G) solution and organic semiconductor nano-wires. High-quality transient emission spectra and lasing dynamic traces were acquired, which demonstrates the applicability of FNOPAS in the study of lasing dynamics. Our work extends the application scope of the FNOPAS technique. Project supported by the National Natural Science Foundation of China (Grant Nos. 20925313 and 21503066), the Innovation Program of Chinese Academy of Sciences (Grant No. KJCX2-YW-W25), the Postdoctoral Project of Hebei University, China, and the Project of Science and Technology Bureau of Baoding City, China (Grant No. 15ZG029).

  9. Probing the photoluminescence properties of gold nanoclusters by fluorescence lifetime correlation spectroscopy

    SciTech Connect

    Yuan, C. T. Lin, T. N.; Shen, J. L.; Lin, C. A.; Chang, W. H.; Cheng, H. W.; Tang, J.

    2013-12-21

    Gold nanoclusters (Au NCs) have attracted much attention for promising applications in biological imaging owing to their tiny sizes and biocompatibility. So far, most efforts have been focused on the strategies for fabricating high-quality Au NCs and then characterized by conventional ensemble measurement. Here, a fusion single-molecule technique combining fluorescence correlation spectroscopy and time-correlated single-photon counting can be successfully applied to probe the photoluminescence (PL) properties for sparse Au NCs. In this case, the triplet-state dynamics and diffusion process can be observed simultaneously and the relevant time constants can be derived. This work provides a complementary insight into the PL mechanism at the molecular levels for Au NCs in solution.

  10. Monitoring laboratory-scale bioventing using synchronous scan fluorescence spectroscopy: analysis of the vapor phase.

    PubMed

    Bachman, J; Kanan, S M; Patterson, H H

    2001-01-01

    Bioventing is an improved method of soil remediation that is being used with increasing frequency. In this paper, we refine techniques to measure the progress of petroleum hydrocarbon decomposition by monitoring vapor phase composition with synchronous scan fluorescence spectroscopy (SSFS). Analysis of the vapor phase has advantages compared to standard extraction techniques that require extensive sample handling and clean up. For comparison, hydrocarbon contamination in the soil was measured by analysis of Soxhlet extractions with gas chromatography-mass spectrometry (GC-MS). Comparison of the GC-MS and SSFS data showed that changes in hydrocarbon composition measured in the vapor phase provide an accurate measure of decomposition reactions taking place in the soil.

  11. DNA binding activity of Anabaena sensory rhodopsin transducer probed by fluorescence correlation spectroscopy.

    PubMed

    Kim, Sung Hyun; Kim, So Young; Jung, Kwang-Hwan; Kim, Doseok

    2015-01-01

    Anabaena sensory rhodopsin transducer (ASRT) is believed to be a major player in the photo-signal transduction cascade, which is triggered by Anabaena sensory rhodopsin. Here, we characterized DNA binding activity of ASRT probed by using fluorescence correlation spectroscopy. We observed clear decrease of diffusion coefficient of DNA upon binding of ASRT. The dissociation constant, K(D), of ASRT to 20 bp-long DNA fragments lied in micro-molar range and varied moderately with DNA sequence. Our results suggest that ASRT may interact with several different regions of DNA with different binding affinity for global regulation of several genes that need to be activated depending on the light illumination.

  12. Time-resolved laser fluorescence spectroscopy of UO2(CO3)3(4-).

    PubMed

    Jung, E C; Cho, H-R; Baik, M H; Kim, H; Cha, W

    2015-11-21

    The objective of the present study is to examine the luminescence characteristics of UO2(CO3)3(4-) in detail using time-resolved laser fluorescence spectroscopy. The peak wavelengths and lifetime of UO2(CO3)3(4-) were determined at room temperature using the two excitation laser wavelengths of 266 and 448 nm. The peak wavelengths in the luminescence spectrum exhibited hypsochromic shifts compared with those of UO2(2+). The lifetime determined from several samples containing various uranium concentrations was 8.9 ± 0.8 ns. Explanations for the hindrance to the observation of the luminescence spectrum of UO2(CO3)3(4-) in previous investigations are discussed. The representative experimental parameters, which might interrupt the measurement of weak luminescence, are the insertion delay time of the detection device, the overlapped luminescence of the background materials and the primary inner filter effect in the sample solution.

  13. Fluorescence spectroscopy coupled with PARAFAC and PLS DA for characterization and classification of honey.

    PubMed

    Lenhardt, Lea; Bro, Rasmus; Zeković, Ivana; Dramićanin, Tatjana; Dramićanin, Miroslav D

    2015-05-15

    Fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) and Partial least squares Discriminant Analysis (PLS DA) were used for characterization and classification of honey. Excitation emission spectra were obtained for 95 honey samples of different botanical origin (acacia, sunflower, linden, meadow, and fake honey) by recording emission from 270 to 640 nm with excitation in the range of 240-500 nm. The number of fluorophores present in honey, excitation and emission spectra of each fluorophore, and their relative concentration are determined using a six-component PARAFAC model. Emissions from phenolic compounds and Maillard reaction products exhibited the largest difference among classes of honey of different botanical origin. The PLS DA classification model, constructed from PARAFAC model scores, detected fake honey samples with 100% sensitivity and specificity. Honey samples were also classified using PLS DA with errors of 0.5% for linden, 10% for acacia, and about 20% for both sunflower and meadow mix.

  14. Diffusion and segmental dynamics of rodlike molecules by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Winkler, Roland G.

    2007-08-01

    The dynamics of weakly bending polymers is analyzed on the basis of a Gaussian semiflexible chain model and the fluorescence correlation spectroscopy (FCS) correlation function is determined. Particular attention is paid to the influence of the rotational motion on the decay of the FCS correlation function. An analytical expression for the correlation function is derived, from which the averaged segmental mean square displacement can be determined independent of any specific model for the polymer dynamcis. The theoretical analysis exhibits a strong dependence of the correlation function on the rotational motion for semiflexible polymers with typical lengths and persistence lengths of actin filaments or fd viruses. Hence, FCS allows for a measurement of the rotational motion of such semiflexible polymers. The theoretical results agree well with experimental measurements on actin filaments and confirm the importance of large relaxation times.

  15. High resolution laser induced fluorescence Doppler velocimetry utilizing saturated absorption spectroscopy

    SciTech Connect

    Aramaki, Mitsutoshi; Ogiwara, Kohei; Etoh, Shuzo; Yoshimura, Shinji; Tanaka, Masayoshi Y.

    2009-05-15

    A high resolution laser induced fluorescence (LIF) system has been developed to measure the flow velocity field of neutral particles in an electron-cyclotron-resonance argon plasma. The flow velocity has been determined by the Doppler shift of the LIF spectrum, which is proportional to the velocity distribution function. Very high accuracy in velocity determination has been achieved by installing a saturated absorption spectroscopy unit into the LIF system, where the absolute value and scale of laser wavelength are determined by using the Lamb dip and the fringes of a Fabry-Perot interferometer. The minimum detectable flow velocity of a newly developed LIF system is {+-}2 m/s, and this performance remains unchanged in a long-time experiment. From the radial measurements of LIF spectra of argon metastable atoms, it is found that there exists an inward flow of neutral particles associated with neutral depletion.

  16. Study of mechanical properties of DNA in E. coli cells by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kafle, Rudra; Liebeskind, Molly; Meiners, Jens-Christian

    Mechanical quantities like the elasticity of cells are conventionally measured by directly probing them mechanically. Measurements of these quantities for subcellular structures in living cells are almost impossible this way. We use fluorescence correlation spectroscopy (FCS) to measure such mechanical quantities in chromosomal DNA in E. coli cells. We present methods to address complexities of live-cell FCS such as photobleaching, and calculate the viscoelastic moduli from the FCS data. We compare the measured viscoelastic moduli of live cells with those that are ATP-depleted to stop all molecular motor action and find substantial differences. Active processes are stopped in ATP-depleted cells and hence the bacterial DNA appears to become stiffer and the surrounding intracellular medium more viscous. We also compare our results with the FCS data obtained from the lambda DNA solution in various concentrations to mimic the cellular environment.

  17. Time-resolved laser fluorescence spectroscopy of UO2(CO3)3(4-).

    PubMed

    Jung, E C; Cho, H-R; Baik, M H; Kim, H; Cha, W

    2015-11-21

    The objective of the present study is to examine the luminescence characteristics of UO2(CO3)3(4-) in detail using time-resolved laser fluorescence spectroscopy. The peak wavelengths and lifetime of UO2(CO3)3(4-) were determined at room temperature using the two excitation laser wavelengths of 266 and 448 nm. The peak wavelengths in the luminescence spectrum exhibited hypsochromic shifts compared with those of UO2(2+). The lifetime determined from several samples containing various uranium concentrations was 8.9 ± 0.8 ns. Explanations for the hindrance to the observation of the luminescence spectrum of UO2(CO3)3(4-) in previous investigations are discussed. The representative experimental parameters, which might interrupt the measurement of weak luminescence, are the insertion delay time of the detection device, the overlapped luminescence of the background materials and the primary inner filter effect in the sample solution. PMID:26460936

  18. Fluorescence Spectroscopy: An Adjunct Diagnostic Tool to Image-Guided Core Needle Biopsy of the Breast

    PubMed Central

    Zhu, Changfang; Burnside, Elizabeth S.; Sisney, Gale A.; Salkowski, Lonie R.; Harter, Josephine M.; Yu, Bing

    2009-01-01

    We explored the use of a fiber-optic probe for in vivo fluorescence spectroscopy of breast tissues during percutaneous image-guided breast biopsy. A total of 121 biopsy samples with accompanying histological diagnosis were obtained clinically and investigated in this study. The tissue spectra were analyzed using partial least-squares analysis and represented using a set of principal components (PCs) with dramatically reduced data dimension. For nonmalignant tissue samples, a set of PCs that account for the largest amount of variance in the spectra displayed correlation with the percent tissue composition. For all tissue samples, a set of PCs was identified using a Wilcoxon rank-sum test as showing statistically significant differences between: 1) malignant and fibrous/benign; 2) malignant and adipose; and 3) malignant and nonmalignant breast samples. These PCs were used to distinguish malignant from other nonmalignant tissue types using a binary classification scheme based on both linear and nonlinear support vector machine (SVM) and logistic regression (LR). For the sample set investigated in this study, the SVM classifier provided a cross-validated sensitivity and specificity of up to 81% and 87%, respectively, for discrimination between malignant and fibrous/benign samples, and up to 81% and 81%, respectively, for discriminating between malignant and adipose samples. Classification based on LR was used to generate receiver operator curves with an area under the curve (AUC) of 0.87 for discriminating malignant versus fibrous/benign tissues, and an AUC of 0.84 for discriminating malignant from adipose tissue samples. This study demonstrates the feasibility of performing fluorescence spectroscopy during clinical core needle breast biopsy, and the potential of this technique for identifying breast malignancy in vivo. PMID:19272976

  19. Ultrasensitive detection of genetically modified plants by fluorescence cross-correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Junfeng; Xing, Da; Chen, Tongsheng; Liu, Jinfeng

    2006-09-01

    In this study, a novel method for the direct detection of GMP without amplified by the general method of PCR is firstly presented and proved by experiments. In our method, fluorescence correlation spectroscopy, cleaving nucleic acid by restriction endonuclease and two nucleic acid probe hybridization techniques are combined to distinguish the caulifiower mosaic virus (CaMV) 35S promoter and determine whether samples contain genetically modified components. The detection principle is as follows: firstly two restriction endonucleases FOKI and BsrDlare used to cleave the genomic DNA and the 169bp fragments of CaMV 35S promoter are retrieved; secondly, two nucleic acid probes labeled by Rhodamine Green and y5 dyes respectively hybridize with cleaved 169bp fragments of CaMV 35S promoter; thirdly, the hybridization products simultaneously with two dye-labeled probes are detected by fluorescence cross-correlation spectroscopy and GMP is distinguished. As the detection and analysis by FCS can be performed at the level of single molecule, there is no need for any type of amplification. Genetically modified tobaccos are measured by this method. The results indicate this method can detect CaMV 35S promoter of GMP exactly and the sensitivity can be down to 3.47X10 -10M. Because no any type of amplification is involved, this method can avoid the non-specffic amplification and false-positive problems of PCR, Due to its high-sensitivity, simplicity, reliability and little need for sample amounts, this method promises to be a highly effective detection method for GMP.

  20. Fluorescence spectroscopy of single molecules at room temperature and its applications

    SciTech Connect

    Ha, Taekjip

    1996-12-01

    We performed fluorescence spectroscopy of single and pairs of dye molecules on a surface at room temperature. Near field scanning optical microscope (NSOM) and far field scanning optical microscope with multi-color excitation/detection capability were built. The instrument is capable of optical imaging with 100nm resolution and has the sensitivity necessary for single molecule detection. A variety of dynamic events which cannot be observed from an ensemble of molecules is revealed when the molecules are probed one at a time. They include (1) spectral jumps correlated with dark states, (2) individually resolved quantum jumps to and from the meta-stable triplet state, (3) rotational jumps due to desorption/readsorption events of single molecules on the surface. For these studies, a computer controlled optical system which automatically and rapidly locates and performs spectroscopic measurements on single molecules was developed. We also studied the interaction between closely spaced pairs of molecules. In particular, fluorescence resonance energy transfer between a single resonant pair of donor and acceptor molecules was measured. Photodestruction dynamics of the donor or acceptor were used to determine the presence and efficiency of energy transfer Dual molecule spectroscopy was extended to a non-resonant pair of molecules to obtain high resolution differential distance information. By combining NSOM and dual color scheme, we studied the co-localization of parasite proteins and host proteins on a human red blood cell membrane infected with malaria. These dual-molecule techniques can be used to measure distances, relative orientations, and changes in distances/orientations of biological macromolecules with very good spatial, angular and temporal resolutions, hence opening new capabilities in the study of such systems.

  1. The use of one- and two- photon induced fluorescence spectroscopy for the optical characterization of carcinogenic aflatoxins

    NASA Astrophysics Data System (ADS)

    Smeesters, L.; Meulebroeck, W.; Raeymaekers, S.; Thienpont, H.

    2014-09-01

    Carcinogenic and toxic contaminants in food and feed products are nowadays mostly detected by destructive, time-consuming chemical analyses, like HPLC and LC-MS/MS methods. However, as a consequence of the severe and growing regulations on food products by the European Union, there arose an increased demand for the ultra-fast, high-sensitive and non-destructive detection of contaminants in food and feed products. Therefore, we have investigated fluorescence spectroscopy for the characterization of carcinogenic aflatoxins. With the use of a tunable titanium-sapphire laser in combination with second and third harmonic wavelength generation, both one- and two-photon induced fluorescence excitation wavelengths could be generated using the same setup. We characterized and compared the one- and two-photon induced fluorescence spectra of pure aflatoxin powder, after excitation with 365nm and 730nm respectively. Moreover, we investigated the absolute fluorescence intensity as function of the excitation power density. Afterwards, we applied our characterization setup to the detection of aflatoxins in maize grains. The fluorescence spectra of both healthy and contaminated maize samples were experimentally characterized. In addition to the fluorescence spectrum of the pure aflatoxin, we observed an unwanted influence of the intrinsic fluorescence of the maize. Depending on the excitation wavelength, a varying contrast between the fluorescence spectra of the healthy and contaminated samples was obtained. After a comparison of the measured fluorescence signals, a detection criterion for the optical identification of the contaminated maize samples could be defined. As a result, this illustrates the use of fluorescence spectroscopy as a valuable tool for the non-destructive, real-time and high-sensitive detection of aflatoxins in maize.

  2. Ultrafast vibrational spectroscopy (2D-IR) of CO{sub 2} in ionic liquids: Carbon capture from carbon dioxide’s point of view

    SciTech Connect

    Brinzer, Thomas; Berquist, Eric J.; Ren, Zhe; Dutta, Samrat; Johnson, Clinton A.; Krisher, Cullen S.; Lambrecht, Daniel S.; Garrett-Roe, Sean

    2015-06-07

    The CO{sub 2}ν{sub 3} asymmetric stretching mode is established as a vibrational chromophore for ultrafast two-dimensional infrared (2D-IR) spectroscopic studies of local structure and dynamics in ionic liquids, which are of interest for carbon capture applications. CO{sub 2} is dissolved in a series of 1-butyl-3-methylimidazolium-based ionic liquids ([C{sub 4}C{sub 1}im][X], where [X]{sup −} is the anion from the series hexafluorophosphate (PF{sub 6}{sup −}), tetrafluoroborate (BF{sub 4}{sup −}), bis-(trifluoromethyl)sulfonylimide (Tf{sub 2}N{sup −}), triflate (TfO{sup −}), trifluoroacetate (TFA{sup −}), dicyanamide (DCA{sup −}), and thiocyanate (SCN{sup −})). In the ionic liquids studied, the ν{sub 3} center frequency is sensitive to the local solvation environment and reports on the timescales for local structural relaxation. Density functional theory calculations predict charge transfer from the anion to the CO{sub 2} and from CO{sub 2} to the cation. The charge transfer drives geometrical distortion of CO{sub 2}, which in turn changes the ν{sub 3} frequency. The observed structural relaxation timescales vary by up to an order of magnitude between ionic liquids. Shoulders in the 2D-IR spectra arise from anharmonic coupling of the ν{sub 2} and ν{sub 3} normal modes of CO{sub 2}. Thermal fluctuations in the ν{sub 2} population stochastically modulate the ν{sub 3} frequency and generate dynamic cross-peaks. These timescales are attributed to the breakup of ion cages that create a well-defined local environment for CO{sub 2}. The results suggest that the picosecond dynamics of CO{sub 2} are gated by local diffusion of anions and cations.

  3. Ultrafast vibrational spectroscopy (2D-IR) of CO2 in ionic liquids: Carbon capture from carbon dioxide's point of view

    NASA Astrophysics Data System (ADS)

    Brinzer, Thomas; Berquist, Eric J.; Ren, Zhe; Dutta, Samrat; Johnson, Clinton A.; Krisher, Cullen S.; Lambrecht, Daniel S.; Garrett-Roe, Sean

    2015-06-01

    The CO2ν3 asymmetric stretching mode is established as a vibrational chromophore for ultrafast two-dimensional infrared (2D-IR) spectroscopic studies of local structure and dynamics in ionic liquids, which are of interest for carbon capture applications. CO2 is dissolved in a series of 1-butyl-3-methylimidazolium-based ionic liquids ([C4C1im][X], where [X]- is the anion from the series hexafluorophosphate (PF 6- ), tetrafluoroborate (BF 4- ), bis-(trifluoromethyl)sulfonylimide (Tf2N-), triflate (TfO-), trifluoroacetate (TFA-), dicyanamide (DCA-), and thiocyanate (SCN-)). In the ionic liquids studied, the ν3 center frequency is sensitive to the local solvation environment and reports on the timescales for local structural relaxation. Density functional theory calculations predict charge transfer from the anion to the CO2 and from CO2 to the cation. The charge transfer drives geometrical distortion of CO2, which in turn changes the ν3 frequency. The observed structural relaxation timescales vary by up to an order of magnitude between ionic liquids. Shoulders in the 2D-IR spectra arise from anharmonic coupling of the ν2 and ν3 normal modes of CO2. Thermal fluctuations in the ν2 population stochastically modulate the ν3 frequency and generate dynamic cross-peaks. These timescales are attributed to the breakup of ion cages that create a well-defined local environment for CO2. The results suggest that the picosecond dynamics of CO2 are gated by local diffusion of anions and cations.

  4. Structural determination of prunusins A and B, new C-alkylated flavonoids from Prunus domestica, by 1D and 2D NMR spectroscopy.

    PubMed

    Mahmood, Azhar; Fatima, Itrat; Kosar, Shaheen; Ahmed, Rehana; Malik, Abdul

    2010-02-01

    Prunusins A (1) and B (2), the new C-alkylated flavonoids, have been isolated from the seed kernels of Prunus domestica. Their structures were assigned from (1)H and (13)C nuclear magnetic resonating spectra, DEPT and by correlation spectroscopy, HMQC and HMBC experiments. 3, 5, 7, 4'-Tetrahydroxyflavone (3) and 3, 5, 7-trihydroxy-8, 4'-dimethoxyflavone (4) have also been reported from this species. Both compounds (1) and (2) showed significant antifungal activity against pathogenic fungus Trichophyton simmi.

  5. Detection of rhodopsin dimerization in situ by PIE-FCCS, a time-resolved fluorescence spectroscopy.

    PubMed

    Smith, Adam W

    2015-01-01

    Rhodopsin self-associates in the plasma membrane. At low concentrations, the interactions are consistent with a monomer-dimer equilibrium (Comar et al., J Am Chem Soc 136(23):8342-8349, 2014). At high concentrations in native tissue, higher-order clusters have been observed (Fotiadis et al., Nature 421:127-128, 2003). The physiological role of rhodopsin dimerization is still being investigated, but it is clear that a quantitative assessment is essential to determining the function of rhodopsin clusters in vision. To quantify rhodopsin interactions, I will outline the theory and methodology of a specialized time-resolved fluorescence spectroscopy for measuring membrane protein-protein interactions called pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). The strength of this technique is its ability to quantify rhodopsin interactions in situ (i.e., a live cell plasma membrane). There are two reasons for restricting the scope to live cell membranes. First, the compositional heterogeneity of the plasma membrane creates a complex milieu with thousands of lipid, protein, and carbohydrate species. This makes it difficult to infer quaternary interactions from detergent solubilized samples or construct a model phospholipid bilayer that recapitulates all of the interactions present in native membranes. Second, organizational structure and dynamics is a key feature of the plasma membrane, and fixation techniques like formaldehyde cross-linking and vitrification will modulate the interactions. PIE-FCCS is based on two-color fluorescence imaging with time-correlated single-photon counting (TCSPC) (Becker et al., Rev Sci Instrum 70:1835-1841, 1999). By time-tagging every detected photon, the data can be analyzed as a fluorescence intensity distribution, fluorescence lifetime histogram, or fluorescence (cross-)correlation spectra (FCS/FCCS) (Becker, Advanced time-correlated single-photon counting techniques, Springer, Berlin, 2005). These

  6. THE USE OF FLUORESCENCE CORRELATION SPECTROSCOPY TO PROBE CHROMATIN IN THE CELL NUCLEUS

    SciTech Connect

    Sorscher, Stanley M.; Bartholemew, James C.; Klein, Melvin P.

    1980-03-01

    All systems in thermodynamic equilibrium are subject to spontaneous fluctuations from equilibrium. For very small systems, the fluctuations can be made apparent, and can be used to study the behavior of the system without introducing any external perturbations. The mean squared amplitude of these fluctuations contains information about the absolute size of the system. The characteristic time of the fluctuation autocorrelation function contains kinetic information. In the experiments reported here, these concepts are applied to the binding equilibrium between ethidium bromide and DNA, a system where the fluorescence properties of the dye greatly enhance the effect of spontaneous fluctuations in the binding equilibrium. Preliminary experiments employ well characterized DNA preparations, including calf thymus DNA, SV40 DNA, and calf thymus nucleohistone particles. Additional measurements are described which have been made in small regions of individual nuclei, isolated from green monkey kidney cells, observing as few as 5000 dye molecules. The data indicate that the strength of dye binding increases in nuclei isolated from cells which have been stimulated to enter the cell growth cycle. The viscosity of nuclear material is inferred to be between one and two orders of magnitude greater than that of water, and decreases as the cells leave the resting state, and enter the cell growth cycle. Washing the nuclei also lowers the viscosity. These experiments demonstrate that fluorescence correlation spectroscopy can provide information at the subnuclear level that is otherwise unavailable.

  7. Determination of residual strains in ceramic-fiber reinforced composites using fluorescence spectroscopy

    SciTech Connect

    Yang, X.; Young, R.J.

    1995-06-01

    The dependence of the positions of the R{sub 1} and R{sub 2} fluorescence lines upon fiber strain has been determined for the PRD-166 alumina-zirconia fiber. It is found that the wavenumbers of both lines increase with increasing strain. The approximately linear relationship between line shift and fiber strain has been used to map the distribution of thermal residual strain along the fibers in Pyrex and soda-lime silicate (SLS) glass-matrix model single-fiber composites. It has been shown that the values of thermal strain in the fibers are close to those expected from theoretical analyses. The interfacial shear stress has been derived from the point-to-point variation of the fiber strain along the fibers. It has also been found that the distribution of strain along a fully embedded fiber is close to that predicted by conventional shear-lag analysis. It has been demonstrated that fluorescence spectroscopy is a powerful method of following the micromechanics of deformation in ceramic fibers and composites.

  8. Analyzing the Homeostasis of Signaling Proteins by a Combination of Western Blot and Fluorescence Correlation Spectroscopy

    PubMed Central

    Chung, Yi-Da; Sinzinger, Michael D.; Bovee-Geurts, Petra; Krause, Marina; Dinkla, Sip; Joosten, Irma; Koopman, Werner J.; Adjobo-Hermans, Merel J.W.; Brock, Roland

    2011-01-01

    The determination of intracellular protein concentrations is a prerequisite for understanding protein interaction networks in systems biology. Today, protein quantification is based either on mass spectrometry, which requires large cell numbers and sophisticated measurement protocols, or on quantitative Western blotting, which requires the expression and purification of a recombinant protein as a reference. Here, we present a method that uses a transiently expressed fluorescent fusion protein of the protein-of-interest as an easily accessible reference in small volumes of crude cell lysates. The concentration of the fusion protein is determined by fluorescence correlation spectroscopy, and this concentration is used to calibrate the intensity of bands on a Western blot. We applied this method to address cellular protein homeostasis by determining the concentrations of the plasma membrane-located transmembrane scaffolding protein LAT and soluble signaling proteins in naïve T cells and transformed T-cell lymphoma (Jurkat) cells (with the latter having nine times the volume of the former). Strikingly, the protein numbers of soluble proteins scaled with the cell volume, whereas that of the transmembrane protein LAT scaled with the membrane surface. This leads to significantly different stoichiometries of signaling proteins in transformed and naïve cells in concentration ranges that may translate directly into differences in complex formation. PMID:22261070

  9. Translational Diffusion of Fluorescent Proteins by Molecular Fourier Imaging Correlation Spectroscopy

    PubMed Central

    Fink, Michael C.; Adair, Kenneth V.; Guenza, Marina G.; Marcus, Andrew H.

    2006-01-01

    The ability to noninvasively observe translational diffusion of proteins and protein complexes is important to many biophysical problems. We report high signal/noise (≥250) measurements of the translational diffusion in viscous solution of the fluorescent protein, DsRed. This is carried out using a new technique: molecular Fourier imaging correlation spectroscopy (M-FICS). M-FICS is an interferometric method that detects a collective Fourier component of the fluctuating density of a small population of fluorescent molecules, and provides information about the distribution of molecular diffusivities. A theoretical analysis is presented that expresses the detected signal fluctuations in terms of the relevant time-correlation functions for molecular translational diffusion. Furthermore, the role played by optical orientational degrees of freedom is established. We report Fickian self-diffusion of the DsRed tetramer at short timescales. The long-time deviation of our data from Fickian behavior is used to determine the variance of the distribution of the protein self-diffusion coefficient. We compare our results to the expected outcomes for 1), a bi-disperse distribution of protein species, and 2), dynamic disorder of the host solvent. PMID:16920833

  10. Fluorescence correlation spectroscopy as tool for high-content-screening in yeast (HCS-FCS)

    NASA Astrophysics Data System (ADS)

    Wood, Christopher; Huff, Joseph; Marshall, Will; Yu, Elden Qingfeng; Unruh, Jay; Slaughter, Brian; Wiegraebe, Winfried

    2011-03-01

    To measure protein interactions, diffusion properties, and local concentrations in single cells, Fluorescence Correlation Spectroscopy (FCS) is a well-established and widely accepted method. However, measurements can take a long time and are laborious. Therefore investigations are typically limited to tens or a few hundred cells. We developed an automated system to overcome these limitations and make FCS available for High Content Screening (HCS). We acquired data in an auto-correlation screen of more than 4000 of the 6000 proteins of the yeast Saccharomyces cerevisiae, tagged with eGFP and expanded the HCS to use cross-correlation between eGFP and mCherry tagged proteins to screen for molecular interactions. We performed all high-content FCS screens (HCS-FCS) in a 96 well plate format. The system is based on an extended Carl Zeiss fluorescence correlation spectrometer ConfoCor 3 attached to a confocal microscope LSM 510. We developed image-processing software to control these hardware components. The confocal microscope obtained overview images and we developed an algorithm to search for and detect single cells. At each cell, we positioned a laser beam at a well-defined point and recorded the fluctuation signal. We used automatic scoring of the signal for quality control. All data was stored and organized in a database based on the open source Open Microscopy Environment (OME) platform. To analyze the data we used the image processing language IDL and the open source statistical software package R.

  11. Characterization of powellite-based solid solutions by site-selective time resolved laser fluorescence spectroscopy.

    PubMed

    Schmidt, Moritz; Heck, Stephanie; Bosbach, Dirk; Ganschow, Steffen; Walther, Clemens; Stumpf, Thorsten

    2013-06-21

    We present a comprehensive study of the solid solution system Ca2(MoO4)2-NaGd(MoO4)2 on the molecular scale, by means of site-selective time resolved laser fluorescence spectroscopy (TRLFS). Eu(3+) is used as a trace fluorescent probe, homogeneously substituting for Gd(3+) in the solid solution crystal structure. Site-selective TRLFS of a series of polycrystalline samples covering the whole composition range of the solid solution series from 10% substitution of Ca(2+) to the NaGd end-member reveals it to be homogeneous throughout the whole range. The trivalent ions are incorporated into the powellite structure in only one coordination environment, which exhibits a very strong ligand-metal interaction. Polarization-dependent measurements of a single crystal of NaGd(Eu)(MoO4)2 identify the coordination geometry to be of C2v point symmetry. The S4 symmetry of the Ca site within the powellite lattice can be transformed into C2v assuming minor motion in the first coordination sphere.

  12. Fluorescence correlation spectroscopy to measure the metabolism of high-density lipoprotein

    NASA Astrophysics Data System (ADS)

    Deitrick, Russell; Gibson, Emily; Razzaghi, Hamid

    2009-10-01

    High-density lipoprotein (HDL), referred to as the ``good cholesterol'', carries free cholesterol to the liver to be filtered from the bloodstream and is important to our understanding of atherosclerosis. HDL is metabolized in part by the enzyme Endothelial Lipase (EL). With this project we will use fluorescence correlation spectroscopy (FCS) to study the metabolism of HDL by EL comparing wild type with different genetic mutations. FCS is an advanced microscopy technique in which we record fluctuations in the fluorescence of dye-labeled molecules (in this case, HDL labeled with Nile Red) as they freely diffuse through a small focal volume. This data can be analyzed mathematically using the cross-correlation function, from which we can ultimately ascertain much information. In our case, we are interested in the diffusion coefficient which, via the Stokes-Einstein relation for a sphere, we can determine the size of HDL as it undergoes the process of metabolism. Preliminary results seem to indicate that the metabolic process occurs very quickly, that the final size of HDL depends primarily on the concentration of EL, and that the wild and mutant variants of EL have a similar effectiveness. In following experiments, we hope to investigate these relationships further.

  13. Characterization of Aqueous Oleic Acid/Oleate Dispersions by Fluorescent Probes and Raman Spectroscopy.

    PubMed

    Suga, Keishi; Kondo, Dai; Otsuka, Yoko; Okamoto, Yukihiro; Umakoshi, Hiroshi

    2016-08-01

    Oleic acid (OA) and oleates form self-assembled structures dispersible in aqueous media. Herein, the physicochemical properties of OA/oleate assemblies were characterized using fluorescent probes and Raman spectroscopy, under relatively high dilution (<100 mM of total amphiphile) at 25 °C. Anisotropy analysis using 1,6-diphenyl-1,3,5-hexatriene showed that the microviscosity of the OA/oleate assembly was highest at pH 7.5 (the pH range of 6.9-10.6 was investigated). The fluorescence spectra of 6-lauroyl-2-dimethylaminonaphthalene revealed the dehydrated environments on membrane surfaces at pH < 7.7. The pH-dependent Raman peak intensity ratios, chain torsion (S = I1124/I1096) and chain packing (R = I2850/I2930), showed local maxima, indicating the occurrence of metastable phases, such as dispersed cubic phase (pH = 7.5), vesicle (pH = 8.5), and dispersed cylindrical micelle (pH = 9.7). These results suggest that large-scale OA/oleate assemblies could possess particular membrane properties in a narrow pH region, e.g., at pH 7.5, and 9.7.

  14. Discrimination of Rhizoma Gastrodiae (Tianma) using 3D synchronous fluorescence spectroscopy coupled with principal component analysis

    NASA Astrophysics Data System (ADS)

    Fan, Qimeng; Chen, Chaoyin; Huang, Zaiqiang; Zhang, Chunmei; Liang, Pengjuan; Zhao, Shenglan

    2015-02-01

    Rhizoma Gastrodiae (Tianma) of different variants and different geographical origins has vital difference in quality and physiological efficacy. This paper focused on the classification and identification of Tianma of six types (two variants from three different geographical origins) using three dimensional synchronous fluorescence spectroscopy (3D-SFS) coupled with principal component analysis (PCA). 3D-SF spectra of aqueous extracts, which were obtained from