Newton-Krylov-Schwarz algorithms for the 2D full potential equation
Cai, Xiao-Chuan; Gropp, W.D.; Keyes, D.E.
1996-12-31
We study parallel two-level overlapping Schwarz algorithms for solving nonlinear finite element problems, in particular, for the full potential equation of aerodynamics discretized in two dimensions with bilinear elements. The main algorithm, Newton-Krylov-Schwarz (NKS), employs an inexact finite-difference Newton method and a Krylov space iterative method, with a two-level overlapping Schwarz method as a preconditioner. We demonstrate that NKS, combined with a density upwinding continuation strategy for problems with weak shocks, can be made robust for this class of mixed elliptic-hyperbolic nonlinear partial differential equations, with proper specification of several parameters. We study upwinding parameters, inner convergence tolerance, coarse grid density, subdomain overlap, and the level of fill-in in the incomplete factorization, and report favorable choices for numerical convergence rate and overall execution time on a distributed-memory parallel computer.
Efficient 2d full waveform inversion using Fortran coarray
NASA Astrophysics Data System (ADS)
Ryu, Donghyun; Kim, ahreum; Ha, Wansoo
2016-04-01
We developed a time-domain seismic inversion program using the coarray feature of the Fortran 2008 standard to parallelize the algorithm. We converted a 2d acoustic parallel full waveform inversion program with Message Passing Interface (MPI) to a coarray program and examined performance of the two inversion programs. The results show that the speed of the waveform inversion program using the coarray is slightly faster than that of the MPI version. The standard coarray lacks features for collective communication; however, it can be improved in following standards since it is introduced recently. The parallel algorithm can be applied for 3D seismic data processing.
A full 2D IDCT with extreme low complexity
NASA Astrophysics Data System (ADS)
Navarro, Antonio; Silva, Antonio; Reznik, Yuriy
2007-09-01
In the context of a Call for Proposal for integer IDCTs issued by MPEG in July 2005, a full 2D integer IDCT based on a previous Feig and Winograd's work has been proposed. It achieves a high precision by meeting all IEEE1180 conditions and is suitable of implementation on hardware since it can be performed only with shifts and additions. Furthermore, it can be useful in high video resolution scenarios like in 720p/1080i/p due to its feedforward operation mode without any loop as usual in row-column implementations. The proposed transformation can be implemented without changing other functional blocks either at the encoder or at the decoder or alternatively as a scaled version incorporating the scaling factors into the dequantization stage. Our algorithm uses only 1328 operations for 8x8 blocks, including scaling factors.
Full-waveform inversion in 2D VTI media
NASA Astrophysics Data System (ADS)
Kamath, Nishant
Full-waveform inversion (FWI) is a technique designed to produce a high-resolution model of the subsurface by using information contained in entire seismic waveforms. This thesis presents a methodology for FWI in elastic VTI (transversely isotropic with a vertical axis of symmetry) media and discusses synthetic results for heterogeneous VTI models. First, I develop FWI for multicomponent data from a horizontally layered VTI model. The reflectivity method, which permits computation of only PP reflections or a combination of PP and PSV events, is employed to model the data. The Gauss-Newton technique is used to invert for the interval Thomsen parameters, while keeping the densities fixed at the correct values. Eigenvalue/eigenvector decompostion of the Hessian matrix helps analyze the sensitivity of the objective function to the model parameters. Whereas PP data alone are generally sufficient to constrain all four Thomsen parameters even for conventional spreads, including PS reflections provides better constraints, especially for the deeper part of the model. Next, I derive the gradients of the FWI objective function with respect to the stiffness coefficients of arbitrarily anisotropic media by employing the adjoint-state method. From these expressions, it is straightforward to compute the gradients for parameters of 2D heterogeneous VTI media. FWI is implemented in the time domain with the steepest-descent method used to iteratively update the model. The algorithm is tested on transmitted multicomponent data generated for Gaussian anomalies in Thomsen parameters embedded in homogeneous VTI media. To test the sensitivity of the objective function to different model parameters, I derive an an- alytic expression for the Frechet kernel of FWI for arbitrary anisotropic symmetry by using the Born approximation and asymptotic Green's functions. The amplitude of the kernel, which represents the radiation pattern of a secondary source (that source describes a perturbation
NASA Astrophysics Data System (ADS)
Auer, L.; Greenhalgh, S. A.; Maurer, H. R.; Marelli, S.; Nuber, A.
2012-04-01
Seismic full waveform inversion is often based on forward modeling in the computationally attractive 2-D domain. Any solution of the 2-D cartesian wave equation inherently carries the implicit assumption of a line source extended in the out-of-plane medium invariant direction. This implies that the source energy in homogeneous media spreads over the surface of an approximately expanding cylinder, such that the wavefield amplitudes (at least in the far field) scale inversely with the square-root of distance. However, realistic point sources like explosives or airguns, fired in a 3-D medium, generate amplitudes that decay inversely with the first power of distance, since the wavefield expands quasi-spherically in all three dimensions. Usually, practitioners correct for this amplitude difference and the associated phase shift of π/4 by transforming the recorded 3-D field data to the approximate 2-D situation by using simplistic, asymptotic filter algorithms. Such filters operate on a square root of time-sample convolutional basis and implicitly assume straight ray paths and a constant velocity medium. The unsubstantiated usage of these asymptotic filters is in contradiction to their well known limitations. In this study, we present an extensive quantitative appraisal of 3D-to-2D data transformation procedures. Our analysis relies on a simple numerical modeling study, based on propagating 3-D and 2-D wavefields through 2-D media and comparing the true 2-D and the filtered 3-D synthetic data. It is shown that the filtering errors are moderate in purely acoustic situations but become substantial in complex media when arrivals overlap each other or ray paths deviate strongly from straight lines. Normalized root-mean-square deviations up to 5% and maximum relative time domain errors of up to 40% were found in high contrast media, when full elastic treatment was considered. In order to examine if this error translates into a deficient model reconstruction in full waveform
2-D acoustic VTI full waveform inversion for CCS monitoring
NASA Astrophysics Data System (ADS)
KIM, S.; Kim, W. K.; Min, D. J.; Jeong, W.; OH, J. W.
2014-12-01
These days many geophysicists have been working not only for oil and gas exploration but also for CO2 monitoring for CCS (Carbon Capture and storage). When CO2 is injected and stored to the target layer, it changes the physical properties of subsurface media like p-wave velocity, density and so on. Seismic method is one of the most widely used geophysical methods for CO2 monitoring, because it can delineate physical properties of subsurface media. To prevent CO2 from leaking out of reservoirs, most target areas require caprocks, and shale often acts as a caprock. However, shale has a strong anisotropic property. Without considering the anisotropic property of subsurface media, interpretations of seismic monitoring data can distort the CO2distribution or movement in the subsurface media. For computational efficiency, seismic data interpretation based on acoustic VTI (Vertical Transversely Isotropic) wave equations has been commonly done although it does not consider the shear waves. To investigate the importance of considering anisotropic properties in acoustic FWI (full waveform inversion) for CO2 monitoring, we compare results obtained by the acoustic VTI FWI with those of the conventional acoustic FWI for isotropic case in the frequency domain. Both methods are based on the node-based finite-element method. Numerical examples show that neglecting anisotropic properties of subsurface media can distort distribution of CO2 and degrade reliability of subsurface image obtained by FWI. Acknowledgements This work was supported by the Human Resources Development program (No. 20134010200510) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government Ministry of Trade, Industry, and Energy and by the "Development of Technology for CO2 Marine Geological Storage" grant funded by the Ministry of Oceans and Fisheries of Korea.
Creation of a scalar potential in 2D dilaton gravity
Behrndt, K.
1994-09-01
The authors investigate quantum corrections of the 2-d dilaton gravity near the singularity. Their motivation comes from a s-wave reduced cosmological solution which is classically singular in the scalar fields (dilaton and moduli). As a result they find, that the singularity disappears and a dilaton/moduli potential is created.
2D-ELDOR using full Sc- fitting and absorption lineshapes
NASA Astrophysics Data System (ADS)
Chiang, Yun-Wei; Costa-Filho, Antonio; Freed, Jack H.
2007-10-01
Recent progress in developing 2D-ELDOR (2D electron-electron double resonance) techniques to better capture molecular dynamics in complex fluids, particularly in model and biological membranes, is reported. The new "full Sc- method", which corrects the spectral analysis for the phase distortion effects present in the experiments, is demonstrated to enhance the sensitivity of 2D-ELDOR in reporting on molecular dynamics in complex membrane environments. That is, instead of performing spectral fitting in the magnitude mode, our new method enables simultaneous fitting of both the real and imaginary components of the Sc- signal. The full Sc- fitting not only corrects the phase distortions in the experimental data but also more accurately determines instrumental dead times. The phase corrections applied to the Sc- spectrum enable the extraction of the pure absorption-mode spectrum, which is characterized by much better resolution than the magnitude-mode spectrum. In the absorption mode, the variation of homogeneous broadening, which reports on the dynamics of the spin probe, can even be observed by visual inspection. This new method is illustrated with results from model membranes of dipalmitoyl-sn-glycero-phosphatidylcholine (DPPC)-cholesterol binary mixtures, as well as with results from plasma membrane vesicles of mast cells. In addition to the dynamic parameters, which provide quantitative descriptions for membranes at the molecular level, the high-resolution absorption spectra themselves may be used as a "fingerprint" to characterize membrane phases and distinguish coexisting components in biomembranes. Thus we find that 2D-ELDOR is greatly improved with the new "full Sc- method" especially for exploring the complexity of model and biological membranes.
2D Potential theory using complex functions and conformal mapping
NASA Astrophysics Data System (ADS)
Le Maire, Pauline; Munschy, Marc
2016-04-01
For infinitely horizontally extended bodies, functions that describe potential and field equations (gravity and magnetics) outside bodies are 2D and harmonic. The consequence of this property is that potential and field equations can be written as complex analytic functions. We define these complex functions whose real part is the commonly used real function and imaginary part is its Hilbert transform. Using data or synthetic cases the transformation is easily performed in the Fourier domain by setting to zero all values for negative frequencies. Written as complex functions of the complex variable, equations of potential and field in gravity and magnetics for different kinds of geometries are simple and correspond to powers of the inverse of the distance. For example, it is easily shown that for a tilted dyke, the dip and the apparent inclination have the same effect on the function and consequently that it is not possible, with data, to compute one of both values without knowing the other. Conformal mapping is an original way to display potential field functions. Considering that the complex variable corresponds to the real axis, complex potential field functions resume to a limaçon, a curve formed by the path of the point fixed to a circle when that circle rolls around the outside of another circle. For example, the point corresponding to the maximum distance to the origin of the complex magnetic field due to a cylinder, corresponds to the maximum of the analytic signal as defined by Nabighan in 1972 and its phase corresponds to the apparent inclination. Several applications are shown in different geological contexts using aeromagnetic data.
CAS2D- NONROTATING BLADE-TO-BLADE, STEADY, POTENTIAL TRANSONIC CASCADE FLOW ANALYSIS CODE
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1994-01-01
An exact, full-potential-equation model for the steady, irrotational, homoentropic, and homoenergetic flow of a compressible, inviscid fluid through a two-dimensional planar cascade together with its appropriate boundary conditions has been derived. The CAS2D computer program numerically solves an artificially time-dependent form of the actual full-potential-equation, providing a nonrotating blade-to-blade, steady, potential transonic cascade flow analysis code. Comparisons of results with test data and theoretical solutions indicate very good agreement. In CAS2D, the governing equation is discretized by using type-dependent, rotated finite differencing and the finite area technique. The flow field is discretized by providing a boundary-fitted, nonuniform computational mesh. This mesh is generated by using a sequence of conformal mapping, nonorthogonal coordinate stretching, and local, isoparametric, bilinear mapping functions. The discretized form of the full-potential equation is solved iteratively by using successive line over relaxation. Possible isentropic shocks are captured by the explicit addition of an artificial viscosity in a conservative form. In addition, a four-level, consecutive, mesh refinement feature makes CAS2D a reliable and fast algorithm for the analysis of transonic, two-dimensional cascade flows. The results from CAS2D are not directly applicable to three-dimensional, potential, rotating flows through a cascade of blades because CAS2D does not consider the effects of the Coriolis force that would be present in the three-dimensional case. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 200K of 8 bit bytes. The CAS2D program was developed in 1980.
2D full wave modeling for a synthetic Doppler backscattering diagnostic
Hillesheim, J. C.; Schmitz, L.; Kubota, S.; Rhodes, T. L.; Carter, T. A.; Holland, C.
2012-10-15
Doppler backscattering (DBS) is a plasma diagnostic used in tokamaks and other magnetic confinement devices to measure the fluctuation level of intermediate wavenumber (k{sub {theta}}{rho}{sub s}{approx} 1) density fluctuations and the lab frame propagation velocity of turbulence. Here, a synthetic DBS diagnostic is described, which has been used for comparisons between measurements in the DIII-D tokamak and predictions from nonlinear gyrokinetic simulations. To estimate the wavenumber range to which a Gaussian beam would be sensitive, a ray tracing code and a 2D finite difference, time domain full wave code are used. Experimental density profiles and magnetic geometry are used along with the experimental antenna and beam characteristics. An example of the effect of the synthetic diagnostic on the output of a nonlinear gyrokinetic simulation is presented.
2D Seismic Imaging of Elastic Parameters by Frequency Domain Full Waveform Inversion
NASA Astrophysics Data System (ADS)
Brossier, R.; Virieux, J.; Operto, S.
2008-12-01
Thanks to recent advances in parallel computing, full waveform inversion is today a tractable seismic imaging method to reconstruct physical parameters of the earth interior at different scales ranging from the near- surface to the deep crust. We present a massively parallel 2D frequency-domain full-waveform algorithm for imaging visco-elastic media from multi-component seismic data. The forward problem (i.e. the resolution of the frequency-domain 2D PSV elastodynamics equations) is based on low-order Discontinuous Galerkin (DG) method (P0 and/or P1 interpolations). Thanks to triangular unstructured meshes, the DG method allows accurate modeling of both body waves and surface waves in case of complex topography for a discretization of 10 to 15 cells per shear wavelength. The frequency-domain DG system is solved efficiently for multiple sources with the parallel direct solver MUMPS. The local inversion procedure (i.e. minimization of residuals between observed and computed data) is based on the adjoint-state method which allows to efficiently compute the gradient of the objective function. Applying the inversion hierarchically from the low frequencies to the higher ones defines a multiresolution imaging strategy which helps convergence towards the global minimum. In place of expensive Newton algorithm, the combined use of the diagonal terms of the approximate Hessian matrix and optimization algorithms based on quasi-Newton methods (Conjugate Gradient, LBFGS, ...) allows to improve the convergence of the iterative inversion. The distribution of forward problem solutions over processors driven by a mesh partitioning performed by METIS allows to apply most of the inversion in parallel. We shall present the main features of the parallel modeling/inversion algorithm, assess its scalability and illustrate its performances with realistic synthetic case studies.
Full 2D observation of water surface elevation from SWOT under different flow conditions
NASA Astrophysics Data System (ADS)
Domeneghetti, Alessio; Schumann, Guy; Rui, Wei; Durand, Michael; Pavelsky, Tamlin
2016-04-01
The upcoming Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA, Centre National d'Etudes Spatiales (CNES, France), the Canadian Space Agency, and the Space Agency of the UK that will provide a first global, high-resolution observation of ocean and terrestrial water surface heights. Characterized by an observation swath of 120 km and an orbit repeat interval of about 21 days, SWOT will provide unprecedented bi-dimensional observations of rivers wider than 50-100 m. Despite many research activities that have investigated potential uses of remotely sensed data from SWOT, potentials and limitations of the spatial observations provided by the satellite mission for flood modeling still remain poorly understood and investigated. In this study we present a first analysis of the spatial observation of water surface elevation that is expected from SWOT for a 140 km reach of the middle-lower portion of the Po River, in Northern Italy. The river stretch is characterized by a main channel varying from 200-500 m in width and a floodplain that can be as wide as 5 km and that is delimited by a system of major embankments. The reconstruction of the hydraulic behavior of the Po River is performed by means of a quasi-2d model built with detailed topographic and bathymetric information (LiDAR, 2 m resolution), while the simulation of the spatial observation sensed by SWOT is performed with a SWOT simulator that mimics the satellite sensor characteristics. Referring to water surface elevations associated with different flow conditions (maximum, minimum and average flow reproduced by means of the quasi-2d numerical model) this work provides a first characterization of the spatial observations provided by SWOT and highlights the strengths and limitations of the expected products. By referring to a real river reach the analysis provides a credible example of the type of spatial observations that will be available after launch of SWOT and offers a first
Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6.
Qiao, Wanqiong; Yang, Yao; Sebra, Robert; Mendiratta, Geetu; Gaedigk, Andrea; Desnick, Robert J; Scott, Stuart A
2016-03-01
The cytochrome P450-2D6 (CYP2D6) enzyme metabolizes ∼25% of common medications, yet homologous pseudogenes and copy number variants (CNVs) make interrogating the polymorphic CYP2D6 gene with short-read sequencing challenging. Therefore, we developed a novel long-read, full gene CYP2D6 single molecule real-time (SMRT) sequencing method using the Pacific Biosciences platform. Long-range PCR and CYP2D6 SMRT sequencing of 10 previously genotyped controls identified expected star (*) alleles, but also enabled suballele resolution, diplotype refinement, and discovery of novel alleles. Coupled with an optimized variant-calling pipeline, CYP2D6 SMRT sequencing was highly reproducible as triplicate intra- and inter-run nonreference genotype results were completely concordant. Importantly, targeted SMRT sequencing of upstream and downstream CYP2D6 gene copies characterized the duplicated allele in 15 control samples with CYP2D6 CNVs. The utility of CYP2D6 SMRT sequencing was further underscored by identifying the diplotypes of 14 samples with discordant or unclear CYP2D6 configurations from previous targeted genotyping, which again included suballele resolution, duplicated allele characterization, and discovery of a novel allele and tandem arrangement. Taken together, long-read CYP2D6 SMRT sequencing is an innovative, reproducible, and validated method for full-gene characterization, duplication allele-specific analysis, and novel allele discovery, which will likely improve CYP2D6 metabolizer phenotype prediction for both research and clinical testing applications. PMID:26602992
A quasi 2D semianalytical model for the potential profile in hetero and homojunction tunnel FETs
NASA Astrophysics Data System (ADS)
Villani, F.; Gnani, E.; Gnudi, A.; Reggiani, S.; Baccarani, G.
2015-11-01
A quasi 2D semianalytical model for the potential profile in hetero and homojunction tunnel FETs is developed and compared with full-quantum simulation results. It will be shown that the pure analytical solution perfectly matches results at high VDS. However, a coupling with the numerical solution of the 1D Poisson equation in the radial direction is necessary at low VDS, in order to properly account for the charge density in equilibrium with the drain contact. With such an approach we are able to correctly predict the potential profile for both the linear and saturation regimes.
Progress towards ultracold gases in arbitrary 2D potentials
NASA Astrophysics Data System (ADS)
Corcovilos, Theodore
2016-05-01
We describe our progress in building an apparatus for investigating degenerate quantum gases of potassium in arbitrary two-dimensional optical potentials. The optical potentials are created by holographic projection of an image created using a MEMS mirror array. Systems we would like to study with this experiment are quantum simulations of bosons and fermions at crystal heterojunctions and systems with well defined boundaries, including topological edge states. Funding provided by the Charles E Kaufman Foundation, a part of the Pittsburgh Foundation.
Ren, X; Domier, C W; Kramer, G; Luhmann, N C; Muscatello, C M; Shi, L; Tobias, B J; Valeo, E
2014-11-01
A synthetic microwave imaging reflectometer (MIR) diagnostic employing the full-wave reflectometer code (FWR2D) has been developed and is currently being used to guide the design of real systems, such as the one recently installed on DIII-D. The FWR2D code utilizes real plasma profiles as input, and it is combined with optical simulation tools for synthetic diagnostic signal generation. A detailed discussion of FWR2D and the process to generate the synthetic signal are presented in this paper. The synthetic signal is also compared to a prescribed density fluctuation spectrum to quantify the imaging quality. An example is presented with H-mode-like plasma profiles derived from a DIII-D discharge, where the MIR focal is located in the pedestal region. It is shown that MIR is suitable for diagnosing fluctuations with poloidal wavenumber up to 2.0 cm(-1) and fluctuation amplitudes less than 5%. PMID:25430276
Quantum-Carnot engine for particle confined to 2D symmetric potential well
Belfaqih, Idrus Husin Sutantyo, Trengginas Eka Putra Prayitno, T. B.; Sulaksono, Anto
2015-09-30
Carnot model of heat engine is the most efficient cycle consisting of isothermal and adiabatic processes which are reversible. Although ideal gas usually used as a working fluid in the Carnot engine, Bender used quantum particle confined in 1D potential well as a working fluid. In this paper, by following Bender we generalize the situation to 2D symmetric potential well. The efficiency is express as the ratio of the initial length of the system to the final length of the compressed system. The result then is shown that for the same ratio, 2D potential well is more efficient than 1D potential well.
CAS2D: FORTRAN program for nonrotating blade-to-blade, steady, potential transonic cascade flows
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1980-01-01
An exact, full-potential-equation (FPE) model for the steady, irrotational, homentropic and homoenergetic flow of a compressible, homocompositional, inviscid fluid through two dimensional planar cascades of airfoils was derived, together with its appropriate boundary conditions. A computer program, CAS2D, was developed that numerically solves an artificially time-dependent form of the actual FPE. The governing equation was discretized by using type-dependent, rotated finite differencing and the finite area technique. The flow field was discretized by providing a boundary-fitted, nonuniform computational mesh. The mesh was generated by using a sequence of conforming mapping, nonorthogonal coordinate stretching, and local, isoparametric, bilinear mapping functions. The discretized form of the FPE was solved iteratively by using successive line overrelaxation. The possible isentropic shocks were correctly captured by adding explicitly an artificial viscosity in a conservative form. In addition, a three-level consecutive, mesh refinement feature makes CAS2D a reliable and fast algorithm for the analysis of transonic, two dimensional cascade flows.
Quantum damped oscillator II: Bateman's Hamiltonian vs. 2D parabolic potential barrier
Chruscinski, Dariusz . E-mail: darch@phys.uni.torun.pl
2006-04-15
We show that quantum Bateman's system which arises in the quantization of a damped harmonic oscillator is equivalent to a quantum problem with 2D parabolic potential barrier known also as 2D inverted isotropic oscillator. It turns out that this system displays the family of complex eigenvalues corresponding to the poles of analytical continuation of the resolvent operator to the complex energy plane. It is shown that this representation is more suitable than the hyperbolic one used recently by Blasone and Jizba.
NASA Astrophysics Data System (ADS)
Desmet, Cloé; Valsesia, Andrea; Colpo, Pascal; Rossi, François
2015-06-01
In the context of the extensive use of engineered nanomaterials (ENMs) in consumer products, industrial applications and nanomedicine, there is an important need of new methods for an exhaustive characterization of their physicochemical properties. Among them, surface hydrophobicity is considered as a key factor to be controlled, in particular for nanomedicine applications1,2. The proposed study demonstrates the proof-of-concept of an inexpensive characterization process, enabling the sorting of ENMs according to their hydrophobicity and surface charge, together with the classical characterization of size and shape. The detection platform is based on the use of a surface modified through plasma polymer and layer-by-layer polyelectrolyte deposition in order to generate areas of tuned surface properties to bind ENMs selectively by hydrophobic forces and electrostatic interactions. The key advantages of such a device is the decrease of time and assay costs thanks to the all-in-one characterization process and the multiplexing that could replace the use of different methods and expensive equipment to give equivalent results. In this way, the full characterization of NP could be expanded in all the areas covering NP-related applications.
Origin of energetic ions observed in the terrestrial ion foreshock : 2D full-particle simulations
NASA Astrophysics Data System (ADS)
Savoini, Philippe; Lembege, bertrand
2016-04-01
Collisionless shocks are well-known structures in astrophysical environments which dissipate bulk flow kinetic energy and accelerate large fraction of particle. Spacecrafts have firmly established the existence of the so-called terrestrial foreshock region magnetically connected to the shock and filled by two distinct populations in the quasi-perpendicular shock region (i.e. for 45r{ } ≤ quad θ Bn quad ≤ 90r{ }, where θ Bn is the angle between the shock normal and the upstream magnetic field) : (i) the field-aligned ion beams or `` FAB '' characterized by a gyrotropic distributionsout{,} and (ii) the gyro-phase bunched ions or `` GPB '' characterized by a NON gyrotropic distribution. The present work is based on the use of two dimensional PIC simulation of a curved shock and associated foreshock region where full curvature effects, time of flight effects and both electrons and ions dynamics are fully described by a self consistent approach. Our previous analysis (Savoini et Lembège, 2015) has evidenced that these two types of backstreaming populations can originate from the shock front itself without invoking any local diffusion by ion beam instabilities. Present results are focussed on individual ion trajectories and evidence that "FAB" population is injected into the foreshock mainly along the shock front whereas the "GPB" population penetrates more deeply the shock front. Such differences explain why the "FAB" population loses their gyro-phase coherency and become gyrotropic which is not the case for the "GPB". The impact of these different injection features on the energy gain for each ion population will be presented in détails. Savoini, P. and B. Lembège (2015), `` Production of nongyrotropic and gyrotropic backstreaming ion distributions in the quasi-perpendicular ion foreshock région '', J. Geophys. Res., 120, pp 7154-7171, doi = 10.1002/2015JA021018.
Melton-Celsa, Angela R; O'Brien, Alison D; Feng, Peter C H
2015-11-01
Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are food- and waterborne pathogens that are often transmitted via beef products or fresh produce. STEC strains cause both sporadic infections and outbreaks, which may result in hemorrhagic colitis and hemolytic uremic syndrome. STEC strains may elaborate Stx1, Stx2, and/or subtypes of those toxins. Epidemiological evidence indicates that STEC that produce subtypes Stx2a, Stx2c, and/or Stx2d are more often associated with serious illness. The Stx2d subtype becomes more toxic to Vero cells after incubation with intestinal mucus or elastase, a process named "activation." Stx2d is not generally found in the E. coli serotypes most commonly connected to STEC outbreaks. However, STEC strains that are stx2d positive can be isolated from foods, an occurrence that gives rise to the question of whether those food isolates are potential human pathogens. In this study, we examined 14 STEC strains from fresh produce that were stx2d positive and found that they all produced the mucus-activatable Stx2d and that a subset of the strains tested were virulent in streptomycin-treated mice. PMID:26555533
The potential of 2D Kalman filtering for soil moisture data assimilation
Technology Transfer Automated Retrieval System (TEKTRAN)
We examine the potential for parameterizing a two-dimensional (2D) land data assimilation system using spatial error auto-correlation statistics gleaned from a triple collocation analysis and the triplet of: (1) active microwave-, (2) passive microwave- and (3) land surface model-based surface soil ...
The potential energy surface and chaos in 2D Hamiltonian systems
NASA Astrophysics Data System (ADS)
Li, Jiangdan; Zhang, Suying
2011-02-01
We provide a new insight into the relationship between the geometric property of the potential energy surface and chaotic behavior of 2D Hamiltonian dynamical systems, and give an indicator of chaos based on the geometric property of the potential energy surface by defining Mean Convex Index (MCI). We also discuss a model of unstable Hamiltonian in detail, and show our results in good agreement with HBLSL's (Horwitz, Ben Zion, Lewkowicz, Schiffer and Levitan) new Riemannian geometric criterion.
Monitoring of injected CO2 using the seismic full waveform inversion for 2-D elastic VTI media
NASA Astrophysics Data System (ADS)
Kim, W. K.; Min, D. J.; KIM, S.; Shin, Y.; Moon, S.
2014-12-01
To monitor the injected CO2 in the subsurface, seismic monitoring techniques are extensively applied because of its high resolution. Among the seismic monitoring techniques, seismic full waveform inversion (FWI) has high applicability because it can delineate parameter changes by injected CO2. When seismic FWIs are applied, subsurface media can be generally assumed to be isotropic. However, most subsurface media are not isotropic, and shale is a representative anisotropic medium, particularly vertical transversely isotropic (VTI) medium, which is often encountered as a barrier to injected CO2. Thus, anisotropic properties of subsurface media are important for monitoring of injected CO2. For these issues, we need to consider anisotropy of subsurface media when seismic FWIs are applied as a monitoring tool for CO2 sequestration. In this study, we performed seismic FWI for 2-D elastic VTI media to investigate the effects of anisotropic properties in CO2 monitoring. For this numerical test, we assumed a geological model, which copies after one of CO2 storage prospects in Korea. We also applied seismic FWI algorithm for 2-D elastic isotropic media for comparison. From this comparison, we noticed that we can obtain more reliable results when we apply the anisotropic FWI algorithm. Numerical examples indicate that we should apply the anisotropic FWI algorithm rather than the isotropic FWI algorithm when we interpret seismic monitoring data acquired in anisotropic media to increase the success of monitoring for injected CO2. Our numerical results can also be used as references for real seismic monitoring of the Korea CO2 sequestration projects in the near future. Acknowledgements This work was supported by the Human Resources Development program (No. 20134010200510) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government Ministry of Trade, Industry, and Energy and by the "Development of Technology for CO2 Marine
Full potential unsteady computations including aeroelastic effects
NASA Technical Reports Server (NTRS)
Shankar, Vijaya; Ide, Hiroshi
1989-01-01
A unified formulation is presented based on the full potential framework coupled with an appropriate structural model to compute steady and unsteady flows over rigid and flexible configurations across the Mach number range. The unsteady form of the full potential equation in conservation form is solved using an implicit scheme maintaining time accuracy through internal Newton iterations. A flux biasing procedure based on the unsteady sonic reference conditions is implemented to compute hyperbolic regions with moving sonic and shock surfaces. The wake behind a trailing edge is modeled using a mathematical cut across which the pressure is satisfied to be continuous by solving an appropriate vorticity convection equation. An aeroelastic model based on the generalized modal deflection approach interacts with the nonlinear aerodynamics and includes both static as well as dynamic structural analyses capability. Results are presented for rigid and flexible configurations at different Mach numbers ranging from subsonic to supersonic conditions. The dynamic response of a flexible wing below and above its flutter point is demonstrated.
2D-DIGE proteomic analysis identifies new potential therapeutic targets for adrenocortical carcinoma
Armignacco, Roberta; Ercolino, Tonino; Canu, Letizia; Baroni, Gianna; Nesi, Gabriella; Galli, Andrea; Mannelli, Massimo; Luconi, Michaela
2015-01-01
Adrenocortical carcinoma (ACC) is a rare aggressive tumor with poor prognosis when metastatic at diagnosis. The tumor biology is still mostly unclear, justifying the limited specificity and efficacy of the anti-cancer drugs currently available. This study reports the first proteomic analysis of ACC by using two-dimensional-differential-in-gel-electrophoresis (2D-DIGE) to evaluate a differential protein expression profile between adrenocortical carcinoma and normal adrenal. Mass spectrometry, associated with 2D-DIGE analysis of carcinomas and normal adrenals, identified 22 proteins in 27 differentially expressed 2D spots, mostly overexpressed in ACC. Gene ontology analysis revealed that most of the proteins concurs towards a metabolic shift, called the Warburg effect, in adrenocortical cancer. The differential expression was validated by Western blot for Aldehyde-dehydrogenase-6-A1,Transferrin, Fascin-1,Lamin A/C,Adenylate-cyclase-associated-protein-1 and Ferredoxin-reductase. Moreover, immunohistochemistry performed on paraffin-embedded ACC and normal adrenal specimens confirmed marked positive staining for all 6 proteins diffusely expressed by neoplastic cells, compared with normal adrenal cortex. In conclusion, our preliminary findings reveal a different proteomic profile in adrenocortical carcinoma compared with normal adrenal cortex characterized by overexpression of mainly metabolic enzymes, thus suggesting the Warburg effect also occurs in ACC. These proteins may represent promising novel ACC biomarkers and potential therapeutic targets if validated in larger cohorts of patients. PMID:25691058
A linear analytical boundary element method (BEM) for 2D homogeneous potential problems
NASA Astrophysics Data System (ADS)
Friedrich, Jürgen
2002-06-01
The solution of potential problems is not only fundamental for geosciences, but also an essential part of related subjects like electro- and fluid-mechanics. In all fields, solution algorithms are needed that should be as accurate as possible, robust, simple to program, easy to use, fast and small in computer memory. An ideal technique to fulfill these criteria is the boundary element method (BEM) which applies Green's identities to transform volume integrals into boundary integrals. This work describes a linear analytical BEM for 2D homogeneous potential problems that is more robust and precise than numerical methods because it avoids numerical schemes and coordinate transformations. After deriving the solution algorithm, the introduced approach is tested against different benchmarks. Finally, the gained method was incorporated into an existing software program described before in this journal by the same author.
NASA Astrophysics Data System (ADS)
de La Barrera, Sergio; Mende, Patrick; Li, Jun; Feenstra, Randall; Lin, Yu-Chuan; Robinson, Joshua; Vishwanath, Suresh; Xing, Huili
Among the many properties that evolve as isolated 2D materials are brought together to form a heterostructure, rearrangement of charges between layers due to unintentional doping results in dipole fields at the interface, which critically affect the electronic properties of the structure. Here we report a method for directly measuring work function differences, and hence electrostatic potential variations, across the surface of 2D materials and heterostructures thereof using low energy electron microscopy (LEEM). Study of MoSe2 grown by molecular beam epitaxy on epitaxial graphene on SiC with LEEM reveals a large work function difference between the MoSe2 and the graphene, indicating charge transfer between the layers and a subsequent dipole layer. In addition to quantifying dipole effects between transition metal dichalcogenides and graphene, direct imaging of the surface, diffraction information, and the spectroscopic dependence of electron reflectivity will be discussed. This work was supported in part by the Center for Low Energy Systems Technology (LEAST), one of the six SRC STARnet Centers, sponsored by MARCO and DARPA.
NASA Astrophysics Data System (ADS)
Lembege, B.; Savoini, P.; Stienlet, J.
2013-05-01
Two distinct ion populations backstreaming into the solar wind have been clearly evidenced by various space missions within the quasi-perpendicular region of the ion foreshock located upstream of the Earth's Bow shock (i.e. for 45° ≤ Theta_Bn ≤ 90°, where Theta_Bn is the angle between the shock normal and the upstream magnetostatic field): (i) field-aligned ion beams (« FAB ») characterized by a gyrotropic distribution, and (ii) gyro-phase bunched ions («GPB »), characterized by a NON gyrotropic distribution. The origin of these backstreaming ions has not been clearly identified and is presently analyzed with the help of 2D PIC simulation of a curved shock, where full curvature effects, time of flight effects and both electrons and ions dynamics are fully described within a self consistent approach. Present simulations evidence that these two populations can be effectively created directly by the shock front without invoking microinstabilities. The analysis of both individual and statistical ion trajectories evidences that: (i) two new parameters, namely the interaction time DT_inter and distance of penetration L_depth into the shock wave, play a key role and allow to discriminate these two populations. "GPB" population is characterized by a very short interaction time (DT_inter = 1 to 2 Tci) in comparison to the "FAB" population (DT_inter = 2 Tci to 10 Tci) which moves back and forth between the upstream edge of the shock front and the overshoot, where tci is the upstream ion gyroperiod. (ii) the importance of the injection angle (i.e. the angle between the normal of the shock front and the gyration velocity when ions reach the shock) to understand how the reflection process takes place. (iii) "FAB" population drifts along the curved shock front scanning a large Theta_Bn range from 90°. (iv) "GPB" population is embedded within the "FAB" population near the shock front which explains the difficulty to identify such a population in the experimental
Potential role of CYP2D6 in the central nervous system
Cheng, Jie; Zhen, Yueying; Miksys, Sharon; Beyoğlu, Diren; Krausz, Kristopher W.; Tyndale, Rachel F.; Yu, Aiming; Idle, Jeffrey R.; Gonzalez, Frank J.
2013-01-01
Cytochrome P450 2D6 (CYP2D6) is a pivotal enzyme responsible for a major human drug oxidation polymorphism in human populations. Distribution of CYP2D6 in brain and its role in serotonin metabolism suggest this CYP2D6 may have a function in central nervous system. To establish an efficient and accurate platform for the study of CYP2D6 in vivo, a transgenic human CYP2D6 (Tg-2D6) model was generated by transgenesis in wild-type C57BL/6 (WT) mice using a P1 phage artificial chromosome clone containing the complete human CYP2D locus, including CYP2D6 gene and 5’- and 3’- flanking sequences. Human CYP2D6 was expressed not only in the liver, but also in brain. The abundance of serotonin and 5-hydroxyindoleacetic acid in brain of Tg-2D6 is higher than in WT mice either basal levels or after harmaline induction. Metabolomics of brain homogenate and cerebrospinal fluid revealed a significant up-regulation of l-carnitine, acetyl-l-carnitine, pantothenic acid, dCDP, anandamide, N-acetylglucosaminylamine, and a down-regulation of stearoyl-l-carnitine in Tg-2D6 mice compared with WT mice. Anxiety tests indicate Tg-2D6 mice have a higher capability to adapt to anxiety. Overall, these findings indicate that the Tg-2D6 mouse model may serve as a valuable in vivo tool to determine CYP2D6-involved neurophysiological metabolism and function. PMID:23614566
Schrödinger equation for non-pure dipole potential in 2D systems
NASA Astrophysics Data System (ADS)
Moumni, M.; Falek, M.
2016-07-01
In this work, we analytically study the Schrödinger equation for the (non-pure) dipolar ion potential V(r) = q/r + Dcosθ/r2, in the case of 2D systems (systems in two-dimensional Euclidean plane) using the separation of variables and the Mathieu equations for the angular part. We give the expressions of eigenenergies and eigenfunctions and study their dependence on the dipole moment D. Imposing the condition of reality on the energies En,m implies that the dipole moment must not exceed a maximum value, otherwise the corresponding bound state disappears. We also find that the s states (m = 0) can no longer exist in the system as soon as the dipole term is present.
2D multi-parameter elastic seismic imaging by frequency-domain L1-norm full waveform inversion
NASA Astrophysics Data System (ADS)
Brossier, Romain; Operto, Stéphane; Virieux, Jean
2010-05-01
Full waveform inversion (FWI) is becoming a powerful and efficient tool to derive high-resolution quantitative models of the subsurface. In the frequency-domain, computationally efficient FWI algorithms can be designed for wide-aperture acquisition geometries by limiting inversion to few discrete frequencies. However, FWI remains an ill-posed and highly non-linear data-fitting procedure that is sensitive to noise, inaccuracies of the starting model and definition of multiparameter classes. The footprint of the noise in seismic imaging is conventionally mitigated by stacking highly redundant multifold data. However, when the data redundancy is decimated in the framework of efficient frequency-domain FWI, it is essential to assess the sensitivity of the inversion to noise. The impact of the noise in FWI, when applied to decimated data sets, has been marginally illustrated in the past and least-squares minimisation has remained the most popular approach. We investigate in this study the sensitivity of frequency-domain elastic FWI to noise for realistic onshore and offshore synthetic data sets contaminated by ambient random white noise. Four minimisation functionals are assessed in the framework of frequency domain FWI of decimated data: the classical least-square norm (L2), the least-absolute-values norm (L1), and some combinations of both (the Huber and the so-called Hybrid criteria). These functionals are implemented in a massively-parallel, 2D elastic frequency-domain FWI algorithm. A two-level hierarchical algorithm is implemented to mitigate the non-linearity of the inversion in complex environments. The first outer level consists of successive inversions of frequency groups of increasing high-frequency content. This level defines a multi-scale approach while preserving some data redundancy by means of simultaneous inversion of multiple frequencies. The second inner level used complex-valued frequencies for data preconditioning. This preconditioning controls the
Hsu, Sen-Ming; Chang, Hung-Chun
2007-11-26
A full-vectorial finite element method based eigenvalue algorithm is developed to analyze the band structures of two-dimensional (2D) photonic crystals (PCs) with arbitray 3D anisotropy for in-planewave propagations, in which the simple transverse-electric (TE) or transverse-magnetic (TM) modes may not be clearly defined. By taking all the field components into consideration simultaneously without decoupling of the wave modes in 2D PCs into TE and TM modes, a full-vectorial matrix eigenvalue equation, with the square of the wavenumber as the eigenvalue, is derived. We examine the convergence behaviors of this algorithm and analyze 2D PCs with arbitrary anisotropy using this algorithm to demonstrate its correctness and usefulness by explaining the numerical results theoretically. PMID:19550864
NASA Astrophysics Data System (ADS)
Fernández-Pato, Javier; Caviedes-Voullième, Daniel; García-Navarro, Pilar
2016-05-01
One of the most difficult issues in the development of hydrologic models is to find a rigorous source of data and specific parameters to a given problem, on a given location that enable reliable calibration. In this paper, a distributed and physically based model (2D Shallow Water Equations) is used for surface flow and runoff calculations in combination with two infiltration laws (Horton and Green-Ampt) for estimating infiltration in a watershed. This technique offers the capability of assigning a local and time-dependent infiltration rate to each computational cell depending on the available surface water, soil type or vegetation. We investigate how the calibration of parameters is affected by transient distributed Shallow Water model and the complexity of the problem. In the first part of this work, we calibrate the infiltration parameters for both Horton and Green-Ampt models under flat ponded soil conditions. Then, by means of synthetic test cases, we perform a space-distributed sensitivity analysis in order to show that this calibration can be significantly affected by the introduction of topography or rainfall. In the second part, parameter calibration for a real catchment is addressed by comparing the numerical simulations with two different sets of experimental data, corresponding to very different events in terms of the rainfall volume. We show that the initial conditions of the catchment and the rainfall pattern have a special relevance in the quality of the adjustment. Hence, it is shown that the topography of the catchment and the storm characteristics affect the calibration of infiltration parameters.
Faudot, E.; Heuraux, S.; Colas, L.
2005-09-26
Understanding DC potential generation in front of ICRF antennas is crucial for long pulse high RF power systems. DC potentials are produced by sheath rectification of these RF potentials. To reach this goal, near RF parallel electric fields have to be computed in 3D and integrated along open magnetic field lines to yield a 2D RF potential map in a transverse plane. DC potentials are produced by sheath rectification of these RF potentials. As RF potentials are spatially inhomogeneous, transverse polarization currents are created, modifying RF and DC maps. Such modifications are quantified on a 'test map' having initially a Gaussian shape and assuming that the map remains Gaussian near its summit,the time behavior of the peak can be estimated analytically in presence of polarization current as a function of its width r0 and amplitude {phi}0 (normalized to a characteristic length for transverse transport and to the local temperature). A 'peaking factor' is built from the DC peak potential normalized to {phi}0, and validated with a 2D fluid code and a 2D PIC code (XOOPIC). In an unexpected way transverse currents can increase this factor. Realistic situations of a Tore Supra antenna are also studied, with self-consistent near fields provided by ICANT code. Basic processes will be detailed and an evaluation of the 'peaking factor' for ITER will be presented for a given configuration.
NASA Astrophysics Data System (ADS)
Guillamon, I.; Vieira, S.; Suderow, H.; Cordoba, R.; Sese, J.; de Teresa, J. M.; Ibarra, R.
In two dimensional (2D) systems, theory has proposed that random disorder destroys long range correlations driving a transition to a glassy state. Here, I will discuss new insights into this issue obtained through the direct visualization of the critical behaviour of a 2D superconducting vortex lattice formed in a thin film with a smooth 1D thickness modulation. Using scanning tunneling microscopy at 0.1K, we have tracked the modification in the 2D vortex arrangements induced by the 1D thickness modulation while increasing the vortex density by three orders of magnitude. Upon increasing the field, we observed a two-step order-disorder transition in the 2D vortex lattice mediated by the appearance of dislocations and disclinations and accompanied by an increase in the local vortex density fluctuations. Through a detailed analysis of correlation functions, we find that the transition is driven by the incommensurate 1D thickness modulation. We calculate the critical points and exponents and find that they are well above theoretical expectation for random disorder. Our results show that long range 1D correlations in random potentials enhance the stability range of the ordered phase in a 2D vortex lattice. Work supported by Spanish MINECO, CIG Marie Curie Grant, Axa Research Fund and FBBVA.
Correct folding of an α-helix and a β-hairpin using a polarized 2D torsional potential.
Gao, Ya; Li, Yongxiu; Mou, Lirong; Lin, Bingbing; Zhang, John Z H; Mei, Ye
2015-01-01
A new modification to the AMBER force field that incorporates the coupled two-dimensional main chain torsion energy has been evaluated for the balanced representation of secondary structures. In this modified AMBER force field (AMBER03(2D)), the main chain torsion energy is represented by 2-dimensional Fourier expansions with parameters fitted to the potential energy surface generated by high-level quantum mechanical calculations of small peptides in solution. Molecular dynamics simulations are performed to study the folding of two model peptides adopting either α-helix or β-hairpin structures. Both peptides are successfully folded into their native structures using an AMBER03(2D) force field with the implementation of a polarization scheme (AMBER03(2D)p). For comparison, simulations using a standard AMBER03 force field with and without polarization, as well as AMBER03(2D) without polarization, fail to fold both peptides successfully. The correction to secondary structure propensity in the AMBER03 force field and the polarization effect are critical to folding Trpzip2; without these factors, a helical structure is obtained. This study strongly suggests that this new force field is capable of providing a more balanced preference for helical and extended conformations. The electrostatic polarization effect is shown to be indispensable to the growth of secondary structures. PMID:26039188
Müller, Peter; Messmer, Marie; Bayer, Monika; Pfeilschifter, Josef M; Hintermann, Edith; Christen, Urs
2016-05-01
Non-alcoholic fatty liver disease (NAFLD) and its more severe development non-alcoholic steatohepatitis (NASH) are increasing worldwide. In particular NASH, which is characterized by an active hepatic inflammation, has often severe consequences including progressive fibrosis, cirrhosis, and eventually hepatocellular carcinoma (HCC). Here we investigated how metabolic liver injury is influencing the pathogenesis of autoimmune hepatitis (AIH). We used the CYP2D6 mouse model in which wild type C57BL/6 mice are infected with an Adenovirus expressing the major liver autoantigen cytochrome P450 2D6 (CYP2D6). Such mice display several features of human AIH, including interface hepatitis, formation of LKM-1 antibodies and CYP2D6-specific T cells, as well as hepatic fibrosis. NAFLD was induced with a high-fat diet (HFD). We found that pre-existing NAFLD potentiates the severity of AIH. Mice fed for 12 weeks with a HFD displayed increased cellular infiltration of the liver, enhanced hepatic fibrosis and elevated numbers of liver autoantigen-specific T cells. Our data suggest that a pre-existing metabolic liver injury constitutes an additional risk for the severity of an autoimmune condition of the liver, such as AIH. PMID:26924542
The 2-D and 3-D time marching transonic potential flow method for propfans
NASA Technical Reports Server (NTRS)
Williams, Marc H.
1988-01-01
Recent efforts concentrated on the development of aerodynamic tools for the analysis of rotors at transonic speeds and of configurations involving relative rotation. Three distinct approaches were taken: (1) extension of the lifting surface method of Williams and Hwang (1986) to relative rotation; (2) development of a time marching linear potential method for counter rotation; and (3) development of 2 and 3 dimensional finite volume potential flow schemes for single rotation. Results from each of these approaches are described.
A 2D forward and inverse code for streaming potential problems
NASA Astrophysics Data System (ADS)
Soueid Ahmed, A.; Jardani, A.; Revil, A.
2013-12-01
The self-potential method corresponds to the passive measurement of the electrical field in response to the occurrence of natural sources of current in the ground. One of these sources corresponds to the streaming current associated with the flow of the groundwater. We can therefore apply the self- potential method to recover non-intrusively some information regarding the groundwater flow. We first solve the forward problem starting with the solution of the groundwater flow problem, then computing the source current density, and finally solving a Poisson equation for the electrical potential. We use the finite-element method to solve the relevant partial differential equations. In order to reduce the number of (petrophysical) model parameters required to solve the forward problem, we introduced an effective charge density tensor of the pore water, which can be determined directly from the permeability tensor for neutral pore waters. The second aspect of our work concerns the inversion of the self-potential data using Tikhonov regularization with smoothness and weighting depth constraints. This approach accounts for the distribution of the electrical resistivity, which can be independently and approximately determined from electrical resistivity tomography. A numerical code, SP2DINV, has been implemented in Matlab to perform both the forward and inverse modeling. Three synthetic case studies are discussed.
On effective Kähler potential in N = 2, d = 3 SQED
NASA Astrophysics Data System (ADS)
Buchbinder, I. L.; Merzlikin, B. S.
2015-11-01
We compute the two-loop effective Kähler potential in three-dimensional N = 2 supersymmetric electrodynamics with Chern-Simons kinetic term for the gauge superfield. The effective action is constructed on the base of background field method with one parametric family of gauges. In such an approach, the quadratic part of quantum action mixes the gauge and matter quantum superfields yielding the complications in the computations of the loop supergraphs. To avoid this obstacle and preserve dependence on the gauge parameter we make a non-local change of quantum matter superfields after which the propagator is diagonalized, however the new vertices have appeared. We fix the suitable background and develop the efficient procedure of calculating the two-loop supergraphs with the new vertices. We compute the divergent and finite parts of the superfield effective action, find the two-loop effective Kähler potential and show that it does not depend on the gauge parameter.
2D and 3D potential flows with rotational source terms in turbomachines
NASA Astrophysics Data System (ADS)
Alkalai, K.; Leboeuf, F.
A computational method capable of treating two- and three-dimensional potential flows is developed which includes blade effects and viscosity in source terms determined over the entire flowfield considered. Details of the mathematical and numerical formulations are given, and grid generation and density calculation are discussed. Preliminary results obtained with the codes developed here are then presented, and the possibility of applying the method to more complex flows is examined.
Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal
NASA Astrophysics Data System (ADS)
Tian, Yao; Gray, Mason J.; Ji, Huiwen; Cava, R. J.; Burch, Kenneth S.
2016-06-01
Cr2Ge2Te6 has been of interest for decades, as it is one of only a few naturally forming ferromagnetic semiconductors. Recently, this material has been revisited due to its potential as a two-dimensional semiconducting ferromagnet and a substrate to induce anomalous quantum Hall states in topological insulators. However, many relevant properties of Cr2Ge2Te6 still remain poorly understood, especially the spin-phonon coupling crucial to spintronic, multiferrioc, thermal conductivity, magnetic proximity and the establishment of long range order on the nanoscale. We explore the interplay between the lattice and magnetism through high resolution micro-Raman scattering measurements over the temperature range from 10 to 325 K. Strong spin-phonon coupling effects are confirmed from multiple aspects: two low energy modes splits in the ferromagnetic phase, magnetic quasielastic scattering in the paramagnetic phase, the phonon energies of three modes show clear upturn below T C, and the phonon linewidths change dramatically below T C as well. Our results provide the first demonstration of spin-phonon coupling in a potential two-dimensional atomic crystal.
NASA Astrophysics Data System (ADS)
Liu, Shuang; Hu, Xiangyun; Xi, Yufei; Liu, Tianyou
2015-03-01
The regular grid discretization is prevalent in the inverse modeling for gravity and magnetic data. However, this subdivision strategy performs lower precision to represent the rugged observation surface. To deal with this problem, we evaluate a non-structured discretization method in which the subsurface with rolling terrain is divided into numbers of Delaunay triangular cells and each mesh has the uniform physical property distributions. The gravity and magnetic anomalies of a complex-shaped anomalous body are represented as the summaries of the single anomaly produced by each triangle field source. When inverting for the potential field data, we specify a minimization objective function composed of data constraints and then use the preconditioned conjugate gradient algorithm to iteratively solve the matrix minimization equations, where the preconditioner is determined by the distances between triangular cells and surface observers. We test our method using synthetic data; all tests return favorable results. In the case studies involving the gravity and magnetic anomalies of the Mengku and Pobei deposits in Xinjiang, northwest China, the inferred magnetite orebodies and ultrabasic rocks distributions are verified by the additional drilling and geological information. The discretization of constrained Delaunay triangulation provides an useful approach of computing and inverting the potential field data on the situations of undulate topography and complicated objects.
Association of autonomic nervous system and EEG scalp potential during playing 2D Grand Turismo 5.
Subhani, Ahmad Rauf; Likun, Xia; Saeed Malik, Aamir
2012-01-01
Cerebral activation and autonomic nervous system have importance in studies such as mental stress. The aim of this study is to analyze variations in EEG scalp potential which may influence autonomic activation of heart while playing video games. Ten healthy participants were recruited in this study. Electroencephalogram (EEG) and electrocardiogram (ECG) signals were measured simultaneously during playing video game and rest conditions. Sympathetic and parasympathetic innervations of heart were evaluated from heart rate variability (HRV), derived from the ECG. Scalp potential was measured by the EEG. The results showed a significant upsurge in the value theta Fz/alpha Pz (p<0.001) while playing game. The results also showed tachycardia while playing video game as compared to rest condition (p<0.005). Normalized low frequency power and ratio of low frequency/high frequency power were significantly increased while playing video game and normalized high frequency power sank during video games. Results showed synchronized activity of cerebellum and sympathetic and parasympathetic innervation of heart. PMID:23366661
2D Pauli Equation with Hulthén Potential in the Presence of Aharonov—Bohm Effect
NASA Astrophysics Data System (ADS)
Ferkous, N.; Bounames, A.
2013-06-01
The 2D Pauli equation with Hulthén potential for spin-1/2 particle in the presence of Aharonov—Bohm (AB) field is solved analytically, on the assumption that an effective approximation is used for the centrifugal term. Singular and regular solutions of the problem are obtained. It is shown that the AB field lifts the degeneracy of the energy levels. The range of the flux parameter for which singular solutions are allowed is modified compared to the pure AB case. When the screening parameter vanishes, it is shown that the obtained energy spectrum becomes the same as that of the Aharonov—Bohm Coulomb problem.
NASA Astrophysics Data System (ADS)
Mani, Prashant; Tyagi, Chandra Shekhar; Srivastav, Nishant
2016-03-01
In this paper the analytical solution of the 2D Poisson's equation for single gate Fully Depleted SOI (FDSOI) MOSFET's is derived by using a Green's function solution technique. The surface potential is calculated and the threshold voltage of the device is minimized for the low power consumption. Due to minimization of threshold voltage the short channel effect of device is suppressed and after observation we obtain the device is kink free. The structure and characteristics of SingleGate FDSOI MOSFET were matched by using MathCAD and silvaco respectively.
Lilliu, S.; Maragliano, C.; Hampton, M.; Elliott, M.; Stefancich, M.; Chiesa, M.; Dahlem, M. S.; Macdonald, J. E.
2013-01-01
We report a simple technique for mapping Electrostatic Force Microscopy (EFM) bias sweep data into 2D images. The method allows simultaneous probing, in the same scanning area, of the contact potential difference and the second derivative of the capacitance between tip and sample, along with the height information. The only required equipment consists of a microscope with lift-mode EFM capable of phase shift detection. We designate this approach as Scanning Probe Potential Electrostatic Force Microscopy (SPP-EFM). An open-source MATLAB Graphical User Interface (GUI) for images acquisition, processing and analysis has been developed. The technique is tested with Indium Tin Oxide (ITO) and with poly(3-hexylthiophene) (P3HT) nanowires for organic transistor applications. PMID:24284731
Supersonic full-potential methods for missile body analysis
NASA Technical Reports Server (NTRS)
Pittman, James L.
1992-01-01
Accounts are presented of representative applications to missile bodies of arbitrary shape of methods based on the steady form of the full potential equation. The NCOREL and SIMP full-potential codes are compared, and their results are evaluated for the cases of an arrow wing and a wing-body configuration. Attention is given to the effect of cross-sectional and longitudinal geometries. Comparisons of surface pressure and longitudinal force and moment data for circular and elliptic bodies have shown that the full-potential methods yielded excellent results in attached-flow conditions. Results are presented for a conical star body, waveriders, the Shuttle Orbiter, and a highly swept wing-body cruising at Mach 4.
NASA Astrophysics Data System (ADS)
Sourbier, Florent; Operto, Stéphane; Virieux, Jean; Amestoy, Patrick; L'Excellent, Jean-Yves
2009-03-01
This is the first paper in a two-part series that describes a massively parallel code that performs 2D frequency-domain full-waveform inversion of wide-aperture seismic data for imaging complex structures. Full-waveform inversion methods, namely quantitative seismic imaging methods based on the resolution of the full wave equation, are computationally expensive. Therefore, designing efficient algorithms which take advantage of parallel computing facilities is critical for the appraisal of these approaches when applied to representative case studies and for further improvements. Full-waveform modelling requires the resolution of a large sparse system of linear equations which is performed with the massively parallel direct solver MUMPS for efficient multiple-shot simulations. Efficiency of the multiple-shot solution phase (forward/backward substitutions) is improved by using the BLAS3 library. The inverse problem relies on a classic local optimization approach implemented with a gradient method. The direct solver returns the multiple-shot wavefield solutions distributed over the processors according to a domain decomposition driven by the distribution of the LU factors. The domain decomposition of the wavefield solutions is used to compute in parallel the gradient of the objective function and the diagonal Hessian, this latter providing a suitable scaling of the gradient. The algorithm allows one to test different strategies for multiscale frequency inversion ranging from successive mono-frequency inversion to simultaneous multifrequency inversion. These different inversion strategies will be illustrated in the following companion paper. The parallel efficiency and the scalability of the code will also be quantified.
Are the Animal Welfare Acts achieving their full potential?
2016-07-30
A decade has passed since the Animal Welfare Act 2006 and the Animal Health and Welfare (Scotland) Act 2006 became law. A session at this year's Animal Welfare Foundation Discussion Forum examined the successes and limitations of the Acts and whether they are working to their full potential. Further discussions centred on the keeping of non-traditional companion animals as pets and whether greater regulation of the pet trade is needed. Laura Honey reports. PMID:27474055
NASA Astrophysics Data System (ADS)
Bernauer, F.; Hürkamp, K.; Rühm, W.; Tschiersch, J.
2015-03-01
Detailed characterization and classification of precipitation is an important task in atmospheric research. Line scanning 2-D-video disdrometer technique is well established for rain observations. The two orthogonal views taken of each hydrometeor passing the sensitive area of the instrument qualify this technique especially for detailed characterization of non symmetric solid hydrometeors. However, in case of solid precipitation problems related to the matching algorithm have to be considered and the user must be aware of the limited spacial resolution when size and shape descriptors are analyzed. This work has the aim of clarifying the potential of 2-D-video disdrometer technique in deriving size, velocity and shape parameters from single recorded pictures. The need of implementing a matching algorithm suitable for mixed and solid phase precipitation is highlighted as an essential step in data evaluation. For this purpose simple reproducible experiments with solid steel spheres and irregularly shaped styrofoam particles are conducted. Self-consistency of shape parameter measurements is tested in 40 cases of real snow fall. As result it was found, that reliable size and shape characterization with a relative standard deviation of less than 5% is only possible for particles larger than 1 mm. For particles between 0.5 and 1.0 mm the relative standard deviation can grow up to 22% for the volume, 17% for size parameters and 14% for shape descriptors. Testing the adapted matching algorithm with a reproducible experiment with styrofoam particles a mismatch probability of less than 2.5% was found. For shape parameter measurements in case of real solid phase precipitation the 2DVD shows self-consistent behavior.
NASA Astrophysics Data System (ADS)
Sourbier, F.; Operto, S.; Virieux, J.
2006-12-01
We present a distributed-memory parallel algorithm for 2D visco-acoustic full-waveform inversion of wide-angle seismic data. Our code is written in fortran90 and use MPI for parallelism. The algorithm was applied to real wide-angle data set recorded by 100 OBSs with a 1-km spacing in the eastern-Nankai trough (Japan) to image the deep structure of the subduction zone. Full-waveform inversion is applied sequentially to discrete frequencies by proceeding from the low to the high frequencies. The inverse problem is solved with a classic gradient method. Full-waveform modeling is performed with a frequency-domain finite-difference method. In the frequency-domain, solving the wave equation requires resolution of a large unsymmetric system of linear equations. We use the massively parallel direct solver MUMPS (http://www.enseeiht.fr/irit/apo/MUMPS) for distributed-memory computer to solve this system. The MUMPS solver is based on a multifrontal method for the parallel factorization. The MUMPS algorithm is subdivided in 3 main steps: a symbolic analysis step that performs re-ordering of the matrix coefficients to minimize the fill-in of the matrix during the subsequent factorization and an estimation of the assembly tree of the matrix. Second, the factorization is performed with dynamic scheduling to accomodate numerical pivoting and provides the LU factors distributed over all the processors. Third, the resolution is performed for multiple sources. To compute the gradient of the cost function, 2 simulations per shot are required (one to compute the forward wavefield and one to back-propagate residuals). The multi-source resolutions can be performed in parallel with MUMPS. In the end, each processor stores in core a sub-domain of all the solutions. These distributed solutions can be exploited to compute in parallel the gradient of the cost function. Since the gradient of the cost function is a weighted stack of the shot and residual solutions of MUMPS, each processor
On Approximate Factorization Schemes for Solving the Full Potential Equation
NASA Technical Reports Server (NTRS)
Holst, Terry L.
1997-01-01
An approximate factorization scheme based on the AF2 algorithm is presented for solving the three-dimensional full potential equation for the transonic flow about isolated wings. Two spatial discretization variations are presented, one using a hybrid first-order/second-order-accurate scheme and the second using a fully second-order-accurate scheme. The present algorithm utilizes a C-H grid topology to map the flow field about the wing. One version of the AF2 iteration scheme is used on the upper wing surface and another slightly modified version is used on the lower surface. These two algorithm variations are then connected at the wing leading edge using a local iteration technique. The resulting scheme has improved linear stability characteristics and improved time-like damping characteristics relative to previous implementations of the AF2 algorithm. The presentation is highlighted with a grid refinement study and a number of numerical results.
A Molecular Full-Potential LMTO Calculation for Copper Clusters
NASA Astrophysics Data System (ADS)
Datta, Radhika Prosad; Banerjea, Amitava; Mookerjee, Abhijit; Bhattacharyya, A. K.
We study the electronic properties of small (10-20 atoms) copper clusters using the newly-developed molecular full-potential linearized muffin-tin orbital two-centre-fit (TCF) method of Methfessel and van Schilfgaarde. The geometric structures of the clusters had earlier been determined by us through simulated annealing using the Equivalent Crystal Theory to compute total energies. We report the variation of the binding energy, as obtained from the TCF calculations, with cluster size and compare these to the binding energies determined, for the same structures, from the ECT. We also show the variation of the HOMO-LUMO gap with cluster size, and the pseudo-density of states for select cluster sizes.
Li, Changtian; Zhang, Changsheng; Li, Junlai; Cao, Xiaolin; Song, Danfei
2016-07-01
2-D Shear wave elastography (SWE) imaging is widely used in clinical practice, and some researchers have applied this technique in the evaluation of neonatal brains. However, the immediate and long-term impacts of dynamic radiation force exposure on the neonatal central nervous system remain unknown. In this study, we exposed neonatal mice to 2-D SWE scanning for 10 min, 20 min and 30 min under diagnostic mode (mechanical index [MI]: 1.3; thermal index [TI]: 0.5), respectively. For the control group, the neonatal mice were sham irradiated for 30 min with the machine powered off. Their brains were collected and analyzed using histologic staining and western blot analysis at 24 h and 3 mo after the 2-D SWE scanning. The Morris water maze (MWM) test was used to assess learning and memory function of the mice at 3 mo of age. The results indicated that using 2-D SWE in evaluating brains of neonatal mice does not cause detectable histologic changes, nor does it have long-term effects on their learning and memory abilities. However, the PI3 K/AKT/mTOR pathway was disturbed when the 2-D SWE scanning lasted for more than 30 min, and the expression of p-PKCa was suppressed by 10 min or more in 2-D SWE scanning. Although these injuries may be self-repaired as the mice grow, more attention should be paid to the scanning duration when applying 2-D-SWE elastography in the assessment of neonatal brains. PMID:27112914
A fast, time-accurate unsteady full potential scheme
NASA Technical Reports Server (NTRS)
Shankar, V.; Ide, H.; Gorski, J.; Osher, S.
1985-01-01
The unsteady form of the full potential equation is solved in conservation form by an implicit method based on approximate factorization. At each time level, internal Newton iterations are performed to achieve time accuracy and computational efficiency. A local time linearization procedure is introduced to provide a good initial guess for the Newton iteration. A novel flux-biasing technique is applied to generate proper forms of the artificial viscosity to treat hyperbolic regions with shocks and sonic lines present. The wake is properly modeled by accounting not only for jumps in phi, but also for jumps in higher derivatives of phi, obtained by imposing the density to be continuous across the wake. The far field is modeled using the Riemann invariants to simulate nonreflecting boundary conditions. The resulting unsteady method performs well which, even at low reduced frequency levels of 0.1 or less, requires fewer than 100 time steps per cycle at transonic Mach numbers. The code is fully vectorized for the CRAY-XMP and the VPS-32 computers.
Is the full potential of the biopharmaceutics classification system reached?
Bergström, Christel A S; Andersson, Sara B E; Fagerberg, Jonas H; Ragnarsson, Gert; Lindahl, Anders
2014-06-16
In this paper we analyse how the biopharmaceutics classification system (BCS) has been used to date. A survey of the literature resulted in a compilation of 242 compounds for which BCS classes were reported. Of these, 183 compounds had been reported to belong to one specific BCS class whereas 59 compounds had been assigned to multiple BCS classes in different papers. Interestingly, a majority of the BCS class 2 compounds had fraction absorbed (FA) values >85%, indicating that they were completely absorbed after oral administration. Solubility was computationally predicted at pH 6.8 for BCS class 2 compounds to explore the impact of the pH of the small intestine, where most of the absorption occurs, on the solubility. In addition, the solubilization capacity of lipid aggregates naturally present in the intestine was studied computationally and experimentally for a subset of 12 compounds. It was found that all acidic compounds with FA>85% were completely dissolved in the pH of the small intestine. Further, lipids at the concentration used in fasted state simulated intestinal fluid (FaSSIF) dissolved the complete dose given of the most lipophilic (logD6.5>3) compounds studied. Overall, biorelevant dissolution media (pure buffer of intestinal pH or FaSSIF) identified that for 20 of the 29 BCS class 2 compounds with FA>85% the complete dose given orally would be dissolved. These results indicate that a more relevant pH restriction for acids and/or dissolution medium with lipids present better forecast solubility-limited absorption in vivo than the presently used BCS solubility criterion. The analysis presented herein further strengthens the discussion on the requirement of more physiologically relevant dissolution media for the in vitro solubility classification performed to reach the full potential of the BCS. PMID:24075971
ERIC Educational Resources Information Center
Lackovic, Natasa; Crook, Charles; Cobb, Sue; Shalloe, Sally; D'Cruz, Mirabelle
2015-01-01
Background: There is much to be realised in the educational potential of national and world heritage sites. Such sites need to be supported in sharing their resources with a wide and international public, especially within formal education. Two-dimensional (2D) and three-dimensional (3D) heritage site visualisations could serve this need. Our…
DDPH, a novel antihypertensive agent, is a potential dual inhibitor of hepatic CYP2D and CYP3A.
Zhu, Yinsong; Hu, Jiong; He, Wenjuan; Gao, Xiujuan; Ren, Ping; Chen, Hui
2016-03-01
DDPH (1-(2, 6-dimethylphenoxy)-2-(3, 4-dimethoxyphenylethylamino) propane hydrochloride) is a promising novel antihypertensive agent, with potent antihypertensive, neuroprotective and cardioprotective effects. This study aimed to investigate the effects of DDPH on the expression and activity of hepatic cytochrome P450 (CYP) isoforms and evaluate the metabolic drug-drug interactions of DDPH with propafenone. Our results showed that orally administered DDPH (12.5-50 mg/kg/d) for 7 days significantly inhibited CYP2D1 and CYP3A1 activity and mRNA and protein expression but weakly increased CYP1A2 activity and expression in rats. Enzyme kinetics studies showed that DDPH was a competitive inhibitor of CYP2D1 and mixed inhibitor of CYP3A1 in rat liver microsomes with Ki values of 3.70 ± 0.42 μM and 4.79 ± 1.10 μM respectively. With human liver microsomes, DDPH was a noncompetitive inhibitor of CYP2D6 (Ki = 0.85 ± 0.06 μM) and mixed inhibitor of CYP3A (Ki = 2.15 ± 0.41 μM). Further in vivo study showed that oral administration of DDPH (12.5-50 mg/kg/d) for 7 days in rats significantly increased the area under the plasma concentration-time curve (AUC) of propafenone by 25.4%-63.9%, with a concomitant decrease in the plasma clearance. In conclusion, the results indicated that DDPH inhibited CYP2D and CYP3A activities and down-regulated their protein expression and mRNA transcription. DDPH might cause metabolic drug-drug interactions through modulation of the activity and expression of CYP2D and CYP3A. This information could be important in the prediction of possible drug-drug interactions as well as for the effective therapy and the limitation of toxicity of DDPH in clinical practice. PMID:26827781
Wake coupling to full potential rotor analysis code
NASA Technical Reports Server (NTRS)
Torres, Francisco J.; Chang, I-Chung; Oh, Byung K.
1990-01-01
The wake information from a helicopter forward flight code is coupled with two transonic potential rotor codes. The induced velocities for the near-, mid-, and far-wake geometries are extracted from a nonlinear rigid wake of a standard performance and analysis code. These, together with the corresponding inflow angles, computation points, and azimuth angles, are then incorporated into the transonic potential codes. The coupled codes can then provide an improved prediction of rotor blade loading at transonic speeds.
Examining the Full Potential of the Extended School
ERIC Educational Resources Information Center
Orchard, Linda
2007-01-01
This paper describes a project aimed at helping children and their families achieve their potential. It is based in an area of high social disadvantage. The authors explain how parenting classes held at a community college (a comprehensive school with provision for adult education), have led to the development of a suite of courses leading to…
Full-potential modeling of blade-vortex interactions
NASA Technical Reports Server (NTRS)
Jones, H. E.; Caradonna, F. X.
1986-01-01
A comparison is made of four different models for predicting the unsteady loading induced by a vortex passing close to an airfoil. (1) The first model approximates the vortex effect as a change in the airfoil angle of attack. (2) The second model is related to the first but, instead of imposing only a constant velocity on the airfoil, the distributed effect of the vortex is computed and used. This is analogous to a lifting surface method. (3) The third model is to specify a branch cut discontinuity in the potential field. The vortex is modeled as a jump in potential across the branch cut, the edge of which represents the center of the vortex. (4) The fourth method models the vortex expressing the potential as the sum of a known potential due to the vortex and an unknown perturbation due to the airfoil. The purpose of the current study is to investigate the four vortex models described above and to determine their relative merits and suitability for use in large three-dimensional codes.
Sánchez-Iglesias, Santiago; García-Solaesa, Virginia; García-Berrocal, Belén; Sanchez-Martín, Almudena; Lorenzo-Romo, Carolina; Martín-Pinto, Tomás; Gaedigk, Andrea; González-Buitrago, José Manuel; Isidoro-García, María
2016-02-01
One of the main concerns in psychiatric care is safety related to drug management. Pharmacogenetics provides an important tool to assess causes that may have contributed the adverse events during psychiatric therapy. This study illustrates the potential of pharmacogenetics to identify those patients for which pharmacogenetic-guided therapy could be appropriate. It aimed to investigate CYP2D6 genotype in our psychiatric population to assess the value of introducing pharmacogenetics as a primary improvement for predicting side effects.A broad series of 224 psychiatric patients comprising psychotic disorders, depressive disturbances, bipolar disorders, and anxiety disorders was included. The patients were genotyped with the AmpliChip CYP450 Test to analyzing 33 allelic variants of the CYP2D6 gene.All bipolar patients with poor metabolizer status showed maniac switching when CYP2D6 substrates such as selective serotonin reuptake inhibitors were prescribed. No specific patterns were identified for adverse events for other disorders.We propose to utilize pharmacogenetic testing as an intervention to aid in the identification of patients who are at risk of developing affective switching in bipolar disorder treated with selective serotonin reuptake inhibitors, CYP2D6 substrates, and inhibitors. PMID:26871771
Sánchez-Iglesias, Santiago; García-Solaesa, Virginia; García-Berrocal, Belén; Sanchez-Martín, Almudena; Lorenzo-Romo, Carolina; Martín-Pinto, Tomás; Gaedigk, Andrea; González-Buitrago, José Manuel; Isidoro-García, María
2016-01-01
Abstract One of the main concerns in psychiatric care is safety related to drug management. Pharmacogenetics provides an important tool to assess causes that may have contributed the adverse events during psychiatric therapy. This study illustrates the potential of pharmacogenetics to identify those patients for which pharmacogenetic-guided therapy could be appropriate. It aimed to investigate CYP2D6 genotype in our psychiatric population to assess the value of introducing pharmacogenetics as a primary improvement for predicting side effects. A broad series of 224 psychiatric patients comprising psychotic disorders, depressive disturbances, bipolar disorders, and anxiety disorders was included. The patients were genotyped with the AmpliChip CYP450 Test to analyzing 33 allelic variants of the CYP2D6 gene. All bipolar patients with poor metabolizer status showed maniac switching when CYP2D6 substrates such as selective serotonin reuptake inhibitors were prescribed. No specific patterns were identified for adverse events for other disorders. We propose to utilize pharmacogenetic testing as an intervention to aid in the identification of patients who are at risk of developing affective switching in bipolar disorder treated with selective serotonin reuptake inhibitors, CYP2D6 substrates, and inhibitors. PMID:26871771
Ekama, G A; Marais, P
2004-02-01
The applicability of the one-dimensional idealized flux theory (1DFT) for the design of secondary settling tanks (SSTs) is evaluated by comparing its predicted maximum surface overflow (SOR) and solids loading (SLR) rates with that calculated with the two-dimensional computational fluid dynamics model SettlerCAD using as a basis 35 full-scale SST stress tests conducted on different SSTs with diameters from 30 to 45m and 2.25-4.1m side water depth (SWD), with and without Stamford baffles. From the simulations, a relatively consistent pattern appeared, i.e. that the 1DFT can be used for design but its predicted maximum SLR needs to be reduced by an appropriate flux rating, the magnitude of which depends mainly on SST depth and hydraulic loading rate (HLR). Simulations of the Watts et al. (Water Res. 30(9)(1996)2112) SST, with doubled SWDs and the Darvill new (4.1m) and old (2.5m) SSTs with interchanged depths, were run to confirm the sensitivity of the flux rating to depth and HLR. Simulations with and without a Stamford baffle were also performed. While the design of the internal features of the SST, such as baffling, has a marked influence on the effluent SS concentration while the SST is underloaded, these features appeared to have only a small influence on the flux rating, i.e. capacity, of the SST. Until more information is obtained, it would appear from the simulations that the flux rating of 0.80 of the 1DFT maximum SLR recommended by Ekama and Marais (Water Pollut. Control 85(1)(1986)101) remains a reasonable value to apply in the design of full-scale SSTs-for deep SSTs (4m SWD) the flux rating could be increased to 0.85 and for shallow SSTs (2.5m SWD) decreased to 0.75. It is recommended that (i) while the apparent interrelationship between SST flux rating and depth suggests some optimization of the volume of the SST, this be avoided and (ii) the depth of the SST be designed independently of the surface area as is usually the practice and once selected, the
NASA Astrophysics Data System (ADS)
Martin, T. P.; Schultz, A.
2012-12-01
understand the existing baseline subsurface resistivity structure at the Newberry site prior to well stimulation, magnetotelluric (MT) data will be collected in late July 2012 using two long period (1 Hz sampling) Narod Geophysics NIMS MT instruments along with EarthScope MT data aligned in a ~210 km long N-S profile centered on the stimulation zone. A 2-D inverse model will be obtained from the MT data set. The goal of this investigation is to determine the variations in the electrical resistivity in the mid-to-lower crust beneath the western flank of the caldera, providing a deeper view of putative heat sources than existing studies in this
Vijayakumar, Thangavel Mahalingam; Kumar, Ramasamy Mohan; Agrawal, Aruna; Dubey, Govind Prasad; Ilango, Kaliappan
2015-07-01
Cytochrome P450 (CYP450) inhibition by the bioactive molecules of dietary supplements or herbal products leading to greater potential for toxicity of co-administered drugs. The present study was aimed to compare the inhibitory potential of selected common dietary bioactive molecules (Gallic acid, Ellagic acid, β-Sitosterol, Stigmasterol, Quercetin and Rutin) on CYP3A4 and CYP2D6 to assess safety through its inhibitory potency and to predict interaction potential with co-administered drugs. CYP450-CO complex assay was carried out for all the selected dietary bioactive molecules in isolated rat microsomes. CYP450 concentration of the rat liver microsome was found to be 0.474 nmol/mg protein, quercetin in DMSO has shown maximum inhibition on CYP450 (51.02 ± 1.24 %) but less when compared with positive control (79.02 ± 1.61 %). In high throughput fluorometric assay, IC50 value of quercetin (49.08 ± 1.02-54.36 ± 0.85 μg/ml) and gallic acid (78.46 ± 1.32-83.84 ± 1.06 μg/ml) was lower than other bioactive compounds on CYP3A4 and CYP2D6 respectively but it was higher than positive controls (06.28 ± 1.76-07.74 ± 1.32 μg/ml). In comparison of in vitro inhibitory potential on CYP3A4 and CYP2D6, consumption of food or herbal or dietary supplements containing quercetin and gallic acid without any limitation should be carefully considered when narrow therapeutic drugs are administered together. PMID:26139922
Wang, Y Y; Kawasaki, M; Bruley, J; Gribelyuk, M; Domenicucci, A; Gaudiello, J
2004-11-01
A variable magnification electron holography, applicable for two-dimensional (2-D) potential mapping of semiconductor devices, employing a dual-lens imaging system is described. Imaging operation consists of a virtual image formed by the objective lens (OL) and a real image formed in a fixed imaging plane by the objective minilens. Wide variations in field of view (100-900 nm) and fringe spacing (0.7-6 nm) were obtained using a fixed biprism voltage by varying the total magnification of the dual OL system. The dual-lens system allows fringe width and spacing relative to the object to be varied roughly independently from the fringe contrast, resulting in enhanced resolution and sensitivity. The achievable fringe width and spacing cover the targets needed for devices in the semiconductor technology road map from the 350 to 45 nm node. Two-D potential maps for CMOS devices with 220 and 70 nm gate lengths were obtained. PMID:15450653
NASA Astrophysics Data System (ADS)
Buchachenko, A. A.; Grinev, T. A.; Kłos, J.; Bieske, E. J.; Szczȩśniak, M. M.; Chałasiński, G.
2003-12-01
Three-dimensional potential energy and dipole moment surfaces of the Cl--H2 system are calculated ab initio by means of a coupled cluster method with single and double excitations and noniterative correction to triple excitations with augmented correlation consistent quadruple-zeta basis set supplemented with bond functions, and represented in analytical forms. Variational calculations of the energy levels up to the total angular momentum J=25 provide accurate estimations of the measured rotational spectroscopic constants of the ground van der Waals levels n=0 of the Cl-⋯H2/D2 complexes although they underestimate the red shifts of the mid-infrared spectra with v=0→v=1 vibrational excitation of the monomer. They also attest to the accuracy of effective radial interaction potentials extracted previously from experimental data using the rotational RKR procedure. Vibrational predissociation of the Cl-⋯H2/D2(v=1) complexes is shown to follow near-resonant vibrational-to-rotational energy transfer mechanism so that more than 97% of the product monomers are formed in the highest accessible rotational level. This mechanism explains the strong variation of the predissociation rate with isotopic content and nuclear spin form of the complex. Strong deviation of the observed relative abundances of ortho and para forms of the complexes from those of the monomers is qualitatively explained by the secondary ligand exchange reactions in the ionic beam, within the simple thermal equilibrium model. Positions and intensities of the hot v=0, n=1→v=1, n=1 and combination v=0, n=0→v=1, n=1 bands are predicted, and implications to the photoelectron spectroscopy of the complex are briefly discussed.
Hsu, Sen-ming; Chang, Hung-chun
2008-12-22
To effectively investigate the fundamental characteristics of two-dimensional (2D) photonic crystals (PCs) with arbitrary 3D material anisotropy under the out-of-plane wave propagation, we establish a full-vectorial finite element method based eigenvalue algorithm to perform related analysis correctly. The band edge diagrams can be conveniently constructed from the band structures of varied propagation constants obtained from the algorithm, which is helpful for the analysis and design of photonic ban gap (PBG) fibers. Several PCs are analyzed to demonstrate the correctness of this numerical model. Our analysis results for simple PCs are checked with others' ones using different methods, including the transfer matrix method, the finite-difference frequency-domain (FDFD) method, and the plane-wave expansion method. And the validity of those for the most complex PC with arbitrary 3D anisotropy is supported by related liquid-crystal-filled PBG fiber mode analysis, which demonstrates the dependence of transmission properties on the PBGs, employing a full-vectorial finite element beam propagation method (FE-BPM). PMID:19104565
Campos, Fernando O.; Wiener, Thomas; Prassl, Anton J.; Ahammer, Helmut; Plank, Gernot; dos Santos, Rodrigo Weber; Sánchez-Quintana, Damián; Hofer, Ernst
2014-01-01
In experiments with cardiac tissue, local conduction is described by waveform analysis of the derivative of the extracellular potential Φ.e and by the loop morphology of the near-field strength E (the components of the electric field parallel and very close to the tissue surface). The question arises whether the features of these signals can be used to quantify the degree of fibrosis in the heart. A computer model allows us to study the behavior of electric signals at the endocardium with respect to known configurations of microstructure which can not be detected during the electrophysiological experiments. This work presents a 2D-computer model with sub-cellular resolution of atrial micro-conduction in the rabbit heart. It is based on the monodomain equations and digitized histographs from tissue slices obtained post-experimentum. It could be shown that excitation spread in densely coupled regions produces uniform and anisotropic conduction. In contrast, zones with parallel fibers separated by uncoupling interstitial space or connective tissue may show uniform or complex signals depending on pacing site. These results suggest that the analysis of Φ.e and E combined with multi-site pacing could be used to characterize the type and the size of fibrosis. PMID:21096441
NASA Astrophysics Data System (ADS)
Wang, Dong; Zhang, Qiaosheng; Li, Yue; Wang, Yiwen; Zhu, Junming; Zhang, Shaomin; Zheng, Xiaoxiang
2014-06-01
Objective. Many serious concerns exist in the long-term stability of brain-machine interfaces (BMIs) based on spike signals (single unit activity, SUA; multi unit activity, MUA). Some studies showed local field potentials (LFPs) could offer a stable decoding performance. However, the decoding stability of LFPs was examined only when high quality spike signals were recorded. Here we aim to examine the long-term decoding stability of LFPs over a larger time scale when the quality of spike signals was from good to poor or even no spike was recorded. Approach. Neural signals were collected from motor cortex of three monkeys via silicon arrays over 230, 290 and 690 days post-implantation when they performed 2D center out task. To compare long-term stability between LFPs and spike signals, we examined them in neural signals characteristics, directional tuning properties and offline decoding performance, respectively. Main results. We observed slow decreasing trends in the number of LFP channels recorded and mean LFP power in different frequency bands when spike signals quality decayed over time. The number of significantly directional tuning LFP channels decreased more slowly than that of tuning SUA and MUA. The variable preferred directions for the same signal features across sessions indicated non-stationarity of neural activity. We also found that LFPs achieved better decoding performance than SUA and MUA in retrained decoder when the quality of spike signals seriously decayed. Especially, when no spike was recorded in one monkey after 671 days post-implantation, LFPs still provided some kinematic information. In addition, LFPs outperformed MUA in long-term decoding stability in a static decoder. Significance. Our results suggested that LFPs were more durable and could provide better decoding performance when spike signals quality seriously decayed. It might be due to their resistance to recording degradation and their high redundancy among channels.
Numerical computation of transonic flow governed by the full-potential equation
NASA Technical Reports Server (NTRS)
Holst, T. L.
1983-01-01
Numerical solution techniques for solving transonic flow fields governed by the full potential equation are discussed. In a general sense relaxation schemes suitable for the numerical solution of elliptic partial differential equations are presented and discussed with emphasis on transonic flow applications. The presentation can be divided into two general categories: An introductory treatment of the basic concepts associated with the numerical solution of elliptic partial differential equations and a more advanced treatment of current procedures used to solve the full potential equation for transonic flow fields. The introductory material is presented for completeness and includes a brief introduction (Chapter 1), governing equations (Chapter 2), classical relaxation schemes (Chapter 3), and early concepts regarding transonic full potential equation algorithms (Chapter 4).
Comparison of the full potential and Euler formulations for computing transonic airfoil flows
NASA Technical Reports Server (NTRS)
Flores, J.; Barton, J.; Holst, T. L.; Pulliam, T.
1984-01-01
A quantitative comparison between the Euler and full potential formulations with respect to speed and accuracy is presented. The robustness of the codes used is tested by a number of transonic airfoil cases. The computed results are from four transonic airfoil computer codes. The full potential codes use fully implicit iteration algorithms. The first Euler code uses a fully implicit ADI iteration scheme. The second Euler code uses an explicit Runge Kutta time stepping algorithm which is enhanced by a multigrid convergence acceleration scheme. Quantitative comparisons are made using various plots of lift coefficient versus the average mesh spacing along the airfoil. Besides yielding an asymptotic limit to the lift coefficient, these results also demonstrate the truncation error behavior of the various codes. Quantitative conclusions regarding the full potential and Euler formulations with respect to accuracy, speed, and robustness can be presented.
Entropy condition satisfying approximations for the full potential equations of transonic flow
NASA Technical Reports Server (NTRS)
Osher, S.; Whitlow, W., Jr.; Hafez, M. M.
1984-01-01
A class of conservative difference approximations for the steady full potential equation was presented. They are, in general, easier to program than the usual density biasing algorithms, and in fact, differ only slightly from them. Rigorous proof indicated that these new schemes satisfied a new discrete entropy inequality, which ruled out expansion shocks, and that they have sharp, steady, discrete shocks. A key tool in the analysis is the construction of a new entropy inequality for the full potential equation itself. Results of some numerical experiments using the new schemes are presented.
Entropy condition satisfying approximations for the full potential equation of transonic flow
NASA Technical Reports Server (NTRS)
Osher, S.; Hafez, M.; Whitlow, W., Jr.
1985-01-01
A class of conservative difference approximations for the steady full potential equation was presented. They are, in general, easier to program than the usual density biasing algorithms, and in fact, differ only slightly from them. Rigorous proof indicated that these new schemes satisfied a new discrete entropy inequality, which ruled out expansion shocks, and that they have sharp, steady, discrete shocks. A key tool in the analysis is the construction of a new entropy inequality for the full potential equation itself. Results of some numerical experiments using the new schemes are presented.
NASA Technical Reports Server (NTRS)
Toncich, S. S.; Collin, R. E.; Bhasin, K. B.
1993-01-01
A technique for a full wave characterization of microstrip open end discontinuities fabricated on uniaxial anisotropic substrates using potential theory is presented. The substrate to be analyzed is enclosed in a cutoff waveguide, with the anisotropic axis aligned perpendicular to the air-dielectric interface. A full description of the sources on the microstrip line is included with edge conditions built in. Extention to other discontinuities is discussed.
Inc., Geostellar,
2012-02-15
The WV Team will design and demonstrate a complete set of systems and processes for automating the identification of residential and light commercial solar opportunities, evaluating project finance options, securing permits and arranging for interconnections to the utility grid. These operations will be supported by the predictive qualification and feasibility of residential and light commercial solar energy opportunities in WV based on the current solar LCOE and potential state-wide policy initiatives. Through the WV Department of Commerce and its Division of Energy, the WV Team will coordinate with all 55 county development authorities in West Virginia, as well as a number of local and municipal authorities responsible for zoning and building code ordinances to support and implement a statewide, integrated set of regulations and administrative services. Additionally the WV Team will work with the State administration and legislature to develop incentives that will promote the financing of residential and light commercial solar projects.
How to Help Children with Learning Differences Reach Their Full Potential
ERIC Educational Resources Information Center
Lavoie, Theresa
2008-01-01
This article is the third part of a 10-part series that explores Attention Deficit Hyperactivity Disorder (ADHD). It offers and discusses tips on how to help children with learning differences reach their full potential. These include: (1) start with good nutrition; (2) be sure your child is exercising; (3) make sure your child is getting enough…
A new consistent spatial differencing scheme for the transonic full-potential equation
NASA Technical Reports Server (NTRS)
Flores, J.; Holst, T. L.; Kwak, D.; Batiste, D. M.
1983-01-01
A new spatial differencing scheme for the transonic full-potential equation in conservative form has been developed. This scheme guarantees zero truncation error on any curvilinear mesh for freestream flows in either two- or three-space dimensions. Solutions obtained with this new differencing scheme, away from freestream regions, exhibit greatly improved accuracy, especially for nonsmooth or singular meshes.
Numerical solution of the full potential equation using a chimera grid approach
NASA Technical Reports Server (NTRS)
Holst, Terry L.
1995-01-01
A numerical scheme utilizing a chimera zonal grid approach for solving the full potential equation in two spatial dimensions is described. Within each grid zone a fully-implicit approximate factorization scheme is used to advance the solution one interaction. This is followed by the explicit advance of all common zonal grid boundaries using a bilinear interpolation of the velocity potential. The presentation is highlighted with numerical results simulating the flow about a two-dimensional, nonlifting, circular cylinder. For this problem, the flow domain is divided into two parts: an inner portion covered by a polar grid and an outer portion covered by a Cartesian grid. Both incompressible and compressible (transonic) flow solutions are included. Comparisons made with an analytic solution as well as single grid results indicate that the chimera zonal grid approach is a viable technique for solving the full potential equation.
Relaxation and approximate factorization methods for the unsteady full potential equation
NASA Technical Reports Server (NTRS)
Shankar, V.; Ide, H.; Gorski, J.
1984-01-01
The unsteady form of the full potential equation is solved in conservation form, using implicit methods based on approximate factorization and relaxation schemes. A local time linearization for density is introduced to enable solution to the equation in terms of phi, the velocity potential. A novel flux-biasing technique is applied to generate proper forms of the artificial viscosity, to treat hyperbolic regions with shocks and sonic lines present. The wake is properly modeled by accounting not only for jumps in phi, but also for jumps in higher derivatives of phi obtained from requirements of density continuity. The far field is modeled using the Riemann invariants to simulate nonreflecting boundary conditions. Results are presented for flows over airfoils, cylinders, and spheres. Comparisons are made with available Euler and full potential results.
Kumar, Atul; Ahmad, Pervez; Maurya, Ram Awatar; Singh, A B; Srivastava, Arvind K
2009-01-01
A series of 2-aryl-naphtho[1,2-d]oxazole derivatives have been synthesized and evaluated for PTP-1B inhibitory activity. The compounds have been screened in vivo for antidiabetic activity under sucrose loaded model (SLM), sucrose-challenged streptozotocin-induced diabetic rat model (STZ-S) and db/db mice model. Compounds 8 and 12 have shown promising PTP-1B inhibitory activity, significant antidiabetic activity, moderate lipid and triglyceride lowering activity. PMID:18436346
NASA Astrophysics Data System (ADS)
Rexer, Moritz; Hirt, Christian
2015-09-01
Classical degree variance models (such as Kaula's rule or the Tscherning-Rapp model) often rely on low-resolution gravity data and so are subject to extrapolation when used to describe the decay of the gravity field at short spatial scales. This paper presents a new degree variance model based on the recently published GGMplus near-global land areas 220 m resolution gravity maps (Geophys Res Lett 40(16):4279-4283, 2013). We investigate and use a 2D-DFT (discrete Fourier transform) approach to transform GGMplus gravity grids into degree variances. The method is described in detail and its approximation errors are studied using closed-loop experiments. Focus is placed on tiling, azimuth averaging, and windowing effects in the 2D-DFT method and on analytical fitting of degree variances. Approximation errors of the 2D-DFT procedure on the (spherical harmonic) degree variance are found to be at the 10-20 % level. The importance of the reference surface (sphere, ellipsoid or topography) of the gravity data for correct interpretation of degree variance spectra is highlighted. The effect of the underlying mass arrangement (spherical or ellipsoidal approximation) on the degree variances is found to be crucial at short spatial scales. A rule-of-thumb for transformation of spectra between spherical and ellipsoidal approximation is derived. Application of the 2D-DFT on GGMplus gravity maps yields a new degree variance model to degree 90,000. The model is supported by GRACE, GOCE, EGM2008 and forward-modelled gravity at 3 billion land points over all land areas within the SRTM data coverage and provides gravity signal variances at the surface of the topography. The model yields omission errors of 9 mGal for gravity (1.5 cm for geoid effects) at scales of 10 km, 4 mGal (1 mm) at 2-km scales, and 2 mGal (0.2 mm) at 1-km scales.
Neuschmelting, Volker; Burton, Neal C.; Lockau, Hannah; Urich, Alexander; Harmsen, Stefan; Ntziachristos, Vasilis; Kircher, Moritz F.
2015-01-01
A handheld approach to optoacoustic imaging is essential for the clinical translation. The first 2- and 3-dimensional handheld multispectral optoacoustic tomography (MSOT) probes featuring real-time unmixing have recently been developed. Imaging performance of both probes was determined in vitro and in a brain melanoma metastasis mouse model in vivo. T1-weighted MR images were acquired for anatomical reference. The limit of detection of melanoma cells in vitro was significantly lower using the 2D than the 3D probe. The signal decrease was more profound in relation to depth with the 3D versus the 2D probe. Both approaches were capable of imaging the melanoma tumors qualitatively at all time points. Quantitatively, the 2D approach enabled closer anatomical resemblance of the tumor compared to the 3D probe, particularly at depths beyond 3 mm. The 3D probe was shown to be superior for rapid 3D imaging and, thus, holds promise for more superficial target structures. PMID:27069872
2005-07-01
Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.
Solution of steady and unsteady transonic-vortex flows using Euler and full-potential equations
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Chuang, Andrew H.; Hu, Hong
1989-01-01
Two methods are presented for inviscid transonic flows: unsteady Euler equations in a rotating frame of reference for transonic-vortex flows and integral solution of full-potential equation with and without embedded Euler domains for transonic airfoil flows. The computational results covered: steady and unsteady conical vortex flows; 3-D steady transonic vortex flow; and transonic airfoil flows. The results are in good agreement with other computational results and experimental data. The rotating frame of reference solution is potentially efficient as compared with the space fixed reference formulation with dynamic gridding. The integral equation solution with embedded Euler domain is computationally efficient and as accurate as the Euler equations.
Full-Dimensional Potential Energy Surface and Ro-vibrational Levels of Dioxirane.
Li, Jun; Guo, Hua
2016-05-19
A full-dimensional potential energy surface is developed for dioxirane based on a high-fidelity fit of ∼46,000 ab initio points at the CCSD(T)-F12a/AVTZ level. The ro-vibrational levels of dioxirane were computed using the MULTIMODE method on this potential energy surface, and the agreement with the available experimental microwave spectrum is quite satisfactory. In addition, dipole moment surfaces have been constructed from ab initio data, and they allow the prediction of the infrared (IR) spectrum. PMID:26422048
Full potential methods for analysis/design of complex aerospace configurations
NASA Technical Reports Server (NTRS)
Shankar, Vijaya; Szema, Kuo-Yen; Bonner, Ellwood
1986-01-01
The steady form of the full potential equation, in conservative form, is employed to analyze and design a wide variety of complex aerodynamic shapes. The nonlinear method is based on the theory of characteristic signal propagation coupled with novel flux biasing concepts and body-fitted mapping procedures. The resulting codes are vectorized for the CRAY XMP and the VPS-32 supercomputers. Use of the full potential nonlinear theory is demonstrated for a single-point supersonic wing design and a multipoint design for transonic maneuver/supersonic cruise/maneuver conditions. Achievement of high aerodynamic efficiency through numerical design is verified by wind tunnel tests. Other studies reported include analyses of a canard/wing/nacelle fighter geometry.
A full-potential approach to the relativistic single-site Green's function.
Liu, Xianglin; Wang, Yang; Eisenbach, Markus; Malcolm Stocks, G
2016-09-01
One major purpose of studying the single-site scattering problem is to obtain the scattering matrices and differential equation solutions indispensable to multiple scattering theory (MST) calculations. On the other hand, the single-site scattering itself is also appealing because it reveals the physical environment experienced by electrons around the scattering center. In this paper we demonstrate a new formalism to calculate the relativistic full-potential single-site Green's function. We implement this method to calculate the single-site density of states and electron charge densities. The code is rigorously tested and with the help of Krein's theorem, the relativistic effects and full potential effects in group V elements and noble metals are thoroughly investigated. PMID:27388858
A full-potential approach to the relativistic single-site Green’s function
NASA Astrophysics Data System (ADS)
Liu, Xianglin; Wang, Yang; Eisenbach, Markus; Stocks, G. Malcolm
2016-09-01
One major purpose of studying the single-site scattering problem is to obtain the scattering matrices and differential equation solutions indispensable to multiple scattering theory (MST) calculations. On the other hand, the single-site scattering itself is also appealing because it reveals the physical environment experienced by electrons around the scattering center. In this paper we demonstrate a new formalism to calculate the relativistic full-potential single-site Green’s function. We implement this method to calculate the single-site density of states and electron charge densities. The code is rigorously tested and with the help of Krein’s theorem, the relativistic effects and full potential effects in group V elements and noble metals are thoroughly investigated.
Application of a Chimera Full Potential Algorithm for Solving Aerodynamic Problems
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Kwak, Dochan (Technical Monitor)
1997-01-01
A numerical scheme utilizing a chimera zonal grid approach for solving the three dimensional full potential equation is described. Special emphasis is placed on describing the spatial differencing algorithm around the chimera interface. Results from two spatial discretization variations are presented; one using a hybrid first-order/second-order-accurate scheme and the second using a fully second-order-accurate scheme. The presentation is highlighted with a number of transonic wing flow field computations.
NASA Technical Reports Server (NTRS)
Steger, J. L.; Caradonna, F. X.
1980-01-01
An implicit finite difference procedure is developed to solve the unsteady full potential equation in conservation law form. Computational efficiency is maintained by use of approximate factorization techniques. The numerical algorithm is first order in time and second order in space. A circulation model and difference equations are developed for lifting airfoils in unsteady flow; however, thin airfoil body boundary conditions have been used with stretching functions to simplify the development of the numerical algorithm.
Comparison of Euler and full potential marching techniques for flows over complex configurations
NASA Technical Reports Server (NTRS)
Szema, K. Y.; Chakravarthy, S. R.; Shankar, V.; Byerly, J.
1986-01-01
Two recently developed aerodynamic prediction techniques based on the steady full potential equation and the unsteady Euler equations have been applied to a variety of three-dimensional supersonic flow problems exhibiting embedded subsonic regions. Both techniques utilize planar Gauss-Seidel relaxation in the marching direction and approximate factorization in the cross-flow plane. A conservative switching scheme and flux bias technique are employed in the full potential method to transition from the supersonic marching procedure to a subsonic relaxation algorithm and vice versa. A new unified approach with finite volume, high accuracy (up to third order) Total Variation Diminishing formulation (based on Roe's scheme) is used in the Euler solver. In the supersonic regions of the flow an 'infinitely large' time step is employed, and a finite time step is applied in the subsonic regions of the flow to reach the steady-state as a time-asymptote. Numerical solutions are obtained for a number of complex configurations, including: (1) an elliptic waverider, (2) a realistic fighter configuration, (3) the Space Shuttle, and (4) a Shuttle-like configuration. Both the Full Potential and Euler numerical results are in good agreement with available experimental data.
An entropy correction method for unsteady full potential flows with strong shocks
NASA Technical Reports Server (NTRS)
Whitlow, W., Jr.; Hafez, M. M.; Osher, S. J.
1986-01-01
An entropy correction method for the unsteady full potential equation is presented. The unsteady potential equation is modified to account for entropy jumps across shock waves. The conservative form of the modified equation is solved in generalized coordinates using an implicit, approximate factorization method. A flux-biasing differencing method, which generates the proper amounts of artificial viscosity in supersonic regions, is used to discretize the flow equations in space. Comparisons between the present method and solutions of the Euler equations and between the present method and experimental data are presented. The comparisons show that the present method more accurately models solutions of the Euler equations and experiment than does the isentropic potential formulation.
Greg Flach, Frank Smith
2011-12-31
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.
2011-12-31
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less
NASA Astrophysics Data System (ADS)
Lotsch, Bettina V.
2015-07-01
Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.
Zeller, Rudolf
2013-03-13
Although the full-potential Korringa-Kohn-Rostoker Green function method yields accurate results for many physical properties, the convergence of calculated total energies with respect to the angular momentum cutoff is usually considered to be less satisfactory. This is surprising because accurate single-particle energies are expected if they are calculated by Lloyd's formula and because accurate densities and hence accurate double-counting energies should result from the total energy variational principle. It is shown how the concept of projection potentials can be used as a tool to analyse the convergence behaviour. The key factor blocking fast convergence is identified and it is illustrated how total energies can be improved with only a modest increase of computing time. PMID:23396831
NASA Astrophysics Data System (ADS)
Dothe, H.; Braunstein, M.; Duff, J. W.; Sharma, R. D.
2001-12-01
The daytime observation of 5.3 μ m thermospheric emission from the NO fundamental vibration-rotation band by the interferometer aboard the cryogenic infrared radiance instrumentation for shuttle (CIRRIS 1A) has provided important insight into the phenomenology of NO formation. The four major mechanisms to the 5.3 μ m emission considered by previous modeling are solar pumping, inelastic collisions of O with NO(v=0), the reactions of N(2D) with O2, and the reactions of N(4S) with O2. It has previously been shown that the reaction of N(4S) with O2 is consistent with rotationally nonthermal 5.3 μ m emission, while the N(2D)+O2 reaction has been assumed to contribute to rotationally thermal emission. The assumption of a thermal rotational distribution from the N(2D)+O2 reaction cannot be confirmed by the CIRRIS 1A data. The existence of a significant fraction of nonthermal atoms in the tail of the N(2D) energy distribution function (EDF) in the daylit thermosphere was demonstrated earlier (AGU Spring 2001). Therefore the investigation of possible nonthermal behavior in NO formation via the N(2D)+O2 reaction in the daylit and aurorally dosed thermosphere requires energy dependent cross sections for the reaction between N(2D) and O2. To calculate the N(2D)+O2 cross sections, potential energy surfaces (PES) of the NO2 system are required. The output of these calculations include the energy dependent cross sections and the vibrational and rotational distribution of the nascent NO needed for accurate calculation of the cooling rates due to 5.3 μ m emission. This work concentrates on the first step towards the calculation of such cross sections, the ab initio calculations of the NO2 PES. Previous existing PES, using different basis sets and electron correlation levels, have shown disagreements in the magnitude of the barriers for the lowest lying doublet surfaces in the reaction entrance channel. Comparative results from our calculations are presented here, showing PES
A full potential inverse method based on a density linearization scheme for wing design
NASA Technical Reports Server (NTRS)
Shankar, V.
1982-01-01
A mixed analysis inverse procedure based on the full potential equation in conservation form was developed to recontour a given base wing to produce density linearization scheme in applying the pressure boundary condition in terms of the velocity potential. The FL030 finite volume analysis code was modified to include the inverse option. The new surface shape information, associated with the modified pressure boundary condition, is calculated at a constant span station based on a mass flux integration. The inverse method is shown to recover the original shape when the analysis pressure is not altered. Inverse calculations for weakening of a strong shock system and for a laminar flow control (LFC) pressure distribution are presented. Two methods for a trailing edge closure model are proposed for further study.
Transonic solutions for a multielement airfoil using the full-potential equation
NASA Technical Reports Server (NTRS)
Flores, J.; Holst, T. L.; Sorenson, R. L.
1984-01-01
Transonic flow solutions are obtained over a multielement airfoil (augmentor-wing) using the full-potential equation. Solutions obtained for a subcritical case and a strong shock case show good quantitative agreement with experiment in regions not dominated by viscous effects. In those regions where viscous effects are dominant, the results are still in good qualitative agreement. For the strong shock case, Mach number and angle-of-attack corrections were necessary to match experimental coefficient of lift. Typical results from the transonic augmentor-wing Potential Code on the Cray-1S computer require about 10 sec of CPU time for a three-order-of-magnitude drop in the maximum residual. The speed with which solutions can be generated, and the associated low cost, will make this code a practical tool for the design aerodynamicist.
Testing a full-range soil-water retention function in modeling water potential and temperature
Andraski, B.J.; Jacobson, E.A.
2000-01-01
Recent work has emphasized development of full-range water-retention functions that are applicable under both wet and dry soil conditions, but evaluation of such functions in numerical modeling has been limited. Here we show that simulations using the Rossi-Nimmo (RN) full-range function compared favorably with those using the common Brooks-Corey function and that the RN function can improve prediction of water potentials in near-surface soil, particularly under dry conditions. Simulations using the RN function also improved prediction of temperatures throughout the soil profile. Such improvements could be important for calculations of liquid and vapor flow in near-surface soils and in deep unsaturated zones of arid and semiarid regions.
A full-potential approach to the relativistic single-site Green's function
Liu, Xianglin; Wang, Yang; Eisenbach, Markus; Stocks, George Malcolm
2016-07-07
One major purpose of studying the single-site scattering problem is to obtain the scattering matrices and differential equation solutions indispensable to multiple scattering theory (MST) calculations. On the other hand, the single-site scattering itself is also appealing because it reveals the physical environment experienced by electrons around the scattering center. In this study, we demonstrate a new formalism to calculate the relativistic full-potential single-site Green's function. We implement this method to calculate the single-site density of states and electron charge densities. Lastly, the code is rigorously tested and with the help of Krein's theorem, the relativistic effects and full potentialmore » effects in group V elements and noble metals are thoroughly investigated.« less
NASA Technical Reports Server (NTRS)
Thomas, S. D.; Holst, T. L.
1985-01-01
A full-potential steady transonic wing flow solver has been modified so that freestream density and residual are captured in regions of constant velocity. This numerically precise freestream consistency is obtained by slightly altering the differencing scheme without affecting the implicit solution algorithm. The changes chiefly affect the fifteen metrics per grid point, which are computed once and stored. With this new method, the outer boundary condition is captured accurately, and the smoothness of the solution is especially improved near regions of grid discontinuity.
Electronic and magnetic properties of Cr doped graphene; Full potential approach
Thakur, Jyoti Kashyap, Manish K.; Saini, Hardev S.
2015-08-28
The electronic and magnetic properties of pristine and Cr doped graphene have been calculated using WIEN2k implementation of full potential linearized augmented plane wave (FPLAPW) method based on Density Functional Theory (DFT). The exchange and correlation (XC) effects were taken into account by generalized gradient approximation (GGA). The calculated results show that Cr doping introduces appropriate magnetic moment on graphene. The p-d interaction between 3d states of Cr atom and p-states of C atom are responsible for half metallicity in graphene. The calculated Half-metallic behavior of Cr-doped graphene makes it an ideal candidate for spintronic applications.
Artificial compressibility methods for numerical solutions of transonic full potential equation
NASA Technical Reports Server (NTRS)
Hafez, M.; Murman, E.; South, J.
1979-01-01
New methods for transonic flow computations based on the full potential equation in conservation form are presented. The idea is to modify slightly the density (due to the artificial viscosity in the supersonic region), and solve the resulting elliptic-like problem iteratively. It is shown that standard discretization techniques (central differencing) as well as some standard iterative procedures (SOR, ADI, and explicit methods) are applicable to the modified transonic mixed-type equation. Calculations of transonic flows around cylinders and airfoils are discussed with special emphasis on the explicit methods that are suitable for vector processing on the STAR 100 computer.
NASA Technical Reports Server (NTRS)
Van Dalsem, W. R.; Steger, J. L.
1983-01-01
A new, fast, direct-inverse, finite-difference boundary-layer code has been developed and coupled with a full-potential transonic airfoil analysis code via new inviscid-viscous interaction algorithms. The resulting code has been used to calculate transonic separated flows. The results are in good agreement with Navier-Stokes calculations and experimental data. Solutions are obtained in considerably less computer time than Navier-Stokes solutions of equal resolution. Because efficient inviscid and viscous algorithms are used, it is expected this code will also compare favorably with other codes of its type as they become available.
Relativistic Green's Functions in Full-Potential Multiple-Scattering Theory
NASA Astrophysics Data System (ADS)
Liu, Xianglin; Wang, Yang; Eisenbach, Markus; Stocks, G. Malcolm
The Green's functions play a central role in MST based KKR method. Obtaining the Green's functions by solving the Dirac equation is appealing since it naturally incorporated the electron spin and the spin-orbit coupling effects. Here we implemented the full-potential relativistic KKR method using a technique called the sine and cosine matrices formalism. The charge density and the density of states of some pure element crystals have been calculated. Different expressions of the Green's functions have been investigated for numerical benefits.
NASA Technical Reports Server (NTRS)
Farrell, C.; Adamczyk, J.
1981-01-01
The three-dimensional flow in a turbomachinery blade row was approximated by correcting for streamtube convergence and radius change in the throughflow direction. The method is a fully conservative solution of the full potential equation incorporating the finite volume technique on body fitted periodic mesh, with an artificial density imposed in the transonic region to insure stability and the capture of shock waves. Comparison of results for several supercritical blades shows good agreement with their hodograph solutions. Other calculations for these profiles as well as standard NACA blade sections indicate that this is a useful scheme analyzing both the design and off-design performance of turbomachinery blading.
NASA Technical Reports Server (NTRS)
Elbanna, Hesham M.; Carlson, Leland A.
1992-01-01
The quasi-analytical approach is applied to the three-dimensional full potential equation to compute wing aerodynamic sensitivity coefficients in the transonic regime. Symbolic manipulation is used to reduce the effort associated with obtaining the sensitivity equations, and the large sensitivity system is solved using 'state of the art' routines. Results are compared to those obtained by the direct finite difference approach and both methods are evaluated to determine their computational accuracy and efficiency. The quasi-analytical approach is shown to be accurate and efficient for large aerodynamic systems.
NASA Technical Reports Server (NTRS)
Laming, J. Martin; Drake, J. J.; Widing, Kenneth G.
1995-01-01
In this paper we reanalayze the full-disk quiet-sun spectrum of Mallinovsky & Heroux (1973) with modern atomic data. The purposes of this are to check our atomic data and methods in other investigations using data from nearby stars obtained with the NASA Extreme Ultraviolet Explorer (EUVE) satellite, and to confirm that the solar first ionization potential (FIP) effect investigated by previous authors studying discrete solar regions is the same as that found in full-disk spectra. We recover the usual solar FIP effect of a coronal abundance enhancement of elements with a low FIP of a factor approximately 3-4 for lines formed at temperatures greater than approximately 10(exp 6) K. For lower temperatures, the FIP effect seems to be substantially smaller, in qualitative agreement with other data. Comparing our full-disk result with those from discrete solar structures suggest that the FIP effect is a function of altitude, with the lower temperature full-disk emission being dominated by the super-granulation network. We also compare the recent ionization balance of Arnaud & Raymond (1992) with that of Arnaud & Rothenflug (1985).
Full potential integral solution for transonic flows with and without embedded Euler domains
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Hu, Hong
1987-01-01
Two methods are presented to solve for the transonic airfoil flow problems. The first method is based on the integral equation solution of the full-potential equation in terms of the velocity field, and a Shock Capturing-Shock Fitting (SCSF) scheme has been developed. The SCSF-scheme consists of a shock-capturing part and a shock-fitting part in which shock panels are introduced at the shock location. The sock panels are fitted and crossed by using the Rankine-Hugoniot relations. The second method is based on coupling the integral equation of the full-potential equation with the pseudo time integration of Euler equations in a small embedded region around the shock. The integral solution provides the initial and boundary conditions for the Euler domain. This scheme is named as the Integral Equation-Embedded Euler (IEEE) scheme. The two methods are applied to NACA 0012 and NACA 64A010A over a wide range of Mach numbers, and the reults are in good agreement with the experimental data and other computational results. The schemes converge within a number of iterations which is one-order of magnitude less than the finite-difference schemes.
A full potential flow analysis with realistic wake influence for helicopter rotor airload prediction
NASA Technical Reports Server (NTRS)
Egolf, T. Alan; Sparks, S. Patrick
1987-01-01
A 3-D, quasi-steady, full potential flow solver was adapted to include realistic wake influence for the aerodynamic analysis of helicopter rotors. The method is based on a finite difference solution of the full potential equation, using an inner and outer domain procedure for the blade flowfield to accommodate wake effects. The nonlinear flow is computed in the inner domain region using a finite difference solution method. The wake is modeled by a vortex lattice using prescribed geometry techniques to allow for the inclusion of realistic rotor wakes. The key feature of the analysis is that vortices contained within the finite difference mesh (inner domain) were treated with a vortex embedding technique while the influence of the remaining portion of the wake (in the outer domain) is impressed as a boundary condition on the outer surface of the finite difference mesh. The solution procedure couples the wake influence with the inner domain solution in a consistent and efficient solution process. The method has been applied to both hover and forward flight conditions. Correlation with subsonic and transonic hover airload data is shown which demonstrates the merits of the approach.
Buhler, Sofie; Tedeschi, Tullia; Faccini, Andrea; Garino, Cristiano; Arlorio, Marco; Dossena, Arnaldo; Sforza, Stefano
2015-01-01
Non-specific lipid transfer proteins (nsLTP) were shown to be among the most significant allergens, in particular in several fruits belonging to the Rosaceae family. The molecular features of LTPs, such as the presence of eight cysteine residues forming four disulfide bridges, confer a compact structure, decreasing the probability of degradation due to cooking or digestion, thereby increasing the chance of systemic absorption and severe allergic reactions. Few studies on LTP-induced allergies regarding almond (Prunus dulcis L) are available in the literature. In the present work, we describe for the first time the extraction and purification of an almond LTP, achieving its full characterisation by using liquid chromatography and exact mass spectrometry; the full sequence was identified by means of LC-ESI-Orbitrap-MS applying a bottom-up approach. The characterised protein consists of 92 amino acids and has a calculated exact MW of 9579.0. The presence of four disulfide bridges was confirmed after reduction, as shown by a mass increment of 8 Da. Finally, its potential allergenicity was confirmed via an in silico approach. The results presented here demonstrate the enormous potential of advanced MS techniques for obtaining high-quality structural and functional data of allergenic proteins in a short time. PMID:25658292
NASA Astrophysics Data System (ADS)
Aghajani, Hamid; Moradzadeh, Ali; Zeng, Hualin
2011-10-01
The normalized full gradient (NFG) represents the full gradient of the gravity anomaly at a point divided by the average of the full gradient at the same point. The NFG minimum between two maxima in an NFG section or a closed minimum surrounded by closed maxima on an NFG map may indicate density-deficient anomalies closely related to possible oil-gas reservoirs. On a cross-section, closed minima can be used to estimate the depth to centers of possible hydrocarbon reservoirs. The NFG map can also be used to locate oil-gas exploratory wells for estimation of the depth of possible reservoirs. The objective of this paper is to use two and three-dimensional (2D and 3D) NFG on gravity data of the Tabas basin in Yazd province, eastern Iran. A hypothetical model is first considered to explore the NFG characteristics and their relationship with the geometry of the model. The physical properties of the model are then studied to simplify the interpretation of real data. Finally 2D and 3D NFG models are developed for real gravity data to predict the location of any possible high potential oil-gas reservoirs. The results obtained indicate two zones in the northern and central parts of the Tabas basin suitable for hydrocarbon prospecting. However, the favorable zone located in the middle of the basin in which anticline E is detected at a depth of 5-7 km is more important for the purpose of hydrocarbon exploration.
Evaluation of Potential Factors Predicting Attainment of Full Gavage Feedings in Preterm Infants
Shulman, Robert J.; Ou, Ching-Nan; Smith, E. O'Brian
2010-01-01
Background The clinical measures of gastric residuals and abdominal distention are often used to guide feeding in preterm infants, but there are few data demonstrating their usefulness. Similarly, techniques are now available to investigate gastrointestinal (GI) function noninvasively and safely, but their ability to predict attainment of full gavage feedings and/or feeding volume in preterm infants is unclear. Objective: We sought to determine prospectively the potential relationships of attainment of full gavage feedings and feeding volume with clinical measures and noninvasive GI tests. Methods Fifty preterm infants were followed prospectively. Daily tally was taken of gavage feeding intake, gastric residual volumes (GRVs; milliliters per day, number of GRVs >50% of the previous feeding volume, and number of GRVs >2 ml/kg), and abdominal distention. Infants underwent repeated measurement of lactase activity, GI permeability, fecal calprotectin concentration, and gastric emptying. Results The number of GRVs >2 ml/kg tended to decrease with postnatal age (p = 0.06). Lactase activity and feeding volume in milliliters per kilogram per day prior to achieving full feedings were correlated (p = 0.007, β = 0.164). There was no correlation between feeding outcomes and GRV (ml/day), GRV >50%, GRV >2 ml/kg, small bowel, colonic, or whole bowel permeability, fecal calprotectin concentration, gastric emptying, or abdominal distention. Conclusions GRV is unreliable in predicting attainment of full gavage feeding. Lactase activity is related to feeding volume. However, other noninvasive GI tests utilized were not predictive. These data cast doubt upon the utility of GRV in guiding feeding therapy. Randomized trials of different GRV management protocols are needed. PMID:20588069
Electronic and magnetic properties of Mo doped graphene; full potential approach
Thakur, Jyoti Kashyap, Manish K.; Singh, Mukhtiyar; Saini, Hardev S.
2015-05-15
The electronic and magnetic properties of Pristine and Mo doped Graphene have been calculated using WIEN2k implementation of full potential linearized augmented plane wave (FPLAPW) method based on Density Functional Theory (DFT). The exchange and correlation (XC) effects were taken into account by generalized gradient approximation (GGA). The calculated results show that Mo doping creates magnetism in Graphene by shifting the energy levels at E{sub F} and opens up a channel for Graphene to be used in real nanoscale device applications. The unpaired d-electrons of Mo atom are responsible for induced magnetism in Graphene. Magnetic ordering created in Graphene in this way makes it suitable for recording media, magnetic sensors, magnetic inks and spintronic devices.
On the Design of Lifting Airfoils with High Critical Mach Number Using Full Potential Theory
NASA Astrophysics Data System (ADS)
Kropinski, M. C. A.
We wish to construct airfoils that have the highest free-stream Mach number for a given set of geometric constraints for which the flow is nowhere supersonic. Nonlifting airfoils that maximize the critical Mach number for a given cross-sectional area are known to possess long sonic segments at their critical speed. To construct lifting airfoils, we proceed under the conjecture that an airfoil with a high value of has the longest possible arc length of sonic velocity over its upper and lower surface. In Kropinski etal. (1995) the lifting problem was tackled in transonic small-disturbance theory. In this paper we numerically construct lifting airfoils with high using the full potential theory and we show that these airfoils have significantly higher than some standard airfoils. We also construct airfoils with higher values of the lift coefficient, by relaxing the speed constraint on the lower surface of the airfoil to have a value less than sonic.
Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation
NASA Technical Reports Server (NTRS)
Cai, Xiao-Chuan; Gropp, William D.; Keyes, David E.; Melvin, Robin G.; Young, David P.
1996-01-01
We study parallel two-level overlapping Schwarz algorithms for solving nonlinear finite element problems, in particular, for the full potential equation of aerodynamics discretized in two dimensions with bilinear elements. The overall algorithm, Newton-Krylov-Schwarz (NKS), employs an inexact finite-difference Newton method and a Krylov space iterative method, with a two-level overlapping Schwarz method as a preconditioner. We demonstrate that NKS, combined with a density upwinding continuation strategy for problems with weak shocks, is robust and, economical for this class of mixed elliptic-hyperbolic nonlinear partial differential equations, with proper specification of several parameters. We study upwinding parameters, inner convergence tolerance, coarse grid density, subdomain overlap, and the level of fill-in in the incomplete factorization, and report their effect on numerical convergence rate, overall execution time, and parallel efficiency on a distributed-memory parallel computer.
Numerical calculation of steady inviscid full potential compressible flow about wind turbine blades
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1980-01-01
The air flow through a propeller-type wind turbine rotor is characterized by three-dimensional rotating cascade effects about the inner portions of the rotor blades and compressibility effects about the tip regions of the blades. In the case of large rotor diameter and/or increased rotor angular speed, the existence of small supersonic zones terminated by weak shocks is possible. An exact nonlinear mathematical model (called a steady Full Potential Equation - FPE) that accounts for the above phenomena has been rederived. An artificially time dependent version of FPE was iteratively solved by a finite volume technique involving an artificial viscosity and a three-level consecutive mesh refinement. The exact boundary conditions were applied by generating a boundary conforming periodic computation mesh.
Hovering rotor airload prediction using a full potential flow analysis with realistic wake geometry
NASA Technical Reports Server (NTRS)
Egolf, T. A.; Sparks, S. P.
1985-01-01
A three-dimensional, full potential flow analysis with realistic hover wake geometry is presented for the prediction of hovering rotor airloads. The method of analysis is based on the concept of matching inner and outer domain solutions in three dimensions. The inner domain nonlinear solution is obtained using a finite difference analysis and the outer domain solution is based on prescribed wake methodology. This formulation which includes three-dimensional wake influence, was initially validated using a fixed-wing analysis, and has been extended to hovering rotor flight. Detailed chordwise and spanwise loading results are compared with subsonic and transonic test results from two rotor configurations to illustrate the predictive capabilities of the analysis. The extension of the method to steady-level forward flight is also discussed.
Transonic flow analysis for rotors. Part 2: Three-dimensional, unsteady, full-potential calculation
NASA Technical Reports Server (NTRS)
Chang, I. C.
1985-01-01
A numerical method is presented for calculating the three-dimensional unsteady, transonic flow past a helicopter rotor blade of arbitrary geometry. The method solves the full-potential equations in a blade-fixed frame of reference by a time-marching implicit scheme. At the far-field, a set of first-order radiation conditions is imposed, thus minimizing the reflection of outgoing wavelets from computational boundaries. Computed results are presented to highlight radial flow effects in three dimensions, to compare surface pressure distributions to quasi-steady predictions, and to predict the flow field on a swept-tip blade. The results agree well with experimental data for both straight- and swept-tip blade geometries.
NASA Technical Reports Server (NTRS)
Jones, K. M.
1983-01-01
A nonlinear aerodynamic prediction technique which solves the conservative full potential equation has been applied to the analysis of three waverider configurations. This technique was selected based on its capability to analyze the off-design characteristics of the waveriders. Very good correlations were achieved with surface pressure data for both the Mach 4 elliptic cone waverider and the Mach 6 caret-wing derivative. Off-design Mach number and angle-of-attack pressure correlations were very good for the elliptic cone waverider. The range of correlation with data exceeded that expected based on the theory limitations. A surface pressure integration routine was demonstrated and agreement between predicted aerodynamic forces and experimental force data for the Mach 4 waverider was excellent. Analysis of a nonconical waverider configuration was initiated where a discrete input option is used to achieve the computational gridding. Preliminary analysis of this configuration indicates the correct shock location will be predicted.
NASA Astrophysics Data System (ADS)
Wang, R.; Gu, Y. J.; Schultz, R.; Kim, A.; Chen, Y.
2015-12-01
During the past four years, the number of earthquakes with magnitudes greater than three has substantially increased in the southern section of Western Canada Sedimentary Basin (WCSB). While some of these events are likely associated with tectonic forces, especially along the foothills of the Canadian Rockies, a significant fraction occurred in previously quiescent regions and has been linked to waste water disposal or hydraulic fracturing. A proper assessment of the origin and source properties of these 'induced earthquakes' requires careful analyses and modeling of regional broadband data, which steadily improved during the past 8 years due to recent establishments of regional broadband seismic networks such as CRANE, RAVEN and TD. Several earthquakes, especially those close to fracking activities (e.g. Fox creek town, Alberta) are analyzed. Our preliminary full moment tensor inversion results show maximum horizontal compressional orientations (P-axis) along the northeast-southwest orientation, which agree with the regional stress directions from borehole breakout data and the P-axis of historical events. The decomposition of those moment tensors shows evidence of strike-slip mechanism with near vertical fault plane solutions, which are comparable to the focal mechanisms of injection induced earthquakes in Oklahoma. Minimal isotropic components have been observed, while a modest percentage of compensated-linear-vector-dipole (CLVD) components, which have been linked to fluid migraition, may be required to match the waveforms. To further evaluate the non-double-couple components, we compare the outcomes of full, deviatoric and pure double couple (DC) inversions using multiple frequency ranges and phases. Improved location and depth information from a novel grid search greatly assists the identification and classification of earthquakes in potential connection with fluid injection or extraction. Overall, a systematic comparison of the source attributes of
Full-dimensional (15-dimensional) ab initio analytical potential energy surface for the H7+ cluster
NASA Astrophysics Data System (ADS)
Barragán, Patricia; Prosmiti, Rita; Wang, Yimin; Bowman, Joel M.
2012-06-01
Full-dimensional ab initio potential energy surface is constructed for the H_7^+ cluster. The surface is a fit to roughly 160 000 interaction energies obtained with second-order MöllerPlesset perturbation theory and the cc-pVQZ basis set, using the invariant polynomial method [B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577 (2009), 10.1080/01442350903234923]. We employ permutationally invariant basis functions in Morse-type variables for all the internuclear distances to incorporate permutational symmetry with respect to interchange of H atoms into the representation of the surface. We describe how different configurations are selected in order to create the database of the interaction energies for the linear least squares fitting procedure. The root-mean-square error of the fit is 170 cm-1 for the entire data set. The surface dissociates correctly to the H_5^+ + H2 fragments. A detailed analysis of its topology, as well as comparison with additional ab initio calculations, including harmonic frequencies, verify the quality and accuracy of the parameterized potential. This is the first attempt to present an analytical representation of the 15-dimensional surface of the H_7^+ cluster for carrying out dynamics studies.
Bourke, J D; Islam, M T; Best, S P; Tran, C Q; Wang, F; Chantler, C T
2016-07-21
Recent high-accuracy X-ray absorption measurements of the sandwich organometallics ferrocene (Fc) and decamethylferrocene (DmFc) at temperatures close to liquid helium are compared with new full-potential modeling of X-ray absorption fine structure (XAFS) covering the near-edge region (XANES) and above up to k = 7 Å(-1). The implementation of optimized calculations of the oscillatory part of the spectrum from the package FDMX allows detailed study of the spectra in regions of the photoelectron momentum most sensitive to differences in the molecular stereochemistry. For Fc and DmFc, this corresponds to the relative rotation of the cyclopentadienyl rings. When applied to high-accuracy XAFS of Fc and DmFc, the FDMX theory gives clear evidence for the eclipsed conformation for Fc and the staggered conformation for DmFc for frozen solutions at ca. 15 K. This represents the first clear experimental assignment of the solution structures of Fc and DmFc and reveals the potential of high-accuracy XAFS for structural analysis. PMID:27391765
NASA Technical Reports Server (NTRS)
Farrell, C. A.
1994-01-01
A computer program, QSONIC, has been developed for calculating the full potential, transonic quasi-three-dimensional flow through a rotating turbomachinery blade row. The need for lighter, more efficient turbomachinery components has led to the consideration of machines with fewer stages, each with blades capable of higher speeds and higher loading. As speeds increase, the numerical problems inherent in the transonic regime have to be resolved. These problems include the calculation of imbedded shock discontinuities and the dual nature of the governing equations, which are elliptic in the subcritical flow regions but become hyperbolic for supersonic zones. QSONIC provides the flow analyst with a fast and reliable means of obtaining the transonic potential flow distribution on a blade-to-blade stream surface of a stationary or rotating turbomachine blade row. QSONIC combines several promising transonic analysis techniques. The full potential equation in conservative form is discretized at each point on a body-fitted period mesh. A mass balance is calculated through the finite volume surrounding each point. Each local volume is corrected in the third dimension for any change in stream-tube thickness along the stream tube. The nonlinear equations for all volumes are of mixed type (elliptic or hyperbolic) depending on the local Mach number. The final result is a block-tridiagonal matrix formulation involving potential corrections at each grid point as the unknowns. The residual of each system of equations is solved along each grid line. At points where the Mach number exceeds unity, the density at the forward (sweeping) edge of the volume is replaced by an artificial density. This method calculates the flow field about a cascade of arbitrary two-dimensional airfoils. Three-dimensional flow is approximated in a turbomachinery blade row by correcting for stream-tube convergence and radius change in the through flow direction. Several significant assumptions were made in
Full potential calculation of electronics and thermoelectric properties of doped Mg{sub 2}Si
Poopanya, P.; Yangthaisong, A.
2013-12-04
We present the calculations of the electronic structure and transport properties on the anti-fluorite Mg{sub 2}Si using the full potential linearized augmented plane-wave (FP-LAPW) method and the semi-classical Boltzmann theory. The modified Becke-Johnson (mBJ) exchange potentials are used to derive energy gaps and correct band gaps according to experimental values. It is found that Mg{sub 2}Si is an indirect band gap (Γ→X) material with the gap of 0.56 eV which is in good agreement with the experimental observation. Note that the band structure of Mg{sub 2}Si is directly used in combination with the semi-classical Boltzmann theory to obtain the transport coefficients. It is found that the material is the n-type semiconductor with the lowest electron concentration of 3.03×10{sup 14} cm{sup −3} at 300 K. We have also calculated the thermoelectric properties of Mg{sub 2}Si based on the rigid band approximation by varying the p-type and n-type doping levels. At room temperature, the highest power factor for p-type and n-type dopants are obtained at the hole and electron concentration of 1.63×10{sup 20} cm{sup −3} and 1.15×1021 cm{sup −3}, respectively. From the electronic states, we also found that the n-type doping region is dominated by the Mg−2p{sup 6} 3s{sup 2} and Si−3p{sup 2} states, while the Mg−2p{sup 6} and Si−3p{sup 2} states are important in the p-type doped Mg{sub 2}Si.
Full-potential LAPW electronic structure study of δ - plutonium and the (001) surface
NASA Astrophysics Data System (ADS)
Wu, Xueyuan; Ray, Asok K.
2005-07-01
The electronic and geometric properties of bulk fcc δ -plutonium and the quantum size effects in the surface energies and the work functions of the (001) ultrathin films (UTF) up to seven layers have been investigated with periodic density-functional theory calculations within the full-potential-linearized-augmented-plane-wave (FP-LAPW) approach as implemented in the WIEN2k package. The effects of several approximations have been examined: (i) nonspin polarization (NSP) versus spin polarization (SP); (ii) scalar-relativity [no spin-orbit coupling (NSO)] versus full-relativity [i.e., with spin-orbit (SO) coupling included]. Our calculations show that both spin-polarization and spin-orbit coupling play important roles in determining the equilibrium atomic volume and bulk modulus for δ -plutonium. Our calculated equilibrium atomic volume of 178.3a.u.3 and bulk modulus of 24.9 GPa at the fully relativistic level of theory, i.e., spin-polarization and spin-orbit coupling included, are in good agreement with the experimental values of 168.2a.u.3 and 25 GPa (593 K), respectively. In particular, the energy difference brought by spin-orbit coupling, ˜7-8eV , is dominant, but the energy difference brought by spin-polarization, from a few tenths to 2 eV, has a stronger dependence on the atomic volume. Features of the density of states show that 5f electrons are more itinerant when the volume of δ -plutonium is compressed and they are more localized when the volume is expanded, which provides evidence to explain the origin of the volume expansion between the α and δ phases. The calculated equilibrium lattice constants at different levels of approximation are used in the surface property calculations for the thin films. The surface energy is found to be rapidly converged at all four level approximations, NSP-NSO, NSP-SO, SP-NSO, and SP-SO. The semi-infinite surface energy is predicted to be 0.692 eV at the full relativistic level with spin-polarization and spin
NASA Astrophysics Data System (ADS)
Shimizu, A.; Ido, T.; Kurachi, M.; Makino, R.; Nishiura, M.; Kato, S.; Nishizawa, A.; Hamada, Y.
2014-11-01
Two-dimensional potential profiles in the Large Helical Device (LHD) were measured with heavy ion beam probe (HIBP). To measure the two-dimensional profile, the probe beam energy has to be changed. However, this task is not easy, because the beam transport line of LHD-HIBP system is very long (˜20 m), and the required beam adjustment consumes much time. To reduce the probe beam energy adjustment time, an automatic beam adjustment system has been developed. Using this system, required time to change the probe beam energy is dramatically reduced, such that two-dimensional potential profiles were able to be successfully measured with HIBP by changing the probe beam energy shot to shot.
Shimizu, A. Ido, T.; Kato, S.; Hamada, Y.; Kurachi, M.; Makino, R.; Nishiura, M.; Nishizawa, A.
2014-11-15
Two-dimensional potential profiles in the Large Helical Device (LHD) were measured with heavy ion beam probe (HIBP). To measure the two-dimensional profile, the probe beam energy has to be changed. However, this task is not easy, because the beam transport line of LHD-HIBP system is very long (∼20 m), and the required beam adjustment consumes much time. To reduce the probe beam energy adjustment time, an automatic beam adjustment system has been developed. Using this system, required time to change the probe beam energy is dramatically reduced, such that two-dimensional potential profiles were able to be successfully measured with HIBP by changing the probe beam energy shot to shot.
Rao, R Nageswara; Maurya, Pawan K; Raju, A Narasa
2009-07-12
During the process development of phenazopyridine HCl bulk drug, a potential impurity was detected in the routine impurity profiles by HPLC. Using MS-MS and multidimensional NMR techniques, the trace level impurity was unambiguously identified to be 3-phenyl-5-phenylazo-pyridine-2,6-diamine after its isolation from phenazopyridine HCl by semi-preparative HPLC. The formation of the impurity was discussed. To our knowledge, it is a novel impurity not reported elsewhere. PMID:19376664
Unlocking the full potential of Earth observation during the 2015 Texas flood disaster
NASA Astrophysics Data System (ADS)
Schumann, G. J.-P.; Frye, S.; Wells, G.; Adler, R.; Brakenridge, R.; Bolten, J.; Murray, J.; Slayback, D.; Policelli, F.; Kirschbaum, D.; Wu, H.; Cappelaere, P.; Howard, T.; Flamig, Z.; Clark, R.; Stough, T.; Chini, M.; Matgen, P.; Green, D.; Jones, B.
2016-05-01
Intense rainfall during late April and early May 2015 in Texas and Oklahoma led to widespread and sustained flooding in several river basins. Texas state agencies relevant to emergency response were activated when severe weather then ensued for 6 weeks from 8 May until 19 June following Tropical Storm Bill. An international team of scientists and flood response experts assembled and collaborated with decision-making authorities for user-driven high-resolution satellite acquisitions over the most critical areas; while experimental automated flood mapping techniques provided daily ongoing monitoring. This allowed mapping of flood inundation from an unprecedented number of spaceborne and airborne images. In fact, a total of 27,174 images have been ingested to the USGS Hazards Data Distribution System (HDDS) Explorer, except for the SAR images used. Based on the Texas flood use case, we describe the success of this effort as well as the limitations in fulfilling the needs of the decision-makers, and reflect upon these. In order to unlock the full potential for Earth observation data in flood disaster response, we suggest in a call for action (i) stronger collaboration from the onset between agencies, product developers, and decision-makers; (ii) quantification of uncertainties when combining data from different sources in order to augment information content; (iii) include a default role for the end-user in satellite acquisition planning; and (iv) proactive assimilation of methodologies and tools into the mandated agencies.
Aerodynamic analysis of three advanced configurations using the TranAir full-potential code
NASA Technical Reports Server (NTRS)
Madson, M. D.; Carmichael, R. L.; Mendoza, J. P.
1989-01-01
Computational results are presented for three advanced configurations: the F-16A with wing tip missiles and under wing fuel tanks, the Oblique Wing Research Aircraft, and an Advanced Turboprop research model. These results were generated by the latest version of the TranAir full potential code, which solves for transonic flow over complex configurations. TranAir embeds a surface paneled geometry definition in a uniform rectangular flow field grid, thus avoiding the use of surface conforming grids, and decoupling the grid generation process from the definition of the configuration. The new version of the code locally refines the uniform grid near the surface of the geometry, based on local panel size and/or user input. This method distributes the flow field grid points much more efficiently than the previous version of the code, which solved for a grid that was uniform everywhere in the flow field. TranAir results are presented for the three configurations and are compared with wind tunnel data.
Laskowski, Tomasz; Czub, Jacek; Sowiński, Paweł; Mazerski, Jan
2016-03-01
Imidazoacridinone C-1311 (Symadex®) is a powerful antitumor agent, which successfully made its way through the Phase I clinical trials and has been recommended for Phase II few a years ago. It has been shown experimentally that during the initial stage of its action C-1311 forms a relatively stable intercalation complex with DNA, yet it has shown no base-sequence specificity while binding to DNA. In this paper, the d(CGATCG)2:C-1311 intercalation complex has been studied by means of two-dimensional NMR spectroscopy, yielding a full assignment of the resonance lines observed in (1)H NMR spectra. The observation of the intermolecular NOE contacts between C-1311 and DNA allowed locating the ligand between the guanine and adenine moieties. Formation of a symmetric complex was pointed out on the basis of the lack of a second set of the (1)H resonances. The resulting stereostructure of the complex was then improved by means of molecular dynamics, using the CHARMM force field and GROMACS software. To this end, distance restraints derived from the NOESY cross-peak volumes were applied to the atomistic model of the d(CGATCG)2:C-1311 complex. Obtained results are in full agreement with biochemical data on the mechanism of action of C-1311, in particular with the previously postulated post-intercalation enzymatic activation of the studied drug. PMID:26211888
NASA Astrophysics Data System (ADS)
Ye, Lin-Hui
2015-09-01
Although the supercell method has been widely used for surface calculations, it only works well with short-ranged potentials, but meets difficulty when the potential decays very slowly into the vacuum. Unfortunately, the exact exchange-correlation potential of the density functional theory is asymptotically long ranged, and therefore is not easily handled by use of supercells. This paper illustrates that the authentic slab geometry, another technique for surface calculations, is not affected by this issue: It works equally well with both short- and long-ranged potentials, with the computational cost and the convergence speed being essentially the same. Using the asymptotically long-ranged Becke-Roussel'89 exchange potential as an example, we have calculated six surfaces of various types. We found that accurate potential values can be obtained even in extremely low density regions of more than 100 Å away from the surface. This high performance allows us to explore the asymptotic region, and prove with clean numerical evidence that the Becke-Roussel'89 potential satisfies the correct asymptotic behavior for slab surfaces, as it does for finite systems. Our finding further implies that the Slater component of the exact exchange optimized effective potential is responsible for the asymptotic behavior, not only for jellium slabs, but for slabs of any type. The Becke-Roussel'89 potential may therefore be used to build asymptotically correct model exchange potentials applicable to both finite systems and slab surfaces.
2D materials for nanophotonic devices
NASA Astrophysics Data System (ADS)
Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui
2015-12-01
Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.
Evaluation of the potential in radiation dose reduction for full-field digital mammography
NASA Astrophysics Data System (ADS)
Kasch, Kay-Uwe; Moftah, Belal A.
2008-01-01
This study evaluates the image quality for different radiation doses in full-field digital mammography (FFDM). The potential of dose reductions is evaluated for both, the transition from screen-film mammography (SFM) to FFDM as well as within FFDM due to the optimization of exposure parameters. Exposures of a 4.5 cm breast phantom rendering different contrasts as well as bar patterns were made using a FFDM system (GE Senographe 2000D). For different kVp and mAs settings as well as different target/filter combinations chosen for the above exposures, average glandular dose (AGD), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and modulation transfer function (MTF) were determined. To benchmark the results, relative change of AGD was evaluated against SNR, CNR and MTF. Eventually, the results were normalized to AGD's rendered by settings typically used in today's clinical routine. For standard settings (automatic mode), both FFDM and SFM deliver approximately the same AGD of about 2.2 mGy. From that, AGD reduction can be substantial in FFDM if only SNR and high contrast CNR are considered. In this case, reduction of up to 40% can be achieved in a wide kVp range if switching from the standard target/filter combination Mo/Rh to Rh/Rh. However, if low contrast CNR is to remain unchanged, dose reduction is practically impossible. The change of peak voltage and target/filter material had no influence on MTF. Assuming current CNR requirements as standards, significant dose reduction in FFDM cannot be achieved. Only by compromising low contrast CNR levels AGD of up to 40% can be saved at current standards of SNR and high contrast CNR.
Hydrodynamic parameters estimation from self-potential data in a controlled full scale site
NASA Astrophysics Data System (ADS)
Chidichimo, Francesco; De Biase, Michele; Rizzo, Enzo; Masi, Salvatore; Straface, Salvatore
2015-03-01
A multi-physical approach developed for the hydrodynamic characterization of porous media using hydrogeophysical information is presented. Several pumping tests were performed in the Hydrogeosite Laboratory, a controlled full-scale site designed and constructed at the CNR-IMAA (Consiglio Nazionale delle Ricerche - Istituto di Metodologia per l'Analisi Ambientale), in Marsico Nuovo (Basilicata Region, Southern Italy), in order to obtain an intermediate stage between laboratory experiments and field survey. The facility consists of a pool, used to study water infiltration processes, to simulate the space and time dynamics of subsurface contamination phenomena, to improve and to find new relationship between geophysical and hydrogeological parameters, to test and to calibrate new geophysical techniques and instruments. Therefore, the Hydrogeosite Laboratory has the advantage of carrying out controlled experiments, like in a flow cell or sandbox, but at field comparable scale. The data collected during the experiments have been used to estimate the saturated hydraulic conductivity ks [ms-1] using a coupled inversion model working in transient conditions, made up of the modified Richards equation describing the water flow in a variably saturated porous medium and the Poisson equation providing the self-potential ϕ [V], which naturally occurs at points of the soil surface owing to the presence of an electric field produced by the motion of underground electrolytic fluids through porous systems. The result obtained by this multi-physical numerical approach, which removes all the approximations adopted in previous works, makes a useful instrument for real heterogeneous aquifer characterization and for predictive analysis of its behavior.
NASA Astrophysics Data System (ADS)
Majumder, Moumita; Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker; Li, Jun; Guo, Hua; Manzhos, Sergei
2014-06-01
New potential energy surfaces for methane were constructed, represented as analytic fits to about 100,000 individual high-level ab initio data. Explicitly-correlated multireference data (MRCI-F12(AE)/CVQZ-F12) were computed using Molpro [1] and fit using multiple strategies. Fits with small to negligible errors were obtained using adaptations of the permutation-invariant-polynomials (PIP) approach [2,3] based on neural-networks (PIP-NN) [4,5] and the interpolative moving least squares (IMLS) fitting method [6] (PIP-IMLS). The PESs were used in full-dimensional vibrational calculations with an exact kinetic energy operator by representing the Hamiltonian in a basis of products of contracted bend and stretch functions and using a symmetry adapted Lanczos method to obtain eigenvalues and eigenvectors. Very close agreement with experiment was produced from the purely ab initio PESs. References 1- H.-J. Werner, P. J. Knowles, G. Knizia, 2012.1 ed. 2012, MOLPRO, a package of ab initio programs. see http://www.molpro.net. 2- Z. Xie and J. M. Bowman, J. Chem. Theory Comput 6, 26, 2010. 3- B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577, 2009. 4- J. Li, B. Jiang and Hua Guo, J. Chem. Phys. 139, 204103 (2013). 5- S Manzhos, X Wang, R Dawes and T Carrington, JPC A 110, 5295 (2006). 6- R. Dawes, X-G Wang, A.W. Jasper and T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010).
NASA Astrophysics Data System (ADS)
Fiori, R. A. D.; Boteler, D. H.; Knudsen, D.; Burchill, J.; Koustov, A. V.; Cousins, E. D. P.; Blais, C.
2013-02-01
The Electric Field Instrument (EFI) onboard the Swarm satellites will make continuous measurements of the three-dimensional ion drift in the topside F region providing a convenient data set for mapping the ionospheric convection pattern. In this study, a spherical cap harmonic analysis (SCHA) algorithm has been developed to generate maps of the high-latitude convection pattern in the narrow region surrounding the footprints of the Swarm satellite tracks where the solution will be constrained by measurements. This technique has been tested using input velocity values generated from a statistical model at simulated coordinates of Swarm EFI measurements. To obtain a global context from the Swarm ion drift measurements, the Swarm data set is merged with values of the E × B plasma drift determined using a statistical model at typical locations of measurements for the Super Dual Auroral Radar Network (SuperDARN) radars in the northern hemisphere. It is shown that the addition of Swarm ion drifts to a SuperDARN data set increased the proportion of the calculated convection pattern that is constrained by measurement, by a relative increase of as much as 12% for a period of good SuperDARN coverage and 30% for a period of poor SuperDARN coverage. For a data set comprising two years of past SuperDARN operation and 4 years of future satellite operation, it is shown that a distribution of the relative increase peaks at 12.5%. The magnitude of the improvement depends on the size of the SuperDARN data set, the number of satellites contributing to the Swarm data set, and the extent of the overlap between instruments. Contributions from a Swarm data set also allows for the determination of convection features and properties, such as the location of convection vortices or the value of the cross polar cap potential, that could not be calculated by SuperDARN data alone due to a limited data set.
NASA Technical Reports Server (NTRS)
Trejo, Leonard J.; Matthews, Bryan; Rosipal, Roman
2005-01-01
We have developed and tested two EEG-based brain-computer interfaces (BCI) for users to control a cursor on a computer display. Our system uses an adaptive algorithm, based on kernel partial least squares classification (KPLS), to associate patterns in multichannel EEG frequency spectra with cursor controls. Our first BCI, Target Practice, is a system for one-dimensional device control, in which participants use biofeedback to learn voluntary control of their EEG spectra. Target Practice uses a KF LS classifier to map power spectra of 30-electrode EEG signals to rightward or leftward position of a moving cursor on a computer display. Three subjects learned to control motion of a cursor on a video display in multiple blocks of 60 trials over periods of up to six weeks. The best subject s average skill in correct selection of the cursor direction grew from 58% to 88% after 13 training sessions. Target Practice also implements online control of two artifact sources: a) removal of ocular artifact by linear subtraction of wavelet-smoothed vertical and horizontal EOG signals, b) control of muscle artifact by inhibition of BCI training during periods of relatively high power in the 40-64 Hz band. The second BCI, Think Pointer, is a system for two-dimensional cursor control. Steady-state visual evoked potentials (SSVEP) are triggered by four flickering checkerboard stimuli located in narrow strips at each edge of the display. The user attends to one of the four beacons to initiate motion in the desired direction. The SSVEP signals are recorded from eight electrodes located over the occipital region. A KPLS classifier is individually calibrated to map multichannel frequency bands of the SSVEP signals to right-left or up-down motion of a cursor on a computer display. The display stops moving when the user attends to a central fixation point. As for Target Practice, Think Pointer also implements wavelet-based online removal of ocular artifact; however, in Think Pointer muscle
NASA Astrophysics Data System (ADS)
Ravindran, P.; Kjekshus, A.; Fjellvåg, H.; James, P.; Nordström, L.; Johansson, B.; Eriksson, O.
2001-04-01
The computational framework of this study is based on the local-spin-density approximation with first-principles full-potential linear muffin-tin orbital calculations including orbital polarization (OP) correction. We have studied the magnetic anisotropy for a series of bilayer CuAu(I)-type materials such as FeX, MnX (X=Ni,Pd,Pt), CoPt, NiPt, MnHg, and MnRh in a ferromagnetic state using experimental structural parameters to understand the microscopic origin of magnetic-anisotropy energy (MAE) in magnetic multilayers. Except for MnRh and MnHg, all these phases show perpendicular magnetization. We have analyzed our results in terms of angular momentum-, spin- and site-projected density of states, magnetic-angular-momentum-projected density of states, orbital-moment density of states, and total density of states. The orbital-moment number of states and the orbital-moment anisotropy for FeX (X=Ni,Pd,Pt) are calculated as a function of band filling to study its effect on MAE. The total and site-projected spin and orbital moments for all these systems are calculated with and without OP when the magnetization is along or perpendicular to the plane. The results are compared with available experimental as well as theoretical results. Our calculations show that OP always enhances the orbital moment in these phases and brings them closer to experimental values. The changes in MAE are analyzed in terms of exchange splitting, spin-orbit splitting, and tetragonal distortion/crystal-field splitting. The calculated MAE is found to be in good agreement with experimental values when the OP correction is included. Some of the materials considered here show large magnetic anisotropy of the order of meV. In particular we found that MnPt will have a very large MAE if it could be stabilized in a ferromagnetic configuration. Our analysis indicates that apart from large spin-orbit interaction and exchange interaction from at least one of the constituents, a large crystal-field splitting
Full potential calculations on the electron bandstructures of Sphalerite, Pyrite and Chalcopyrite
NASA Astrophysics Data System (ADS)
Edelbro, R.; Sandström, Å.; Paul, J.
2003-02-01
The bulk electronic structures of Sphalerite, Pyrite and Chalcopyrite have been calculated within an ab initio, full potential, density functional approach. The exchange term was approximated with the Dirac exchange functional, the Vosko-Wilk-Nusair parameterization of the Cepler-Alder free electron gas was used for correlation and linear combinations of Gaussian type orbitals were used as basis functions. The Sphalerite (zinc blende) band gap was calculated to be direct with a width of 2.23 eV. The Sphalerite valence band was 5.2 eV wide and composed of a mixture of sulfur and zinc orbitals. The band below the valence band located around -6.2 eV was mainly composed of Zn 3d orbitals. The S 3s orbitals gave rise to a band located around -12.3 eV. Pyrite was calculated to be a semiconductor with an indirect band gap of 0.51 eV, and a direct gap of 0.55 eV. The valence band was 1.25 eV wide and mainly composed of non-bonding Fe 3d orbitals. The band below the valence band was 4.9 eV wide and composed of a mixture of sulfur and iron orbitals. Due to the short inter-atomic distance between the sulfur dumbbells, the S 3s orbitals in Pyrite were split into a bonding and an anti-bonding range. Chalcopyrite was predicted to be a conductor, with no band-crossings at the Fermi level. The bands at -13.2 eV originate from the sulfur 3s orbitals and were quite similar to the sulfur 3s bands in Sphalerite, though somewhat shifted to lower energy. The top of the valence band consisted of a mixture of orbitals from all the atoms. The lower part of the same band showed metal character. Computational modeling as a tool for illuminating the flotation and leaching processes of Pyrite and Chalcopyrite, in connection with surface science experiments, is discussed.
NASA Astrophysics Data System (ADS)
Wang, Jin; Ma, Jianyong; Zhou, Changhe
2014-11-01
A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.
Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology
Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr
2016-01-01
The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346
Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.
Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr
2016-01-01
The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346
NASA Astrophysics Data System (ADS)
Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John
2016-05-01
We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.
Application of a full potential method for analysis of complex aircraft geometries
NASA Technical Reports Server (NTRS)
Jones, Kenneth M.; Talcott, Noel A., Jr.
1986-01-01
A supersonic potential flow solver was developed to analyze the flow over complex realistic aircraft geometries. Enhancements to the method were made to accommodate regions of subsonic flow, the effect of trailing wakes on other aircraft components, and the modeling/gridding of complete configurations. Validation of the method was demonstrated by comparisons with experimental aerodynamic force and surface pressure measurements. The predicted results are in very good agreement with the experimental data. The bibliography contains additional information on the use of the potential flow code to predict the aerodynamics of high-speed wing/body configurations, waverider concepts, TAV, and the Space Shuttle orbiter package.
Evans, C. M. Krynski, Kamil; Streeter, Zachary; Findley, G. L.
2015-12-14
We present for the first time the quasi-free electron energy V{sub 0}(ρ) for H{sub 2}, D{sub 2}, and O{sub 2} from gas to liquid densities, on noncritical isotherms and on a near critical isotherm in each fluid. These data illustrate the ability of field enhanced photoemission (FEP) to determine V{sub 0}(ρ) accurately in strongly absorbing fluids (e.g., O{sub 2}) and fluids with extremely low critical temperatures (e.g., H{sub 2} and D{sub 2}). We also show that the isotropic local Wigner-Seitz model for V{sub 0}(ρ) — when coupled with thermodynamic data for the fluid — can yield optimized parameters for intermolecular potentials, as well as zero kinetic energy electron scattering lengths.
NASA Astrophysics Data System (ADS)
Isegawa, Miho; Liu, Fengyi; Maeda, Satoshi; Morokuma, Keiji
2014-10-01
We report reaction paths starting from N(2D) + H2O for doublet spin states, D0 and D1. The potential energy surfaces are explored in an automated fashion using the global reaction route mapping strategy. The critical points and reaction paths have been fully optimized at the complete active space second order perturbation theory level taking all valence electrons in the active space. In addition to direct dissociation pathways that would be dominant, three roaming processes, two roaming dissociation, and one roaming isomerization: (1) H2ON → H-O(H)N → H-HON → NO(2Π) + H2, (2) cis-HNOH → HNO-H → H-HNO → NO + H2, (3) H2NO → H-HNO → HNO-H → trans-HNOH, are confirmed on the D0 surface.
Parallel stitching of 2D materials
Ling, Xi; Wu, Lijun; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; et al
2016-01-27
Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.
Parallel Stitching of 2D Materials.
Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing
2016-03-01
Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits. PMID:26813882
Messer, Benjamin M.; Roca, Maite; Chu, Zhen T.; Vicatos, Spyridon; Kilshtain, Alexandra Vardi; Warshel, Arieh
2009-01-01
Evaluating the free energy landscape of proteins and the corresponding functional aspects presents a major challenge for computer simulation approaches. This challenge is due to the complexity of the landscape and the enormous computer time needed for converging simulations. The use of simplified coarse grained (CG) folding models offers an effective way of sampling the landscape but such a treatment, however, may not give the correct description of the effect of the actual protein residues. A general way around this problem that has been put forward in our early work (Fan et al, Theor Chem Acc (1999) 103:77-80) uses the CG model as a reference potential for free energy calculations of different properties of the explicit model. This method is refined and extended here, focusing on improving the electrostatic treatment and on demonstrating key applications. This application includes: evaluation of changes of folding energy upon mutations, calculations of transition states binding free energies (which are crucial for rational enzyme design), evaluation of catalytic landscape and simulation of the time dependent responses to pH changes. Furthermore, the general potential of our approach in overcoming major challenges in studies of structure function correlation in proteins is discussed. PMID:20052756
NASA Astrophysics Data System (ADS)
Qian, Shengyi; Misra, Soumyadeep; Lu, Jiawen; Yu, Zhongwei; Yu, Linwei; Xu, Jun; Wang, Junzhuan; Xu, Ling; Shi, Yi; Chen, Kunji; Roca i Cabarrocas, Pere
2015-07-01
Combining advanced materials and junction design in nanowire-based thin film solar cells requires a different thinking of the optimization strategy, which is critical to fulfill the potential of nano-structured photovoltaics. Based on a comprehensive knowledge of the junction materials involved in the multilayer stack, we demonstrate here, in both experimental and theoretical manners, the potential of hydrogenated amorphous Si (a-Si:H) thin film solar cells in a radial junction (RJ) configuration. Resting upon a solid experimental basis, we also assess a more advanced tandem RJ structure with radially stacking a-Si:H/nanocrystalline Si (nc-Si:H) PIN junctions, and show that a balanced photo-current generation with a short circuit current density of Jsc = 14.2 mA/cm2 can be achieved in a tandem RJ cell, while reducing the expensive nc-Si:H absorber thickness from 1-3 μ m (in planar tandem cells) to only 120 nm. These results provide a clearly charted route towards a high performance Si thin film photovoltaics.
Realizing the full potential of Remotely Sensed Active Layer Thickness (ReSALT) Products
NASA Astrophysics Data System (ADS)
Schaefer, K. M.; Chen, A.; Liu, L.; Parsekian, A.; Jafarov, E. E.; Panda, S. K.; Zebker, H. A.
2015-12-01
The Remotely Sensed Active Layer Thickness (ReSALT) product uses the Interferometric Synthetic Aperture Radar (InSAR) technique to measure ground subsidence, active layer thickness (ALT), and thermokarst activity in permafrost regions. ReSALT supports research for the Arctic-Boreal Vulnerability Experiment (ABoVE) field campaign in Alaska and northwest Canada and is a precursor for a potential Nasa-Isro Synthetic Aperture Radar (NISAR) product. ALT is a critical parameter for monitoring the status of permafrost and thermokarst activity is one of the key drivers of change in permafrost regions. The ReSALT product currently includes 1) long-term subsidence trends resulting from the melting and subsequent drainage of excess ground ice in permafrost-affected soils, 2) seasonal subsidence resulting from the expansion of soil water into ice as the active layer freezes and thaws, and 3) ALT estimated from the seasonal subsidence assuming a vertical profile of water within the soil column. ReSALT includes uncertainties for all parameters and is validated against in situ measurements from the Circumpolar Active Layer Monitoring (CALM) network, Ground Penetrating Radar and mechanical probe measurements. We present high resolution ReSALT products on the North Slope of Alaska: Prudhoe Bay, Barrow, Toolik Lake, Happy Valley, and the Anaktuvuk fire zone. We believe that the ReSALT product could be expanded to include maps of individual thermokarst features identified as spatial anomalies in the subsidence trends, with quantified expansion rates. We illustrate the technique with multiple examples of thermokarst features on the North Slope of Alaska. Knowing the locations and expansion rates for individual features allows us to evaluate risks to human infrastructure. Our results highlight the untapped potential of the InSAR technique to remotely sense ALT and thermokarst dynamics over large areas of the Arctic.
The Cape Town Declaration on Vaccines 2012: Unlocking the full potential of vaccines in Africa.
Wiysonge, Charles S; Waggie, Zainab; Hawkridge, Anthony; Schoub, Barry D; Madhi, Shabir A; Rees, Helen; Hussey, Gregory D
2016-07-19
Delegates at the first International African Vaccinology Conference noted, with dismay, that many African children have limited access to existing and new vaccines as a consequence of weak immunisation programmes, lack of political will, and high vaccine prices. This inequality is a denial of the African child her basic right to a healthy life, and jeopardises long term economic growth on the continent. In addition, there is insufficient emphasis in Africa on adolescent and adult immunisation. The delegates documented various concerns and made various commitments; contained in this Cape Town Declaration on Vaccines, adopted on 11 November 2012. Finally, delegates confirmed their agreement with the goals and strategic objectives of the Global Vaccine Action Plan, and committed to hold African leaders accountable for its implementation during the Decade of Vaccines. The full list of registered conference delegates is provided as supplementary data to this manuscript. PMID:27317265
NASA Astrophysics Data System (ADS)
Maniero, Angelo M.; Acioli, Paulo H.
A full configuration interaction (CI) with a norm-conserving pseudopotential procedure to determine potential energy surfaces is proposed. Analysis of the potentiality and the possible sources of inaccuracies of the methodology is given in terms of its application to the generation of the ground-state potential energy curves of the LiH and Li2 molecules. The vibrational energy levels were obtained using the discrete variable representation. The agreement between our results and those from Rydberg-Klein-Ress-derived potentials is very good. The extension of this procedure to larger systems is straightforward.
Optical modulators with 2D layered materials
NASA Astrophysics Data System (ADS)
Sun, Zhipei; Martinez, Amos; Wang, Feng
2016-04-01
Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.
Full dimension Rb2He ground triplet potential energy surface and quantum scattering calculations.
Guillon, Grégoire; Viel, Alexandra; Launay, Jean-Michel
2012-05-01
We have developed a three-dimensional potential energy surface for the lowest triplet state of the Rb(2)He complex. A global analytic fit is provided as in the supplementary material [see supplementary material at http://dx.doi.org/10.1063/1.4709433 for the corresponding Fortran code]. This surface is used to perform quantum scattering calculations of (4)He and (3)He colliding with (87)Rb(2) in the partial wave J = 0 at low and ultralow energies. For the heavier helium isotope, the computed vibrational relaxation probabilities show a broad and strong shape resonance for a collisional energy of 0.15 K and a narrow Feshbach resonance at about 17 K for all initial Rb(2) vibrational states studied. The broad resonance corresponds to an efficient relaxation mechanism that does not occur when (3)He is the colliding partner. The Feshbach resonance observed at higher collisional energy is robust with respect to the isotopic substitution. However, its effect on the vibrational relaxation mechanism is faint for both isotopes. PMID:22583230
Full dimension Rb2He ground triplet potential energy surface and quantum scattering calculations
NASA Astrophysics Data System (ADS)
Guillon, Grégoire; Viel, Alexandra; Launay, Jean-Michel
2012-05-01
We have developed a three-dimensional potential energy surface for the lowest triplet state of the Rb2He complex. A global analytic fit is provided as in the supplementary material [see supplementary material at http://dx.doi.org/10.1063/1.4709433E-JCPSA6-136-034218 for the corresponding Fortran code]. This surface is used to perform quantum scattering calculations of 4He and 3He colliding with 87Rb2 in the partial wave J = 0 at low and ultralow energies. For the heavier helium isotope, the computed vibrational relaxation probabilities show a broad and strong shape resonance for a collisional energy of 0.15 K and a narrow Feshbach resonance at about 17 K for all initial Rb2 vibrational states studied. The broad resonance corresponds to an efficient relaxation mechanism that does not occur when 3He is the colliding partner. The Feshbach resonance observed at higher collisional energy is robust with respect to the isotopic substitution. However, its effect on the vibrational relaxation mechanism is faint for both isotopes.
2D-Crystal-Based Functional Inks.
Bonaccorso, Francesco; Bartolotta, Antonino; Coleman, Jonathan N; Backes, Claudia
2016-08-01
The possibility to produce and process graphene, related 2D crystals, and heterostructures in the liquid phase makes them promising materials for an ever-growing class of applications as composite materials, sensors, in flexible optoelectronics, and energy storage and conversion. In particular, the ability to formulate functional inks with on-demand rheological and morphological properties, i.e., lateral size and thickness of the dispersed 2D crystals, is a step forward toward the development of industrial-scale, reliable, inexpensive printing/coating processes, a boost for the full exploitation of such nanomaterials. Here, the exfoliation strategies of graphite and other layered crystals are reviewed, along with the advances in the sorting of lateral size and thickness of the exfoliated sheets together with the formulation of functional inks and the current development of printing/coating processes of interest for the realization of 2D-crystal-based devices. PMID:27273554
Repeat Ground Track Lunar Orbits in the Full-Potential Plus Third-Body Problem
NASA Technical Reports Server (NTRS)
Russell, Ryan P.; Lara, Martin
2006-01-01
A high degree and order Lunar gravitational field is superimposed on the Earth-Moon Restricted Three Body model to capture the dominating forces on a spacecraft in the vicinity of the Moon. For the synchronously rotating Moon, periodic orbits in this model map repeat ground tracks and represent higher order solutions to the frozen orbit problem. The near-circular, stable or near-stable solutions are found over a wide range of defining characteristics making them suitable for long-lifetime parking applications such as science orbits, crew exploration vehicle parking orbits, and global coverage constellation orbits. A full ephemeris is considered for selected orbits to evaluate the validity of the time-invariant, simplified model. Of the most promising results are the low-altitude families of near-circular, inclined orbits that maintain long-term stability despite the highly non-spherical Lunar gravity. The method is systematic and enables rapid design and analysis of long-life orbits around any tidally-locked celestial body with an arbitrarily high degree and order spherical harmonic gravity field. .
FPCAS2D user's guide, version 1.0
NASA Astrophysics Data System (ADS)
Bakhle, Milind A.
1994-12-01
The FPCAS2D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady two-dimensional full potential equation which is solved for a cascade of blades. The structural analysis is based on a two degree-of-freedom rigid typical section model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS2D code. A complete description of the input data is provided in this report. In addition, four test cases, including inputs and outputs, are provided.
Cell therapy for full-thickness wounds: are fetal dermal cells a potential source?
Akershoek, J J; Vlig, M; Talhout, W; Boekema, B K H L; Richters, C D; Beelen, R H J; Brouwer, K M; Middelkoop, E; Ulrich, M M W
2016-04-01
The application of autologous dermal fibroblasts has been shown to improve burn wound healing. However, a major hurdle is the availability of sufficient healthy skin as a cell source. We investigated fetal dermal cells as an alternative source for cell-based therapy for skin regeneration. Human (hFF), porcine fetal (pFF) or autologous dermal fibroblasts (AF) were seeded in a collagen-elastin substitute (Novomaix, NVM), which was applied in combination with an autologous split thickness skin graft (STSG) to evaluate the effects of these cells on wound healing in a porcine excisional wound model. Transplantation of wounds with NVM+hFF showed an increased influx of inflammatory cells (e.g., neutrophils, macrophages, CD4(+) and CD8(+) lymphocytes) compared to STSG, acellular NVM (Acell-NVM) and NVM+AF at post-surgery days 7 and/or 14. Wounds treated with NVM+pFF presented only an increase in CD8(+) lymphocyte influx. Furthermore, reduced alpha-smooth muscle actin (αSMA) expression in wound areas and reduced contraction of the wounds was observed with NVM+AF compared to Acell-NVM. Xenogeneic transplantation of NVM+hFF increased αSMA expression in wounds compared to NVM+AF. An improved scar quality was observed for wounds treated with NVM+AF compared to Acell-NVM, NVM+hFF and NVM+pFF at day 56. In conclusion, application of autologous fibroblasts improved the overall outcome of wound healing in comparison to fetal dermal cells and Acell-NVM, whereas application of fetal dermal fibroblasts in NVM did not improve wound healing of full-thickness wounds in a porcine model. Although human fetal dermal cells demonstrated an increased immune response, this did not seem to affect scar quality. PMID:26453400
2004-08-01
AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.
ERIC Educational Resources Information Center
Shaw, Angela
2014-01-01
This paper examines current part-time mature learners' views on the potential impact upon future students as full fees are introduced from 2012. It investigates the problems which part-time mature learners may face with the advent of student loans and subsequent debt, given that they are usually combining complex lives with their studies,…
Isegawa, Miho; Liu, Fengyi; Maeda, Satoshi; Morokuma, Keiji
2014-10-21
We report reaction paths starting from N({sup 2}D) + H{sub 2}O for doublet spin states, D{sub 0} and D{sub 1}. The potential energy surfaces are explored in an automated fashion using the global reaction route mapping strategy. The critical points and reaction paths have been fully optimized at the complete active space second order perturbation theory level taking all valence electrons in the active space. In addition to direct dissociation pathways that would be dominant, three roaming processes, two roaming dissociation, and one roaming isomerization: (1) H{sub 2}ON → H–O(H)N → H–HON → NO({sup 2}Π) + H{sub 2}, (2) cis-HNOH → HNO–H → H–HNO → NO + H{sub 2}, (3) H{sub 2}NO → H–HNO → HNO–H → trans-HNOH, are confirmed on the D{sub 0} surface.
Lorenz-Mie theory for 2D scattering and resonance calculations
NASA Astrophysics Data System (ADS)
Gagnon, Denis; Dubé, Louis J.
2015-10-01
This PhD tutorial is concerned with a description of the two-dimensional generalized Lorenz-Mie theory (2D-GLMT), a well-established numerical method used to compute the interaction of light with arrays of cylindrical scatterers. This theory is based on the method of separation of variables and the application of an addition theorem for cylindrical functions. The purpose of this tutorial is to assemble the practical tools necessary to implement the 2D-GLMT method for the computation of scattering by passive scatterers or of resonances in optically active media. The first part contains a derivation of the vector and scalar Helmholtz equations for 2D geometries, starting from Maxwell’s equations. Optically active media are included in 2D-GLMT using a recent stationary formulation of the Maxwell-Bloch equations called steady-state ab initio laser theory (SALT), which introduces new classes of solutions useful for resonance computations. Following these preliminaries, a detailed description of 2D-GLMT is presented. The emphasis is placed on the derivation of beam-shape coefficients for scattering computations, as well as the computation of resonant modes using a combination of 2D-GLMT and SALT. The final section contains several numerical examples illustrating the full potential of 2D-GLMT for scattering and resonance computations. These examples, drawn from the literature, include the design of integrated polarization filters and the computation of optical modes of photonic crystal cavities and random lasers.
NASA Technical Reports Server (NTRS)
Jones, Henry E.
1997-01-01
A study of the full-potential modeling of a blade-vortex interaction was made. A primary goal of this study was to investigate the effectiveness of the various methods of modeling the vortex. The model problem restricts the interaction to that of an infinite wing with an infinite line vortex moving parallel to its leading edge. This problem provides a convenient testing ground for the various methods of modeling the vortex while retaining the essential physics of the full three-dimensional interaction. A full-potential algorithm specifically tailored to solve the blade-vortex interaction (BVI) was developed to solve this problem. The basic algorithm was modified to include the effect of a vortex passing near the airfoil. Four different methods of modeling the vortex were used: (1) the angle-of-attack method, (2) the lifting-surface method, (3) the branch-cut method, and (4) the split-potential method. A side-by-side comparison of the four models was conducted. These comparisons included comparing generated velocity fields, a subcritical interaction, and a critical interaction. The subcritical and critical interactions are compared with experimentally generated results. The split-potential model was used to make a survey of some of the more critical parameters which affect the BVI.
NASA Astrophysics Data System (ADS)
Mayor, Louise
2016-05-01
Graphene might be the most famous example, but there are other 2D materials and compounds too. Louise Mayor explains how these atomically thin sheets can be layered together to create flexible “van der Waals heterostructures”, which could lead to a range of novel applications.
Steady, Nonrotating, Blade-to-Blade Potential Transonic Cascade Flow Analysis Code
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1983-01-01
CAS2D computer program numerically solves artifically time-dependent form of actual full potential equation, providing steady, nonrotating, bladeto-blade potential transonic cascade flow analysis code. CAS2D written in FORTRAN IV.
Tomosynthesis imaging with 2D scanning trajectories
NASA Astrophysics Data System (ADS)
Khare, Kedar; Claus, Bernhard E. H.; Eberhard, Jeffrey W.
2011-03-01
Tomosynthesis imaging in chest radiography provides volumetric information with the potential for improved diagnostic value when compared to the standard AP or LAT projections. In this paper we explore the image quality benefits of 2D scanning trajectories when coupled with advanced image reconstruction approaches. It is intuitively clear that 2D trajectories provide projection data that is more complete in terms of Radon space filling, when compared with conventional tomosynthesis using a linearly scanned source. Incorporating this additional information for obtaining improved image quality is, however, not a straightforward problem. The typical tomosynthesis reconstruction algorithms are based on direct inversion methods e.g. Filtered Backprojection (FBP) or iterative algorithms that are variants of the Algebraic Reconstruction Technique (ART). The FBP approach is fast and provides high frequency details in the image but at the same time introduces streaking artifacts degrading the image quality. The iterative methods can reduce the image artifacts by using image priors but suffer from a slow convergence rate, thereby producing images lacking high frequency details. In this paper we propose using a fast converging optimal gradient iterative scheme that has advantages of both the FBP and iterative methods in that it produces images with high frequency details while reducing the image artifacts. We show that using favorable 2D scanning trajectories along with the proposed reconstruction method has the advantage of providing improved depth information for structures such as the spine and potentially producing images with more isotropic resolution.
Interparticle Attraction in 2D Complex Plasmas
NASA Astrophysics Data System (ADS)
Kompaneets, Roman; Morfill, Gregor E.; Ivlev, Alexei V.
2016-03-01
Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecularlike. In this Letter, we propose how to achieve a molecularlike interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.
2001-01-31
This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.
Schottky diodes from 2D germanane
NASA Astrophysics Data System (ADS)
Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.
2016-07-01
We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.
WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation
NASA Astrophysics Data System (ADS)
Shen, Yanfeng; Giurgiutiu, Victor
2014-03-01
This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.
De Vrieze, Jo; Smet, Davey; Klok, Jacob; Colsen, Joop; Angenent, Largus T; Vlaeminck, Siegfried E
2016-10-01
The conventional treatment of municipal wastewater by means of activated sludge is typically energy demanding. Here, the potential benefits of: (1) the optimization of mesophilic digestion; and (2) transitioning to thermophilic sludge digestion in three wastewater treatment plants (Tilburg-Noord, Land van Cuijk and Bath) in the Netherlands is evaluated, including a full-scale trial validation in Bath. In Tilburg-Noord, thermophilic sludge digestion covered the energy requirements of the plant (102%), whereas 111% of sludge operational treatment costs could be covered in Bath. Thermophilic sludge digestion also resulted in a strong increase in nutrient release. The potential for nutrient recovery was evaluated via: (1) stripping/absorption of ammonium; (2) autotrophic removal of ammonium via partial nitritation/anammox; and (3) struvite precipitation. This research shows that optimization of sludge digestion may lead to a strong increase in energy recovery, sludge treatment costs reduction, and the potential for advanced nutrient management in full-scale sewage treatment plants. PMID:27423372
NASA Technical Reports Server (NTRS)
Chang, I.-C.; Tung, C.
1985-01-01
A three-dimensional, full-potential, quasi-steady code TFAR1 is proposed for calculating the transonic flow past a lifting helicopter rotor blade and oblique wing. The TFAR1 uses a two-dimensional nonlinear wake-model that allows a jump in velocity potential to propagate with the local fluid flow in the wake. Rotor calculations were made for a single blade at an advance ratio of 0.3, a rotational tip Mach number of 0.7, and at 0-degree incidence. A 1/7-scale model of the Cobra Operational Load Survey (OLS) rotor blade is calculated, and the pressure distributions are compared to the measurements for azimuth angles 0, 30, 60, 90, 120, and 150 degrees at the 95 percent spanwise station of the OLS blade. Furthermore, an oblique wing with Korn airfoil was calculated at the high transonic free-stream Mach number of 0.9791, zero incidence, and yaw angle of 40 degrees. The TFAR1, coupled with a helicopter performance code CAMRAD (Johnson, 1981), provides a full-potential code for calculating the entire flow field for a multiple-bladed rotor in transonic lifting forward flight.
Wang, Yushi; Wang, Jiwen; Liu, Hehe; Zhang, Rongping; Zhang, Tao; Gan, Xiang; Huang, Huilan; Chen, Da; Li, Liang
2016-08-01
Myocyte enhancer transcription factor 2D (MEF2D) is an important transcription factor for promoting the growth and development of muscle. CAG repeats have been found in the coding sequence (CDS) of avian MEF2D; however, their functions remain unknown and require further investigation. Here, we examined the characteristics and functional role of MEF2D CAG repeat in duck. The full-length CDS of duck MEF2D was cloned for the first time, and a novel CAG repeat was identified and located in exon 9. Sequence analysis indicated that the protein domains of duck MEF2D are highly conserved relative to other vertebrates, whereas MEF2D CAG repeats with variable repeat numbers are specific to avian species. Furthermore, sequencing has revealed polymorphisms in MEF2D CAG repeat at both DNA and mRNA levels. Four MEF2D CAG repeat genotypes and 10 MEF2D cDNA variants with different CAG repeat numbers were detected in two duck populations. A t-test showed that the expanded CAG repeat generated significantly longer transcription products (p < 0.05). Association analysis demonstrated positive correlations between the expansion of the CAG repeat and five muscle-related traits. By using protein structure prediction, we suggested that the polymorphisms of the CAG repeat affect protein structures within protein domains. Taken together, these findings reveal that duck MEF2D CAG repeat is a potential functional element with polymorphisms and may cause differences in MEF2D function between duck and other vertebrate species. PMID:27064738
Nanoimprint lithography: 2D or not 2D? A review
NASA Astrophysics Data System (ADS)
Schift, Helmut
2015-11-01
Nanoimprint lithography (NIL) is more than a planar high-end technology for the patterning of wafer-like substrates. It is essentially a 3D process, because it replicates various stamp topographies by 3D displacement of material and takes advantage of the bending of stamps while the mold cavities are filled. But at the same time, it keeps all assets of a 2D technique being able to pattern thin masking layers like in photon- and electron-based traditional lithography. This review reports about 20 years of development of replication techniques at Paul Scherrer Institut, with a focus on 3D aspects of molding, which enable NIL to stay 2D, but at the same time enable 3D applications which are "more than Moore." As an example, the manufacturing of a demonstrator for backlighting applications based on thermally activated selective topography equilibration will be presented. This technique allows generating almost arbitrary sloped, convex and concave profiles in the same polymer film with dimensions in micro- and nanometer scale.
NASA Astrophysics Data System (ADS)
Yarkony, David
2015-03-01
The construction of fit single state potential energy surfaces (PESs), analytic representations of ab initio electronic energies and energy gradients, is now well established. These single state PESs, which are essential for accurate quantum dynamics and have found wide application in more approximate quasi-classical treatments, have revolutionized adiabatic dynamics. The situation for nonadiabatic processes involving dissociative and large amplitude motion is less sanguine. In these cases, compared to single electronic state dynamics, both the electronic structure data and the representation are more challenging to determine. We describe the recent development and applications of algorithms that enable description of multiple adiabatic electronic potential energy surfaces coupled by conical intersections in their full dimensionality using coupled quasi-diabatic states. These representations are demonstrably quasi-diabatic, provide accurate representations of conical intersection seams and can smooth out the discontinuities in electronic structure energies due to changing active orbital spaces that routinely afflict global multistate representations.
Communication: A benchmark-quality, full-dimensional ab initio potential energy surface for Ar-HOCO
Conte, Riccardo E-mail: jmbowma@emory.edu; Bowman, Joel M. E-mail: jmbowma@emory.edu; Houston, Paul L.
2014-04-21
A full-dimensional, global ab initio potential energy surface (PES) for the Ar-HOCO system is presented. The PES consists of a previous intramolecular ab initio PES for HOCO [J. Li, C. Xie, J. Ma, Y. Wang, R. Dawes, D. Xie, J. M. Bowman, and H. Guo, J. Phys. Chem. A 116, 5057 (2012)], plus a new permutationally invariant interaction potential based on fitting 12 432 UCCSD(T)-F12a/aVDZ counterpoise-corrected energies. The latter has a total rms fitting error of about 25 cm{sup −1} for fitted interaction energies up to roughly 12 000 cm{sup −1}. Two additional fits are presented. One is a novel very compact permutational invariant representation, which contains terms only involving the Ar-atom distances. The rms fitting error for this fit is 193 cm{sup −1}. The other fit is the widely used pairwise one. The pairwise fit to the entire data set has an rms fitting error of 427 cm{sup −1}. All of these potentials are used in preliminary classical trajectory calculations of energy transfer with a focus on comparisons with the results using the benchmark potential.
Realistic and efficient 2D crack simulation
NASA Astrophysics Data System (ADS)
Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek
2010-04-01
Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.
Niu, Zhongzheng; Xie, Chuanbo; Wen, Xiaozhong; Tian, Fuying; Yuan, Shixin; Jia, Deqin; Chen, Wei-Qing
2016-01-01
It is well documented that maternal exposure to second-hand smoke (SHS) during pregnancy causes low birth weight (LBW), but its mechanism remains unknown. This study explored the potential pathways. We enrolled 195 pregnant women who delivered full-term LBW newborns, and 195 who delivered full-term normal birth weight newborns as the controls. After controlling for maternal age, education level, family income, pre-pregnant body mass index, newborn gender and gestational age, logistic regression analysis revealed that LBW was significantly and positively associated with maternal exposure to SHS during pregnancy, lower placental weight, TNF-α and IL-1β, and that SHS exposure was significantly associated with lower placental weight, TNF-α and IL-1β. Structural equation modelling identified two plausible pathways by which maternal exposure to SHS during pregnancy might cause LBW. First, SHS exposure induced the elevation of TNF-α, which might directly increase the risk of LBW by transmission across the placenta. Second, SHS exposure first increased maternal secretion of IL-1β and TNF-α, which then triggered the secretion of VCAM-1; both TNF-α and VCAM-1 were significantly associated with lower placental weight, thus increasing the risk of LBW. In conclusion, maternal exposure to SHS during pregnancy may lead to LBW through the potential pathways of maternal inflammation and lower placental weight. PMID:27126191
Niu, Zhongzheng; Xie, Chuanbo; Wen, Xiaozhong; Tian, Fuying; Yuan, Shixin; Jia, Deqin; Chen, Wei-Qing
2016-01-01
It is well documented that maternal exposure to second-hand smoke (SHS) during pregnancy causes low birth weight (LBW), but its mechanism remains unknown. This study explored the potential pathways. We enrolled 195 pregnant women who delivered full-term LBW newborns, and 195 who delivered full-term normal birth weight newborns as the controls. After controlling for maternal age, education level, family income, pre-pregnant body mass index, newborn gender and gestational age, logistic regression analysis revealed that LBW was significantly and positively associated with maternal exposure to SHS during pregnancy, lower placental weight, TNF-α and IL-1β, and that SHS exposure was significantly associated with lower placental weight, TNF-α and IL-1β. Structural equation modelling identified two plausible pathways by which maternal exposure to SHS during pregnancy might cause LBW. First, SHS exposure induced the elevation of TNF-α, which might directly increase the risk of LBW by transmission across the placenta. Second, SHS exposure first increased maternal secretion of IL-1β and TNF-α, which then triggered the secretion of VCAM-1; both TNF-α and VCAM-1 were significantly associated with lower placental weight, thus increasing the risk of LBW. In conclusion, maternal exposure to SHS during pregnancy may lead to LBW through the potential pathways of maternal inflammation and lower placental weight. PMID:27126191
Jia, Xiuyue; Gu, Yang; Groome, Lynn J; Al-Kofahi, Mahmoud; Alexander, J Steven; Li, Weimin; Wang, Yuping
2016-05-01
Placental vascular dysfunction has been linked to insufficiency/deficiency of maternal vitamin D levels during pregnancy. In contrast, sufficient maternal vitamin D levels have shown beneficial effects on pregnancy outcomes. To study the role of vitamin D in pregnancy, we tested our hypothesis that vitamin D exerts beneficial effects on placental vasculature. We examined expression of CYP2R1, CYP27B1, vitamin D receptor (VDR), and CYP24A1 in placental vascular smooth muscle cells (VSMCs) in response to 1,25(OH)2D3 We found that VDR expression was inducible, CYP27B1 expression was dose-dependently down-regulated, and CYP24A1 expression was dose-dependently up-regulated in cells treated with 1,25(OH)2D3 These data suggest a feedback autoregulatory system of vitamin D existing in placental VSMCs. Using a VSMC/collagen-gel contraction assay, we evaluated the effect of 1,25(OH)2D3 on placental VSMC contractility. We found that, similar to losartan, 1,25(OH)2D3 could diminish angiotensin II-induced cell contractility. The mechanism of 1,25(OH)2D3-mediated VSMC relaxation was further explored by examination of Rho-associated protein kinase 1 (ROCK1)/phosphorylation of myosin phosphatase target subunit 1 (MYPT1) pathway molecules. Our results showed that p-MYPT1(Thr853) and p-MYPT1(Thr696) were undetectable. However, p-MYPT1(Ser507), but not p-MYPT1(Ser668), was significantly up-regulated in cells treated with losartan plus angiotensin II. Similar effects were also seen in cells treated with 1,25(OH)2D3 plus angiotensin II or 1,25(OH)2D3 plus losartan plus angiotensin II. Because MYPT1 serine phosphorylation could activate myosin light chain phosphatase (MLCP), and MLCP activation is an important regulatory machinery of smooth muscle cell relaxation, up-regulation of MYPT1(Ser507) phosphorylation could be a mechanism of vitamin D and/or losartan mediated placental VSMC relaxation. PMID:27075619
Three-bosons in 2D with a magnetic field
NASA Astrophysics Data System (ADS)
Rittenhouse, Seth; Johnson, Brad; Wray, Andrew; D'Incao, Jose
2016-05-01
Systems of interacting particles in reduced dimensions in the presence of external fields can exhibit a number of surprising behaviors, for instance the emergence of the fractional quantum Hall effect. Examining few-body interactions and effects can lead to significant insights within these systems. In this talk we examine a system of three bosons confined to two dimensions in the presence of a perpendicular magnetic field within the framework of the adiabatic hyperspherical method. For the case of zero-range, regularized pseudo-potential interactions, we find that the system is nearly separable in hyperspherical coordinates and that, away from a set of narrow avoided crossings, the full energy eigenspectrum as a function of the 2D s-wave scattering length is well described by ignoring coupling between adiabatic hyperradial potentials. In the case of weak attractive or repulsive interactions, we find the lowest three-body energy states exhibit even/odd parity oscillations as a function of total internal 2D angular momentum and that for weak repulsive interactions, the universal lowest energy interacting state has an internal angular momentum of M=3. We also discuss the effect of including finite range and higher partial-wave interactions.
Evidence for polymorphism in the cytochrome P450 2D50 gene in horses.
Corado, C R; McKemie, D S; Young, A; Knych, H K
2016-06-01
Metabolism is an essential factor in the clearance of many drugs and as such plays a major role in the establishment of dosage regimens and withdrawal times. CYP2D6, the human orthologue to equine CYP2D50, is a drug-metabolizing enzyme that is highly polymorphic in humans leading to widely differing levels of metabolic activity. As CYP2D6 is highly polymorphic, in this study it was hypothesized that the gene coding for the equine orthologue, CYP2D50, may also be prone to polymorphism. Blood samples were collected from 150 horses, the CYP2D50 gene was cloned and sequenced; and full-length sequences were analyzed for single nucleotide polymorphisms (SNPs), deletions, or insertions. Pharmacokinetic data were collected from a subset of horses following the administration of a single oral dose of tramadol and probit analysis used to calculate metabolic ratios. Prior to drug administration, the ability of recombinant CYP2D50 to metabolize tramadol to O-desmethyltramadol was confirmed. Sequencing of CYP2D50 identified 126 exonic SNPs, with 31 of those appearing in multiple horses. Oral administration of tramadol to a subset of these horses revealed variable metabolic ratios (tramadol: O-desmethyltramadol) in individual horses and separation into three metabolic groups. While a limited number of horses of primarily a single breed were studied, the variability in tramadol metabolism to O-desmethyltramadol between horses and preliminary evidence of what appears to be poor, extensive, and ultra-rapid metabolizers supports further study of the potential for genetic polymorphisms in the CYP2D50 gene in horses. PMID:26441153
Full-dimensional vibrational calculations for H5O2+ using an ab initio potential energy surface
NASA Astrophysics Data System (ADS)
McCoy, Anne B.; Huang, Xinchuan; Carter, Stuart; Landeweer, Marc Y.; Bowman, Joel M.
2005-02-01
We report quantum diffusion Monte Carlo (DMC) and variational calculations in full dimensionality for selected vibrational states of H5O2+ using a new ab initio potential energy surface [X. Huang, B. Braams, and J. M. Bowman, J. Chem. Phys. 122, 044308 (2005)]. The energy and properties of the zero-point state are focused on in the rigorous DMC calculations. OH-stretch fundamentals are also calculated using "fixed-node" DMC calculations and variationally using two versions of the code MULTIMODE. These results are compared with infrared multiphoton dissociation measurements of Yeh et al. [L. I. Yeh, M. Okumura, J. D. Myers, J. M. Price, and Y. T. Lee, J. Chem. Phys. 91, 7319 (1989)]. Some preliminary results for the energies of several modes of the shared hydrogen are also reported.
NASA Technical Reports Server (NTRS)
Farrell, C. A.
1982-01-01
A fast, reliable computer code is described for calculating the flow field about a cascade of arbitrary two dimensional airfoils. The method approximates the three dimensional flow in a turbomachinery blade row by correcting for stream tube convergence and radius change in the throughflow direction. A fully conservative solution of the full potential equation is combined with the finite volume technique on a body-fitted periodic mesh, with an artificial density imposed in the transonic region to insure stability and the capture of shock waves. The instructions required to set up and use the code are included. The name of the code is QSONIC. A numerical example is also given to illustrate the output of the program.
NASA Astrophysics Data System (ADS)
Ono, Tomoya; Heide, Marcus; Atodiresei, Nicolae; Baumeister, Paul; Tsukamoto, Shigeru; Blügel, Stefan
2010-11-01
We have developed an efficient computational scheme utilizing the real-space finite-difference formalism and the projector augmented-wave (PAW) method to perform precise first-principles electronic-structure simulations based on the density-functional theory for systems containing transition metals with a modest computational effort. By combining the advantages of the time-saving double-grid technique and the Fourier-filtering procedure for the projectors of pseudopotentials, we can overcome the egg box effect in the computations even for first-row elements and transition metals, which is a problem of the real-space finite-difference formalism. In order to demonstrate the potential power in terms of precision and applicability of the present scheme, we have carried out simulations to examine several bulk properties and structural energy differences between different bulk phases of transition metals and have obtained excellent agreement with the results of other precise first-principles methods such as a plane-wave-based PAW method and an all-electron full-potential linearized augmented plane-wave (FLAPW) method.
A full-dimensional analytical potential energy surface for the F+CH4→HF + CH3 reaction
NASA Astrophysics Data System (ADS)
Yang, Chuan-Lu; Wang, Mei-Shan; Liu, Wen-Wang; Zhang, Zhi-Hong; Ma, Xiao-Guang
2013-06-01
A full-dimensional analytical potential energy surface (APES) for the F + CH4 →HF + CH3 reaction is developed based on 7127 ab initio energy points at the unrestricted coupled-cluster with single, double, and perturbative triple excitations. The correlation-consistent polarized triple-split valence basis set is used. The APES is represented with a many-body expansion containing 239 parameters determined by the least square fitting method. The two-body terms of the APES are fitted by potential energy curves with multi-reference configuration interaction, which can describe the diatomic molecules (CH, H2, HF, and CF) accurately. It is found that the APES can reproduce the geometry and vibrational frequencies of the saddle point better than those available in the literature. The rate constants based on the present APES support the experimental results of Moore et al. [Int. J. Chem. Kin. 26, 813 (1994)]. The analytical first-order derivation of energy is also provided, making the present APES convenient and efficient for investigating the title reaction with quasiclassical trajectory calculations.
Van der Waals stacked 2D layered materials for optoelectronics
NASA Astrophysics Data System (ADS)
Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.
2016-06-01
The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.
From weakly to strongly interacting 2D Fermi gases
NASA Astrophysics Data System (ADS)
Dyke, Paul; Fenech, Kristian; Lingham, Marcus; Peppler, Tyson; Hoinka, Sascha; Vale, Chris
2014-05-01
We study ultracold 2D Fermi gases of 6Li formed in a highly oblate trapping potential. The potential is generated by a cylindrically focused, blue detuned TEM01 mode laser beam. Weak magnetic field curvature provides highly harmonic confinement in the radial direction and we can readily produce single clouds with an aspect ratio of 230. Our experiments investigate the dimensional crossover from 3D to 2D for a two component Fermi gas in the Bose-Einstein Condensate to Bardeen Cooper Schrieffer crossover. Observation of an elbow in measurements of the cloud width vs. atom number is consistent with populating only the lowest transverse harmonic oscillator state for weak attractive interactions. This measurement is extended to the strongly interacting region using the broad Feshbach resonance at 832 G. We also report our progress towards measurement of the 2D equation of state for an interacting 2D Fermi gas via in-situ absorption imaging.
NASA Astrophysics Data System (ADS)
Nabok, Dmitrii; Gulans, Andris; Draxl, Claudia
2016-07-01
The G W approach of many-body perturbation theory has become a common tool for calculating the electronic structure of materials. However, with increasing number of published results, discrepancies between the values obtained by different methods and codes become more and more apparent. For a test set of small- and wide-gap semiconductors, we demonstrate how to reach the numerically best electronic structure within the framework of the full-potential linearized augmented plane-wave (FLAPW) method. We first evaluate the impact of local orbitals in the Kohn-Sham eigenvalue spectrum of the underlying starting point. The role of the basis-set quality is then further analyzed when calculating the G0W0 quasiparticle energies. Our results, computed with the exciting code, are compared to those obtained using the projector-augmented plane-wave formalism, finding overall good agreement between both methods. We also provide data produced with a typical FLAPW basis set as a benchmark for other G0W0 implementations.
Ringe, Stefan; Oberhofer, Harald; Hille, Christoph; Matera, Sebastian; Reuter, Karsten
2016-08-01
The size-modified Poisson-Boltzmann (MPB) equation is an efficient implicit solvation model which also captures electrolytic solvent effects. It combines an account of the dielectric solvent response with a mean-field description of solvated finite-sized ions. We present a general solution scheme for the MPB equation based on a fast function-space-oriented Newton method and a Green's function preconditioned iterative linear solver. In contrast to popular multigrid solvers, this approach allows us to fully exploit specialized integration grids and optimized integration schemes. We describe a corresponding numerically efficient implementation for the full-potential density-functional theory (DFT) code FHI-aims. We show that together with an additional Stern layer correction the DFT+MPB approach can describe the mean activity coefficient of a KCl aqueous solution over a wide range of concentrations. The high sensitivity of the calculated activity coefficient on the employed ionic parameters thereby suggests to use extensively tabulated experimental activity coefficients of salt solutions for a systematic parametrization protocol. PMID:27323006
Comparison of 2D versus 3D mammography with screening cases: an observer study
NASA Astrophysics Data System (ADS)
Fernandez, James Reza; Deshpande, Ruchi; Hovanessian-Larsen, Linda; Liu, Brent
2012-02-01
Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using human studies collected from was performed to compare traditional 2D mammography with this new 3D mammography technique. A prior study using a mammography phantom revealed no difference in calcification detection, but improved mass detection in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Data for this current study is currently being obtained, and a full report should be available in the next few weeks.
NASA Astrophysics Data System (ADS)
Cho, Young-Sang; Le Roy, Robert
2014-06-01
CH^+ has been a species of interest since the dawn of molecular astrophysics,and it is an important intermediate in combustion processes. In the domain of `conventional' spectroscopy there have been a number of studies of low v' and v" portions of the A ^1Π-X ^1Σ^+ band system of various isotopologues, and Amano recently reported microwave measurements of the ground-state R(0) lines of 12CH^+, 13CH^+ and 12CD^+. used photodissociation spectroscopy to observe transitions to very high-J' tunneling-predissociation levels (shape resonances) involving v(A)=0-10, for many of which they also measured the photo-fragment kinetic energy release. More recently Hechtfischer et al. used photodissociation spectroscopy of `Feschbach resonance' levels at very high v'(A) and low J' to obtain the first direct measurement of the 12CH^+ dissociation energy with near-spectroscopic accuracy (± 1.1 cm-1). However, to date, all analyses of the data for this system had been performed using traditional band-constant or Dunham-expansion fits to data for the lowest vibrational levels, and there have been no attempts to combine the `conventional' low-v data with the high-J' and high-v' photodissociation data in a single treatment. The present work has addressed this problem by performing a Direct-Potential-Fit (DPF) analysis that obtains full analytic potential energy functions for the X ^1Σ^+ and A ^1Π states of CH^+ that are able to account for all of the available data (on average) within their uncertainties. A.E. Douglas and G. Herzberg, Astrophys. J. 94, 381 (1941). T. Amano, Astrophys. J. Lett. {716}, L1 (2010) H. Helm, P.C. Crosby, M.M. Graff and J.T. Mosley, Phys. Rev. A 25, 304 (1982) U. Hechtfischer and C. J. Williams, M. Lange, J. Linkemann, D. Schwalm, R. Wester, A. Wolf and D. Zajfman, J.Chem.Phys. 117, 8754 (2002). H.S.P. Müller, Astron. Astrophys. 514, L7 (2010)
Gulans, Andris; Kontur, Stefan; Meisenbichler, Christian; Nabok, Dmitrii; Pavone, Pasquale; Rigamonti, Santiago; Sagmeister, Stephan; Werner, Ute; Draxl, Claudia
2014-09-10
Linearized augmented planewave methods are known as the most precise numerical schemes for solving the Kohn-Sham equations of density-functional theory (DFT). In this review, we describe how this method is realized in the all-electron full-potential computer package, exciting. We emphasize the variety of different related basis sets, subsumed as (linearized) augmented planewave plus local orbital methods, discussing their pros and cons and we show that extremely high accuracy (microhartrees) can be achieved if the basis is chosen carefully. As the name of the code suggests, exciting is not restricted to ground-state calculations, but has a major focus on excited-state properties. It includes time-dependent DFT in the linear-response regime with various static and dynamical exchange-correlation kernels. These are preferably used to compute optical and electron-loss spectra for metals, molecules and semiconductors with weak electron-hole interactions. exciting makes use of many-body perturbation theory for charged and neutral excitations. To obtain the quasi-particle band structure, the GW approach is implemented in the single-shot approximation, known as G(0)W(0). Optical absorption spectra for valence and core excitations are handled by the solution of the Bethe-Salpeter equation, which allows for the description of strongly bound excitons. Besides these aspects concerning methodology, we demonstrate the broad range of possible applications by prototypical examples, comprising elastic properties, phonons, thermal-expansion coefficients, dielectric tensors and loss functions, magneto-optical Kerr effect, core-level spectra and more. PMID:25135665
2D vs. 3D mammography observer study
NASA Astrophysics Data System (ADS)
Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent
2011-03-01
Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.
Efficient 2D MRI relaxometry using compressed sensing
NASA Astrophysics Data System (ADS)
Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.
2015-06-01
Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.
NKG2D ligands as therapeutic targets
Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.
2013-01-01
The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565
Canard configured aircraft with 2-D nozzle
NASA Technical Reports Server (NTRS)
Child, R. D.; Henderson, W. P.
1978-01-01
A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.
The 2D:4D-Ratio and Neuroticism Revisited: Empirical Evidence from Germany and China.
Sindermann, Cornelia; Li, Mei; Sariyska, Rayna; Lachmann, Bernd; Duke, Éilish; Cooper, Andrew; Warneck, Lidia; Montag, Christian
2016-01-01
The 2D:4D-Ratio, as an indirect measure of the fetal testosterone to estradiol ratio, is potentially very important for understanding and explaining different personality traits. It was the aim of the present study to replicate the findings from Fink et al. (2004) about the relation between individual differences in 2D:4D-Ratios and the Five Factor Model in different cultural groups. Therefore a sample of n = 78 Chinese and n = 370 German participants was recruited. Every participant provided hand scans of both hands, from which 2D:4D-Ratios were computed. Moreover, all participants filled in the NEO Five Factor Inventory (NEO-FFI). Significant sex differences were found for ratios of both hands in the expected direction, with females showing higher ratios than males. With respect to links between personality and the digit ratio, a positive association was observed between 2D:4D-Ratio and Neuroticism in females, as shown in the earlier study. These findings were observed in both female subsamples from China and Germany, as well as in the full sample of participants. But in contrast to the results for the whole and the German female sample, where 2D:4D-Ratio of both hands were related to Neuroticism, in the Chinese female sample only left hand 2D:4D-Ratio was significantly and positively related to Neuroticism. There were no significant correlations found in any of the male samples. Thus, prenatal exposure to sex steroids appears to influence the personality factor Neuroticism in females specifically. This finding potentially has implications for mental health, as Neuroticism has been shown to be a risk factor for various forms of psychopathology. PMID:27375513
The 2D:4D-Ratio and Neuroticism Revisited: Empirical Evidence from Germany and China
Sindermann, Cornelia; Li, Mei; Sariyska, Rayna; Lachmann, Bernd; Duke, Éilish; Cooper, Andrew; Warneck, Lidia; Montag, Christian
2016-01-01
The 2D:4D-Ratio, as an indirect measure of the fetal testosterone to estradiol ratio, is potentially very important for understanding and explaining different personality traits. It was the aim of the present study to replicate the findings from Fink et al. (2004) about the relation between individual differences in 2D:4D-Ratios and the Five Factor Model in different cultural groups. Therefore a sample of n = 78 Chinese and n = 370 German participants was recruited. Every participant provided hand scans of both hands, from which 2D:4D-Ratios were computed. Moreover, all participants filled in the NEO Five Factor Inventory (NEO-FFI). Significant sex differences were found for ratios of both hands in the expected direction, with females showing higher ratios than males. With respect to links between personality and the digit ratio, a positive association was observed between 2D:4D-Ratio and Neuroticism in females, as shown in the earlier study. These findings were observed in both female subsamples from China and Germany, as well as in the full sample of participants. But in contrast to the results for the whole and the German female sample, where 2D:4D-Ratio of both hands were related to Neuroticism, in the Chinese female sample only left hand 2D:4D-Ratio was significantly and positively related to Neuroticism. There were no significant correlations found in any of the male samples. Thus, prenatal exposure to sex steroids appears to influence the personality factor Neuroticism in females specifically. This finding potentially has implications for mental health, as Neuroticism has been shown to be a risk factor for various forms of psychopathology. PMID:27375513
Lu, Xuzhang; Zhu, Zhichao; Jiang, Lijia; Sun, Xiao; Jia, Zhuxia; Qian, Sixuan; Li, Jianyong; Ma, Lingdi
2015-01-01
Purpose: The study aimed to investigate the role of the JAK/STAT3 pathway in the matrine induced ULBP2 expression on the human chronic myelogenous leukemia K562 cells. Methods: K562 cells were cultured, and the relevant mRNA expressions were detected. Results: Matrine induced the expression of four NKG2D ligands on K562 cells, of which ULBP2 had the highest increase. After treatment with 0.8 mg/mL matrine for 24 h, the mean fluorescence intensity (MFI) of ULBP2 increased. After matrine treatment, the sensitivity of K562 cells to NK cell-mediated killing increased significantly. After treatment with 0.2, 0.5 and 0.8 mg/ mL matrine, the percentage of K562 cells killed by NK cells was significantly higher than that of untreated cells (29.2%) (P<0.05). Matrine significantly inhibit the protein expression of phosphorylated STAT 3 and JAK2. Matrine markedly inhibited the IL-6 expression of K562 cells, and antagonized the IL-6 mediated STAT3 and JAK2 phosphorylation. In addition, matrine enhanced the inhibitory effect of STAT 3 inhibitor on STAT 3 activity. The silencing of STAT expression and inhibition of STAT3 activity significantly up-regulated the ULPB2 expression. Matrine had no effect on the expression of IL-6R and gp130 on K562 cells, the mRNA expression of IL-6R and gp130 increased slightly and the sgp 130 in cell supernatant significantly increased. Conclusions: Our findings reveal IL-6 and IL-6 receptor-mediated JAK/STAT3 pathway is involved in the matrine induced up-regulation of NKG2D ligands ULBP2 on K562 cells. Matrine might inhibit IL-6 expression and then suppress the activation of IL-6 receptor-mediated JAK/STAT3 pathway. PMID:26692928
Recent developments in 2D layered inorganic nanomaterials for sensing
NASA Astrophysics Data System (ADS)
Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar
2015-08-01
Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.
Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.
Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin
2016-03-01
Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices. PMID:26839956
Graphene based 2D-materials for supercapacitors
NASA Astrophysics Data System (ADS)
Palaniselvam, Thangavelu; Baek, Jong-Beom
2015-09-01
Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.
Perspectives for spintronics in 2D materials
NASA Astrophysics Data System (ADS)
Han, Wei
2016-03-01
The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.
Azam, Faizul; Singh, Satendra; Khokhra, Sukhbir Lal; Prakash, Om
2007-01-01
Objective: A series of 2-benzylideneaminonaphthothiazoles were designed and synthesized incorporating the lipophilic naphthalene ring to render them more capable of penetrating various biomembranes. Methods: Schiff bases were synthesized by the reaction of naphtha[1,2-d]thiazol-2-amine with various substituted aromatic aldehydes. 2-(2′-Hydroxy)benzylideneaminonaphthothiazole was converted to its Co(II), Ni(II) and Cu(II) metal complexes upon treatment with metal salts in ethanol. All the compounds were evaluated for their antibacterial activities by paper disc diffusion method with Gram positive Staphylococcus aureus and Staphylococcus epidermidis and Gram negative Escherichia coli and Pseudomonas aeruginosa bacteria. The minimum inhibitory concentrations of all the Schiff bases and metal complexes were determined by agar streak dilution method. Results: All the compounds moderately inhibited the growth of Gram positive and Gram negative bacteria. In the present study among all Schiff bases 2-(2′-hydroxy)benzylideneaminonaphthothiazole showed maximum inhibitory activity and among metal complexes Cu(II) metal complex was found to be most potent. Conclusion: The results obtained validate the hypothesis that Schiff bases having substitution with halogens, hydroxyl group and nitro group at phenyl ring are required for the antibacterial activity while methoxy group at different positions in the aromatic ring has minimal role in the inhibitory activity. The results also indicated that the metal complexes are better antibacterial agents as compared to the Schiff bases. PMID:17565517
Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials
NASA Astrophysics Data System (ADS)
Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna
2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.
Annotated Bibliography of EDGE2D Use
J.D. Strachan and G. Corrigan
2005-06-24
This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.
Staring 2-D hadamard transform spectral imager
Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.
2006-02-07
A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.
2D Quantum Mechanical Study of Nanoscale MOSFETs
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.; Kwak, Dochan (Technical Monitor)
2000-01-01
With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density-gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25, 50 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. Surprisingly, the self-consistent potential profile shows lower injection barrier in the channel in quantum case. These results are qualitatively consistent with ID Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.
Phosphorene: A New High-Mobility 2D Semiconductor
NASA Astrophysics Data System (ADS)
Liu, Han; Neal, Adam; Zhu, Zhen; Tomanek, David; Ye, Peide
2014-03-01
The rise of 2D crystals has opened various possibilities for future electrical and optical applications. MoS2 n-type transistors are showing great potential in ultra-scaled and low-power electronics. Here, we introduce phosphorene, a name we coined for 2D few-layer black phosphorus, a new 2D material with layered structure. We perform ab initio band structure calculations and show that the fundamental band gap depends sensitively on the number of layers. We observe transport behavior, which shows a mobility variation in the 2D plane. High on-current of 194 mA/mm, high hole mobility up to 286 cm2/V .s and on/off ratio up to 104 was achieved with phosphorene transistors at room temperature. Schottky barrier height at the metal/phosphorene interface was also measured as a function of temperature. We demonstrate a CMOS inverter with combination to MoS2 NMOS transistors, which shows great potential for semiconducting 2D crystals in future electronic, optoelectronic and flexible electronic devices.
Trovato, Maria Antonietta; Palmara, Vittorio Italo; Rapisarda, Agnese Maria Chiara; Sturlese, Emanuele; De Dominici, Rosanna; Alecci, Stefano; D'Amico, Paolo; Triolo, Onofrio
2016-01-01
Endometriosis is defined as the presence of endometrial mucosa (glands and stroma) abnormally implanted in locations other than the uterine cavity. Deep infiltrating endometriosis (DIE) is considered the most aggressive presentation of the disease, penetrating more than 5 mm in affected tissues, and it is reported in approximately 20% of all women with endometriosis. DIE can cause a complete distortion of the pelvic anatomy and it mainly involves uterosacral ligaments, bladder, rectovaginal septum, rectum, and rectosigmoid colon. This review describes the state of the art in laparoscopic approach for DIE with a special interest in intestinal involvement, according to recent literature findings. Our attention has been focused particularly on full-thickness excision versus shaving technique in deep endometriosis intestinal involvement. Particularly, the aim of this paper is clarifying from the clinical and methodological points of view the best surgical treatment of deep intestinal endometriosis, since there is no standard of care in the literature and in different surgical settings. Indeed, this review tries to suggest when it is advisable to manage the full-thickness excision or the shaving technique, also analyzing perioperative management, main complications, and surgical outcomes. PMID:27579309
Laganà, Antonio Simone; Vitale, Salvatore Giovanni; Trovato, Maria Antonietta; Palmara, Vittorio Italo; Rapisarda, Agnese Maria Chiara; Granese, Roberta; Sturlese, Emanuele; De Dominici, Rosanna; Alecci, Stefano; Padula, Francesco; Chiofalo, Benito; Grasso, Roberta; Cignini, Pietro; D'Amico, Paolo; Triolo, Onofrio
2016-01-01
Endometriosis is defined as the presence of endometrial mucosa (glands and stroma) abnormally implanted in locations other than the uterine cavity. Deep infiltrating endometriosis (DIE) is considered the most aggressive presentation of the disease, penetrating more than 5 mm in affected tissues, and it is reported in approximately 20% of all women with endometriosis. DIE can cause a complete distortion of the pelvic anatomy and it mainly involves uterosacral ligaments, bladder, rectovaginal septum, rectum, and rectosigmoid colon. This review describes the state of the art in laparoscopic approach for DIE with a special interest in intestinal involvement, according to recent literature findings. Our attention has been focused particularly on full-thickness excision versus shaving technique in deep endometriosis intestinal involvement. Particularly, the aim of this paper is clarifying from the clinical and methodological points of view the best surgical treatment of deep intestinal endometriosis, since there is no standard of care in the literature and in different surgical settings. Indeed, this review tries to suggest when it is advisable to manage the full-thickness excision or the shaving technique, also analyzing perioperative management, main complications, and surgical outcomes. PMID:27579309
Light field morphing using 2D features.
Wang, Lifeng; Lin, Stephen; Lee, Seungyong; Guo, Baining; Shum, Heung-Yeung
2005-01-01
We present a 2D feature-based technique for morphing 3D objects represented by light fields. Existing light field morphing methods require the user to specify corresponding 3D feature elements to guide morph computation. Since slight errors in 3D specification can lead to significant morphing artifacts, we propose a scheme based on 2D feature elements that is less sensitive to imprecise marking of features. First, 2D features are specified by the user in a number of key views in the source and target light fields. Then the two light fields are warped view by view as guided by the corresponding 2D features. Finally, the two warped light fields are blended together to yield the desired light field morph. Two key issues in light field morphing are feature specification and warping of light field rays. For feature specification, we introduce a user interface for delineating 2D features in key views of a light field, which are automatically interpolated to other views. For ray warping, we describe a 2D technique that accounts for visibility changes and present a comparison to the ideal morphing of light fields. Light field morphing based on 2D features makes it simple to incorporate previous image morphing techniques such as nonuniform blending, as well as to morph between an image and a light field. PMID:15631126
Inertial solvation in femtosecond 2D spectra
NASA Astrophysics Data System (ADS)
Hybl, John; Albrecht Ferro, Allison; Farrow, Darcie; Jonas, David
2001-03-01
We have used 2D Fourier transform spectroscopy to investigate polar solvation. 2D spectroscopy can reveal molecular lineshapes beneath ensemble averaged spectra and freeze molecular motions to give an undistorted picture of the microscopic dynamics of polar solvation. The transition from "inhomogeneous" to "homogeneous" 2D spectra is governed by both vibrational relaxation and solvent motion. Therefore, the time dependence of the 2D spectrum directly reflects the total response of the solvent-solute system. IR144, a cyanine dye with a dipole moment change upon electronic excitation, was used to probe inertial solvation in methanol and propylene carbonate. Since the static Stokes' shift of IR144 in each of these solvents is similar, differences in the 2D spectra result from solvation dynamics. Initial results indicate that the larger propylene carbonate responds more slowly than methanol, but appear to be inconsistent with rotational estimates of the inertial response. To disentangle intra-molecular vibrations from solvent motion, the 2D spectra of IR144 will be compared to the time-dependent 2D spectra of the structurally related nonpolar cyanine dye HDITCP.
Internal Photoemission Spectroscopy of 2-D Materials
NASA Astrophysics Data System (ADS)
Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin
Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.
Ion Transport in 2-D Graphene Nanochannels
NASA Astrophysics Data System (ADS)
Xie, Quan; Foo, Elbert; Duan, Chuanhua
2015-11-01
Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).
On 2D bisection method for double eigenvalue problems
Ji, X.
1996-06-01
The two-dimensional bisection method presented in (SIAM J. Matrix Anal. Appl. 13(4), 1085 (1992)) is efficient for solving a class of double eigenvalue problems. This paper further extends the 2D bisection method of full matrix cases and analyses its stability. As in a single parameter case, the 2D bisection method is very stable for the tridiagonal matrix triples satisfying the symmetric-definite condition. Since the double eigenvalue problems arise from two-parameter boundary value problems, an estimate of the discretization error in eigenpairs is also given. Some numerical examples are included. 42 refs., 1 tab.
Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials
NASA Technical Reports Server (NTRS)
Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.
1993-01-01
Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.
Parent, Lucas R; Cheng, Yingwen; Sushko, Peter V; Shao, Yuyan; Liu, Jun; Wang, Chong-Min; Browning, Nigel D
2015-02-11
Magnesium is of great interest as a replacement for lithium in next-generation ion-transfer batteries but Mg-metal anodes currently face critical challenges related to the formation of passivating layers during Mg-plating/stripping and anode-electrolyte-cathode incompatibilities. Alternative anode materials have the potential to greatly extend the spectrum of suitable electrolyte chemistries but must be systematically tailored for effective Mg(2+) storage. Using analytical (scanning) transmission electron microscopy ((S)TEM) and ab initio modeling, we have investigated Mg(2+) insertion and extraction mechanisms and transformation processes in β-SnSb nanoparticles (NPs), a promising Mg-alloying anode material. During the first several charge-discharge cycles (conditioning), the β-SnSb particles irreversibly transform into a porous network of pure-Sn and Sb-rich subparticles, as Mg ions replace Sn atoms in the SnSb lattice. After electrochemical conditioning, small Sn particles/grains (<33 ± 20 nm) exhibit highly reversible Mg-storage, while the Sb-rich domains suffer substantial Mg trapping and contribute little to the system performance. This result strongly indicates that pure Sn can act as a high-capacity Mg-insertion anode as theoretically predicted, but that its performance is strongly size-dependent, and stable nanoscale Sn morphologies (<40 nm) are needed for superior, reversible Mg-storage and fast system kinetics. PMID:25531653
2D materials for photon conversion and nanophotonics
NASA Astrophysics Data System (ADS)
Tahersima, Mohammad H.; Sorger, Volker J.
2015-09-01
The field of two-dimensional (2D) materials has the potential to enable unique applications across a wide range of the electromagnetic spectrum. While 2D-layered materials hold promise for next-generation photon-conversion intrinsic limitations and challenges exist that shall be overcome. Here we discuss the intrinsic limitations as well as application opportunities of this new class of materials, and is sponsored by the NSF program Designing Materials to Revolutionize and Engineer our Future (DMREF) program, which links to the President's Materials Genome Initiative. We present general material-related details for photon conversion, and show that taking advantage of the mechanical flexibility of 2D materials by rolling MoS2/graphene/hexagonal boron nitride stack to a spiral solar cell allows for solar absorption up to 90%.
2D nanostructures for water purification: graphene and beyond.
Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C
2016-08-18
Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future. PMID:27506268
Sparse radar imaging using 2D compressed sensing
NASA Astrophysics Data System (ADS)
Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying
2014-10-01
Radar imaging is an ill-posed linear inverse problem and compressed sensing (CS) has been proved to have tremendous potential in this field. This paper surveys the theory of radar imaging and a conclusion is drawn that the processing of ISAR imaging can be denoted mathematically as a problem of 2D sparse decomposition. Based on CS, we propose a novel measuring strategy for ISAR imaging radar and utilize random sub-sampling in both range and azimuth dimensions, which will reduce the amount of sampling data tremendously. In order to handle 2D reconstructing problem, the ordinary solution is converting the 2D problem into 1D by Kronecker product, which will increase the size of dictionary and computational cost sharply. In this paper, we introduce the 2D-SL0 algorithm into the reconstruction of imaging. It is proved that 2D-SL0 can achieve equivalent result as other 1D reconstructing methods, but the computational complexity and memory usage is reduced significantly. Moreover, we will state the results of simulating experiments and prove the effectiveness and feasibility of our method.
Brittle damage models in DYNA2D
Faux, D.R.
1997-09-01
DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.
Ginsparg, P.
1991-01-01
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Ginsparg, P.
1991-12-31
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
2D electronic materials for army applications
NASA Astrophysics Data System (ADS)
O'Regan, Terrance; Perconti, Philip
2015-05-01
The record electronic properties achieved in monolayer graphene and related 2D materials such as molybdenum disulfide and hexagonal boron nitride show promise for revolutionary high-speed and low-power electronic devices. Heterogeneous 2D-stacked materials may create enabling technology for future communication and computation applications to meet soldier requirements. For instance, transparent, flexible and even wearable systems may become feasible. With soldier and squad level electronic power demands increasing, the Army is committed to developing and harnessing graphene-like 2D materials for compact low size-weight-and-power-cost (SWAP-C) systems. This paper will review developments in 2D electronic materials at the Army Research Laboratory over the last five years and discuss directions for future army applications.
2-d Finite Element Code Postprocessor
1996-07-15
ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less
Chemical Approaches to 2D Materials.
Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang
2016-08-01
Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology. PMID:27478083
Extended 2D generalized dilaton gravity theories
NASA Astrophysics Data System (ADS)
de Mello, R. O.
2008-09-01
We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2D relativity principle, which introduces a non-trivial centre in the 2D Poincaré algebra. Then we work out the reduced phase space of the anomaly-free 2D relativistic particle, in order to show that it lives in a noncommutative 2D Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2D generalized dilaton gravity models by a specific Maxwell component, which guages the extra symmetry associated with the centre of the 2D Poincaré algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of spacetime. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved spacetime, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson Sigma models based on a nonlinear deformation of the extended Poincaré algebra.
Cho, Young-Sang; Le Roy, Robert J
2016-01-14
All available "conventional" absorption/emission spectroscopic data have been combined with photodissociation data and translational spectroscopy data in a global analysis that yields analytic potential energy and Born-Oppenheimer breakdown functions for the X(1)Σ(+) and A(1)Π states of CH(+) and its isotopologues that reproduce all of the data (on average) within their assigned uncertainties. For the ground X(1)Σ(+) state, this fully quantum mechanical "Direct-Potential-Fit" analysis yielded an improved empirical well depth of e = 34 362.8(3) cm(-1) and equilibrium bond length of re = 1.128 462 5 (58) Å. For the A(1)Π state, the resulting well depth and equilibrium bond length are e = 10 303.7(3) cm(-1) and re = 1.235 896 (14) Å, while the electronic isotope shift from the hydride to the deuteride is ΔTe = - 5.99(±0.08) cm(-1). PMID:26772575
Ab initio modeling of 2D layered organohalide lead perovskites.
Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele; Marchese, Leonardo; Cossi, Maurizio
2016-04-28
A number of 2D layered perovskites A2PbI4 and BPbI4, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps have been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another's place. PMID:27131557
Ab initio modeling of 2D layered organohalide lead perovskites
NASA Astrophysics Data System (ADS)
Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele; Marchese, Leonardo; Cossi, Maurizio
2016-04-01
A number of 2D layered perovskites A2PbI4 and BPbI4, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps have been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another's place.
NASA Astrophysics Data System (ADS)
Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.
2007-09-01
This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it
Rowley-Neale, Samuel J; Fearn, Jamie M; Brownson, Dale A C; Smith, Graham C; Ji, Xiaobo; Banks, Craig E
2016-08-21
Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm(-2) modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR. PMID:27448174
Large Area Synthesis of 2D Materials
NASA Astrophysics Data System (ADS)
Vogel, Eric
Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.
2D microwave imaging reflectometer electronics
Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.
2014-11-15
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
2D microwave imaging reflectometer electronics
NASA Astrophysics Data System (ADS)
Spear, A. G.; Domier, C. W.; Hu, X.; Muscatello, C. M.; Ren, X.; Tobias, B. J.; Luhmann, N. C.
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
2D microwave imaging reflectometer electronics.
Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program. PMID:25430247
The 2D lingual appliance system.
Cacciafesta, Vittorio
2013-09-01
The two-dimensional (2D) lingual bracket system represents a valuable treatment option for adult patients seeking a completely invisible orthodontic appliance. The ease of direct or simplified indirect bonding of 2D lingual brackets in combination with low friction mechanics makes it possible to achieve a good functional and aesthetic occlusion, even in the presence of a severe malocclusion. The use of a self-ligating bracket significantly reduces chair-side time for the orthodontist, and the low-profile bracket design greatly improves patient comfort. PMID:24005953
Inkjet printing of 2D layered materials.
Li, Jiantong; Lemme, Max C; Östling, Mikael
2014-11-10
Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. PMID:25169938
Measurement of 2D birefringence distribution
NASA Astrophysics Data System (ADS)
Noguchi, Masato; Ishikawa, Tsuyoshi; Ohno, Masahiro; Tachihara, Satoru
1992-10-01
A new measuring method of 2-D birefringence distribution has been developed. It has not been an easy job to get a birefringence distribution in an optical element with conventional ellipsometry because of its lack of scanning means. Finding an analogy between the rotating analyzer method in ellipsometry and the phase-shifting method in recently developed digital interferometry, we have applied the phase-shifting algorithm to ellipsometry, and have developed a new method that makes the measurement of 2-D birefringence distribution easy and possible. The system contains few moving parts, assuring reliability, and measures a large area of a sample at one time, making the measuring time very short.
Half-metallicity in 2D organometallic honeycomb frameworks.
Sun, Hao; Li, Bin; Zhao, Jin
2016-10-26
Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology. PMID:27541575
2D FEM Heat Transfer & E&M Field Code
1992-04-02
TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation.more » By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less
2D FEM Heat Transfer & E&M Field Code
1992-04-02
TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.
NASA High-Speed 2D Photogrammetric Measurement System
NASA Technical Reports Server (NTRS)
Dismond, Harriett R.
2012-01-01
The object of this report is to provide users of the NASA high-speed 2D photogrammetric measurement system with procedures required to obtain drop-model trajectory and impact data for full-scale and sub-scale models. This guide focuses on use of the system for vertical drop testing at the NASA Langley Landing and Impact Research (LandIR) Facility.
Baby universes in 2d quantum gravity
NASA Astrophysics Data System (ADS)
Ambjørn, Jan; Jain, Sanjay; Thorleifsson, Gudmar
1993-06-01
We investigate the fractal structure of 2d quantum gravity, both for pure gravity and for gravity coupled to multiple gaussian fields and for gravity coupled to Ising spins. The roughness of the surfaces is described in terms of baby universes and using numerical simulations we measure their distribution which is related to the string susceptibility exponent γstring.
Disorder-driven loss of phase coherence in a quasi-2D cold atom system
NASA Astrophysics Data System (ADS)
Beeler, M. C.; Reed, M. E. W.; Hong, T.; Rolston, S. L.
2012-07-01
We study the order parameter of a quasi-two-dimensional (quasi-2D) gas of ultracold atoms trapped in an optical potential in the presence of controllable disorder. Our results show that disorder drives phase fluctuations without significantly affecting the amplitude of the quasi-condensate order parameter. This is evidence that disorder can drive phase fluctuations in 2D systems, relevant to the phase-fluctuation mechanism for the superconductor-to-insulator phase transition (SIT) in disordered 2D superconductors.
NASA Astrophysics Data System (ADS)
Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.
2016-08-01
Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets
NASA Technical Reports Server (NTRS)
Goodsell, Aga M.; Madson, Michael D.; Melton, John E.
1989-01-01
The TranAir full-potential code and the FLO57 Euler code were used to calculate transonic flow solutions over two configurations of a generic fighter model. The results were computed at Mach numbers of 0.60 and 0.80 for angles of attack between 0 and 12 deg for TranAir and between 4 and 20 deg for FLO57. Due to the fact that TranAir solves the full-potential equations for transonic flow, TranAir is only accurate to about alpha = 8 deg, at which point the experimental results show the formation of a vortex at the leading edge. Euler results show good agreement with experimental results until vortex breakdown occurs in the solutions.
NASA Technical Reports Server (NTRS)
Johnson, F. T.; Samant, S. S.; Bieterman, M. B.; Melvin, R. G.; Young, D. P.; Bussoletti, J. E.; Hilmes, C. L.
1992-01-01
The TranAir computer program calculates transonic flow about arbitrary configurations at subsonic, transonic, and supersonic freestream Mach numbers. TranAir solves the nonlinear full potential equations subject to a variety of boundary conditions modeling wakes, inlets, exhausts, porous walls, and impermeable surfaces. Regions with different total temperature and pressure can be represented. The user's manual describes how to run the TranAir program and its graphical support programs.
Effects of magnetic impurities on transport in 2D topological insulators
NASA Astrophysics Data System (ADS)
Dang, Xiaoqian; Burton, J. D.; Tsymbal, Evgeny
Understanding the transport properties of topological insulators could bring such materials from fundamental research to potential applications. Here we report on the theoretical investigations of the effects of magnetic impurities on transport properties of model two-dimensional (2D) topological insulators (TIs). We utilize the tight-binding form of the Bernevig-Hughes-Zhang model and investigate the transport properties by employing the Landauer-Büttiker formalism. We explore the current distribution in 2D TIs resulting from scattering by a magnetic impurity which breaks time-reversal symmetry. We find that a magnetic impurity could drive anti-resonant behavior of the conductance, as revealed from full backscattering of the electron current flowing at one of the edges of the TI. This phenomenon occurs due to spin-flip scattering when the Fermi energy matches the impurity state and the magnetic moment of the impurity is aligned along the TI edge. Additionally, we explore the effect of an external magnetic gate attached to the system and show that changing the magnetization orientation within the gate allows the control of conductance. This geometric setup could be realized experimentally providing the opportunity to tune transport properties of 2D TIs by a magnetic gate.
A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.
Qiu, Weibao; Wang, Congzhi; Li, Yongchuan; Zhou, Juan; Yang, Ge; Xiao, Yang; Feng, Ge; Jin, Qiaofeng; Mu, Peitian; Qian, Ming; Zheng, Hairong
2015-09-01
Ultrasound elastography is widely used for the non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) is a quantitative method for assessing tissue stiffness. SWI has been demonstrated to be less operator dependent than quasi-static elastography, and has the ability to acquire quantitative elasticity information in contrast with acoustic radiation force impulse (ARFI) imaging. However, traditional SWI implementations cannot acquire two dimensional (2D) quantitative images of the tissue elasticity distribution. This study proposes and evaluates a scanning-mode 2D SWI (s2D-SWI) system. The hardware and image processing algorithms are presented in detail. Programmable devices are used to support flexible control of the system and the image processing algorithms. An analytic signal based cross-correlation method and a Radon transformation based shear wave speed determination method are proposed, which can be implemented using parallel computation. Imaging of tissue mimicking phantoms, and in vitro, and in vivo imaging test are conducted to demonstrate the performance of the proposed system. The s2D-SWI system represents a new choice for the quantitative mapping of tissue elasticity, and has great potential for implementation in commercial ultrasound scanners. PMID:26025508
2-D linear motion system. Innovative technology summary report
1998-11-01
The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology
The physics of 2D microfluidic droplet ensembles
NASA Astrophysics Data System (ADS)
Beatus, Tsevi; Bar-Ziv, Roy H.; Tlusty, Tsvi
2012-07-01
We review non-equilibrium many-body phenomena in ensembles of 2D microfluidic droplets. The system comprises of continuous two-phase flow with disc-shaped droplets driven in a channel, at low Reynolds number of 10-4-10-3. The basic physics is that of an effective potential flow, governed by the 2D Laplace equation, with multiple, static and dynamic, boundaries of the droplets and the walls. The motion of the droplets induces dipolar flow fields, which mediate 1/r2 hydrodynamic interaction between the droplets. Summation of these long-range 2D forces over droplet ensembles converges, in contrast to the divergence of the hydrodynamic forces in 3D. In analogy to electrostatics, the strong effect of boundaries on the equations of motion is calculated by means of image dipoles. We first consider the dynamics of droplets flowing in a 1D crystal, which exhibits unique phonon-like excitations, and a variety of nonlinear instabilities-all stemming from the hydrodynamic interactions. Narrowing the channel results in hydrodynamic screening of the dipolar interactions, which changes salient features of the phonon spectra. Shifting from a 1D ordered crystal to 2D disordered ensemble, the hydrodynamic interactions induce collective density waves and shocks, which are superposed on single-droplet randomized motion and dynamic clustering. These collective modes originate from density-velocity coupling, whose outcome is a 1D Burgers equation. The rich observational phenomenology and the tractable theory render 2D droplet ensembles a suitable table-top system for studying non-equilibrium many-body physics with long-range interactions.
Eisfeld, Wolfgang; Vieuxmaire, Olivier; Viel, Alexandra
2014-06-14
A scheme to produce accurate full-dimensional coupled diabatic potential energy surfaces including dissociative regions and suitable for dynamical calculations is proposed. The scheme is successfully applied to model the two-sheeted surface of the {sup 2}E{sup ″} state of the NO{sub 3} radical. An accurate potential energy surface for the NO{sub 3}{sup −} anion ground state is developed as well. Both surfaces are based on high-level ab initio calculations. The model consists of a diabatic potential matrix, which is expanded to higher order in terms of symmetry polynomials of symmetry coordinates. The choice of coordinates is key for the accuracy of the obtained potential energy surfaces and is discussed in detail. A second central aspect is the generation of reference data to fit the expansion coefficients of the model for which a stochastic approach is proposed. A third ingredient is a new and simple scheme to handle problematic regions of the potential energy surfaces, resulting from the massive undersampling by the reference data unavoidable for high-dimensional problems. The final analytical diabatic surfaces are used to compute the lowest vibrational levels of NO{sub 3}{sup −} and the photo-electron detachment spectrum of NO{sub 3}{sup −} leading to the neutral radical in the {sup 2}E{sup ″} state by full dimensional multi-surface wave-packet propagation for NO{sub 3} performed using the Multi-Configuration Time Dependent Hartree method. The achieved agreement of the simulations with available experimental data demonstrates the power of the proposed scheme and the high quality of the obtained potential energy surfaces.
Static & Dynamic Response of 2D Solids
1996-07-15
NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemore » contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.« less
Stochastic Inversion of 2D Magnetotelluric Data
2010-07-01
The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less
Stochastic Inversion of 2D Magnetotelluric Data
Chen, Jinsong
2010-07-01
The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows
Explicit 2-D Hydrodynamic FEM Program
1996-08-07
DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less
2-D isotropic negative refractive index in a N-type four-level atomic system
NASA Astrophysics Data System (ADS)
Zhao, Shun-Cai; Wu, Qi-Xuan; Ma, Kun
2015-11-01
2-D(Two-dimensional) isotropic negative refractive index (NRI) is explicitly realized via the orthogonal signal and coupling standing-wave fields coupling the Ntype four-level atomic system. Under some key parameters of the dense vapour media, the atomic system exhibits isotropic NRI with simultaneous negative permittivity and permeability (i.e. left-handedness) in the 2-D x-y plane. Compared with other 2-D NRI schemes, the coherent atomic vapour media in our scheme may be an ideal 2-D isotropic NRI candidate and has some potential advantages, significance or applications in the further investigation.
Layer Engineering of 2D Semiconductor Junctions.
He, Yongmin; Sobhani, Ali; Lei, Sidong; Zhang, Zhuhua; Gong, Yongji; Jin, Zehua; Zhou, Wu; Yang, Yingchao; Zhang, Yuan; Wang, Xifan; Yakobson, Boris; Vajtai, Robert; Halas, Naomi J; Li, Bo; Xie, Erqing; Ajayan, Pulickel
2016-07-01
A new concept for junction fabrication by connecting multiple regions with varying layer thicknesses, based on the thickness dependence, is demonstrated. This type of junction is only possible in super-thin-layered 2D materials, and exhibits similar characteristics as p-n junctions. Rectification and photovoltaic effects are observed in chemically homogeneous MoSe2 junctions between domains of different thicknesses. PMID:27136275
NASA Astrophysics Data System (ADS)
Smith, Greg; Lankshear, Allan
1998-07-01
2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.
Compact 2-D graphical representation of DNA
NASA Astrophysics Data System (ADS)
Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana
2003-05-01
We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.
2D materials: Graphene and others
NASA Astrophysics Data System (ADS)
Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh
2016-05-01
Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.
Mason, W.E.
1983-03-01
A set of finite element codes for the solution of nonlinear, two-dimensional (TACO2D) and three-dimensional (TACO3D) heat transfer problems. Performs linear and nonlinear analyses of both transient and steady state heat transfer problems. Has the capability to handle time or temperature dependent material properties. Materials may be either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions and loadings are available including temperature, flux, convection, radiation, and internal heat generation.
2-D and 3-D computations of curved accelerator magnets
Turner, L.R.
1991-01-01
In order to save computer memory, a long accelerator magnet may be computed by treating the long central region and the end regions separately. The dipole magnets for the injector synchrotron of the Advanced Photon Source (APS), now under construction at Argonne National Laboratory (ANL), employ magnet iron consisting of parallel laminations, stacked with a uniform radius of curvature of 33.379 m. Laplace's equation for the magnetic scalar potential has a different form for a straight magnet (x-y coordinates), a magnet with surfaces curved about a common center (r-{theta} coordinates), and a magnet with parallel laminations like the APS injector dipole. Yet pseudo 2-D computations for the three geometries give basically identical results, even for a much more strongly curved magnet. Hence 2-D (x-y) computations of the central region and 3-D computations of the end regions can be combined to determine the overall magnetic behavior of the magnets. 1 ref., 6 figs.
MasterChem: cooking 2D-polymers.
Rodríguez-San-Miguel, D; Amo-Ochoa, P; Zamora, F
2016-03-18
2D-polymers are still dominated by graphene and closely related materials such as boron nitride, transition metal sulphides and oxides. However, the rational combination of molecules with suitable design is already showing the high potential of chemistry in this new research field. The aim of this feature article is to illustrate, and provide some perspectives, the current state-of-the-art in the field of synthetic 2D-polymers showing different alternatives to prepare this novel type of polymers based on the rational use of chemistry. This review comprises a brief revision of the essential concepts, the strategies of preparation following the two general approaches, bottom-up and top-down, and a revision of the promising seminal properties showed by some of these nanomaterials. PMID:26790817
A Better 2-D Mechanical Energy Conservation Experiment
NASA Astrophysics Data System (ADS)
Paesler, Michael
2012-02-01
A variety of simple classical mechanics energy conservation experiments are used in teaching laboratories. Typical one-dimensional (1-D) setups may involve falling balls or oscillating springs. Many of these can be quite satisfying in that students can confirm—within a few percent—that mechanical energy is conserved. Students generally have little trouble identifying discrepancies such as the loss of a few percent of the gravitational potential energy due to air friction encountered by a falling ball. Two-dimensional (2-D) systems can require more sophisticated analysis for higher level laboratories, but such systems often incorporate complicating components that can make the exercise academically incomplete and experimentally less accurate. The following describes a simple 2-D energy conservation experiment based on the popular "Newton's Cradle" toy that allows students to account for nearly all of the mechanical energy in the system in an academically complete analysis.
MAGNUM-2D computer code: user's guide
England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.
1985-01-01
Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.
Engineering light outcoupling in 2D materials.
Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali
2015-02-11
When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells. PMID:25602462
Targeting multiple types of tumors using NKG2D-coated iron oxide nanoparticles
Wu, Ming-Ru; Cook, W. James; Zhang, Tong; Sentman, Charles L.
2015-01-01
Iron oxide nanoparticles (IONPs) hold great potential for cancer therapy. Actively targeting IONPs to tumor cells can further increase therapeutic efficacy and decrease off-target side effects. To target tumor cells, a natural killer (NK) cell activating receptor, NKG2D, was utilized to develop pan-tumor targeting IONPs. NKG2D ligands are expressed on many tumor types and its ligands are not found on most normal tissues under steady state conditions. The data showed that mouse and human fragment crystallizable (Fc) -fusion NKG2D (Fc-NKG2D) coated IONPs (NKG2D/NPs) can target multiple NKG2D ligand positive tumor types in vitro in a dose dependent manner by magnetic cell sorting. Tumor targeting effect was robust even under a very low tumor cell to normal cell ratio and targeting efficiency correlated with NKG2D ligand expression level on tumor cells. Furthermore, the magnetic separation platform utilized to test NKG2D/NP specificity has the potential to be developed into high throughput screening strategies to identify ideal fusion proteins or antibodies for targeting IONPs. In conclusion, NKG2D/NPs can be used to target multiple tumor types and magnetic separation platform can facilitate the proof-of-concept phase of tumor targeting IONP development. PMID:25371538
Targeting multiple types of tumors using NKG2D-coated iron oxide nanoparticles
NASA Astrophysics Data System (ADS)
Wu, Ming-Ru; Cook, W. James; Zhang, Tong; Sentman, Charles L.
2014-11-01
Iron oxide nanoparticles (IONPs) hold great potential for cancer therapy. Actively targeting IONPs to tumor cells can further increase therapeutic efficacy and decrease off-target side effects. To target tumor cells, a natural killer (NK) cell activating receptor, NKG2D, was utilized to develop pan-tumor targeting IONPs. NKG2D ligands are expressed on many tumor types and its ligands are not found on most normal tissues under steady state conditions. The data showed that mouse and human fragment crystallizable (Fc)-fusion NKG2D (Fc-NKG2D) coated IONPs (NKG2D/NPs) can target multiple NKG2D ligand positive tumor types in vitro in a dose dependent manner by magnetic cell sorting. Tumor targeting effect was robust even under a very low tumor cell to normal cell ratio and targeting efficiency correlated with NKG2D ligand expression level on tumor cells. Furthermore, the magnetic separation platform utilized to test NKG2D/NP specificity has the potential to be developed into high throughput screening strategies to identify ideal fusion proteins or antibodies for targeting IONPs. In conclusion, NKG2D/NPs can be used to target multiple tumor types and magnetic separation platform can facilitate the proof-of-concept phase of tumor targeting IONP development.
2D superconductivity by ionic gating
NASA Astrophysics Data System (ADS)
Iwasa, Yoshi
2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially
NASA Astrophysics Data System (ADS)
Ye, Lin-Hui
2015-02-01
The Kohn-Sham orbital kinetic energy density τσ(r ) =∑iwi σ|∇ψi σ(r ) | 2 is one fundamental quantity for constructing metageneralized gradient approximations (meta-GGAs) for use by density functional theory. We present a computational scheme of τσ(r ) for the full-potential linearized augmented plane-wave (FLAPW) method. Our scheme is highly accurate and efficient and easy to implement with existing computer codes. To illustrate its performance, we construct the Becke-Johnson meta-GGA exchange potentials for Be, Ne, Mg, Ar, Ca, Zn, Kr, and Cd atoms, which are in very good agreement with the original results. For bulk solids, we construct the Tran-Blaha modified Becke-Johnson potential (mBJ) and confirm its capability to calculate band gaps with the reported bad convergence of the mBJ potential being substantially improved. The present computational scheme of τσ(r ) should also be valuable for developing other meta-GGAs in the FLAPW as well as in similar methods utilizing atom centered basis functions.
GBL-2D Version 1.0: a 2D geometry boolean library.
McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J.
2006-11-01
This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.
Conformal Laplace superintegrable systems in 2D: polynomial invariant subspaces
NASA Astrophysics Data System (ADS)
Escobar-Ruiz, M. A.; Miller, Willard, Jr.
2016-07-01
2nd-order conformal superintegrable systems in n dimensions are Laplace equations on a manifold with an added scalar potential and 2n-1 independent 2nd order conformal symmetry operators. They encode all the information about Helmholtz (eigenvalue) superintegrable systems in an efficient manner: there is a 1-1 correspondence between Laplace superintegrable systems and Stäckel equivalence classes of Helmholtz superintegrable systems. In this paper we focus on superintegrable systems in two-dimensions, n = 2, where there are 44 Helmholtz systems, corresponding to 12 Laplace systems. For each Laplace equation we determine the possible two-variate polynomial subspaces that are invariant under the action of the Laplace operator, thus leading to families of polynomial eigenfunctions. We also study the behavior of the polynomial invariant subspaces under a Stäckel transform. The principal new results are the details of the polynomial variables and the conditions on parameters of the potential corresponding to polynomial solutions. The hidden gl 3-algebraic structure is exhibited for the exact and quasi-exact systems. For physically meaningful solutions, the orthogonality properties and normalizability of the polynomials are presented as well. Finally, for all Helmholtz superintegrable solvable systems we give a unified construction of one-dimensional (1D) and two-dimensional (2D) quasi-exactly solvable potentials possessing polynomial solutions, and a construction of new 2D PT-symmetric potentials is established.
Chantler, C T; Bourke, J D
2014-04-01
X-ray absorption fine structure (XAFS) spectroscopy is one of the most robust, adaptable, and widely used structural analysis tools available for a range of material classes from bulk solids to aqueous solutions and active catalytic structures. Recent developments in XAFS theory have enabled high-accuracy calculations of spectra over an extended energy range using full-potential cluster modelling, and have demonstrated particular sensitivity in XAFS to a fundamental electron transport property-the electron inelastic mean free path (IMFP). We develop electron IMFP theory using a unique hybrid model that simultaneously incorporates second-order excitation losses, while precisely accounting for optical transitions dictated by the complex band structure of the solid. These advances are coupled with improved XAFS modelling to determine wide energy-range absorption spectra for molybdenum. This represents a critical test case of the theory, as measurements of molybdenum K-edge XAFS represent the most accurate determinations of XAFS spectra for any material. We find that we are able to reproduce an extended range of oscillatory structure in the absorption spectrum, and demonstrate a first-time theoretical determination of the absorption coefficient of molybdenum over the entire extended XAFS range utilizing a full-potential cluster model. PMID:24651638
Resolving 2D Amorphous Materials with Scanning Probe Microscopy
NASA Astrophysics Data System (ADS)
Burson, Kristen M.; Buechner, Christin; Lewandowski, Adrian; Heyde, Markus; Freund, Hans-Joachim
Novel two-dimensional (2D) materials have garnered significant scientific interest due to their potential technological applications. Alongside the emphasis on crystalline materials, such as graphene and hexagonal BN, a new class of 2D amorphous materials must be pursued. For amorphous materials, a detailed understanding of the complex structure is necessary. Here we present a structural study of 2D bilayer silica on Ru(0001), an insulating material which is weakly coupled to the substrate. Atomic structure has been determined with a dual mode atomic force microscopy (AFM) and scanning tunneling microscopy (STM) sensor in ultra-high vacuum (UHV) at low temperatures, revealing a network of different ring sizes. Liquid AFM measurements with sub-nanometer resolution bridge the gap between clean UHV conditions and the environments that many material applications demand. Samples are grown and characterized in vacuum and subsequently transferred to the liquid AFM. Notably, the key structural features observed, namely nanoscale ring networks and larger holes to the substrate, show strong quantitative agreement between the liquid and UHV microscopy measurements. This provides direct evidence for the structural stability of these silica films for nanoelectronics and other applications. KMB acknowledges support from the Alexander von Humboldt Foundation.
Periodically sheared 2D Yukawa systems
Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán
2015-10-15
We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.
ENERGY LANDSCAPE OF 2D FLUID FORMS
Y. JIANG; ET AL
2000-04-01
The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.
A scalable 2-D parallel sparse solver
Kothari, S.C.; Mitra, S.
1995-12-01
Scalability beyond a small number of processors, typically 32 or less, is known to be a problem for existing parallel general sparse (PGS) direct solvers. This paper presents a parallel general sparse PGS direct solver for general sparse linear systems on distributed memory machines. The algorithm is based on the well-known sequential sparse algorithm Y12M. To achieve efficient parallelization, a 2-D scattered decomposition of the sparse matrix is used. The proposed algorithm is more scalable than existing parallel sparse direct solvers. Its scalability is evaluated on a 256 processor nCUBE2s machine using Boeing/Harwell benchmark matrices.
2D stepping drive for hyperspectral systems
NASA Astrophysics Data System (ADS)
Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin
2015-07-01
We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.
Report of the 1988 2-D Intercomparison Workshop, chapter 3
NASA Technical Reports Server (NTRS)
Jackman, Charles H.; Brasseur, Guy; Soloman, Susan; Guthrie, Paul D.; Garcia, Rolando; Yung, Yuk L.; Gray, Lesley J.; Tung, K. K.; Ko, Malcolm K. W.; Isaken, Ivar
1989-01-01
Several factors contribute to the errors encountered. With the exception of the line-by-line model, all of the models employ simplifying assumptions that place fundamental limits on their accuracy and range of validity. For example, all 2-D modeling groups use the diffusivity factor approximation. This approximation produces little error in tropospheric H2O and CO2 cooling rates, but can produce significant errors in CO2 and O3 cooling rates at the stratopause. All models suffer from fundamental uncertainties in shapes and strengths of spectral lines. Thermal flux algorithms being used in 2-D tracer tranport models produce cooling rates that differ by as much as 40 percent for the same input model atmosphere. Disagreements of this magnitude are important since the thermal cooling rates must be subtracted from the almost-equal solar heating rates to derive the net radiative heating rates and the 2-D model diabatic circulation. For much of the annual cycle, the net radiative heating rates are comparable in magnitude to the cooling rate differences described. Many of the models underestimate the cooling rates in the middle and lower stratosphere. The consequences of these errors for the net heating rates and the diabatic circulation will depend on their meridional structure, which was not tested here. Other models underestimate the cooling near 1 mbar. Suchs errors pose potential problems for future interactive ozone assessment studies, since they could produce artificially-high temperatures and increased O3 destruction at these levels. These concerns suggest that a great deal of work is needed to improve the performance of thermal cooling rate algorithms used in the 2-D tracer transport models.
Microwave Assisted 2D Materials Exfoliation
NASA Astrophysics Data System (ADS)
Wang, Yanbin
Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.
Photocurrent spectroscopy of 2D materials
NASA Astrophysics Data System (ADS)
Cobden, David
Confocal photocurrent measurements provide a powerful means of studying many aspects of the optoelectronic and electrical properties of a 2D device or material. At a diffraction-limited point they can provide a detailed absorption spectrum, and they can probe local symmetry, ultrafast relaxation rates and processes, electron-electron interaction strengths, and transport coefficients. We illustrate this with several examples, once being the photo-Nernst effect. In gapless 2D materials, such as graphene, in a perpendicular magnetic field a photocurrent antisymmetric in the field is generated near to the free edges, with opposite sign at opposite edges. Its origin is the transverse thermoelectric current associated with the laser-induced electron temperature gradient. This effect provides an unambiguous demonstration of the Shockley-Ramo nature of long-range photocurrent generation in gapless materials. It also provides a means of investigating quasiparticle properties. For example, in the case of graphene on hBN, it can be used to probe the Lifshitz transition that occurs due to the minibands formed by the Moire superlattice. We also observe and discuss photocurrent generated in other semimetallic (WTe2) and semiconducting (WSe2) monolayers. Work supported by DoE BES and NSF EFRI grants.
Multienzyme Inkjet Printed 2D Arrays.
Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel
2015-08-19
The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072
Transport Experiments on 2D Correlated Electron Physics in Semiconductors
Tsui, Daniel
2014-03-24
This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.
2-D or not 2-D, that is the question: A Northern California test
Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D
2005-06-06
Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2
Li, Jun; Guo, Hua
2015-12-14
A globally accurate full-dimensional potential energy surface (PES) for the OH + CH4 → H2O + CH3 reaction is developed using the permutation invariant polynomial-neural network approach based on ∼135,000 points at the level of correlated coupled cluster singles, doubles, and perturbative triples level with the augmented correlation consistent polarized valence triple-zeta basis set. The total root mean square fitting error is only 3.9 meV or 0.09 kcal/mol. This PES is shown to reproduce energies, geometries, and harmonic frequencies of stationary points along the reaction path. Kinetic and dynamical calculations on the PES indicated a good agreement with the available experimental data. PMID:26671351
Rossi, Daniela; Nasti, Rita; Marra, Annamaria; Meneghini, Silvia; Mazzeo, Giuseppe; Longhi, Giovanna; Memo, Maurizio; Cosimelli, Barbara; Greco, Giovanni; Novellino, Ettore; Da Settimo, Federico; Martini, Claudia; Taliani, Sabrina; Abbate, Sergio; Collina, Simona
2016-05-01
The chiral separation of enantiomeric couples of three potential A3 adenosine receptor antagonists: (R/S)-N-(6-(1-phenylethoxy)-2-(propylthio)pyrimidin-4-yl)acetamide (), (R/S)-N-(2-(1-phenylethylthio)-6-propoxypyrimidin-4-yl)acetamide (), and (R/S)-N-(2-(benzylthio)-6-sec-butoxypyrimidin-4-yl)acetamide () was achieved by high-performance liquid chromatography (HPLC). Three types of chiroptical spectroscopies, namely, optical rotatory dispersion (ORD), electronic circular dichroism (ECD), and vibrational circular dichroism (VCD), were applied to enantiomeric compounds. Through comparison with Density Functional Theory (DFT) calculations, encompassing extensive conformational analysis, full assignment of the absolute configuration (AC) for the three sets of compounds was obtained. Chirality 28:434-440, 2016. © 2016 Wiley Periodicals, Inc. PMID:27095007
NASA Astrophysics Data System (ADS)
Li, Jun; Guo, Hua
2015-12-01
A globally accurate full-dimensional potential energy surface (PES) for the OH + CH4 → H2O + CH3 reaction is developed using the permutation invariant polynomial-neural network approach based on ˜135 000 points at the level of correlated coupled cluster singles, doubles, and perturbative triples level with the augmented correlation consistent polarized valence triple-zeta basis set. The total root mean square fitting error is only 3.9 meV or 0.09 kcal/mol. This PES is shown to reproduce energies, geometries, and harmonic frequencies of stationary points along the reaction path. Kinetic and dynamical calculations on the PES indicated a good agreement with the available experimental data.
Repression of multiple CYP2D genes in mouse primary hepatocytes with a single siRNA construct.
Elraghy, Omaima; Baldwin, William S
2015-01-01
The Cyp2d subfamily is the second most abun-dant subfamily of hepatic drug-metabolizing CYPs. In mice, there are nine Cyp2d members that are believed to have redundant catalytic activity. We are testing and optimizing the ability of one short interfering RNA (siRNA) construct to knockdown the expression of multiple mouse Cyp2ds in primary hepatocytes. Expression of Cyp2d10, Cyp2d11, Cyp2d22, and Cyp2d26 was observed in the primary male mouse hepatocytes. Cyp2d9, which is male-specific and growth hormone-dependent, was not expressed in male primary hepatocytes, potentially because of its dependence on pulsatile growth hormone release from the anterior pituitary. Several different siRNAs at different concentrations and with different reagents were used to knockdown Cyp2d expression. siRNA constructs designed to repress only one construct often mildly repressed several Cyp2d isoforms. A construct designed to knockdown every Cyp2d isoform provided the best results, especially when incubated with transfection reagents designed specifically for primary cell culture. Interestingly, a construct designed to knockdown all Cyp2d isoforms, except Cyp2d10, caused a 2.5× increase in Cyp2d10 expression, presumably because of a compensatory response. However, while RNA expression is repressed 24 h after siRNA treatment, associated changes in Cyp2d-mediated metabolism are tenuous. Overall, this study provides data on the expression of murine Cyp2ds in primary cell lines, valuable information on designing siRNAs for silencing multiple murine CYPs, and potential pros and cons of using siRNA as a tool for repressing Cyp2d and estimating Cyp2d's role in murine xenobiotic metabolism. PMID:25124873
Numerical Evaluation of 2D Ground States
NASA Astrophysics Data System (ADS)
Kolkovska, Natalia
2016-02-01
A ground state is defined as the positive radial solution of the multidimensional nonlinear problem
2D Electrostatic Actuation of Microshutter Arrays
NASA Technical Reports Server (NTRS)
Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.
2015-01-01
An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.
2D Electrostatic Actuation of Microshutter Arrays
NASA Technical Reports Server (NTRS)
Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.
2015-01-01
Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.
Graphene suspensions for 2D printing
NASA Astrophysics Data System (ADS)
Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.
2016-04-01
It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).
NASA Astrophysics Data System (ADS)
Reshak, Ali Hussain; Auluck, S.
2005-04-01
The band structure, density of states and anisotropic frequency-dependent optical properties have been calculated for the 1 T and 2 H phases of TaS 2 and TaSe 2 using the full-potential linear augmented plane wave (FPLAPW) method. In the 1 T and 2 H phases, when S is replaced by Se, the unoccupied Ta-5d and chalcogen-p bands move closer to the Fermi energy EF and the bandwidth of the chalcogen-s group decreases. Compared to the 1 T phase, in the 2 H phase the occupied/unoccupied bands move towards higher/lower energies with respect to EF. In the 1 T phase, when S is replaced by Se, the peak positions in the imaginary part of the frequency-dependent dielectric function ε2(ω) move towards lower energies by 0.5 eV. The single peak at 6 eV in ε2(ω) of the 1 T phase is split into two peaks in the 2 H phase. We make a detailed comparison of the frequency-dependent reflectivity and absorption coefficient with the available experimental data. The linear muffin tin orbital method within the atomic sphere approximation (LMTO-ASA) shows poor agreement with the experimental data while our FPLAPW results give excellent agreement with the experimental data suggesting that a better representation of the potential is essential for calculating optical properties accurately.
NASA Astrophysics Data System (ADS)
Xu, Junqing; Krüger, Peter; Natoli, Calogero R.; Hayakawa, Kuniko; Wu, Ziyu; Hatada, Keisuke
2015-09-01
The x-ray absorption near-edge structure of graphene, graphene oxide, and diamond is studied by the recently developed real-space full potential multiple scattering (FPMS) theory with space-filling cells. It is shown how accurate potentials for FPMS can be generated from self-consistent charge densities obtained with other schemes, especially the projector augmented wave method. Compared to standard multiple scattering calculations in the muffin-tin approximation, FPMS gives much better agreement with experiment. The effects of various structural modifications on the graphene spectra are well reproduced. (1) Stacking of graphene layers increases the peak intensity in the higher energy region. (2) The spectrum of the C atom located at the edge of a graphene sheet shows a prominent pre-edge structure. (3) Adsorption of oxygen gives rise to the so-called interlayer-state peak. Moreover, O K-edge spectra of graphene oxide are calculated for three types of bonding, C-OH, C-O-C, and C-O, and the proportions of these bondings at 800 ∘C are deduced by fitting them to the experimental spectrum.
Song, Hongwei; Lu, Yunpeng; Li, Jun; Yang, Minghui; Guo, Hua
2016-04-28
An initial state selected time-dependent wave packet method is applied to study the dynamics of the OH + CHD3 reaction with a six-dimensional model on a newly developed full-dimensional ab initio potential energy surface (PES). This quantum dynamical (QD) study is complemented by full-dimensional quasi-classical trajectory (QCT) calculations on the same PES. The QD results indicate that both translational energy and the excitation of the CH stretching mode significantly promote the reaction while the excitation of the umbrella mode has a negligible effect on the reactivity. For this early barrier reaction, interestingly, the CH stretching mode is more effective than translational energy in promoting the reaction except at very low collision energies. These QD observations are supported by QCT results. The higher efficacy of the CH stretching model in promoting this early barrier reaction is inconsistent with the prediction of the naively extended Polanyi's rules, but can be rationalized by the recently proposed sudden vector projection model. PMID:27131546
NASA Astrophysics Data System (ADS)
Song, Hongwei; Lu, Yunpeng; Li, Jun; Yang, Minghui; Guo, Hua
2016-04-01
An initial state selected time-dependent wave packet method is applied to study the dynamics of the OH + CHD3 reaction with a six-dimensional model on a newly developed full-dimensional ab initio potential energy surface (PES). This quantum dynamical (QD) study is complemented by full-dimensional quasi-classical trajectory (QCT) calculations on the same PES. The QD results indicate that both translational energy and the excitation of the CH stretching mode significantly promote the reaction while the excitation of the umbrella mode has a negligible effect on the reactivity. For this early barrier reaction, interestingly, the CH stretching mode is more effective than translational energy in promoting the reaction except at very low collision energies. These QD observations are supported by QCT results. The higher efficacy of the CH stretching model in promoting this early barrier reaction is inconsistent with the prediction of the naively extended Polanyi's rules, but can be rationalized by the recently proposed sudden vector projection model.
Metrology for graphene and 2D materials
NASA Astrophysics Data System (ADS)
Pollard, Andrew J.
2016-09-01
The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the
Simulation of 2D Fields of Raindrop Size Distributions
NASA Astrophysics Data System (ADS)
Berne, A.; Schleiss, M.; Uijlenhoet, R.
2008-12-01
The raindrop size distribution (DSD hereafter) is of primary importance for quantitative applications of weather radar measurements. The radar reflectivity~Z (directly measured by radar) is related to the power backscattered by the ensemble of hydrometeors within the radar sampling volume. However, the rain rate~R (the flux of water to the surface) is the variable of interest for many applications (hydrology, weather forecasting, air traffic for example). Usually, radar reflectivity is converted into rain rate using a power law such as Z=aRb. The coefficients a and b of the Z-R relationship depend on the DSD. The variability of the DSD in space and time has to be taken into account to improve radar rain rate estimates. Therefore, the ability to generate a large number of 2D fields of DSD which are statistically homogeneous provides a very useful simulation framework that nicely complements experimental approaches based on DSD data, in order to investigate radar beam propagation through rain as well as radar retrieval techniques. The proposed approach is based on geostatistics for structural analysis and stochastic simulation. First, the DSD is assumed to follow a gamma distribution. Hence a 2D field of DSDs can be adequately described as a 2D field of a multivariate random function consisting of the three DSD parameters. Such fields are simulated by combining a Gaussian anamorphosis and a multivariate Gaussian random field simulation algorithm. Using the (cross-)variogram models fitted on data guaranties that the spatial structure of the simulated fields is consistent with the observed one. To assess its validity, the proposed method is applied to data collected during intense Mediterranean rainfall. As only time series are available, Taylor's hypothesis is assumed to convert time series in 1D range profile. Moreover, DSD fields are assumed to be isotropic so that the 1D structure can be used to simulate 2D fields. A large number of 2D fields of DSD parameters are
NASA Astrophysics Data System (ADS)
Hou, Dan; Ma, Yong-Tao; Zhang, Xiao-Long; Li, Hui
2016-01-01
The origin and strength of intra- and inter-molecular vibrational coupling is difficult to probe by direct experimental observations. However, explicitly including or not including some specific intramolecular vibrational modes to study intermolecular interaction provides a precise theoretical way to examine the effects of anharmonic coupling between modes. In this work, a full-dimension intra- and inter-molecular ab initio potential energy surface (PES) for H2O-Ar, which explicitly incorporates interdependence on the intramolecular (Q1, Q2, Q3) normal-mode coordinates of the H2O monomer, has been calculated. In addition, four analytic vibrational-quantum-state-specific PESs are obtained by least-squares fitting vibrationally averaged interaction energies for the (v1, v2, v3) = (0, 0, 0), (0, 0, 1), (1, 0, 0), (0, 1, 0) states of H2O to the three-dimensional Morse/long-range potential function. Each vibrationally averaged PES fitted to 442 points has root-mean-square (rms) deviation smaller than 0.15 cm-1, and required only 58 parameters. With the 3D PESs of H2O-Ar dimer system, we employed the combined radial discrete variable representation/angular finite basis representation method and Lanczos algorithm to calculate rovibrational energy levels. This showed that the resulting vibrationally averaged PESs provide good representations of the experimental infrared data, with rms discrepancies smaller than 0.02 cm-1 for all three rotational branches of the asymmetric stretch fundamental transitions. The infrared band origin shifts associated with three fundamental bands of H2O in H2O-Ar complex are predicted for the first time and are found to be in good agreement with the (extrapolated) experimental values. Upon introduction of additional intramolecular degrees of freedom into the intermolecular potential energy surface, there is clear spectroscopic evidence of intra- and intermolecular vibrational couplings.
Hirobe, Tomohisa; Ito, Shosuke; Wakamatsu, Kazumasa
2013-09-01
The novel mutation named ru2(d) /Hps5(ru2-d) , characterized by light-colored coats and ruby-eyes, prohibits differentiation of melanocytes by inhibiting tyrosinase (Tyr) activity, expression of Tyr, Tyr-related protein 1 (Tyrp1), Tyrp2, and Kit. However, it is not known whether the ru2(d) allele affects pheomelanin synthesis in recessive yellow (e/Mc1r(e) ) or in pheomelanic stage in agouti (A) mice. In this study, effects of the ru2(d) allele on pheomelanin synthesis were investigated by chemical analysis of melanin present in dorsal hairs of 5-week-old mice from F2 generation between C57BL/10JHir (B10)-co-isogenic ruby-eye 2(d) and B10-congenic recessive yellow or agouti. Eumelanin content was decreased in ruby-eye 2(d) and ruby-eye 2(d) agouti mice, whereas pheomelanin content in ruby-eye 2(d) recessive yellow and ruby-eye 2(d) agouti mice did not differ from the corresponding Ru2(d) /- mice, suggesting that the ru2(d) allele inhibits eumelanin but not pheomelanin synthesis. PMID:23672590
2D map projections for visualization and quantitative analysis of 3D fluorescence micrographs
Sendra, G. Hernán; Hoerth, Christian H.; Wunder, Christian; Lorenz, Holger
2015-01-01
We introduce Map3-2D, a freely available software to accurately project up to five-dimensional (5D) fluorescence microscopy image data onto full-content 2D maps. Similar to the Earth’s projection onto cartographic maps, Map3-2D unfolds surface information from a stack of images onto a single, structurally connected map. We demonstrate its applicability for visualization and quantitative analyses of spherical and uneven surfaces in fixed and dynamic live samples by using mammalian and yeast cells, and giant unilamellar vesicles. Map3-2D software is available at http://www.zmbh.uni-heidelberg.de//Central_Services/Imaging_Facility/Map3-2D.html. PMID:26208256
NASA Astrophysics Data System (ADS)
Lacava, C.; Carrol, L.; Bozzola, A.; Marchetti, R.; Minzioni, P.; Cristiani, I.; Fournier, M.; Bernabe, S.; Gerace, D.; Andreani, L. C.
2016-03-01
We present the characterization of Silicon-on-insulator (SOI) photonic-crystal based 2D grating-couplers (2D-GCs) fabricated by CEA-Leti in the frame of the FP7 Fabulous project, which is dedicated to the realization of devices and systems for low-cost and high-performance passives-optical-networks. On the analyzed samples different test structures are present, including 2D-GC connected to another 2D-GC by different waveguides (in a Mach-Zehnder like configuration), and 2D-GC connected to two separate 2D-GCs, so as to allow a complete assessment of different parameters. Measurements were carried out using a tunable laser source operating in the extended telecom bandwidth and a fiber-based polarization controlling system at the input of device-under-test. The measured data yielded an overall fiber-to-fiber loss of 7.5 dB for the structure composed by an input 2D-GC connected to two identical 2D-GCs. This value was obtained at the peak wavelength of the grating, and the 3-dB bandwidth of the 2D-GC was assessed to be 43 nm. Assuming that the waveguide losses are negligible, so as to make a worst-case analysis, the coupling efficiency of the single 2D-GC results to be equal to -3.75 dB, constituting, to the best of our knowledge, the lowest value ever reported for a fully CMOS compatible 2D-GC. It is worth noting that both the obtained values are in good agreement with those expected by the numerical simulations performed using full 3D analysis by Lumerical FDTD-solutions.
A new inversion method for (T2, D) 2D NMR logging and fluid typing
NASA Astrophysics Data System (ADS)
Tan, Maojin; Zou, Youlong; Zhou, Cancan
2013-02-01
One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.
Coprescription of Tamoxifen and Medications That Inhibit CYP2D6
Sideras, Kostandinos; Ingle, James N.; Ames, Matthew M.; Loprinzi, Charles L.; Mrazek, David P.; Black, John L.; Weinshilboum, Richard M.; Hawse, John R.; Spelsberg, Thomas C.; Goetz, Matthew P.
2010-01-01
Evidence has emerged that the clinical benefit of tamoxifen is related to the functional status of the hepatic metabolizing enzyme cytochrome P450 2D6 (CYP2D6). CYP2D6 is the key enzyme responsible for the generation of the potent tamoxifen metabolite, endoxifen. Multiple studies have examined the relationship of CYP2D6 status to breast cancer outcomes in tamoxifen-treated women; the majority of studies demonstrated that women with impaired CYP2D6 metabolism have lower endoxifen concentrations and a greater risk of breast cancer recurrence. As a result, practitioners must be aware that some of the most commonly prescribed medications coadministered with tamoxifen interfere with CYP2D6 function, thereby reducing endoxifen concentrations and potentially increasing the risk of breast cancer recurrence. After reviewing the published data regarding tamoxifen metabolism and the evidence relating CYP2D6 status to breast cancer outcomes in tamoxifen-treated patients, we are providing a guide for the use of medications that inhibit CYP2D6 in patients administered tamoxifen. PMID:20439629
Fast Acceleration of 2D Wave Propagation Simulations Using Modern Computational Accelerators
Wang, Wei; Xu, Lifan; Cavazos, John; Huang, Howie H.; Kay, Matthew
2014-01-01
Recent developments in modern computational accelerators like Graphics Processing Units (GPUs) and coprocessors provide great opportunities for making scientific applications run faster than ever before. However, efficient parallelization of scientific code using new programming tools like CUDA requires a high level of expertise that is not available to many scientists. This, plus the fact that parallelized code is usually not portable to different architectures, creates major challenges for exploiting the full capabilities of modern computational accelerators. In this work, we sought to overcome these challenges by studying how to achieve both automated parallelization using OpenACC and enhanced portability using OpenCL. We applied our parallelization schemes using GPUs as well as Intel Many Integrated Core (MIC) coprocessor to reduce the run time of wave propagation simulations. We used a well-established 2D cardiac action potential model as a specific case-study. To the best of our knowledge, we are the first to study auto-parallelization of 2D cardiac wave propagation simulations using OpenACC. Our results identify several approaches that provide substantial speedups. The OpenACC-generated GPU code achieved more than speedup above the sequential implementation and required the addition of only a few OpenACC pragmas to the code. An OpenCL implementation provided speedups on GPUs of at least faster than the sequential implementation and faster than a parallelized OpenMP implementation. An implementation of OpenMP on Intel MIC coprocessor provided speedups of with only a few code changes to the sequential implementation. We highlight that OpenACC provides an automatic, efficient, and portable approach to achieve parallelization of 2D cardiac wave simulations on GPUs. Our approach of using OpenACC, OpenCL, and OpenMP to parallelize this particular model on modern computational accelerators should be applicable to other computational models of wave propagation in
2-D Modeling of Nanoscale MOSFETs: Non-Equilibrium Green's Function Approach
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan
2001-01-01
We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Electron-electron interaction is treated within Hartree approximation by solving NEGF and Poisson equations self-consistently. For the calculations presented here, parallelization is performed by distributing the solution of NEGF equations to various processors, energy wise. We present simulation of the "benchmark" MIT 25nm and 90nm MOSFETs and compare our results to those from the drift-diffusion simulator and the quantum-corrected results available. In the 25nm MOSFET, the channel length is less than ten times the electron wavelength, and the electron scattering time is comparable to its transit time. Our main results are: (1) Simulated drain subthreshold current characteristics are shown, where the potential profiles are calculated self-consistently by the corresponding simulation methods. The current predicted by our quantum simulation has smaller subthreshold slope of the Vg dependence which results in higher threshold voltage. (2) When gate oxide thickness is less than 2 nm, gate oxide leakage is a primary factor which determines off-current of a MOSFET (3) Using our 2-D NEGF simulator, we found several ways to drastically decrease oxide leakage current without compromising drive current. (4) Quantum mechanically calculated electron density is much smaller than the background doping density in the poly silicon gate region near oxide interface. This creates an additional effective gate voltage. Different ways to. include this effect approximately will be discussed.
Hou, Dan; Ma, Yong-Tao; Zhang, Xiao-Long; Li, Hui
2016-01-01
The origin and strength of intra- and inter-molecular vibrational coupling is difficult to probe by direct experimental observations. However, explicitly including or not including some specific intramolecular vibrational modes to study intermolecular interaction provides a precise theoretical way to examine the effects of anharmonic coupling between modes. In this work, a full-dimension intra- and inter-molecular ab initio potential energy surface (PES) for H2O-Ar, which explicitly incorporates interdependence on the intramolecular (Q1, Q2, Q3) normal-mode coordinates of the H2O monomer, has been calculated. In addition, four analytic vibrational-quantum-state-specific PESs are obtained by least-squares fitting vibrationally averaged interaction energies for the (v1, v2, v3) = (0, 0, 0), (0, 0, 1), (1, 0, 0), (0, 1, 0) states of H2O to the three-dimensional Morse/long-range potential function. Each vibrationally averaged PES fitted to 442 points has root-mean-square (rms) deviation smaller than 0.15 cm(-1), and required only 58 parameters. With the 3D PESs of H2O-Ar dimer system, we employed the combined radial discrete variable representation/angular finite basis representation method and Lanczos algorithm to calculate rovibrational energy levels. This showed that the resulting vibrationally averaged PESs provide good representations of the experimental infrared data, with rms discrepancies smaller than 0.02 cm(-1) for all three rotational branches of the asymmetric stretch fundamental transitions. The infrared band origin shifts associated with three fundamental bands of H2O in H2O-Ar complex are predicted for the first time and are found to be in good agreement with the (extrapolated) experimental values. Upon introduction of additional intramolecular degrees of freedom into the intermolecular potential energy surface, there is clear spectroscopic evidence of intra- and intermolecular vibrational couplings. PMID:26747800
Competing coexisting phases in 2D water
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-01-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018
2D Radiative Processes Near Cloud Edges
NASA Technical Reports Server (NTRS)
Varnai, T.
2012-01-01
Because of the importance and complexity of dynamical, microphysical, and radiative processes taking place near cloud edges, the transition zone between clouds and cloud free air has been the subject of intense research both in the ASR program and in the wider community. One challenge in this research is that the one-dimensional (1D) radiative models widely used in both remote sensing and dynamical simulations become less accurate near cloud edges: The large horizontal gradients in particle concentrations imply that accurate radiative calculations need to consider multi-dimensional radiative interactions among areas that have widely different optical properties. This study examines the way the importance of multidimensional shortwave radiative interactions changes as we approach cloud edges. For this, the study relies on radiative simulations performed for a multiyear dataset of clouds observed over the NSA, SGP, and TWP sites. This dataset is based on Microbase cloud profiles as well as wind measurements and ARM cloud classification products. The study analyzes the way the difference between 1D and 2D simulation results increases near cloud edges. It considers both monochromatic radiances and broadband radiative heating, and it also examines the influence of factors such as cloud type and height, and solar elevation. The results provide insights into the workings of radiative processes and may help better interpret radiance measurements and better estimate the radiative impacts of this critical region.
Simulation of Yeast Cooperation in 2D.
Wang, M; Huang, Y; Wu, Z
2016-03-01
Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse. PMID:26988702
Phase Engineering of 2D Tin Sulfides.
Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S
2016-06-01
Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950
Parallel map analysis on 2-D grids
Berry, M.; Comiskey, J.; Minser, K.
1993-12-31
In landscape ecology, computer modeling is used to assess habitat fragmentation and its ecological iMPLications. Specifically, maps (2-D grids) of habitat clusters must be analyzed to determine number, sizes and geometry of clusters. Models prior to this study relied upon sequential Fortran-77 programs which limited the sizes of maps and densities of clusters which could be analyzed. In this paper, we present more efficient computer models which can exploit recursion or parallelism. Significant improvements over the original Fortran-77 programs have been achieved using both recursive and nonrecursive C implementations on a variety of workstations such as the Sun Sparc 2, IBM RS/6000-350, and HP 9000-750. Parallel implementations on a 4096-processor MasPar MP-1 and a 32-processor CM-5 are also studied. Preliminary experiments suggest that speed improvements for the parallel model on the MasPar MP-1 (written in MPL) and on the CM-5 (written in C using CMMD) can be as much as 39 and 34 times faster, respectively, than the most efficient sequential C program on a Sun Sparc 2 for a 512 map. An important goal in this research effort is to produce a scalable map analysis algorithm for the identification and characterization of clusters for relatively large maps on massively-parallel computers.
2D Turbulence with Complicated Boundaries
NASA Astrophysics Data System (ADS)
Roullet, G.; McWilliams, J. C.
2014-12-01
We examine the consequences of lateral viscous boundary layers on the 2D turbulence that arises in domains with complicated boundaries (headlands, bays etc). The study is carried out numerically with LES. The numerics are carefully designed to ensure all global conservation laws, proper boundary conditions and a minimal range of dissipation scales. The turbulence dramatically differs from the classical bi-periodic case. Boundary layer separations lead to creation of many small vortices and act as a continuing energy source exciting the inverse cascade of energy throughout the domain. The detachments are very intermittent in time. In free decay, the final state depends on the effective numerical resolution: laminar with a single dominant vortex for low Re and turbulent with many vortices for large enough Re. After very long time, the turbulent end-state exhibits a striking tendency for the emergence of shielded vortices which then interact almost elastically. In the forced case, the boundary layers allow the turbulence to reach a statistical steady state without any artificial hypo-viscosity or other large-scale dissipation. Implications are discussed for the oceanic mesoscale and submesoscale turbulence.
Competing coexisting phases in 2D water
NASA Astrophysics Data System (ADS)
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-05-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.
Competing coexisting phases in 2D water.
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-01-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018
2-D wavelet with position controlled resolution
NASA Astrophysics Data System (ADS)
Walczak, Andrzej; Puzio, Leszek
2005-09-01
Wavelet transformation localizes all irregularities in the scene. It is most effective in the case when intensities in the scene have no sharp details. It is the case often present in a medical imaging. To identify the shape one has to extract it from the scene as typical irregularity. When the scene does not contain sharp changes then common differential filters are not efficient tool for a shape extraction. The new 2-D wavelet for such task has been proposed. Described wavelet transform is axially symmetric and has varied scale in dependence on the distance from the centre of the wavelet symmetry. The analytical form of the wavelet has been presented as well as its application for details extraction in the scene. Most important feature of the wavelet transform is that it gives a multi-scale transformation, and if zoom is on the wavelet selectivity varies proportionally to the zoom step. As a result, the extracted shape does not change during zoom operation. What is more the wavelet selectivity can be fit to the local intensity gradient properly to obtain best extraction of the irregularities.
NASA Astrophysics Data System (ADS)
Atta-Fynn, Raymond; Ray, Asok
2006-10-01
Fully-relativistic full potential density functional calculations have been performed to investigate atomic carbon, nitrogen, and oxygen chemisorption on the (111) surface of δ-Pu using the all-electron linearized augmented plane wave plus local orbitals code WIEN2k and the generalized gradient approximation to density functional theory. The surface was modeled by a three-layer periodic slab separated by 60 Bohr vacuum with two atoms per surface unit cell. The hollow fcc adsorption site was found to be the most preferred site with chemisorption energies of 6.539 eV, 6.714 eV, and 8.2 eV for the C, N, and O adatoms, respectively. The respective distances of the C, N, and O adatoms from the surface were found to be 1.16 å, 1.08 å, and 1.25 å. Analysis of the partial charges inside the atomic spheres, charge density distributions, and the local density of states indicate hybridizations between Pu 5f and the 2p states of the adatoms.
NASA Technical Reports Server (NTRS)
Johnson, F. T.; Samant, S. S.; Bieterman, M. B.; Melvin, R. G.; Young, D. P.; Bussoletti, J. E.; Hilmes, C. L.
1992-01-01
A new computer program, called TranAir, for analyzing complex configurations in transonic flow (with subsonic or supersonic freestream) was developed. This program provides accurate and efficient simulations of nonlinear aerodynamic flows about arbitrary geometries with the ease and flexibility of a typical panel method program. The numerical method implemented in TranAir is described. The method solves the full potential equation subject to a set of general boundary conditions and can handle regions with differing total pressure and temperature. The boundary value problem is discretized using the finite element method on a locally refined rectangular grid. The grid is automatically constructed by the code and is superimposed on the boundary described by networks of panels; thus no surface fitted grid generation is required. The nonlinear discrete system arising from the finite element method is solved using a preconditioned Krylov subspace method embedded in an inexact Newton method. The solution is obtained on a sequence of successively refined grids which are either constructed adaptively based on estimated solution errors or are predetermined based on user inputs. Many results obtained by using TranAir to analyze aerodynamic configurations are presented.
Chen, Liuyang; Shao, Kejie; Chen, Jun; Yang, Minghui; Zhang, Dong H
2016-05-21
This work performs a time-dependent wavepacket study of the H2 + C2H → H + C2H2 reaction on a new ab initio potential energy surface (PES). The PES is constructed using neural network method based on 68 478 geometries with energies calculated at UCCSD(T)-F12a/aug-cc-pVTZ level and covers H2 + C2H↔H + C2H2, H + C2H2 → HCCH2, and HCCH2 radial isomerization reaction regions. The reaction dynamics of H2 + C2H → H + C2H2 are investigated using full-dimensional quantum dynamics method. The initial-state selected reaction probabilities are calculated for reactants in eight vibrational states. The calculated results showed that the H2 vibrational excitation predominantly enhances the reactivity while the excitation of bending mode of C2H slightly inhibits the reaction. The excitations of two stretching modes of C2H molecule have negligible effect on the reactivity. The integral cross section is calculated with J-shift approximation and the mode selectivity in this reaction is discussed. The rate constants over 200-2000 K are calculated and agree well with the experimental measured values. PMID:27208951
Hope Wilkinson, Katheryn; Strait, Jacqueline M.; Hozalski, Raymond M.; Sadowksy, Michael J.; Hamilton, Matthew J.
2015-01-01
The bacterial community composition of the full-scale biologically active, granular activated carbon (BAC) filters operated at the St. Paul Regional Water Services (SPRWS) was investigated using Illumina MiSeq analysis of PCR-amplified 16S rRNA gene fragments. These bacterial communities were consistently diverse (Shannon index, >4.4; richness estimates, >1,500 unique operational taxonomic units [OTUs]) throughout the duration of the 12-month study period. In addition, only modest shifts in the quantities of individual bacterial populations were observed; of the 15 most prominent OTUs, the most highly variable population (a Variovorax sp.) modulated less than 13-fold over time and less than 8-fold from filter to filter. The most prominent population in the profiles was a Nitrospira sp., representing 13 to 21% of the community. Interestingly, very few of the known ammonia-oxidizing bacteria (AOB; <0.07%) and no ammonia-oxidizing Archaea were detected in the profiles. Quantitative PCR of amoA genes, however, suggested that AOB were prominent in the bacterial communities (amoA/16S rRNA gene ratio, 1 to 10%). We conclude, therefore, that the BAC filters at the SPRWS potentially contained significant numbers of unidentified and novel ammonia-oxidizing microorganisms that possess amoA genes similar to those of previously described AOB. PMID:26209671
Wang, Xu; Li, Meiyan; Liu, Junxin; Qu, Jiuhui
2016-07-01
Millions of tons of waste activated sludge (WAS) produced from biological wastewater treatment processes cause severe adverse environmental consequences. A better understanding of WAS composition is thus very critical for sustainable sludge management. In this work, the occurrence and distribution of several fundamental sludge constituents were explored in WAS samples from nine full-scale wastewater treatment plants (WWTPs) of Beijing, China. Among all the components investigated, active heterotrophic biomass was dominant in the samples (up to 9478mg/L), followed by endogenous residues (6736mg/L), extracellular polymeric substances (2088mg/L), and intracellular storage products (464mg/L) among others. Moreover, significant differences (p<0.05) were observed in composition profiles of sludge samples among the studied WWTPs. To identify the potential parameters affecting the variable fractions of sludge components, wastewater source as well as design and operational parameters of WWTPs were studied using statistical methods. The findings indicated that the component fraction of sewage sludge depends more on wastewater treatment alternatives than on wastewater characteristics among other parameters. A principal component analysis was conducted, which further indicated that there was a greater proportion of residual inert biomass in the sludge produced by the combined system of the conventional anaerobic/anoxic/oxic process and a membrane bioreactor. Additionally, a much longer solids retention time was also found to influence the sludge composition and induce an increase in both endogenous inert residues and extracellular polymeric substances in the sludge. PMID:27372138
NASA Astrophysics Data System (ADS)
Amari, S.; Bouhafs, B.
2016-09-01
Based on the first-principles methods, the structural, elastic, electronic, properties and magnetic ordering of californium monopnictides CfX (X = P) have been studied using the full-potential augmented plane wave plus local orbitals (FP-L/APW + lo) method within the framework of density functional theory (DFT). The electronic exchange correlation energy is described by generalized gradient approximation GGA and GGA+U (U is the Hubbard correction). The GGA+U method is applied to the rare-earth 5f states. We have calculated the lattice parameters, bulk modulii and the first pressure derivatives of the bulk modulii. The elastic properties of the studied compounds are only investigated in the most stable calculated phase. In order to gain further information, we have calculated Young's modulus, shear modulus, anisotropy factor and Kleinman parameter by the aid of the calculated elastic constants. The results mainly show that californium monopnictides CfX (X = P) have an antiferromagnetic spin ordering. Density of states (DOS) and charge densities for both compounds are also computed in the NaCl (B1) structure.
NASA Astrophysics Data System (ADS)
Chen, Liuyang; Shao, Kejie; Chen, Jun; Yang, Minghui; Zhang, Dong H.
2016-05-01
This work performs a time-dependent wavepacket study of the H2 + C2H → H + C2H2 reaction on a new ab initio potential energy surface (PES). The PES is constructed using neural network method based on 68 478 geometries with energies calculated at UCCSD(T)-F12a/aug-cc-pVTZ level and covers H2 + C2H↔H + C2H2, H + C2H2 → HCCH2, and HCCH2 radial isomerization reaction regions. The reaction dynamics of H2 + C2H → H + C2H2 are investigated using full-dimensional quantum dynamics method. The initial-state selected reaction probabilities are calculated for reactants in eight vibrational states. The calculated results showed that the H2 vibrational excitation predominantly enhances the reactivity while the excitation of bending mode of C2H slightly inhibits the reaction. The excitations of two stretching modes of C2H molecule have negligible effect on the reactivity. The integral cross section is calculated with J-shift approximation and the mode selectivity in this reaction is discussed. The rate constants over 200-2000 K are calculated and agree well with the experimental measured values.
LaPara, Timothy M; Hope Wilkinson, Katheryn; Strait, Jacqueline M; Hozalski, Raymond M; Sadowksy, Michael J; Hamilton, Matthew J
2015-10-01
The bacterial community composition of the full-scale biologically active, granular activated carbon (BAC) filters operated at the St. Paul Regional Water Services (SPRWS) was investigated using Illumina MiSeq analysis of PCR-amplified 16S rRNA gene fragments. These bacterial communities were consistently diverse (Shannon index, >4.4; richness estimates, >1,500 unique operational taxonomic units [OTUs]) throughout the duration of the 12-month study period. In addition, only modest shifts in the quantities of individual bacterial populations were observed; of the 15 most prominent OTUs, the most highly variable population (a Variovorax sp.) modulated less than 13-fold over time and less than 8-fold from filter to filter. The most prominent population in the profiles was a Nitrospira sp., representing 13 to 21% of the community. Interestingly, very few of the known ammonia-oxidizing bacteria (AOB; <0.07%) and no ammonia-oxidizing Archaea were detected in the profiles. Quantitative PCR of amoA genes, however, suggested that AOB were prominent in the bacterial communities (amoA/16S rRNA gene ratio, 1 to 10%). We conclude, therefore, that the BAC filters at the SPRWS potentially contained significant numbers of unidentified and novel ammonia-oxidizing microorganisms that possess amoA genes similar to those of previously described AOB. PMID:26209671
Crossover from 2D to 3D in a Weakly Interacting Fermi Gas
Dyke, P.; Kuhnle, E. D.; Hu, H.; Mark, M.; Hoinka, S.; Lingham, M.; Hannaford, P.; Vale, C. J.; Whitlock, S.
2011-03-11
We have studied the transition from two to three dimensions in a low temperature weakly interacting {sup 6}Li Fermi gas. Below a critical atom number N{sub 2D} only the lowest transverse vibrational state of a highly anisotropic oblate trapping potential is occupied and the gas is two dimensional. Above N{sub 2D} the Fermi gas enters the quasi-2D regime where shell structure associated with the filling of individual transverse oscillator states is apparent. This dimensional crossover is demonstrated through measurements of the cloud size and aspect ratio versus atom number.
Investigating the Sliding Phase in Strongly and Randomly Coupled Quasi-2D Bose Gasses
NASA Astrophysics Data System (ADS)
Reed, Matthew; Smith, Zack; Dewan, Aftaab; Rolston, Steve
2014-05-01
Asymptotic analytical [Mohan et al. 2010] functional RNG [Pekker et al. 2010] and Monte Carlo [Laflorencie 2012] methods identified an anomalous Griffiths phase in the 3D XY model in the presence of disorder. A stack of cold 2D Bose gasses with random nearest neighbor inter-planar couplings should pass through two phase transitions as one increases temperature, first from a 3D superfluid to a stack of 2D superfluids, and then to a thermal state. We discuss our investigation of this intermediate phase in a stack of strongly coupled quasi-2D Rb 87 pancakes generated by a truly disordered 1D optical potential.
2-D Animation's Not Just for Mickey Mouse.
ERIC Educational Resources Information Center
Weinman, Lynda
1995-01-01
Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)
MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ
Sanford, L.; Hallquist, J.O.
1992-02-24
MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
On 2D graphical representation of DNA sequence of nondegeneracy
NASA Astrophysics Data System (ADS)
Zhang, Yusen; Liao, Bo; Ding, Kequan
2005-08-01
Some two-dimensional (2D) graphical representations of DNA sequences have been given by Gates, Nandy, Leong and Mogenthaler, Randić, and Liao et al., which give visual characterizations of DNA sequences. In this Letter, we introduce a nondegeneracy 2D graphical representation of DNA sequence, which is different from Randić's novel 2D representation and Liao's 2D representation. We also present the nondegeneracy forms corresponding to the representations of Gates, Nandy, Leong and Mogenthaler.
Generates 2D Input for DYNA NIKE & TOPAZ
1996-07-15
MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
2d PDE Linear Symmetric Matrix Solver
1983-10-01
ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less
2d PDE Linear Asymmetric Matrix Solver
1983-10-01
ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less
Ultrasonic 2D matrix PVDF transducer
NASA Astrophysics Data System (ADS)
Ptchelintsev, A.; Maev, R. Gr.
2000-05-01
During the past decade a substantial amount of work has been done in the area of ultrasonic imaging technology using 2D arrays. The main problems arising for the two-dimensional matrix transducers at megahertz frequencies are small size and huge count of the elements, high electrical impedance, low sensitivity, bad SNR and slower data acquisition rate. The major technological difficulty remains the high density of the interconnect. To solve these problems numerous approaches have been suggested. In the present work, a 24×24 elements (24 transmit+24 receive) matrix and a switching board were developed. The transducer consists of two 52 μm PVDF layers each representing a linear array of 24 elements placed one on the top of the other. Electrodes in these two layers are perpendicular and form the grid of 0.5×0.5 mm pitch. The layers are bonded together with the ground electrode being monolithic and located between the layers. The matrix is backed from the rear surface with an epoxy composition. During the emission, a linear element from the emitting layer generates a longitudinal wave pulse propagating inside the test object. Reflected pulses are picked-up by the receiving layer. During one transmit-receive cycle one transmit element and one receive element are selected by corresponding multiplexers. These crossed elements emulate a small element formed by their intersection. The present design presents the following advantages: minimizes number of active channels and density of the interconnect; reduces the electrical impedance of the element improving electrical matching; enables the transmit-receive mode; due to the efficient backing provides bandwidth and good time resolution; and, significantly reduces the electronics complexity. The matrix can not be used for the beam steering and focusing. Owing to this impossibility of focusing, the penetration depth is limited as well by the diffraction phenomena.
The effects of aging on haptic 2D shape recognition.
Overvliet, Krista E; Wagemans, J; Krampe, Ralf T
2013-12-01
We use the image-mediation model (Klatzky & Lederman, 1987) as a framework to investigate potential sources of adult age differences in the haptic recognition of two-dimensional (2D) shapes. This model states that the low-resolution, temporally sequential, haptic input is translated into a visual image, which is then reperceived through the visual processors, before it is matched against a long-term memory representation and named. In three experiments we tested groups of 12 older (mean age 73.11) and three groups of 12 young adults (mean age 22.80) each. In Experiment 1 we confirm age-related differences in haptic 2D shape recognition, and we show the typical age × complexity interaction. In Experiment 2 we show that if we facilitate the visual translation process, age differences become smaller, but only with simple shapes and not with the more complex everyday objects. In Experiment 3 we target the last step in the model (matching and naming) for complex stimuli. We found that age differences in exploration time were considerably reduced when this component process was facilitated by providing a category name. We conclude that the image-mediation model can explain adult-age differences in haptic recognition, particularly if the role of working memory in forming the transient visual image is considered. Our findings suggest that sensorimotor skills thought to rely on peripheral processes for the most part are critically constrained by age-related changes in central processing capacity in later adulthood. PMID:23978010
Local currents in a 2D topological insulator
NASA Astrophysics Data System (ADS)
Dang, Xiaoqian; Burton, J. D.; Tsymbal, Evgeny Y.
2015-12-01
Symmetry protected edge states in 2D topological insulators are interesting both from the fundamental point of view as well as from the point of view of potential applications in nanoelectronics as perfectly conducting 1D channels and functional elements of circuits. Here using a simple tight-binding model and the Landauer-Büttiker formalism we explore local current distributions in a 2D topological insulator focusing on effects of non-magnetic impurities and vacancies as well as finite size effects. For an isolated edge state, we show that the local conductance decays into the bulk in an oscillatory fashion as explained by the complex band structure of the bulk topological insulator. We demonstrate that although the net conductance of the edge state is topologically protected, impurity scattering leads to intricate local current patterns. In the case of vacancies we observe vortex currents of certain chirality, originating from the scattering of current-carrying electrons into states localized at the edges of hollow regions. For finite size strips of a topological insulator we predict the formation of an oscillatory band gap in the spectrum of the edge states, the emergence of Friedel oscillations caused by an open channel for backscattering from an impurity and antiresonances in conductance when the Fermi energy matches the energy of the localized state created by an impurity.
Magnetic gating of a 2D topological insulator.
Dang, Xiaoqian; Burton, J D; Tsymbal, Evgeny Y
2016-09-28
Deterministic control of transport properties through manipulation of spin states is one of the paradigms of spintronics. Topological insulators offer a new playground for exploring interesting spin-dependent phenomena. Here, we consider a ferromagnetic 'gate' representing a magnetic adatom coupled to the topologically protected edge state of a two-dimensional (2D) topological insulator to modulate the electron transmission of the edge state. Due to the locked spin and wave vector of the transport electrons the transmission across the magnetic gate depends on the mutual orientation of the adatom magnetic moment and the current. If the Fermi energy matches an exchange-split bound state of the adatom, the electron transmission can be blocked due to the full back scattering of the incident wave. This antiresonance behavior is controlled by the adatom magnetic moment orientation so that the transmission of the edge state can be changed from 1 to 0. Expanding this consideration to a ferromagnetic gate representing a 1D chain of atoms shows a possibility to control the spin-dependent current of a strip of a 2D topological insulator by magnetization orientation of the ferromagnetic gate. PMID:27437829
Mass loss in 2D rotating stellar models
Lovekin, Caterine; Deupree, Bob
2010-10-05
Radiatively driven mass loss is an important factor in the evolution of massive stars . The mass loss rates depend on a number of stellar parameters, including the effective temperature and luminosity. Massive stars are also often rapidly rotating, which affects their structure and evolution. In sufficiently rapidly rotating stars, both the effective temperature and radius vary significantly as a function of latitude, and hence mass loss rates can vary appreciably between the poles and the equator. In this work, we discuss the addition of mass loss to a 2D stellar evolution code (ROTORC) and compare evolution sequences with and without mass loss. Preliminary results indicate that a full 2D calculation of mass loss using the local effective temperature and luminosity can significantly affect the distribution of mass loss in rotating main sequence stars. More mass is lost from the pole than predicted by 1D models, while less mass is lost at the equator. This change in the distribution of mass loss will affect the angular momentum loss, the surface temperature and luminosity, and even the interior structure of the star. After a single mass loss event, these effects are small, but can be expected to accumulate over the course of the main sequence evolution.
Magnetic gating of a 2D topological insulator
NASA Astrophysics Data System (ADS)
Dang, Xiaoqian; Burton, J. D.; Tsymbal, Evgeny Y.
2016-09-01
Deterministic control of transport properties through manipulation of spin states is one of the paradigms of spintronics. Topological insulators offer a new playground for exploring interesting spin-dependent phenomena. Here, we consider a ferromagnetic ‘gate’ representing a magnetic adatom coupled to the topologically protected edge state of a two-dimensional (2D) topological insulator to modulate the electron transmission of the edge state. Due to the locked spin and wave vector of the transport electrons the transmission across the magnetic gate depends on the mutual orientation of the adatom magnetic moment and the current. If the Fermi energy matches an exchange-split bound state of the adatom, the electron transmission can be blocked due to the full back scattering of the incident wave. This antiresonance behavior is controlled by the adatom magnetic moment orientation so that the transmission of the edge state can be changed from 1 to 0. Expanding this consideration to a ferromagnetic gate representing a 1D chain of atoms shows a possibility to control the spin-dependent current of a strip of a 2D topological insulator by magnetization orientation of the ferromagnetic gate.
Dynamic sector processing using 2D assignment for rotating radars
NASA Astrophysics Data System (ADS)
Habtemariam, Biruk K.; Tharmarasa, R.; Pelletier, M.; Kirubarajan, T.
2011-09-01
Electronically scanned array radars as well as mechanically steered rotating antennas return measurements with different time stamps during the same scan while sweeping form one region to another. Data association algorithms process the measurements at the end of the scan in order to satisfy the common one measurement per track assumption. Data processing at the end of a full scan resulted in delayed target state update. This issue becomes more apparent while tracking fast moving targets with low scan rate sensors. In this paper, we present new dynamic sector processing algorithm using 2D assignment for continuously scanning radars. A complete scan can be divided into sectors, which could be as small as a single detection, depending on the scanning rate and sparsity of targets. Data association followed by filtering and target state update is done dynamically while sweeping from one end to another. Along with the benefit of immediate track updates, continuous tracking results in challenges such as multiple targets spanning multiple sectors and targets crossing consecutive sectors. Also, associations performed in the current sector may require changes in association done in previous sectors. Such difficulties are resolved by the proposed 2D assignment algorithm that implements an incremental Hungarian assignment technique. The algorithm offers flexibility with respect to assignment variables for fusing of measurements received in consecutive sectors. Furthermore the proposed technique can be extended to multiframe assignment for jointly processing data from multiple scanning radars. Experimental results based on rotating radars are presented.
Marginal fluctuations as instantons on M2/D2-branes
NASA Astrophysics Data System (ADS)
Naghdi, M.
2014-03-01
We introduce some (anti-) M/D-branes through turning on the corresponding field strengths of the 11- and 10-dimensional supergravity theories over spaces, where we use and for the internal spaces. Indeed, when we add M2/D2-branes on the same directions with the near horizon branes of the Aharony-Bergman-Jafferis-Maldacena model, all symmetries and supersymmetries are preserved trivially. In this case, we obtain a localized object just in the horizon. This normalizable bulk massless scalar mode is a singlet of and , and it agrees with a marginal boundary operator of the conformal dimension of . However, after performing a special conformal transformation, we see that the solution is localized in the Euclideanized space and is attributable to the included anti-M2/D2-branes, which are also necessary to ensure that there is no back-reaction. The resultant theory now breaks all supersymmetries to , while the other symmetries are so preserved. The dual boundary operator is then set up from the skew-whiffing of the representations and for the supercharges and scalars, respectively, while the fermions remain fixed in of the original theory. Besides, we also address another alternate bulk to boundary matching procedure through turning on one of the gauge fields of the full gauge group along the same lines with a similar situation to the one faced in the AdS/CFT correspondence. The latter approach covers the difficulty already faced with in the bulk-boundary matching procedure for as well.
2D Seismic Reflection Data across Central Illinois
Smith, Valerie; Leetaru, Hannes
2014-09-30
In a continuing collaboration with the Midwest Geologic Sequestration Consortium (MGSC) on the Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins project, Schlumberger Carbon Services and WesternGeco acquired two-dimensional (2D) seismic data in the Illinois Basin. This work included the design, acquisition and processing of approximately 125 miles of (2D) seismic reflection surveys running west to east in the central Illinois Basin. Schlumberger Carbon Services and WesternGeco oversaw the management of the field operations (including a pre-shoot planning, mobilization, acquisition and de-mobilization of the field personnel and equipment), procurement of the necessary permits to conduct the survey, post-shoot closure, processing of the raw data, and provided expert consultation as needed in the interpretation of the delivered product. Three 2D seismic lines were acquired across central Illinois during November and December 2010 and January 2011. Traversing the Illinois Basin, this 2D seismic survey was designed to image the stratigraphy of the Cambro-Ordovician sections and also to discern the basement topography. Prior to this survey, there were no regionally extensive 2D seismic data spanning this section of the Illinois Basin. Between the NW side of Morgan County and northwestern border of Douglas County, these seismic lines ran through very rural portions of the state. Starting in Morgan County, Line 101 was the longest at 93 miles in length and ended NE of Decatur, Illinois. Line 501 ran W-E from the Illinois Basin – Decatur Project (IBDP) site to northwestern Douglas County and was 25 miles in length. Line 601 was the shortest and ran N-S past the IBDP site and connected lines 101 and 501. All three lines are correlated to well logs at the IBDP site. Originally processed in 2011, the 2D seismic profiles exhibited a degradation of signal quality below ~400 millisecond (ms) which made
CYP2D6 phenotype-genotype relationships in African-Americans and Caucasians in Los Angeles.
Leathart, J B; London, S J; Steward, A; Adams, J D; Idle, J R; Daly, A K
1998-12-01
CYP2D6 genotyping (CYP2D6*3, CYP2D6*4, CYP2D6*5, CYP2D6*13, CYP2D6*16 alleles and gene duplications) was previously performed on 1053 Caucasian and African-American lung cancer cases and control individuals and no significant difference in allele frequencies between cases and control individuals detected. We have carried out additional genotyping (CYP2D6*6, CYP2D6*7, CYP2D6*8, CYP2D6*9, CYP2D6*10, CYP2D6*17 alleles) and debrisoquine phenotyping on subgroups from this study to assess phenotype-genotype relationships. African-Americans showed significant differences from Caucasians with respect to frequency of defective CYP2D6 alleles, particularly CYP2D6*4 and CYP2D6*5. The CYP2D6*17 allele occurred at a frequency of 0.26 among 87 African-Americans and appeared to explain higher average metabolic ratios among African-Americans compared with Caucasians. CYP2D6*6, CYP2D6*8, CYP2D6*9 and CYP2D6*10 were rare in both ethnic groups but explained approximately 40% of higher than expected metabolic ratios among extensive metabolizers. Among individuals phenotyped with debrisoquine, 32 out of 359 were in the poor metabolizer range with 24 of these (75%) also showing two defective CYP2D6 alleles. Additional single strand conformational polymorphism analysis screening of samples showing large phenotype-genotype discrepancies resulted in the detection of three novel polymorphisms. If subjects taking potentially interfering drugs were excluded, this additional screening enabled the positive identification of 88% of phenotypic poor metabolizers by genotyping. This sensitivity was comparable with that of phenotyping, which identified 90% of those with two defective alleles as poor metabolizers. PMID:9918137
A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures
Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.
1998-12-14
We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.
Swart, Marelize; Dandara, Collet
2014-01-01
Introduction: Pharmacogenomics research has concentrated on variation in genes coding for drug metabolizing enzymes, transporters and nuclear receptors. However, variation affecting microRNA could also play a role in drug response. This project set out to investigate potential microRNA target sites in 11 genes and the extent of variation in the 3′-UTR of six selected genes; CYP1A2, CYP2B6, CYP2D6, CYP3A4, NR1I2, and UGT2B7. Methods: Fifteen microRNA target prediction algorithms were used to identify microRNAs predicted to regulate 11 genes. The 3′-UTR of the 6 genes which topped the list of potential microRNA targets was sequenced in 30 black South Africans. In addition, genetic variants within these genes were investigated for interference with mRNA-microRNA interactions. Potential effects of observed variants were determined using in silico prediction tools. Results: The 11 genes coding for DMEs, transporters and nuclear receptors were predicted to be targets of microRNAs with CYP2B6, NR1I2 (PXR), CYP3A4, and CYP1A2, interacting with the most microRNAs. The majority of identified genetic variants were predicted to interfere with microRNA regulation. For example, the variant, rs1054190C in NR1I2 was predicted to result in the presence of a binding site for the microRNA miR-1250-5p, while the variant rs1054191G was predicted to result in the absence of a recognition site for miR-371b-3p, miR-4258 and miR-4707-3p. Fifteen of the seventeen, novel variants occurred within microRNA target sequences. Conclusion: The 3′-UTR harbors variation that is likely to influence regulation of specific genes by microRNA. In silico prediction followed by functional validation could aid in decoding the contribution of variation in the 3′-UTR, to some unexplained heritability that affects drug response. Understanding the specific role of each microRNA may lead to identification of markers for targeted therapy and therefore improve personalized drug treatment. PMID:24926315
Janke, Svenja M; Auerbach, Daniel J; Wodtke, Alec M; Kandratsenka, Alexander
2015-09-28
We have constructed a potential energy surface (PES) for H-atoms interacting with fcc Au(111) based on fitting the analytic form of the energy from Effective Medium Theory (EMT) to ab initio energy values calculated with density functional theory. The fit used input from configurations of the H-Au system with Au atoms at their lattice positions as well as configurations with the Au atoms displaced from their lattice positions. It reproduces the energy, in full dimension, not only for the configurations used as input but also for a large number of additional configurations derived from ab initio molecular dynamics (AIMD) trajectories at finite temperature. Adiabatic molecular dynamics simulations on this PES reproduce the energy loss behavior of AIMD. EMT also provides expressions for the embedding electron density, which enabled us to develop a self-consistent approach to simulate nonadiabatic electron-hole pair excitation and their effect on the motion of the incident H-atoms. For H atoms with an energy of 2.7 eV colliding with Au, electron-hole pair excitation is by far the most important energy loss pathway, giving an average energy loss ≈3 times that of the adiabatic case. This increased energy loss enhances the probability of the H-atom remaining on or in the Au slab by a factor of 2. The most likely outcome for H-atoms that are not scattered also depends prodigiously on the energy transfer mechanism; for the nonadiabatic case, more than 50% of the H-atoms which do not scatter are adsorbed on the surface, while for the adiabatic case more than 50% pass entirely through the 4 layer simulation slab. PMID:26429033
Janke, Svenja M.; Auerbach, Daniel J.; Kandratsenka, Alexander; Wodtke, Alec M.
2015-09-28
We have constructed a potential energy surface (PES) for H-atoms interacting with fcc Au(111) based on fitting the analytic form of the energy from Effective Medium Theory (EMT) to ab initio energy values calculated with density functional theory. The fit used input from configurations of the H–Au system with Au atoms at their lattice positions as well as configurations with the Au atoms displaced from their lattice positions. It reproduces the energy, in full dimension, not only for the configurations used as input but also for a large number of additional configurations derived from ab initio molecular dynamics (AIMD) trajectories at finite temperature. Adiabatic molecular dynamics simulations on this PES reproduce the energy loss behavior of AIMD. EMT also provides expressions for the embedding electron density, which enabled us to develop a self-consistent approach to simulate nonadiabatic electron-hole pair excitation and their effect on the motion of the incident H-atoms. For H atoms with an energy of 2.7 eV colliding with Au, electron-hole pair excitation is by far the most important energy loss pathway, giving an average energy loss ≈3 times that of the adiabatic case. This increased energy loss enhances the probability of the H-atom remaining on or in the Au slab by a factor of 2. The most likely outcome for H-atoms that are not scattered also depends prodigiously on the energy transfer mechanism; for the nonadiabatic case, more than 50% of the H-atoms which do not scatter are adsorbed on the surface, while for the adiabatic case more than 50% pass entirely through the 4 layer simulation slab.
Wang, Bin; Lou, Zhichao; Zhang, Haiqian; Xu, Bingqian
2016-03-21
The electrostatic surface potential (ESP) of prion oligomers has critical influences on the aggregating processes of the prion molecules. The atomic force microscopy (AFM) and structural simulation were combined to investigate the molecular basis of the full-length human recombinant prion oligomerization on mica surfaces. The high resolution non-intrusive AFM images showed that the prion oligomers formed different patterns on mica surfaces at different buffer pH values. The basic binding units for the large oligomers were determined to be prion momoners (Ms), dimers (Ds), and trimers (Ts). The forming of the D and T units happened through the binding of hydrophobic β-sheets of the M units. In contrast, the α-helices of these M, D, and T units were the binding areas for the formation of large oligomers. At pH 4.5, the binding units M, D, and T showed clear polarized ESP distributions on the surface domains, while at pH 7.0, they showed more evenly distributed ESPs. Based on the conformations of oligomers observed from AFM images, the D and T units were more abundantly on mica surface at pH 4.5 because the ESP re-distribution of M units helped to stabilize these larger oligomers. The amino acid side chains involved in the binding interfaces were stabilized by hydrogen bonds and electrostatic interactions. The detailed analysis of the charged side chains at pH 4.5 indicated that the polarized ESPs induced the aggregations among M, D, and T to form larger oligomers. Therefore, the hydrogen bonds and electrostatic interactions worked together to form the stabilized prion oligomers. PMID:27004887
NASA Astrophysics Data System (ADS)
Majumder, Moumita; Hegger, Samuel E.; Dawes, Richard; Manzhos, Sergei; Wang, Xiao-Gang; Tucker, Carrington, Jr.; Li, Jun; Guo, Hua
2015-07-01
A data-set of nearly 100,000 symmetry unique multi-configurational ab initio points for methane were generated at the (AE)-MRCI-F12(Q)/CVQZ-F12 level, including energies beyond 30,000 cm-1 above the minimum and fit into potential energy surfaces (PESs) by several permutation invariant schemes. A multi-expansion interpolative fit combining interpolating moving least squares (IMLS) fitting and permutation invariant polynomials (PIP) was able to fit the complete data-set to a root-mean-square deviation of 1.0 cm-1 and thus was used to benchmark the other fitting methods. The other fitting methods include a single PIP expansion and two neural network (NN) based approaches, one of which combines NN with PIP. Full-dimensional variational vibrational calculations using a contracted-iterative method (and a Lanczos eigensolver) were used to assess the spectroscopic accuracy of the electronic structure method. The results show that the NN-based fitting approaches are able to fit the data-set remarkably accurately with the PIP-NN method producing levels in remarkably close agreement with the PIP-IMLS benchmark. The (AE)-MRCI-F12(Q)/CVQZ-F12 electronic structure method produces vibrational levels of near spectroscopic accuracy and a superb equilibrium geometry. The levels are systematically slightly too high, beginning at ∼ 1-2 cm-1 above the fundamentals and becoming correspondingly higher for overtones. The PES is therefore suitable for small ab initio or empirical corrections and since it is based on a multi-reference method, can be extended to represent dynamically relevant dissociation channels.
NASA Astrophysics Data System (ADS)
Wang, Bin; Lou, Zhichao; Zhang, Haiqian; Xu, Bingqian
2016-03-01
The electrostatic surface potential (ESP) of prion oligomers has critical influences on the aggregating processes of the prion molecules. The atomic force microscopy (AFM) and structural simulation were combined to investigate the molecular basis of the full-length human recombinant prion oligomerization on mica surfaces. The high resolution non-intrusive AFM images showed that the prion oligomers formed different patterns on mica surfaces at different buffer pH values. The basic binding units for the large oligomers were determined to be prion momoners (Ms), dimers (Ds), and trimers (Ts). The forming of the D and T units happened through the binding of hydrophobic β-sheets of the M units. In contrast, the α-helices of these M, D, and T units were the binding areas for the formation of large oligomers. At pH 4.5, the binding units M, D, and T showed clear polarized ESP distributions on the surface domains, while at pH 7.0, they showed more evenly distributed ESPs. Based on the conformations of oligomers observed from AFM images, the D and T units were more abundantly on mica surface at pH 4.5 because the ESP re-distribution of M units helped to stabilize these larger oligomers. The amino acid side chains involved in the binding interfaces were stabilized by hydrogen bonds and electrostatic interactions. The detailed analysis of the charged side chains at pH 4.5 indicated that the polarized ESPs induced the aggregations among M, D, and T to form larger oligomers. Therefore, the hydrogen bonds and electrostatic interactions worked together to form the stabilized prion oligomers.
Correlated Electron Phenomena in 2D Materials
NASA Astrophysics Data System (ADS)
Lambert, Joseph G.
In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in
MDMA, methamphetamine, and CYP2D6 pharmacogenetics: what is clinically relevant?
de la Torre, Rafael; Yubero-Lahoz, Samanta; Pardo-Lozano, Ricardo; Farré, Magí
2012-01-01
In vitro human studies show that the metabolism of most amphetamine-like psychostimulants is regulated by the polymorphic cytochrome P450 isozyme CYP2D6. Two compounds, methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA), were selected as archetypes to discuss the translation and clinical significance of in vitro to in vivo findings. Both compounds were chosen based on their differential interaction with CYP2D6 and their high abuse prevalence in society. Methamphetamine behaves as both a weak substrate and competitive inhibitor of CYP2D6, while MDMA acts as a high affinity substrate and potent mechanism-based inhibitor (MBI) of the enzyme. The MBI behavior of MDMA on CYP2D6 implies that subjects, irrespective of their genotype/phenotype, are phenocopied to the poor metabolizer (PM) phenotype. The fraction of metabolic clearance regulated by CYP2D6 for both drugs is substantially lower than expected from in vitro studies. Other isoenzymes of cytochrome P450 and a relevant contribution of renal excretion play a part in their clearance. These facts tune down the potential contribution of CYP2D6 polymorphism in the clinical outcomes of both substances. Globally, the clinical relevance of CYP2D6 polymorphism is lower than that predicted by in vitro studies. PMID:23162568
CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping
Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea
2016-01-01
TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact
CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.
Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea
2015-01-01
TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer
Electron Energy Levels in the 1D-2D Transition
NASA Astrophysics Data System (ADS)
Pepper, Michael; Sanjeev, Kumar; Thomas, Kalarikad; Creeth, Graham; English, David; Ritchie, David; Griffiths, Jonathan; Farrer, Ian; Jones, Geraint
Using GaAs-AlGaAs heterostructures we have investigated the behaviour of electron energy levels with relaxation of the potential confining a 2D electron gas into a 1D configuration. In the ballistic regime of transport, when the conductance shows quantized plateaux, different types of behaviour are found according to the spins of interacting levels, whether a magnetic field is applied and lifting of the momentum degeneracy with a source-drain voltage. We have observed both crossing and anti-crossing of levels and have investigated the manner in which they can be mutually converted. In the presence of a magnetic field levels can cross and lock together as the confinement is altered in a way which is characteristic of parallel channels. The overall behaviour is discussed in terms of electron interactions and the wavefunction flexibility allowed by the increasing two dimensionality of the electron distribution as the confinement is weakened. Work supported by UK EPSRC.
Novel antenna coupled 2D plasmonic terahertz detection.
Allen, Jim; Dyer, Greg; Reno, John Louis; Shaner, Eric Arthur
2010-03-01
Resonant plasmonic detectors are potentially important for terahertz (THz) spectroscopic imaging. We have fabricated and characterized antenna coupled detectors that integrate a broad-band antenna, which improves coupling of THz radiation. The vertex of the antenna contains the tuning gates and the bolometric barrier gate. Incident THz radiation may excite 2D plasmons with wave-vectors defined by either a periodic grating gate or a plasmonic cavity determined by ohmic contacts and gate terminals. The latter approach of exciting plasmons in a cavity defined by a short micron-scale channel appears most promising. With this short-channel geometry, we have observed multiple harmonics of THz plasmons. At 20 K with detector bias optimized we report responsivity on resonance of 2.5 kV/W and an NEP of 5 x 10{sup -10} W/Hz{sup 1/2}.
Energy Dissipation Mechanisms in 2D Meteor Impacts
NASA Astrophysics Data System (ADS)
Lane, Andrew; Daniels, Karen E.; Utter, Brian; Behringer, R. P.
2003-11-01
The morphology of meteor craters has historically been studied via static analysis, after the fact, of what are highly dynamic impact events. As such, there are long-standing questions about the means through which a meteor comes to rest and forms a crater. Using high speed video analysis on a 2D lab-scale system, we characterize the dynamics of a "meteor" impacting on a granular bed. In this case, the particles are made of a photoelastic material, so that it is possible to measure the instantaneous elastic energy stored in the bed. To understand the energy dissipation mechanisms involved in slowing the meteor, we track the kinetic, potential, and elastic energies associated with individual grains. Two initial and tentative findings from this work are: 1) Damped oscillations occur as the energy is dissipated within the granular material; and 2) The angle of impact strongly influences the dynamics and final state.
Optimum design of 2D micro-angle sensor
NASA Astrophysics Data System (ADS)
Liu, Qinggang; Zhao, Heng; Lou, Xiaona; Jiang, Ningchuan; Hu, Xiaotang
2008-12-01
To improve dynamic measurement performance and resolution, an optimum design on two-dimensional (2D) micro-angle sensor based on optical internal-reflection method via critical-angle refractive index measurement is presented in the paper. The noise signals were filtered effectively by modulating laser-driven and demodulating in signal proceeding. The system's accuracy and response speed are improved further by using 16-bit high-precision AD converter and MSP430 CPU which present with a high-speed performance during signals processes such as fitting angle-voltage curve through specific arithmetic, full range and zero point calibration, filter, scaling transformation etc. The experiment results indicated that, dynamic signal measurement range can be up to +/-600arcsec, the measurement resolution can be better than 0.1arcsec, and the repeatability could be better than +/-0.5arcsec.
Symmetry detection of auxetic behaviour in 2D frameworks
NASA Astrophysics Data System (ADS)
Mitschke, H.; Schröder-Turk, G. E.; Mecke, K.; Fowler, P. W.; Guest, S. D.
2013-06-01
A symmetry-extended Maxwell treatment of the net mobility of periodic bar-and-joint frameworks is used to derive a sufficient condition for auxetic behaviour of a 2D material. The type of auxetic behaviour that can be detected by symmetry has Poisson's ratio -1, with equal expansion/contraction in all directions, and is here termed equiauxetic. A framework may have a symmetry-detectable equiauxetic mechanism if it belongs to a plane group that includes rotational axes of order n = 6, 4, or 3. If the reducible representation for the net mobility contains mechanisms that preserve full rotational symmetry (A modes), these are equiauxetic. In addition, for n = 6, mechanisms that halve rotational symmetry (B modes) are also equiauxetic.
A 2D channel-clogging biofilm model.
Winstanley, H F; Chapwanya, M; Fowler, A C; O'Brien, S B G
2015-09-01
We present a model of biofilm growth in a long channel where the biomass is assumed to have the rheology of a viscous polymer solution. We examine the competition between growth and erosion-like surface detachment due to the flow. A particular focus of our investigation is the effect of the biofilm growth on the fluid flow in the pores, and the issue of whether biomass can grow sufficiently to shut off fluid flow through the pores, thus clogging the pore space. Net biofilm growth is coupled along the pore length via flow rate and nutrient transport in the pore flow. Our 2D model extends existing results on stability of 1D steady state biofilm thicknesses to show that, in the case of flows driven by a fixed pressure drop, full clogging of the pore can indeed happen in certain cases dependent on the functional form of the detachment term. PMID:25240390
VizieR Online Data Catalog: c2d Spitzer final data release (DR4) (Evans+, 2003)
NASA Astrophysics Data System (ADS)
Evans, N. J., II; Allen, L. E.; Blake, G. A.; Boogert, A. C. A.; Bourke, T.; Harvey, P. M.; Kessler, J. E.; Koerner, D. W.; Lee, C. W.; Mundy, L. G.; Myers, P. C.; Padgett, D. L.; Pontoppidan, K.; Sargent, A. I.; Stapelfeldt, K. R.; van Dishoeck, E. F.; Young, C. H.; Young, K. E.
2014-05-01
This is the final delivery (DR4, Fall 2006 and Fall 2007) of the Spitzer Space Telescope "From Molecular Cores to Planet-Forming Disks" (c2d) Legacy Project. The data are also available as Enhanced Products from the Spitzer Science Center (SSC). c2d has delivered 867 catalogs. IRSA has merged these delivered catalogs into four groups - Clouds, Off-Cloud, Cores, Stars - and serves them through the general catalog search engine Gator. Many of the delivered catalogs, images and spectra are accessible through IRSA's general search service, Atlas. As a service to its users, the CDS has downloaded a dataset containing most of the c2d data (but not all columns) from the IRSA archive. The individual catalogs are listed below: C2D Fall '07 Full CLOUDS Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 High Reliability (HREL) CLOUDS Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 candidate Young Stellar Objects (YSO) CLOUDS Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 Full OFF-CLOUD Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 candidate Young Stellar Objects (YSO) OFF-CLOUD Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 Full CORES Catalog C2D Fall '07 candidate Young Stellar Objects (YSO) CORES Catalog C2D Fall '07 Full STARS Catalog C2D Fall '07 candidate Young Stellar Objects (YSO) STARS Catalog These tables have been merged into a single table at CDS. All three SIRTF instruments (Infrared Array Camera [IRAC], Multiband Imaging Photometer for SIRTF [MIPS], and Infrared Spectrograph [IRS]) were used to observe sources that span the evolutionary sequence from molecular cores to protoplanetary disks, encompassing a wide range of cloud masses, stellar masses, and star-forming environments. (1 data file).
NASA Astrophysics Data System (ADS)
Gong, H. R.; Ray, A. K.
2006-06-01
Full-potential linearized-augmented-plane-wave calculations indicate that the antiferromagnetic state including spin-orbit coupling effect is the ground state of bulk δ-Pu with a lattice constant of 8.66 a.u. and a bulk modulus of 32.8 GPa. It is found that spin-polarization and spin-orbit coupling effects play competing roles in the localization to delocalization behavior of 5f electrons. The optimized lattice constants of δ-Pu bulk are used to calculate the electronic structure properties of δ-Pu(1 1 1) films up to seven layers at six theoretical levels, namely non-spin-polarized-no-spin-orbit-coupling (NSP-NSO), non-spin-polarized-spin-orbit-coupling (NSP-SO), spin-polarized-no-spin-orbit-coupling (SP-NSO), spin-polarized-spin-orbit-coupling (SP-SO), antiferromagnetic-no-spin-orbit-coupling (AFM-NSO), and antiferromagnetic-spin-orbit-coupling (AFM-SO). For the δ-Pu(1 1 1) films also, AFM-SO is found to be the ground state. For the films, surface energy rapidly converges and the semi-infinite surface energy is predicted to be 1.16 J/m 2. On the other hand, the magnetic moments show an oscillating behavior, gradually approaching the bulk value of zero with increase in the number of layers. It is also predicted that the work function of δ-Pu(1 1 1) films at the AFM-SO ground state is approximately 3.41 eV, and the work function shows some oscillations when the number of layers is less than five, while it becomes relatively stable when the number of layers is greater than five. This suggests that a 3-layer film might be sufficient for computations of, for example, adsorption energies while a 5-layer film may be necessary for precise computations of, for example, adsorbate-induced work function shifts. The calculated results are compared with other experimental and theoretical results in the literature and the agreements between them are excellent, given the complexity of the physical systems and different computational formalisms.
Unusual dimensionality effects and surface charge density in 2D Mg(OH)2
NASA Astrophysics Data System (ADS)
Suslu, Aslihan; Wu, Kedi; Sahin, Hasan; Chen, Bin; Yang, Sijie; Cai, Hui; Aoki, Toshihiro; Horzum, Seyda; Kang, Jun; Peeters, Francois M.; Tongay, Sefaattin
2016-02-01
We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)2 have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)2 is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)2 sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)2 sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)2, naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)2, but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics.
Unusual dimensionality effects and surface charge density in 2D Mg(OH)2
Suslu, Aslihan; Wu, Kedi; Sahin, Hasan; Chen, Bin; Yang, Sijie; Cai, Hui; Aoki, Toshihiro; Horzum, Seyda; Kang, Jun; Peeters, Francois M.; Tongay, Sefaattin
2016-01-01
We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)2 have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)2 is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)2 sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)2 sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)2, naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)2, but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics. PMID:26846617
Distribution of CYP2D6 alleles and phenotypes in the Brazilian population.
Friedrich, Deise C; Genro, Júlia P; Sortica, Vinicius A; Suarez-Kurtz, Guilherme; de Moraes, Maria Elizabete; Pena, Sergio D J; dos Santos, Andrea K Ribeiro; Romano-Silva, Marco A; Hutz, Mara H
2014-01-01
The CYP2D6 enzyme is one of the most important members of the cytochrome P450 superfamily. This enzyme metabolizes approximately 25% of currently prescribed medications. The CYP2D6 gene presents a high allele heterogeneity that determines great inter-individual variation. The aim of this study was to evaluate the variability of CYP2D6 alleles, genotypes and predicted phenotypes in Brazilians. Eleven single nucleotide polymorphisms and CYP2D6 duplications/multiplications were genotyped by TaqMan assays in 1020 individuals from North, Northeast, South, and Southeast Brazil. Eighteen CYP2D6 alleles were identified in the Brazilian population. The CYP2D6*1 and CYP2D6*2 alleles were the most frequent and widely distributed in different geographical regions of Brazil. The highest number of CYPD6 alleles observed was six and the frequency of individuals with more than two copies ranged from 6.3% (in Southern Brazil) to 10.2% (Northern Brazil). The analysis of molecular variance showed that CYP2D6 is homogeneously distributed across different Brazilian regions and most of the differences can be attributed to inter-individual differences. The most frequent predicted metabolic status was EM (83.5%). Overall 2.5% and 3.7% of Brazilians were PMs and UMs respectively. Genomic ancestry proportions differ only in the prevalence of intermediate metabolizers. The IM predicted phenotype is associated with a higher proportion of African ancestry and a lower proportion of European ancestry in Brazilians. PM and UM classes did not vary among regions and/or ancestry proportions therefore unique CYP2D6 testing guidelines for Brazilians are possible and could potentially avoid ineffective or adverse events outcomes due to drug prescriptions. PMID:25329392
Distribution of CYP2D6 Alleles and Phenotypes in the Brazilian Population
Sortica, Vinicius A.; Suarez-Kurtz, Guilherme; de Moraes, Maria Elizabete; Pena, Sergio D. J.; dos Santos, Ândrea K. Ribeiro; Romano-Silva, Marco A.; Hutz, Mara H.
2014-01-01
Abstract The CYP2D6 enzyme is one of the most important members of the cytochrome P450 superfamily. This enzyme metabolizes approximately 25% of currently prescribed medications. The CYP2D6 gene presents a high allele heterogeneity that determines great inter-individual variation. The aim of this study was to evaluate the variability of CYP2D6 alleles, genotypes and predicted phenotypes in Brazilians. Eleven single nucleotide polymorphisms and CYP2D6 duplications/multiplications were genotyped by TaqMan assays in 1020 individuals from North, Northeast, South, and Southeast Brazil. Eighteen CYP2D6 alleles were identified in the Brazilian population. The CYP2D6*1 and CYP2D6*2 alleles were the most frequent and widely distributed in different geographical regions of Brazil. The highest number of CYPD6 alleles observed was six and the frequency of individuals with more than two copies ranged from 6.3% (in Southern Brazil) to 10.2% (Northern Brazil). The analysis of molecular variance showed that CYP2D6 is homogeneously distributed across different Brazilian regions and most of the differences can be attributed to inter-individual differences. The most frequent predicted metabolic status was EM (83.5%). Overall 2.5% and 3.7% of Brazilians were PMs and UMs respectively. Genomic ancestry proportions differ only in the prevalence of intermediate metabolizers. The IM predicted phenotype is associated with a higher proportion of African ancestry and a lower proportion of European ancestry in Brazilians. PM and UM classes did not vary among regions and/or ancestry proportions therefore unique CYP2D6 testing guidelines for Brazilians are possible and could potentially avoid ineffective or adverse events outcomes due to drug prescriptions. PMID:25329392
Unusual dimensionality effects and surface charge density in 2D Mg(OH)2.
Suslu, Aslihan; Wu, Kedi; Sahin, Hasan; Chen, Bin; Yang, Sijie; Cai, Hui; Aoki, Toshihiro; Horzum, Seyda; Kang, Jun; Peeters, Francois M; Tongay, Sefaattin
2016-01-01
We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)2 have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)2 is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)2 sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)2 sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)2, naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)2, but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics. PMID:26846617
2D barcodes: a novel and simple method for denture identification.
Sudheendra, Udyavara S; Sowmya, Kasetty; Vidhi, Mathur; Shreenivas, Kallianpur; Prathamesh, Joshi
2013-01-01
Several methods of denture marking have been described in the literature. However, most of them are expensive, time-consuming, and do not permit the incorporation of large amounts of information. We propose a novel and simple method incorporating 2D codes which has several advantages over the existing methods. A 2D code was generated in the dental office and inserted into a maxillary denture. The code was then read using software downloaded into a mobile phone giving access to the website containing details about the patient. The denture was also subjected to durability tests, which did not hamper the efficacy of the 2D code. 2D coding for dentures is a simple, less expensive method with the potential of storing a large amount of information that can be accessed on-site by the forensic investigator, thus allowing quick identification of the denture wearer. PMID:22971078
Raman enhancement by graphene-Ga2O3 2D bilayer film
2014-01-01
2D β-Ga2O3 flakes on a continuous 2D graphene film were prepared by a one-step chemical vapor deposition on liquid gallium surface. The composite was characterized by optical microscopy, scanning electron microscopy, Raman spectroscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy (XPS). The experimental results indicate that Ga2O3 flakes grew on the surface of graphene film during the cooling process. In particular, tenfold enhancement of graphene Raman scattering signal was detected on Ga2O3 flakes, and XPS indicates the C-O bonding between graphene and Ga2O3. The mechanism of Raman enhancement was discussed. The 2D Ga2O3-2D graphene structure may possess potential applications. PMID:24472433
Few-layer III-VI and IV-VI 2D semiconductor transistors
NASA Astrophysics Data System (ADS)
Sucharitakul, Sukrit; Liu, Mei; Kumar, Rajesh; Sankar, Raman; Chou, Fang C.; Chen, Yit-Tsong; Gao, Xuan
Since the discovery of atomically thin graphene, a large variety of exfoliable 2D materials have been thoroughly explored for their exotic transport behavior and promises in technological breakthroughs. While most attention on 2D materials beyond graphene is focused on transition metal-dichalcogenides, relatively less attention is paid to layered III-VI and IV-VI semiconductors such as InSe, SnSe etc which bear stronger potential as 2D materials with high electron mobility or thermoelectric figure of merit. We will discuss our recent work on few-layer InSe 2D field effect transistors which exhibit carrier mobility approaching 1000 cm2/Vs and ON-OFF ratio exceeding 107 at room temperature. In addition, the fabrication and device performance of transistors made of mechanically exfoliated multilayer IV-VI semiconductor SnSe and SnSe2 will be discussed.
2-d Collapsed Polymers on a Cylinder
NASA Astrophysics Data System (ADS)
Hsu, Hsiao-Ping; Grassberger, Peter
2002-08-01
Partially confined collapsed polymers with attractive interactions are studied in two dimensions. They are described by self-avoiding random walks with nearest-neighbour attractions on the surface of an infinitely long cylinder. We employ the pruned-enriched-Rosenbluth method (PERM) to study this model with different cylinder circumference h, to understand the properties of collapsed polymers affected by confining geometries. The cases of free polymers and of polymers confined to finite volumes were discussed already in [Phys. Rev. E 65, 031807 (2002)] by Grassberger and Hsu. There, we had verified the existence of a surface term in the infinite volume free energy, and a T-dependent bulk chemical potential. Here we present further results on the surface tension and it's T-dependence. We also show that the chemical potential has, in the limit of very long chains, a minimum at a finite value of h.
Differential CYP 2D6 Metabolism Alters Primaquine Pharmacokinetics
Potter, Brittney M. J.; Xie, Lisa H.; Vuong, Chau; Zhang, Jing; Zhang, Ping; Duan, Dehui; Luong, Thu-Lan T.; Bandara Herath, H. M. T.; Dhammika Nanayakkara, N. P.; Tekwani, Babu L.; Walker, Larry A.; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.
2015-01-01
Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity. PMID:25645856
Haik, Josef; Nardini, Gil; Goldman, Noga; Galore-Haskel, Gilli; Harats, Moti; Zilinsky, Isaac; Weissman, Oren; Schachter, Jacob; Winkler, Eyal; Markel, Gal
2016-01-19
Immune suppression following major thermal injury directly impacts the recovery potential. Limited data from past reports indicate that natural killer cells might be suppressed due to a putative soluble factor that has remained elusive up to date. Here we comparatively study cohorts of patients with Major and Non-Major Burns as well as healthy donors. MICB and ULBP1 are stress ligands of NKG2D that can be induced by heat stress. Remarkably, serum concentration levels of MICB and ULBP1 are increased by 3-fold and 20-fold, respectively, already within 24h post major thermal injury, and are maintained high for 28 days. In contrast, milder thermal injuries do not similarly enhance the serum levels of MICB and ULBP1. This kinetics coincides with a significant downregulation of NKG2D expression among peripheral blood NK cells. Downregulation of NKG2D by high concentration of soluble MICB occurs in cancer patients and during normal pregnancy due to over production by cancer cells or extravillous trophoblasts, respectively, as an active immune-evasion mechanism. In burn patients this seems an incidental outcome of extensive thermal injury, leading to reduced NKG2D expression. Enhanced susceptibility of these patients to opportunistic viral infections, particularly herpes viruses, could be explained by the reduced NKG2D expression. Further studies are warranted for translation into innovative diagnostic or therapeutic technologies. PMID:26745675
Haik, Josef; Nardini, Gil; Goldman, Noga; Galore-Haskel, Gilli; Harats, Moti; Zilinsky, Isaac; Weissman, Oren; Schachter, Jacob; Winkler, Eyal; Markel, Gal
2016-01-01
Immune suppression following major thermal injury directly impacts the recovery potential. Limited data from past reports indicate that natural killer cells might be suppressed due to a putative soluble factor that has remained elusive up to date. Here we comparatively study cohorts of patients with Major and Non-Major Burns as well as healthy donors. MICB and ULBP1 are stress ligands of NKG2D that can be induced by heat stress. Remarkably, serum concentration levels of MICB and ULBP1 are increased by 3-fold and 20-fold, respectively, already within 24h post major thermal injury, and are maintained high for 28 days. In contrast, milder thermal injuries do not similarly enhance the serum levels of MICB and ULBP1. This kinetics coincides with a significant downregulation of NKG2D expression among peripheral blood NK cells. Downregulation of NKG2D by high concentration of soluble MICB occurs in cancer patients and during normal pregnancy due to over production by cancer cells or extravillous trophoblasts, respectively, as an active immune-evasion mechanism. In burn patients this seems an incidental outcome of extensive thermal injury, leading to reduced NKG2D expression. Enhanced susceptibility of these patients to opportunistic viral infections, particularly herpes viruses, could be explained by the reduced NKG2D expression. Further studies are warranted for translation into innovative diagnostic or therapeutic technologies. PMID:26745675
Installed Transonic 2D Nozzle Nacelle Boattail Drag Study
NASA Technical Reports Server (NTRS)
Malone, Michael B.; Peavey, Charles C.
1999-01-01
The Transonic Nozzle Boattail Drag Study was initiated in 1995 to develop an understanding of how external nozzle transonic aerodynamics effect airplane performance and how strongly those effects are dependent on nozzle configuration (2D vs. axisymmetric). MDC analyzed the axisymmetric nozzle. Boeing subcontracted Northrop-Grumman to analyze the 2D nozzle. AU participants analyzed the AGARD nozzle as a check-out and validation case. Once the codes were checked out and the gridding resolution necessary for modeling the separated flow in this region determined, the analysis moved to the installed wing/body/nacelle/diverter cases. The boat tail drag validation case was the AGARD B.4 rectangular nozzle. This test case offered both test data and previous CFD analyses for comparison. Results were obtained for test cases B.4.1 (M=0.6) and B.4.2 (M=0.938) and compared very well with the experimental data. Once the validation was complete a CFD grid was constructed for the full Ref. H configuration (wing/body/nacelle/diverter) using a combination of patched and overlapped (Chimera) grids. This was done to ensure that the grid topologies and density would be adequate for the full model. The use of overlapped grids allowed the same grids from the full configuration model to be used for the wing/body alone cases, thus eliminating the risk of grid differences affecting the determination of the installation effects. Once the full configuration model was run and deemed to be suitable the nacelle/diverter grids were removed and the wing/body analysis performed. Reference H wing/body results were completed for M=0.9 (a=0.0, 2.0, 4.0, 6.0 and 8.0), M=1.1 (a=4.0 and 6.0) and M=2.4 (a=0.0, 2.0, 4.4, 6.0 and 8.0). Comparisons of the M=0.9 and M=2.4 cases were made with available wind tunnel data and overall comparisons were good. The axi-inlet/2D nozzle nacelle was analyzed isolated. The isolated nacelle data coupled with the wing/body result enabled the interference effects of the
2D to 3D to 2D Dimensionality Crossovers in Thin BSCCO Films
NASA Astrophysics Data System (ADS)
Williams, Gary A.
2003-03-01
With increasing temperature the superfluid fraction in very thin BSCCO films undergoes a series of dimensionality crossovers. At low temperatures the strong anisotropy causes the thermal excitations to be 2D pancake-antipancake pairs in uncoupled layers. At higher temperatures where the c-axis correlation length becomes larger than a layer there is a crossover to 3D vortex loops. These are initially elliptical, but as the 3D Tc is approached they become more circular as the anisotropy scales away, as modeled by Shenoy and Chattopadhyay [1]. Close to Tc when the correlation length becomes comparable to the film thickness there is a further crossover to a 2D Kosterlitz-Thouless transition, with a drop of the superfluid fraction to zero at T_KT which can be of the order of 1 K below T_c. Good agreement with this model is found for experiments on thin BSCCO 2212 films [2]. 1. S. R. Shenoy and B. Chattopadhyay, Phys. Rev. B 51, 9129 (1995). 2. K. Osborn et al., cond-mat/0204417.
Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles
2013-01-01
2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists’ demands for qualitative analysis of confocal microscopy data. PMID:23584131
Cytochrome P450 CYP2D6 gene polymorphism and lung cancer susceptibility in Caucasians.
Legrand-Andréoletti, M; Stücker, I; Marez, D; Galais, P; Cosme, J; Sabbagh, N; Spire, C; Cenée, S; Lafitte, J J; Beaune, P; Broly, F
1998-02-01
Many studies have been performed in an attempt to establish a link between the polymorphism of the cytochrome P450 CYP2D6 gene and the incidence of lung cancer. Nevertheless, whether or not this genetic polymorphism has a role in the development of the disease remains unclear. Recently, new advances in our knowledge of the CYP2D6 gene and its locus (CYP2D) have been achieved. In particular, CYP2D6 was found to be highly polymorphic and multiple novel mutations and allelic variants of the gene have been identified. In addition, a number of CYP2D rearrangements, including those with amplification of the gene, have been demonstrated. Taking this new information into account, we have reconsidered the potential influence of CYP2D6 polymorphism in lung cancer susceptibility by performing a comparative analysis of the overall mutational spectrum of CYP2D6 and of the rearrangements of CYP2D in 249 patients with lung cancer and in 265 control individuals matched on age, sex, hospital and residence area. For this purpose, a strategy based on SSCP analysis of the entire coding sequence of CYP2D6 and on RFLP analysis of the gene locus was carried out in DNA samples from each individual. Forty mutations occurring in various combinations on 42 alleles of the gene and 82 different genotypes were identified. No significant difference in the distribution of the mutations, alleles or genotypes was observed between the two groups, except a particular genotype (CYP2D6*1A/*2), which was more common in the sub-group of moderate smokers (< 30 pack-years) suffering from small cell carcinoma (Odds Ratio (OR) 3.6, 95% CI 1.1-11.9). When the phenotype was predicted according to genotype, only a trend toward a higher frequency of ultrarapid metabolizers in patients was obtained. In spite of a complete analysis of the CYP2D6 gene and its locus, this case-control study provides elements against an influence of the CYP2D6 polymorphism on lung cancer susceptibility. PMID:9511176
Estimating 2-D vector velocities using multidimensional spectrum analysis.
Oddershede, Niels; Løvstakken, Lasse; Torp, Hans; Jensen, Jørgen Arendt
2008-08-01
Wilson (1991) presented an ultrasonic wideband estimator for axial blood flow velocity estimation through the use of the 2-D Fourier transform. It was shown how a single velocity component was concentrated along a line in the 2-D Fourier space, where the slope was given by the axial velocity. Later, it was shown that this approach could also be used for finding the lateral velocity component by also including a lateral sampling. A single velocity component would then be concentrated along a plane in the 3-D Fourier space, tilted according to the 2 velocity components. This paper presents 2 new velocity estimators for finding both the axial and lateral velocity components. The estimators essentially search for the plane in the 3- D Fourier space, where the integrated power spectrum is largest. The first uses the 3-D Fourier transform to find the power spectrum, while the second uses a minimum variance approach. Based on this plane, the axial and lateral velocity components are estimated. Several phantom measurements, for flow-to-depth angles of 60, 75, and 90 degrees, were performed. Multiple parallel lines were beamformed simultaneously, and 2 different receive apodization schemes were tried. The 2 estimators were then applied to the data. The axial velocity component was estimated with an average standard deviation below 2.8% of the peak velocity, while the average standard deviation of the lateral velocity estimates was between 2.0% and 16.4%. The 2 estimators were also tested on in vivo data from a transverse scan of the common carotid artery, showing the potential of the vector velocity estimation method under in vivo conditions. PMID:18986918
2D Quantum Transport Modeling in Nanoscale MOSFETs
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan
2001-01-01
With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density- gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Quantum simulations are focused on MIT 25, 50 and 90 nm "well- tempered" MOSFETs and compared to classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are quantitatively consistent with I D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and sub-threshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.
Differential Cytochrome P450 2D Metabolism Alters Tafenoquine Pharmacokinetics
Vuong, Chau; Xie, Lisa H.; Potter, Brittney M. J.; Zhang, Jing; Zhang, Ping; Duan, Dehui; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Nanayakkara, N. P. Dhammika; Tekwani, Babu L.; Walker, Larry A.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.; Smith, Bryan
2015-01-01
Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations. PMID:25870069
A Geometric Boolean Library for 2D Objects
2006-01-05
The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various filemore » formats, are also provided in the library.« less
A Geometric Boolean Library for 2D Objects
McBride, Corey L.; Yarberry, Victor; Jorgensen, Craig
2006-01-05
The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various file formats, are also provided in the library.
NASA Technical Reports Server (NTRS)
Vanderwees, A. J.; Vanmuijden, J.
1992-01-01
The MATRICS flow solver calculates the inviscid transonic potential flow about a wing/body semi-configuration. At present, work is in progress to extend MATRICS to take viscous effects into account through coupling with a boundary layer solver. This solver, MATRICS-V, is based on robust calculation methods for the boundary layer, the outer wing flow and their interaction. MATRICS-V is intended for (inverse) design purposes. The boundary layer and wake are based on an integral formulation of the unsteady first order boundary layer equations, the inviscid method is the existing MATRICS potential flow solver, and the interaction algorithm is of the quasi-simultaneous type. The paper gives a progress report on the coupled potential-flow boundary-layer method for transonic wing/body configurations.
AnisWave2D: User's Guide to the 2d Anisotropic Finite-DifferenceCode
Toomey, Aoife
2005-01-06
This document describes a parallel finite-difference code for modeling wave propagation in 2D, fully anisotropic materials. The code utilizes a mesh refinement scheme to improve computational efficiency. Mesh refinement allows the grid spacing to be tailored to the velocity model, so that fine grid spacing can be used in low velocity zones where the seismic wavelength is short, and coarse grid spacing can be used in zones with higher material velocities. Over-sampling of the seismic wavefield in high velocity zones is therefore avoided. The code has been implemented to run in parallel over multiple processors and allows large-scale models and models with large velocity contrasts to be simulated with ease.
Klassifikation von Standardebenen in der 2D-Echokardiographie mittels 2D-3D-Bildregistrierung
NASA Astrophysics Data System (ADS)
Bergmeir, Christoph; Subramanian, Navneeth
Zum Zweck der Entwicklung eines Systems, das einen unerfahrenen Anwender von Ultraschall (US) zur Aufnahme relevanter anatomischer Strukturen leitet, untersuchen wir die Machbarkeit von 2D-US zu 3D-CT Registrierung. Wir verwenden US-Aufnahmen von Standardebenen des Herzens, welche zu einem 3D-CT-Modell registriert werden. Unser Algorithmus unterzieht sowohl die US-Bilder als auch den CT-Datensatz Vorverarbeitungsschritten, welche die Daten durch Segmentierung auf wesentliche Informationen in Form von Labein für Muskel und Blut reduzieren. Anschließend werden diese Label zur Registrierung mittels der Match-Cardinality-Metrik genutzt. Durch mehrmaliges Registrieren mit verschiedenen Initialisierungen ermitteln wir die im US-Bild sichtbare Standardebene. Wir evaluierten die Methode auf sieben US-Bildern von Standardebenen. Fünf davon wurden korrekt zugeordnet.
Exosomes and the MICA-NKG2D system in cancer.
Clayton, Aled; Tabi, Zsuzsanna
2005-01-01
Exosomes are nanometer sized vesicles, secreted by a diverse range of cell types, whose biological functions remain ambiguous. Several groups have demonstrated the potential of manipulating exosomes for activating cellular immune responses. The possibility that exosomes may inhibit immunological responses, however, has not been widely addressed. We have investigated if exosomes produced by tumor cells can inhibit immunological functions, through modulating expression of the NKG2D receptor by effector cells. Incubating tumor exosomes with fresh peripheral blood leukocytes resulted in a marked reduction in the proportion of NKG2D-positive CD3+CD8+ Cells, and CD3- cells by 48 h. This effect was dose dependent and was shown with exosomes from different tumor cells including breast cancer and mesothelioma. Analysis of tumor exosome-phenotype revealed positive expression of several NKG2D ligands, and antibody blocking experiments revealed the importance of such ligands in driving the reduction in the proportion of NKG2D-positive effector cells. The functional importance of the decrease in NKG2D-positive cells was addressed in vitro cytotoxicity assays. For example a CD8+ T cell line pre-incubated with tumor exosomes had significant decreased capacity to kill peptide-pulsed T2 target cells. These data highlight a role for tumor exosomes bearing NKG2D ligands as a mechanism contributing to cancer immune evasion. PMID:15885603
Technology Transfer Automated Retrieval System (TEKTRAN)
Mountain Gem Russet is a medium to late maturing variety with both high early and full season yields of oblong-long, medium-russeted tubers having higher protein content than those of standard potato varieties. Mountain Gem Russet has greater resistance to tuber late blight, tuber malformations and ...
Technology Transfer Automated Retrieval System (TEKTRAN)
Pre-ruminant Holstein bull calves were fed two diets of pasteurized whole milk (PWM) in amounts that either limited intake or that maximized intake according to common commercial practice. Diets then were either supplemented or not supplemented with a full complement of vitamins and trace minerals ...
Optical Stark effect in 2D semiconductors
NASA Astrophysics Data System (ADS)
Sie, Edbert J.; McIver, James W.; Lee, Yi-Hsien; Fu, Liang; Kong, Jing; Gedik, Nuh
2016-05-01
Semiconductors that are atomically thin can exhibit novel optical properties beyond those encountered in the bulk compounds. Monolayer transition-metal dichalcogenides (TMDs) are leading examples of such semiconductors that possess remarkable optical properties. They obey unique selection rules where light with different circular polarization can be used for selective photoexcitation at two different valleys in the momentum space. These valleys constitute bandgaps that are normally locked in the same energy. Selectively varying their energies is of great interest for applications because it unlocks the potential to control valley degree of freedom, and offers a new promising way to carry information in next-generation valleytronics. In this proceeding paper, we show that the energy gaps at the two valleys can be shifted relative to each other by means of the optical Stark effect in a controllable valley-selective manner. We discuss the physics of the optical Stark effect, and we describe the mechanism that leads to its valleyselectivity in monolayer TMD tungsten disulfide (WS2).
Mesophases in nearly 2D room-temperature ionic liquids.
Manini, N; Cesaratto, M; Del Pópolo, M G; Ballone, P
2009-11-26
Computer simulations of (i) a [C(12)mim][Tf(2)N] film of nanometric thickness squeezed at kbar pressure by a piecewise parabolic confining potential reveal a mesoscopic in-plane density and composition modulation reminiscent of mesophases seen in 3D samples of the same room-temperature ionic liquid (RTIL). Near 2D confinement, enforced by a high normal load, as well as relatively long aliphatic chains are strictly required for the mesophase formation, as confirmed by computations for two related systems made of (ii) the same [C(12)mim][Tf(2)N] adsorbed at a neutral solid surface and (iii) a shorter-chain RTIL ([C(4)mim][Tf(2)N]) trapped in the potential well of part i. No in-plane modulation is seen for ii and iii. In case ii, the optimal arrangement of charge and neutral tails is achieved by layering parallel to the surface, while, in case iii, weaker dispersion and packing interactions are unable to bring aliphatic tails together into mesoscopic islands, against overwhelming entropy and Coulomb forces. The onset of in-plane mesophases could greatly affect the properties of long-chain RTILs used as lubricants. PMID:19886615
2-D stationary gas dynamics in a barred galaxy
NASA Astrophysics Data System (ADS)
Mulder, W. A.
2015-06-01
A code for solving the 2-D isothermal Euler equations of gas dynamics in a rotating disc is presented. The gravitational potential represents a weak bar and controls the flow. A damped Newton method solves the second-order upwind discretisation of the equations for a steady-state solution, using a consistent linearisation and a direct solver. Successive grid refinement, starting from a finite-volume grid with 8 by 8 cells, is applied to find solutions on subsequently finer meshes. On coarser meshes, a first-order spatial discretisation is used. The method obtains quadratic convergence once the solution approaches the steady state. The initial search is quick with the first-order scheme and slower with the second-order discretisation, up to 256 by 256 cells. Beyond, with 512 by 512 cells, the number of iterations becomes too large to be of practical use. Potential causes are discussed. The code can be applied as a tool for generating flow models if used on not too fine meshes.
Functional characterization of CYP2D6 enhancer polymorphisms
Wang, Danxin; Papp, Audrey C.; Sun, Xiaochun
2015-01-01
CYP2D6 metabolizes nearly 25% of clinically used drugs. Genetic polymorphisms cause large inter-individual variability in CYP2D6 enzyme activity and are currently used as biomarker to predict CYP2D6 metabolizer phenotype. Previously, we had identified a region 115 kb downstream of CYP2D6 as enhancer for CYP2D6, containing two completely linked single nucleotide polymorphisms (SNPs), rs133333 and rs5758550, associated with enhanced transcription. However, the enhancer effect on CYP2D6 expression, and the causative variant, remained to be ascertained. To characterize the CYP2D6 enhancer element, we applied chromatin conformation capture combined with the next-generation sequencing (4C assays) and chromatin immunoprecipitation with P300 antibody, in HepG2 and human primary culture hepatocytes. The results confirmed the role of the previously identified enhancer region in CYP2D6 expression, expanding the number of candidate variants to three highly linked SNPs (rs133333, rs5758550 and rs4822082). Among these, only rs5758550 demonstrated regulating enhancer activity in a reporter gene assay. Use of clustered regularly interspaced short palindromic repeats mediated genome editing in HepG2 cells targeting suspected enhancer regions decreased CYP2D6 mRNA expression by 70%, only upon deletion of the rs5758550 region. These results demonstrate robust effects of both the enhancer element and SNP rs5758550 on CYP2D6 expression, supporting consideration of rs5758550 for CYP2D6 genotyping panels to yield more accurate phenotype prediction. PMID:25381333
Li, Jun E-mail: zhangdh@dicp.ac.cn; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H. E-mail: zhangdh@dicp.ac.cn; Xie, Daiqian; Guo, Hua
2015-05-28
We report a permutationally invariant global potential energy surface (PES) for the H + CH{sub 4} system based on ∼63 000 data points calculated at a high ab initio level (UCCSD(T)-F12a/AVTZ) using the recently proposed permutation invariant polynomial-neural network method. The small fitting error (5.1 meV) indicates a faithful representation of the ab initio points over a large configuration space. The rate coefficients calculated on the PES using tunneling corrected transition-state theory and quasi-classical trajectory are found to agree well with the available experimental and previous quantum dynamical results. The calculated total reaction probabilities (J{sub tot} = 0) including the abstraction and exchange channels using the new potential by a reduced dimensional quantum dynamic method are essentially the same as those on the Xu-Chen-Zhang PES [Chin. J. Chem. Phys. 27, 373 (2014)].
NASA Astrophysics Data System (ADS)
Chae, Dongho; Constantin, Peter; Wu, Jiahong
2014-09-01
We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.
Boateng, Joshua; Diunase, Keshu Nso
2015-01-01
The increased incidence of bacterial resistance to antibiotics has generated renewed interest in "traditional" antimicrobials, such as honey. This paper reports on a study comparing physico-chemical, antioxidant and antibacterial characteristics (that potentially contribute in part, to the functional wound healing activity) of Cameroonian honeys with those of Manuka honey. Agar well diffusion was used to generate zones of inhibition against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus while broth dilutions were used to study the minimum inhibitory concentrations (MICs). Non-peroxide activity was investigated by catalase for hydrogen peroxide reduction. The Cameroonian honeys demonstrated functional properties similar to Manuka honey, with strong correlations between the antioxidant activity and total phenol content of each honey. They were also as effective as Manuka honey in reducing bacteria load with an MIC of 10% w/v against all three bacteria and exhibited non-peroxide antimicrobial activity. These Cameroon honeys have potential therapeutic activity and may contain compounds with activity against Gram positive and Gram negative bacteria. Antibacterial agents from such natural sources present a potential affordable treatment of wound infections caused by antibiotic resistant bacteria, which are a leading cause of amputations and deaths in many African countries. PMID:26364634
NASA Astrophysics Data System (ADS)
Yoo, Ji Ho (Chris); Evans, Corey; Walker, Nick; Le Roy, Robert J.
2015-06-01
At last year's ISMS meeting, Zaleski et al. reported new broadband MW spectroscopy measurements of pure rotational transitions in the v=0-6 levels of the ^2Π1/2 ground electronic state of PbI. The analysis presented at that time was a conventional v-level by v-level `band-constant' analysis performed using the PGopher program. That level-by-level PGopher analysis yielded values of B_v, D_v and five spin-splitting parameters for each vibrational level of each isotopologue. Ignoring the spin-splitting information, the B_v and D_v values were used to generate a set of synthetic pure R(0) transitions for each level that were taken to represent the ``mechanical'' information about the molecule contained in these spectra. A standard direct-potential-fit (DPF) analysis was then used to fit these data to an ``Expanded Morse Oscillator'' (EMO) potential function form. The well-depth parameter D_e was fixed at the literature value, while values of the equilibrium distance r_e and three EMO exponent-coefficient expansion `potential shape' parameters are determined from the fits. The best fits to the data yield potentials whose fundamental vibrational spacings are in excellent agreement with experiment together with reliable predictions for the first five overtone energies. D.P. Zaleski, H. Köckert, S.L. Stephens, N. Walker, L.-M. Dickens, and C. Evans, paper RE08 at the 69th International Symposium on Molecular Spectroscopy, University of Illinois (2014). PGopher - a Program for Simulating Rotational Structure, C. M. Western, University of Bristol, http://pgopher.chm.bris.ac.uk DPotFit 2.0: A Computer Program for fitting Diatomic Molecule Spectra to Potential Energy Functions, R.J. Le Roy, J. Seto and Y. Huang, University of Waterloo Chemical Physics Research Report CP-667 (2013); see http://leroy.uwaterloo.ca/programs/. K. Ziebarth, R. Breidohr, O. Shestakov and E.H. Fink, Chem. Phys. Lett. 190, 271 (1992).
Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.
Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo
2016-09-01
Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density. PMID:27334788
Integrating Mobile Multimedia into Textbooks: 2D Barcodes
ERIC Educational Resources Information Center
Uluyol, Celebi; Agca, R. Kagan
2012-01-01
The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…
Unitary quantum lattice gas representation of 2D quantum turbulence
NASA Astrophysics Data System (ADS)
Zhang, Bo; Vahala, George; Vahala, Linda; Soe, Min
2011-05-01
Quantum vortex structures and energy cascades are examined for two dimensional quantum turbulence (2D QT) using a special unitary evolution algorithm. The qubit lattice gas (QLG) algorithm, is employed to simulate the weakly-coupled Bose-Einstein condensate (BEC) governed by the Gross-Pitaevskii (GP) equation. A parameter regime is uncovered in which, as in 3D QT, there is a very short Poincare recurrence time. This short recurrence time is destroyed as the nonlinear interaction energy is increased. Energy cascades for 2D QT are considered to examine whether 2D QT exhibits the inverse cascades of 2D classical turbulence. In the parameter regime considered, the spectra analysis reveals no such dual cascades---dual cascades being a hallmark of 2D classical turbulence.
CYP2D6 polymorphism in patients with eating disorders.
Peñas-Lledó, E M; Dorado, P; Agüera, Z; Gratacós, M; Estivill, X; Fernández-Aranda, F; Llerena, A
2012-04-01
CYP2D6 polymorphism is associated with variability in drug response, endogenous metabolism (that is, serotonin), personality, neurocognition and psychopathology. The relationship between CYP2D6 genetic polymorphism and the risk of eating disorders (ED) was analyzed in 267 patients with ED and in 285 controls. A difference in the CYP2D6 active allele distribution was found between these groups. Women carrying more than two active genes (ultrarapid metabolizers) (7.5 vs 4.6%) or two (67 vs 58.9%) active genes were more frequent among patients with ED, whereas those with one (20.6 vs 30.2%) or zero active genes (4.9 vs 6.3%) were more frequent among controls (P<0.05). Although further research is needed, present findings suggest an association between CYP2D6 and ED. CYP2D6 allele distribution in patients with ED seems related to increased enzyme activity. PMID:20877302
2D materials and van der Waals heterostructures.
Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H
2016-07-29
The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices. PMID:27471306
The promise and payoff of 2D and 3D machine vision: Where are we today?
NASA Astrophysics Data System (ADS)
Harding, Kevin G.
2004-02-01
In the past 25 plus years, machine vision has grown from a high priced solution looking for a problem to solve, to a multibillion dollar industry playing a crucial role in todayís high demand production environment. Early machine vision systems consisted of dedicated, special architecture processors, some with hundreds of individual processors, and price tags approaching a hundred thousand dollars or more. There were large array boxes that required high end workstations to communicate with, dedicated units with control like interfaces the size of small refrigerators, and special low level languages understood only by the most dedicated programmer. Today, a full featured vision processor will fit into a standard PC box, often as a plug in card, and the fast, dedicated purpose systems will fit in the palm of your hand, connecting to any PC over an internet connection. The 3D vision system has likewise made great strides, though it remains just a step or two behind its 2D cousin. Early 3D systems were notoriously slow, taking the good part of an hour on temper mental equipment, producing complicated clouds of data with not good way to use the information. Today, high quality 3D data can be obtained from rugged, even portable units with simple to use interfaces, producing inspection information based upon part tolerances and CAD models in a matter of seconds. None of these systems are the mystical iRobots that can seeŽ envisioned in those early days. But what machine vision is today, and what it is becoming, is a technological tool on its way to becoming as common place as the computer, not only in production environments, but potentially in our every day lives. This paper will look at what 2D and 3D vision can do today, where and how it is being used, and where it may be going in the future.
Hua -Gen Yu; Han, Huixian; Guo, Hua
2016-03-29
Vibrational energy levels of the ammonium cation (NH4+) and its deuterated isotopomers are calculated using a numerically exact kinetic energy operator on a recently developed nine-dimensional permutation invariant semiglobal potential energy surface fitted to a large number of high-level ab initio points. Like CH4, the vibrational levels of NH4+ and ND4+ exhibit a polyad structure, characterized by a collective quantum number P = 2(v1 + v3) + v2 + v4. As a result, the low-lying vibrational levels of all isotopomers are assigned and the agreement with available experimental data is better than 1 cm–1.
Ferriday, Danielle; Bosworth, Matthew L.; Godinot, Nicolas; Martin, Nathalie; Forde, Ciarán G.; Van Den Heuvel, Emmy; Appleton, Sarah L.; Mercer Moss, Felix J.; Rogers, Peter J.; Brunstrom, Jeffrey M.
2016-01-01
Laboratory studies have demonstrated that experimental manipulations of oral processing can have a marked effect on energy intake. Here, we explored whether variations in oral processing across a range of unmodified everyday meals could affect post-meal fullness and meal size. In Study 1, female participants (N = 12) attended the laboratory over 20 lunchtime sessions to consume a 400-kcal portion of a different commercially available pre-packaged meal. Prior to consumption, expected satiation was assessed. During each meal, oral processing was characterised using: (i) video-recordings of the mouth and (ii) real-time measures of plate weight. Hunger and fullness ratings were elicited pre- and post-consumption, and for a further three hours. Foods that were eaten slowly had higher expected satiation and delivered more satiation and satiety. Building on these findings, in Study 2 we selected two meals (identical energy density) from Study 1 that were equally liked but maximised differences in oral processing. On separate days, male and female participants (N = 24) consumed a 400-kcal portion of either the “fast” or “slow” meal followed by an ad libitum meal (either the same food or a dessert). When continuing with the same food, participants consumed less of the slow meal. Further, differences in food intake during the ad libitum meal were not compensated at a subsequent snacking opportunity an hour later. Together, these findings suggest that variations in oral processing across a range of unmodified everyday meals can affect fullness after consuming a fixed portion and can also impact meal size. Modifying food form to encourage increased oral processing (albeit to a lesser extent than in experimental manipulations) might represent a viable target for food manufacturers to help to nudge consumers to manage their weight. PMID:27213451
Ferriday, Danielle; Bosworth, Matthew L; Godinot, Nicolas; Martin, Nathalie; Forde, Ciarán G; Van Den Heuvel, Emmy; Appleton, Sarah L; Mercer Moss, Felix J; Rogers, Peter J; Brunstrom, Jeffrey M
2016-01-01
Laboratory studies have demonstrated that experimental manipulations of oral processing can have a marked effect on energy intake. Here, we explored whether variations in oral processing across a range of unmodified everyday meals could affect post-meal fullness and meal size. In Study 1, female participants (N = 12) attended the laboratory over 20 lunchtime sessions to consume a 400-kcal portion of a different commercially available pre-packaged meal. Prior to consumption, expected satiation was assessed. During each meal, oral processing was characterised using: (i) video-recordings of the mouth and (ii) real-time measures of plate weight. Hunger and fullness ratings were elicited pre- and post-consumption, and for a further three hours. Foods that were eaten slowly had higher expected satiation and delivered more satiation and satiety. Building on these findings, in Study 2 we selected two meals (identical energy density) from Study 1 that were equally liked but maximised differences in oral processing. On separate days, male and female participants (N = 24) consumed a 400-kcal portion of either the "fast" or "slow" meal followed by an ad libitum meal (either the same food or a dessert). When continuing with the same food, participants consumed less of the slow meal. Further, differences in food intake during the ad libitum meal were not compensated at a subsequent snacking opportunity an hour later. Together, these findings suggest that variations in oral processing across a range of unmodified everyday meals can affect fullness after consuming a fixed portion and can also impact meal size. Modifying food form to encourage increased oral processing (albeit to a lesser extent than in experimental manipulations) might represent a viable target for food manufacturers to help to nudge consumers to manage their weight. PMID:27213451
Dual-mode operation of 2D material-base hot electron transistors
Lan, Yann-Wen; Torres, Jr., Carlos M.; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R.; Lerner, Mitchell B.; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L.
2016-01-01
Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications. PMID:27581550
Dual-mode operation of 2D material-base hot electron transistors.
Lan, Yann-Wen; Torres, Carlos M; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R; Lerner, Mitchell B; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L
2016-01-01
Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications. PMID:27581550
Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng
2016-08-01
Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples. PMID:27378648
The Accuracy of Webcams in 2D Motion Analysis: Sources of Error and Their Control
ERIC Educational Resources Information Center
Page, A.; Moreno, R.; Candelas, P.; Belmar, F.
2008-01-01
In this paper, we show the potential of webcams as precision measuring instruments in a physics laboratory. Various sources of error appearing in 2D coordinate measurements using low-cost commercial webcams are discussed, quantifying their impact on accuracy and precision, and simple procedures to control these sources of error are presented.…
Kaiglová, Jana; Langhammer, Jakub; Jiřinec, Petr; Janský, Bohumír; Chalupová, Dagmar
2015-03-01
This article used various hydrodynamic and sediment transport models to analyze the potential and the limits of different channel schematizations. The main aim was to select and evaluate the most suitable simulation method for fine-grained sediment remobilization assessment. Three types of channel schematization were selected to study the flow potential for remobilizing fine-grained sediment in artificially modified channels. Schematization with a 1D cross-sectional horizontal plan, a 1D+ approach, splitting the riverbed into different functional zones, and full 2D mesh, adopted in MIKE by the DHI modeling suite, was applied to the study. For the case study, a 55-km stretch of the Bílina River, in the Czech Republic, Central Europe, which has been heavily polluted by the chemical and coal mining industry since the mid-twentieth century, was selected. Long-term exposure to direct emissions of toxic pollutants including heavy metals and persistent organic pollutants (POPs) resulted in deposits of pollutants in fine-grained sediments in the riverbed. Simulations, based on three hydrodynamic model schematizations, proved that for events not exceeding the extent of the riverbed profile, the 1D schematization can provide comparable results to a 2D model. The 1D+ schematization can improve accuracy while keeping the benefits of high-speed simulation and low requirements of input DEM data, but the method's suitability is limited by the channel properties. PMID:25687259
2-D Inhomogeneous Modeling of the Solar CO Bands
NASA Astrophysics Data System (ADS)
Ayres, T. R.
1996-05-01
The recent discovery of off-limb emissions in the mid-IR ( ~ 5 mu m) vibration-rotation bands of solar carbon monoxide (CO) has sparked new interest in the formation of the molecular lines, and their ability to diagnose thermal conditions at high altitudes. The off-limb extensions of the strong CO lines indicate the penetration of cool material (T ~ 3500 K) several hundred kilometers into the otherwise hot (T ~ 6000 K) chromosphere. The origin of the cool gas, and its role in the thermal energy balance, remain controversial. The interpretation of the CO observations must rely heavily upon numerical modeling, in particular highly-inhomogeneous thermal structures arrayed in a 2-D scheme that can properly treat the geometry of the grazing rays at the solar limb. The radiation transport, itself, is especially simple for the CO off-limb emissions, because the fundamental bands form quite close to LTE (high collision rates; low spontaneous decay rates) and the background continuum is purely thermal as well (f--f transitions in H(-) and H). Thus, the geometrical aspects of the problem can be treated in considerably more detail than would be practical for typical NLTE scattering lines. I describe the recent modeling efforts, and the diagnostic potential of the CO bands for future observational studies of inhomogeneous surface structure on the Sun, and on other stars of late spectral type. This work was supported by NSF grant AST-9218063 to the University of Colorado.
Topological Toughening of graphene and other 2D materials
NASA Astrophysics Data System (ADS)
Gao, Huajian
It has been claimed that graphene, with the elastic modulus of 1TPa and theoretical strength as high as 130 GPa, is the strongest material. However, from an engineering point of view, it is the fracture toughness that determines the actual strength of materials, as crack-like flaws (i.e., cracks, holes, notches, corners, etc.) are inevitable in the design, fabrication, and operation of practical devices and systems. Recently, it has been demonstrated that graphene has very low fracture toughness, in fact close to that of ideally brittle solids. These findings have raised sharp questions and are calling for efforts to explore effective methods to toughen graphene. Recently, we have been exploring the potential use of topological effects to enhance the fracture toughness of graphene. For example, it has been shown that a sinusoidal graphene containing periodically distributed disclination quadrupoles can achieve a mode I fracture toughness nearly twice that of pristine graphene. Here we report working progresses on further studies of topological toughening of graphene and other 2D materials. A phase field crystal method is adopted to generate the atomic coordinates of material with specific topological patterns. We then perform molecular dynamics simulations of fracture in the designed samples, and observe a variety of toughening mechanisms, including crack tip blunting, crack trapping, ligament bridging, crack deflection and daughter crack initiation and coalescence.
2D XAFS-XEOL Spectroscopy - Some recent developments
NASA Astrophysics Data System (ADS)
Ward, M. J.; Smith, J. G.; Regier, T. Z.; Sham, T. K.
2013-03-01
The use of optical photons to measure the modulation of the absorption coefficient upon X-ray excitation, or optical XAFS, is of particular interest for application to the study of light emitting semiconducting nanomaterials due to the additional information that may be gained. The potential for site-selectivity, elemental and excitation energy specific luminescence decay channels, and surface vs. bulk effects all make the use of X-ray excited optical luminescence (XEOL) desirable as a detection method. Previous experiments have made use of a monochromator to select the optical emission wavelength used to monitor optical XAFS. This method of detection suffers from the primary limitation of only being able to monitor the optical response at one emission wavelength. By combining the high resolution soft X-ray Spherical Grating Monochromator beam-line at the Canadian Light Source with an Ocean Optics QE 65000 fast CCD spectrophotometer and custom integration software we have developed a technique for collecting 2D XAFS-XEOL spectra, in which the excitation energy is scanned and a XEOL spectra is collected for every energy value. Herein we report the development of this technique and its capabilities using the study of the luminescence emitted from single crystal zinc oxide as an example.
Quantum Simulation with 2D Arrays of Trapped Ions
NASA Astrophysics Data System (ADS)
Richerme, Philip
2016-05-01
The computational difficulty of solving fully quantum many-body spin problems is a significant obstacle to understanding the behavior of strongly correlated quantum matter. This work proposes the design and construction of a 2D quantum spin simulator to investigate the physics of frustrated materials, highly entangled states, mechanisms potentially underpinning high-temperature superconductivity, and other topics inaccessible to current 1D systems. The effective quantum spins will be encoded within the well-isolated electronic levels of trapped ions, confined in a two-dimensional planar geometry, and made to interact using phonon-mediated optical dipole forces. The system will be scalable to 100+ quantum particles, far beyond the realm of classical intractability, while maintaining individual-ion control, long quantum coherence times, and site-resolved projective spin measurements. Once constructed, the two-dimensional quantum simulator will implement a broad range of spin models on a variety of reconfigurable lattices and characterize their behavior through measurements of spin-spin correlations and entanglement. This versatile tool will serve as an important experimental resource for exploring difficult quantum many-body problems in a regime where classical methods fail.
NKG2D receptor and its ligands in host defense
Lanier, Lewis L.
2015-01-01
NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8+ T cells, and subsets of CD4+ T cells, iNKT cells, and γδ T cells. In humans NKG2D transmits signals by its association with the DAP10 adapter subunit and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least 8 genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and post-translation. In general healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyper-proliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves a mechanism for the immune system to detect and eliminate cells that have undergone “stress”. Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases. PMID:26041808
Zhu, Xiaolei; Malbon, Christopher L; Yarkony, David R
2016-03-28
In a recent work we constructed a quasi-diabatic representation, H(d), of the 1, 2, 3(1)A adiabatic states of phenol from high level multireference single and double excitation configuration interaction electronic structure data, energies, energy gradients, and derivative couplings. That H(d) accurately describes surface minima, saddle points, and also regions of strong nonadiabatic interactions, reproducing the locus of conical intersection seams and the coordinate dependence of the derivative couplings. The present work determines the accuracy of H(d) for describing phenol photodissociation. Additionally, we demonstrate that a modest energetic shift of two diabats yields a quantifiably more accurate H(d) compared with experimental energetics. The analysis shows that in favorable circumstances it is possible to use single point energies obtained from the most reliable electronic structure methods available, including methods for which the energy gradients and derivative couplings are not available, to improve the quality of a global representation of several coupled potential energy surfaces. Our data suggest an alternative interpretation of kinetic energy release measurements near λphot ∼ 248 nm. PMID:27036453
NASA Astrophysics Data System (ADS)
Zhu, Xiaolei; Malbon, Christopher L.; Yarkony, David R.
2016-03-01
In a recent work we constructed a quasi-diabatic representation, Hd, of the 1, 2, 31A adiabatic states of phenol from high level multireference single and double excitation configuration interaction electronic structure data, energies, energy gradients, and derivative couplings. That Hd accurately describes surface minima, saddle points, and also regions of strong nonadiabatic interactions, reproducing the locus of conical intersection seams and the coordinate dependence of the derivative couplings. The present work determines the accuracy of Hd for describing phenol photodissociation. Additionally, we demonstrate that a modest energetic shift of two diabats yields a quantifiably more accurate Hd compared with experimental energetics. The analysis shows that in favorable circumstances it is possible to use single point energies obtained from the most reliable electronic structure methods available, including methods for which the energy gradients and derivative couplings are not available, to improve the quality of a global representation of several coupled potential energy surfaces. Our data suggest an alternative interpretation of kinetic energy release measurements near λphot ˜ 248 nm.
Enhancement of MS2D Bartington point measurement of soil magnetic susceptibility
NASA Astrophysics Data System (ADS)
Fabijańczyk, Piotr; Zawadzki, Jarosław
2015-04-01
Field magnetometry is fast method used to assess the potential soil pollution. The most popular device used to measure the soil magnetic susceptibility on the soil surface is a MS2D Bartington. Single reading using MS2D device of soil magnetic susceptibility is low time-consuming but often characterized by considerable errors related to the instrument or environmental and lithogenic factors. Typically, in order to calculate the reliable average value of soil magnetic susceptibility, a series of MS2D readings is performed in the sample point. As it was analyzed previously, such methodology makes it possible to significantly reduce the nugget effect of the variograms of soil magnetic susceptibility that is related to the micro-scale variance and measurement errors. The goal of this study was to optimize the process of taking a series of MS2D readings, whose average value constitutes a single measurement, in order to take into account micro-scale variations of soil magnetic susceptibility in proper determination of this parameter. This was done using statistical and geostatistical analyses. The analyses were performed using field MS2D measurements that were carried out in the study area located in the direct vicinity of the Katowice agglomeration. At 150 sample points 10 MS2D readings of soil magnetic susceptibility were taken. Using this data set, series of experimental variograms were calculated and modeled. Firstly, using single random MS2D reading for each sample point, and next using the data set increased by adding one more MS2D reading, until their number reached 10. The parameters of variogram: nugget effect, sill and range of correlation were used to determine the most suitable number of MS2D readings at sample point. The distributions of soil magnetic susceptibility at sample point were also analyzed in order to determine adequate number of readings enabling to calculate reliable average soil magnetic susceptibility. The research leading to these results has
Polymorphism of human cytochrome P450 2D6 and its clinical significance: part II.
Zhou, Shu-Feng
2009-01-01
Part I of this article discussed the potential functional importance of genetic mutations and alleles of the human cytochrome P450 2D6 (CYP2D6) gene. The impact of CYP2D6 polymorphisms on the clearance of and response to a series of cardiovascular drugs was addressed. Since CYP2D6 plays a major role in the metabolism of a large number of other drugs, Part II of the article highlights the impact of CYP2D6 polymorphisms on the response to other groups of clinically used drugs. Although clinical studies have observed a gene-dose effect for some tricyclic antidepressants, it is difficult to establish clear relationships of their pharmacokinetics and pharmacodynamic parameters to genetic variations of CYP2D6; therefore, dosage adjustment based on the CYP2D6 phenotype cannot be recommended at present. There is initial evidence for a gene-dose effect on commonly used selective serotonin reuptake inhibitors (SSRIs), but data on the effect of the CYP2D6 genotype/phenotype on the response to SSRIs and their adverse effects are scanty. Therefore, recommendations for dose adjustment of prescribed SSRIs based on the CYP2D6 genotype/phenotype may be premature. A number of clinical studies have indicated that there are significant relationships between the CYP2D6 genotype and steady-state concentrations of perphenazine, zuclopenthixol, risperidone and haloperidol. However, findings on the relationships between the CYP2D6 genotype and parkinsonism or tardive dyskinesia treatment with traditional antipsychotics are conflicting, probably because of small sample size, inclusion of antipsychotics with variable CYP2D6 metabolism, and co-medication. CYP2D6 phenotyping and genotyping appear to be useful in predicting steady-state concentrations of some classical antipsychotic drugs, but their usefulness in predicting clinical effects must be explored. Therapeutic drug monitoring has been strongly recommended for many antipsychotics, including haloperidol, chlorpromazine, fluphenazine
Quasi 2D Materials: Raman Nanometrology and Thermal Management Applications
NASA Astrophysics Data System (ADS)
Shahil, Khan Mohammad Farhan
Quasi two-dimensional (2D) materials obtained by the "graphene-like" exfoliation attracted tremendous attention. Such materials revealed unique electronic, thermal and optical properties, which can be potentially used in electronics, thermal management and energy conversion. This dissertation research addresses two separate but synergetic problems: (i) preparation and optical characterization of quasi-2D films of the bismuth-telluride (Bi 2Te3) family of materials, which demonstrate both thermoelectric and topological insulator properties; and (ii) investigation of thermal properties of composite materials prepared with graphene and few-layer graphene (FLG). The first part of dissertation reports properties of the exfoliated few-quintuple layers of Bi2Te3, Bi2Se3 and Sb 2Te3. Both non-resonant and resonant Raman scattering spectra have been investigated. It was found that the crystal symmetry breaking in few-quintuple films results in appearance of A1u-symmetry Raman peaks, which are not active in the bulk crystals. The scattering spectra measured under the 633-nm wavelength excitation reveals a number of resonant features, which could be used for analysis of the electronic and phonon processes in these materials. The obtained results help to understand the physical mechanisms of Raman scattering in the few-quintuple-thick films and can be used for nanometrology of topological insulator films on various substrates. The second part of the dissertation is dedicated to investigation of properties of composite materials prepared with graphene and FLG. It was found that the optimized mixture of graphene and multilayer graphene---produced by the high-yield inexpensive liquid-phase-exfoliation technique---can lead to an extremely strong enhancement of the cross-plane thermal conductivity K of the composite. The "laser flash" measurements revealed a record-high enhancement of K by 2300 % in the graphene-based polymer at the filler loading fraction f =10 vol. %. It was
2D constant-loss taper for mode conversion
NASA Astrophysics Data System (ADS)
Horth, Alexandre; Kashyap, Raman; Quitoriano, Nathaniel J.
2015-03-01
Proposed in this manuscript is a novel taper geometry, the constant-loss taper (CLT). This geometry is derived with 1D slabs of silicon embedded in silicon dioxide using coupled-mode theory (CMT). The efficiency of the CLT is compared to both linear and parabolic tapers using CMT and 2D finite-difference time-domain simulations. It is shown that over a short 2D, 4.45 μm long taper the CLT's mode conversion efficiency is ~90% which is 10% and 18% more efficient than a 2D parabolic or linear taper, respectively.
Recent advances in 2D materials for photocatalysis
NASA Astrophysics Data System (ADS)
Luo, Bin; Liu, Gang; Wang, Lianzhou
2016-03-01
Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.
Comparison of 2D and 3D gamma analyses
Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer
2014-02-15
Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must
Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials
NASA Astrophysics Data System (ADS)
Kim, Sang Jin; Choi, Kyoungjun; Lee, Bora; Kim, Yuna; Hong, Byung Hee
2015-07-01
Recently, 2D materials have been intensively studied as emerging materials for future electronics, including flexible electronics, photonics, and electrochemical energy storage devices. Among representative 2D materials (such as graphene, boron nitride, and transition metal dichalcogenides) that exhibit extraordinary properties, graphene stands out in the flexible electronics field due to its combination of high electron mobility, high thermal conductivity, high specific surface area, high optical transparency, excellent mechanical flexibility, and environmental stability. This review covers the synthesis, transfer, and characterization methods of graphene and 2D materials and graphene's application to flexible devices as well as comparison with other competing materials.
Knight shift and spin relaxation in the single band 2D Hubbard model
NASA Astrophysics Data System (ADS)
Leblanc, James; Chen, Xi; Gull, Emanuel
We study in detail the roles of spin and charge fluctuations in the single band 2D Hubbard model. Using dynamical mean field theory and cluster extensions such as the dynamical cluster approximation (DCA), we compute the full two particle susceptibilities in the spin and charge representations. By performing analytic continuations we obtain the temperature and doping dependence of the spin-lattice relaxation (T1- 1) and knight shift in the 2D Hubbard model relevant to NMR results on doped cuprates and connect these to RPA results in weak coupling limits.
Calculating tissue shear modulus and pressure by 2D Log-Elastographic methods
McLaughlin, Joyce R; Zhang, Ning; Manduca, Armando
2010-01-01
Shear modulus imaging, often called elastography, enables detection and characterization of tissue abnormalities. In this paper the data is two displacement components obtained from successive MR or ultrasound data sets acquired while the tissue is excited mechanically. A 2D plane strain elastic model is assumed to govern the 2D displacement, u. The shear modulus, μ, is unknown and whether or not the first Lamé parameter, λ, is known the pressure p = λ∇ · u which is present in the plane strain model cannot be measured and is unreliably computed from measured data and can be shown to be an order one quantity in the units kPa. So here we present a 2D Log-Elastographic inverse algorithm that: (1) simultaneously reconstructs the shear modulus, μ, and p, which together satisfy a first order partial differential equation system, with the goal of imaging μ; (2) controls potential exponential growth in the numerical error; and (3) reliably reconstructs the quantity p in the inverse algorithm as compared to the same quantity computed with a forward algorithm. This work generalizes the Log-Elastographic algorithm in [20] which uses one displacement component, is derived assuming the component satisfies the wave equation, and is tested on synthetic data computed with the wave equation model. The 2D Log-Elastographic algorithm is tested on 2D synthetic data and 2D in-vivo data from Mayo Clinic. We also exhibit examples to show that the 2D Log-Elastographic algorithm improves the quality of the recovered images as compared to the Log-Elastographic and Direct Inversion algorithms. PMID:21822349
Colin, Pierre; Micallef, Sandrine; Delattre, Maud; Mancini, Pierre; Parent, Eric
2015-09-30
Following the pattern of phase I clinical trials for cytotoxic drugs, dose-finding clinical trials in oncology of molecularly targeted agents (MTA) aim at determining the maximum tolerated dose (MTD). In classical phase I clinical trials, MTD is generally defined by the number of patients with short-term major treatment toxicities (usually called dose-limiting toxicities, DLT), occurring during the first cycle of study treatment (e.g. within the first 3weeks of treatment). However, S. Postel-Vinay (2011) highlighted that half of grade 3 to 4 toxicities, usually considered as DLT, occur after the first cycle of MTA treatment. In addition, MTAs could induce other moderate (e.g. grade 2) toxicities which could be taken into account depending on their clinical importance, chronic nature and duration. Ignoring these late toxicities may lead to an underestimation of the drug toxicity and to wrong dose recommendations for phase II and III clinical trials. Some methods have been proposed, such as the time-to-event continuous reassessment method (Cheung 2000 and Mauguen 2011), to take into account the late toxicities. We suggest approaches based on longitudinal models (Doussau 2013). We compare several models for longitudinal data, such as transitional or marginal models, to take into account all relevant toxicities occurring during the entire length of the patient treatment (and not just the events within a predefined short-term time-window). These models allow the statistician to benefit from a larger amount of safety data which could potentially improve that accuracy in MTD assessment. PMID:26059319
Gravitational Wave Signals from 2D and 3D Core Collapse Supernova Explosions
NASA Astrophysics Data System (ADS)
Yakunin, Konstantin; Mezzacappa, Anthony; Marronetti, Pedro; Bruenn, Stephen; Hix, W. Raphael; Lentz, Eric J.; Messer, O. E. Bronson; Harris, J. Austin; Endeve, Eirik; Blondin, John
2016-03-01
We study two- and three-dimensional (2D and 3D) core-collapse supernovae (CCSN) using our first-principles CCSN simulations performed with the neutrino hydrodynamics code CHIMERA. The following physics is included: Newtonian hydrodynamics with a nuclear equation of state capable of describing matter in both NSE and non-NSE, MGFLD neutrino transport with realistic neutrino interactions, an effective GR gravitational potential, and a nuclear reaction network. Both our 2D and 3D models achieve explosion, which in turn enables us to determine their complete gravitational wave signals. In this talk, we present them, and we analyze the similarities and differences between the 2D and 3D signals.
Spectroscopic investigation of the 3d 2D → nf 2F transitions in lithium
NASA Astrophysics Data System (ADS)
Shahzada, S.; Shah, M.; Haq, S. U.; Nawaz, M.; Ahmed, M.; Nadeem, Ali
2016-05-01
We report term energies and effective quantum numbers of the odd parity 3d 2D → nf 2F series of lithium using multi-step and multi-photon laser excitation schemes. The experiments were performed using three dye lasers simultaneously pumped by the second harmonic (532 nm) of a Q-switched Nd:YAG laser in conjunction with an atomic beam apparatus and thermionic diode ion detector. The first ionization potential of lithium has been determined as 43,487.13 ± 0.02 cm- 1 from the much extended 3d 2D → nf 2F (17 ≤ n ≤ 70) series. In addition, the oscillator strengths of the 3d 2D → nf 2F (15 ≤ n ≤ 48) transitions have been determined, showing a decreasing trend with the increase in principal quantum number n.
Simulation of Cardiac Arrhythmias Using a 2D Heterogeneous Whole Heart Model
Balakrishnan, Minimol; Chakravarthy, V. Srinivasa; Guhathakurta, Soma
2015-01-01
Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG) gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D) which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC), excitability, action potential duration (APD) and frequency of oscillations of the auto-rhythmic cell in WHM2D a large variety of cardiac arrhythmias can be generated including sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinus pause, junctional rhythm, Wolf Parkinson White syndrome and all types of AV conduction blocks. WHM2D includes key components of the electrical conduction system of the heart like the SA (Sino atrial) node cells, fast conducting intranodal pathways, slow conducting atriovenctricular (AV) node, bundle of His cells, Purkinje network, atrial, and ventricular myocardial cells. SA nodal cells, AV nodal cells, bundle of His cells, and Purkinje cells are represented by the Fitzhugh-Nagumo (FN) model which is a reduced model of the Hodgkin-Huxley neuron model. The atrial and ventricular myocardial cells are modeled by the Aliev-Panfilov (AP) two-variable model proposed for cardiac excitation. WHM2D can prove to be a valuable clinical tool for understanding cardiac arrhythmias. PMID:26733873
Fast 2D flood modelling using GPU technology - recent applications and new developments
NASA Astrophysics Data System (ADS)
Crossley, Amanda; Lamb, Rob; Waller, Simon; Dunning, Paul
2010-05-01
In recent years there has been considerable interest amongst scientists and engineers in exploiting the potential of commodity graphics hardware for desktop parallel computing. The Graphics Processing Units (GPUs) that are used in PC graphics cards have now evolved into powerful parallel co-processors that can be used to accelerate the numerical codes used for floodplain inundation modelling. We report in this paper on experience over the past two years in developing and applying two dimensional (2D) flood inundation models using GPUs to achieve significant practical performance benefits. Starting with a solution scheme for the 2D diffusion wave approximation to the 2D Shallow Water Equations (SWEs), we have demonstrated the capability to reduce model run times in ‘real-world' applications using GPU hardware and programming techniques. We then present results from a GPU-based 2D finite volume SWE solver. A series of numerical test cases demonstrate that the model produces outputs that are accurate and consistent with reference results published elsewhere. In comparisons conducted for a real world test case, the GPU-based SWE model was over 100 times faster than the CPU version. We conclude with some discussion of practical experience in using the GPU technology for flood mapping applications, and for research projects investigating use of Monte Carlo simulation methods for the analysis of uncertainty in 2D flood modelling.
The infrared spectrum of the Ne-C2D2 complex.
Moazzen-Ahmadi, N; McKellar, A R W; Fernández, Berta; Farrelly, David
2015-11-28
Infrared spectra of Ne-C2D2 are observed in the region of the ν3 fundamental band (asymmetric C-D stretch, ≈2440 cm(-1)) using a tunable optical parametric oscillator to probe a pulsed supersonic slit jet expansion from a cooled nozzle. Like helium-acetylene, this system lies close to the free rotor limit, making analysis tricky because stronger transitions tend to pile up close to monomer (C2D2) rotation-vibration transitions. Assignments are aided by predicted rotational energies calculated from a published ab initio intermolecular potential energy surface. The analysis extends up to the j = 3←2 band, where j labels C2D2 rotation within the dimer, and is much more complete than the limited infrared assignments previously reported for Ne-C2H2 and Ne-C2HD. Two previous microwave transitions within the j = 1 state of Ne-C2D2 are reassigned. Coriolis model fits to the theoretical levels and to the spectrum are compared. Since the variations observed as a function of C2D2 vibrational excitation are comparable to those noted between theory and experiment, it is evident that more detailed testing of theory will require vibrational averaging over the acetylene intramolecular modes. PMID:26627959
Simulation of Cardiac Arrhythmias Using a 2D Heterogeneous Whole Heart Model.
Balakrishnan, Minimol; Chakravarthy, V Srinivasa; Guhathakurta, Soma
2015-01-01
Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG) gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D) which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC), excitability, action potential duration (APD) and frequency of oscillations of the auto-rhythmic cell in WHM2D a large variety of cardiac arrhythmias can be generated including sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinus pause, junctional rhythm, Wolf Parkinson White syndrome and all types of AV conduction blocks. WHM2D includes key components of the electrical conduction system of the heart like the SA (Sino atrial) node cells, fast conducting intranodal pathways, slow conducting atriovenctricular (AV) node, bundle of His cells, Purkinje network, atrial, and ventricular myocardial cells. SA nodal cells, AV nodal cells, bundle of His cells, and Purkinje cells are represented by the Fitzhugh-Nagumo (FN) model which is a reduced model of the Hodgkin-Huxley neuron model. The atrial and ventricular myocardial cells are modeled by the Aliev-Panfilov (AP) two-variable model proposed for cardiac excitation. WHM2D can prove to be a valuable clinical tool for understanding cardiac arrhythmias. PMID:26733873
Using 2D: 4D digit ratios to determine motor skills in children.
Wang, Y; Wang, H-L; Li, Y-H; Zhu, F-L; Li, S-J; Ni, H
2016-03-01
In past few decades, there has an outburst of research surrounding second to fourth finger digit ratio (2D:4D) and its relation to prenatal sex steroids including both testosterone and estrogen. In utero, testosterone and estrogen are responsible for the differences in digit ratio between the genders. Recent research has tried to extend past the influence of steroids and look at the potential effect of digit ratios on fine and gross motor skills in children. We compiled the current understanding of the connection between sex hormones and the development of the 2D:4D ratio as well as the effect the ratio has on motor skills. There seems to be a significant positive correlation between 2D:4D digit ratio and precision of fine motor skill. In addition, there is a negative correlation between 2D:4D ratio and speed of fine motor activity. In this review, we will outline the use of 2D:4D ratio as a biomarker for prenatal sex steroids and through that, a proxy marker for fine and gross motor skills. PMID:27010133
Vitamin D and 1,25(OH)2D regulation of T cells.
Cantorna, Margherita T; Snyder, Lindsay; Lin, Yang-Ding; Yang, Linlin
2015-04-01
Vitamin D is a direct and indirect regulator of T cells. The mechanisms by which vitamin D directly regulates T cells are reviewed and new primary data on the effects of 1,25 dihydroxyvitamin D (1,25(OH)2D) on human invariant natural killer (iNK)T cells is presented. The in vivo effects of vitamin D on murine T cells include inhibition of T cell proliferation, inhibition of IFN-γ, IL-17 and induction of IL-4. Experiments in mice demonstrate that the effectiveness of 1,25(OH)2D requires NKT cells, IL-10, the IL-10R and IL-4. Comparisons of mouse and human T cells show that 1,25(OH)2D inhibits IL-17 and IFN-γ, and induces T regulatory cells and IL-4. IL-4 was induced by 1,25(OH)2D in mouse and human iNKT cells. Activation for 72 h was required for optimal expression of the vitamin D receptor (VDR) in human and mouse T and iNKT cells. In addition, T cells are potential autocrine sources of 1,25(OH)2D but again only 48-72 h after activation. Together the data support the late effects of vitamin D on diseases like inflammatory bowel disease and multiple sclerosis where reducing IL-17 and IFN-γ, while inducing IL-4 and IL-10, would be beneficial. PMID:25912039
Nanoparticle plasmonics for 2D-photovoltaics: mechanisms, optimization, and limits.
Hägglund, Carl; Kasemo, Bengt
2009-07-01
Plasmonic nanostructures placed within or near photovoltaic (PV) layers are of high current interest for improving thin film solar cells. We demonstrate, by electrodynamics calculations, the feasibility of a new class of essentially two dimensional (2D) solar cells based on the very large optical cross sections of plasmonic nanoparticles. Conditions for inducing absorption in extremely thin PV layers via plasmon near-fields, are optimized in 2D-arrays of (i) core-shell particles, and (ii) plasmonic particles on planar layers. At the plasmon resonance, a pronounced optimum is found for the extinction coefficient of the PV material. We also characterize the influence of the dielectric environment, PV layer thickness and nanoparticle shape, size and spatial distribution. The response of the system is close to that of a 2D effective medium layer, and subject to a 50% absorption limit when the dielectric environment around the 2D layer is symmetric. In this case, a plasmon induced absorption of about 40% is demonstrated in PV layers as thin as 10 nm, using silver nanoparticle arrays of only 1 nm effective thickness. In an asymmetric environment, the useful absorption may be increased significantly for the same layer thicknesses. These new types of essentially 2D solar cells are concluded to have a large potential for reducing solar electricity costs. PMID:19582109
PiCode: A New Picture-Embedding 2D Barcode.
Chen, Changsheng; Huang, Wenjian; Zhou, Baojian; Liu, Chenchen; Mow, Wai Ho
2016-08-01
Nowadays, 2D barcodes have been widely used as an interface to connect potential customers and advertisement contents. However, the appearance of a conventional 2D barcode pattern is often too obtrusive for integrating into an aesthetically designed advertisement. Besides, no human readable information is provided before the barcode is successfully decoded. This paper proposes a new picture-embedding 2D barcode, called PiCode, which mitigates these two limitations by equipping a scannable 2D barcode with a picturesque appearance. PiCode is designed with careful considerations on both the perceptual quality of the embedded image and the decoding robustness of the encoded message. Comparisons with the existing beautified 2D barcodes show that PiCode achieves one of the best perceptual qualities for the embedded image, and maintains a better tradeoff between image quality and decoding robustness in various application conditions. PiCode has been implemented in the MATLAB on a PC and some key building blocks have also been ported to Android and iOS platforms. Its practicality for real-world applications has been successfully demonstrated. PMID:27249833
The infrared spectrum of the Ne-C2D2 complex
NASA Astrophysics Data System (ADS)
Moazzen-Ahmadi, N.; McKellar, A. R. W.; Fernández, Berta; Farrelly, David
2015-11-01
Infrared spectra of Ne-C2D2 are observed in the region of the ν3 fundamental band (asymmetric C-D stretch, ≈2440 cm-1) using a tunable optical parametric oscillator to probe a pulsed supersonic slit jet expansion from a cooled nozzle. Like helium-acetylene, this system lies close to the free rotor limit, making analysis tricky because stronger transitions tend to pile up close to monomer (C2D2) rotation-vibration transitions. Assignments are aided by predicted rotational energies calculated from a published ab initio intermolecular potential energy surface. The analysis extends up to the j = 3←2 band, where j labels C2D2 rotation within the dimer, and is much more complete than the limited infrared assignments previously reported for Ne-C2H2 and Ne-C2HD. Two previous microwave transitions within the j = 1 state of Ne-C2D2 are reassigned. Coriolis model fits to the theoretical levels and to the spectrum are compared. Since the variations observed as a function of C2D2 vibrational excitation are comparable to those noted between theory and experiment, it is evident that more detailed testing of theory will require vibrational averaging over the acetylene intramolecular modes.
A real-time multi-scale 2D Gaussian filter based on FPGA
NASA Astrophysics Data System (ADS)
Luo, Haibo; Gai, Xingqin; Chang, Zheng; Hui, Bin
2014-11-01
Multi-scale 2-D Gaussian filter has been widely used in feature extraction (e.g. SIFT, edge etc.), image segmentation, image enhancement, image noise removing, multi-scale shape description etc. However, their computational complexity remains an issue for real-time image processing systems. Aimed at this problem, we propose a framework of multi-scale 2-D Gaussian filter based on FPGA in this paper. Firstly, a full-hardware architecture based on parallel pipeline was designed to achieve high throughput rate. Secondly, in order to save some multiplier, the 2-D convolution is separated into two 1-D convolutions. Thirdly, a dedicate first in first out memory named as CAFIFO (Column Addressing FIFO) was designed to avoid the error propagating induced by spark on clock. Finally, a shared memory framework was designed to reduce memory costs. As a demonstration, we realized a 3 scales 2-D Gaussian filter on a single ALTERA Cyclone III FPGA chip. Experimental results show that, the proposed framework can computing a Multi-scales 2-D Gaussian filtering within one pixel clock period, is further suitable for real-time image processing. Moreover, the main principle can be popularized to the other operators based on convolution, such as Gabor filter, Sobel operator and so on.
2. D Street facade and rear (east) blank wall of ...
2. D Street facade and rear (east) blank wall of parking garage. Farther east is 408 8th Street (National Art And Frame Company). - PMI Parking Garage, 403-407 Ninth Street, Northwest, Washington, District of Columbia, DC
Collective excitations in 2D hard-disc fluid.
Huerta, Adrian; Bryk, Taras; Trokhymchuk, Andrij
2015-07-01
Collective dynamics of a two-dimensional (2D) hard-disc fluid was studied by molecular dynamics simulations in the range of packing fractions that covers states up to the freezing. Some striking features concerning collective excitations in this system were observed. In particular, the short-wavelength shear waves while being absent at low packing fractions were observed in the range of high packing fractions, just before the freezing transition in a 2D hard-disc fluid. In contrast, the so-called "positive sound dispersion" typically observed in dense Lennard-Jones-like fluids, was not detected for the 2D hard-disc fluid. The ratio of specific heats in the 2D hard-disc fluid shows a monotonic increase with density approaching the freezing, resembling in this way the similar behavior in the vicinity of the Widom line in the case of supercritical fluids. PMID:25595625
Technical Review of the UNET2D Hydraulic Model
Perkins, William A.; Richmond, Marshall C.
2009-05-18
The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.
Chemical vapour deposition: Transition metal carbides go 2D
NASA Astrophysics Data System (ADS)
Gogotsi, Yury
2015-11-01
The unique properties of 2D materials, such as graphene or transition metal dichalcogenides, have been attracting much attention in the past decade. Now, metallically conductive and even superconducting transition metal carbides are entering the game.
Dominant 2D magnetic turbulence in the solar wind
NASA Technical Reports Server (NTRS)
Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.
1995-01-01
There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevector aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of inertial ranged magnetic spectra in the solar wind. The first test is based upon a characteristic difference between perpendicular and parallel reduced power spectra which is expected for the 2D component but not for the slab component. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant (approximately 85 percent by energy) 2D component in solar wind magnetic turbulence.
Dominant 2D magnetic turbulence in the solar wind
Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.
1996-07-20
There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevectors aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of mid-inertial range magnetic spectra in the solar wind. The first test is based upon a characteristic difference between reduced magnetic power spectra in the two different directions perpendicular to the mean field. Such a difference is expected for 2D geometry but not for slab geometry. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant ({approx}85% by energy) 2D component in solar wind magnetic turbulence.
Efficient framework for deformable 2D-3D registration
NASA Astrophysics Data System (ADS)
Fluck, Oliver; Aharon, Shmuel; Khamene, Ali
2008-03-01
Using 2D-3D registration it is possible to extract the body transformation between the coordinate systems of X-ray and volumetric CT images. Our initial motivation is the improvement of accuracy of external beam radiation therapy, an effective method for treating cancer, where CT data play a central role in radiation treatment planning. Rigid body transformation is used to compute the correct patient setup. The drawback of such approaches is that the rigidity assumption on the imaged object is not valid for most of the patient cases, mainly due to respiratory motion. In the present work, we address this limitation by proposing a flexible framework for deformable 2D-3D registration consisting of a learning phase incorporating 4D CT data sets and hardware accelerated free form DRR generation, 2D motion computation, and 2D-3D back projection.
Possibility of a 2D SiC monolayer formation on Mg(0001) and MgO(111) substrates
NASA Astrophysics Data System (ADS)
Kuzubov, A. A.; Eliseeva, N. S.; Krasnov, P. O.; Tomilin, F. N.; Fedorov, A. S.; Tolstaya, A. V.
2013-08-01
The geometrical characteristics of a 2D SiC monolayer on Mg(0001) and MgO(111) plates regarded as potential materials for growing two-dimensional silicon carbide were studied. The most favorable positions of the atoms of 2D SiC on the substrates were determined. In the 2D SiC/Mg(0001) system, unlike in 2D SiC/MgO(111), the deviation of the carbon atom from the silicon carbide monolayer was insignificant (0.08 Å). Consequently, magnesium can be used as a substrate for growing two-dimensional silicon carbide. The use of MgO(111) is not recommended because of a significant distortion of the 2D SiC surface.
Li, Guo-Rong; Xie, Chen-Chao; Shen, Zhu-Rui; Chang, Ze; Bu, Xian-He
2016-05-01
In this work, the construction of Co3O4 two dimensional (2D) nano-assemblies utilizing infinite coordination polymers (ICPs) as precursors was investigated, aiming at the morphology targeted fabrication and utilization of 2D materials. Based on the successful modulation of morphology, a rose-like Co based ICP precursor was obtained, which was further transformed into porous Co3O4 nanoflake assemblies with a well-preserved 2D morphology and a large surface area. The mechanism of the morphology modulation was illustrated by systematic investigation, which demonstrated the crucial role of a modulating agent in the formation of 2D nano-assemblies. In addition, the cobalt oxide 2D nano-assemblies are fabricated into a lithium anode combined with graphene, and the remarkable capacity and stability (900 mA h g(-1) after 50 cycles) of the resulting Co3O4/G nanocomposite indicates its potential in lithium battery applications. PMID:27064264
Computational Design of 2D materials for Energy Applications
NASA Astrophysics Data System (ADS)
Sun, Qiang
2015-03-01
Since the successful synthesis of graphene, tremendous efforts have been devoted to two-dimensional monolayers such as boron nitride (BN), silicene and MoS2. These 2D materials exhibit a large variety of physical and chemical properties with unprecedented applications. Here we report our recent studies of computational design of 2D materials for fuel cell applications which include hydrogen storage, CO2 capture, CO conversion and O2 reduction.
Generating a 2D Representation of a Complex Data Structure
NASA Technical Reports Server (NTRS)
James, Mark
2006-01-01
A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.
Phylogenetic tree construction based on 2D graphical representation
NASA Astrophysics Data System (ADS)
Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa
2006-04-01
A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.
The local production of 1,25(OH)2D3 promotes osteoblast and osteocyte maturation.
Turner, Andrew G; Hanrath, Maarten A; Morris, Howard A; Atkins, Gerald J; Anderson, Paul H
2014-10-01
Maintenance of an adequate vitamin D status, as indicated by the level of circulating 25-hydroxyvitamin D (25(OH)D), is associated with higher bone mass and decreased risk of fracture. However, the molecular actions of vitamin D hormone (1,25(OH)2D3) in bone are complex, and include stimulation of osteoclastogenesis via RANK-ligand up-regulation, as well as the inhibition of mineralisation. We hypothesise that these divergent data may be reconciled by autocrine actions of 1,25(OH)2D3 which effect skeletal maintenance, as opposed to endocrine 1,25(OH)2D3 which acts to maintain serum calcium homeostasis. We have previously described local metabolism of 1,25(OH)2D3 within osteoblasts, with effects on gene expression and cell function. The aim of the current study was to investigate potential autocrine actions of 1,25(OH)2D3 within cells that exhibit osteocyte-like properties. Late osteoblastic MLO-A5 cells were cultured in the presence of 25(OH)D for 9 days with gene expression analysed pre- and post-mineralisation. Gene expression analysis revealed maturation within this time frame to an osteocyte-like stage, evidenced by increased Dmp1 and Phex mRNA expression. Expression of Cyp27b1 in 25(OH)D treated MLO-A5 cells was associated with elevated media levels of 1,25(OH)2D3 (p<0.05), induction of Cyp24a1 (p<0.001) and elevated ratios of Opg:Rankl mRNA (p<0.01). Chronic 25(OH)D exposure also increased osteocalcin mRNA in MLO-A5 cells, which contrasted with the dose-dependent inhibition of osteocalcin mRNA observed with acute treatment in MLO-Y4 cells (p<0.01). Treatment of MLO-Y4 cells with 25(OH)D also inhibited Phex mRNA expression (p<0.05), whilst Enpp1 gene expression was induced (p<0.01). Overall, the current study demonstrates that osteocyte-like cells convert physiological levels of 25(OH)D to 1,25(OH)2D3, with changes in gene expression that are consistent with increased osteocyte maturation. Although the physiological role of local metabolism of 1,25(OH)2D3
Atomistic methodologies for material properties of 2D materials at the nanoscale
NASA Astrophysics Data System (ADS)
Zhang, Zhen
Research on two dimensional (2D) materials, such as graphene and MoS2, now involves thousands of researchers worldwide cutting across physics, chemistry, engineering and biology. Due to the extraordinary properties of 2D materials, research extends from fundamental science to novel applications of 2D materials. From an engineering point of view, understanding the material properties of 2D materials under various conditions is crucial for tailoring the electrical and mechanical properties of 2D-material-based devices at the nanoscale. Even at the nanoscale, molecular systems typically consist of a vast number of atoms. Molecular dynamics (MD) simulations enable us to understand the properties of assemblies of molecules in terms of their structure and the microscopic interactions between them. From a continuum approach, mechanical properties and thermal properties, such as strain, stress, and heat capacity, are well defined and experimentally measurable. In MD simulations, material systems are considered to be discrete, and only interatomic potential, interatomic forces, and atom positions are directly obtainable. Besides, most of the fracture mechanics concepts, such as stress intensity factors, are not applicable since there is no singularity in MD simulations. However, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at the nanoscale. Therefore, equivalent definition of a physical quantity both in atomic scale and macroscopic scale is necessary in order to understand molecular and continuum scale phenomena concurrently. This work introduces atomistic simulation methodologies, based on interatomic potential and interatomic forces, as a tool to unveil the mechanical properties, thermal properties and fracture mechanical properties of 2D materials at the nanoscale. Among many 2D materials, graphene and MoS2 have attracted intense interest. Therefore, we applied our
Spin Circuit Model for 2D Channels with Spin-Orbit Coupling
Hong, Seokmin; Sayed, Shehrin; Datta, Supriyo
2016-01-01
In this paper we present a general theory for an arbitrary 2D channel with “spin momentum locking” due to spin-orbit coupling. It is based on a semiclassical model that classifies all the channel electronic states into four groups based on the sign of the z-component of the spin (up (U), down (D)) and the sign of the x-component of the velocity (+, −). This could be viewed as an extension of the standard spin diffusion model which uses two separate electrochemical potentials for U and D states. Our model uses four: U+, D+, U−, and D−. We use this formulation to develop an equivalent spin circuit that is also benchmarked against a full non-equilibrium Green’s function (NEGF) model. The circuit representation can be used to interpret experiments and estimate important quantities of interest like the charge to spin conversion ratio or the maximum spin current that can be extracted. The model should be applicable to topological insulator surface states with parallel channels as well as to other layered structures with interfacial spin-orbit coupling. PMID:26932563
Spin Circuit Model for 2D Channels with Spin-Orbit Coupling.
Hong, Seokmin; Sayed, Shehrin; Datta, Supriyo
2016-01-01
In this paper we present a general theory for an arbitrary 2D channel with "spin momentum locking" due to spin-orbit coupling. It is based on a semiclassical model that classifies all the channel electronic states into four groups based on the sign of the z-component of the spin (up (U), down (D)) and the sign of the x-component of the velocity (+, -). This could be viewed as an extension of the standard spin diffusion model which uses two separate electrochemical potentials for U and D states. Our model uses four: U+, D+, U-, and D-. We use this formulation to develop an equivalent spin circuit that is also benchmarked against a full non-equilibrium Green's function (NEGF) model. The circuit representation can be used to interpret experiments and estimate important quantities of interest like the charge to spin conversion ratio or the maximum spin current that can be extracted. The model should be applicable to topological insulator surface states with parallel channels as well as to other layered structures with interfacial spin-orbit coupling. PMID:26932563
Spin Circuit Model for 2D Channels with Spin-Orbit Coupling
NASA Astrophysics Data System (ADS)
Hong, Seokmin; Sayed, Shehrin; Datta, Supriyo
2016-03-01
In this paper we present a general theory for an arbitrary 2D channel with “spin momentum locking” due to spin-orbit coupling. It is based on a semiclassical model that classifies all the channel electronic states into four groups based on the sign of the z-component of the spin (up (U), down (D)) and the sign of the x-component of the velocity (+, -). This could be viewed as an extension of the standard spin diffusion model which uses two separate electrochemical potentials for U and D states. Our model uses four: U+, D+, U-, and D-. We use this formulation to develop an equivalent spin circuit that is also benchmarked against a full non-equilibrium Green’s function (NEGF) model. The circuit representation can be used to interpret experiments and estimate important quantities of interest like the charge to spin conversion ratio or the maximum spin current that can be extracted. The model should be applicable to topological insulator surface states with parallel channels as well as to other layered structures with interfacial spin-orbit coupling.
Realising the Full Potential of the Web.
ERIC Educational Resources Information Center
Berners-Lee, Tim
1999-01-01
Argues that the first phase of the Web is communication through shared knowledge. Predicts that the second side to the Web, yet to emerge, is that of machine-understandable information, with humans providing the inspiration and the intuition. (CR)
Evaluation of 2D spatially selective MR spectroscopy using parallel excitation at 7 T
Haas, Martin; Darji, Niravkumar; Speck, Oliver
2015-01-01
Background In this work, two-dimensional (2D) spatially selective magnetic resonance spectroscopy (MRS) was evaluated in both phantom and human brain using 8-channel parallel excitation (pTX) at 7 T and compared to standard STEAM. Materials and methods A 2D spiral excitation k-space trajectory was segmented into multiple individual segments to increase the bandwidth. pTX was used to decrease the number of segments by accelerating the trajectory. Different radio frequency (RF) shim settings were used for refocusing, water suppression and fat saturation pulses. Results Phantom experiments demonstrate that, although segmented 2D excitation provided excellent spatial selectivity and spectral quality, STEAM outperformed it in terms of outer volume suppression with 0.6% RMSD compared to 1.7%, 2.5%, 3.9% and 5.5% RMSDs for acceleration factors of R=1, 2, 3 and 4, respectively. Seven major metabolites [choline (Cho), creatine (Cr), phosphocreatine (PCr), glutamate (Glu), glutamine (Gln), glutathione (GSH) and N-acetylaspartate (NAA)] were detected with sufficient accuracy [Cramér-Rao lower bounds (CRLBs) <20%] from the in vivo spectra of both methods. Conservative RF power limits resulted in reduced SNR for 2D selective MR spectra (SNR 131 and 82 for R=1 and 2, respectively) compared to the reference STEAM spectrum (SNR 199). Conclusions Single voxel spectra acquired using 2D selective MRS with and without pTX showed very good agreement with the reference STEAM spectrum. Efficient SAR management of the 2D selective MRS sequence would potentially improve the SNR of spectra. PMID:26029637
Calculating tissue shear modulus and pressure by 2D Log-Elastographic methods.
McLaughlin, Joyce R; Zhang, Ning; Manduca, Armando
2010-01-01
Shear modulus imaging, often called elastography, enables detection and characterization of tissue abnormalities. In this paper the data is two displacement components obtained from successive MR or ultrasound data sets acquired while the tissue is excited mechanically. A 2D plane strain elastic model is assumed to govern the 2D displacement, u. The shear modulus, μ, is unknown and whether or not the first Lamé parameter, λ, is known the pressure p = λ∇ · u which is present in the plane strain model cannot be measured and is unreliably computed from measured data and can be shown to be an order one quantity in the units kPa. So here we present a 2D Log-Elastographic inverse algorithm that: (1) simultaneously reconstructs the shear modulus, μ, and p, which together satisfy a first order partial differential equation system, with the goal of imaging μ; (2) controls potential exponential growth in the numerical error; and (3) reliably reconstructs the quantity p in the inverse algorithm as compared to the same quantity computed with a forward algorithm. This work generalizes the Log-Elastographic algorithm in [20] which uses one displacement component, is derived assuming the component satisfies the wave equation, and is tested on synthetic data computed with the wave equation model. The 2D Log-Elastographic algorithm is tested on 2D synthetic data and 2Din-vivo data from Mayo Clinic. We also exhibit examples to show that the 2D Log-Elastographic algorithm improves the quality of the recovered images as compared to the Log-Elastographic and Direct Inversion algorithms. PMID:21822349
Latent heat induced rotation limited aggregation in 2D ice nanocrystals
NASA Astrophysics Data System (ADS)
Bampoulis, Pantelis; Siekman, Martin H.; Kooij, E. Stefan; Lohse, Detlef; Zandvliet, Harold J. W.; Poelsema, Bene
2015-07-01
The basic science responsible for the fascinating shapes of ice crystals and snowflakes is still not understood. Insufficient knowledge of the interaction potentials and the lack of relevant experimental access to the growth process are to blame for this failure. Here, we study the growth of fractal nanostructures in a two-dimensional (2D) system, intercalated between mica and graphene. Based on our scanning tunneling spectroscopy data, we provide compelling evidence that these fractals are 2D ice. They grow while they are in material contact with the atmosphere at 20 °C and without significant thermal contact to the ambient. The growth is studied in situ, in real time and space at the nanoscale. We find that the growing 2D ice nanocrystals assume a fractal shape, which is conventionally attributed to Diffusion Limited Aggregation (DLA). However, DLA requires a low mass density mother phase, in contrast to the actual currently present high mass density mother phase. Latent heat effects and consequent transport of heat and molecules are found to be key ingredients for understanding the evolution of the snow (ice) flakes. We conclude that not the local availability of water molecules (DLA), but rather them having the locally required orientation is the key factor for incorporation into the 2D ice nanocrystal. In combination with the transport of latent heat, we attribute the evolution of fractal 2D ice nanocrystals to local temperature dependent rotation limited aggregation. The ice growth occurs under extreme supersaturation, i.e., the conditions closely resemble the natural ones for the growth of complex 2D snow (ice) flakes and we consider our findings crucial for solving the "perennial" snow (ice) flake enigma.
Latent heat induced rotation limited aggregation in 2D ice nanocrystals.
Bampoulis, Pantelis; Siekman, Martin H; Kooij, E Stefan; Lohse, Detlef; Zandvliet, Harold J W; Poelsema, Bene
2015-07-21
The basic science responsible for the fascinating shapes of ice crystals and snowflakes is still not understood. Insufficient knowledge of the interaction potentials and the lack of relevant experimental access to the growth process are to blame for this failure. Here, we study the growth of fractal nanostructures in a two-dimensional (2D) system, intercalated between mica and graphene. Based on our scanning tunneling spectroscopy data, we provide compelling evidence that these fractals are 2D ice. They grow while they are in material contact with the atmosphere at 20 °C and without significant thermal contact to the ambient. The growth is studied in situ, in real time and space at the nanoscale. We find that the growing 2D ice nanocrystals assume a fractal shape, which is conventionally attributed to Diffusion Limited Aggregation (DLA). However, DLA requires a low mass density mother phase, in contrast to the actual currently present high mass density mother phase. Latent heat effects and consequent transport of heat and molecules are found to be key ingredients for understanding the evolution of the snow (ice) flakes. We conclude that not the local availability of water molecules (DLA), but rather them having the locally required orientation is the key factor for incorporation into the 2D ice nanocrystal. In combination with the transport of latent heat, we attribute the evolution of fractal 2D ice nanocrystals to local temperature dependent rotation limited aggregation. The ice growth occurs under extreme supersaturation, i.e., the conditions closely resemble the natural ones for the growth of complex 2D snow (ice) flakes and we consider our findings crucial for solving the "perennial" snow (ice) flake enigma. PMID:26203037
Growth and Characterization of Silicon at the 2D Limit
NASA Astrophysics Data System (ADS)
Mannix, Andrew; Kiraly, Brian; Hersam, Mark; Guisinger, Nathan
2015-03-01
Because bulk silicon has dominated the development of microelectronics over the past 50 years, the recent interest in two-dimensional (2D) materials (e.g., graphene, MoS2, phosphorene, etc.) naturally raises questions regarding the growth and properties of silicon at the 2D limit. Utilizing atomic-scale, ultra-high vacuum (UHV) scanning tunneling microscopy (STM), we have investigated the 2D limits of silicon growth on Ag(111). In agreement with previous reports of sp2-bonded silicene phases, we observe the temperature-dependent evolution of ordered 2D phases. However, we attribute these to apparent Ag-Si surface alloys. At sufficiently high silicon coverage, we observe the precipitation of crystalline, sp3-bonded Si(111) domains. These domains are capped with a √3 honeycomb phase that is indistinguishable from the silver-induced √3 honeycomb-chained-trimer reconstruction on bulk Si(111). Further ex-situcharacterization with Raman spectroscopy, atomic force microscopy, cross-sectional transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy reveals that these sheets are ultrathin sheets of bulk-like, (111) oriented, sp3 silicon. Even at the 2D limit, scanning tunneling spectroscopy shows that these silicon nanosheets exhibit semiconducting electronic characteristics.
Ultrafast 2D NMR: an emerging tool in analytical spectroscopy.
Giraudeau, Patrick; Frydman, Lucio
2014-01-01
Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry--from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342
Ultrafast 2D NMR: An Emerging Tool in Analytical Spectroscopy
NASA Astrophysics Data System (ADS)
Giraudeau, Patrick; Frydman, Lucio
2014-06-01
Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry—from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications.
Mean flow and anisotropic cascades in decaying 2D turbulence
NASA Astrophysics Data System (ADS)
Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki
2015-11-01
Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.
Xu, Biao; Li, Haoyi; Yang, Hao; Xiang, Wentian; Zhou, Gang; Wu, Yue; Wang, Xun
2015-06-10
Two-dimensional (2D) nanoheterostructure (2D NHS) with nanoparticles grown on 2D nanomaterial substrates could potentially enable many novel functionalities. Controlled site-selective growth of nanoparticles on either the lateral or the basal directions of 2D nanomaterial substrates is desirable but extremely challenging. Herein, we demonstrate the rational control of lateral- and basal-selective attachment of CdS nanoparticles onto 2D Bi2Se3 nanosheets through solution phase reactions. The combination of experimental and theoretical efforts elucidate that site-relevant interfacial bonding and kinetic control of molecular precursors play vital roles for site selectivity. Furthermore, the electronic structures revealed from density functional theory calculations explain the superior performance of the lateral 2D NHSs compared to their basal counterpart in prototype photoelectrochemical cells. The present study will inspire the construction of other site-selective 2D NHSs with well-defined structure and unique properties. PMID:26024068
A Novel Null Homozygous Mutation Confirms CACNA2D2 as a Gene Mutated in Epileptic Encephalopathy
Pippucci, Tommaso; Parmeggiani, Antonia; Palombo, Flavia; Maresca, Alessandra; Angius, Andrea; Crisponi, Laura; Cucca, Francesco; Liguori, Rocco; Valentino, Maria Lucia; Seri, Marco; Carelli, Valerio
2013-01-01
Contribution to epileptic encephalopathy (EE) of mutations in CACNA2D2, encoding α2δ-2 subunit of Voltage Dependent Calcium Channels, is unclear. To date only one CACNA2D2 mutation altering channel functionality has been identified in a single family. In the same family, a rare CELSR3 polymorphism also segregated with disease. Involvement of CACNA2D2 in EE is therefore not confirmed, while that of CELSR3 is questionable. In a patient with epilepsy, dyskinesia, cerebellar atrophy, psychomotor delay and dysmorphic features, offspring to consanguineous parents, we performed whole exome sequencing (WES) for homozygosity mapping and mutation detection. WES identified extended autozygosity on chromosome 3, containing two novel homozygous candidate mutations: c.1295delA (p.Asn432fs) in CACNA2D2 and c.G6407A (p.Gly2136Asp) in CELSR3. Gene prioritization pointed to CACNA2D2 as the most prominent candidate gene. The WES finding in CACNA2D2 resulted to be statistically significant (p = 0.032), unlike that in CELSR3. CACNA2D2 homozygous c.1295delA essentially abolished α2δ-2 expression. In summary, we identified a novel null CACNA2D2 mutation associated to a clinical phenotype strikingly similar to the Cacna2d2 null mouse model. Molecular and statistical analyses together argued in favor of a causal contribution of CACNA2D2 mutations to EE, while suggested that finding in CELSR3, although potentially damaging, is likely incidental. PMID:24358150
Juhlin, C Christofer; Stenman, Adam; Haglund, Felix; Clark, Victoria E; Brown, Taylor C; Baranoski, Jacob; Bilguvar, Kaya; Goh, Gerald; Welander, Jenny; Svahn, Fredrika; Rubinstein, Jill C; Caramuta, Stefano; Yasuno, Katsuhito; Günel, Murat; Bäckdahl, Martin; Gimm, Oliver; Söderkvist, Peter; Prasad, Manju L; Korah, Reju; Lifton, Richard P; Carling, Tobias
2015-09-01
As subsets of pheochromocytomas (PCCs) lack a defined molecular etiology, we sought to characterize the mutational landscape of PCCs to identify novel gene candidates involved in disease development. A discovery cohort of 15 PCCs wild type for mutations in PCC susceptibility genes underwent whole-exome sequencing, and an additional 83 PCCs served as a verification cohort for targeted sequencing of candidate mutations. A low rate of nonsilent single nucleotide variants (SNVs) was detected (6.1/sample). Somatic HRAS and EPAS1 mutations were observed in one case each, whereas the remaining 13 cases did not exhibit variants in established PCC genes. SNVs aggregated in apoptosis-related pathways, and mutations in COSMIC genes not previously reported in PCCs included ZAN, MITF, WDTC1, and CAMTA1. Two somatic mutations and one constitutional variant in the well-established cancer gene lysine (K)-specific methyltransferase 2D (KMT2D, MLL2) were discovered in one sample each, prompting KMT2D screening using focused exome-sequencing in the verification cohort. An additional 11 PCCs displayed KMT2D variants, of which two were recurrent. In total, missense KMT2D variants were found in 14 (11 somatic, two constitutional, one undetermined) of 99 PCCs (14%). Five cases displayed somatic mutations in the functional FYR/SET domains of KMT2D, constituting 36% of all KMT2D-mutated PCCs. KMT2D expression was upregulated in PCCs compared to normal adrenals, and KMT2D overexpression positively affected cell migration in a PCC cell line. We conclude that KMT2D represents a recurrently mutated gene with potential implication for PCC development. PMID:26032282
National Prociency Testing Result of CYP2D6*10 Genotyping for Adjuvant Tamoxifen Therapy in China.
Lin, Guigao; Zhang, Kuo; Yi, Lang; Han, Yanxi; Xie, Jiehong; Li, Jinming
2016-01-01
Tamoxifen has been successfully used for treating breast cancer and preventing cancer recurrence. Cytochrome P450 2D6 (CYP2D6) plays a key role in the process of metabolizing tamoxifen to its active moiety, endoxifen. Patients with variants of the CYP2D6 gene may not receive the full benefit of tamoxifen treatment. The CYP2D6*10 variant (the most common variant in Asians) was analyzed to optimize the prescription of tamoxifen in China. To ensure referring clinicians have accurate information for genotype-guided tamoxifen treatment, the Chinese National Center for Clinical Laboratories (NCCL) organized a national proficiency testing (PT) to evaluate the performance of laboratories providing CYP2D6*10 genotyping. Ten genomic DNA samples with CYP2D6 wild-type or CYP2D6*10 variants were validated by PCR-sequencing and sent to 28 participant laboratories. The genotyping results and pharmacogenomic test reports were submitted and evaluated by NCCL experts. Additional information regarding the number of samples tested, the accreditation/certification status, and detecting technology was also requested. Thirty-one data sets were received, with a corresponding analytical sensitivity of 98.2% (548/558 challenges; 95% confidence interval: 96.7-99.1%) and an analytic specificity of 96.5% (675/682; 95% confidence interval: 97.9-99.5%). Overall, 25/28 participants correctly identified CYP2D6*10 status in 10 samples; however, two laboratories made serious genotyping errors. Most of the essential information was included in the 20 submitted CYP2D6*10 test reports. The majority of Chinese laboratories are reliable for detecting the CYP2D6*10 variant; however, several issues revealed in this study underline the importance of PT schemes in continued external assessment and provision of guidelines. PMID:27603206
Perception-based reversible watermarking for 2D vector maps
NASA Astrophysics Data System (ADS)
Men, Chaoguang; Cao, Liujuan; Li, Xiang
2010-07-01
This paper presents an effective and reversible watermarking approach for digital copyright protection of 2D-vector maps. To ensure that the embedded watermark is insensitive for human perception, we only select the noise non-sensitive regions for watermark embedding by estimating vertex density within each polyline. To ensure the exact recovery of original 2D-vector map after watermark extraction, we introduce a new reversible watermarking scheme based on reversible high-frequency wavelet coefficients modification. Within the former-selected non-sensitive regions, our watermarking operates on the lower-order vertex coordinate decimals with integer wavelet transform. Such operation further reduces the visual distortion caused by watermark embedding. We have validated the effectiveness of our scheme on our real-world city river/building 2D-vector maps. We give extensive experimental comparisons with state-of-the-art methods, including embedding capability, invisibility, and robustness over watermark attacking.
Simultaneous 2D Strain Sensing Using Polymer Planar Bragg Gratings
Rosenberger, Manuel; Eisenbeil, Waltraud; Schmauss, Bernhard; Hellmann, Ralf
2015-01-01
We demonstrate the application of polymer planar Bragg gratings for multi-axial strain sensing and particularly highlight simultaneous 2D strain measurement. A polymer planar Bragg grating (PPBG) fabricated with a single writing step in bulk polymethylmethacrylate is used for measuring both tensile and compressive strain at various angles. It is shown that the sensitivity of the PPBG strongly depends on the angle between the optical waveguide into which the grating is inscribed and the direction along which the mechanical load is applied. Additionally, a 2D PPBG fabricated by writing two Bragg gratings angularly displaced from each other into a single polymer platelet is bonded to a stainless steel plate. The two reflected wavelengths exhibit different sensitivities while tested toward tensile and compressive strain. These characteristics make 2D PPBG suitable for measuring multi-axial tensile and compressive strain. PMID:25686313
Simultaneous 2D strain sensing using polymer planar Bragg gratings.
Rosenberger, Manuel; Eisenbeil, Waltraud; Schmauss, Bernhard; Hellmann, Ralf
2015-01-01
We demonstrate the application of polymer planar Bragg gratings for multi-axial strain sensing and particularly highlight simultaneous 2D strain measurement. A polymer planar Bragg grating (PPBG) fabricated with a single writing step in bulk polymethylmethacrylate is used for measuring both tensile and compressive strain at various angles. It is shown that the sensitivity of the PPBG strongly depends on the angle between the optical waveguide into which the grating is inscribed and the direction along which the mechanical load is applied. Additionally, a 2D PPBG fabricated by writing two Bragg gratings angularly displaced from each other into a single polymer platelet is bonded to a stainless steel plate. The two reflected wavelengths exhibit different sensitivities while tested toward tensile and compressive strain. These characteristics make 2D PPBG suitable for measuring multi-axial tensile and compressive strain. PMID:25686313
Focusing surface wave imaging with flexible 2D array
NASA Astrophysics Data System (ADS)
Zhou, Shiyuan; Fu, Junqiang; Li, Zhe; Xu, Chunguang; Xiao, Dingguo; Wang, Shaohan
2016-04-01
Curved surface is widely exist in key parts of energy and power equipment, such as, turbine blade cylinder block and so on. Cycling loading and harsh working condition of enable fatigue cracks appear on the surface. The crack should be found in time to avoid catastrophic damage to the equipment. A flexible 2D array transducer was developed. 2D Phased Array focusing method (2DPA), Mode-Spatial Double Phased focusing method (MSDPF) and the imaging method using the flexible 2D array probe are studied. Experiments using these focusing and imaging method are carried out. Surface crack image is obtained with both 2DPA and MSDPF focusing method. It have been proved that MSDPF can be more adaptable for curved surface and more calculate efficient than 2DPA.
2D bifurcations and Newtonian properties of memristive Chua's circuits
NASA Astrophysics Data System (ADS)
Marszalek, W.; Podhaisky, H.
2016-01-01
Two interesting properties of Chua's circuits are presented. First, two-parameter bifurcation diagrams of Chua's oscillatory circuits with memristors are presented. To obtain various 2D bifurcation images a substantial numerical effort, possibly with parallel computations, is needed. The numerical algorithm is described first and its numerical code for 2D bifurcation image creation is available for free downloading. Several color 2D images and the corresponding 1D greyscale bifurcation diagrams are included. Secondly, Chua's circuits are linked to Newton's law φ ''= F(t,φ,φ')/m with φ=\\text{flux} , constant m > 0, and the force term F(t,φ,φ') containing memory terms. Finally, the jounce scalar equations for Chua's circuits are also discussed.
Microscale 2D separation systems for proteomic analysis
Xu, Xin; Liu, Ke; Fan, Z. Hugh
2012-01-01
Microscale 2D separation systems have been implemented in capillaries and microfabricated channels. They offer advantages of faster analysis, higher separation efficiency and less sample consumption than the conventional methods, such as liquid chromatography (LC) in a column and slab gel electrophoresis. In this article, we review their recent advancement, focusing on three types of platforms, including 2D capillary electrophoresis (CE), CE coupling with capillary LC, and microfluidic devices. A variety of CE and LC modes have been employed to construct 2D separation systems via sophistically designed interfaces. Coupling of different separation modes has also been realized in a number of microfluidic devices. These separation systems have been applied for the proteomic analysis of various biological samples, ranging from a single cell to tumor tissues. PMID:22462786
The relationship between 2D static features and 2D dynamic features used in gait recognition
NASA Astrophysics Data System (ADS)
Alawar, Hamad M.; Ugail, Hassan; Kamala, Mumtaz; Connah, David
2013-05-01
In most gait recognition techniques, both static and dynamic features are used to define a subject's gait signature. In this study, the existence of a relationship between static and dynamic features was investigated. The correlation coefficient was used to analyse the relationship between the features extracted from the "University of Bradford Multi-Modal Gait Database". This study includes two dimensional dynamic and static features from 19 subjects. The dynamic features were compromised of Phase-Weighted Magnitudes driven by a Fourier Transform of the temporal rotational data of a subject's joints (knee, thigh, shoulder, and elbow). The results concluded that there are eleven pairs of features that are considered significantly correlated with (p<0.05). This result indicates the existence of a statistical relationship between static and dynamics features, which challenges the results of several similar studies. These results bare great potential for further research into the area, and would potentially contribute to the creation of a gait signature using latent data.
Real-time 2-D temperature imaging using ultrasound.
Liu, Dalong; Ebbini, Emad S
2010-01-01
We have previously introduced methods for noninvasive estimation of temperature change using diagnostic ultrasound. The basic principle was validated both in vitro and in vivo by several groups worldwide. Some limitations remain, however, that have prevented these methods from being adopted in monitoring and guidance of minimally invasive thermal therapies, e.g., RF ablation and high-intensity-focused ultrasound (HIFU). In this letter, we present first results from a real-time system for 2-D imaging of temperature change using pulse-echo ultrasound. The front end of the system is a commercially available scanner equipped with a research interface, which allows the control of imaging sequence and access to the RF data in real time. A high-frame-rate 2-D RF acquisition mode, M2D, is used to capture the transients of tissue motion/deformations in response to pulsed HIFU. The M2D RF data is streamlined to the back end of the system, where a 2-D temperature imaging algorithm based on speckle tracking is implemented on a graphics processing unit. The real-time images of temperature change are computed on the same spatial and temporal grid of the M2D RF data, i.e., no decimation. Verification of the algorithm was performed by monitoring localized HIFU-induced heating of a tissue-mimicking elastography phantom. These results clearly demonstrate the repeatability and sensitivity of the algorithm. Furthermore, we present in vitro results demonstrating the possible use of this algorithm for imaging changes in tissue parameters due to HIFU-induced lesions. These results clearly demonstrate the value of the real-time data streaming and processing in monitoring, and guidance of minimally invasive thermotherapy. PMID:19884075
Ruck, Tobias; Bittner, Stefan; Afzali, Ali Maisam; Göbel, Kerstin; Glumm, Sarah; Kraft, Peter; Sommer, Claudia; Kleinschnitz, Christoph; Preuße, Corinna; Stenzel, Werner; Wiendl, Heinz; Meuth, Sven G
2015-12-22
NKG2D is an activating receptor on T cells, which has been implicated in the pathogenesis of autoimmune diseases. T cells are critically involved in idiopathic inflammatory myopathies (IIM) and have been proposed as specific therapeutic targets. However, the mechanisms underlying T cell-mediated progressive muscle destruction in IIM remain to be elucidated. We here determined the involvement of the NKG2D - IL-15 signaling pathway. Primary human myoblasts expressed NKG2D ligands, which were further upregulated upon inflammatory stimuli. In parallel, shedding of the soluble NKG2D ligand MICA (sMICA) decreased upon inflammation potentially diminishing inhibition of NKG2D signaling. Membrane-related expression of IL-15 by myoblasts induced differentiation of naïve CD8+ T cells into highly activated, cytotoxic CD8+NKG2Dhigh T cells demonstrating NKG2D-dependent lysis of myoblasts in vitro. CD8+NKG2Dhigh T cell frequencies were increased in the peripheral blood of polymyositis (PM) patients and correlated with serum creatinine kinase concentrations, while serum sMICA levels were not significantly changed. In muscle biopsy specimens from PM patients expression of the NKG2D ligand MICA/B was upregulated, IL-15 was expressed by muscle cells, CD68+ macrophages as well as CD4+ T cells, and CD8+NKG2D+ cells were frequently detected within inflammatory infiltrates arguing for a local signaling circuit in the inflammatory muscle milieu. In conclusion, the NKG2D - IL-15 signaling pathway contributes to progressive muscle destruction in IIM potentially opening new therapeutic avenues. PMID:26646698
Design of the LRP airfoil series using 2D CFD
NASA Astrophysics Data System (ADS)
Zahle, Frederik; Bak, Christian; Sørensen, Niels N.; Vronsky, Tomas; Gaudern, Nicholas
2014-06-01
This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils.
Quantum process tomography by 2D fluorescence spectroscopy
Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán
2015-06-07
Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.
Evaluation of 2D ceramic matrix composites in aeroconvective environments
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R.; Love, Wendell L.; Balter-Peterson, Aliza
1992-01-01
An evaluation is conducted of a novel ceramic-matrix composite (CMC) material system for use in the aeroconvective-heating environments encountered by the nose caps and wing leading edges of such aerospace vehicles as the Space Shuttle, during orbit-insertion and reentry from LEO. These CMCs are composed of an SiC matrix that is reinforced with Nicalon, Nextel, or carbon refractory fibers in a 2D architecture. The test program conducted for the 2D CMCs gave attention to their subsurface oxidation.
Radiative heat transfer in 2D Dirac materials
Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.
2015-05-12
We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.
Nomenclature for human CYP2D6 alleles.
Daly, A K; Brockmöller, J; Broly, F; Eichelbaum, M; Evans, W E; Gonzalez, F J; Huang, J D; Idle, J R; Ingelman-Sundberg, M; Ishizaki, T; Jacqz-Aigrain, E; Meyer, U A; Nebert, D W; Steen, V M; Wolf, C R; Zanger, U M
1996-06-01
To standardize CYP2D6 allele nomenclature, and to conform with international human gene nomenclature guidelines, an alternative to the current arbitrary system is described. Based on recommendations for human genome nomenclature, we propose that alleles be designated by CYP2D6 followed by an asterisk and a combination of roman letters and arabic numerals distinct for each allele with the number specifying the key mutation and, where appropriate, a letter specifying additional mutations. Criteria for classification as a separate allele and protein nomenclature are also presented. PMID:8807658
The 2D large deformation analysis using Daubechies wavelet
NASA Astrophysics Data System (ADS)
Liu, Yanan; Qin, Fei; Liu, Yinghua; Cen, Zhangzhi
2010-01-01
In this paper, Daubechies (DB) wavelet is used for solution of 2D large deformation problems. Because the DB wavelet scaling functions are directly used as basis function, no meshes are needed in function approximation. Using the DB wavelet, the solution formulations based on total Lagrangian approach for two-dimensional large deformation problems are established. Due to the lack of Kroneker delta properties in wavelet scaling functions, Lagrange multipliers are used for imposition of boundary condition. Numerical examples of 2D large deformation problems illustrate that this method is effective and stable.
Optical imaging systems analyzed with a 2D template.
Haim, Harel; Konforti, Naim; Marom, Emanuel
2012-05-10
Present determination of optical imaging systems specifications are based on performance values and modulation transfer function results carried with a 1D resolution template (such as the USAF resolution target or spoke templates). Such a template allows determining image quality, resolution limit, and contrast. Nevertheless, the conventional 1D template does not provide satisfactory results, since most optical imaging systems handle 2D objects for which imaging system response may be different by virtue of some not readily observable spatial frequencies. In this paper we derive and analyze contrast transfer function results obtained with 1D as well as 2D templates. PMID:22614498