Science.gov

Sample records for 2d gas chromatography

  1. Gas Chromatography.

    ERIC Educational Resources Information Center

    Karasek, Francis W.; And Others

    1984-01-01

    This review covers fundamental developments in gas chromatography during 1982 and 1983. Literature is considered under these headings: columns; liguid phases; solid supports; sorption processes and solvents; open tubular column gas chromatography; instrumentation; high-resolution columns and applications; other techniques; qualitative and…

  2. Gas Chromatography.

    ERIC Educational Resources Information Center

    Cram, Stuart P.; And Others

    1980-01-01

    Selects fundamental developments in theory, methodology, and instrumentation in gas chromatography (GC). A special section reviews GC in the People's Republic of China. Over 1,000 references are cited. (CS)

  3. Gas chromatography

    NASA Astrophysics Data System (ADS)

    Guiochon, Georges; Guillemin, Claude L.

    1990-11-01

    Gas chromatography is a powerful separation technique for gas and vapor mixtures. Combining separation and on-line detection permits accurate quantitative analysis of complex mixtures, including traces of compounds down to parts per trillions in some particular cases. The importance of gas chromatography in quality control and process control in the chemical and drug industry, in environmental pollution investigations and in clinical analysis is critical. The principles of the technique are discussed, the main components of a gas chromatograph are described and some idea of the importance of the applications is given.

  4. Gas Chromatography

    NASA Astrophysics Data System (ADS)

    Hansen, Patrick; Whisnant, C. Steven

    2010-02-01

    To prepare frozen-spin HD targets for photonuclear physics at JLab, high purity HD is required. Commercially available gas is only ˜98% HD. To reach the purity required to make nuclear targets, the gas is distilled at low temperature to remove the H2 and D2 impurities. To monitor the distillation process and correlate the gas purity with the spin relaxation times, a low temperature gas chromatograph system has been developed that produces good separation of H2, HD and D2. The system uses a PLOT 5A column in a mixture of LN2 and i-pentane at temperatures between 110K and 135K. With this system, the relative concentrations can be determined with uncertainties of ˜10%. The chromatography process and the resulting chromatograms will be discussed. )

  5. Gas Chromatography

    NASA Astrophysics Data System (ADS)

    Qian, Michael C.

    Gas chromatography (GC) has many applications in the analysis of food products. GC has been used for the determination of fatty acids, triglycerides, cholesterol, gases, water, alcohols, pesticides, flavor compounds, and many more. While GC has been used for other food components such as sugars, oligosaccharides, amino acids, peptides, and vitamins, these substances are more suited to analysis by high performance liquid chromatography. GC is ideally suited to the analysis of volatile substances that are thermally stable. Substances such as pesticides and flavor compounds that meet these criteria can be isolated from a food and directly injected into the GC. For compounds that are thermally unstable, too low in volatility, or yield poor chromatographic separation due to polarity, a derivatization step must be done before GC analysis. The two parts of the experiment described here include the analysis of alcohols that requires no derivatization step, and the analysis of fatty acids which requires derivatization. The experiments specify the use of capillary columns, but the first experiment includes conditions for a packed column.

  6. Qualitative Characterization of the Aqueous Fraction from Hydrothermal Liquefaction of Algae Using 2D Gas Chromatography with Time-of-flight Mass Spectrometry.

    PubMed

    Maddi, Balakrishna; Panisko, Ellen; Albrecht, Karl; Howe, Daniel

    2016-01-01

    Two-dimensional gas chromatography coupled with time-of-flight mass spectrometry is a powerful tool for identifying and quantifying chemical components in complex mixtures. It is often used to analyze gasoline, jet fuel, diesel, bio-diesel and the organic fraction of bio-crude/bio-oil. In most of those analyses, the first dimension of separation is non-polar, followed by a polar separation. The aqueous fractions of bio-crude and other aqueous samples from biofuels production have been examined with similar column combinations. However, sample preparation techniques such as derivatization, solvent extraction, and solid-phase extraction were necessary prior to analysis. In this study, aqueous fractions obtained from the hydrothermal liquefaction of algae were characterized by two-dimensional gas chromatography coupled with time-of-flight mass spectrometry without prior sample preparation techniques using a polar separation in the first dimension followed by a non-polar separation in the second. Two-dimensional plots from this analysis were compared with those obtained from the more traditional column configuration. Results from qualitative characterization of the aqueous fractions of algal bio-crude are discussed in detail. The advantages of using a polar separation followed by a non-polar separation for characterization of organics in aqueous samples by two-dimensional gas chromatography coupled with time-of-flight mass spectrometry are highlighted. PMID:27022829

  7. Evaluation of Comprehensive 2-D Gas Chromatography-Time-Of-Flight Mass Spectrometry for 209 Chlorinated Biphenyl Congeners in Two Chromatographic Runs

    EPA Science Inventory

    This research evaluates a recently developed comprehensive 2-D GC coupled with a time-of-flight (TOF) mass spectrometer for the potential separation of 209 PCB congeners, using a sequence of 1-D and 2-D chromatographic modes. In two consecutive chromatographic runs, using a 40 m,...

  8. Gas chromatography in space.

    PubMed

    Akapo, S O; Dimandja, J M; Kojiro, D R; Valentin, J R; Carle, G C

    1999-05-28

    Gas chromatography has proven to be a very useful analytical technique for in situ analysis of extraterrestrial environments as demonstrated by its successful operation on spacecraft missions to Mars and Venus. The technique is also one of the six scientific instruments aboard the Huygens probe to explore Titan's atmosphere and surface. A review of gas chromatography in previous space missions and some recent developments in the current environment of fiscal constraints and payload size limitations are presented.

  9. Gas chromatography in space

    NASA Technical Reports Server (NTRS)

    Akapo, S. O.; Dimandja, J. M.; Kojiro, D. R.; Valentin, J. R.; Carle, G. C.

    1999-01-01

    Gas chromatography has proven to be a very useful analytical technique for in situ analysis of extraterrestrial environments as demonstrated by its successful operation on spacecraft missions to Mars and Venus. The technique is also one of the six scientific instruments aboard the Huygens probe to explore Titan's atmosphere and surface. A review of gas chromatography in previous space missions and some recent developments in the current environment of fiscal constraints and payload size limitations are presented.

  10. Energy level transitions of gas in a 2D nanopore

    SciTech Connect

    Grinyaev, Yurii V.; Chertova, Nadezhda V.; Psakhie, Sergei G.

    2015-10-27

    An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters.

  11. Multiplex gas chromatography

    NASA Technical Reports Server (NTRS)

    Valentin, Jose R.

    1990-01-01

    The principles of the multiplex gas chromatography (GC) technique, which is a possible candidate for chemical analysis of planetary atmospheres, are discussed. Particular attention is given to the chemical modulators developed by present investigators for multiplex GC, namely, the thermal-desorption, thermal-decomposition, and catalytic modulators, as well as to mechanical modulators. The basic technique of multiplex GC using chemical modulators and a mechanical modulator is demonstrated. It is shown that, with the chemical modulators, only one gas stream consisting of the carrier in combination with the components is being analyzed, resulting in a simplified instrument that requires relatively few consumables. The mechanical modulator demonstrated a direct application of multiplex GC for the analysis of gases in atmosphere of Titan at very low pressures.

  12. Quantum Oscillations in an Interfacial 2D Electron Gas.

    SciTech Connect

    Zhang, Bingop; Lu, Ping; Liu, Henan; Lin, Jiao; Ye, Zhenyu; Jaime, Marcelo; Balakirev, Fedor F.; Yuan, Huiqiu; Wu, Huizhen; Pan, Wei; Zhang, Yong

    2016-01-01

    Recently, it has been predicted that topological crystalline insulators (TCIs) may exist in SnTe and Pb1-xSnxTe thin films [1]. To date, most studies on TCIs were carried out either in bulk crystals or thin films, and no research activity has been explored in heterostructures. We present here the results on electronic transport properties of the 2D electron gas (2DEG) realized at the interfaces of PbTe/ CdTe (111) heterostructures. Evidence of topological state in this interfacial 2DEG was observed.

  13. Thermal modulation for gas chromatography

    NASA Technical Reports Server (NTRS)

    Hasselbrink, Ernest F. (Inventor); Libardoni, Mark (Inventor); Stewart, Kristine (Inventor); Waite, J. Hunter (Inventor); Block, Bruce P. (Inventor); Sacks, Richard D. (Inventor)

    2007-01-01

    A thermal modulator device for gas chromatography and associated methods. The thermal modulator device includes a cooling member, an electrically conductive capillary in direct thermal contact with the cooling member, and a power supply electrically coupled to the capillary and operable for controlled resistive heating of the capillary.

  14. Thermal modulation for gas chromatography

    NASA Technical Reports Server (NTRS)

    Hasselbrink, Ernest F. (Inventor); Libardoni, Mark (Inventor); Stewart, Kristine (Inventor); Waite, J. Hunter (Inventor); Block, Bruce P. (Inventor); Sacks, Richard D. (Inventor)

    2007-01-01

    A thermal modulator device for gas chromatography and associated methods. The thermal modulator device includes a recirculating fluid cooling member, an electrically conductive capillary in direct thermal contact with the cooling member, and a power supply electrically coupled to the capillary and operable for controlled resistive heating of the capillary. The capillary can include more than one separate thermally modulated sections.

  15. Automated gas chromatography

    DOEpatents

    Mowry, Curtis D.; Blair, Dianna S.; Rodacy, Philip J.; Reber, Stephen D.

    1999-01-01

    An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute.

  16. Automated gas chromatography

    DOEpatents

    Mowry, C.D.; Blair, D.S.; Rodacy, P.J.; Reber, S.D.

    1999-07-13

    An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute. 7 figs.

  17. The 2-D Ion Chromatography Development and Application: Determination of Sulfate in Formation Water at Pre-Salt Region

    NASA Astrophysics Data System (ADS)

    Tonietto, G. B.; Godoy, J. M.; Almeida, A. C.; Mendes, D.; Soluri, D.; Leite, R. S.; Chalom, M. Y.

    2015-12-01

    Formation water is the naturally-occurring water which is contained within the geological formation itself. The quantity and quality of the formation water can both be problematic. Over time, the water volume should decrease as the gas volumes increase. Formation water has been found to contain high levels of Cl, As, Fe, Ba, Mn, PAHs and may even contain naturally occurring radioactive materials. Chlorides in some cases have been found to be in excess of four-five times the level of concentrations found in the ocean. Within the management of well operation, there is sulfate between the analytes of greatest importance due to the potential for hydrogen sulphide formation and consequent corrosion of pipelines. As the concentration of sulfate in these waters can be less than n times that of chloride, a quantitative determination, using the technique of ion chromatography, constitutes an analytical challenge. This work aimed to develop and validate a method for the determination of sulphate ions in hyper-saline waters coming from the oil wells of the pre-salt, using 2D IC. In 2D IC the first column can be understood as a separating column, in which the species with retention times outside a preset range are discarded, while those belonging to this range are retained in a pre-concentrator column to further injecting a second column, the second dimension in which occurs the separation and quantification of the analytes of interest. As the chloride ions have a retention time lower than that of sulfate, a method was developed a for determining sulfate in very low range (mg L-1) by 2D IC, applicable to hypersaline waters, wherein the first dimension is used to the elimination of the matrix, ie, chloride ions, and the second dimension utilized in determining sulfate. For sulphate in a concentration range from 1.00 mg L-1 was obtained an accuracy of 1.0%. The accuracy of the method was tested by the standard addition method different samples of formation water in the pre

  18. Multielement detector for gas chromatography

    SciTech Connect

    Sklarew, D.S.; Evans, J.C.; Olsen, K.B.

    1988-11-01

    This report describes the results of a study to improve the capabilities of a gas chromatography-microwave-induced plasma (GC- MIP) detector system, determine the feasibility of empirical formula determination for simple mixtures containing elements of interest to fossil fuel analysis and, subsequently, explore applications for analysis of the complex mixtures associated with fossil fuels. The results of this study indicate that the GC-MIP system is useful as a specific-element detector that provides excellent elemental specificity for a number of elements of interest to the analysis of fossil fuels. It has reasonably good sensitivity for carbon, hydrogen, sulfur, and nickel, and better sensitivity for chlorine and fluorine. Sensitivity is poor for nitrogen and oxygen, however, probably because of undetected leaks or erosion of the plasma tube. The GC-MIP can also provide stoichiometric information about components of simple mixtures. If this powerful technique is to be available for complex mixtures, it will be necessary to greatly simplify the chromatograms by chemical fractionation. 38 refs., 46 figs., 16 tabs.

  19. Crossover from 2D to 3D in a Weakly Interacting Fermi Gas

    SciTech Connect

    Dyke, P.; Kuhnle, E. D.; Hu, H.; Mark, M.; Hoinka, S.; Lingham, M.; Hannaford, P.; Vale, C. J.; Whitlock, S.

    2011-03-11

    We have studied the transition from two to three dimensions in a low temperature weakly interacting {sup 6}Li Fermi gas. Below a critical atom number N{sub 2D} only the lowest transverse vibrational state of a highly anisotropic oblate trapping potential is occupied and the gas is two dimensional. Above N{sub 2D} the Fermi gas enters the quasi-2D regime where shell structure associated with the filling of individual transverse oscillator states is apparent. This dimensional crossover is demonstrated through measurements of the cloud size and aspect ratio versus atom number.

  20. Electrostatic interactions in gas-solid chromatography.

    NASA Technical Reports Server (NTRS)

    Benson, S. W.; King, J., Jr.

    1966-01-01

    Electrostatic theory of physical adsorption applied to gas-solid chromatography, discussing chromatographic inseparability of argon and oxygen at room temperature, prediction of elution order of many gases, etc

  1. Ionization-based detectors for gas chromatography.

    PubMed

    Poole, Colin F

    2015-11-20

    The gas phase ionization detectors are the most widely used detectors for gas chromatography. The column and makeup gases commonly used in gas chromatography are near perfect insulators. This facilitates the detection of a minute number of charge carriers facilitating the use of ionization mechanisms of low efficiency while providing high sensitivity. The main ionization mechanism discussed in this report are combustion in a hydrogen diffusion flame (flame ionization detector), surface ionization in a plasma (thermionic ionization detector), photon ionization (photoionization detector and pulsed discharge helium ionization detector), attachment of thermal electrons (electron-capture detector), and ionization by collision with metastable helium species (helium ionization detector). The design, response characteristics, response mechanism, and suitability for fast gas chromatography are the main features summarized in this report. Mass spectrometric detection and atomic emission detection, which could be considered as ionization detectors of a more sophisticated and complex design, are not discussed in this report. PMID:25757823

  2. Ionization-based detectors for gas chromatography.

    PubMed

    Poole, Colin F

    2015-11-20

    The gas phase ionization detectors are the most widely used detectors for gas chromatography. The column and makeup gases commonly used in gas chromatography are near perfect insulators. This facilitates the detection of a minute number of charge carriers facilitating the use of ionization mechanisms of low efficiency while providing high sensitivity. The main ionization mechanism discussed in this report are combustion in a hydrogen diffusion flame (flame ionization detector), surface ionization in a plasma (thermionic ionization detector), photon ionization (photoionization detector and pulsed discharge helium ionization detector), attachment of thermal electrons (electron-capture detector), and ionization by collision with metastable helium species (helium ionization detector). The design, response characteristics, response mechanism, and suitability for fast gas chromatography are the main features summarized in this report. Mass spectrometric detection and atomic emission detection, which could be considered as ionization detectors of a more sophisticated and complex design, are not discussed in this report.

  3. Gas amplified ionization detector for gas chromatography

    DOEpatents

    Huston, Gregg C.

    1992-01-01

    A gas-amplified ionization detector for gas chromatrography which possesses increased sensitivity and a very fast response time. Solutes eluding from a gas chromatographic column are ionized by UV photoionization of matter eluting therefrom. The detector is capable of generating easily measured voltage signals by gas amplification/multiplication of electron products resulting from the UV photoionization of at least a portion of each solute passing through the detector.

  4. Temperature programmable microfabricated gas chromatography column

    DOEpatents

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2003-12-23

    A temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by the integration of a resistive heating element and temperature sensing on the microfabricated column. Additionally, means are provided to thermally isolate the heated column from their surroundings. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.

  5. 2D-MoO3 nanosheets for superior gas sensors.

    PubMed

    Ji, Fangxu; Ren, Xianpei; Zheng, Xiaoyao; Liu, Yucheng; Pang, Liuqing; Jiang, Jiaxing; Liu, Shengzhong Frank

    2016-04-28

    By taking advantages of both grinding and sonication, an effective exfoliation process is developed to prepare two-dimensional (2D) molybdenum oxide (MoO3) nanosheets. The approach avoids high-boiling-point solvents that would leave a residue and cause aggregation. Gas sensors fabricated using the 2D-MoO3 nanosheets provide a significantly enhanced chemical sensor performance. Compared with the sensors using bulk MoO3, the response of the 2D-MoO3 sensor increases from 7 to 33; the sensor response time is reduced from 27 to 21 seconds, and the recovery time is shortened from 26 to 10 seconds. We attribute the superior performance to the 2D-structure with a much increased surface area and reactive sites. PMID:27053379

  6. Evolved gas composition monitoring by repetitive injection gas chromatography.

    PubMed

    White, Robert L

    2015-11-20

    Performance characteristics and applications of a small volume gas chromatograph oven are described. Heating and cooling properties of the apparatus are evaluated and examples are given illustrating the advantages of greatly reducing the air bath volume surrounding fused silica columns. Fast heating and cooling of the oven permit it to be employed for repetitive injection analyses. By using fast gas chromatography separations to achieve short assay cycle times, the apparatus can be employed for on-line species-specific gas stream composition monitoring when volatile species concentrations vary on time scales of a few minutes or longer. This capability facilitates repeated sampling and fast gas chromatographic separations of volatile product mixtures produced during thermal analyses. Applications of repetitive injection gas chromatography-mass spectrometry evolved gas analyses to monitoring purge gas effluent streams containing volatile acid catalyzed polymer cracking products are described. The influence of thermal analysis and chromatographic experimental parameters on effluent sampling frequency are delineated.

  7. 2D-MoO3 nanosheets for superior gas sensors

    NASA Astrophysics Data System (ADS)

    Ji, Fangxu; Ren, Xianpei; Zheng, Xiaoyao; Liu, Yucheng; Pang, Liuqing; Jiang, Jiaxing; Liu, Shengzhong (Frank)

    2016-04-01

    By taking advantages of both grinding and sonication, an effective exfoliation process is developed to prepare two-dimensional (2D) molybdenum oxide (MoO3) nanosheets. The approach avoids high-boiling-point solvents that would leave a residue and cause aggregation. Gas sensors fabricated using the 2D-MoO3 nanosheets provide a significantly enhanced chemical sensor performance. Compared with the sensors using bulk MoO3, the response of the 2D-MoO3 sensor increases from 7 to 33; the sensor response time is reduced from 27 to 21 seconds, and the recovery time is shortened from 26 to 10 seconds. We attribute the superior performance to the 2D-structure with a much increased surface area and reactive sites.By taking advantages of both grinding and sonication, an effective exfoliation process is developed to prepare two-dimensional (2D) molybdenum oxide (MoO3) nanosheets. The approach avoids high-boiling-point solvents that would leave a residue and cause aggregation. Gas sensors fabricated using the 2D-MoO3 nanosheets provide a significantly enhanced chemical sensor performance. Compared with the sensors using bulk MoO3, the response of the 2D-MoO3 sensor increases from 7 to 33; the sensor response time is reduced from 27 to 21 seconds, and the recovery time is shortened from 26 to 10 seconds. We attribute the superior performance to the 2D-structure with a much increased surface area and reactive sites. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00880a

  8. 2 D patterns of soil gas diffusivity , soil respiration, and methane oxidation in a soil profile

    NASA Astrophysics Data System (ADS)

    Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2015-04-01

    The apparent gas diffusion coefficient in soil (DS) is an important parameter describing soil aeration, which makes it a key parameter for root growth and gas production and consumption. Horizontal homogeneity in soil profiles is assumed in most studies for soil properties - including DS. This assumption, however, is not valid, even in apparently homogeneous soils, as we know from studies using destructive sampling methods. Using destructive methods may allow catching a glimpse, but a large uncertainty remains, since locations between the sampling positions cannot be analyzed, and measurements cannot be repeated. We developed a new method to determine in situ the apparent soil gas diffusion coefficient in order to examine 2 D pattern of DS and methane oxidation in a soil profile. Different tracer gases (SF6, CF4, C2H6) were injected continuously into the subsoil and measured at several locations in the soil profile. These data allow for modelling inversely the 2 D patterns of DS using Finite Element Modeling. The 2D DS patterns were then combined with naturally occurring CH4 and CO2 concentrations sampled at the same locations to derive the 2D pattern of soil respiration and methane oxidation in the soil profile. We show that methane oxidation and soil respiration zones shift within the soil profile while the gas fluxes at the surface remain rather stable during a the 3 week campaign.

  9. High pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis

    SciTech Connect

    Yang, Feng; Shen, Yufeng; Camp, David G.; Smith, Richard D.

    2012-04-01

    Orthogonal high-resolution separations are critical for attaining improved analytical dynamic ranges of proteome measurements. Concatenated high pH reversed phase liquid chromatography affords better separations than the strong cation exchange conventionally applied for two-dimensional shotgun proteomic analysis. For example, concatenated high pH reversed phase liquid chromatography increased identification coverage for peptides (e.g., by 1.8-fold) and proteins (e.g., by 1.6-fold) in shotgun proteomics analyses of a digested human protein sample. Additional advantages of concatenated high pH RPLC include improved protein sequence coverage, simplified sample processing, and reduced sample losses, making this an attractive first dimension separation strategy for two-dimensional proteomics analyses.

  10. Non-planar microfabricated gas chromatography column

    DOEpatents

    Lewis, Patrick R.; Wheeler, David R.

    2007-09-25

    A non-planar microfabricated gas chromatography column comprises a planar substrate having a plurality of through holes, a top lid and a bottom lid bonded to opposite surfaces of the planar substrate, and inlet and outlet ports for injection of a sample gas and elution of separated analytes. A plurality of such planar substrates can be aligned and stacked to provide a longer column length having a small footprint. Furthermore, two or more separate channels can enable multi-channel or multi-dimensional gas chromatography. The through holes preferably have a circular cross section and can be coated with a stationary phase material or packed with a porous packing material. Importantly, uniform stationary phase coatings can be obtained and band broadening can be minimized with the circular channels. A heating or cooling element can be disposed on at least one of the lids to enable temperature programming of the column.

  11. Flow field thermal gradient gas chromatography.

    PubMed

    Boeker, Peter; Leppert, Jan

    2015-09-01

    Negative temperature gradients along the gas chromatographic separation column can maximize the separation capabilities for gas chromatography by peak focusing and also lead to lower elution temperatures. Unfortunately, so far a smooth thermal gradient over a several meters long separation column could only be realized by costly and complicated manual setups. Here we describe a simple, yet flexible method for the generation of negative thermal gradients using standard and easily exchangeable separation columns. The measurements made with a first prototype reveal promising new properties of the optimized separation process. The negative thermal gradient and the superposition of temperature programming result in a quasi-parallel separation of components each moving simultaneously near their lowered specific equilibrium temperatures through the column. Therefore, this gradient separation process is better suited for thermally labile molecules such as explosives and natural or aroma components. High-temperature GC methods also benefit from reduced elution temperatures. Even for short columns very high peak capacities can be obtained. In addition, the gradient separation is particularly beneficial for very fast separations below 1 min overall retention time. Very fast measurements of explosives prove the benefits of using negative thermal gradients. The new concept can greatly reduce the cycle time of high-resolution gas chromatography and can be integrated into hyphenated or comprehensive gas chromatography setups.

  12. Improved Thermal Modulator for Gas Chromatography

    NASA Technical Reports Server (NTRS)

    Hasselbrink, Ernest Frederick, Jr.; Hunt, Patrick J.; Sacks, Richard D.

    2008-01-01

    An improved thermal modulator has been invented for use in a variant of gas chromatography (GC). The variant in question denoted as two-dimensional gas chromatography (2DGC) or GC-GC involves the use of three series-connected chromatographic columns, in the form of capillary tubes coated interiorly with suitable stationary phases (compounds for which different analytes exhibit different degrees of affinity). The two end columns are relatively long and are used as standard GC columns. The thermal modulator includes the middle column, which is relatively short and is not used as a standard GC column: instead, its temperature is modulated to affect timed adsorption and desorption of analyte gases between the two end columns in accordance with a 2DGC protocol.

  13. Phase Separation and Pair Condensation in a Spin-Imbalanced 2D Fermi Gas

    NASA Astrophysics Data System (ADS)

    Mitra, Debayan; Brown, Peter T.; Schauß, Peter; Kondov, Stanimir S.; Bakr, Waseem S.

    2016-08-01

    We study a two-component quasi-two-dimensional Fermi gas with imbalanced spin populations. We probe the gas at different interaction strengths and polarizations by measuring the density of each spin component in the trap and the pair momentum distribution after time of flight. For a wide range of experimental parameters, we observe in-trap phase separation characterized by the appearance of a spin-balanced core surrounded by a polarized gas. Our momentum space measurements indicate pair condensation in the imbalanced gas even for large polarizations where phase separation vanishes, pointing to the presence of a polarized pair condensate. Our observation of zero momentum pair condensates in 2D spin-imbalanced gases opens the way to explorations of more exotic superfluid phases that occupy a large part of the phase diagram in lower dimensions.

  14. Phase Separation and Pair Condensation in a Spin-Imbalanced 2D Fermi Gas.

    PubMed

    Mitra, Debayan; Brown, Peter T; Schauß, Peter; Kondov, Stanimir S; Bakr, Waseem S

    2016-08-26

    We study a two-component quasi-two-dimensional Fermi gas with imbalanced spin populations. We probe the gas at different interaction strengths and polarizations by measuring the density of each spin component in the trap and the pair momentum distribution after time of flight. For a wide range of experimental parameters, we observe in-trap phase separation characterized by the appearance of a spin-balanced core surrounded by a polarized gas. Our momentum space measurements indicate pair condensation in the imbalanced gas even for large polarizations where phase separation vanishes, pointing to the presence of a polarized pair condensate. Our observation of zero momentum pair condensates in 2D spin-imbalanced gases opens the way to explorations of more exotic superfluid phases that occupy a large part of the phase diagram in lower dimensions. PMID:27610853

  15. Phase Separation and Pair Condensation in a Spin-Imbalanced 2D Fermi Gas.

    PubMed

    Mitra, Debayan; Brown, Peter T; Schauß, Peter; Kondov, Stanimir S; Bakr, Waseem S

    2016-08-26

    We study a two-component quasi-two-dimensional Fermi gas with imbalanced spin populations. We probe the gas at different interaction strengths and polarizations by measuring the density of each spin component in the trap and the pair momentum distribution after time of flight. For a wide range of experimental parameters, we observe in-trap phase separation characterized by the appearance of a spin-balanced core surrounded by a polarized gas. Our momentum space measurements indicate pair condensation in the imbalanced gas even for large polarizations where phase separation vanishes, pointing to the presence of a polarized pair condensate. Our observation of zero momentum pair condensates in 2D spin-imbalanced gases opens the way to explorations of more exotic superfluid phases that occupy a large part of the phase diagram in lower dimensions.

  16. Responsive ionic liquid-polymer 2D photonic crystal gas sensors.

    PubMed

    Smith, Natasha L; Hong, Zhenmin; Asher, Sanford A

    2014-12-21

    We developed novel air-stable 2D polymerized photonic crystal (2DPC) sensing materials for visual detection of gas phase analytes such as water and ammonia by utilizing a new ionic liquid, ethylguanidine perchlorate (EGP) as the mobile phase. Because of the negligible ionic liquid vapor pressure these 2DPC sensors are indefinitely air stable and, therefore, can be used to sense atmospheric analytes. 2D arrays of ~640 nm polystyrene nanospheres were attached to the surface of crosslinked poly(hydroxyethyl methacrylate) (pHEMA)-based polymer networks dispersed in EGP. The wavelength of the bright 2D photonic crystal diffraction depends sensitively on the 2D array particle spacing. The volume phase transition response of the EGP-pHEMA system to water vapor or gaseous ammonia changes the 2DPC particle spacing, enabling the visual determination of the analyte concentration. Water absorbed by EGP increases the Flory-Huggins interaction parameter, which shrinks the polymer network and causes a blue shift in the diffracted light. Ammonia absorbed by the EGP deprotonates the pHEMA-co-acrylic acid carboxyl groups, swelling the polymer which red shifts the diffracted light.

  17. Local Probing of Phase Coherence in a Strongly Interacting 2D Quantum Gas

    NASA Astrophysics Data System (ADS)

    Luick, Niclas; Siegl, Jonas; Hueck, Klaus; Morgener, Kai; Lompe, Thomas; Weimer, Wolf; Moritz, Henning

    2016-05-01

    The dimensionality of a quantum system has a profound impact on its coherence and superfluid properties. In 3D superfluids, bosonic atoms or Cooper pairs condense into a macroscopic wave function exhibiting long-range phase coherence. Meanwhile, 2D superfluids show a strikingly different behavior: True long-range coherence is precluded by thermal fluctuations, nevertheless Berezinskii-Kosterlitz-Thouless (BKT) theory predicts that 2D systems can still become superfluid. The superfluid state is characterized by an algebraic decay of phase correlations g1(r) ~r - τ / 4 , where the decay exponent τ is directly related to the superfluid density ns according to τ = 4 /(nsλdB2) . I will present local coherence measurements in a strongly interacting 2D gas of diatomic 6 Li molecules. A self-interference technique allows us to locally extract the algebraic decay exponent and to reconstruct the superfluid density. We determine the scaling of the decay exponent with phase space density to provide a benchmark for studies of 2D superfluids in the strongly interacting regime.

  18. 2D and 3D simulations of damage in 5-grain copper gas gun samples

    SciTech Connect

    Tonks, Davis L; Cerreta, Ellen K; Dennis - Koller, Darcie; Escobedo - Diaz, Juan P; Trujillo, Carl P; Luo, Shengian; Bingert, John F

    2010-12-16

    2D and 3D Hydrocode simulations were done of a gas gun damage experiment involving a 5 grain sample with a polycrystalline flyer with a velocity of about 140 m/s. The simulations were done with the Flag hydrocode and involved explicit meshing of the 5 grains with a single crystal plasticity model and a pressure based damage model. The calculated fields were compared with two cross sections from the recovered sample. The sample exhibited grain boundary cracks at high angle and tilt grain boundaries in the sample but not at a sigma 3 twin boundary. However, the calculation showed large gradients in stress and strain at only the twin boundary, contrary to expectation. This indicates that the twin boundary is quite strong to resist the predicted high gradients and that the calculation needs the addition of a grain boundary fracture mode. The 2D and 3D simulations were compared.

  19. Experimental measurements of the collapse of a 2D granular gas under gravity

    NASA Astrophysics Data System (ADS)

    Voth, Greg; Son, Reuben; Perez, John

    2008-11-01

    We experimentally measure the decay of a quasi-2D granular gas under gravity. A granular gas is created by vibro- fluidization, after which the energy input is halted, and the time-dependent statistical properties of the decaying gas are measured with video particle tracking. There are two distinct cooling stages separated by a high temperature settling shock. In the final stage, the temperature of a fluid packet decreases as a power law T (tc-t)^α just before the system collapses to a static state. The measured value of α ranges from 3.3 to 6.1 depending on the height, significantly higher than the exponent of 2 found in theoretical work on this problem [Phys Rev. E 73, 61305 (2006)]. We also address the question of whether the collapse occurs simultaneously at different heights in the system.

  20. Chromatography

    MedlinePlus

    Chromatography is a way of separating two or more chemical compounds. Chemical compounds are chemicals that are ... of chemical compound. There are different kinds of chromatography. These include gas, high pressure liquid, or ion ...

  1. Permanent gas analysis using gas chromatography with vacuum ultraviolet detection.

    PubMed

    Bai, Ling; Smuts, Jonathan; Walsh, Phillip; Fan, Hui; Hildenbrand, Zacariah; Wong, Derek; Wetz, David; Schug, Kevin A

    2015-04-01

    The analysis of complex mixtures of permanent gases consisting of low molecular weight hydrocarbons, inert gases, and toxic species plays an increasingly important role in today's economy. A new gas chromatography detector based on vacuum ultraviolet (VUV) spectroscopy (GC-VUV), which simultaneously collects full scan (115-240 nm) VUV and UV absorption of eluting analytes, was applied to analyze mixtures of permanent gases. Sample mixtures ranged from off-gassing of decomposing Li-ion and Li-metal batteries to natural gas samples and water samples taken from private wells in close proximity to unconventional natural gas extraction. Gas chromatography separations were performed with a porous layer open tubular column. Components such as C1-C5 linear and branched hydrocarbons, water, oxygen, and nitrogen were separated and detected in natural gas and the headspace of natural gas-contaminated water samples. Of interest for the transport of lithium batteries were the detection of flammable and toxic gases, such as methane, ethylene, chloromethane, dimethyl ether, 1,3-butadiene, CS2, and methylproprionate, among others. Featured is the capability for deconvolution of co-eluting signals from different analytes.

  2. F2D users manual: A two-dimensional compressible gas flow code

    NASA Astrophysics Data System (ADS)

    Suo-Anttila, A.

    1993-08-01

    The F2D computer code is a general purpose, two-dimensional, fully compressible thermal-fluids code that models most of the phenomena found in situations of coupled fluid flow and heat transfer. The code solves momentum, continuity, gas-energy, and structure-energy equations using a predictor-corrector solution algorithm. The corrector step includes a Poisson pressure equation. The finite difference form of the equation is presented along with a description of input and output. Several example problems are included that demonstrate the applicability of the code in problems ranging from free fluid flow, shock tubes, and flow in heated porous media.

  3. F2D. A Two-Dimensional Compressible Gas Flow Code

    SciTech Connect

    Suo-Anttila, A.

    1993-08-01

    F2D is a general purpose, two dimensional, fully compressible thermal-fluids code that models most of the phenomena found in situations of coupled fluid flow and heat transfer. The code solves momentum, continuity, gas-energy, and structure-energy equations using a predictor-correction solution algorithm. The corrector step includes a Poisson pressure equation. The finite difference form of the equation is presented along with a description of input and output. Several example problems are included that demonstrate the applicability of the code in problems ranging from free fluid flow, shock tubes and flow in heated porous media.

  4. F2D users manual: A two-dimensional compressible gas flow code

    SciTech Connect

    Suo-Anttila, A.

    1993-08-01

    The F2D computer code is a general purpose, two-dimensional, fully compressible thermal-fluids code that models most of the phenomena found in situations of coupled fluid flow and heat transfer. The code solves momentum, continuity, gas-energy, and structure-energy equations using a predictor-corrector solution algorithm. The corrector step includes a Poisson pressure equation. The finite difference form of the equation is presented along with a description of input and output. Several example problems are included that demonstrate the applicability of the code in problems ranging from free fluid flow, shock tubes and flow in heated porous media.

  5. Axial thermal gradients in microchip gas chromatography.

    PubMed

    Wang, Anzi; Hynynen, Sampo; Hawkins, Aaron R; Tolley, Samuel E; Tolley, H Dennis; Lee, Milton L

    2014-12-29

    Fabrication technologies for microelectromechanical systems (MEMS) allow miniaturization of conventional benchtop gas chromatography (GC) to portable, palm-sized microfabricated GC (μGC) devices, which are suitable for on-site chemical analysis and remote sensing. The separation performance of μGC systems, however, has not been on par with conventional GC. Column efficiency, peak symmetry and resolution are often compromised by column defects and non-ideal injections. The relatively low performance of μGC devices has impeded their further commercialization and broader application. In this work, the separation performance of μGC columns was improved by incorporating thermal gradient gas chromatography (TGGC). The analysis time was ∼20% shorter for TGGC separations compared to conventional temperature-programmed GC (TPGC) when a wide sample band was introduced into the column. Up to 50% reduction in peak tailing was observed for polar analytes, which improved their resolution. The signal-to-noise ratios (S/N) of late-eluting peaks were increased by 3-4 fold. The unique focusing effect of TGGC overcomes many of the previous shortcomings inherent in μGC analyses.

  6. Axial thermal gradients in microchip gas chromatography.

    PubMed

    Wang, Anzi; Hynynen, Sampo; Hawkins, Aaron R; Tolley, Samuel E; Tolley, H Dennis; Lee, Milton L

    2014-12-29

    Fabrication technologies for microelectromechanical systems (MEMS) allow miniaturization of conventional benchtop gas chromatography (GC) to portable, palm-sized microfabricated GC (μGC) devices, which are suitable for on-site chemical analysis and remote sensing. The separation performance of μGC systems, however, has not been on par with conventional GC. Column efficiency, peak symmetry and resolution are often compromised by column defects and non-ideal injections. The relatively low performance of μGC devices has impeded their further commercialization and broader application. In this work, the separation performance of μGC columns was improved by incorporating thermal gradient gas chromatography (TGGC). The analysis time was ∼20% shorter for TGGC separations compared to conventional temperature-programmed GC (TPGC) when a wide sample band was introduced into the column. Up to 50% reduction in peak tailing was observed for polar analytes, which improved their resolution. The signal-to-noise ratios (S/N) of late-eluting peaks were increased by 3-4 fold. The unique focusing effect of TGGC overcomes many of the previous shortcomings inherent in μGC analyses. PMID:25476685

  7. Laser Absorption spectrometer instrument for tomographic 2D-measurement of climate gas emission from soils

    NASA Astrophysics Data System (ADS)

    Seidel, Anne; Wagner, Steven; Dreizler, Andreas; Ebert, Volker

    2014-05-01

    One of the most intricate effects in climate modelling is the role of permafrost thawing during the global warming process. Soil that has formerly never totally lost its ice cover now emits climate gases due to melting processes[1]. For a better prediction of climate development and possible feedback mechanisms, insights into physical procedures (like e.g. gas emission from underground reservoirs) are required[2]. Therefore, a long-term quantification of greenhouse gas concentrations (and further on fluxes) is necessary and the related structures that are responsible for emission need to be identified. In particular the spatial heterogeneity of soils caused by soil internal structures (e.g. soil composition changes or surface cracks) or by surface modifications (e.g. by plant growth) generate considerable complexities and difficulties for local measurements, for example with soil chambers. For such situations, which often cannot be avoided, a spatially resolved 2D-measurement to identify and quantify the gas emission from the structured soil would be needed, to better understand the influence of the soil sub-structures on the emission behavior. Thus we designed a spatially scanning laser absorption spectrometer setup to determine a 2D-gas concentration map in the soil-air boundary layer. The setup is designed to cover the surfaces in the range of square meters in a horizontal plane above the soil to be investigated. Existing field instruments for gas concentration or flux measurements are based on point-wise measurements, so structure identification is very tedious or even impossible. For this reason, we have developed a tomographic in-situ instrument based on TDLAS ('tunable diode laser absorption spectroscopy') that delivers absolute gas concentration distributions of areas with 0.8m × 0.8m size, without any need for reference measurements with a calibration gas. It is a simple and robust device based on a combination of scanning mirrors and reflecting foils, so

  8. Observation of 2D Ising criticality of liquid-gas transition by the flowgram method

    NASA Astrophysics Data System (ADS)

    Yarmolinsky, Max; Kuklov, Anatoly

    We study the critical properties of the transition in 2D liquid-gas system with the square-well potential interaction by Monte Carlo simulations in the grand canonical ensemble. Due to lack of the underlying Ising symmetry, the analysis cannot be done reliably by the standard methods applicable to lattice systems. In contrast, the analysis based on the flowgram method allowed us to find the critical point to significantly higher (and controllable) accuracy than in previous studies by other authors. Simulations were performed in a progression of sizes L up to size L = 84 , with the particle numbers varying over 3 orders of magnitude and the subcritical behavior not extending beyond L = 10 - 15 . The finite size scaling analysis of the critical exponents and their ratio, μ and γ / ν , gives values consistent with the 2D Ising universality class within 1-2% of errors. Our result essentially closes proposals that the nature of the liquid-gas transition might be different from the Ising model in systems with short-range interactions. This work was supported by the NSF Grant PHY1314469.

  9. An Inexpensive Detector for Gas Chromatography

    NASA Astrophysics Data System (ADS)

    Smith, Allan L.; Thorne, Edward J.; Nadler, Wolfgang

    1998-09-01

    We have developed a low-cost (parts cost approximately $70) detector that can be used in a freshman level class to demonstrate the fundamental principles of gas chromatography (GC). The detector box can be used in a modification of experiments available in the literature which do not enable a quantitative method of analysis. We have used it with success in a freshman class of approximately 450 students in an experiment to separate chlorinated hydrocarbons via GC. Natural gas is used as the carrier gas, a commercial GC column packing is the separating medium, and a Beilstein detector generates a green flame when the halocarbon is burned as it exits the column. The detector box is equipped with a CdS detector selective for the green light emitted and gives a signal that is quantitatively measured by an appropriate means such as a strip chart recorder or computer interfaced terminal panel. The detector box has a limit of detection on the order of 0.5 to 5 mg and shows a linear response over a sixfold change in concentration. Very small volumes (only about 0.1 ml) of most halocarbon vapors are necessary to achieve a measurable signal.

  10. NOVEL CONTINUOUS PH/SALT GRADIENT AND PEPTIDE SCORE FOR STRONG CATION EXCHANGE CHROMATOGRAPHY IN 2D-NANO-LC/MSMS PEPTIDE IDENTIFICATION FOR PROTEOMICS

    EPA Science Inventory

    Tryptic digests of human serum albumin (HSA) and human lung epithelial cell lysates were used as test samples in a novel proteomics study. Peptides were separated and analyzed using 2D-nano-LC/MSMS with strong cation exchange (SCX) and reverse phase (RP) chromatography and contin...

  11. Freeze drying for gas chromatography stationary phase deposition

    DOEpatents

    Sylwester, Alan P.

    2007-01-02

    The present disclosure relates to methods for deposition of gas chromatography (GC) stationary phases into chromatography columns, for example gas chromatography columns. A chromatographic medium is dissolved or suspended in a solvent to form a composition. The composition may be inserted into a chromatographic column. Alternatively, portions of the chromatographic column may be exposed or filled with the composition. The composition is permitted to solidify, and at least a portion of the solvent is removed by vacuum sublimation.

  12. Applications of resistive heating in gas chromatography: a review.

    PubMed

    Jacobs, Matthew R; Hilder, Emily F; Shellie, Robert A

    2013-11-25

    Gas chromatography is widely applied to separate, identify, and quantify components of samples in a timely manner. Increasing demand for analytical throughput, instrument portability, environmental sustainability, and more economical analysis necessitates the development of new gas chromatography instrumentation. The applications of resistive column heating technologies have been espoused for nearly thirty years and resistively heated gas chromatography has been commercially available for the last ten years. Despite this lengthy period of existence, resistively heated gas chromatography has not been universally adopted. This low rate of adoption may be partially ascribed to the saturation of the market with older convection oven technology, coupled with other analytical challenges such as sampling, injection, detection and data processing occupying research. This article assesses the advantages and applications of resistive heating in gas chromatography and discusses practical considerations associated with adoption of this technology.

  13. Finite-size scaling in a 2D disordered electron gas with spectral nodes

    NASA Astrophysics Data System (ADS)

    Sinner, Andreas; Ziegler, Klaus

    2016-08-01

    We study the DC conductivity of a weakly disordered 2D electron gas with two bands and spectral nodes, employing the field theoretical version of the Kubo-Greenwood conductivity formula. Disorder scattering is treated within the standard perturbation theory by summing up ladder and maximally crossed diagrams. The emergent gapless (diffusion) modes determine the behavior of the conductivity on large scales. We find a finite conductivity with an intermediate logarithmic finite-size scaling towards smaller conductivities but do not obtain the logarithmic divergence of the weak-localization approach. Our results agree with the experimentally observed logarithmic scaling of the conductivity in graphene with the formation of a plateau near {{e}2}/π h .

  14. Finite-size scaling in a 2D disordered electron gas with spectral nodes.

    PubMed

    Sinner, Andreas; Ziegler, Klaus

    2016-08-01

    We study the DC conductivity of a weakly disordered 2D electron gas with two bands and spectral nodes, employing the field theoretical version of the Kubo-Greenwood conductivity formula. Disorder scattering is treated within the standard perturbation theory by summing up ladder and maximally crossed diagrams. The emergent gapless (diffusion) modes determine the behavior of the conductivity on large scales. We find a finite conductivity with an intermediate logarithmic finite-size scaling towards smaller conductivities but do not obtain the logarithmic divergence of the weak-localization approach. Our results agree with the experimentally observed logarithmic scaling of the conductivity in graphene with the formation of a plateau near [Formula: see text]. PMID:27270084

  15. Weak-localization approach to a 2D electron gas with a spectral node

    NASA Astrophysics Data System (ADS)

    Ziegler, K.; Sinner, A.

    2015-07-01

    We study a weakly disordered 2D electron gas with two bands and a spectral node within the weak-localization approach and compare its results with those of Gaussian fluctuations around the self-consistent Born approximation. The appearance of diffusive modes depends on the type of disorder. In particular, we find for a random gap a diffusive mode only from ladder contributions, whereas for a random scalar potential the diffusive mode is created by ladder and by maximally crossed contributions. The ladder (maximally crossed) contributions correspond to fermionic (bosonic) Gaussian fluctuations. We calculate the conductivity corrections from the density-density Kubo formula and find a good agreement with the experimentally observed V-shape conductivity of graphene.

  16. Vacuum ultraviolet detector for gas chromatography.

    PubMed

    Schug, Kevin A; Sawicki, Ian; Carlton, Doug D; Fan, Hui; McNair, Harold M; Nimmo, John P; Kroll, Peter; Smuts, Jonathan; Walsh, Phillip; Harrison, Dale

    2014-08-19

    Analytical performance characteristics of a new vacuum ultraviolet (VUV) detector for gas chromatography (GC) are reported. GC-VUV was applied to hydrocarbons, fixed gases, polyaromatic hydrocarbons, fatty acids, pesticides, drugs, and estrogens. Applications were chosen to feature the sensitivity and universal detection capabilities of the VUV detector, especially for cases where mass spectrometry performance has been limited. Virtually all chemical species absorb and have unique gas phase absorption cross sections in the approximately 120-240 nm wavelength range monitored. Spectra are presented, along with the ability to use software for deconvolution of overlapping signals. Some comparisons with experimental synchrotron data and computed theoretical spectra show good agreement, although more work is needed on appropriate computational methods to match the simultaneous broadband electronic and vibronic excitation initiated by the deuterium lamp. Quantitative analysis is governed by Beer-Lambert Law relationships. Mass on-column detection limits reported for representatives of different classes of analytes ranged from 15 (benzene) to 246 pg (water). Linear range measured at peak absorption for benzene was 3-4 orders of magnitude. Importantly, where absorption cross sections are known for analytes, the VUV detector is capable of absolute determination (without calibration) of the number of molecules present in the flow cell in the absence of chemical interferences. This study sets the stage for application of GC-VUV technology across a wide breadth of research areas. PMID:25079505

  17. Acoustic flame detector for gas chromatography.

    PubMed

    Thurbide, K B; Wentzell, P D; Aue, W A

    1996-09-01

    A novel gas chromatography detector is described that uses acoustic signals from a partly premixed hydrogen-air flame burning on top of a capillary. The device, referred to as the acoustic flame detector (AFD), is based on the measurement of the frequency of acoustic transients generated at the burner under a range of operating conditions. The presence of trace amounts of analyte in the flame was found to increase the frequency of these sonic bursts from the baseline level of ∼100 Hz. The response of the AFD for n-dodecane, measured as the shift in frequency, was determined to be linear over ∼3 orders of magnitude, with a minimum detectable level of about 1-5 ng C/s using the current system. The sensitivity correlates roughly with carbon content, except for certain organometallics (Sn, Mn), which gave substantially enhanced signals. Some tailing was observed but became serious only for particular types of organometallics. The noise of the system was predominantly of the 1/f type. The effects of flow conditions, burner geometry, and flame gas constituents were investigated. The oscillations could be followed by acoustic, visual, electrical, and optical means. The AFD mechanism is shown to involve oscillatory chemical kinetics, in which the flame front (the inner cone) temporarily enters a few millimeters into the capillary during each cycle, thereby creating the acoustic signal.

  18. Moving thermal gradients in gas chromatography.

    PubMed

    Tolley, H Dennis; Tolley, Samuel E; Wang, Anzi; Lee, Milton L

    2014-12-29

    This paper examines the separation effects of a moving thermal gradient on a chromatographic column in gas chromatography. This movement of the gradient has a focusing effect on the analyte bands, limiting band broadening in the column. Here we examine the relationship between the slope of this gradient, the velocity of the gradient and the resulting band width. Additionally we examine how transport of analytes along the column at their analyte specific constant temperatures, determined by the gradient slope and velocity, affects resolution. This examination is based primarily on a theoretical model of partitioning and transport of analyte under low concentration conditions. Preliminary predictions indicate that analytes reach near constant temperatures, relative positions and resolutions in less than 100cm of column transport. Use of longer columns produces very little improvement in resolution for any fixed slope. Properties of the thermal gradient determine a fixed solute band width for each analyte. These widths are nearly reached within the first 40-70cm, after which little broadening or narrowing of the bands occur. The focusing effect of the thermal gradient corrects for broad injections, reduces effects of irregular stationary phase coatings and can be used with short columns for fast analysis. Thermal gradient gas chromatographic instrumentation was constructed and used to illustrate some characteristics predicted from the theoretical results.

  19. A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds

    SciTech Connect

    Li, Tingwen; Zhang, Yongmin

    2013-10-11

    Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.

  20. Metal Decoration Effects on the Gas-Sensing Properties of 2D Hybrid-Structures on Flexible Substrates

    PubMed Central

    Cho, Byungjin; Yoon, Jongwon; Lim, Sung Kwan; Kim, Ah Ra; Choi, Sun-Young; Kim, Dong-Ho; Lee, Kyu Hwan; Lee, Byoung Hun; Ko, Heung Cho; Hahm, Myung Gwan

    2015-01-01

    We have investigated the effects of metal decoration on the gas-sensing properties of a device with two-dimensional (2D) molybdenum disulfide (MoS2) flake channels and graphene electrodes. The 2D hybrid-structure device sensitively detected NO2 gas molecules (>1.2 ppm) as well as NH3 (>10 ppm). Metal nanoparticles (NPs) could tune the electronic properties of the 2D graphene/MoS2 device, increasing sensitivity to a specific gas molecule. For instance, palladium NPs accumulate hole carriers of graphene/MoS2, electronically sensitizing NH3 gas molecules. Contrarily, aluminum NPs deplete hole carriers, enhancing NO2 sensitivity. The synergistic combination of metal NPs and 2D hybrid layers could be also applied to a flexible gas sensor. There was no serious degradation in the sensing performance of metal-decorated MoS2 flexible devices before/after 5000 bending cycles. Thus, highly sensitive and endurable gas sensor could be achieved through the metal-decorated 2D hybrid-structure, offering a useful route to wearable electronic sensing platforms. PMID:26404279

  1. Gas chromatography using resistive heating technology.

    PubMed

    Wang, Anzi; Tolley, H Dennis; Lee, Milton L

    2012-10-26

    Air bath ovens are standard in conventional gas chromatography (GC) instruments because of their simplicity and reliability for column temperature control. However, their low heating rates, high power consumption and bulky size are in conflict with the increasing demands for fast separation and portable instrumentation. The deficiencies of air bath ovens can be eliminated using resistive heating technology, as the column is conductively heated by compact resistive heaters with low thermal mass. Resistive heating methods were employed in the early years of GC history, and they are emerging again as instrumentation is becoming more compact and sophisticated. Numerous designs have been tested and some have been successfully commercialized. Development of portable GC systems, including lab-on-a-chip devices, greatly benefits from the use of small, low-power resistive heating hardware. High speed GC separations using conventional instruments also can be best achieved with resistive heating modules. Despite some of its own inherent disadvantages, including efficiency loss, complex manufacturing and inconvenient column maintenance, resistive heating is expected to rapidly become a mature technology and even replace oven heating in the not-to-distant future.

  2. Thermal Independent Modulator for Comprehensive Two-Dimensional Gas Chromatography.

    PubMed

    Luong, Jim; Guan, Xiaosheng; Xu, Shifen; Gras, Ronda; Shellie, Robert A

    2016-09-01

    We introduce a modulation strategy for comprehensive two-dimensional gas chromatography (GC×GC) with complete thermal independence between the cooling and heating stages and without the need for GC oven heat for remobilization. Based on this approach, a compact thermal independent modulator (TiM) with thermoelectric cooling and micathermic heating has been successfully innovated for use in GC×GC. The device operates externally to a gas chromatograph, does not require liquid cryogen, and has minimal consumables requirements. The augmentation of an additional gas flow stream results in a number of critical chromatographic parameter improvements such as the decoupling of flows of first- and second-dimension columns to attain both efficiency and speed optimized flow in each dimension, the potential for independent retention time locking or scaling in either dimension, the improvement of modulator reinjection efficiency, as well as facilitating back-flushing for the first dimension to enhance system cleanliness and throughput. TiM was found to be useful for chromatographic applications over a volatility range equivalent to nC6 to nC24 under conditions used. Repeatability of retention time for model compounds such as benzene, toluene, ethyl benzene, and xylenes were found to be quite satisfactory with relative standard deviations of less than 0.009% in (1)D and less than 0.008% in (2)D (n = 10). Typical peak widths of 120 ms or less with a relative standard deviation of less than 4.7% were achieved for the aromatic model compounds. In this article, the performance of the modulator is demonstrated and a series of challenging chromatographic applications are presented to illustrate usefulness of the apparatus. PMID:27537206

  3. ENVIRONMENTAL APPLICATION OF GAS CHROMATOGRAPHY/ATOMIC EMISSION DETECTION

    EPA Science Inventory

    A gas chromatography/atomic emission detector (GC/AED) system has been evaluated for its applicability to environmental analysis. Detection limits, elemental response factors, and regression analysis data were determined for 58 semivolatile environmental contaminants. Detection l...

  4. Mixed Stationary Liquid Phases for Gas-Liquid Chromatography.

    ERIC Educational Resources Information Center

    Koury, Albert M.; Parcher, Jon F.

    1979-01-01

    Describes a laboratory technique for use in an undergraduate instrumental analysis course that, using the interpretation of window diagrams, prepares a mixed liquid phase column for gas-liquid chromatography. A detailed procedure is provided. (BT)

  5. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures.

    PubMed

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G

    2016-06-14

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models.

  6. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures

    PubMed Central

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G.

    2016-01-01

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models. PMID:27296089

  7. Rise characteristics of gas bubbles in a 2D rectangular column: VOF simulations vs experiments

    SciTech Connect

    Krishna, R.; Baten, J.M. van

    1999-10-01

    About five centuries ago, Leonardo da Vinci described the sinuous motion of gas bubbles rising in water. The authors have attempted to simulate the rise trajectories of bubbles of 4, 5, 7, 8, 9, 12, and 20 mm in diameter rising in a 2D rectangular column filled with water. The simulations were carried out using the volume-of-fluid (VOF) technique developed by Hirt and Nichols (J. Computational Physics, 39, 201--225 (1981)). To solve the Navier-Stokes equations of motion the authors used a commercial solver, CFX 4.1c of AEA Technology, UK. They developed their own bubble-tracking algorithm to capture sinuous bubble motions. The 4 and 5 mm bubbles show large lateral motions observed by Da Vinci. The 7, 8 and 9 mm bubble behave like jellyfish. The 12 mm bubble flaps its wings like a bird. The extent of lateral motion of the bubbles decreases with increasing bubble size. Bubbles larger than 20 mm in size assume a spherical cap form and simulations of the rise characteristics match experiments exactly. VOF simulations are powerful tools for a priori determination of the morphology and rise characteristics of bubbles rising in a liquid. Bubble-bubble interactions are also properly modeled by the VOF technique.

  8. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures.

    PubMed

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G

    2016-01-01

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models. PMID:27296089

  9. Fast 2-D soft X-ray imaging device based on micro pattern gas detector

    NASA Astrophysics Data System (ADS)

    Pacella, D.; Bellazzini, R.; Brez, A.; Pizzicaroli, G.

    2003-09-01

    An innovative fast system for X-ray imaging has been developed at ENEA Frascati (Italy) to be used as diagnostic of magnetic plasmas for thermonuclear fusion. It is based on a pinhole camera coupled to a Micro Pattern Gas Detector (MPGD) having a Gas Electron Multiplier (GEM) as amplifying stage. This detector (2.5 cm × 2.5 cm active area) is equipped with a 2-D read-out printed circuit board with 144 pixels (12 × 12), with an electronic channel for each pixel (charge conversion, shaping, discrimination and counting). Working in photon counting mode, in proportional regime, it is able to get X-ray images of the plasma in a selectable X-ray energy range, at very high photon fluxes (106 ph s-̊1mm-2 all over the detector) and high framing rate (up to 100 kHz). It has very high dynamic range, high signal to noise ratio (statistical) and large flexibility in the optical configurations (magnification and views on the plasma). The system has been tested successfully on the Frascati Tokamak Upgrade (FTU), having central electron temperature of a few keV and density of 1020 m-3, during the summer 2001, with a one-dimensional perpendicular view of the plasma. In collaboration with ENEA, the Johns Hopkins University (JHU) and Princeton Plasma Physics (PPPL), this system has been set up and calibrated in the X-ray energy range 2-8 keV and it has been installed, with a two-dimensional tangential view, on the spherical tokamak NSTX at Princeton. Time resolved X-ray images of the NSTX plasma core have been obtained. Fast acquisitions, performed up to 50 kHz of framing rate, allow the study of the plasma evolution and its magneto-hydrodynamic instabilities, while with a slower sampling (a few kHz) the curvature of the magnetic surfaces can be measured. All these results reveal the good imaging properties of this device at high time resolution, despite of the low number of pixels, and the effectiveness of the fine controlled energy discrimination.

  10. Probing dipole-dipole interaction in a rubidium gas via double-quantum 2D spectroscopy.

    PubMed

    Gao, Feng; Cundiff, Steven T; Li, Hebin

    2016-07-01

    We have implemented double-quantum 2D spectroscopy on a rubidium vapor and shown that this technique provides sensitive and background-free detection of the dipole-dipole interaction. The 2D spectra include signals from both individual atoms and interatomic interactions, allowing quantitative studies of the interaction. A theoretical model based on the optical Bloch equations is used to reproduce the experimental spectrum and confirm the origin of double-quantum signals. PMID:27367074

  11. Upgrade of PARC2D to include real gas effects. [computer program for flowfield surrounding aeroassist flight experiment

    NASA Technical Reports Server (NTRS)

    Saladino, Anthony; Praharaj, Sarat C.; Collins, Frank G.; Seaford, C. Mark

    1990-01-01

    This paper presents a description of the changes and additions to the perfect gas PARC2D code to include chemical equilibrium effects, resulting in a code called PARCEQ2D. The work developed out of a need to have the capability of more accurately representing the flowfield surrounding the aeroassist flight experiment (AFE) vehicle. Use is made of the partition function of statistical mechanics in the evaluation of the thermochemical properties. This approach will allow the PARC code to be extended to thermal nonequilibrium when this task is undertaken in the future. The transport properties follow from formulae from the kinetic theory of gases. Results are presented for a two-dimensional AFE that compare perfect gas and real gas solutions at flight conditions, showing vast differences between the two cases.

  12. Continuum in MDGC Technology: From Classical Multidimensional to Comprehensive Two-Dimensional Gas Chromatography.

    PubMed

    Kulsing, Chadin; Nolvachai, Yada; Rawson, Paul; Evans, David J; Marriott, Philip J

    2016-04-01

    Recent advances in multidimensional gas chromatography (MDGC) comprise methods such as multiple heart-cut (H/C) analysis and comprehensive two-dimensional gas chromatography (GC × GC); however, clear approaches to evaluate the MDGC results, choice of the most appropriate method, and optimized separation remain of concern. In order to track the capability of these analytical techniques and select an effective experimental approach, a fundamental approach was developed utilizing a time summation model incorporating temperature-dependent linear solvation energy relationship (LSER). The approach allows prediction of optimized analyte distribution in the 2D space for various MDGC approaches employing different experimental variables such as column lengths, temperature programs, and stationary phase combinations in order to evaluate separation performance (apparent (1)D, (2)D, total number of separated peaks, and orthogonality) for simulated MDGC results. The methodology applied LSER to generate results for nonpolar-polar and polar-nonpolar 2D column configurations for separation of 678 compounds in an oxidized kerosene-based jet fuel sample. Three-dimensional plots were generated in order to illustrate the dependency of separation performance on (2)D column length and number of injections for different stationary phase combinations. With a given limit of analysis time, a MDGC approach to obtain an optimized total separated peak number for a particular column set was proposed depending on (1)D and (2)D analyte peak distribution. This study introduces fundamental concepts and establishes approaches to design effective GC × GC or multiple H/C systems for different column combinations, to provide the best overall separation outcomes with the highest separated peak number and/or orthogonality.

  13. Less common applications of monoliths III. Gas chromatography

    PubMed Central

    Svec, Frantisek; Kurganov, Alexander A.

    2008-01-01

    Porous polymer monoliths emerged about two decades ago. Despite this short time, they are finding applications in a variety of fields. In addition to the most common and certainly best known use of this new category of porous media as stationary phases in liquid chromatography, monolithic materials also found their applications in other areas. This review article focuses on monoliths in capillaries designed for separations in gas chromatography. PMID:17645884

  14. Decompression induced venous gas emboli in sport diving: detection with 2D echocardiography and pulsed Doppler.

    PubMed

    Boussuges, A; Carturan, D; Ambrosi, P; Habib, G; Sainty, J M; Luccioni, R

    1998-01-01

    The aim of this study was to determine the utility of pulsed Doppler and 2D echocardiography for the detection and the quantification of circulating bubbles after decompression. Twenty-three sport divers performed 60 SCUBA dives (mean 32 msw). An evaluation of circulating bubbles was performed using 2D images one hour after diving. Circulating bubbles were also detected with pulsed Doppler. The sample volume was placed in the outflow area of the right ventricle 1-2 cm below the pulmonary valve. 2D echocardiography showed circulating bubbles in right cavities of the heart in 32 cases. Short axis parasternal view and right cavities long axis view were the best incidences. Pulsed Doppler confirmed the results in these 32 cases and detected circulating bubbles in seven other cases. Isometric contraction of muscle limb must be performed to increase the sensitivity of detection. The count of the bubbles may be evaluated when using a combination of Spencer's and Powell's grading. We conclude that 2D echocardiography is less accurate than pulsed Doppler in the detection of circulating bubbles after decompression. Further studies are needed to compare pulsed Doppler guided by 2D echocardiography to continuous Doppler for the detection of circulating bubbles.

  15. Gas chromatography/matrix-isolation apparatus

    DOEpatents

    Reedy, Gerald T.

    1986-01-01

    A gas-sample collection device provides matrix isolation of individual gas bands from a gas chromatographic separation and for the spectroscopic analysis of the individual sample bands. The device includes a vacuum chamber containing a rotatably supported, specular carousel having at least one reflecting surface for holding a sample deposited thereon. A gas inlet is provided for depositing a mixture of sample and matrix material on the reflecting surface which is maintained at a sufficiently low temperature to cause solidification. A first parabolic mirror directs an incident beam of electromagnetic radiation, such as in the infrared (IR) spectrum, from a source onto the sample/matrix mixture while a second parabolic mirror directs a second beam of electromagnetic radiation reflected by the specular surface to an IR spectrometer for determining the absorption spectra of the sample material deposited on the reflecting surface. The pair of off-axis parabolic mirrors having a common focal point are positioned outside of the vacuum chamber and may be displaced in combination for improved beam positioning and alignment. The carousel is provided with an aperture for each reflecting surface to facilitate accurate positioning of the incident beam relative to the gas-samples under analysis. Improved gas-sample deposition is insured by the use of a long focal length stereomicroscope positioned outside of the vacuum chamber for monitoring sample formation through a window, while the sample collector is positioned outside of the zone bounded by the incident and reflected electromagnetic beams for improved sample access and monitoring.

  16. An application of gas chromatography to planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Oyama, V.

    1974-01-01

    A gas chromatography developed for the Viking experiment is described. The instrument is designed to measure gases in planetary atmospheres and head space in a chamber. It is hoped that the chromatograph will also measure any biological activity present in these environments.

  17. Using Single Drop Microextraction for Headspace Analysis with Gas Chromatography

    ERIC Educational Resources Information Center

    Riccio, Daniel; Wood, Derrick C.; Miller, James M.

    2008-01-01

    Headspace (HS) gas chromatography (GC) is commonly used to analyze samples that contain non-volatiles. In 1996, a new sampling technique called single drop microextraction, SDME, was introduced, and in 2001 it was applied to HS analysis. It is a simple technique that uses equipment normally found in the undergraduate laboratory, making it ideal…

  18. Specialized Gas Chromatography--Mass Spectrometry Systems for Clinical Chemistry.

    ERIC Educational Resources Information Center

    Gochman, Nathan; And Others

    1979-01-01

    A discussion of the basic design and characteristics of gas chromatography-mass spectrometry systems used in clinical chemistry. A comparison of three specific systems: the Vitek Olfax IIA, Hewlett-Packard HP5992, and Du Pont DP-102 are included. (BB)

  19. Highly crosslinked silicon polymers for gas chromatography columns

    NASA Technical Reports Server (NTRS)

    Shen, Thomas C. (Inventor)

    1994-01-01

    A new highly crosslinked silicone polymer particle for gas chromatography application and a process for synthesizing such copolymer are described. The new copolymer comprises vinyltriethoxysilane and octadecyltrichlorosilane. The copolymer has a high degree of crosslinking and a cool balance of polar to nonpolar sites in the porous silicon polymer assuring fast separation of compounds of variable polarity.

  20. Enthalpy of Vaporization by Gas Chromatography: A Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Ellison, Herbert R.

    2005-01-01

    An experiment is conducted to measure the enthalpy of vaporization of volatile compounds like methylene chloride, carbon tetrachloride, and others by using gas chromatography. This physical property was measured using a very tiny quantity of sample revealing that it is possible to measure the enthalpies of two or more compounds at the same time.

  1. Bayesian inversion of marine CSEM data from the Scarborough gas field using a transdimensional 2-D parametrization

    NASA Astrophysics Data System (ADS)

    Ray, Anandaroop; Key, Kerry; Bodin, Thomas; Myer, David; Constable, Steven

    2014-12-01

    We apply a reversible-jump Markov chain Monte Carlo method to sample the Bayesian posterior model probability density function of 2-D seafloor resistivity as constrained by marine controlled source electromagnetic data. This density function of earth models conveys information on which parts of the model space are illuminated by the data. Whereas conventional gradient-based inversion approaches require subjective regularization choices to stabilize this highly non-linear and non-unique inverse problem and provide only a single solution with no model uncertainty information, the method we use entirely avoids model regularization. The result of our approach is an ensemble of models that can be visualized and queried to provide meaningful information about the sensitivity of the data to the subsurface, and the level of resolution of model parameters. We represent models in 2-D using a Voronoi cell parametrization. To make the 2-D problem practical, we use a source-receiver common midpoint approximation with 1-D forward modelling. Our algorithm is transdimensional and self-parametrizing where the number of resistivity cells within a 2-D depth section is variable, as are their positions and geometries. Two synthetic studies demonstrate the algorithm's use in the appraisal of a thin, segmented, resistive reservoir which makes for a challenging exploration target. As a demonstration example, we apply our method to survey data collected over the Scarborough gas field on the Northwest Australian shelf.

  2. Gas chromatography/matrix-isolation apparatus

    DOEpatents

    Reedy, G.T.

    1986-06-10

    A gas-sample collection device provides matrix isolation of individual gas bands from a gas chromatographic separation and for the spectroscopic analysis of the individual sample bands. The device includes a vacuum chamber containing a rotatably supported, specular carousel having at least one reflecting surface for holding a sample deposited thereon. A gas inlet is provided for depositing a mixture of sample and matrix material on the reflecting surface which is maintained at a sufficiently low temperature to cause solidification. A first parabolic mirror directs an incident beam of electromagnetic radiation, such as in the infrared (IR) spectrum, from a source onto the sample/matrix mixture while a second parabolic mirror directs a second beam of electromagnetic radiation reflected by the specular surface to an IR spectrometer for determining the absorption spectra of the sample material deposited on the reflecting surface. The pair of off-axis parabolic mirrors having a common focal point are positioned outside of the vacuum chamber and may be displaced in combination for improved beam positioning and alignment. The carousel is provided with an aperture for each reflecting surface to facilitate accurate positioning of the incident beam relative to the gas-samples under analysis. Improved gas-sample deposition is insured by the use of a long focal length stereomicroscope positioned outside of the vacuum chamber for monitoring sample formation through a window, while the sample collector is positioned outside of the zone bounded by the incident and reflected electromagnetic beams for improved sample access and monitoring. 10 figs.

  3. 2-D distribution of the ionised gas oxygen abundance in CALIFA spiral galaxies

    NASA Astrophysics Data System (ADS)

    Sánchez-Menguiano, L.; Sánchez, S. F.; Pérez, I.

    2016-06-01

    Spiral arms are distinctive features in disc galaxies where the star formation is enhanced. Whether their gaseous content is different to what found in the rest of the disc (inter-arm region) is still an unexplored matter of debate. In our study we try to shed some light to this question by analysing the full 2-D information provided by the CALIFA survey. With this purpose, oxygen abundance gradients are derived separately for star forming regions in the spiral arms and in the inter-arm area. A distinction between flocculent and grand design galaxies is also performed to look for differences in the origin of these two type of spiral galaxies.

  4. Methods for Solving Gas Damping Problems in Perforated Microstructures Using a 2D Finite-Element Solver

    PubMed Central

    Veijola, Timo; Råback, Peter

    2007-01-01

    We present a straightforward method to solve gas damping problems for perforated structures in two dimensions (2D) utilising a Perforation Profile Reynolds (PPR) solver. The PPR equation is an extended Reynolds equation that includes additional terms modelling the leakage flow through the perforations, and variable diffusivity and compressibility profiles. The solution method consists of two phases: 1) determination of the specific admittance profile and relative diffusivity (and relative compressibility) profiles due to the perforation, and 2) solution of the PPR equation with a FEM solver in 2D. Rarefied gas corrections in the slip-flow region are also included. Analytic profiles for circular and square holes with slip conditions are presented in the paper. To verify the method, square perforated dampers with 16–64 holes were simulated with a three-dimensional (3D) Navier-Stokes solver, a homogenised extended Reynolds solver, and a 2D PPR solver. Cases for both translational (in normal to the surfaces) and torsional motion were simulated. The presented method extends the region of accurate simulation of perforated structures to cases where the homogenisation method is inaccurate and the full 3D Navier-Stokes simulation is too time-consuming.

  5. 2D models of gas flow and ice grain acceleration in Enceladus' vents using DSMC methods

    NASA Astrophysics Data System (ADS)

    Tucker, Orenthal J.; Combi, Michael R.; Tenishev, Valeriy M.

    2015-09-01

    The gas distribution of the Enceladus water vapor plume and the terminal speeds of ejected ice grains are physically linked to its subsurface fissures and vents. It is estimated that the gas exits the fissures with speeds of ∼300-1000 m/s, while the micron-sized grains are ejected with speeds comparable to the escape speed (Schmidt, J. et al. [2008]. Nature 451, 685-688). We investigated the effects of isolated axisymmetric vent geometries on subsurface gas distributions, and in turn, the effects of gas drag on grain acceleration. Subsurface gas flows were modeled using a collision-limiter Direct Simulation Monte Carlo (DSMC) technique in order to consider a broad range of flow regimes (Bird, G. [1994]. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, Oxford; Titov, E.V. et al. [2008]. J. Propul. Power 24(2), 311-321). The resulting DSMC gas distributions were used to determine the drag force for the integration of ice grain trajectories in a test particle model. Simulations were performed for diffuse flows in wide channels (Reynolds number ∼10-250) and dense flows in narrow tubular channels (Reynolds number ∼106). We compared gas properties like bulk speed and temperature, and the terminal grain speeds obtained at the vent exit with inferred values for the plume from Cassini data. In the simulations of wide fissures with dimensions similar to that of the Tiger Stripes the resulting subsurface gas densities of ∼1014-1020 m-3 were not sufficient to accelerate even micron-sized ice grains to the Enceladus escape speed. In the simulations of narrow tubular vents with radii of ∼10 m, the much denser flows with number densities of 1021-1023 m-3 accelerated micron-sized grains to bulk gas speed of ∼600 m/s. Further investigations are required to understand the complex relationship between the vent geometry, gas source rate and the sizes and speeds of ejected grains.

  6. Identification of volatiles from pineapple (Ananas comosus L.) pulp by comprehensive two-dimensional gas chromatography and gas chromatography/mass spectrometry.

    PubMed

    Pedroso, Marcio P; Ferreira, Ernesto C; Hantao, Leandro W; Bogusz, Stanislau; Augusto, Fabio

    2011-07-01

    Combining qualitative data from the chromatographic structure of 2-D gas chromatography with flame ionization detection (GC×GC-FID) and that from gas chromatography-mass spectrometry (GC/MS) should result in a more accurate assignment of the peak identities than the simple analysis by GC/MS, where coelution of analytes is unavoidable in highly complex samples (rendering spectra unsuitable for qualitative purposes) or for compounds in very low concentrations. Using data from GC×GC-FID combined with GC/MS can reveal coelutions that were not detected by mass spectra deconvolution software. In addition, some compounds can be identified according to the structure of the GC×GC-FID chromatogram. In this article, the volatile fractions of fresh and dehydrated pineapple pulp were evaluated. The extraction of the volatiles was performed by dynamic headspace extraction coupled to solid-phase microextraction (DHS-SPME), a technique appropriate for slurries or solid matrices. Extracted analytes were then analyzed by GC×GC-FID and GC/MS. The results obtained using both techniques were combined to improve compound identifications.

  7. Accurate quadrupole MS peak reconstruction in optimized gas-flow comprehensive two-dimensional gas chromatography.

    PubMed

    Tranchida, Peter Quinto; Purcaro, Giorgia; Sciarrone, Danilo; Dugo, Paola; Dugo, Giovanni; Mondello, Luigi

    2010-09-01

    In the present research, a split-flow comprehensive 2-D GC-quadrupole MS (qMS) method was developed using: a primary apolar 30 m×0.25 mm id×0.25 μm d(f) capillary linked, via a T-union, to a secondary polar 1.0 m×0.05 mm id×0.05 μm d(f) capillary and to a 0.10 m×0.05 mm id×0.05 μm d(f) uncoated column segment. The GC×GC-qMS instrument was equipped with two GC ovens and a loop-type modulator. The polar column was connected to the MS, whereas the uncoated column directed most of the first-dimension effluent to waste and enabled the generation of optimum gas velocities in both dimensions, namely circa 20 and 80 cm/s in the first and second dimensions, respectively. The rapid-scanning qMS was operated at a scan speed of 10,000 amu/s, a 25-Hz data acquisition frequency (scan time+interscan time: 40 ms), and with a normal GC mass range (m/z 40-360). Chromatography bands at the second-dimension outlet were never less than 360 ms wide (6σ), enabling the acquisition of at least 10 spectra/peak.

  8. Gas chromatography-vacuum ultraviolet spectroscopy for multiclass pesticide identification.

    PubMed

    Fan, Hui; Smuts, Jonathan; Walsh, Phillip; Harrison, Dale; Schug, Kevin A

    2015-04-10

    A new vacuum ultraviolet detector for gas chromatography was recently developed and applied to multiclass pesticide identification. VUV detection features full spectral acquisition in a wavelength range of 115-240nm, where virtually all chemical species absorb. VUV absorption spectra of 37 pesticides across different classes were recorded. These pesticides display rich gas phase absorption features across various classes. Even for isomeric compounds, such as hexachlorocyclohexane (HCH) isomers, the VUV absorption spectra are unique and can be easily differentiated. Also demonstrated is the ability to use VUV data analysis software for deconvolution of co-eluting signals. As a universal detector, VUV provides both qualitative and quantitative information. It offers high specificity, sensitivity (pg on-column detection limits), and a fast data acquisition rate, making it a powerful tool for multiclass pesticide screening when combined with gas chromatography.

  9. 2-D modeling of gas and overpressure generation in the Venture field (Canada)

    SciTech Connect

    Forbes, P.L.; Ungerer, P. ); Mudford, S. )

    1990-05-01

    Venture field is located in an overpressured zone of gas accumulations in a region that had low sedimentation rates over the last 80 m.y. This could support the hydrocarbon generation, rather than compaction disequilibrium, as the main cause for overpressuring. Study of these accumulations can be done using the IFP (Institut Francais du Petrole) THEMIS model, which integrates compactions, hydraulic fracturation, fluid flows, heat transfer, and formation and migration of hydrocarbons. A single phase basin scale model is constructed first to assess the input parameters related to the fluid-flow reconstruction. The permeability of faults is calibrated to fit the actual pressure distribution through the field. Permeability is found to be very low and allows a fit to the regional distribution of overpressuring. In a second step, a two-phase model, restricted to the field itself, is used to test parameters related to hydrocarbon and source rocks. Gas accumulations are effectively obtained in the reservoir units. Finally, the two-phase model is extended to the regional scale to check the parameters previously assessed. At this scale, the gas and overpressure distributions are found to fit those actually observed. Gas accumulations contribute slightly to overpressuring, which is better accounted for by compaction disequilibrium despite the low sedimentation rates. Generation in or close to the reservoir unit does not contribute significantly to the gas accumulations. However, gas sources are found in the underlying formations.

  10. Multiplex gas chromatography for use in space craft

    NASA Technical Reports Server (NTRS)

    Valentin, J. R.

    1985-01-01

    Gas chromatography is a powerful technique for the analysis of gaseous mixtures. Some limitations in this technique still exist which can be alleviated with multiplex gas chromatography (MGC). In MGC, rapid multiple sample injections are made into the column without having to wait for one determination to be finished before taking a new sample. The resulting data must then be reduced using computational methods such as cross correlation. In order to efficiently perform multiplexgas chromatography, experiments in the laboratory and on board future space craft, skills, equipment, and computer software were developed. Three new techniques for modulating, i.e., changing, sample concentrations were demonstrated by using desorption, decomposition, and catalytic modulators. In all of them, the need for a separate gas stream as the carrier was avoided by placing the modulator at the head of the column to directly modulate a sample stream. Finally, the analysis of an environmental sample by multiplex chromatography was accomplished by employing silver oxide to catalytically modulate methane in ambient air.

  11. 21 CFR 862.2250 - Gas liquid chromatography system for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Gas liquid chromatography system for clinical use... Instruments § 862.2250 Gas liquid chromatography system for clinical use. (a) Identification. A gas liquid chromatography system for clinical use is a device intended to separate one or more drugs or compounds from...

  12. 21 CFR 862.2250 - Gas liquid chromatography system for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gas liquid chromatography system for clinical use... Instruments § 862.2250 Gas liquid chromatography system for clinical use. (a) Identification. A gas liquid chromatography system for clinical use is a device intended to separate one or more drugs or compounds from...

  13. 21 CFR 862.2250 - Gas liquid chromatography system for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gas liquid chromatography system for clinical use... Instruments § 862.2250 Gas liquid chromatography system for clinical use. (a) Identification. A gas liquid chromatography system for clinical use is a device intended to separate one or more drugs or compounds from...

  14. 21 CFR 862.2250 - Gas liquid chromatography system for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gas liquid chromatography system for clinical use... Instruments § 862.2250 Gas liquid chromatography system for clinical use. (a) Identification. A gas liquid chromatography system for clinical use is a device intended to separate one or more drugs or compounds from...

  15. 21 CFR 862.2250 - Gas liquid chromatography system for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gas liquid chromatography system for clinical use... Instruments § 862.2250 Gas liquid chromatography system for clinical use. (a) Identification. A gas liquid chromatography system for clinical use is a device intended to separate one or more drugs or compounds from...

  16. Charge balancing in GaN-based 2-D electron gas devices employing an additional 2-D hole gas and its influence on dynamic behaviour of GaN-based heterostructure field effect transistors

    NASA Astrophysics Data System (ADS)

    Hahn, Herwig; Reuters, Benjamin; Geipel, Sascha; Schauerte, Meike; Benkhelifa, Fouad; Ambacher, Oliver; Kalisch, Holger; Vescan, Andrei

    2015-03-01

    GaN-based heterostructure FETs (HFETs) featuring a 2-D electron gas (2DEG) can offer very attractive device performance for power-switching applications. This performance can be assessed by evaluation of the dynamic on-resistance Ron,dyn vs. the breakdown voltage Vbd. In literature, it has been shown that with a high Vbd, Ron,dyn is deteriorated. The impairment of Ron,dyn is mainly driven by electron injection into surface, barrier, and buffer traps. Electron injection itself depends on the electric field which typically peaks at the gate edge towards the drain. A concept suitable to circumvent this issue is the charge-balancing concept which employs a 2-D hole gas (2DHG) on top of the 2DEG allowing for the electric field peak to be suppressed. Furthermore, the 2DEG concentration in the active channel cannot decrease by a change of the surface potential. Hence, beside an improvement in breakdown voltage, also an improvement in dynamic behaviour can be expected. Whereas the first aspect has already been demonstrated, the second one has not been under investigation so far. Hence, in this report, the effect of charge-balancing is discussed and its impact on the dynamic characteristics of HFETs is evaluated. It will be shown that with appropriate device design, the dynamic behaviour of HFETs can be improved by inserting an additional 2DHG.

  17. Charge balancing in GaN-based 2-D electron gas devices employing an additional 2-D hole gas and its influence on dynamic behaviour of GaN-based heterostructure field effect transistors

    SciTech Connect

    Hahn, Herwig Reuters, Benjamin; Geipel, Sascha; Schauerte, Meike; Kalisch, Holger; Vescan, Andrei; Benkhelifa, Fouad; Ambacher, Oliver

    2015-03-14

    GaN-based heterostructure FETs (HFETs) featuring a 2-D electron gas (2DEG) can offer very attractive device performance for power-switching applications. This performance can be assessed by evaluation of the dynamic on-resistance R{sub on,dyn} vs. the breakdown voltage V{sub bd}. In literature, it has been shown that with a high V{sub bd}, R{sub on,dyn} is deteriorated. The impairment of R{sub on,dyn} is mainly driven by electron injection into surface, barrier, and buffer traps. Electron injection itself depends on the electric field which typically peaks at the gate edge towards the drain. A concept suitable to circumvent this issue is the charge-balancing concept which employs a 2-D hole gas (2DHG) on top of the 2DEG allowing for the electric field peak to be suppressed. Furthermore, the 2DEG concentration in the active channel cannot decrease by a change of the surface potential. Hence, beside an improvement in breakdown voltage, also an improvement in dynamic behaviour can be expected. Whereas the first aspect has already been demonstrated, the second one has not been under investigation so far. Hence, in this report, the effect of charge-balancing is discussed and its impact on the dynamic characteristics of HFETs is evaluated. It will be shown that with appropriate device design, the dynamic behaviour of HFETs can be improved by inserting an additional 2DHG.

  18. Pressure Tuning of First Dimension Columns in Comprehensive Two-Dimensional Gas Chromatography.

    PubMed

    Sharif, Khan M; Kulsing, Chadin; Marriott, Philip J

    2016-09-20

    The experimental approach and mechanism of pressure tuning (PT) are introduced for the first stage of a comprehensive two-dimensional gas chromatography (GC × GC) separation. The PT-GC × GC system incorporates a first dimension ((1)D) coupled column ensemble comprising a pair of (1)D columns ((1)D1 and (1)D2) connected via a microfluidic splitter device, allowing variable decompression of carrier gas across each (1)D column, and a conventional (2)D narrow bore column. By variation of junction pressure between the (1)D1 and (1)D2 columns, tunable total (1)D retentions of analytes are readily derived. Separations of a standard mixture comprising a number of different chemical classes (including alkanes, monoaromatics, alcohols, aldehydes, ketones, and esters) and Australian tea tree oil (TTO) were studied as practical examples of the PT-GC × GC system application. This illustrated the change of analyte retention time with experimental conditions depending on void time and retention on the different columns. In addition to void time change, variation of carrier gas relative decompression in the (1)D ensemble leads to tunable contribution of the (1)D1/(1)D2 columns that changes apparent polarity and selectivity of the ensemble. The resulting changes in (1)D elution order further altered elution temperature and thus retention of each analyte on the (2)D column in temperature-programmed GC × GC. 2D orthogonality measurements were then conducted to evaluate overall separation performance under application of different (1)D junction pressure. As a result, distribution and selectivity of particular target compounds, monoterpenes, sesquiterpenes, and oxygenated terpenes in 2D space, and thus orthogonality, could be adequately tuned. This indicates the potential of PT-GC × GC to be applicable for practical sample separation and provides a general approach to tune selectivity of target compounds.

  19. Pressure Tuning of First Dimension Columns in Comprehensive Two-Dimensional Gas Chromatography.

    PubMed

    Sharif, Khan M; Kulsing, Chadin; Marriott, Philip J

    2016-09-20

    The experimental approach and mechanism of pressure tuning (PT) are introduced for the first stage of a comprehensive two-dimensional gas chromatography (GC × GC) separation. The PT-GC × GC system incorporates a first dimension ((1)D) coupled column ensemble comprising a pair of (1)D columns ((1)D1 and (1)D2) connected via a microfluidic splitter device, allowing variable decompression of carrier gas across each (1)D column, and a conventional (2)D narrow bore column. By variation of junction pressure between the (1)D1 and (1)D2 columns, tunable total (1)D retentions of analytes are readily derived. Separations of a standard mixture comprising a number of different chemical classes (including alkanes, monoaromatics, alcohols, aldehydes, ketones, and esters) and Australian tea tree oil (TTO) were studied as practical examples of the PT-GC × GC system application. This illustrated the change of analyte retention time with experimental conditions depending on void time and retention on the different columns. In addition to void time change, variation of carrier gas relative decompression in the (1)D ensemble leads to tunable contribution of the (1)D1/(1)D2 columns that changes apparent polarity and selectivity of the ensemble. The resulting changes in (1)D elution order further altered elution temperature and thus retention of each analyte on the (2)D column in temperature-programmed GC × GC. 2D orthogonality measurements were then conducted to evaluate overall separation performance under application of different (1)D junction pressure. As a result, distribution and selectivity of particular target compounds, monoterpenes, sesquiterpenes, and oxygenated terpenes in 2D space, and thus orthogonality, could be adequately tuned. This indicates the potential of PT-GC × GC to be applicable for practical sample separation and provides a general approach to tune selectivity of target compounds. PMID:27548569

  20. 2D Time-lapse Resistivity Monitoring of an Organic Produced Gas Plume in a Landfill using ERT.

    NASA Astrophysics Data System (ADS)

    Amaral, N. D.; Mendonça, C. A.; Doherty, R.

    2014-12-01

    This project has the objective to study a landfill located on the margins of Tietê River, in São Paulo, Brazil, using the electroresistivity tomography method (ERT). Due to huge organic matter concentrations in the São Paulo Basin quaternary sediments, there is subsurface depth related biogas accumulation (CH4 and CO2), induced by anaerobic degradation of the organic matter. 2D resistivity sections were obtained from a test area since March 2012, a total of 7 databases, being the last one dated from October 2013. The studied line has the length of 56m, the electrode interval is of 2m. In addition, there are two boreholes along the line (one with 3 electrodes and the other one with 2) in order to improve data quality and precision. The boreholes also have a multi-level sampling system that indicates the fluid (gas or water) presence in relation to depth. With our results it was possible to map the gas plume position and its area of extension in the sections as it is a positive resistivity anomaly, with the gas level having approximately 5m depth. With the time-lapse analysis (Matlab script) between the obtained 2D resistivity sections from the site, it was possible to map how the biogas volume and position change in the landfill in relation to time. Our preliminary results show a preferential gas pathway through the subsurface studied area. A consistent relation between the gas depth and obtained microbiological data from archea and bacteria population was also observed.

  1. Subsurface Gas Flow and Ice Grain Acceleration within Enceladus and Europa Fissures: 2D DSMC Models

    NASA Astrophysics Data System (ADS)

    Tucker, O. J.; Combi, M. R.; Tenishev, V.

    2014-12-01

    The ejection of material from geysers is a ubiquitous occurrence on outer solar system bodies. Water vapor plumes have been observed emanating from the southern hemispheres of Enceladus and Europa (Hansen et al. 2011, Roth et al. 2014), and N2plumes carrying ice and ark particles on Triton (Soderblom et al. 2009). The gas and ice grain distributions in the Enceladus plume depend on the subsurface gas properties and the geometry of the fissures e.g., (Schmidt et al. 2008, Ingersoll et al. 2010). Of course the fissures can have complex geometries due to tidal stresses, melting, freezing etc., but directly sampled and inferred gas and grain properties for the plume (source rate, bulk velocity, terminal grain velocity) can be used to provide a basis to constrain characteristic dimensions of vent width and depth. We used a 2-dimensional Direct Simulation Monte Carlo (DSMC) technique to model venting from both axi-symmetric canyons with widths ~2 km and narrow jets with widths ~15-40 m. For all of our vent geometries, considered the water vapor source rates (1027­ - 1028 s-1) and bulk gas velocities (~330 - 670 m/s) obtained at the surface were consistent with inferred values obtained by fits of the data for the plume densities (1026 - 1028 s-1, 250 - 1000 m/s) respectively. However, when using the resulting DSMC gas distribution for the canyon geometries to integrate the trajectories of ice grains we found it insufficient to accelerate submicron ice grains to Enceladus' escape speed. On the other hand, the gas distributions in the jet like vents accelerated grains > 10 μm significantly above Enceladus' escape speed. It has been suggested that micron-sized grains are ejected from the vents with speeds comparable to the Enceladus escape speed. Here we report on these results including comparisons to results obtained from 1D models as well as discuss the implications of our plume model results. We also show preliminary results for similar considerations applied to Europa

  2. Environmental analysis of present and future fuels in 2D simple model marine gas tubines

    NASA Astrophysics Data System (ADS)

    El Gohary, M. Morsy

    2013-12-01

    Increased worldwide concerns about fossil fuel costs and effects on the environment lead many governments and scientific societies to consider the hydrogen as the fuel of the future. Many researches have been made to assess the suitability of using the hydrogen gas as fuel for internal combustion engines and gas turbines; this suitability was assessed from several viewpoints including the combustion characteristics, the fuel production and storage and also the thermodynamic cycle changes with the application of hydrogen instead of ordinary fossil fuels. This paper introduces the basic environmental differences happening when changing the fuel of a marine gas turbine from marine diesel fuel to gaseous hydrogen for the same power output. Environmentally, the hydrogen is the best when the CO2 emissions are considered, zero carbon dioxide emissions can be theoretically attained. But when the NOx emissions are considered, the hydrogen is not the best based on the unit heat input. The hydrogen produces 270% more NOx than the diesel case without any control measures. This is primarily due to the increased air flow rate bringing more nitrogen into the combustion chamber and the increased combustion temperature (10% more than the diesel case). Efficient and of course expensive NOx control measures are a must to control these emissions levels.

  3. Microplasma-based atomic emission detectors for gas chromatography.

    PubMed

    Miclea, M; Okruss, M; Kunze, K; Ahlman, N; Franzke, J

    2007-08-01

    This paper is an update on the development of microplasmas as detectors for gas chromatography. Direct current (dc), alternating current (ac), and radio frequency (rf) microplasmas developed in recent years will be described with their significant analytical results, which mostly concern the detection of halogens and sulfur. New results will be added which employ a microhollow cathode discharge (MHCD) as excitation source. Emphasis will be given to this microplasma which has already been implemented as an element-selective detector for emission spectrometry and as ionization source for mass spectrometry. The possibility to use it as a multielement-selective detector for gas chromatography will be presented. A discussion of the published detection limits of all these microplasmas is given.

  4. Multiple-injection high-throughput gas chromatography analysis.

    PubMed

    Schafer, Wes; Wang, Heather; Welch, Christopher J

    2016-08-01

    Multiple-injection techniques have been shown to be a simple way to perform high-throughput analysis where the entire experiment resides in a single chromatogram, simplifying the data analysis and interpretation. In this study, multiple-injection techniques are applied to gas chromatography with flame ionization detection and mass detection to significantly increase sample throughput. The unique issues of implementing a traditional "Fast" injection mode of multiple-injection techniques with gas chromatography and mass spectrometry are discussed. Stacked injections are also discussed as means to increase the throughput of longer methods where mass detection is unable to distinguish between analytes of the same mass and longer retentions are required to resolve components of interest. Multiple-injection techniques are shown to increase instrument throughput by up to 70% and to simplify data analysis, allowing hits in multiple parallel experiments to be identified easily. PMID:27292909

  5. Metastable States of a Gas of Dipolar Bosons in a 2D Optical Lattice

    SciTech Connect

    Menotti, C.; Trefzger, C.; Lewenstein, M.

    2007-06-08

    We investigate the physics of dipolar bosons in a two-dimensional optical lattice. It is known that due to the long-range character of dipole-dipole interaction, the ground state phase diagram of a gas of dipolar bosons in an optical lattice presents novel quantum phases, like checkerboard and supersolid phases. In this Letter, we consider the properties of the system beyond its ground state, finding that it is characterized by a multitude of almost degenerate metastable states, often competing with the ground state. This makes dipolar bosons in a lattice similar to a disordered system and opens possibilities of using them as quantum memories.

  6. 2D fluid simulations of discharges at atmospheric pressure in reactive gas mixtures

    NASA Astrophysics Data System (ADS)

    Bourdon, Anne

    2015-09-01

    Since a few years, low-temperature atmospheric pressure discharges have received a considerable interest as they efficiently produce many reactive chemical species at a low energy cost. This potential is of great interest for a wide range of applications as plasma assisted combustion or biomedical applications. Then, in current simulations of atmospheric pressure discharges, there is the need to take into account detailed kinetic schemes. It is interesting to note that in some conditions, the kinetics of the discharge may play a role on the discharge dynamics itself. To illustrate this, we consider the case of the propagation of He-N2 discharges in long capillary tubes, studied for the development of medical devices for endoscopic applications. Simulation results put forward that the discharge dynamics and structure depend on the amount of N2 in the He-N2 mixture. In particular, as the amount of N2 admixture increases, the discharge propagation velocity in the tube increases, reaches a maximum for about 0 . 1 % of N2 and then decreases, in agreement with experiments. For applications as plasma assisted combustion with nanosecond repetitively pulsed discharges, there is the need to handle the very different timescales of the nanosecond discharge with the much longer (micro to millisecond) timescales of combustion processes. This is challenging from a computational point of view. It is also important to better understand the coupling of the plasma induced chemistry and the gas heating. To illustrate this, we present the simulation of the flame ignition in lean mixtures by a nanosecond pulsed discharge between two point electrodes. In particular, among the different discharge regimes of nanosecond repetitively pulsed discharges, a ``spark'' regime has been put forward in the experiments, with an ultra-fast local heating of the gas. For other discharge regimes, the gas heating is much weaker. We have simulated the nanosecond spark regime and have observed shock waves

  7. Smart multi-channel two-dimensional micro-gas chromatography for rapid workplace hazardous volatile organic compounds measurement.

    PubMed

    Liu, Jing; Seo, Jung Hwan; Li, Yubo; Chen, Di; Kurabayashi, Katsuo; Fan, Xudong

    2013-03-01

    We developed a novel smart multi-channel two-dimensional (2-D) micro-gas chromatography (μGC) architecture that shows promise to significantly improve 2-D μGC performance. In the smart μGC design, a non-destructive on-column gas detector and a flow routing system are installed between the first dimensional separation column and multiple second dimensional separation columns. The effluent from the first dimensional column is monitored in real-time and decision is then made to route the effluent to one of the second dimensional columns for further separation. As compared to the conventional 2-D μGC, the greatest benefit of the smart multi-channel 2-D μGC architecture is the enhanced separation capability of the second dimensional column and hence the overall 2-D GC performance. All the second dimensional columns are independent of each other, and their coating, length, flow rate and temperature can be customized for best separation results. In particular, there is no more constraint on the upper limit of the second dimensional column length and separation time in our architecture. Such flexibility is critical when long second dimensional separation is needed for optimal gas analysis. In addition, the smart μGC is advantageous in terms of elimination of the power intensive thermal modulator, higher peak amplitude enhancement, simplified 2-D chromatogram re-construction and potential scalability to higher dimensional separation. In this paper, we first constructed a complete smart 1 × 2 channel 2-D μGC system, along with an algorithm for automated control/operation of the system. We then characterized and optimized this μGC system, and finally employed it in two important applications that highlight its uniqueness and advantages, i.e., analysis of 31 workplace hazardous volatile organic compounds, and rapid detection and identification of target gas analytes from interference background.

  8. Chelate-modified polymers for atmospheric gas chromatography

    NASA Technical Reports Server (NTRS)

    Christensen, W. W.; Mayer, L. A.; Woeller, F. H. (Inventor)

    1980-01-01

    Chromatographic materials were developed to serve as the stationary phase of columns used in the separation of atmospheric gases. These materials consist of a crosslinked porous polymer matrix, e.g., a divinylbenzene polymer, into which has been embedded an inorganic complexed ion such as N,N'-ethylene-bis-(acetylacetoniminato)-cobalt (2). Organic nitrogenous bases, such as pyridine, may be incorporated into the chelate polymer complexes to increase their chromatographic utility. With such materials, the process of gas chromatography is greatly simplified, especially in terms of time and quantity of material needed for a gas separation.

  9. An electrostatic precipitator for preparative gas-liquid chromatography.

    PubMed

    Borka, L; Privett, O S

    1966-03-01

    The effect of the operating variables of electrostatic precipitators on the recovery and structure of methyl esters and related aerosol forming compounds collected in preparative gas-liquid chromatography was studied.Aerosol formation was prevented by AC or DC voltages of 5000 to 12000 volts. AC was more effective than DC but caused changes in structure which were detectable by both thin-layer and gas-liquid chromatographic methods of analysis.An apparatus of simple construction and operation was designed for the collection of methyl esters and its use demonstrated with several model compounds.

  10. Rare Gas - Alkali Metal Coadsorption on Ag(111): Using Rare Gases as 2D Manometers

    NASA Astrophysics Data System (ADS)

    Diehl, Renee D.; Leatherman, Gerald S.; Vidali, G.

    1996-03-01

    The adsorption of Ar, Kr or Xe onto Ag(111) results in incommensurate overlayers which are aligned with the substrate. However, by preadsorbing a small amount of alkali metal first, it is possible to form rotated islands of rare gases. The rotation angles of these islands do not agree with the predictions of the first-order Novaco-McTague theory for rotational epitaxy, nor do they exactly follow the predictions of geometrical theories. However, the other thermodynamic properties of these layers are essentially identical to those on the clean surface. With higher precoverages of potassium, the potassium-rare gas interaction remains repulsive and rare gases form island structures within the dispersed alkali layers. Since the rare gas overlayers are in equilibrium with the potassium and the thermodynamics of rare gases on clean Ag(111) have already been very well characterized( J. Unguris, L. W. Bruch, E. R. Moog and M. B. Webb, Surf. Sci. 87 (1979) 415; 109 (1981) 522.) it is possible to measure the spreading pressure of the alkali as a function of coverage and therefore to deduce information about the coverage- dependent alkali-alkali and alkali-substrate interactions.

  11. A Study of Two Dimensional Electron Gas Using 2D Fourier Transform Spectroscopy

    NASA Astrophysics Data System (ADS)

    McIntyre, Carl; Paul, Jagannath; Karaiskaj, Denis

    2015-03-01

    The dephasing of FES was measured in a symmetrically modulation doped 12 nm single quantum well GaAs/AlGaAs two dimensional electron gas system using time integrated four wave mixing (TIFWM) and a two dimensional Fourier transform spectroscopy (2DFTS). At high in-well carrier densities of ~4 x 1011 cm-2, many body effects that are prevalent and measurable with non-linear optical spectroscopy. Effects of exciton-exciton and exciton-phonon scattering events, exciton populations, and biexciton formation are detectable at these carrier concentrations. Homogeneous linewidths obtained from 2DFT and TIFWM yield a zero Kelvin linewidth of 1.42 meV and an acoustic phonon scattering coefficient of 158 μ eV/K. These observations indicate a rapid increase in homogeneous linewidth with increased temperature. NSF REU Grant # DMR-1263066: REU Site in Applied Physics at USF.

  12. Dynamic polarization of graphene by moving external charges: Comparison with 2D electron gas

    NASA Astrophysics Data System (ADS)

    Borka, D.; Radović, I.; Mišković, Z. L.

    2011-06-01

    We calculate the stopping and image forces on a point charge moving over a single-layer graphene grown on an SiC substrate, and compare them with forces arising when a charge moves over a two-dimensional electron gas (2DEG) in an Ag monolayer on a Si substrate. Given that both these systems constitute a one-atom thick 2DEG, major differences are found in the velocity and distance dependencies of the two forces owing to different electronic structures of the respective 2DEG. Within the massless Dirac fermion picture of graphene's π electron bands, the inter-band single particle excitations are found to affect the stopping and image forces at high speeds in a substantial way, whereas such excitations are absent in the 2DEG of the metallic layer described by a single parabolic band.

  13. TSUNAMI analysis of National Ignition Facility 2-D gas dynamics phenomenon

    SciTech Connect

    Chen, X.M.; Peterson, P.F.; Tobin, M.T.

    1994-11-01

    The tests in the chamber of National Ignition Facility will involve complex multi-dimensional dynamics phenomena. Many safety concerns relate to the ablation of the chamber material and the re-condensation of it. The x-ray induced ablation can vaporize surfaces of internal structures. The deposition of the ablated mass to the laser optics can cause significant damage to the laser optics. This study presents a typical analysis of the ablation from the target positioner in the NIF chamber with the TSUNAMI two-dimensional gas dynamics code. Results reveal that the geometry of target positioner has strong influence to the vapor mass amount and distribution over the chamber wall. The analysis done here shows that it is possible to perform parametric study for different NIF chamber design configurations.

  14. Pyrolysis-high resolution gas chromatography and pyrolysis gas chromatography-mass spectrometry of kerogens and kerogen precursors

    NASA Technical Reports Server (NTRS)

    Van De Meent, D.; Brown, S. C.; Philp, R. P.; Simoneit, B. R. T.

    1980-01-01

    A series of kerogens and kerogen precursors isolated from DSDP samples, oil shales and recent algal mats have been examined by Curie point pyrolysis-high resolution gas chromatography and gas chromatography-mass spectrometry. This study has shown that the three main types of kerogens (marine, terrestrial and mixtures of both) can be characterized using these techniques. The marine (algal) kerogens yield principally aliphatic products and the terrestrial kerogens yield more aromatic and phenolic products with some n-alkanes and n-alkenes. The yields of n-alkanes and n-alkenes increase and phenols decrease with increasing geologic age, however, pyrolysis-GC cannot be used to characterize the influence of short term diagenesis on the kerogen structure.

  15. System design for integrated comprehensive and multidimensional gas chromatography with mass spectrometry and olfactometry.

    PubMed

    Chin, Sung-Tong; Eyres, Graham T; Marriott, Philip J

    2012-11-01

    An integrated system having the combined capability to perform gas chromatography (GC), comprehensive two-dimensional GC (GC × GC), and target heart-cut multidimensional GC (MDGC) using olfactometry (O), flame ionization (FID), and/or mass spectrometry (MS) detection is described. This combines a number of contemporary GC methods into a single instrument to provide very high resolution profiling of a sample. This provides initial assessment of volatile compound composition through GC × GC analysis with FID, which can be correlated with GC analysis using parallel O and FID detection. Subsequent microfluidic (Deans) switching selects regions (heart-cuts) of the chromatographic elution from the first dimension ((1)D) column for further resolution on a long second dimension ((2)D(L)) column for parallel detection of O and MS. Various (2)D(L) operational conditions, as well as the effect of different heart-cut (H/C) duration, were compared. The favored mode involves cryotrapping of heart-cuts, cooling the oven, and reducing carrier flow to offer greater efficiency. An analytical strategy that incorporates GC-FID/O, GC × GC-FID, and MDGC-MS/O analyses with cumulative solid phase microextraction (SPME) sampling for volatile sample enrichment is presented in this work. Excellent qualitative and quantitative performance was demonstrated with a Shiraz wine sample and an allergens mixture, with tentative identification of acetic acid, octen-3-ol, and ethyl octanoate as aroma contributors in Shiraz wine and determination of β-damascenone (floral odor) well separated from hexanoic acid (sweaty odor). A novel approach to obtain (2)D retention indices is reported, allowing matching of mass spectral, (1)I (retention index in (1)D) and (2)I (retention index in (2)D) data. The method employs the same olfactory detector at the end of the (1)D and (2)D(L) columns. PMID:23101663

  16. Determination of Vinyl Chloride at ug/l. Level in Water by Gas Chromatography

    ERIC Educational Resources Information Center

    Bellar, Thomas A.; And Others

    1976-01-01

    A quantitative method for the determination of vinyl chloride in water is presented. Vinyl chloride is transfered to the gas phase by bubbling inert gas through the water. After concentration on silica gel or Carbosieve-B, determination is by gas chromatography. Confirmation of vinyl chloride is by gas chromatography-mass spectrometry. (Author/BT)

  17. Comparisons between tokamak fueling of gas puffing and supersonic molecular beam injection in 2D simulations

    SciTech Connect

    Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.; Li, H. D.; Feng, H.; Sun, W. G.

    2015-01-15

    Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density, heat and momentum transport equations along with neutral density, and momentum transport equations. Transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. It is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.

  18. Comparisons between tokamak fueling of gas puffing and supersonic molecular beam injection in 2D simulations

    SciTech Connect

    Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.; Li, H. D.; Feng, H.; Sun, W. G.

    2015-01-09

    Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Furthermore, two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density, heat and momentum transport equations along with neutral density, and momentum transport equations. In transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. Moreover, it is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.

  19. Comparisons between tokamak fueling of gas puffing and supersonic molecular beam injection in 2D simulations

    DOE PAGES

    Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.; Li, H. D.; Feng, H.; Sun, W. G.

    2015-01-09

    Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Furthermore, two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density,more » heat and momentum transport equations along with neutral density, and momentum transport equations. In transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. Moreover, it is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.« less

  20. Ultratrace detector for hand-held gas chromatography

    DOEpatents

    Andresen, Brian D.; Miller, Fred S.

    1999-01-01

    An ultratrace detector system for hand-held gas chromatography having high sensitivity, for example, to emissions generated during production of weapons, biological compounds, drugs, etc. The detector system is insensitive to water, air, helium, argon, oxygen, and C0.sub.2. The detector system is basically composed of a hand-held capillary gas chromatography (GC), an insulated heated redox-chamber, a detection chamber, and a vapor trap. For example, the detector system may use gas phase redox reactions and spectral absorption of mercury vapor. The gas chromatograph initially separates compounds that percolate through a bed of heated mercuric oxide (HgO) in a silica--or other metal--aerogel material which acts as an insulator. Compounds easily oxidized by HgO liberate atomic mercury that subsequently pass through a detection chamber which includes a detector cell, such as quartz, that is illuminated with a 254 nm ultra-violet (UV) mercury discharge lamp which generates the exact mercury absorption bands that are used to detect the liberated mercury atoms. Atomic mercury strongly absorbs 254 nm energy is therefore a specific signal for reducing compounds eluting from the capillary GC, whereafter the atomic mercury is trapped for example, in a silicon-aerogel trap.

  1. ANALYTICAL METHOD FOR MEASURING TOTAL PROTIUM AND TOTAL DEUTERIUM IN A GAS MIXTURE CONTAINING H2, D2,AND HD VIA GAS CHAROMATOGRAPHY

    SciTech Connect

    Sessions, H

    2007-08-07

    The most common analytical method of identifying and quantifying non-radioactive isotopic species of hydrogen is mass spectrometry. A low mass, high resolution mass spectrometer with adequate sensitivity and stability to identify and quantify hydrogen isotopes in the low ppm range is an expensive, complex instrument. A new analytical technique has been developed that measures both total protium (H) and total deuterium (D) in a gas mixture containing H{sub 2}, D{sub 2}, and HD using an inexpensive micro gas chromatograph (GC) with two molecular sieve columns. One column uses D{sub 2} as the carrier gas and the other uses H{sub 2} as the carrier gas. Laboratory tests have shown that when used in this configuration the GC can measure both total protium and total deuterium each with a detection and quantification limit of less than 20 ppm.

  2. The Use of Gas Chromatography for Biogas Analysis

    NASA Astrophysics Data System (ADS)

    Andersen, Amanda; Seeley, John; Aurandt, Jennifer

    2010-04-01

    Energy from natural gas accounts for 24 percent of energy consumed in the US. Natural gas is a robust form of energy which is rich in methane content and is low in impurities. This quality suggests that it is a very clean and safe gas; it can be used in providing heat, a source for cooking, and in powering vehicles. The downside is that it is a non-renewable resource. On the contrary, methane rich gas that is produced by the breakdown of organic material in an anaerobic environment, called biogas, is a renewable energy source. This research focuses on the gas analysis portion of the creation of the anaerobic digestion and verification laboratory where content and forensic analysis of biogas is performed. Gas Chromatography is implemented as the optimal analytical tool for quantifying the components of the biogas including methane, carbon dioxide, hydrogen sulfide and siloxanes. In addition, the problems associated with the undesirable components are discussed. Anaerobic digestion of primary sludge has consistently produced about 55 percent methane; future goals of this research include studying different substrates to increase the methane yield and decrease levels of impurities in the gas.

  3. Modeling of Devonian shale gas reservoirs. Task 16. Mathematical modeling of shale gas production (2D model). Final report

    SciTech Connect

    Not Available

    1980-07-31

    The Department of Energy (DOE), Morgantown Energy Technology Center (METC) has been supporting the development of flow models for Devonian shale gas reservoirs. The broad objectives of this modeling program are to: (1) develop and validate a mathematical model which describes gas flow through Devonian shales; (2) determine the sensitive parameters that affect deliverability and recovery of gas from Devonian shales; (3) recommend laboratory and field measurements for determination of those parameters critical to the productivity and timely recovery of gas from the Devonian shales; (4) analyze pressure and rate transient data from observation and production gas wells to determine reservoir parameters and well performance; and (5) study and determine the overall performance of Devonian shale reservoirs in terms of well stimulation, well spacing, and resource recovery as a function of gross reservoir properties such as anisotropy, porosity and thickness variations, and boundary effects. During the previous annual period, a mathematical model describing gas flow through Devonian shales and the software for a radial one-dimensional numerical model for single well performance were completed and placed into operation. Although the radial flow model is a powerful tool for studying single well behavior, it is inadequate for determining the effects of well spacing, stimulation treatments, and variation in reservoir properties. Hence, it has been necessary to extend the model to two-dimensions, maintaining full capability regarding Klinkerberg effects, desorption, and shale matrix parameters. During the current annual period, the radial flow model has been successfully extended to provide the two-dimensional capability necessary for the attainment of overall program objectives, as described above.

  4. Pyrolysis comprehensive two-dimensional gas chromatography study of petroleum source rock.

    PubMed

    Wang, Frank Cheng-Yu; Walters, Clifford C

    2007-08-01

    Detailed compositional analyses of sedimentary organic matter can provide information on its biotic input, environment of deposition, and level of thermal maturation. Pyrolysis-gas chromatography (py-GC), often coupled with a mass spectrometer (py-GC/MS), is one technique used to provide this information. New developments in comprehensive two-dimensional gas chromatography (GC x GC or 2D-GC), coupled with pyrolysis (py-GC x GC), offer the prospect of providing more complete and quantitative compositional information of complex organic solids, such as kerogen and coals. This study will describe applications of pyrolysis-GC x GC to the characterization of petroleum source rocks using flame ionization detector (FID) and sulfur chemiluminescence detector (SCD). In the hydrocarbon analysis by FID, paraffins, naphthenes, and aromatics form distinct two-dimensional separated groups. In the analysis with SCD, sulfur-containing compounds can be distinguished as different classes, such as mercaptans, sulfides, thiophenes, benzothiophenes, and dibenzothiophenes. Single components or summed bands of homologous components can be analyzed qualitatively and quantitatively. With these detailed molecular fingerprints, the relations between kerogen composition and its biotic input, environment of deposition, and thermal maturation may be better understood.

  5. Multidimensional gas chromatography using microfluidic switching and low thermal mass gas chromatography for the characterization of targeted volatile organic compounds.

    PubMed

    Luong, J; Gras, R; Hawryluk, M; Shellie, R A; Cortes, H J

    2013-05-01

    Volatile organic compounds such as light hydrocarbons, dienes, and aromatic compounds are often encountered in the manufacturing and processing environments of chemical and petrochemical segments. These compounds need to be closely monitored for process optimization, plant maintenance and industrial hygiene purposes. A high throughput analytical approach has been successfully developed and implemented for the accurate measurement of fourteen commonly encountered analytes. The approach incorporates a recently introduced 5-port planar microfluidic device configured for use as a Deans switch for multidimensional gas chromatography. The use of multidimensional gas chromatography allows the elimination of potential chromatographic contaminants with a substantial enhancement of stationary phase selectivity via the use of columns with different separation mechanisms, and the back-flushing of heavier undesired hydrocarbons. A low thermal mass gas chromatographic module was employed in the second dimension of the two-dimensional gas chromatography system and was used to provide independent temperature control, and rapid heating and cooling to meet the high throughput requirements. By successfully combining these concepts, complete analysis of fourteen targeted components can be conducted in less than 120s. Repeatability of retention times for all compounds was found to be less than 0.05% (n=20). Repeatability of area counts at two levels, namely 10ppmv and 1000ppmv over a period of two days was found to be less than 3% (n=20). Apart from methane, which has a detection limit of 0.4ppmv, the rest of the compounds were found to have detection limits of less than 0.2ppmv. Compounds of interest were found to be linear over a range of 500ppbv-3000ppmv with correlation coefficients greater than 0.999.

  6. Targeted multidimensional gas chromatography for the quantitative analysis of suspected allergens in fragrance products.

    PubMed

    Dunn, Michael S; Vulic, Natalie; Shellie, Robert A; Whitehead, Simon; Morrison, Paul; Marriott, Philip J

    2006-10-13

    Two approaches are described and compared for the analysis of suspected allergens (SAs) in fragrance products, which are defined by the Scientific Committee of Cosmetics and Non-Food Products (SCCNFP). The first consists of a comprehensive two-dimensional gas chromatography (GC x GC) experiment using both a "conventional" non-polar/polar column combination and an "inverse" polar/non-polar column set. The second approach uses a targeted multidimensional gas chromatography (MDGC) system employing a Deans type pneumatic switch and a longitudinally modulated cryogenic system (LMCS). It was found that the conventional and inverse column sets complement each other well, providing identification of SAs present. Compounds well retained on the second dimension of one column set were the first to be eluted from the other. In some instances SAs co-eluting with matrix components on the second dimension for a given column set were clearly resolved on the other, although this has the disadvantage of requiring two analytical runs. Targeted MDGC with a non-polar/polar column set, successfully separated all SAs identified within a fragrance product. The instrument is set up in a similar fashion to a GC x GC system though with longer second dimension ((2)D) column, a cryogenic trap at the beginning of the second column, and a pneumatic switch coupling both columns. The data are easier to process than for a GC x GC experiment. The targeted MDGC method has the capacity to deliver far greater efficiency to targeted regions of a primary separation than a GC x GC experiment, whilst still maintaining overall run times similar to those of a conventional one-dimensional (1D) GC experiment. Cryogenic focussing at the beginning of the (2)D column delivers enhanced sensitivity, accurate (2)D retention times and narrow peak widths; these are responsible for an increased resolution obtained from the fast, relatively short (approximately 5 m) (2)D column. The two column set GC x GC analysis

  7. Analysis of volatile mouse pheromones by gas chromatography mass spectrometry.

    PubMed

    Novotny, Milos V; Soini, Helena A

    2013-01-01

    High-precision quantitative profiling of volatile organic constituents in rodent physiological fluids and glandular secretions is needed to relate olfactory signals to physiology and behavior. Whereas capillary gas chromatography-mass spectrometry (GC-MS) analysis has become the most widely applied in such investigations, the extraction and preconcentration of volatile organics is arguably the most critical step in the overall analytical task. In this chapter, we describe technical details of two main sample extraction procedures used in our laboratory: dynamic headspace trapping, and stir bar sorptive extraction (SBSE). They have been demonstrated here for the chromatographic analysis of mouse urine, serum, saliva, and preputial gland specimens.

  8. Thermal History Of PMRs Via Pyrolysis-Gas Chromatography

    NASA Technical Reports Server (NTRS)

    Gluyas, Richard E.; Alston, William B.; Snyder, William J.

    1994-01-01

    Pyrolysis-gas chromatography (PY-GC) useful as analytical technique to determine extents of cure or postcure of PMR-15 polyimides and to lesser extent, cumulative thermal histories of PMR-15 polyimides exposed to high temperatures. Also applicable for same purposes to other PMR polyimides and to composite materials containing PMR polyimides. Valuable in reducing costs and promoting safety in aircraft industry by helping to identify improperly cured or postcured PMR-15 composite engine and airframe components and helping to identify composite parts nearing ends of their useful lives.

  9. Continuous monitoring of a changing sample by multiplex gas chromatography

    NASA Technical Reports Server (NTRS)

    Valentin, Jose R.; Hall, Kirsten W.; Becker, Joseph F.

    1990-01-01

    Results are presented from a study in which a continuously changed gaseous sample was monitored by multiplex gas chromatography (MGC), using the exponential dilution (ED) technique of Ritter and Adams (1976) to change the composition and concentration of a gaseous mixture in such a way as to imitate changes in the atmospheric gases sampled by a descending aircraft. A calibration of the MGC system was performed with four different rates of sample dilution, and the errors resulting from various degrees of change in the sample concentration were determined.

  10. Gas-liquid chromatography in lunar organic analysis.

    NASA Technical Reports Server (NTRS)

    Gehrke, C. W.

    1972-01-01

    Gas-liquid chromatography (GLC) is a powerful and sensitive method for the separation and detection of organic compounds at nanogram levels. The primary requirement for successful analyses is that the compounds of interest must be volatile under the chromatographic conditions employed. Nonvolatile organic compounds must be converted to volatile derivatives prior to analysis. The derivatives of choice must be both amenable to chromatographic separation and be relatively stable. The condition of volatility necessitates the development of efficient derivatization reactions for important groups of compounds as amino acids, carbohydrates, nucleosides, etc. Trimethylsilylation and trifluoroacetylation represent specific areas of recent prominence. Some relevant practical aspects of GLC are discussed.

  11. Chromatography.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities on chromatography. Directions for preparing leaf pigment extracts using alcohol are given, and paper chromatography and thin-layer chromatography are described as modifications of the basic principles of chromatography. (KHR)

  12. 2D fluid model analysis for the effect of 3D gas flow on a capacitively coupled plasma deposition reactor

    NASA Astrophysics Data System (ADS)

    Kim, Ho Jun; Lee, Hae June

    2016-06-01

    The wide applicability of capacitively coupled plasma (CCP) deposition has increased the interest in developing comprehensive numerical models, but CCP imposes a tremendous computational cost when conducting a transient analysis in a three-dimensional (3D) model which reflects the real geometry of reactors. In particular, the detailed flow features of reactive gases induced by 3D geometric effects need to be considered for the precise calculation of radical distribution of reactive species. Thus, an alternative inclusive method for the numerical simulation of CCP deposition is proposed to simulate a two-dimensional (2D) CCP model based on the 3D gas flow results by simulating flow, temperature, and species fields in a 3D space at first without calculating the plasma chemistry. A numerical study of a cylindrical showerhead-electrode CCP reactor was conducted for particular cases of SiH4/NH3/N2/He gas mixture to deposit a hydrogenated silicon nitride (SiN x H y ) film. The proposed methodology produces numerical results for a 300 mm wafer deposition reactor which agree very well with the deposition rate profile measured experimentally along the wafer radius.

  13. Warm ionized gas in CALIFA early-type galaxies. 2D emission-line patterns and kinematics for 32 galaxies

    NASA Astrophysics Data System (ADS)

    Gomes, J. M.; Papaderos, P.; Kehrig, C.; Vílchez, J. M.; Lehnert, M. D.; Sánchez, S. F.; Ziegler, B.; Breda, I.; Dos Reis, S. N.; Iglesias-Páramo, J.; Bland-Hawthorn, J.; Galbany, L.; Bomans, D. J.; Rosales-Ortega, F. F.; Cid Fernandes, R.; Walcher, C. J.; Falcón-Barroso, J.; García-Benito, R.; Márquez, I.; Del Olmo, A.; Masegosa, J.; Mollá, M.; Marino, R. A.; González Delgado, R. M.; López-Sánchez, Á. R.; Califa Collaboration

    2016-04-01

    Context. The morphological, spectroscopic, and kinematical properties of the warm interstellar medium (wim) in early-type galaxies (ETGs) hold key observational constraints to nuclear activity and the buildup history of these massive, quiescent systems. High-quality integral field spectroscopy (IFS) data with a wide spectral and spatial coverage, such as those from the CALIFA survey, offer an unprecedented opportunity for advancing our understanding of the wim in ETGs. Aims: This article centers on a 2D investigation of the wim component in 32 nearby (≲150 Mpc) ETGs from CALIFA, complementing a previous 1D analysis of the same sample. Methods: The analysis presented here includes Hα intensity and equivalent width (EW) maps and radial profiles, diagnostic emission-line ratios, and ionized-gas and stellar kinematics. It is supplemented by τ-ratio maps, which are a more efficient means to quantify the role of photoionization by the post-AGB stellar component than alternative mechanisms (e.g., AGN, low-level star formation). Results: Confirming and strengthening our previous conclusions, we find that ETGs span a broad continuous sequence in the properties of their wim, exemplified by two characteristic classes. The first (type i) comprises systems with a nearly constant EW(Hα) in their extranuclear component, which quantitatively agrees with (but is no proof of) the hypothesis that photoionization by the post-AGB stellar component is the main driver of extended wim emission. The second class (type ii) stands for virtually wim-evacuated ETGs with a very low (≤0.5 Å), outwardly increasing EW(Hα). These two classes appear indistinguishable from one another by their LINER-specific emission-line ratios in their extranuclear component. Here we extend the tentative classification we proposed previously by the type i+, which is assigned to a subset of type i ETGs exhibiting ongoing low-level star-forming activity in their periphery. This finding along with faint

  14. The ionized gas in the central region of NGC 5253. 2D mapping of the physical and chemical properties

    NASA Astrophysics Data System (ADS)

    Monreal-Ibero, A.; Walsh, J. R.; Vílchez, J. M.

    2012-08-01

    Context. Blue compact dwarf (BCD) galaxies constitute the ideal laboratories to test the interplay between massive star formation and the surrounding gas. As one of the nearest BCD galaxies, NGC 5253 was previously studied with the aim to elucidate in detail the starburst interaction processes. Some open issues regarding the properties of its ionized gas still remain to be addressed. Aims: The 2D structure of the main physical and chemical properties of the ionized gas in the core of NGC 5253 has been studied. Methods: Optical integral field spectroscopy (IFS) data has been obtained with FLAMES Argus and lower resolution gratings of the Giraffe spectrograph. Results: We derived 2D maps for different tracers of electron density (ne), electron temperature (Te) and ionization degree. The maps for ne as traced by [O ii], [S ii], [Fe iii], and [Ar iv] line ratios are compatible with a 3D stratified view of the nebula with the highest ne in the innermost layers and a decrease of ne outwards. 2D maps of Te were measured from [O iii] and [S ii] line ratios; to our knowledge, this is the first time that a Te map based on [S ii] lines for an extragalactic object has been presented. The joint interpretation of the Te([S ii]) and Te([O iii]) maps is consistent with a Te structure in 3D with higher temperatures close to the main ionizing source surrounded by a colder and more diffuse component. The highest ionization degree is found at the peak of emission for the gas with relatively high ionization in the main Giant H ii Region and lower ionization degree delineating the more extended diffuse component. We derived abundances of oxygen, neon, argon, and nitrogen. Abundances for O, Ne and Ar are constant over the mapped area within ≲0.1 dex. The mean 12 + log (O/H) is 8.26 ± 0.04 while the relative abundances of log (N/O), log (Ne/O) and log (Ar/O) were ~-1.32 ± 0.05, -0.65 ± 0.03 and -2.33 ± 0.06, respectively. There are two locations with enhanced N/O. The first (log (N

  15. 2D multinuclear NMR, hyperpolarized xenon and gas storage in organosilica nanochannels with crystalline order in the walls.

    PubMed

    Comotti, Angiolina; Bracco, Silvia; Valsesia, Patrizia; Ferretti, Lisa; Sozzani, Piero

    2007-07-11

    The combination of 2D 1H-13C and 1H-29Si solid state NMR, hyperpolarized 129Xe NMR, synchrotron X-ray diffraction, together with adsorption measurements of vapors and gases for environmental and energetic relevance, was used to investigate the structure and the properties of periodic mesoporous hybrid p-phenylenesilica endowed with crystalline order in the walls. The interplay of 1H, 13C, and 29Si in the 2D heteronuclear correlation NMR measurements, together with the application of Lee-Goldburg homonuclear decoupling, revealed the spatial relationships (<5 angstroms) among various spin-active nuclei of the framework. Indeed, the through-space correlations in the 2D experiments evidenced, for the first time, the interfaces of the matrix walls with guest molecules confined in the nanochannels. Organic-inorganic and organic-organic heterogeneous interfaces between the matrix and the guests were identified. The open-pore structure and the easy accessibility of the nanochannels to the gas phase have been demonstrated by highly sensitive hyperpolarized (HP) xenon NMR, under extreme xenon dilution. Two-dimensional exchange experiments showed the exchange time to be as short as 2 ms. Through variable-temperature HP 129Xe NMR experiments we were able to achieve an unprecedented description of the nanochannel space and surface, a physisorption energy of 13.9 kJ mol-1, and the chemical shift value of xenon probing the internal surfaces. These results prompted us to measure the high storage capacity of the matrix towards benzene, hexafluorobenzene, ethanol, and carbon dioxide. Both host-guest, CH...pi, and OH...pi interactions contribute to the stabilization of the aromatic guests (benzene and hexafluorobenzene) on the extended surfaces. The full carbon dioxide loading in the channels could be detected by synchrotron radiation X-ray diffraction experiments. The selective adsorption of carbon dioxide (ca. 90 wt %) vs that of oxygen and hydrogen, together with the permanent

  16. High performance mini-gas chromatography-flame ionization detector system based on micro gas chromatography column.

    PubMed

    Zhu, Xiaofeng; Sun, Jianhai; Ning, Zhanwu; Zhang, Yanni; Liu, Jinhua

    2016-04-01

    Monitoring Volatile organic compounds (VOCs) was a very important measure for preventing environmental pollution, therefore, a mini gas chromatography (GC) flame ionization detector (FID) system integrated with a mini H2 generator and a micro GC column was developed for environmental VOC monitoring. In addition, the mini H2 generator was able to make the system explode from far away due to the abandoned use of a high pressure H2 source. The experimental result indicates that the fabricated mini GC FID system demonstrated high repeatability and very good linear response, and was able to rapidly monitor complicated environmental VOC samples.

  17. High performance mini-gas chromatography-flame ionization detector system based on micro gas chromatography column

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaofeng; Sun, Jianhai; Ning, Zhanwu; Zhang, Yanni; Liu, Jinhua

    2016-04-01

    Monitoring Volatile organic compounds (VOCs) was a very important measure for preventing environmental pollution, therefore, a mini gas chromatography (GC) flame ionization detector (FID) system integrated with a mini H2 generator and a micro GC column was developed for environmental VOC monitoring. In addition, the mini H2 generator was able to make the system explode from far away due to the abandoned use of a high pressure H2 source. The experimental result indicates that the fabricated mini GC FID system demonstrated high repeatability and very good linear response, and was able to rapidly monitor complicated environmental VOC samples.

  18. Identification of polychlorinated styrene compounds in heron tissues by gas-liquid chromatography-mass spectrometry

    USGS Publications Warehouse

    Reichel, W.L.; Prouty, R.M.; Gay, M.L.

    1977-01-01

    Unknown compounds detected in Ardea herodias tissues are identified by gas-liquid chromatography-mass spectrometry as residues of octachlorostyrene. Heptachlorostyrene and hexachlorostyrene were tentatively identified.

  19. Novel stationary phases based on asphaltenes for gas chromatography.

    PubMed

    Boczkaj, Grzegorz; Momotko, Malwina; Chruszczyk, Dorota; Przyjazny, Andrzej; Kamiński, Marian

    2016-07-01

    We present the results of investigations on the possibility of the application of the asphaltene fraction isolated from the oxidized residue from vacuum distillation of crude oil as a stationary phase for gas chromatography. The results of the investigation revealed that the asphaltene stationary phases can find use for the separation of a wide range of volatile organic compounds. The experimental values of Rohrschneider/McReynolds constants characterize the asphaltenes as stationary phases of medium polarity and selectivity similar to commercially available phases based on alkyl phthalates. Isolation of asphaltenes from the material obtained under controlled process conditions allows the production of a stationary phase having reproducible sorption properties and chromatographic columns having the same selectivity. Unique selectivity and high thermal stability make asphaltenes attractive as a material for stationary phases for gas chromatography. A low production cost from a readily available raw material (oxidized petroleum bitumens) is an important economic factor in case of application of the asphaltene stationary phases for preparative and process separations.

  20. Novel stationary phases based on asphaltenes for gas chromatography.

    PubMed

    Boczkaj, Grzegorz; Momotko, Malwina; Chruszczyk, Dorota; Przyjazny, Andrzej; Kamiński, Marian

    2016-07-01

    We present the results of investigations on the possibility of the application of the asphaltene fraction isolated from the oxidized residue from vacuum distillation of crude oil as a stationary phase for gas chromatography. The results of the investigation revealed that the asphaltene stationary phases can find use for the separation of a wide range of volatile organic compounds. The experimental values of Rohrschneider/McReynolds constants characterize the asphaltenes as stationary phases of medium polarity and selectivity similar to commercially available phases based on alkyl phthalates. Isolation of asphaltenes from the material obtained under controlled process conditions allows the production of a stationary phase having reproducible sorption properties and chromatographic columns having the same selectivity. Unique selectivity and high thermal stability make asphaltenes attractive as a material for stationary phases for gas chromatography. A low production cost from a readily available raw material (oxidized petroleum bitumens) is an important economic factor in case of application of the asphaltene stationary phases for preparative and process separations. PMID:27144876

  1. High-speed gas chromatography: an overview of various concepts.

    PubMed

    Cramers, C A; Janssen, H G; van Deursen, M M; Leclercq, P A

    1999-09-24

    An overview is given of existing methods to minimise the analysis time in gas chromatography (GC) being the subject of many publications in the scientific literature. Packed and (multi-) capillary columns are compared with respect to their deployment in fast GC. It is assumed that the contribution of the stationary phase to peak broadening can be neglected (low liquid phase loading and thin film columns, respectively). The treatment is based on the minimisation of the analysis time required on both column types for the resolution of a critical pair of solutes (resolution normalised conditions). Theoretical relationships are given, describing analysis time and the related pressure drop. The equations are expressed in reduced parameters, making a comparison of column types considerably simpler than with the conventional equations. Reduction of the characteristic diameter, being the inside column diameter for open tubular columns and the particle size for packed columns, is the best approach to increase the separation speed in gas chromatography. Extremely fast analysis is only possible when the required number of plates to separate a critical pair of solutes is relatively low. Reducing the analysis time by reduction of the characteristic diameter is accompanied by a proportionally higher required inlet pressure. Due to the high resistance of flow of packed columns this seriously limits the use of packed columns for fast GC. For fast GC hydrogen has to be used as carrier gas and in some situations vacuum-outlet operation of capillary columns allows a further minimisation of the analysis time. For fast GC the columns should be operated near the conditions for minimum plate height. Linear temperature programmed fast GC requires high column temperature programming rates. Reduction of the characteristic diameter affects the sample capacity of the "fast columns". This effect is very pronounced for narrow-bore columns and in principle non-existing in packed columns. Multi

  2. Using gas chromatography to characterize a direct coal liquefaction naphtha.

    PubMed

    Omais, Badaoui; Courtiade, Marion; Charon, Nadège; Roullet, Christophe; Ponthus, Jérémie; Thiébaut, Didier

    2012-02-24

    Speciation of oxygenated compounds in direct coal liquefaction naphthas is essential considering their important roles in coal conversion reactions. This study attempts to characterize them as fully as possible using gas chromatographic systems. Firstly, GC-MS was deployed allowing the identification of a few ketones, alcohols, and phenols. This conventional analysis was complemented by the application of GC-GC-FID aiming to overcome the coelutions highlighted when using one-dimensional gas chromatography. Heart-cutting and comprehensive two-dimensional gas chromatography were used and the comprehensive system led to better performances as expected considering the complexity of the matrix. In fact, it allowed the identification of more than a hundred of oxygenated compounds belonging to five chemical families: alcohols, ketones, furans, acids and phenols. Average response factors of each of these families were determined by GC×GC-FID using calibration curves and vary from 1 (hydrocarbons) to 2.50 (carboxylic acids). Thanks to a breakthrough columns set involving a trifluoropropyl stationary phase, alcohols and phenols which represent around 14% of the sample were fully identified. A detailed quantification of these species was carried out for the first time in such matrices using the determined response factors. It was concluded that 90% (w/w) of the alcohols are aromatic (phenols), 5% (w/w) are cyclic and 5% (w/w) are linear. A quantification of hydrocarbon families was also achieved and shows that the matrix is mostly naphthenic (56%, w/w), but also contains aromatics (22%, w/w) and paraffins (8%, w/w). This detailed characterization leads to a better understanding of coal conversion processes and is essential to convert them into synthetic fuels.

  3. Determination of household chemicals using gas chromatography and liquid chromatography with tandem mass spectrometry.

    PubMed

    Trenholm, Rebecca A; Vanderford, Brett J; Drewes, Jörg E; Snyder, Shane A

    2008-05-01

    A method has been developed for the determination of 24 household high production volume (HPV) chemicals in municipal wastewater systems using solid-phase extraction (SPE) and analyses using both gas chromatography and liquid chromatography, each with tandem mass spectrometry (GC-MS/MS and LC-MS/MS). Target compounds include pesticides, antioxidants, fragrances, plasticizers, preservatives and personal care products. Method reporting limits ranged from 0.1 to 100 ng/L in water and recoveries for most compounds were between 54 and 112%. Household HPVs were consistently detected in raw sewage entering three full-scale wastewater treatment plants. Compounds such as vanillin, DEET, benzophenone, 3-indolebutyric acid, bisphenol A, triclosan and triclocarban were detected in all wastewater influent and effluent samples, but were significantly lower in the effluent. Many of the remaining compounds were detected in the influent, but below detection in effluent samples. Menthol and phenoxyethanol had the highest observed concentrations in influent samples ranging from 1.5 to 13 microg/L for menthol, and 8.8 to 22 microg/L for phenoxyethanol. MGK-11, methylresorcinol, trifluralin, hexabromododecane, acriflavin and atrazine were not detected in any samples. The method described here detects a broad range of HPV chemicals with great sensitivity and selectivity.

  4. c2d Spitzer IRS spectra of embedded low-mass young stars: gas-phase emission lines

    NASA Astrophysics Data System (ADS)

    Lahuis, F.; van Dishoeck, E. F.; Jørgensen, J. K.; Blake, G. A.; Evans, N. J.

    2010-09-01

    Context. A survey of mid-infrared gas-phase emission lines of H2, H2O and various atoms toward a sample of 43 embedded low-mass young stars in nearby star-forming regions is presented. The sources are selected from the Spitzer “Cores to Disks” (c2d) legacy program. Aims: The environment of embedded protostars is complex both in its physical structure (envelopes, outflows, jets, protostellar disks) and the physical processes (accretion, irradiation by UV and/or X-rays, excitation through slow and fast shocks) which take place. The mid-IR spectral range hosts a suite of diagnostic lines which can distinguish them. A key point is to spatially resolve the emission in the Spitzer-IRS spectra to separate extended PDR and shock emission from compact source emission associated with the circumstellar disk and jets. Methods: An optimal extraction method is used to separate both spatially unresolved (compact, up to a few hundred AU) and spatially resolved (extended, thousand AU or more) emission from the IRS spectra. The results are compared with the c2d disk sample and literature PDR and shock models to address the physical nature of the sources. Results: Both compact and extended emission features are observed. Warm (T_ex few hundred K) H2, observed through the pure rotational H2 S(0), S(1) and S(2) lines, and [S i] 25 μm emission is observed primarily in the extended component. [S i] is observed uniquely toward truly embedded sources and not toward disks. On the other hand hot (T_ex ⪆ 700 K) H2, observed primarily through the S(4) line, and [Ne ii] emission is seen mostly in the spatially unresolved component. [Fe ii] and [Si ii] lines are observed in both spatial components. Hot H2O emission is found in the spatially unresolved component of some sources. Conclusions: The observed emission on ≥1000 AU scales is characteristic of PDR emission and likely originates in the outflow cavities in the remnant envelope created by the stellar wind and jets from the embedded

  5. Microfabricated planar glass gas chromatography with photoionization detection.

    PubMed

    Lewis, Alastair C; Hamilton, Jacqueline F; Rhodes, Christopher N; Halliday, Jaydene; Bartle, Keith D; Homewood, Philip; Grenfell, Robin J P; Goody, Brian; Harling, Alice M; Brewer, Paul; Vargha, Gergely; Milton, Martin J T

    2010-01-29

    We report the development of a microfabricated gas chromatography system suitable for the separation of volatile organic compounds (VOCs) and compatible with use as a portable measurement device. Hydrofluoric acid etching of 95x95mm Schott B270 wafers has been used to give symmetrical hemi-spherical channels within a glass substrate. Two matching glass plates were subsequently cold bonded with the channels aligned; the flatness of the glass surfaces resulted in strong bonding through van der Waals forces. The device comprised gas fluidic interconnections, injection zone and 7.5 and 1.4m long, 320microm internal diameter capillaries. Optical microscopy confirmed the capillaries to have fully circular channel profiles. Direct column heating and cooling could be achieved using a combination of resistive heaters and Peltier devices. The low thermal conductivity of glass allowed for multiple uniform temperature zones to be achieved within a single glass chip. Temperature control over the range 10-200 degrees C was achieved with peak power demand of approximately 25W. The 7.5m capillary column was static coated with a 2microm film of non-polar dimethylpolysiloxane stationary phase. A standard FID and a modified lightweight 100mW photoionization detector (PID) were coupled to the column and performance tested with gas mixtures of monoaromatic and monoterpene species at the parts per million concentration level. The low power GC-PID device showed good performance for a small set of VOCs and sub ng detection sensitivity to monoaromatics. PMID:20022335

  6. Identification of New Metabolites of Bacterial Transformation of Indole by Gas Chromatography-Mass Spectrometry and High Performance Liquid Chromatography

    PubMed Central

    Arora, Pankaj Kumar

    2014-01-01

    Arthrobacter sp. SPG transformed indole completely in the presence of an additional carbon source. High performance liquid chromatography and gas chromatography-mass spectrometry detected indole-3-acetic acid, indole-3-glyoxylic acid, and indole-3-aldehyde as biotransformation products. This is the first report of the formation of indole-3-acetic acid, indole-3-glyoxylic acid, and indole-3-aldehyde from indole by any bacterium. PMID:25548566

  7. Inverse gas chromatography investigation of oxidized polyolefins: surface properties.

    PubMed

    Voelkel, Adam; Strzemiecka, Beata; Marek, Adam Andrzej; Zawadiak, Jan

    2014-04-11

    Oxidized polyolefins were obtained in processes with the use of air or oxygen as oxidizing agent. The oxidation process caused partial polymer degradation and the change of the surface properties of examined materials. The magnitude of these changes was estimated by means of inverse gas chromatography. All oxidized materials were found to exhibit slightly acidic character. Surface properties strongly depend on the content of oxygen functional groups (oxidation degree) and type of initial material. The most active surfaces were found for oxidized polypropylene and polyethylene wax. The use of principal component analysis allowed to select four parameters offering complete information on the physiochemical character of examined materials (γS(D)), acid volume or saponification number, KA or KD and KA/KD.

  8. Field gas chromatography-mass spectrometry for fast analysis.

    PubMed

    Makas, Alexei L; Troshkov, Mikhail L

    2004-02-01

    The objective of this presentation is to demonstrate the original device and procedure for fast gas chromatography-mass spectrometry (GC-MS) analysis of gaseous and liquid samples and to discuss its features and capabilities. The concept was developed in order to expand the range of compounds suitable for GC separation and to reduce the time of analysis. Field GC-MS, consisting of original "concentrator-thermodesorber" (CTD) unit, multiple module GC system and compact magnetic mass spectrometer with powerful two-stage vacuum system and multicollector ion detector, is represented. The whole weight of the device is 90 kg. Power consumption is 250 W. The device and analytical procedures allow high speed screening of toxic substances in air and extracts within 100 s per sample. The examples of applications are described, including fast screening of tributyl phosphate (TBP) in air at low ppt level at the rate 1 sample/min.

  9. Estimation of brassylic acid by gas chromatography-mass spectrometry

    SciTech Connect

    Mohammed J. Nasrullah, Erica N. Pfarr, Pooja Thapliyal, Nicholas S. Dusek, Kristofer L. Schiele, Christy Gallagher-Lein, and James A. Bahr

    2010-10-29

    The main focus of this work is to estimate Brassylic Acid (BA) using gas chromatography-mass spectrometry (GC-MS). BA is a product obtained from the oxidative cleavage of Erucic Acid (EA). BA has various applications for making nylons and high performance polymers. BA is a 13 carbon compound with two carboxylic acid functional groups at the terminal end. BA has a long hydrocarbon chain that makes the molecule less sensitive to some of the characterization techniques. Although BA can be characterized by NMR, both the starting material (EA) and products BA and nonanoic acid (NA) have peaks at similar {delta}, ppm values. Hence it becomes difficult for the quick estimation of BA during its synthesis.

  10. Field gas chromatography-mass spectrometry for fast analysis.

    PubMed

    Makas, Alexei L; Troshkov, Mikhail L

    2004-02-01

    The objective of this presentation is to demonstrate the original device and procedure for fast gas chromatography-mass spectrometry (GC-MS) analysis of gaseous and liquid samples and to discuss its features and capabilities. The concept was developed in order to expand the range of compounds suitable for GC separation and to reduce the time of analysis. Field GC-MS, consisting of original "concentrator-thermodesorber" (CTD) unit, multiple module GC system and compact magnetic mass spectrometer with powerful two-stage vacuum system and multicollector ion detector, is represented. The whole weight of the device is 90 kg. Power consumption is 250 W. The device and analytical procedures allow high speed screening of toxic substances in air and extracts within 100 s per sample. The examples of applications are described, including fast screening of tributyl phosphate (TBP) in air at low ppt level at the rate 1 sample/min. PMID:14698236

  11. Image background removal in comprehensive two-dimensional gas chromatography.

    PubMed

    Reichenbach, Stephen E; Ni, Mingtian; Zhang, Dongmin; Ledford, Edward B

    2003-01-24

    This paper describes a new technique for removing the background level from digital images produced in comprehensive two-dimensional gas chromatography (GCxGC). Background removal is an important first step in the larger problem of quantitative analysis. The approach estimates the background level across the chromatographic image based on structural and statistical properties of GCxGC data. Then, the background level is subtracted from the image, producing a chromatogram in which the peaks rise above a near-zero mean background. After the background level is removed, further analysis is required to determine the quantitative relationship between the peaks and chemicals in the sample. The algorithm is demonstrated experimentally to be effective at determining and removing the background level from GCxGC images. The algorithm has several parametric controls and is incorporated into an interactive program with graphical interface for rapid and accurate detection of GCxGC peaks.

  12. Impact of comprehensive two-dimensional gas chromatography with mass spectrometry on food analysis.

    PubMed

    Tranchida, Peter Q; Purcaro, Giorgia; Maimone, Mariarosa; Mondello, Luigi

    2016-01-01

    Comprehensive two-dimensional gas chromatography with mass spectrometry has been on the separation-science scene for about 15 years. This three-dimensional method has made a great positive impact on various fields of research, and among these that related to food analysis is certainly at the forefront. The present critical review is based on the use of comprehensive two-dimensional gas chromatography with mass spectrometry in the untargeted (general qualitative profiling and fingerprinting) and targeted analysis of food volatiles; attention is focused not only on its potential in such applications, but also on how recent advances in comprehensive two-dimensional gas chromatography with mass spectrometry will potentially be important for food analysis. Additionally, emphasis is devoted to the many instances in which straightforward gas chromatography with mass spectrometry is a sufficiently-powerful analytical tool. Finally, possible future scenarios in the comprehensive two-dimensional gas chromatography with mass spectrometry food analysis field are discussed.

  13. Chemical discrimination in turbulent gas mixtures with MOX sensors validated by gas chromatography-mass spectrometry.

    PubMed

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Vergara, Alexander; Huerta, Ramón

    2014-10-16

    Chemical detection systems based on chemo-resistive sensors usually include a gas chamber to control the sample air flow and to minimize turbulence. However, such a kind of experimental setup does not reproduce the gas concentration fluctuations observed in natural environments and destroys the spatio-temporal information contained in gas plumes. Aiming at reproducing more realistic environments, we utilize a wind tunnel with two independent gas sources that get naturally mixed along a turbulent flow. For the first time, chemo-resistive gas sensors are exposed to dynamic gas mixtures generated with several concentration levels at the sources. Moreover, the ground truth of gas concentrations at the sensor location was estimated by means of gas chromatography-mass spectrometry. We used a support vector machine as a tool to show that chemo-resistive transduction can be utilized to reliably identify chemical components in dynamic turbulent mixtures, as long as sufficient gas concentration coverage is used. We show that in open sampling systems, training the classifiers only on high concentrations of gases produces less effective classification and that it is important to calibrate the classification method with data at low gas concentrations to achieve optimal performance.

  14. Chemical Discrimination in Turbulent Gas Mixtures with MOX Sensors Validated by Gas Chromatography-Mass Spectrometry

    PubMed Central

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Vergara, Alexander; Huerta, Ramón

    2014-01-01

    Chemical detection systems based on chemo-resistive sensors usually include a gas chamber to control the sample air flow and to minimize turbulence. However, such a kind of experimental setup does not reproduce the gas concentration fluctuations observed in natural environments and destroys the spatio-temporal information contained in gas plumes. Aiming at reproducing more realistic environments, we utilize a wind tunnel with two independent gas sources that get naturally mixed along a turbulent flow. For the first time, chemo-resistive gas sensors are exposed to dynamic gas mixtures generated with several concentration levels at the sources. Moreover, the ground truth of gas concentrations at the sensor location was estimated by means of gas chromatography-mass spectrometry. We used a support vector machine as a tool to show that chemo-resistive transduction can be utilized to reliably identify chemical components in dynamic turbulent mixtures, as long as sufficient gas concentration coverage is used. We show that in open sampling systems, training the classifiers only on high concentrations of gases produces less effective classification and that it is important to calibrate the classification method with data at low gas concentrations to achieve optimal performance. PMID:25325339

  15. Electron transfer and ionic displacements at the origin of the 2D electron gas at the LAO/STO interface: direct measurements with atomic-column spatial resolution.

    PubMed

    Cantoni, Claudia; Gazquez, Jaume; Miletto Granozio, Fabio; Oxley, Mark P; Varela, Maria; Lupini, Andrew R; Pennycook, Stephen J; Aruta, Carmela; di Uccio, Umberto Scotti; Perna, Paolo; Maccariello, Davide

    2012-08-01

    Using state-of-the-art, aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy with atomic-scale spatial resolution, experimental evidence for an intrinsic electronic reconstruction at the LAO/STO interface is shown. Simultaneous measurements of interfacial electron density and system polarization are crucial for establishing the highly debated origin of the 2D electron gas.

  16. A single glucose derivative suitable for gas chromatography/mass spectrometry and gas chromatography/combustion/isotope ratio mass spectrometry.

    PubMed

    Jackson, Sarah J; Waterhouse, John S; Bluck, Leslie J C

    2007-01-01

    The incorporation of stable isotopes improves the assessment of glucose metabolism and, with some researchers using two tracers, (2)H-glucose assessed by gas chromatography/mass spectrometry (GC/MS) and (13)C-glucose by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS), a common derivative for both is advantageous. The most commonly used derivatives for GC/MS are inappropriate for GC/C/IRMS as additional functional groups dilute the label. We therefore considered the suitability of six derivatives for both GC/MS and GC/C/IRMS. Glucose alkylboronates were prepared by adding the appropriate alkylboronic acid (butyl- or methylboronic acid) in pyridine to desiccated glucose. The derivatisation was completed by reacting this with either (a) acetic anhydride or trifluoroacetic anhydride (acetate derivatives) or (b) bis(trimethylsilyl)trifluoroacetamide BSTFA (TMS derivatives). All six derivatives were assessed using GC/MS and (13)C GC/C/IRMS. Neither TMS derivative exhibited any signal intensity in the molecular ion, although a M-15 ion showed good agreement between experimental and theoretical data and, whilst still low in intensity, could be suitable for isotope work. Similarly, none of the acetate derivatives showed any intensity at the molecular ion although three key fragmentation series were identified. The most attractive sequence, initiated by the loss of 1,2 cyclic boronate, resulted in the main fragment ion of interest, m/z 240, corresponding to the fluorinated methylboronate derivate. Minimal carbon and hydrogen atoms are added to this derivative making it an excellent choice for stable isotope work, while proving suitable for analysis by both GC/MS and GC/C/IRMS.

  17. Analysis of odour compounds from scented consumer products using gas chromatography-mass spectrometry and gas chromatography-olfactometry.

    PubMed

    Bartsch, Jennifer; Uhde, Erik; Salthammer, Tunga

    2016-01-21

    Scented consumer products are being bought in increasing amounts and gaining more popularity. There is, however, relatively little information available about their ingredients, emissions and allergenic potential. Frequently, a mixture of different fragrance substances and not solely an individual substance contributes to the overall desired smell. The aim of this study was to investigate the odorous volatile organic compounds (OVOCs) in consumer products containing fragrances. Over 44 products were selected: various scented candles, printing products with different scent types and other products types particularly meant to be used indoors. Measurements were carried out in a desiccator. Air samples were collected on thermal desorption tubes to determine the released fragrance substances by means of gas chromatography-mass spectrometry (GC-MS). Moreover, gas chromatography-olfactometry (GC-O) was used to obtain sensory data and to ensure no important odorant was overlooked. Using both methods it was possible to distinguish between odour active and inactive compounds and subsequently to identify almost 300 different odorants across all scented products. Besides the advantage of differentiation, as the human nose is a very sensitive detector, GC-O was found to be a useful tool for detecting traces and chosen target compounds. One focus in this study lay on the 26 EU-regulated fragrance allergens to prove their relevance in scented consumer goods. In total, 18 of them were identified, with at least one substance being present in almost every product. Benzyl alcohol, cinnamaldehyde, citronellol, eugenol, linalool and limonene were the prevalently detected allergens. Particularly linalool and limonene were observed in over 50% of the products. In addition, eugenol appeared to be one of the most frequently detected compounds in trace-level concentrations in the candle emissions.

  18. Analysis of odour compounds from scented consumer products using gas chromatography-mass spectrometry and gas chromatography-olfactometry.

    PubMed

    Bartsch, Jennifer; Uhde, Erik; Salthammer, Tunga

    2016-01-21

    Scented consumer products are being bought in increasing amounts and gaining more popularity. There is, however, relatively little information available about their ingredients, emissions and allergenic potential. Frequently, a mixture of different fragrance substances and not solely an individual substance contributes to the overall desired smell. The aim of this study was to investigate the odorous volatile organic compounds (OVOCs) in consumer products containing fragrances. Over 44 products were selected: various scented candles, printing products with different scent types and other products types particularly meant to be used indoors. Measurements were carried out in a desiccator. Air samples were collected on thermal desorption tubes to determine the released fragrance substances by means of gas chromatography-mass spectrometry (GC-MS). Moreover, gas chromatography-olfactometry (GC-O) was used to obtain sensory data and to ensure no important odorant was overlooked. Using both methods it was possible to distinguish between odour active and inactive compounds and subsequently to identify almost 300 different odorants across all scented products. Besides the advantage of differentiation, as the human nose is a very sensitive detector, GC-O was found to be a useful tool for detecting traces and chosen target compounds. One focus in this study lay on the 26 EU-regulated fragrance allergens to prove their relevance in scented consumer goods. In total, 18 of them were identified, with at least one substance being present in almost every product. Benzyl alcohol, cinnamaldehyde, citronellol, eugenol, linalool and limonene were the prevalently detected allergens. Particularly linalool and limonene were observed in over 50% of the products. In addition, eugenol appeared to be one of the most frequently detected compounds in trace-level concentrations in the candle emissions. PMID:26724768

  19. Plasma emission spectral detection for pyrolysis-gas chromatography

    NASA Astrophysics Data System (ADS)

    Riska, Gregory D.; Estes, Scott A.; Beyer, John O.; Uden, Peter C.

    Specific element gas chromatographic detection by plasma emission spectroscopy has been evaluated for the characterization of volatile pyrolyzates from a number of polymers containing hetero-atoms. Directly interfaced rapid-temperature rise time pyrolysis with high resolution open tubular column gas chromatography was employed. The atmospheric pressure microwave induced and sustained plasma utilizing a "Beenakker" type TM 010 cavity was applied for specific detection of phosphorus and carbon in polyphosphazene pyrolysis and for boron in carborane-silicone pyrolysis. An interfaced d.c. argon atmospheric pressure plasma was found more advantageous for the specific determination of silicon in the pyrolysis products of novel linear silarylene-siloxanes. In phosphazene pyrolysis notable differences were seen in the phosphorus content of volatiles formed on pyrolysis between polymers fluoroalkoxy and chlorophenoxy substituents. For carborane-silicones sequential volatilization followed by pyrolysis allowed the identification of residual boron containing monomers as well as pyrolyzates. Pyrolysis of the silarylene-siloxanes showed markedly differing levels of silicon content in polymers with differing aromatic backbones and different levels of vinyl substitution.

  20. Preparation of fatty acid methyl esters for gas-liquid chromatography[S

    PubMed Central

    Ichihara, Ken'ichi; Fukubayashi, Yumeto

    2010-01-01

    A convenient method using commercial aqueous concentrated HCl (conc. HCl; 35%, w/w) as an acid catalyst was developed for preparation of fatty acid methyl esters (FAMEs) from sterol esters, triacylglycerols, phospholipids, and FFAs for gas-liquid chromatography (GC). An 8% (w/v) solution of HCl in methanol/water (85:15, v/v) was prepared by diluting 9.7 ml of conc. HCl with 41.5 ml of methanol. Toluene (0.2 ml), methanol (1.5 ml), and the 8% HCl solution (0.3 ml) were added sequentially to the lipid sample. The final HCl concentration was 1.2% (w/v). This solution (2 ml) was incubated at 45°C overnight or heated at 100°C for 1–1.5 h. The amount of FFA formed in the presence of water derived from conc. HCl was estimated to be <1.4%. The yields of FAMEs were >96% for the above lipid classes and were the same as or better than those obtained by saponification/methylation or by acid-catalyzed methanolysis/methylation using commercial anhydrous HCl/methanol. The method developed here could be successfully applied to fatty acid analysis of various lipid samples, including fish oils, vegetable oils, and blood lipids by GC. PMID:19759389

  1. [Determination of dimethylbenzoic acid isomers in urine by gas chromatography].

    PubMed

    Kostrzewski, P; Wiaderna-Brycht, A; Czerski, B

    1994-01-01

    Trimethylobenzene (TMB) is a main ingredient of many organic solvents used in industry. In Farbasol (Polish trade name of the solvent) TMB occurs as a mixture of three isomers: pseudocumene (1, 2, 4-TMB) 30%; mesitylene (1, 3, 5-TMB) 15%; hemimellitene (1,2,3-TMB) 5%. As it is known in human organism, TMB is metabolized mainly to dimethylbenzoic (DMBA) and dimethylhippuric (DMHA) acids, and some authors suggest, that the acids excreted in urine can be biological indicators of exposure to TMB. This study was aimed at developing the method of determination of DMBA isomers in urine. Biological material was hydrolyzed with sodium hydroxide and next extracted with diethyl ether. DMBA concentration in urine was determined by gas chromatography using a variant of quantitative analysis with internal standard (5-methyl-2-isopropylphenol, thymol). Analytical parameters of the developed method of determination of DMBA isomers in urine such as linearity, precision, reproducibility, stability (192 days, when urine samples stored at-18 degrees C), detectability limit (400 micrograms/dm3) have been fully compatible with the requirements of biological monitoring. In order to confirm the presence of DMBA isomers in urine, four volunteers were exposed (8 hours) to Farbasol in toxicological chamber. The TMB concentration in the air, determined by means of gas chromatograph (HP 5890), amounted to 100 mg/m3 (MAC value in Poland). In urine samples collected 2,3-; 2,4-; 2,5-; 2,6-; 3,4-; 3,5-dimethylbenzoic acids were identified by means of GC/MSD.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8170375

  2. [Enantioseparation of 2-phenylcarboxylic acid esters by capillary gas chromatography].

    PubMed

    Shi, Xueyan; Liu, Feipeng; Bian, Qinghua

    2016-01-01

    Chiral 2-arylcarboxylic acid derivatives are important intermediates for preparing 2-arylcarboxylic acids, which are non-steroidal anti-inflammatory drugs (NSAIDs). In order to separate 2-phenylcarboxylic acid ester enantiomers by capillary gas chromatography (CGC), 2, 6-di-O-pentyl-3-O-butyryl-β-cyclodextrin and 2,6-di-O-benzyl-3-O-heptanoyl-β-cyclodextrin were used as CGC chiral stationary phases, separately, and their enantioseparation abilities to enantiomers of methyl 2-phenylbutanoate, ethyl 2-phenylbutanoate, isopropyl 2-phenylbutanoate, methyl 2-phenylpropionate and cyclopentyl 2-phenylpropionate were examined. It was found that methyl 2-phenylbutanoate, methyl 2-phenylpropionate and cyclopentyl 2-phenylpropionate were successfully separated by using 2,6-di-O-pentyl-3-O-butyryl-β-cyclodextrin and 2,6-di-O-benzyl-3-O-heptanoyl-β-cyclodextrin as CGC chiral stationary phases, respectively. The enantiomer separation abilities of 2, 6-di-O-pentyl-3-O-butyryl-β-cyclodextrin to the three pairs of 2-phenylcarboxylic acid esters tested are superior to those of 2, 6-di-O-benzyl-3-O-heptanoyl-β-cyclodextrin. PMID:27319170

  3. An improved multiple flame photometric detector for gas chromatography.

    PubMed

    Clark, Adrian G; Thurbide, Kevin B

    2015-11-20

    An improved multiple flame photometric detector (mFPD) is introduced, based upon interconnecting fluidic channels within a planar stainless steel (SS) plate. Relative to the previous quartz tube mFPD prototype, the SS mFPD provides a 50% reduction in background emission levels, an orthogonal analytical flame, and easier more sensitive operation. As a result, sulfur response in the SS mFPD spans 4 orders of magnitude, yields a minimum detectable limit near 9×10(-12)gS/s, and has a selectivity approaching 10(4) over carbon. The device also exhibits exceptionally large resistance to hydrocarbon response quenching. Additionally, the SS mFPD uniquely allows analyte emission monitoring in the multiple worker flames for the first time. The findings suggest that this mode can potentially further improve upon the analytical flame response of sulfur (both linear HSO, and quadratic S2) and also phosphorus. Of note, the latter is nearly 20-fold stronger in S/N in the collective worker flames response and provides 6 orders of linearity with a detection limit of about 2.0×10(-13)gP/s. Overall, the results indicate that this new SS design notably improves the analytical performance of the mFPD and can provide a versatile and beneficial monitoring tool for gas chromatography.

  4. Discrimination of n-3 Rich Oils by Gas Chromatography

    PubMed Central

    Zeng, Yingxu; Du, Zhen-Yu; Nguyen, Thu-Thao; Frøyland, Livar; Grung, Bjørn

    2010-01-01

    Exploring the capabilities of instrumental techniques for discriminating n-3 rich oils derived from animals is a very important though much neglected area that was emphasized more than 100 years ago. In this study the potential of gas chromatography (GC) for discriminating full fatty acid methyl ester (FAME) profiles from fish (cod liver and salmon) and marine mammal (seal and whale) oils is evaluated by means of principal component analysis (PCA). The FAME profiles from plant oils such as rapeseed, linseed and soy oils and seven different brands of n-3 supplements are also used in the discrimination process. The results from the PCA plots can reliably distinguish between plant, n-3 supplements, fish and marine mammal oils. By removing the contribution of the n-3 supplements and plant oils it is possible to discriminate between types of fish and marine animal oils. GC offers a rapid, simple and convenient means of discriminating oils from different species, brands and grades. PMID:20963508

  5. Gas chromatography-mass spectrometry of biofluids and extracts.

    PubMed

    Emwas, Abdul-Hamid M; Al-Talla, Zeyad A; Yang, Yang; Kharbatia, Najeh M

    2015-01-01

    Gas chromatography-mass spectrometry (GC-MS) has been widely used in metabonomics analyses of biofluid samples. Biofluids provide a wealth of information about the metabolism of the whole body and from multiple regions of the body that can be used to study general health status and organ function. Blood serum and blood plasma, for example, can provide a comprehensive picture of the whole body, while urine can be used to monitor the function of the kidneys, and cerebrospinal fluid (CSF) will provide information about the status of the brain and central nervous system (CNS). Different methods have been developed for the extraction of metabolites from biofluids, these ranging from solvent extracts, acids, heat denaturation, and filtration. These methods vary widely in terms of efficiency of protein removal and in the number of metabolites extracted. Consequently, for all biofluid-based metabonomics studies, it is vital to optimize and standardize all steps of sample preparation, including initial extraction of metabolites. In this chapter, recommendations are made of the optimum experimental conditions for biofluid samples for GC-MS, with a particular focus on blood serum and plasma samples.

  6. DIRECT-DEPOSITION INFRARED SPECTROMETRY WITH GAS AND SUPERCRITICAL FLUID CHROMATOGRAPHY

    EPA Science Inventory

    A direct-deposition Fourier transform infrared (FT-IR) system has been evaluated for applicability to gas chromatography (GC) and supercritical fluid chromatography (SFC) of environmental analytes. A 100-um i.d. fused-silica transfer line was used for GC, and a 50-um transfer lin...

  7. Studies of long chain lipids in insects by high temperature gas chromatography and high temperature gas chromatography-mass spectrometry.

    PubMed

    Sutton, Paul A; Wilde, Michael J; Martin, Stephen J; Cvačka, Josef; Vrkoslav, Vladimír; Rowland, Steven J

    2013-07-01

    The organic compounds occurring naturally on the cuticles (surfaces) of insects are important for insect communication, help to act as protective water barriers and are useful in chemical taxonomy. Typically the cuticular lipids are only studied by gas chromatography-mass spectrometry (GC-MS) of hexane or pentane extracts, so the normal limitations of GC-MS makes it perhaps unsurprising that compounds with more than about 35 carbon atoms have only rarely been reported. Here we show by high temperature (HT) GC and HTGC-MS of extracts of eleven species of insects from nine genera, that longer chain compounds are actually common. Wax esters and triacylglycerides are virtually ubiquitous in such extracts, but long chain (>C35) hydrocarbons also sometimes occur. Whilst the latter have occasionally been reported previously from mass spectrometry studies, the use of the HTGC combination with MS allowed even some isobaric isomers to be separated and thus more complete lipid distributions to be monitored. Since the physical properties of cuticular compounds depend on this composition of the mixtures, such differences may influence the water loss rates of the insects, amongst other effects. In addition, the high molecular weight compound profiles may allow species to be more easily differentiated, one from another. It would be interesting to apply these methods to examination of the cuticular lipids of insects on a more routine basis, ideally in combination with MALDI-TOF-MS and imaging methods. PMID:23726079

  8. Enantiomeric separation in comprehensive two-dimensional gas chromatography with accurate mass analysis.

    PubMed

    Chin, Sung-Tong; Nolvachai, Yada; Marriott, Philip J

    2014-11-01

    Chiral comprehensive two-dimensional gas chromatography (eGC×GC) coupled to quadrupole-accurate mass time-of-flight mass spectrometry (QTOFMS) was evaluated for its capability to report the chiral composition of several monoterpenes, namely, α-pinene, β-pinene, and limonene in cardamom oil. Enantiomers in a standard mixture were fully resolved by direct enantiomeric-GC analysis with a 2,3-di-O-methyl-6-t-butylsilyl derivatized β-cyclodextrin phase; however, the (+)-(R)-limonene enantiomer in cardamom oil was overlapped with other background components including cymene and cineole. Verification of (+)-(R)-limonene components based on characteristic ions at m/z 136, 121, and 107 acquired by chiral single-dimension GC-QTOFMS in the alternate MS/MSMS mode of operation was unsuccessful due to similar parent/daughter ions generated by interfering or co-eluting cymene and cineole. Column phases SUPELCOWAX, SLB-IL111, HP-88, and SLB-IL59, were incorporated as the second dimension column ((2)D) in chiral GC×GC analysis; the SLB-IL59 offered the best resolution for the tested monoterpene enantiomers from the matrix background. Enantiomeric ratios for α-pinene, β-pinene, and limonene were determined to be 1.325, 2.703, and 1.040, respectively, in the cardamom oil sample based on relative peak area data. PMID:24420979

  9. Enantiomeric separation in comprehensive two-dimensional gas chromatography with accurate mass analysis.

    PubMed

    Chin, Sung-Tong; Nolvachai, Yada; Marriott, Philip J

    2014-11-01

    Chiral comprehensive two-dimensional gas chromatography (eGC×GC) coupled to quadrupole-accurate mass time-of-flight mass spectrometry (QTOFMS) was evaluated for its capability to report the chiral composition of several monoterpenes, namely, α-pinene, β-pinene, and limonene in cardamom oil. Enantiomers in a standard mixture were fully resolved by direct enantiomeric-GC analysis with a 2,3-di-O-methyl-6-t-butylsilyl derivatized β-cyclodextrin phase; however, the (+)-(R)-limonene enantiomer in cardamom oil was overlapped with other background components including cymene and cineole. Verification of (+)-(R)-limonene components based on characteristic ions at m/z 136, 121, and 107 acquired by chiral single-dimension GC-QTOFMS in the alternate MS/MSMS mode of operation was unsuccessful due to similar parent/daughter ions generated by interfering or co-eluting cymene and cineole. Column phases SUPELCOWAX, SLB-IL111, HP-88, and SLB-IL59, were incorporated as the second dimension column ((2)D) in chiral GC×GC analysis; the SLB-IL59 offered the best resolution for the tested monoterpene enantiomers from the matrix background. Enantiomeric ratios for α-pinene, β-pinene, and limonene were determined to be 1.325, 2.703, and 1.040, respectively, in the cardamom oil sample based on relative peak area data.

  10. Profiling of soil fatty acids using comprehensive two-dimensional gas chromatography with mass spectrometry detection.

    PubMed

    Zeng, Annie Xu; Chin, Sung-Tong; Patti, Antonio; Marriott, Philip J

    2013-11-22

    Profiling of phospholipid fatty acids (PLFA) represents a challenging goal for distinguishing the diversity of microbial communities and biomass in the complex and heterogeneous soil ecosystem. Comprehensive two-dimensional gas chromatography (GC×GC) coupled with simultaneous flame ionisation and mass spectrometry detection was applied as a culture-independent method for PLFA profiling of microbial classification in forest soil. A number of column sets were evaluated for the GC×GC separation of fatty acid methyl esters (FAME). Due to better isomeric separation and compound patterns on the 2D contour plot, an apolar-polar column combination was selected for soil microbial PLFA characterisation. A comprehensive view of PLFA composition with carbon chain length varying from 12 to 20 was observed in forest soil samples, with the commonly reported bacterial FAME of iso-/anteiso-, methyl-branched-, cyclopropyl-, and hydroxyl-substituted FA identified by their mass spectral and retention time according to authentic standards. Notably, some uncommon oxygenated FAME were found in high abundance and were further characterised by GC×GC coupled with high resolution mass spectrometry. This tentatively revealed geometric pairs of methyl 9,10-epoxyoctadecanoate isomers.

  11. Chemical Composition of Latent Fingerprints by Gas Chromatography-Mass Spectrometry

    ERIC Educational Resources Information Center

    Hartzell-Baguley, Brittany; Hipp, Rachael E.; Morgan, Neal R.; Morgan, Stephen L.

    2007-01-01

    An experiment in which gas chromatography-mass spectrometry (GC-MS) is used for latent fingerprint extraction and analysis on glass beads or glass slides is conducted. The results determine that the fingerprint residues are gender dependent.

  12. DETERMINATION OF CHLOROETHENES IN ENVIRONMENTAL BIOLOGICAL SAMPLES USING GAS CHROMATOGRAPHY COUPLED WITH SOLID PHASE MICRO EXTRACTION

    EPA Science Inventory

    An analytical method has been developed to determine the chloroethene series, tetrachloroethene (PCE), trichloroethene (TCE),cisdichloroethene (cis-DCE) andtransdichloroethene (trans-DCE) in environmental biotreatment studies using gas chromatography coupled with a solid phase mi...

  13. ENVIRONMENTAL ANALYSIS BY AB INITIO QUANTUM MECHANICAL COMPUTATION AND GAS CHROMATOGRAPHY/FOURIER TRANSFORM INFRARED SPECTROMETRY.

    EPA Science Inventory

    Computational chemistry, in conjunction with gas chromatography/mass spectrometry/Fourier transform infrared spectrometry (GC/MS/FT-IR), was used to tentatively identify seven tetrachlorobutadiene (TCBD) isomers detected in an environmental sample. Computation of the TCBD infrare...

  14. Preparation of pure microbiological samples for pyrolysis gas-liquid chromatography studies

    NASA Technical Reports Server (NTRS)

    Oxborrow, G. S.; Fields, N. D.; Puleo, J. R.

    1976-01-01

    Bacterial samples were prepared for pyrolysis gas-liquid chromatography using cells grown on membrane filters. Pyrochromatograms were reproducible when cells harvested from the filters were pyrolyzed without being washed.

  15. Rapid discrimination of slimming capsules based on illegal additives by electronic nose and flash gas chromatography.

    PubMed

    Xia, Zhenzhen; Cai, Wensheng; Shao, Xueguang

    2015-02-01

    The discrimination of counterfeit and/or illegally manufactured medicines is an important task in the pharmaceutical industry for pharmaceutical safety. In this study, 22 slimming capsule samples with illegally added sibutramine and phenolphthalein were analyzed by electronic nose and flash gas chromatography. To reveal the difference among the different classes of samples, principal component analysis and linear discriminant analysis were employed to analyze the data acquired from electronic nose and flash gas chromatography, respectively. The samples without illegal additives can be discriminated from the ones with illegal additives by using electronic nose or flash gas chromatography data individually. To improve the performance of classification, a data fusion strategy was applied to integrate the data from electronic nose and flash gas chromatography data into a single model. The results show that the samples with phenolphthalein, sibutramine and both can be classified well by using fused data.

  16. Analysis of chemical signals in red fire ants by gas chromatography and pattern recognition techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The combination of gas chromatography and pattern recognition (GC/PR) analysis is a powerful tool for investigating complicated biological problems. Clustering, mapping, discriminant development, etc. are necessary to analyze realistically large chromatographic data sets and to seek meaningful relat...

  17. VACUUM DISTILLATION COUPLED WITH GAS CHROMATOGRAPHY/MASS SPECTROMETRY FOR THE ANALYSIS OF ENVIRONMENTAL SAMPLES

    EPA Science Inventory

    A procedure is presented that uses a vacuum distillation/gas chromatography/mass spectrometry system for analysis of problematic matrices of volatile organic compounds. The procedure compensates for matrix effects and provides both analytical results and confidence intervals from...

  18. 3D Reservoir Modeling of Semutang Gas Field: A lonely Gas field in Chittagong-Tripura Fold Belt, with Integrated Well Log, 2D Seismic Reflectivity and Attributes.

    NASA Astrophysics Data System (ADS)

    Salehin, Z.; Woobaidullah, A. S. M.; Snigdha, S. S.

    2015-12-01

    Bengal Basin with its prolific gas rich province provides needed energy to Bangladesh. Present energy situation demands more Hydrocarbon explorations. Only 'Semutang' is discovered in the high amplitude structures, where rest of are in the gentle to moderate structures of western part of Chittagong-Tripura Fold Belt. But it has some major thrust faults which have strongly breached the reservoir zone. The major objectives of this research are interpretation of gas horizons and faults, then to perform velocity model, structural and property modeling to obtain reservoir properties. It is needed to properly identify the faults and reservoir heterogeneities. 3D modeling is widely used to reveal the subsurface structure in faulted zone where planning and development drilling is major challenge. Thirteen 2D seismic and six well logs have been used to identify six gas bearing horizons and a network of faults and to map the structure at reservoir level. Variance attributes were used to identify faults. Velocity model is performed for domain conversion. Synthetics were prepared from two wells where sonic and density logs are available. Well to seismic tie at reservoir zone shows good match with Direct Hydrocarbon Indicator on seismic section. Vsh, porosity, water saturation and permeability have been calculated and various cross plots among porosity logs have been shown. Structural modeling is used to make zone and layering accordance with minimum sand thickness. Fault model shows the possible fault network, those liable for several dry wells. Facies model have been constrained with Sequential Indicator Simulation method to show the facies distribution along the depth surfaces. Petrophysical models have been prepared with Sequential Gaussian Simulation to estimate petrophysical parameters away from the existing wells to other parts of the field and to observe heterogeneities in reservoir. Average porosity map for each gas zone were constructed. The outcomes of the research

  19. NEW SCX PEPTIDE ELUTION SCORE FOR PH/SALT-GRADIENT SCX CHROMATOGRAPHY IN 2D-NANO-LC/MSMS ANALYSIS OF PROTEIN DIGESTS

    EPA Science Inventory

    A new automated 2D-(SCX/RP)-nano-LC/MSMS method was developed. Separation of the peptides in the first LC dimension was the main focus of this work, and it was optimized using human serum albumin (HSA) and human lung cell lysate tryptic digests. Samples were reduced and alkylated...

  20. Evaluation of reversible interconversion in comprehensive two-dimensional gas chromatography using enantioselective columns in first and second dimensions.

    PubMed

    Kröger, Sabrina; Wong, Yong Foo; Chin, Sung-Tong; Grant, Jacob; Lupton, David; Marriott, Philip J

    2015-07-24

    The reversible molecular interconversion behaviour of a synthesised oxime (2-phenylpropanaldehyde oxime; (C6H5)CH(CH3)CHN(OH)) was investigated by both, single dimensional gas chromatography (1D GC) and comprehensive two-dimensional gas chromatography (GC×GC). Previous studies on small molecular weight oximes were extended to this larger aromatic oxime (molar mass 149.19gmol(-1)) with interest in the extent of interconversion, enantioselective resolution, and retention time. On a polyethylene glycol (PEG; wax-type) column, a characteristic interconversion zone between two antipodes of E and Z isomers was formed by molecules which have undergone isomerisation on the column (E⇌Z). The extent of interconversion was investigated by varying chromatographic conditions (oven temperature and carrier flow rate) to understand the nature of the behaviour observed. The extent of interconversion was negligible in both enantioselective and methyl-phenylpolysiloxane phase-columns, correlating with the low polarity of the stationary phase. In order to obtain isomerisation along with enantio-resolution, a wax-type and an enantioselective column were coupled in either enantioselective-wax or wax-enantioselective order. The most appropriate column arrangement was selected for study by using a GC×GC experiment with either a wax-phase or phenyl-methylpolysiloxane phase as (2)D column. In addition to evaluation of these fast elution columns, a long narrow-bore enantioselective column (10m) was introduced as (2)D, providing an enantioselective-PEG (coupled-column ensemble: (1)D1+(1)D2)×enantioselective ((2)D) column combination. In this instance, the (1)D1 enantioselective column provides enantiomeric separation of the corresponding enantiomers ((R) and (S)) of (E)- and (Z)-2-phenylpropanaldehyde oxime, followed by E/Z isomerisation in the coupled (1)D2 PEG (reactor) column. The resulting chromatographic interconversion region was modulated and separated into either E/Z isomers

  1. High temperature diaphragm valve-based comprehensive two-dimensional gas chromatography.

    PubMed

    Freye, Chris E; Mu, Lan; Synovec, Robert E

    2015-12-11

    A high-temperature diaphragm valve-based comprehensive two-dimensional gas chromatography (GC×GC) instrument is demonstrated which readily allows separations up to 325°C. Previously, diaphragm valve-based GC×GC was limited to 175°C if the valve was mounted in the oven, or limited to 265°C if the valve was faced mounted on the outside of the oven. A new diaphragm valve has been commercially developed, in which the temperature sensitive O-rings that previously limited the separation temperatures have been replaced with Kalrez O-rings, a perfluoroelastomer, allowing for significantly higher temperatures permitting a greater range of volatile and semi-volatile compounds to be readily separated. In the current investigation, a separation temperature up to 325°C is demonstrated with the valve mounted directly in the oven. Since the temperature limit for most commonly used GC columns is at or below 325°C, the scope of diaphragm valve-based GC×GC is now dramatically broadened to encompass a majority of all column stationary phase chemistries. A 44-component mixture of alkanes, alcohols, and polyaromatic hydrocarbons is used to study this new configuration whose boiling points range from 98°C (n-heptane) to 450°C (n-triacontane). For the test mixture using a modulation period PM of 1.0s, peak shapes on second dimension separations, (2)D, are symmetric with average widths at base of 79.4ms, producing a (2)D peak capacity of (2)nc∼12. Based on the average peak width of 2.4s for the first dimension separation with a run time of 32.5min, the (1)D peak capacity is (1)nc∼800. Thus, the ideal two-dimensional peak capacity [Formula: see text] is 9600. Little variation in within-analyte (2)D peak width was observed with an average %RSD of less than 3.0%. Furthermore, retention time on (2)D was very reproducible with an average %RSD less than 0.5%. Measured peak areas (sum of all (2)D peaks for given analyte) had an average %RSD of 4.4%. The transfer fraction from (1)D

  2. High temperature diaphragm valve-based comprehensive two-dimensional gas chromatography.

    PubMed

    Freye, Chris E; Mu, Lan; Synovec, Robert E

    2015-12-11

    A high-temperature diaphragm valve-based comprehensive two-dimensional gas chromatography (GC×GC) instrument is demonstrated which readily allows separations up to 325°C. Previously, diaphragm valve-based GC×GC was limited to 175°C if the valve was mounted in the oven, or limited to 265°C if the valve was faced mounted on the outside of the oven. A new diaphragm valve has been commercially developed, in which the temperature sensitive O-rings that previously limited the separation temperatures have been replaced with Kalrez O-rings, a perfluoroelastomer, allowing for significantly higher temperatures permitting a greater range of volatile and semi-volatile compounds to be readily separated. In the current investigation, a separation temperature up to 325°C is demonstrated with the valve mounted directly in the oven. Since the temperature limit for most commonly used GC columns is at or below 325°C, the scope of diaphragm valve-based GC×GC is now dramatically broadened to encompass a majority of all column stationary phase chemistries. A 44-component mixture of alkanes, alcohols, and polyaromatic hydrocarbons is used to study this new configuration whose boiling points range from 98°C (n-heptane) to 450°C (n-triacontane). For the test mixture using a modulation period PM of 1.0s, peak shapes on second dimension separations, (2)D, are symmetric with average widths at base of 79.4ms, producing a (2)D peak capacity of (2)nc∼12. Based on the average peak width of 2.4s for the first dimension separation with a run time of 32.5min, the (1)D peak capacity is (1)nc∼800. Thus, the ideal two-dimensional peak capacity [Formula: see text] is 9600. Little variation in within-analyte (2)D peak width was observed with an average %RSD of less than 3.0%. Furthermore, retention time on (2)D was very reproducible with an average %RSD less than 0.5%. Measured peak areas (sum of all (2)D peaks for given analyte) had an average %RSD of 4.4%. The transfer fraction from (1)D

  3. Evaluation of Gas Chromatography/Mini-IMS to Detect VOCs

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Reese, Eric; Peters, Randy; James, John T.; Billica, Roger (Technical Monitor)

    1999-01-01

    The Toxicology Laboratory at Johnson Space Center (JSC) has pioneered the use of gas chromatography-ion mobility spectrometry (GC/IMS) for measuring target volatile organic compounds (VOCs) aboard spacecraft. Graseby Dynamics, under contract to NASA/Wyle, has built several volatile organic analyzers (VOA) based on GC/IMS. Foremost among these have been the volatile organic analyzer-risk mitigation unit and the two flight VOA units for International Space Station (ISS). The development and evaluation of these instruments has been chronicled through presentations at the International Conference on Ion Mobility Spectrometry over the past three years. As the flight VOA from Graseby is prepared for operation on ISS at JSC, it is time to begin evaluations of technologies for the next generation VOA, Although the desired instrument characteristics for the next generation unit are the same as the current unit, the requirements are much more stringent. As NASA looks toward future missions beyond Earth environs, a premium will be placed upon small, light, reliable, autonomous hardware. It is with these visions in mind that the JSC Toxicology Laboratory began a search for the next generation VOA. One technology that is a candidate for the next generation VOA is GC/IMS. The recent miniaturization of IMS technology permits it to compete with other, inherently small, technologies such as chip-sized sensor arrays. This paper will discuss the lessons learned from the VOA experience and how that has shaped the design of a potential second generation VOA based upon GC/IMS technology. Data will be presented from preliminary evaluations of GC technology and the mini-IMS when exposed to VOCs likely to be detected aboard spacecraft. Results from the evaluation of an integrated GC/mini-IMS system will be shown if available.

  4. Analysis of glycylsarcosine transport by lobster intestine using gas chromatography.

    PubMed

    Peterson, Maria L; Lane, Amy L; Ahearn, Gregory A

    2015-01-01

    Gas chromatography was used to measure transepithelial transport of glycylsarcosine (Gly-Sar) by perfused lobster (Homarus americanus) intestine. Unidirectional and net fluxes of dipeptide across the tissue and luminal factors affecting their magnitude and direction were characterized by perfusing the lumen with the dipeptide and measuring its appearance in saline on the serosal side of the organ. Transmural transport of 10 mM Gly-Sar resulted in serosal accumulation of only the dipeptide; no appearance of corresponding monomeric amino acids glycine or sarcosine was observed. Carrier-mediated and diffusional transmural intestinal transport of Gly-Sar was estimated at 1-15 mM luminal concentrations and followed a curvilinear equation providing a K m = 0.44 ± 0.17 mM, a J max = 1.27 ± 0.12 nmol cm(-2) min(-1), and a diffusional coefficient = 0.026 ± 0.008 nmol cm(-2) min(-1) mM(-1). Unidirectional mucosal to serosal and serosal to mucosal fluxes of 10 mM Gly-Sar provided a significant (p < 0.05) net absorptive flux toward the serosa of 3.54 ± 0.77 nmol cm(-2) min(-1), further supporting carrier-mediated dipeptide transport across the gut. Alkaline (pH 8.5) luminal pH more than doubled transmural Gly-Sar transport as compared to acidic (pH 5.5) luminal pH, while luminal amino acid-metal chelates (e.g., Leu-Zn-Leu), and high concentrations of amino acids alone significantly (p < 0.001) reduced intestinal Gly-Sar transfer by inhibiting carrier transport of the dipeptide. Proposed mechanisms accounting for intestinal dipeptide transport and luminal factors affecting this process are discussed.

  5. Analysis of glycylsarcosine transport by lobster intestine using gas chromatography.

    PubMed

    Peterson, Maria L; Lane, Amy L; Ahearn, Gregory A

    2015-01-01

    Gas chromatography was used to measure transepithelial transport of glycylsarcosine (Gly-Sar) by perfused lobster (Homarus americanus) intestine. Unidirectional and net fluxes of dipeptide across the tissue and luminal factors affecting their magnitude and direction were characterized by perfusing the lumen with the dipeptide and measuring its appearance in saline on the serosal side of the organ. Transmural transport of 10 mM Gly-Sar resulted in serosal accumulation of only the dipeptide; no appearance of corresponding monomeric amino acids glycine or sarcosine was observed. Carrier-mediated and diffusional transmural intestinal transport of Gly-Sar was estimated at 1-15 mM luminal concentrations and followed a curvilinear equation providing a K m = 0.44 ± 0.17 mM, a J max = 1.27 ± 0.12 nmol cm(-2) min(-1), and a diffusional coefficient = 0.026 ± 0.008 nmol cm(-2) min(-1) mM(-1). Unidirectional mucosal to serosal and serosal to mucosal fluxes of 10 mM Gly-Sar provided a significant (p < 0.05) net absorptive flux toward the serosa of 3.54 ± 0.77 nmol cm(-2) min(-1), further supporting carrier-mediated dipeptide transport across the gut. Alkaline (pH 8.5) luminal pH more than doubled transmural Gly-Sar transport as compared to acidic (pH 5.5) luminal pH, while luminal amino acid-metal chelates (e.g., Leu-Zn-Leu), and high concentrations of amino acids alone significantly (p < 0.001) reduced intestinal Gly-Sar transfer by inhibiting carrier transport of the dipeptide. Proposed mechanisms accounting for intestinal dipeptide transport and luminal factors affecting this process are discussed. PMID:25260349

  6. Analysis of radioactive mixed hazardous waste using derivatization gas chromatography/mass spectrometry, liquid chromatography, and liquid chromatography/mass spectrometry

    SciTech Connect

    Campbell, J.A.; Lerner, B.D.; Bean, R.M.; Grant, K.E.; Lucke, R.B.; Mong, G.M.; Clauss, S.A.

    1994-08-01

    Six samples of core segments from Tank 101-SY were analyzed for chelators, chelator fragments, and several carboxylic acids by derivatization gas chromatography/mass spectrometry. The major components detected were ethylenediaminetetraacetic acid, nitroso-iminodiacetic acid, nitrilotriacetic acid, citric acid, succinic acid, and ethylenediaminetriacetic acid. The chelator of highest concentration was ethylenediaminetetraacetic acid in all six samples analyzed. Liquid chromatography was used to quantitate low molecular weight acids including oxalic, formic, glycolic, and acetic acids, which are present in the waste as acid salts. From 23 to 61% of the total organic carbon in the samples analyzed was accounted for by these acids.

  7. Dual-injection system with multiple injections for determining bidimensional retention indexes in comprehensive two-dimensional gas chromatography.

    PubMed

    Bieri, Stefan; Marriott, Philip J

    2008-02-01

    A new instrumental approach for collection of retention index data in the first (1D) and second (2D) dimensions of a comprehensive two-dimensional (2D) gas chromatography (GCxGC) experiment has been developed. First-dimension indexes were determined under conventional linear programmed temperature conditions (Van den Dool indexes). To remove the effect that the short secondary column imposes on derived 1D indexes, as well as to avoid handling of pulsed GCxGC peaks, the proposed approach uses a flow splitter to divert part of the primary column flow to a supplementary detector to simultaneously generate a conventional 1D chromatogram, along with the GCxGC chromatogram. The critical 2D indexes (KovAts indexes) are based upon isovolatility curves of normal alkanes in 2D space, providing a reference scale against which to correlate each individual target peak throughout the entire GCxGC run. This requires the alkanes to bracket the analytes in order to allow retention interpolation. Exponential curves produced in the 2D separation space require a novel approach for delivery of alkane standards into the 2D column by using careful solvent-free solid-phase microextraction (SPME) sampling. Sequential introduction of alkane mixtures during GCxGC runs was performed by thermal desorption in a second injector which was directly coupled through a short transfer line to the entrance of the secondary column, just prior to the modulator so that they do not have to travel through the 1D column. Thus, each alkane mixture injection was quantitatively focused by the cryogenic trap, then launched at predetermined times onto the 2D column. The system permitted construction of an alkane retention map upon which bidimensional indexes of a 25-perfume ingredient mixture could be derived. Comparison of results with indexes determined in temperature-variable one-dimensional (1D) GC showed good correlation. Plotting of the separation power in the second dimension was possible by mapping

  8. Determination of anabolic steroids with gas chromatography-ion trap mass spectrometry using hydrogen as carrier gas.

    PubMed

    Impens, S; De Wasch, K; De Brabander, H

    2001-01-01

    Helium is considered to be the ideal carrier gas for gas chromatography/mass spectrometry (GC/MS) in general, and for use with an ion trap in particular. Helium is an inert gas, can be used without special precautions for security and, moreover, it is needed as a damping gas in the trap. A disadvantage of helium is the high viscosity resulting in long GC run times. In this work hydrogen was tested as an alternative carrier gas for GC in performing GC/MS analyses. A hydrogen generator was used as a safe source of hydrogen gas. It is demonstrated that hydrogen can be used as a carrier gas for the gas chromatograph in combination with helium as make-up gas for the trap. The analysis time was thus shortened and the chromatographic performance was optimized. Although hydrogen has proven useful as a carrier gas in gas chromatography coupled to standard detectors such as ECD or FID, its use is not mentioned extensively in the literature concerning gas chromatography-ion trap mass spectrometry. However, it is worth considering as a possibility because of its chromatographic advantages and its advantageous price when using a hydrogen generator.

  9. [Analysis of cracking gas compressor fouling by pyrolysis gas chromatography-mass spectrometry].

    PubMed

    Hu, Yunfeng; Fang, Fei; Wei, Tao; Liu, Shuqing; Jiang, Guangshen; Cai, Jun

    2013-06-01

    The fouling from the different sections of the cracked gas compressor in Daqing Petrochemical Corporation was analyzed by pyrolysis gas chromatography-mass spectrometry (Py/GC-MS). All the samples were cracked in RJ-1 tube furnace cracker at the cracking temperature of 500 degrees C, and separated with a 60 m DB-1 capillary column. An electron impact ionization (EI) source was used with the ionizing voltage of 70 eV. The results showed the formation of fouling was closely related with cyclopentadiene which accounted for about 50% of the cracking products. Other components detected were 1-butylene, propylene, methane and n-butane. This Py/GC-MS method can be used as an effective approach to analyze the causes of fouling in the petrochemical plants. PMID:24063202

  10. High resolution gas chromatography analysis of rice bran oil

    NASA Astrophysics Data System (ADS)

    Yu, Fengxiang; Lin, Qinlu; Chen, Xu; Wei, Xiaojun

    To assess the nutritional value and safety quality of rice bran oil (RBO) ,fatty acids of RBO from 15 species rice come from Hunan Province were analyzed by high resolution gas chromatography (HRGC). Crude RBOs were extracted by hexane 3-times using a solvent-to-rice bran ratio of 3:1 (w/w) at 40°C and composition of RBOs was analyzed by HRGC. The result showed that main fatty acids of 15 kinds of RBO include myristic acid (C14:0), palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), linolenic acid (C18:3), arachidic acid (C20:0), arachidonic acid (C20:1). It is strange that arachidonic acid (C20:1) is not listed in Chinese standard of RBO (GB11192-2003), and it exists in our samples of RBO. The average value of linolenic acid in RBOs is 1.6304% (range from 1.2425% to 2.131%), and it showed higher level comparing with Chinese standard that linolenic acid is less than 1.0%. The average value of USFA and SFA are 76.81% (range 75.96% to 82.06% ) and 20.15% (range 13.72% to 23.06%) respectively, and USFA content is close to olive oil (83.75%), peanut oil (81.75%) and soybean oil (85.86%). USFA in Jingyou 13 RBO is the highest content. The ratio of USFA to SFA content is 4:1 (range from 3.32 to 5.98:1). The ratio of SFA: MUFA: PUFA of 15 RBOs is 1: 2.2: 1.8, and ω6/ω3 ratio is 21.69 (range from16.54 to 27.28) and it is close to the 26:1 which is reported to be helpful to increase SOD activity. The oleic acid /linoleic acid ratio of 15 RBOs is 1.23:1 (rang from 1.04:1 to 1.42:1). Our data analyzed composition of RBOs from 15 species rice of China and will provide new evidence to revise RBO standard. It also helps us to assess nutritional value of RBOs and identify different RBOs from various species rice and places of origin.

  11. Seismic investigation of gas hydrates in the Gulf of Mexico: Results from 2013 high-resolution 2D and multicomponent seismic surveys

    NASA Astrophysics Data System (ADS)

    Haines, S. S.; Hart, P. E.; Shedd, W. W.; Frye, M.; Agena, W.; Miller, J. J.; Ruppel, C. D.

    2013-12-01

    In the spring of 2013, the U.S. Geological Survey led a 16-day seismic acquisition cruise aboard the R/V Pelican in the Gulf of Mexico to survey two established gas hydrate study sites. We used a pair of 105/105 cubic inch generator/injector airguns as the seismic source, and a 450-m 72-channel hydrophone streamer to record two-dimensional (2D) data. In addition, we also deployed at both sites an array of 4-component ocean-bottom seismometers (OBS) to record P- and S-wave energy at the seafloor from the same seismic source positions as the streamer data. At lease block Green Canyon 955 (GC955), we acquired 400 km of 2-D streamer data, in a 50- to 250-m-spaced grid augmented by several 20-km transects that provide long offsets for the OBS. The seafloor recording at GC955 was accomplished by a 2D array of 21 OBS at approximately 400-m spacing, including instruments carefully positioned at two of the three boreholes where extensive logging-while-drilling data is available to characterize the presence of gas hydrate. At lease block Walker Ridge 313 (WR313), we acquired 450 km of streamer data in a set of 11-km, 150- to 1,000-m-spaced, dip lines and 6- to 8-km, 500- to 1000-m-spaced strike lines. These were augmented by a set of 20-km lines that provide long offsets for a predominantly linear array of 25 400- to 800-m spaced OBS deployed in the dip direction in and around WR313. The 2D data provide at least five times better resolution of the gas hydrate stability zone than the available petroleum industry seismic data from the area; this enables considerably improved analysis and interpretation of stratigraphic and structural features including previously unseen faults and gas chimneys that may have considerable impact on gas migration. Initial processing indicates that the OBS data quality is good, and we anticipate that these data will yield estimates of P- and S-wave velocities, as well as PP (reflected) and PS (converted wave) images beneath each sensor location.

  12. Seismic investigation of gas hydrates in the Gulf of Mexico: 2013 multi-component and high-resolution 2D acquisition at GC955 and WR313

    USGS Publications Warehouse

    Haines, Seth S.; Hart, Patrick E.; Shedd, William W.; Frye, Matthew

    2014-01-01

    The U.S. Geological Survey led a seismic acquisition cruise at Green Canyon 955 (GC955) and Walker Ridge 313 (WR313) in the Gulf of Mexico from April 18 to May 3, 2013, acquiring multicomponent and high-resolution 2D seismic data. GC955 and WR313 are established, world-class study sites where high gas hydrate saturations exist within reservoir-grade sands in this long-established petroleum province. Logging-while-drilling (LWD) data acquired in 2009 by the Gulf of Mexico Gas Hydrates Joint Industry Project provide detailed characterization at the borehole locations, and industry seismic data provide regional- and local-scale structural and stratigraphic characterization. Significant remaining questions regarding lithology and hydrate saturation between and away from the boreholes spurred new geophysical data acquisition at these sites. The goals of our 2013 surveys were to (1) achieve improved imaging and characterization at these sites and (2) refine geophysical methods for gas hydrate characterization in other locations. In the area of GC955 we deployed 21 ocean-bottom seismometers (OBS) and acquired approximately 400 km of high-resolution 2D streamer seismic data in a grid with line spacing as small as 50 m and along radial lines that provide source offsets up to 10 km and diverse azimuths for the OBS. In the area of WR313 we deployed 25 OBS and acquired approximately 450 km of streamer seismic data in a grid pattern with line spacing as small as 250 m and along radial lines that provide source offsets up to 10 km for the OBS. These new data afford at least five times better resolution of the structural and stratigraphic features of interest at the sites and enable considerably improved characterization of lithology and the gas and gas hydrate systems. Our recent survey represents a unique application of dedicated geophysical data to the characterization of confirmed reservoir-grade gas hydrate accumulations.

  13. Hot-wire detector for chemically active materials used in gas chromatography

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Hot-filament detector analyzes chemically active materials used in gas chromatography. The detector reacts chemically with the effluent vapors in the gas chromatographic apparatus to change the electrical resistance of the filament as a function of the affluent composition. Due to the changes produced by chemical action on the filament, the system is often calibrated.

  14. The use of a milli-whistle as a detector in gas analysis by gas chromatography.

    PubMed

    Lin, Cheng-Huang; He, Yi-San; Lin, Chien-Hung; Fan, Gang-Ting; Chen, Hsin-Kai

    2014-01-01

    This mini-review introduces a general understanding of the use of a milli-whistle as a gas chromatography (GC) detector in gas analysis, including our research on the methodology and theory associated with a number of different related applications. The milli-whistle is connected to the outlet of a GC capillary, and when the eluted gases and the GC carrier gas pass through it, a sound with a fundamental frequency is produced. The sound wave can be picked up by a microphone or an accelerometer, and after a fast Fourier transform, the online data obtained for frequency-change vs. retention time constitute a new method for detecting gases. The first part of this review discusses the fundamentals of the milli-whistle. Some modifications are also discussed, including various types of whistles and an attempt to maximize the sensitivity and stability of the method. The second part then focuses on several practical applications, including an analysis of hydrogen released from ammonia borane, inorganic gases produced from fireworks, the CO2/O2 ratio from expired human breath and a purity test for alcohols. These studies show that the GC-whistle method has great potential for use as a fast sampling ionization method, and for the direct analysis of biological and chemical samples at under ambient conditions.

  15. The use of a milli-whistle as a detector in gas analysis by gas chromatography.

    PubMed

    Lin, Cheng-Huang; He, Yi-San; Lin, Chien-Hung; Fan, Gang-Ting; Chen, Hsin-Kai

    2014-01-01

    This mini-review introduces a general understanding of the use of a milli-whistle as a gas chromatography (GC) detector in gas analysis, including our research on the methodology and theory associated with a number of different related applications. The milli-whistle is connected to the outlet of a GC capillary, and when the eluted gases and the GC carrier gas pass through it, a sound with a fundamental frequency is produced. The sound wave can be picked up by a microphone or an accelerometer, and after a fast Fourier transform, the online data obtained for frequency-change vs. retention time constitute a new method for detecting gases. The first part of this review discusses the fundamentals of the milli-whistle. Some modifications are also discussed, including various types of whistles and an attempt to maximize the sensitivity and stability of the method. The second part then focuses on several practical applications, including an analysis of hydrogen released from ammonia borane, inorganic gases produced from fireworks, the CO2/O2 ratio from expired human breath and a purity test for alcohols. These studies show that the GC-whistle method has great potential for use as a fast sampling ionization method, and for the direct analysis of biological and chemical samples at under ambient conditions. PMID:24420261

  16. Using Divergent Δ12CH2D2 and Δ13CH3D to Trace the Provenance and Evolution of Methane Gas

    NASA Astrophysics Data System (ADS)

    Young, E. D.; Freedman, P.; Mills, M.; Rumble, D.

    2015-12-01

    Measurements of Δ13CH3D (deviations in Δ13CH3D/12CH4 from stochastic; Ono et al. Anal. Chem. v.86, p.6487, 2014) or Δ18 (from (12CH2D2 + 13CH3D)/12CH4; Stolper et al. Science, v.344, p.1500, 2014, ) have been used to infer temperatures of formation of methane gas. However, departures from thermodynamic equilibrium isotopic bond ordering will result from any fractionating process that do not include bond rupture and reformation, including mixing, diffusion, and kinetic processing. This is because the isotopic bond ordering no longer reflects the bulk isotopic composition once fractionation occurs. A direct measure of departures from thermodynamic equilibrium isotopic bond ordering in methane comes from both Δ12CH2D2 and Δ13CH3D in the same gas. Until now, this has not been possible due to instrumental limitations. We have carried out measurements of Δ12CH2D2 and Δ13CH3D in methane gas mixtures using a unique, large-geometry double-focusing isotope ratio mass spectrometer (IRMS), the Panorama, in order to investigate the usefulness of these two mass-18 isotopologues as tracers of mixing of methane sources. This instrument has a dispersion/magnification ratio, the parameter of merit for mass resolving power, of ~ 1400 mm that exceeds that of any other gas-source IRMS by more than 3.5x and is slightly larger than that for large-geometry SIMS instruments. With this geometry we routinely operate with mass resolving power (M/ΔM, 5% and 95%) of 40,000 or greater with useful sensitivity for isotope ratio analysis. For these experiments we mixed two gases with bulk D/H differing by 100 ‰. The results follow theoretical expectations within uncertainties of 0.5 ‰ for Δ12CH2D2 and 0.1 ‰ for Δ13CH3D. Precision is sufficient to detect as little as 10% mixing in this system. This precision would also be capable of detecting subtle departures from equilibrium caused by diffusion and kinetic bond rupture (e.g. CH4 + OH).

  17. Communication: two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): simultaneous planar imaging and multiplex spectroscopy in a single laser shot.

    PubMed

    Bohlin, Alexis; Kliewer, Christopher J

    2013-06-14

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15,000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm(2). PMID:23781772

  18. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    NASA Astrophysics Data System (ADS)

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-06-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15 000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm2.

  19. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    SciTech Connect

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15, 000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm2.

  20. Identification of Explosives from Porous Materials: Applications Using Reverse Phase High Performance Liquid Chromatography and Gas Chromatography

    SciTech Connect

    C.J. Miller; G. Elias; N.C. Schmitt; C. Rae

    2010-06-01

    High performance liquid chromatography and gas chromatography techniques are well documented and widely used for the detection of trace explosives from organic solvents. These techniques were modified to specifically identify and quantify explosives extracted from various materials taken from people who had recently handled explosives. Documented techniques were modified to specifically detect and quantify RDX, TNT, and PETN from denim, colored flannel, vinyl, and canvas extracted in methanol using no sample cleanup prior to analysis. The methanol extracts were injected directly into several different column types and analyzed by HPLC-UV and/or GC-ECD. This paper describes general screening methods that were used to determine the presence of explosives in unknown samples and techniques that have been optimized for quantification of each explosive from the substrate extracts.

  1. Determination of fragrance allergens in cosmetics by size-exclusion chromatography followed by gas chromatography-mass spectrometry.

    PubMed

    Niederer, M; Bollhalder, R; Hohl, Ch

    2006-11-01

    A method using size-exclusion chromatography (SEC) combined with gas chromatography-mass spectrometry (GC-MS) was developed for the quantitation of 24 restricted allergenic fragrance compounds in cosmetic samples. To achieve reproducible results fragrance calibration has to be performed with propyl acetate as a solvent containing a constant proportion of matrix components. With the exception of hydroxycitronellal (66+/-5%) all compounds showed good recovery rates in the range of 90-120%. The mean accuracy (relative error) was 1+/-10% for all 24 compounds in five spiked creams (10 mg/kg per allergen) and 8+/-34% in a reference sample (4-15 mg/kg). The biggest benefit compared to other methods is the flexible clean up with SEC which allows the determination of a large range of compounds in difficult matrices with GC-MS.

  2. Analysis of methaqualone in biological matrices by micellar electrokinetic capillary chromatography. Comparison with gas chromatography-mass spectrometry.

    PubMed

    Plaut, O; Girod, C; Staub, C

    1998-04-01

    The analysis of methaqualone (MTQ) in biological matrices by capillary electrophoresis (CE) is described. This methods uses liquid-liquid extraction and micellar electrokinetic capillary chromatography (MECC), an operation mode of CE. Separations are made using a 25 cm long capillary and a borate/phosphate buffer at pH 8.2. Using gas chromatography with mass spectrometry detection (GC-MS) as reference method, MTQ has been analyzed in urine, blood, gastric content and hair. For hair analysis, supercritical fluid extraction was compared with liquid-liquid extraction. Linearity was established in urine and blood between 0.25 and 10.0 micrograms/ml. MTQ recovery from blood was estimated at 60%. The limit of detection of this method in urine is about 0.10 microgram/ml. Drawbacks and advantages of MECC over GC-MS are discussed.

  3. Community air monitoring for pesticides-part 2: multiresidue determination of pesticides in air by gas chromatography, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry.

    PubMed

    Hengel, Matt; Lee, P

    2014-03-01

    Two multiresidue methods were developed to determine pesticides in air collected in California. Pesticides were trapped using XAD-4 resin and extracted with ethyl acetate. Based on an analytical method from the University of California Davis Trace Analytical Laboratory, pesticides were detected by analyzing the extract by gas chromatography-mass spectrometry (GC-MS) to determine chlorothalonil, chlorthal-dimethyl, cycloate, dicloran, dicofol, EPTC, ethalfluralin, iprodione, mefenoxam, metolachlor, PCNB, permethrin, pronamide, simazine, trifluralin, and vinclozolin. A GC with a flame photometric detector was used to determine chlorpyrifos, chlorpyrifos oxon, diazinon, diazinon oxon, dimethoate, dimethoate oxon, fonophos, fonophos oxon, malathion, malathion oxon, naled, and oxydemeton. Trapping efficiencies ranged from 78 to 92 % for low level (0.5 μg) and 37-104 % for high level (50 and 100 μg) recoveries. Little to no degradation of compounds occurred over 31 days; recoveries ranged from 78 to 113 %. In the California Department of Food and Agriculture (CDFA) method, pesticides were detected by analyzing the extract by GC-MS to determine chlorothalonil, chlorpyrifos, cypermethrin, dichlorvos, dicofol, endosulfan 1, endosulfan sulfate, oxyfluorfen, permethrin, propargite, and trifluralin. A liquid chromatograph coupled to a MS was used to determine azinphos-methyl, chloropyrifos oxon, DEF, diazinon, diazinon oxon, dimethoate, dimethoate oxon, diuron, EPTC, malathion, malathion oxon, metolachlor, molinate, norflurazon, oryzalin, phosmet, propanil, simazine and thiobencarb. Trapping efficiencies for compounds determined by the CDFA method ranged from 10 to 113, 22 to 114, and 56 to 132 % for 10, 5, and 2 μg spikes, respectively. Storage tests yielded 70-170 % recovery for up to 28 days. These multiresidue methods represent flexible, sensitive, accurate, and cost-effective ways to determine residues of various pesticides in ambient air. PMID:24370860

  4. 2D hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Kononenko, O.; Lopes, N. C.; Cole, J. M.; Kamperidis, C.; Mangles, S. P. D.; Najmudin, Z.; Osterhoff, J.; Poder, K.; Rusby, D.; Symes, D. R.; Warwick, J.; Wood, J. C.; Palmer, C. A. J.

    2016-09-01

    In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.

  5. Enhancing gas chromatography-time of flight mass spectrometry data analysis using two-dimensional mass channel cluster plots.

    PubMed

    Fitz, Brian D; Reaser, Brooke C; Pinkerton, David K; Hoggard, Jamin C; Skogerboe, Kristen J; Synovec, Robert E

    2014-04-15

    A novel data reduction and representation method for gas chromatography time-of-flight mass spectrometry (GC-TOFMS) is presented that significantly facilitates separation visualization and analyte peak deconvolution. The method utilizes the rapid mass spectral data collection rate (100 scans/s or greater) of current generation TOFMS detectors. Chromatographic peak maxima (serving as the retention time, tR) above a user specified signal threshold are located, and the chromatographic peak width, W, are determined on a per mass channel (m/z) basis for each analyte peak. The peak W (per m/z) is then plotted against its respective tR (with 10 ms precision) in a two-dimensional (2D) format, producing a cluster of points (i.e., one point per peak W versus tR in the 2D plot). Analysis of GC-TOFMS data by this method produces what is referred to as a two-dimensional mass channel cluster plot (2D m/z cluster plot). We observed that adjacent eluting (even coeluting) peaks in a temperature programmed separation can have their peak W vary as much as ∼10-15%. Hence, the peak W provides useful chemical selectivity when viewed in the 2D m/z cluster plot format. Pairs of overlapped analyte peaks with one-dimensional GC resolution as low as Rs ≈ 0.03 can be visually identified as fully resolved in a 2D m/z cluster plot and readily deconvoluted using chemometrics (i.e., demonstrated using classical least-squares analysis). Using the 2D m/z cluster plot method, the effective peak capacity of one-dimensional GC separations is magnified nearly 40-fold in one-dimensional GC, and potentially ∼100-fold in the context of comparing it to a two-dimensional separation. The method was studied using a 73 component test mixture separated on a 30 m × 250 μm i.d. RTX-5 column with a LECO Pegasus III TOFMS.

  6. Multiplex gas chromatography: an alternative concept for gas chromatographic analysis of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Valentin, J. R.

    1989-01-01

    Gas chromatography (GC) is a powerful technique for analyzing gaseous mixtures. Applied to the earth's atmosphere, GC can be used to determine the permanent gases--such as carbon dioxide, nitrogen, and oxygen--and to analyze organic pollutants in air. The U.S. National Aeronautics and Space Administration (NASA) has used GC in spacecraft missions to Mars (the Viking Biology Gas Exchange Experiment [GEX] and the Viking Gas Chromatograph-Mass Spectrometer [GC-MS]) and to Venus (the Pioneer Venus Gas Chromatograph [PVGC] on board the Pioneer Venus sounder probe) for determining the atmospheric constituents of these two planets. Even though conventional GC was very useful in the Viking and Pioneer missions, spacecraft constraints and limitations intrinsic to the technique prevented the collection of more samples. With the Venus probe, for instance, each measurement took a relatively long time to complete (10 min), and successive samples could not be introduced until the previous samples had left the column. Therefore, while the probe descended through the Venusian atmosphere, only three samples were acquired at widely separated altitudes. With the Viking mission, the sampling rate was not a serious problem because samples were acquired over a period of one year. However, the detection limit was a major disadvantage. The GC-MS could not detect simple hydrocarbons and simple alcohols below 0.1 ppm, and the GEX could not detect them below 1 ppm. For more complex molecules, the detection limits were at the parts-per-billion level for both instruments. Finally, in both the Viking and Pioneer missions, the relatively slow rate of data acquisition limited the number of analyses, and consequently, the amount of information returned. Similar constraints are expected in future NASA missions. For instance, gas chromatographic instrumentation is being developed to collect and analyze organic gases and aerosols in the atmosphere of Titan (one of Saturn's satellites). The Titan

  7. Multiplex gas chromatography: an alternative concept for gas chromatographic analysis of planetary atmospheres.

    PubMed

    Valentin, J R

    1989-03-01

    Gas chromatography (GC) is a powerful technique for analyzing gaseous mixtures. Applied to the earth's atmosphere, GC can be used to determine the permanent gases--such as carbon dioxide, nitrogen, and oxygen--and to analyze organic pollutants in air. The U.S. National Aeronautics and Space Administration (NASA) has used GC in spacecraft missions to Mars (the Viking Biology Gas Exchange Experiment [GEX] and the Viking Gas Chromatograph-Mass Spectrometer [GC-MS]) and to Venus (the Pioneer Venus Gas Chromatograph [PVGC] on board the Pioneer Venus sounder probe) for determining the atmospheric constituents of these two planets. Even though conventional GC was very useful in the Viking and Pioneer missions, spacecraft constraints and limitations intrinsic to the technique prevented the collection of more samples. With the Venus probe, for instance, each measurement took a relatively long time to complete (10 min), and successive samples could not be introduced until the previous samples had left the column. Therefore, while the probe descended through the Venusian atmosphere, only three samples were acquired at widely separated altitudes. With the Viking mission, the sampling rate was not a serious problem because samples were acquired over a period of one year. However, the detection limit was a major disadvantage. The GC-MS could not detect simple hydrocarbons and simple alcohols below 0.1 ppm, and the GEX could not detect them below 1 ppm. For more complex molecules, the detection limits were at the parts-per-billion level for both instruments. Finally, in both the Viking and Pioneer missions, the relatively slow rate of data acquisition limited the number of analyses, and consequently, the amount of information returned. Similar constraints are expected in future NASA missions. For instance, gas chromatographic instrumentation is being developed to collect and analyze organic gases and aerosols in the atmosphere of Titan (one of Saturn's satellites). The Titan

  8. Application of gas chromatography to analysis of spirit-based alcoholic beverages.

    PubMed

    Wiśniewska, Paulina; Śliwińska, Magdalena; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek

    2015-01-01

    Spirit-based beverages are alcoholic drinks; their production processes are dependent on the type and origin of raw materials. The composition of this complex matrix is difficult to analyze, and scientists commonly choose gas chromatography techniques for this reason. With a wide selection of extraction methods and detectors it is possible to provide qualitative and quantitative analysis for many chemical compounds with various functional groups. This article describes different types of gas chromatography techniques and their most commonly used associated extraction techniques (e.g., LLE, SPME, SPE, SFE, and SBME) and detectors (MS, TOFMS, FID, ECD, NPD, AED, O or EPD). Additionally, brief characteristics of internationally popular spirit-based beverages and application of gas chromatography to the analysis of selected alcoholic drinks are presented.

  9. 2D and 3D Eulerian Simulations of the Dynamics and Gas and Aerosol Chemistry of a Young Biomass Burning Smoke Plume from a Savannah Fire

    NASA Astrophysics Data System (ADS)

    Alvarado, M. J.; Prinn, R. G.

    2007-12-01

    The growth of aerosol particles and production of ozone in young smoke plumes is the result of a complex interaction between the mean flow in the smoke plume, turbulent diffusion, gas-phase oxidation, coagulation, and mass transfer between phases. Models allow us to separate the effects of these processes and predict their impact on the global environment. We present the results of two and three-dimensional Eulerian simulations of the dynamics and chemistry of the smoke plume formed by the Timbavati savannah fire studied during SAFARI 2000 (Hobbs et al., 2003, JGR, doi:10.1029/2002JD002352). The dynamical model is an extension of an Eulerian cloud-resolving model that has previously been used to study the role of deep convective clouds on tropospheric chemistry (Wang and Prinn, 2000, JGR, 105(D17) 22,269-22,297). The model includes a source of sensible heat, gases, and particles at the surface to simulate the savannah fire. The new gas and aerosol chemistry model includes heterogeneous chemistry, kinetic mass transfer, coagulation and the formation of secondary organic and inorganic aerosol. Photolysis rates are calculated based on the solution of the radiative transfer equation within the plume, including the scattering and absorption of radiation by the smoke aerosols. Our preliminary 2D Eulerian results using standard chemistry and UV fluxes show that the model can simulate the lower but not the higher levels of O3 observed. Also, the simulated 2D O3 field shows a wave-like pattern in the downwind direction, even though the emissions from the fire are held constant. This suggests that plume heterogeneity in the downwind direction may account for some of the observed variability in O3. We will present results of runs incorporating higher resolution calculation of photolysis rates, heterogeneous HONO formation, and gas phase reactions involving the uncharacterized organic compounds observed in the gas phase of the Timbavati plume in order to better simulate these

  10. Comparison of gas chromatography-mass spectrometry and gas chromatography-combustion-isotope ratio mass spectrometry analysis for in vivo estimates of metabolic fluxes.

    PubMed

    Croyal, Mikaël; Bourgeois, Raphaëlle; Ouguerram, Khadija; Billon-Crossouard, Stéphanie; Aguesse, Audrey; Nguyen, Patrick; Krempf, Michel; Ferchaud-Roucher, Véronique; Nobécourt, Estelle

    2016-05-01

    Gas chromatography-mass spectrometry (GC-MS) was compared with gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) for measurements of cholesterol (13)C enrichment after infusion of labeled precursor ([(13)C1,2]acetate). Paired results were significantly correlated, although GC-MS was less accurate than GC-C-IRMS for higher enrichments. Nevertheless, only GC-MS was able to provide information on isotopologue distribution, bringing new insights to lipid metabolism. Therefore, we assessed the isotopologue distribution of cholesterol in humans and dogs known to present contrasted cholesterol metabolic pathways. The labeled tracer incorporation was different in both species, highlighting the subsidiarity of GC-MS and GC-C-IRMS to analyze in vivo stable isotope studies.

  11. Determination of parts-per-billion concentrations of dioxane in water and soil by purge and trap gas chromatography/mass spectrometry or charcoal tube enrichment gas chromatography

    SciTech Connect

    Epstein, P.S.; Mauer, T.; Wagner, M.; Chase, S.; Giles, B.

    1987-08-01

    Two methods for the determination of 1,4-dioxane in water have been studied. The first method is a heated purge and trap gas chromatography/mass spectrometry system following salting out with sodium sulfate. The second method is an adsorption on coconut-shell charcoal and solvent desorption with carbon disulfide/methanol followed by analysis of the desorbate by gas chromatography with flame ionization detection. The first method is also successful for the determination of 1,4-dioxane in solids and sediments. The second method is shown to be successful for 2-butanone, 4-methyl-2-pentanone, and butoxyethanol in water. The two methods are compared by analyzing 15 samples by both methods and achieving similar results.

  12. Qualitative and quantitative analysis of vetiver essential oils by comprehensive two-dimensional gas chromatography and comprehensive two-dimensional gas chromatography/mass spectrometry.

    PubMed

    Filippi, Jean-Jacques; Belhassen, Emilie; Baldovini, Nicolas; Brevard, Hugues; Meierhenrich, Uwe J

    2013-05-01

    Vetiver essential oils (VEO) are important raw ingredients used in perfume industry, entering the formula of numerous modern fragrances. Vetiver oils are considered to be among the most complex essential oils, resulting most of the time in highly coeluted chromatograms whatever the analytical technique. In this context, conventional gas chromatography has failed to provide a routine tool for the accurate qualitative and quantitative analysis of their constituents. Applying comprehensive two-dimensional gas chromatography techniques (GC×GC-FID/MS) afforded the mean to separate efficiently vetiver oil constituents in order to identify them in a more reliable way. Moreover, this is the first time that a complete true quantitation of each constituent is carried out on such complex oils by means of internal calibration. Finally, we have studied the influence of the injection mode on the determined chemical composition, and showed that several alcohols underwent dehydration under defined chromatographic conditions (splitless mode) usually recommended for quantitation purposes.

  13. Characterization of odor-active compounds of various Chrysanthemum essential oils by gas chromatography-olfactometry, gas chromatography-mass spectrometry and their correlation with sensory attributes.

    PubMed

    Xiao, Zuobing; Fan, Binbin; Niu, Yunwei; Wu, Minling; Liu, Junhua; Ma, Shengtao

    2016-01-15

    Volatiles of five kinds of Chrysanthemum essential oils with different manufactures were characterized by descriptive sensory analysis, gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC-MS) and statistics analysis. Six sensory attributes (floral, woody, grassy, fruity, sour and minty) were selected to assess Chrysanthemum essential oils. A total of 38 volatile compounds were detected and quantified using standard substances by GC-O and GC-MS. Terpenes constituted the largest chemical group among the volatiles of the essential oils. Then partial least squares regression (PLSR) was used to elucidate the relationship between sensory attributes and aroma compounds. The result showed that α-pinene, β-thujene, α-terpinolen, β-cubebene, caryophyllene, (Z)β-farnesene, (-)-spathulenol, linalool, camphor, camphene, 4-terpineol, Z-citral and 4-isopropyltoluene were typical aroma compounds covaried with characteristic aroma of Chrysanthemum essential oils.

  14. Characterization of odor-active compounds of various Chrysanthemum essential oils by gas chromatography-olfactometry, gas chromatography-mass spectrometry and their correlation with sensory attributes.

    PubMed

    Xiao, Zuobing; Fan, Binbin; Niu, Yunwei; Wu, Minling; Liu, Junhua; Ma, Shengtao

    2016-01-15

    Volatiles of five kinds of Chrysanthemum essential oils with different manufactures were characterized by descriptive sensory analysis, gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC-MS) and statistics analysis. Six sensory attributes (floral, woody, grassy, fruity, sour and minty) were selected to assess Chrysanthemum essential oils. A total of 38 volatile compounds were detected and quantified using standard substances by GC-O and GC-MS. Terpenes constituted the largest chemical group among the volatiles of the essential oils. Then partial least squares regression (PLSR) was used to elucidate the relationship between sensory attributes and aroma compounds. The result showed that α-pinene, β-thujene, α-terpinolen, β-cubebene, caryophyllene, (Z)β-farnesene, (-)-spathulenol, linalool, camphor, camphene, 4-terpineol, Z-citral and 4-isopropyltoluene were typical aroma compounds covaried with characteristic aroma of Chrysanthemum essential oils. PMID:26735711

  15. Can fractional quantum Hall effect be due to the formation of coherent wave structures in a 2D electron gas?

    NASA Astrophysics Data System (ADS)

    Mirza, Babur M.

    2016-05-01

    A microscopic theory of integer and fractional quantum Hall effects is presented here. In quantum density wave representation of charged particles, it is shown that, in a two-dimensional electron gas coherent structures form under the low temperature and high density conditions. With a sufficiently high applied magnetic field, the combined N particle quantum density wave exhibits collective periodic oscillations. As a result the corresponding quantum Hall voltage function shows a step-wise change in multiples of the ratio h/e2. At lower temperatures further subdivisions emerge in the Hall resistance, exhibiting the fractional quantum Hall effect.

  16. Determination of petitgrain oils landmark parameters by using gas chromatography-combustion-isotope ratio mass spectrometry and enantioselective multidimensional gas chromatography.

    PubMed

    Schipilliti, Luisa; Bonaccorsi, Ivana; Sciarrone, Danilo; Dugo, Laura; Mondello, Luigi; Dugo, Giovanni

    2013-01-01

    Gas chromatography-combustion-isotope mass spectrometry was employed for the assessment of the Carbon isotope ratios of volatiles in Italian mandarin and lemon petitgrain oils. In addition, the composition of the whole oil and the enantiomeric distribution of selected chiral compounds were determined for all the samples by using gas chromatography and by multidimensional and conventional enantioselective gas chromatography. The composition of the oils was compared with previous studies. The enantiomeric distribution of lemon petitgrain oils is here reported for the first time. On the composition of mandarin petitgrain oil, the information available in literature, to date, is relative only to one sample from Egypt. Carbon isotope ratio of several terpene hydrocarbons and of their oxygenated derivatives contained in petitgrains was compared with the δ (13)C(VPDB) values of the same compounds present in the corresponding genuine Italian Citrus peel oil. The results prove that the isotopic values obtained for lemon and mandarin petitgrain oils are very close to those relative to the corresponding peel oils determined in previous studies.

  17. Hyphenated and comprehensive liquid chromatography × gas chromatography-mass spectrometry for the identification of Mycobacterium tuberculosis.

    PubMed

    Mourão, Marta P B; Denekamp, Ilse; Kuijper, Sjoukje; Kolk, Arend H J; Janssen, Hans-Gerd

    2016-03-25

    Tuberculosis is one of the world's most emerging public health problems, particularly in developing countries. Chromatography based methods have been used to tackle this epidemic by focusing on biomarker detection. Unfortunately, interferences from lipids in the sputum matrix, particularly cholesterol, adversely affect the identification and detection of the marker compounds. The present contribution describes the serial combination of normal phase liquid chromatography (NPLC) with thermally assisted hydrolysis and methylation followed by gas chromatography-mass spectrometry (THM-GC-MS) to overcome the difficulties of biomarker evaluation. The in-series combination consists of an LC analysis where fractions are collected and then transferred to the THM-GC-MS system. This was either done with comprehensive coupling, transferring all the fractions, or with hyphenated interfacing, i.e. off-line multi heart-cutting, transferring only selected fractions. Owing to the high sensitivity and selectivity of LC as a sample pre-treatment method, and to the high specificity of the MS as a detector, this analytical approach, NPLC × THM-GC-MS, is extremely sensitive. The results obtained indicate that this analytical set-up is able to detect down to 1 × 10(3) mycobacteria/mL of Mycobacterium tuberculosis strain 124, spiked in blank sputum samples. It is a powerful analytical tool and also has great potential for full automation. If further studies demonstrate its usefulness when applied blind in real sputum specimens, this technique could compete with the current smear microscopy in the early diagnosis of tuberculosis.

  18. Phenotyping breast cancer cell lines EM-G3, HCC1937, MCF7 and MDA-MB-231 using 2-D electrophoresis and affinity chromatography for glutathione-binding proteins

    PubMed Central

    2010-01-01

    Background Transformed phenotypes are common to cell lines derived from various cancers. Proteome profiling is a valuable tool that may reveal uncharacteristic cell phenotypes in transformed cells. Changes in expression of glutathione S-transferases (GSTs) and other proteins interacting with glutathione (GSH) in model cell lines could be of particular interest. Methods We compared the phenotypes of breast cell lines EM-G3, HCC1937, MCF7 and MDA-MB-231 using 2-D electrophoresis (2-DE). We further separated GSH-binding proteins from the cell lines using affinity chromatography with GSH-Sepharose 4B, performed 2-DE analysis and identified the main protein spots. Results Correlation coefficients among 2-DE gels from the cell lines were lower than 0.65, pointing to dissimilarity among the cell lines. Differences in primary constituents of the cytoskeleton were shown by the 2-D protein maps and western blots. The spot patterns in gels of GSH-binding fractions from primary carcinoma-derived cell lines HCC1937 and EM-G3 were similar to each other, and they differed from the spot patterns of cell lines MCF7 and MDA-MB-231 that were derived from pleural effusions of metastatic mammary carcinoma patients. Major differences in the expression of GST P1-1 and carbonyl reductase [NADPH] 1 were observed among the cell lines, indicating differential abilities of the cell lines to metabolize xenobiotics. Conclusions Our results confirmed the applicability of targeted affinity chromatography to proteome profiling and allowed us to characterize the phenotypes of four breast cancer cell lines. PMID:20731849

  19. Complex quantum transport in a modulation doped strained Ge quantum well heterostructure with a high mobility 2D hole gas

    NASA Astrophysics Data System (ADS)

    Morrison, C.; Casteleiro, C.; Leadley, D. R.; Myronov, M.

    2016-09-01

    The complex quantum transport of a strained Ge quantum well (QW) modulation doped heterostructure with two types of mobile carriers has been observed. The two dimensional hole gas (2DHG) in the Ge QW exhibits an exceptionally high mobility of 780 000 cm2/Vs at temperatures below 10 K. Through analysis of Shubnikov de-Haas oscillations in the magnetoresistance of this 2DHG below 2 K, the hole effective mass is found to be 0.065 m0. Anomalous conductance peaks are observed at higher fields which deviate from standard Shubnikov de-Haas and quantum Hall effect behaviour due to conduction via multiple carrier types. Despite this complex behaviour, analysis using a transport model with two conductive channels explains this behaviour and allows key physical parameters such as the carrier effective mass, transport, and quantum lifetimes and conductivity of the electrically active layers to be extracted. This finding is important for electronic device applications, since inclusion of highly doped interlayers which are electrically active, for enhancement of, for example, room temperature carrier mobility, does not prevent analysis of quantum transport in a QW.

  20. XCIII. A Low-Cost Temperature Programmer for Gas Chromatography

    ERIC Educational Resources Information Center

    Gallaher, T. N.; And Others

    1977-01-01

    Describes the construction and operation of a temperature programmer; it can be built for less than $100 and can be used with any gas chromatograph that uses a variable resistor to control oven temperature. (MLH)

  1. Measuring Carbon Monoxide in Auto Exhaust by Gas Chromatography.

    ERIC Educational Resources Information Center

    Jaffe, Dan; Herndon, Scott

    1995-01-01

    Presents a simple and reliable technique using commonly available equipment for monitoring carbon monoxide in automobile exhaust. The experiment utilizes a gas chromatograph and a thermal conductivity detector (TCD). (DDR)

  2. Incorporation of Gas Chromatography-Mass Spectrometry into the Undergraduate Organic Chemistry Laboratory Curriculum

    ERIC Educational Resources Information Center

    Giarikos, Dimitrios G.; Patel, Sagir; Lister, Andrew; Razeghifard, Reza

    2013-01-01

    Gas chromatography-mass spectrometry (GC-MS) is a powerful analytical tool for detection, identification, and quantification of many volatile organic compounds. However, many colleges and universities have not fully incorporated this technique into undergraduate teaching laboratories despite its wide application and ease of use in organic…

  3. Review of recent developments and applications in low-pressure (vacuum outlet) gas chromatography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concept of low pressure (LP) vacuum outlet gas chromatography (GC) was introduced more than 50 years ago, but it was not until the 2000s that its theoretical applicability to fast analysis of GC-amenable chemicals was realized. In practice, LPGC is implemented by placing the outlet of a short, ...

  4. Datura stramonium poisoning. Identification of tropane alkaloids in urine by gas chromatography-mass spectrometry.

    PubMed

    Nogué, S; Pujol, L; Sanz, P; de la Torre, R

    1995-01-01

    A case of acute poisoning by ingestion of Datura stramonium infusion is reported. The patient presented with a typical anticholinergic syndrome (dryness of mouth, mydriasis, flushing, tachycardia, agitation, hallucinations) and was treated with symptomatic and supportive measures. The presence of tropane belladona alkaloids in a urine sample was demonstrated by gas chromatography-mass spectrometry. PMID:7601297

  5. A Gas Chromatography Experiment for Proving the Application of Quantum Symmetry Restrictions in Homonuclear Diatomic Molecules.

    ERIC Educational Resources Information Center

    Dosiere, M.

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment in which gas chromatography is used to prove the application of quantum symmetry restrictions in homonuclear diatomic molecules. Comparisons between experimental results and theoretical computed values show good agreement, within one to two…

  6. An Application of Trimethylsilyl Derivatives with Temperature Programmed Gas Chromatography to the Senior Analytical Laboratory.

    ERIC Educational Resources Information Center

    Kelter, Paul B.; Carr, James D.

    1983-01-01

    Describes an experiment designed to teach temperature programed gas chromatography (TPGC) techniques and importance of derivatizing many classes of substrated to be separated. Includes equipment needed, procedures for making trimethylsilyl derivatives, applications, sample calculations, and typical results. Procedure required one, three-hour…

  7. The Separation and Identification of Straight Chain Hydrocarbons: An Experiment Using Gas-Liquid Chromatography.

    ERIC Educational Resources Information Center

    Benson, G. A.

    1982-01-01

    An experiment using gas-liquid chromatography is discussed, introducing the student to concept of dead volume and its measurement, idea and use of an internal reference compound, and to linear relationship existing between measurements of a separation on two different stationary phases. (Author/SK)

  8. Planar gas chromatography column on aluminum plate with multi-walled carbon nanotubes as stationary phase

    NASA Astrophysics Data System (ADS)

    Platonov, I. A.; Platonov, V. I.; Pavelyev, V. S.

    2016-04-01

    The high selectivity of the adsorption layer for low-boiling alkanes is shown, the separation factor (α) couple iso-butane / butane is 1.9 at a column temperature of 50 °C.The paper presents sorption and selective properties of planar gas chromatography column on aluminum plate with multi-walled carbon nanotubes as the stationary phase.

  9. Qualitative Analysis by Gas Chromatography: GC versus the Nose in Formulating Artificial Fruit Flavors.

    ERIC Educational Resources Information Center

    Rasmussen, P. W.

    1984-01-01

    Describes an undergraduate laboratory experiment used to illustrate the use of gas chromatography retention indices for the identification of unknown compounds, specifically for the identification of unknown compounds and for the identification of the volatile compounds responsible for the odor of the banana. Procedures, reference data, and sample…

  10. Identification of Synthetic Polymers and Copolymers by Analytical Pyrolysis-Gas Chromatography/Mass Spectrometry

    ERIC Educational Resources Information Center

    Kusch, Peter

    2014-01-01

    An experiment for the identification of synthetic polymers and copolymers by analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was developed and performed in the polymer analysis courses for third-year undergraduate students of chemistry with material sciences, and for first-year postgraduate students of polymer sciences. In…

  11. A multivariate statistical analysis approach to analyze gas chromatography-olfactometry data of tangerine hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gas chromatography (GC) hyphenated with olfactometry (O) when a human subject smells the effluent of the GC is a useful technique to identify aroma activity of volatile compounds in a food. Many techniques have been developed, based on olfactory thresholds (CHARM analysis, AEDA), or based on psychop...

  12. Multicomponent, 3-D, and High-Resolution 2-D Seismic Characterization of Gas Hydrate Study Sites in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Haines, S. S.; Hart, P. E.; Ruppel, C. D.; Collett, T. S.; Shedd, W.; Lee, M. W.; Miller, J.

    2012-12-01

    High saturations of gas hydrates have been identified within coarse-grained sediments in the Green Canyon 955 and Walker Ridge 313 lease blocks of the deepwater northern Gulf of Mexico. The thickness, lateral extent, and hydrate saturations in these deposits are constrained by geological and geophysical data and state-of-the-art logging-while-drilling information obtained in multiple boreholes at each site during a 2009 expedition. Presently lacking are multicomponent seismic data that can provide a thorough understanding of the in-situ compressional and shear seismic properties of the hydrate-bearing sediments. Such data may represent an important tool for future characterization of gas hydrate resources. To address this data gap, the U.S. Geological Survey, the U.S. Department of Energy, and the Bureau of Ocean Energy Management will collaborate on a 20-day research expedition to acquire wide-angle ocean bottom seismometer and high-resolution vertical incidence 2-D seismic data at the study sites. In preparation for this mid-2013 expedition, we have analyzed existing industry 3-D seismic data, along with numerically modeled multicomponent data. The 3-D seismic data allow us to identify and rank specific survey targets and can be combined with the numerical modeling results to determine optimal survey line orientation and acquisition parameters. Together, these data also provide a more thorough understanding of the gas hydrate systems at these two sites.

  13. High-voltage spark atomic emission detector for gas chromatography

    NASA Technical Reports Server (NTRS)

    Calkin, C. L.; Koeplin, S. M.; Crouch, S. R.

    1982-01-01

    A dc-powered, double-gap, miniature nanosecond spark source for emission spectrochemical analysis of gas chromatographic effluents is described. The spark is formed between two thoriated tungsten electrodes by the discharge of a coaxial capacitor. The spark detector is coupled to the gas chromatograph by a heated transfer line. The gas chromatographic effluent is introduced into the heated spark chamber where atomization and excitation of the effluent occurs upon breakdown of the analytical gap. A microcomputer-controlled data acquisition system allows the implementation of time-resolution techniques to distinguish between the analyte emission and the background continuum produced by the spark discharge. Multiple sparks are computer averaged to improve the signal-to-noise ratio. The application of the spark detector for element-selective detection of metals and nonmetals is reported.

  14. Advancement and application of gas chromatography isotope ratio mass spectrometry techniques for atmospheric trace gas analysis

    NASA Astrophysics Data System (ADS)

    Giebel, Brian M.

    2011-12-01

    The use of gas chromatography isotope ratio mass spectrometry (GC-IRMS) for compound specific stable isotope analysis is an underutilized technique because of the complexity of the instrumentation and high analytical costs. However stable isotopic data, when coupled with concentration measurements, can provide additional information on a compounds production, transformation, loss, and cycling within the biosphere and atmosphere. A GC-IRMS system was developed to accurately and precisely measure delta13C values for numerous oxygenated volatile organic compounds having natural and anthropogenic sources. The OVOCs include methanol, ethanol, acetone, methyl ethyl ketone, 2-pentanone, and 3-pentanone. Guided by the requirements for analysis of trace components in air, the GC-IRMS system was developed with the goals of increasing sensitivity, reducing dead-volume and peak band broadening, optimizing combustion and water removal, and decreasing the split ratio to the IRMS. The technique relied on a two-stage preconcentration system, a low-volume capillary reactor and water trap, and a balanced reference gas delivery system. Measurements were performed on samples collected from two distinct sources (i.e. biogenic and vehicle emissions) and ambient air collected from downtown Miami and Everglades National Park. However, the instrumentation and the method have the capability to analyze a variety of source and ambient samples. The measured isotopic signatures that were obtained from source and ambient samples provide a new isotopic constraint for atmospheric chemists and can serve as a new way to evaluate their models and budgets for many OVOCs. In almost all cases, OVOCs emitted from fuel combustion were enriched in 13C when compared to the natural emissions of plants. This was particularly true for ethanol gas emitted in vehicle exhaust, which was observed to have a uniquely enriched isotopic signature that was attributed to ethanol's corn origin and use as an alternative

  15. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, Gary; D'Silva, Arthur P.; Fassel, Velmer A.

    1986-05-06

    An apparatus for providing a simple, low-frequency electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  16. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, G.; D'Silva, A.P.; Fassel, V.A.

    1985-04-05

    An apparatus for providing a simple, low-frequency, electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  17. [Determination of cholesterol in natural bezoar by gas chromatography].

    PubMed

    Zhang, Q; Yan, K; Qian, L

    1991-07-01

    A gas chromatographic method for the determination of free and total cholesterol in natural bezoar has been established in this report. The method is simple, specific and accurate. The free and total cholesterol contents in three kinds of bezoar are between 0.072% to 0.214% and 0.546% to 0.608% respectively.

  18. Determination of methane in ambient air by multiplex gas chromatography

    NASA Technical Reports Server (NTRS)

    Valentin, J. R.; Carle, G. C.; Phillips, J. B.

    1985-01-01

    A multiplex gas chromatographic technique for the determination of methane in ambient air over extended periods is reported. A modest gas chromatograph which uses air as the carrier gas was modified by adding a silver oxide sample modulator for multiplex operation. The modulator selectively catalyzes the decomposition of methane in air. The resulting analytical system requires no consumables beyond power. A profile of the methane concentration in this laboratory was obtained for an 8-day period. During this period, methane concentration varied with an approximately daily period from a low of 1.53 + or - 0.60 ppm to a high of 4.63 + or - 0.59 ppm over the entire 8 days. Some of the measured concentrations are higher than those reported elsewhere indicating the presence of some local source or sources for methane. This work has demonstrated the utility of a relatively simple multiplex gas chromatograph for the analysis of environmental samples. The technique should be applicable to other trace components in air through use of other selective modulators.

  19. Position sensitive radioactivity detection for gas and liquid chromatography

    DOEpatents

    Cochran, Joseph L.; McCarthy, John F.; Palumbo, Anthony V.; Phelps, Tommy J.

    2001-01-01

    A method and apparatus are provided for the position sensitive detection of radioactivity in a fluid stream, particularly in the effluent fluid stream from a gas or liquid chromatographic instrument. The invention represents a significant advance in efficiency and cost reduction compared with current efforts.

  20. Determination of methane in ambient air by multiplex gas chromatography.

    PubMed

    Valentin, J R; Carle, G C; Phillips, J B

    1985-05-01

    A multiplex gas chromatographic technique for the determination of methane in ambient air over extended periods is reported. A modest gas chromatograph which uses air as the carrier gas was modified by adding a silver oxide sample modulator for multiplex operation. The modulator selectively catalyzes the decomposition of methane in air. The resulting analytical systems requires no consumables beyond power. A profile of the methane concentration in this laboratory was obtained for an 8-day period. During this period, methane concentration varied with an approximately daily period from a low of 1.53 +/- 0.60 ppm to a high of 4.63 +/- 0.59 ppm over the entire 8 days. Some of the measured concentrations are higher than those reported elsewhere indicating the presence of some local source or sources for methane. This work has demonstrated the utility of a relatively simple multiplex gas chromatograph for the analysis of environmental samples. The technique should be applicable to other trace components in air through use of other selective modulators. PMID:11536559

  1. Peak clustering in two-dimensional gas chromatography with mass spectrometric detection based on theoretical calculation of two-dimensional peak shapes: the 2DAid approach.

    PubMed

    van Stee, Leo L P; Brinkman, Udo A Th

    2011-10-28

    A method is presented to facilitate the non-target analysis of data obtained in temperature-programmed comprehensive two-dimensional (2D) gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-ToF-MS). One main difficulty of GC×GC data analysis is that each peak is usually modulated several times and therefore appears as a series of peaks (or peaklets) in the one-dimensionally recorded data. The proposed method, 2DAid, uses basic chromatographic laws to calculate the theoretical shape of a 2D peak (a cluster of peaklets originating from the same analyte) in order to define the area in which the peaklets of each individual compound can be expected to show up. Based on analyte-identity information obtained by means of mass spectral library searching, the individual peaklets are then combined into a single 2D peak. The method is applied, amongst others, to a complex mixture containing 362 analytes. It is demonstrated that the 2D peak shapes can be accurately predicted and that clustering and further processing can reduce the final peak list to a manageable size.

  2. Feasibility of the preparation of silica monoliths for gas chromatography: fast separation of light hydrocarbons.

    PubMed

    Azzouz, Imadeddine; Essoussi, Anouar; Fleury, Joachim; Haudebourg, Raphael; Thiebaut, Didier; Vial, Jerome

    2015-02-27

    The preparation conditions of silica monoliths for gas chromatography were investigated. Silica-based monolithic capillary columns based on sol-gel process were tested in the course of high-speed gas chromatographic separations of light hydrocarbons mixture (C1-C4). The impact of modifying the amount of porogen and/or catalyst on the monolith properties were studied. At the best precursor/catalyst/porogen ratio evaluated, a column efficiency of about 6500 theoretical plates per meter was reached with a very good resolution (4.3) for very light compounds (C1-C2). The test mixture was baseline separated on a 70cm column. To our knowledge for the first time a silica-based monolithic capillary column was able to separate light hydrocarbons from methane to n-butane at room temperature with a back pressure in the range of gas chromatography facilities (under 4.1bar).

  3. Kinetic efficiency of polar monolithic capillary columns in high-pressure gas chromatography.

    PubMed

    Kurganov, A A; Korolev, A A; Shiryaeva, V E; Popova, T P; Kanateva, A Yu

    2013-11-01

    Poppe plots were used for analysis of kinetic efficiency of monolithic sorbents synthesized in quartz capillaries for utilization in high-pressure gas chromatography. Values of theoretical plate time and maximum number of theoretical plates occurred to depend significantly on synthetic parameters such as relative amount of monomer in the initial polymerization mixture, temperature and polymerization time. Poppe plots let one to find synthesis conditions suitable either for high-speed separations or for maximal efficiency. It is shown that construction of kinetic Poppe curves using potential Van Deemter data demands compressibility of mobile phase to be taken into consideration in the case of gas chromatography. Model mixture of light hydrocarbons C1 to C4 was then used for investigation of influence of carrier gas nature on kinetic efficiency of polymeric monolithic columns. Minimal values of theoretical plate times were found for CO2 and N2O carrier gases.

  4. Analysis of quality of aviation lubricating oils by means of liquid and gas-liquid chromatography

    SciTech Connect

    Kholostova, G.G.; Bakunin, V.N.; Shimonaev, G.S.

    1987-01-01

    The authors examine the basic methodological aspects of chromatographic analysis of the quality of oils for aircraft gas turbine engines, and certain relationships in oil aging that have been established on this basis. A commercial ester (designated PEE) was selected for investigation of pentaerythritol and C/sub 5/-C/sub 9/ synthetic fatty acids (SFA) which serves as the synthetic base stock for a number of aviation oils. The changes in PEE composition upon oxidation, with or without additives, were evaluated by means of gas-liquid chromatography in a Tsvet-100 chromatograph with a flame ionization detector. The results from examination of the original and oxidized PEE samples by means of gas and liquid chromatography are presented.

  5. Metal-Organic Framework Thin Films as Stationary Phases in Microfabricated Gas-Chromatography Columns.

    SciTech Connect

    Read, Douglas; Sillerud, Colin Halliday

    2016-01-01

    The overarching goal of this project is to integrate Sandia's microfabricated gas-chromatography ( GC) columns with a stationary phase material that is capable of retaining high-volatility chemicals and permanent gases. The successful integration of such a material with GCs would dramatically expand the repertoire of detectable compounds for Sandia's various microanalysis systems. One such promising class of candidate materials is metal-organic frameworks (MOFs). In this report we detail our methods for controlled deposition of HKUST-1 MOF stationary phases within GC columns. We demonstrate: the chromatographic separation of natural gas; a method for determining MOF film thickness from chromatography alone; and the first-reported GC x GC separation of natural gas -- in general -- let alone for two disparate MOF stationary phases. In addition we determine the fundamental thermodynamic constant for mass sorption, the partition coefficient, for HKUST-1 and several light hydrocarbons and select toxic industrial chemicals.

  6. Feasibility of the preparation of silica monoliths for gas chromatography: fast separation of light hydrocarbons.

    PubMed

    Azzouz, Imadeddine; Essoussi, Anouar; Fleury, Joachim; Haudebourg, Raphael; Thiebaut, Didier; Vial, Jerome

    2015-02-27

    The preparation conditions of silica monoliths for gas chromatography were investigated. Silica-based monolithic capillary columns based on sol-gel process were tested in the course of high-speed gas chromatographic separations of light hydrocarbons mixture (C1-C4). The impact of modifying the amount of porogen and/or catalyst on the monolith properties were studied. At the best precursor/catalyst/porogen ratio evaluated, a column efficiency of about 6500 theoretical plates per meter was reached with a very good resolution (4.3) for very light compounds (C1-C2). The test mixture was baseline separated on a 70cm column. To our knowledge for the first time a silica-based monolithic capillary column was able to separate light hydrocarbons from methane to n-butane at room temperature with a back pressure in the range of gas chromatography facilities (under 4.1bar). PMID:25622518

  7. Hyphenation of supercritical fluid chromatography and two-dimensional gas chromatography-mass spectrometry for group type separations.

    PubMed

    Potgieter, H; van der Westhuizen, R; Rohwer, E; Malan, D

    2013-06-14

    The Fischer-Tropsch (FT) process produces a variety of compounds over a wide carbon number range and the synthetic crude oil produced by this process is rich in highly valuable olefins and oxygenates, which crude oil only contains at trace levels. The characterization of these products is very challenging even when using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOF-MS). The separation between cyclic paraffins and olefins is especially difficult since they elute in similar positions on the GC×GC chromatogram and since they have identical molecular masses with indistinguishable fragmentation patterns. Previously, a high performance liquid chromatography (HPLC) fractionation procedure was used prior to GC×GC-TOF-MS analysis to distinguish between alkenes and alkanes, both cyclic and non-cyclic, however, there was co-elution of the solvents used in the HPLC fractionation procedure, and the volatile components in the gasoline sample and the dilution introduced by the off-line fractionation procedure made it very difficult to investigate components present at very low concentrations. The hyphenation of supercritical fluid chromatography (SFC) to GC×GC is less complicated and the removal of the supercritical CO2 can be easily achieved without any loss of the volatile sample components, eliminating the introduction of co-eluting solvents as well as the dilution effect. This paper describes the on-line hyphenation of SFC to a GC×GC system in order to comprehensively characterize the chemical groups (saturates, unsaturates, oxygenates and aromatics) in an FT sample. PMID:23647609

  8. Hyphenated and comprehensive liquid chromatography × gas chromatography-mass spectrometry for the identification of Mycobacterium tuberculosis.

    PubMed

    Mourão, Marta P B; Denekamp, Ilse; Kuijper, Sjoukje; Kolk, Arend H J; Janssen, Hans-Gerd

    2016-03-25

    Tuberculosis is one of the world's most emerging public health problems, particularly in developing countries. Chromatography based methods have been used to tackle this epidemic by focusing on biomarker detection. Unfortunately, interferences from lipids in the sputum matrix, particularly cholesterol, adversely affect the identification and detection of the marker compounds. The present contribution describes the serial combination of normal phase liquid chromatography (NPLC) with thermally assisted hydrolysis and methylation followed by gas chromatography-mass spectrometry (THM-GC-MS) to overcome the difficulties of biomarker evaluation. The in-series combination consists of an LC analysis where fractions are collected and then transferred to the THM-GC-MS system. This was either done with comprehensive coupling, transferring all the fractions, or with hyphenated interfacing, i.e. off-line multi heart-cutting, transferring only selected fractions. Owing to the high sensitivity and selectivity of LC as a sample pre-treatment method, and to the high specificity of the MS as a detector, this analytical approach, NPLC × THM-GC-MS, is extremely sensitive. The results obtained indicate that this analytical set-up is able to detect down to 1 × 10(3) mycobacteria/mL of Mycobacterium tuberculosis strain 124, spiked in blank sputum samples. It is a powerful analytical tool and also has great potential for full automation. If further studies demonstrate its usefulness when applied blind in real sputum specimens, this technique could compete with the current smear microscopy in the early diagnosis of tuberculosis. PMID:26585206

  9. Analysis of phytosterols and phytostanols in enriched dairy products by Fast gas chromatography with mass spectrometry.

    PubMed

    Inchingolo, Raffaella; Cardenia, Vladimiro; Rodriguez-Estrada, Maria Teresa

    2014-10-01

    A Fast gas chromatography and mass spectrometry method for plant sterols/stanols analysis was developed, using a short capillary gas chromatography column (10 m × 0.1 mm internal diameter × 0.1 μm film thickness) coated with 5% diphenyl-polysiloxane. A silylated mixture of the main plant sterols/stanols standards (β-sitosterol, campesterol, stigmasterol, campestanol, sitostanol) was well separated in 1.5 min, with a good peak resolution (>1.4, determined on a critical chromatographic peak pair (β-sitosterol and sitostanol)), repeatability (<13%), and sensitivity (<0.017 ng/mL). The suitability of this Fast chromatography method was tested on plant sterols/stanols-enriched dairy products (yogurt and milk), which were subjected to lipid extraction, cold saponification, and silylation prior to injection. The analytical performance (sensitivity < 0.256 ng/mL and repeatability < 10.36%) and significant reduction of the analysis time and consumables demonstrate that Fast gas chromatography-mass spectrometry method could be also employed for the plant sterols/stanols analysis in functional dairy products.

  10. Determination of maximal amount of minor gases adsorbed in a shale sample by headspace gas chromatography.

    PubMed

    Zhang, Chun-Yun; Hu, Hui-Chao; Chai, Xin-Sheng; Pan, Lei; Xiao, Xian-Ming

    2014-02-01

    In this paper, we present a novel method for determining the maximal amount of ethane, a minor gas species, adsorbed in a shale sample. The method is based on the time-dependent release of ethane from shale samples measured by headspace gas chromatography (HS-GC). The study includes a mathematical model for fitting the experimental data, calculating the maximal amount gas adsorbed, and predicting results at other temperatures. The method is a more efficient alternative to the isothermal adsorption method that is in widespread use today.

  11. Automated two-dimensional interface for capillary gas chromatography

    DOEpatents

    Strunk, Michael R.; Bechtold, William E.

    1996-02-20

    A multidimensional gas chromatograph (GC) system having wide bore capillary and narrow bore capillary GC columns in series and having a novel system interface. Heart cuts from a high flow rate sample, separated by a wide bore GC column, are collected and directed to a narrow bore GC column with carrier gas injected at a lower flow compatible with a mass spectrometer. A bimodal six-way valve is connected with the wide bore GC column outlet and a bimodal four-way valve is connected with the narrow bore GC column inlet. A trapping and retaining circuit with a cold trap is connected with the six-way valve and a transfer circuit interconnects the two valves. The six-way valve is manipulated between first and second mode positions to collect analyte, and the four-way valve is manipulated between third and fourth mode positions to allow carrier gas to sweep analyte from a deactivated cold trap, through the transfer circuit, and then to the narrow bore GC capillary column for separation and subsequent analysis by a mass spectrometer. Rotary valves have substantially the same bore width as their associated columns to minimize flow irregularities and resulting sample peak deterioration. The rotary valves are heated separately from the GC columns to avoid temperature lag and resulting sample deterioration.

  12. Automated two-dimensional interface for capillary gas chromatography

    DOEpatents

    Strunk, M.R.; Bechtold, W.E.

    1996-02-20

    A multidimensional gas chromatograph (GC) system is disclosed which has wide bore capillary and narrow bore capillary GC columns in series and has a novel system interface. Heart cuts from a high flow rate sample, separated by a wide bore GC column, are collected and directed to a narrow bore GC column with carrier gas injected at a lower flow compatible with a mass spectrometer. A bimodal six-way valve is connected with the wide bore GC column outlet and a bimodal four-way valve is connected with the narrow bore GC column inlet. A trapping and retaining circuit with a cold trap is connected with the six-way valve and a transfer circuit interconnects the two valves. The six-way valve is manipulated between first and second mode positions to collect analyte, and the four-way valve is manipulated between third and fourth mode positions to allow carrier gas to sweep analyte from a deactivated cold trap, through the transfer circuit, and then to the narrow bore GC capillary column for separation and subsequent analysis by a mass spectrometer. Rotary valves have substantially the same bore width as their associated columns to minimize flow irregularities and resulting sample peak deterioration. The rotary valves are heated separately from the GC columns to avoid temperature lag and resulting sample deterioration. 3 figs.

  13. Construction of a thermodesorption injector for gas chromatography.

    PubMed

    Schröder, Wolfgang

    2011-02-01

    A detailed description for the do-it-yourself construction of a high-performance thermodesorption GC injector (HPTI) is presented. The injector consists of a heated desorption chamber, a cooled loop for focusing the desorbed volatiles as well as a heating control for sample injection into the separation column. The gas flow is controlled by valve switching during the steps of the operation. Two versions of the injector function either for the injection of highly volatile compounds or for compounds with extremely low volatility, e.g. lubricants. The sophisticated gas flow management allows injection of highly concentrated samples without memory effects in a sample gas split mode, while traces may be injected with virtually 1:1 sample transfer. A wide range of adsorbents appropriate for the compounds can be chosen due to homemade adsorbent tubes and the achievability of high desorption temperature. Solutions may be injected from a carrier material after solvent evaporation. The HPTI fulfills all multipurpose GC injector requirements and with the support of downloadable instruction files can be built by anyone working with conventional GC devices.

  14. Phytochemical Profile of Erythrina variegata by Using High-Performance Liquid Chromatography and Gas Chromatography-Mass Spectroscopy Analyses.

    PubMed

    Muthukrishnan, Suriyavathana; Palanisamy, Subha; Subramanian, Senthilkumar; Selvaraj, Sumathi; Mari, Kavitha Rani; Kuppulingam, Ramalingam

    2016-08-01

    Natural products derived from plant sources have been utilized to treat patients with numerous diseases. The phytochemical constituents present in ethanolic leaf extract of Erythrina variegata (ELEV) were identified by using high-performance liquid chromatography (HPLC) and gas chromatography-mass spectroscopy (GC-MS) analyses. Shade dried leaves were powdered and extracted with ethanol for analyses through HPLC to identify selected flavonoids and through GC-MS to identify other molecules. The HPLC analysis of ELEV showed the presence of gallic and caffeic acids as the major components at concentrations of 2.0 ppm and 0.1 ppm, respectively, as well as other components. GC-MS analysis revealed the presence of 3-eicosyne; 3,7,11,15-tetramethyl-2-hexadecen-1-ol; butanoic acid, 3-methyl-3,7-dimethyl-6-octenyl ester; phytol; 1,2-benzenedicarboxylic acid, diundecyl ester; 1-octanol, 2-butyl-; squalene; and 2H-pyran, 2-(7-heptadecynyloxy) tetrahydro-derivative. Because pharmacopuncture is a new evolving natural mode that uses herbal extracts for treating patients with various ailments with minimum pain and maximum effect, the results of this study are particularly important and show that ELEV possesses a wide range of phytochemical constituents, as indicated above, as effective active principle molecules that can be used individually or in combination to treat patients with various diseases. PMID:27555226

  15. Development, validation and determination of multiclass pesticide residues in cocoa beans using gas chromatography and liquid chromatography tandem mass spectrometry.

    PubMed

    Zainudin, Badrul Hisyam; Salleh, Salsazali; Mohamed, Rahmat; Yap, Ken Choy; Muhamad, Halimah

    2015-04-01

    An efficient and rapid method for the analysis of pesticide residues in cocoa beans using gas and liquid chromatography-tandem mass spectrometry was developed, validated and applied to imported and domestic cocoa beans samples collected over 2 years from smallholders and Malaysian ports. The method was based on solvent extraction method and covers 26 pesticides (insecticides, fungicides, and herbicides) of different chemical classes. The recoveries for all pesticides at 10 and 50 μg/kg were in the range of 70-120% with relative standard deviations of less than 20%. Good selectivity and sensitivity were obtained with method limit of quantification of 10 μg/kg. The expanded uncertainty measurements were in the range of 4-25%. Finally, the proposed method was successfully applied for the routine analysis of pesticide residues in cocoa beans via a monitoring study where 10% of them was found positive for chlorpyrifos, ametryn and metalaxyl. PMID:25442595

  16. Development, validation and determination of multiclass pesticide residues in cocoa beans using gas chromatography and liquid chromatography tandem mass spectrometry.

    PubMed

    Zainudin, Badrul Hisyam; Salleh, Salsazali; Mohamed, Rahmat; Yap, Ken Choy; Muhamad, Halimah

    2015-04-01

    An efficient and rapid method for the analysis of pesticide residues in cocoa beans using gas and liquid chromatography-tandem mass spectrometry was developed, validated and applied to imported and domestic cocoa beans samples collected over 2 years from smallholders and Malaysian ports. The method was based on solvent extraction method and covers 26 pesticides (insecticides, fungicides, and herbicides) of different chemical classes. The recoveries for all pesticides at 10 and 50 μg/kg were in the range of 70-120% with relative standard deviations of less than 20%. Good selectivity and sensitivity were obtained with method limit of quantification of 10 μg/kg. The expanded uncertainty measurements were in the range of 4-25%. Finally, the proposed method was successfully applied for the routine analysis of pesticide residues in cocoa beans via a monitoring study where 10% of them was found positive for chlorpyrifos, ametryn and metalaxyl.

  17. Evaluation of fast enantioselective multidimensional gas chromatography methods for monoterpenic compounds: Authenticity control of Australian tea tree oil.

    PubMed

    Wong, Yong Foo; West, Rachel N; Chin, Sung-Tong; Marriott, Philip J

    2015-08-01

    This work demonstrates the potential of fast multiple heart-cut enantioselective multidimensional gas chromatography (GC-eGC) and enantioselective comprehensive two-dimensional gas chromatography (eGC×GC), to perform the stereoisomeric analysis of three key chiral monoterpenes (limonene, terpinen-4-ol and α-terpineol) present in tea tree oil (TTO). In GC-eGC, separation was conducted using a combination of mid-polar first dimension ((1)D) column and a chiral second dimension ((2)D) column, providing interference-free enantioresolution of the individual antipodes of each optically active component. A combination of (1)D chiral column and (2)D polar columns (ionic liquid and wax phases) were tested for the eGC×GC study. Quantification was proposed based on summation of two major modulated peaks for each antipode, displaying comparable results with those derived from GC-eGC. Fast chiral separations were achieved within 25min for GC-eGC and<20min for eGC×GC, while ensuring adequate interference-free enantiomer separation. The suitability of using these two enantioselective multidimensional approaches for the routine assessment of chiral monoterpenes in TTO was evaluated and discussed. Exact enantiomeric composition of chiral markers for authentic TTOs was proposed by analysing a representative number of pure TTOs sourced directly from plantations of known provenance in Australia. Consistent enantiomeric fractions of 61.6±1.5% (+):38.4±1.5% (-) for limonene, 61.7±1.6% (+):38.3±1.6% (-) for terpinen-4-ol and 79.6±1.4% (+):20.4±1.4% (-) for α-terpineol were obtained for the 57 authentic Australian TTOs. The results were compared (using principle component analysis) with commercial TTOs (declared as derived from Melaleuca alternifolia) obtained from different continents. Assessing these data to determine adulteration, or additives that affect the enantiomeric ratios, in commercially sourced TTOs is discussed. The proposed method offers distinct advantages over e

  18. Evaluation of fast enantioselective multidimensional gas chromatography methods for monoterpenic compounds: Authenticity control of Australian tea tree oil.

    PubMed

    Wong, Yong Foo; West, Rachel N; Chin, Sung-Tong; Marriott, Philip J

    2015-08-01

    This work demonstrates the potential of fast multiple heart-cut enantioselective multidimensional gas chromatography (GC-eGC) and enantioselective comprehensive two-dimensional gas chromatography (eGC×GC), to perform the stereoisomeric analysis of three key chiral monoterpenes (limonene, terpinen-4-ol and α-terpineol) present in tea tree oil (TTO). In GC-eGC, separation was conducted using a combination of mid-polar first dimension ((1)D) column and a chiral second dimension ((2)D) column, providing interference-free enantioresolution of the individual antipodes of each optically active component. A combination of (1)D chiral column and (2)D polar columns (ionic liquid and wax phases) were tested for the eGC×GC study. Quantification was proposed based on summation of two major modulated peaks for each antipode, displaying comparable results with those derived from GC-eGC. Fast chiral separations were achieved within 25min for GC-eGC and<20min for eGC×GC, while ensuring adequate interference-free enantiomer separation. The suitability of using these two enantioselective multidimensional approaches for the routine assessment of chiral monoterpenes in TTO was evaluated and discussed. Exact enantiomeric composition of chiral markers for authentic TTOs was proposed by analysing a representative number of pure TTOs sourced directly from plantations of known provenance in Australia. Consistent enantiomeric fractions of 61.6±1.5% (+):38.4±1.5% (-) for limonene, 61.7±1.6% (+):38.3±1.6% (-) for terpinen-4-ol and 79.6±1.4% (+):20.4±1.4% (-) for α-terpineol were obtained for the 57 authentic Australian TTOs. The results were compared (using principle component analysis) with commercial TTOs (declared as derived from Melaleuca alternifolia) obtained from different continents. Assessing these data to determine adulteration, or additives that affect the enantiomeric ratios, in commercially sourced TTOs is discussed. The proposed method offers distinct advantages over e

  19. On the two-domain equations for gas chromatography.

    SciTech Connect

    Romero, Louis Anthony; Parks, Michael L.

    2009-01-01

    We present an analysis of gas chromatographic columns where the stationary phase is not assumed to be a thin uniform coating along the walls of the cross section. We also give an asymptotic analysis assuming that the parameter {beta} = KD{sup II}{rho}{sup II}/D{sup I}{rho}{sup I} is small. Here K is the partition coefficient, and D{sup i} and {rho}{sup i}, i = I, II are the diffusivity and density in the mobile (i = I) and stationary (i = II) regions.

  20. Experimental adsorption isotherms based on inverse gas chromatography.

    PubMed

    Kalogirou, E; Bassiotis, I; Artemiadi, Th; Margariti, S; Siokos, V; Roubani-Kalantzopoulou, F

    2002-09-01

    A new chromatographic perturbation method is used for studying the adsorption-desorption equilibrium in various gas-solid heterogeneous systems. It is the reversed-flow method giving accurate and precise values of many physicochemical constants including the basic and necessary adsorption isotherm values. For four inorganic oxides, namely, Cr2O3, Fe2O3, TiO2 and PbO, and two aromatic hydrocarbons (benzene, toluene) these adsorption isotherms have been determined through a non-linear model. PMID:12385379

  1. Pioneer Venus gas chromatography of the lower atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Oyama, V. I.; Carle, G. C.; Woeller, F.; Pollack, J. B.; Reynolds, R. T.; Craig, R. A.

    1980-01-01

    A gas chromatograph mounted in the Pioneer Venus sounder probe measured the chemical composition of the atmosphere of Venus at three altitudes. Ne, N2, O2, Ar, CO, H2O, SO2, and CO2 were measured, and upper limits set for H2, COS, H2S, CH4, Kr, N2O, C2H4, C2H6, and C3H8. Simulation studies have provided indirect evidence for sulfuric acid-like droplets and support the possibility of water vapor at altitudes of 42 and 24 km. The paper discusses the implications of these results for the origin, evolution, and present state of Venus' atmosphere.

  2. Pioneer Venus gas chromatography of the lower atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Oyama, V. I.; Carle, G. C.; Woeller, F.; Pollack, J. B.; Reynolds, R. T.; Craig, R. A.

    1980-12-01

    A gas chromatograph mounted in the Pioneer Venus sounder probe measured the chemical composition of the atmosphere of Venus at three altitudes. Ne, N2, O2, Ar, CO, H2O, SO2, and CO2 were measured, and upper limits set for H2, COS, H2S, CH4, Kr, N2O, C2H4, C2H6, and C3H8. Simulation studies have provided indirect evidence for sulfuric acid-like droplets and support the possibility of water vapor at altitudes of 42 and 24 km. The paper discusses the implications of these results for the origin, evolution, and present state of Venus' atmosphere.

  3. Computerized optimization of flows and temperature gradient in flow modulated comprehensive two-dimensional gas chromatography.

    PubMed

    Májek, Pavel; Krupčík, Ján; Gorovenko, Roman; Špánik, Ivan; Sandra, Pat; Armstrong, Daniel W

    2014-07-01

    Informational entropy and syentropy percent were used to optimize the flows in the first (1D) and in the second (2D) dimension ((1)Fm and (2)Fm, respectively) as well as the temperature program rate (r) for the flow modulated GC×GC-FID separation of C6-C12 aromatic hydrocarbons in a low boiling petrochemical sample. The separations were performed on a column series consisting of a 25m×0.25mm i.d.×0.2μm df of the polar ionic liquid SLB-IL 100 (1,9-di(3-vinylimidazolium)nonane bis(trifluoromethylsulfonyl)imide) in the first dimension and 5m×0.25mm i.d.×0.25μm df apolar HP-5MS (5% phenyl-95% methylpolysiloxane) in the second dimension. A dependence of a distribution of individual aromatic hydrocarbons in the 2D retention plane on the carrier gas flows ((1)Fm, and (2)Fm,) and temperature gradient (r) was examined in this study. It was found that informational entropy and synentropy percent are advantageous criteria to characterize the distribution of peaks in the 2D retention plane. Maximum informational entropy and synentropy percents correspond to the maximum distribution of C6-C12 aromatic hydrocarbons in the corresponding 2D retention plane gained by the given separation using optimized values of individual carrier gas column volume flows and the temperature rate at the temperature programmed GC×GC separations.

  4. Liquid chromatography and supercritical fluid chromatography as alternative techniques to gas chromatography for the rapid screening of anabolic agents in urine.

    PubMed

    Desfontaine, Vincent; Nováková, Lucie; Ponzetto, Federico; Nicoli, Raul; Saugy, Martial; Veuthey, Jean-Luc; Guillarme, Davy

    2016-06-17

    This work describes the development of two methods involving supported liquid extraction (SLE) sample treatment followed by ultra-high performance liquid chromatography or ultra-high performance supercritical fluid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS and UHPSFC-MS/MS) for the screening of 43 anabolic agents in human urine. After evaluating different stationary phases, a polar-embedded C18 and a diol columns were selected for UHPLC-MS/MS and UHPSFC-MS/MS, respectively. Sample preparation, mobile phases and MS conditions were also finely tuned to achieve highest selectivity, chromatographic resolution and sensitivity. Then, the performance of these two methods was compared to the reference routine procedure for steroid analyses in anti-doping laboratories, which combines liquid-liquid extraction (LLE) followed by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). For this purpose, urine samples spiked with the compounds of interest at five different concentrations were analyzed using the three analytical platforms. The retention and selectivity of the three techniques were very different, ensuring a good complementarity. However, the two new methods displayed numerous advantages. The overall procedure was much faster thanks to high throughput SLE sample treatment using 48-well plates and faster chromatographic analysis. Moreover, the highest sensitivity was attained using UHPLC-MS/MS with 98% of the doping agents detected at the lowest concentration level (0.1ng/mL), against 76% for UHPSFC-MS/MS and only 14% for GC-MS/MS. Finally, the weakest matrix effects were obtained with UHPSFC-MS/MS with 76% of the analytes displaying relative matrix effect between -20 and 20%, while the GC-MS/MS reference method displayed very strong matrix effects (over 100%) for all of the anabolic agents.

  5. Liquid chromatography and supercritical fluid chromatography as alternative techniques to gas chromatography for the rapid screening of anabolic agents in urine.

    PubMed

    Desfontaine, Vincent; Nováková, Lucie; Ponzetto, Federico; Nicoli, Raul; Saugy, Martial; Veuthey, Jean-Luc; Guillarme, Davy

    2016-06-17

    This work describes the development of two methods involving supported liquid extraction (SLE) sample treatment followed by ultra-high performance liquid chromatography or ultra-high performance supercritical fluid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS and UHPSFC-MS/MS) for the screening of 43 anabolic agents in human urine. After evaluating different stationary phases, a polar-embedded C18 and a diol columns were selected for UHPLC-MS/MS and UHPSFC-MS/MS, respectively. Sample preparation, mobile phases and MS conditions were also finely tuned to achieve highest selectivity, chromatographic resolution and sensitivity. Then, the performance of these two methods was compared to the reference routine procedure for steroid analyses in anti-doping laboratories, which combines liquid-liquid extraction (LLE) followed by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). For this purpose, urine samples spiked with the compounds of interest at five different concentrations were analyzed using the three analytical platforms. The retention and selectivity of the three techniques were very different, ensuring a good complementarity. However, the two new methods displayed numerous advantages. The overall procedure was much faster thanks to high throughput SLE sample treatment using 48-well plates and faster chromatographic analysis. Moreover, the highest sensitivity was attained using UHPLC-MS/MS with 98% of the doping agents detected at the lowest concentration level (0.1ng/mL), against 76% for UHPSFC-MS/MS and only 14% for GC-MS/MS. Finally, the weakest matrix effects were obtained with UHPSFC-MS/MS with 76% of the analytes displaying relative matrix effect between -20 and 20%, while the GC-MS/MS reference method displayed very strong matrix effects (over 100%) for all of the anabolic agents. PMID:27185056

  6. Determination of phenoxy acid herbicides in water by electron-capture and microcoulometric gas chromatography

    USGS Publications Warehouse

    Goerlitz, D.F.; Lamar, William L.

    1967-01-01

    A sensitive gas chromatographic method using microcoulometric titration and electron-capture detection for the analysis of 2,4-D, silvex, 2,4,5-T, and other phenoxy acid herbicides in water is described. The herbicides are extracted from unfiltered water samples (800-1,000 ml) by use of ethyl ether ; then the herbicides are concentrated and esterilied. To allow the analyst a choice, two esterilication procedures--using either boron trifluoride-methanol or diazomethane--are evaluated. Microcoulometric gas chromatography is specific for the detection of halogenated compounds such as the phenoxy acid herbicides whereas it does not respond to nonhalogenated components. Microcoulometric gas chromatography requires care and patience. It is not convenient for rapid screening of l-liter samples that contain less than 1 microgram of the herbicide. Although electroncapture gas chromatography is less selective and more critically affected by interfering substances, it is, nevertheless, convenient and more sensitive than microcoulometric gas chromatography. Two different liquid phases are used in the gas chromatographic columns--DC-200 silicone in one column and QF-1 silicone in the other. The performance of both columns is improved by the addition of Carbowax 20M. The Gas Chrom Q support is coated with the liquid phases by the 'frontal-analysis' technique. The practical lower limits for measurement of the phenoxy acid herbicides in water primarily depend upon the sample size, interferences present, anal instrumentation used. With l-liter samples of water, the practical lower limits of measurement are 10 ppt (parts per trillion) for 2,4-D and 2 ppt for silvex and 2,4,5-T when electron-capture detection is used, and approximately 20 ppt for each herbicide when analyzed by microcoulometric-titration gas chromatography. Recoveries of the herbicides immediately after addition to unfiltered water samples averaged 92 percent for 2,4-D, 90 percent for silvex, and 98 percent for 2

  7. Simultaneous quantification of cannabinoids and metabolites in oral fluid by two-dimensional gas chromatography mass spectrometry.

    PubMed

    Milman, Garry; Barnes, Allan J; Lowe, Ross H; Huestis, Marilyn A

    2010-02-26

    Development and validation of a method for simultaneous identification and quantification of Delta9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabinol (CBN), and metabolites 11-hydroxy-THC (11-OH-THC) and 11-nor-9-carboxy-THC (THCCOOH) in oral fluid. Simultaneous analysis was problematic due to different physicochemical characteristics and concentration ranges. Neutral analytes, such as THC and CBD, are present in ng/mL, rather than pg/mL concentrations, as observed for the acidic THCCOOH biomarker in oral fluid. THCCOOH is not present in cannabis smoke, definitively differentiating cannabis use from passive smoke exposure. THC, 11-OH-THC, THCCOOH, CBD, and CBN quantification was achieved in a single oral fluid specimen collected with the Quantisal device. One mL oral fluid/buffer solution (0.25 mL oral fluid and 0.75 mL buffer) was applied to conditioned CEREX Polycrom THC solid-phase extraction (SPE) columns. After washing, THC, 11-OH-THC, CBD, and CBN were eluted with hexane/acetone/ethyl acetate (60:30:20, v/v/v), derivatized with N,O-bis-(trimethylsilyl)trifluoroacetamide and quantified by two-dimensional gas chromatography electron ionization mass spectrometry (2D-GCMS) with cold trapping. Acidic THCCOOH was separately eluted with hexane/ethyl acetate/acetic acid (75:25:2.5, v/v/v), derivatized with trifluoroacetic anhydride and hexafluoroisopropanol, and quantified by the more sensitive 2D-GCMS-electron capture negative chemical ionization (NCI-MS). Linearity was 0.5-50 ng/mL for THC, 11-OH-THC, CBD and 1-50 ng/mL for CBN. The linear dynamic range for THCCOOH was 7.5-500 pg/mL. Intra- and inter-assay imprecision as percent RSD at three concentrations across the linear dynamic range were 0.3-6.6%. Analytical recovery was within 13.8% of target. This new SPE 2D-GCMS assay achieved efficient quantification of five cannabinoids in oral fluid, including pg/mL concentrations of THCCOOH by combining differential elution, 2D-GCMS with electron ionization and

  8. Simultaneous quantification of cannabinoids and metabolites in oral fluid by two-dimensional gas chromatography mass spectrometry

    PubMed Central

    Milman, Garry; Barnes, Allan J.; Lowe, Ross H.; Huestis, Marilyn A.

    2010-01-01

    Development and validation of a method for simultaneous identification and quantification of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabinol (CBN), and metabolites 11-hydroxy-THC (11-OH-THC) and 11-nor-9-carboxy-THC (THCCOOH) in oral fluid. Simultaneous analysis was problematic due to different physicochemical characteristics and concentration ranges. Neutral analytes, such as THC and CBD, are present in ng/mL, rather than pg/mL concentrations, as observed for the acidic THCCOOH biomarker in oral fluid. THCCOOH is not present in cannabis smoke, definitively differentiating cannabis use from passive smoke exposure. THC, 11-OH-THC, THCCOOH, CBD, and CBN quantification was achieved in a single oral fluid specimen collected with the Quantisal™ device. One mL oral fluid/buffer solution (0.25mL oral fluid and 0.75mL buffer) was applied to conditioned CEREX® Polycrom™ THC solid phase extraction (SPE) columns. After washing, THC, 11-OH-THC, CBD, and CBN were eluted with hexane/acetone/ethyl acetate (60:30:20, v/v/v), derivatized with N, O-bis-(trimethylsilyl) trifluoroacetamide and quantified by two-dimensional gas chromatography electron ionization mass spectrometry (2D-GCMS) with cold trapping. Acidic THCCOOH was separately eluted with hexane/ethyl acetate/acetic acid (75:25:2.5, v/v/v), derivatized with trifluoroacetic anhydride and hexafluoroisopropanol, and quantified by the more sensitive 2D-GCMS–electron capture negative chemical ionization (NCI-MS). Linearity was 0.5-50ng/mL for THC, 11-OH-THC, CBD and 1-50ng/mL for CBN. The linear dynamic range for THCCOOH was 7.5–500pg/mL. Intra-and inter-assay imprecision as percent RSD at three concentrations across the linear dynamic range were 0.3%-6.6%. Analytical recovery was within 13.8% of target. This new SPE 2D-GCMS assay achieved efficient quantification of five cannabinoids in oral fluid, including pg/mL concentrations of THCCOOH by combining differential elution, 2D-GCMS with electron

  9. Determination of Hydrocarbon Group-Type of Diesel Fuels by Gas Chromatography with Vacuum Ultraviolet Detection.

    PubMed

    Weber, Brandon M; Walsh, Phillip; Harynuk, James J

    2016-06-01

    A GC-vacuum ultraviolet (UV) method to perform group-type separations of diesel range fuels was developed. The method relies on an ionic liquid column to separate diesel samples into saturates, mono-, di-, and polyaromatics by gas chromatography, with selective detection via vacuum UV absorption spectroscopy. Vacuum UV detection was necessary to solve a coelution between saturates and monoaromatics. The method was used to measure group-type composition of 10 oilsands-derived Synfuel light diesel samples, 3 Syncrude light gas oils, and 1 quality control sample. The gas chromatography (GC)-vacuum UV results for the Synfuel samples were similar (absolute % error of 0.8) to historical results from the supercritical fluid chromatography (SFC) analysis. For the light gas oils, discrepancies were noted between SFC results and GC-vacuum UV results; however, these samples are known to be challenging to quantify by SFC-flame ionization detector (FID) due to incomplete resolution between the saturate/monoaromatic and/or monoaromatic/diaromatic group types when applied to samples heavier than diesel (i.e., having a larger fraction of higher molecular weight species). The quality control sample also performed well when comparing both methods (absolute % error of 0.2) and the results agreed within error for saturates, mono- and polyaromatics. PMID:27125997

  10. Venus lower atmospheric composition - Analysis by gas chromatography

    NASA Technical Reports Server (NTRS)

    Oyama, V. I.; Carle, G. C.; Woeller, F.; Pollack, J. B.

    1979-01-01

    The first gas chromatographic analysis of the lower atmosphere of Venus is reported. Three atmospheric samples were analyzed. The third of these samples showed carbon dioxide (96.4 percent), molecular nitrogen (3.41 percent), water vapor (0.135 percent), molecular oxygen (69.3 ppm), argon (18.6 ppm), neon (4.31 ppm), and sulfur dioxide (186 ppm). The amounts of water vapor and sulfur dioxide detected are roughly compatible with the requirements of greenhouse models of the high surface temperature of Venus. The large positive gradient of sulfur dioxide, molecular oxygen, and water vapor from the cloud tops to their bottoms, as implied by Earth-based observations and these results, gives added support for the presence of major quantities of aqueous sulfuric acid in the clouds. A comparison of the inventory of inert gases found in the atmospheres of Venus, Earth, and Mars suggests that these components are due to outgassing from the planetary interiors.

  11. [Quantitative analysis of butachlor, oxadiazon and simetryn by gas chromatography].

    PubMed

    Liu, F; Mu, W; Wang, J

    1999-03-01

    The quantitative analysis of the ingredients in 26% B-O-S (butachlor, oxadiazon and simetryn) emulsion by gas chromatographic method was carried out with a 5% SE-30 on Chromosorb AW DMCS, 2 m x 3 mm i.d., glass column at column temperature of 210 degrees C and detector temperature of 230 degrees C. The internal standard is di-n-butyl sebacate. The retentions of simetryn, internal standard, butachlor and oxadiazon were 6.5, 8.3, 9.9 and 11.9 min respectively. This method has a recovery of 98.62%-100.77% and the coefficients of variation of this analysis of butachlor, oxadiazon and simetryn were 0.46%, 0.32% and 0.57% respectively. All coefficients of linear correlation were higher than 0.999.

  12. Cyclopentadiene evolution during pyrolysis-gas chromatography of PMR polyimides

    NASA Technical Reports Server (NTRS)

    Alston, William B.; Gluyas, Richard E.; Snyder, William J.

    1992-01-01

    The effect of formulated molecular weight (FMW), extent of cure, and cumulative aging on the amount of cyclopentadiene (CPD) evolved from Polymerization of Monomeric Reactants (PMR) polyimides were investigated by pyrolysis-gas chromotography (PY-GC). The PMR polyimides are additional crosslinked resins formed from an aromatic diamine, a diester of an aromatic tetracarboxylic acid and a monoester of 5-norbornene-2, 3-dicarboxylic acid. The PY-GC results were related to the degree of crosslinking and to the thermo-oxidative stability (weight loss) of PMR polyimides. Thus, PY-GC has shown to be a valid technique for the characterization of PMR polyimide resins and composites via correlation of the CPD evolved versus the thermal history of the PMR sample.

  13. Impact of gas chromatography and mass spectrometry combined with gas chromatography and olfactometry for the sex differentiation of Baccharis articulata by the analysis of volatile compounds.

    PubMed

    Minteguiaga, Manuel; Umpiérrez, Noelia; Fariña, Laura; Falcão, Manuel A; Xavier, Vanessa B; Cassel, Eduardo; Dellacassa, Eduardo

    2015-09-01

    The Baccharis genus has more than 400 species of aromatic plants. However, only approximately 50 species have been studied in oil composition to date. From these studies, very few take into consideration differences between male and female plants, which is a significant and distinctive factor in Baccharis in the Asteraceae family. Baccharis articulata is a common shrub that grows wild in south Brazil, northern and central Argentina, Bolivia, Paraguay and Uruguay. It is considered to be a medicinal plant and is employed in traditional medicine. We report B. articulata male and female volatile composition obtained by simultaneous distillation-extraction technique and analyzed by gas chromatography with mass spectrometry. Also, an assessment of aromatic differences between volatile extracts was evaluated by gas chromatography with olfactometry. The results show a very similar chemical composition between male and female extracts, with a high proportion of terpene compounds of which β-pinene, limonene and germacrene D are the main components. Despite the chemical similarity, great differences in aromatic profile were found: male plant samples exhibited the strongest odorants in number and intensity of aromatic attributes. These differences explain field observations which indicate differences between male and female flower aroma, and might be of ecological significance in the attraction of pollinating insects. PMID:26140379

  14. Impact of gas chromatography and mass spectrometry combined with gas chromatography and olfactometry for the sex differentiation of Baccharis articulata by the analysis of volatile compounds.

    PubMed

    Minteguiaga, Manuel; Umpiérrez, Noelia; Fariña, Laura; Falcão, Manuel A; Xavier, Vanessa B; Cassel, Eduardo; Dellacassa, Eduardo

    2015-09-01

    The Baccharis genus has more than 400 species of aromatic plants. However, only approximately 50 species have been studied in oil composition to date. From these studies, very few take into consideration differences between male and female plants, which is a significant and distinctive factor in Baccharis in the Asteraceae family. Baccharis articulata is a common shrub that grows wild in south Brazil, northern and central Argentina, Bolivia, Paraguay and Uruguay. It is considered to be a medicinal plant and is employed in traditional medicine. We report B. articulata male and female volatile composition obtained by simultaneous distillation-extraction technique and analyzed by gas chromatography with mass spectrometry. Also, an assessment of aromatic differences between volatile extracts was evaluated by gas chromatography with olfactometry. The results show a very similar chemical composition between male and female extracts, with a high proportion of terpene compounds of which β-pinene, limonene and germacrene D are the main components. Despite the chemical similarity, great differences in aromatic profile were found: male plant samples exhibited the strongest odorants in number and intensity of aromatic attributes. These differences explain field observations which indicate differences between male and female flower aroma, and might be of ecological significance in the attraction of pollinating insects.

  15. Methods for analysis of conjugated linoleic acids and trans-18:1 isomers in dairy fats by using a combination of gas chromatography, silver-ion thin-layer chromatography/gas chromatography, and silver-ion liquid chromatography.

    PubMed

    Cruz-Hernandez, Cristina; Deng, Zeyuan; Zhou, Jianqiang; Hill, Arthur R; Yurawecz, Martin P; Delmonte, Pierluigi; Mossoba, Magdi M; Dugan, Michael E R; Kramer, John K G

    2004-01-01

    Conjugated linoleic acids (CLA) are octadecadienoic acids (18:2) that have a conjugated double-bond system. Interest in these compounds has expanded since CLA were found to be associated with a number of physiological and pathological responses such as cancer, metastases, atherosclerosis, diabetes, immunity, and body fat/protein composition. The main sources of these conjugated fatty acids are dairy fats. Rumen bacteria convert polyunsaturated fatty acids, especially linoleic and linolenic acids, to CLA and numerous trans- containing mono- and diunsaturated fatty acids. It has been established that an additional route of CLA synthesis in ruminants and monogastric animals, including humans, occurs via delta9 desaturation of the trans-18:1 isomers. To date, a total of 6 positional CLA isomers have been found in dairy fats, each occurring in 4 geometric forms (cis,trans; trans,cis; cis,cis; and trans,trans) for a total of 24. All of these CLA isomers can be resolved only by a combination of gas chromatography (GC), using 100 m highly polar capillary columns, and silver-ion liquid chromatography, using 3 of these 25 cm columns in series. Complete analysis of all the trans-18:1 isomers requires prior isolation of trans monoenes by silver-ion thin-layer chromatography (TLC), followed by GC analysis using the same 100 m capillary columns operated at low temperatures starting from 120 degrees C. These analytical techniques are required to assess the purity of commercial CLA preparations, because their purity will affect the interpretation of any physiological and/or biochemical response obtained. Prior assessment of CLA preparations by TLC is also recommended to determine the presence of any other impurities. The availability of pure CLA isomers will permit the evaluation and analysis of individual CLA isomers for their nutritional and biological activity in model systems, animals, and humans. These techniques are also essential to evaluate dairy fats for their content of

  16. Development of a soft-X ray detector for energy resolved 2D imaging by means of a Gas Pixel Detector with highly integrated microelectronics

    SciTech Connect

    Pacella, D.; Pizzicaroli, G.; Romano, A.; Gabellieri, L.; Bellazzini, R.; Brez, A.

    2008-03-12

    Soft-X ray 2-D imaging on ITER is not considered yet. We propose a new approach, based on a gas detector with a gas electron multiplier (GEM) as amplifying structure and with a two-dimensional readout fully integrated with the front end electronics, through an ASIC developed on purpose. The concept has been already tested by means of a prototype, with 128 pixels, carried out in Frascati in collaboration with INFN-Pisa and tested on FTU in 2001 and NSTX in 2002-2004. Thanks to the photon counting mode, it provides 2-D imaging with high time resolution (sub millisecond), high sensitivity and signal to noise ratio. Its capability of energy discrimination allows the acquisition of pictures in X-ray energy bands or to perform a spectral scan in the full energy interval. We propose the realisation of such kind a detector with a readout microchip (ASIC) equipped with 105600 hexagonal pixels arranged at 70 {mu}m pitch in a 300x352 honeycomb matrix, corresponding to an active area of 2.1x2.1 cm{sup 2}, with a pixel density of 240 pixels/ mm{sup 2}. Each pixel is connected to a charge sensitive amplifier followed by a discriminator of pulse amplitude and counter. The chip integrates more than 16.5 million transistors and it is subdivided in 64 identical clusters, to be read independently each other. An important part of the work will be also the design of the whole detector to fulfil all the constraints and requirements as plasma diagnostic in a tokamak machine. Since the detector has high and controllable intrinsic gain, it works well even at very low photon energy, ranging from 0.2 keV to 10 keV (X-VUV region). This range appears therefore particularly suitable for ITER to monitor the outer part of the plasma. In particular pedestal physics, edge modes, localization and effects of additional heating, boundary plasma control etc. The capability of this proposed detector to work in this energy range is further valuable because solid state detectors are not favorite at low

  17. Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection.

    PubMed

    Liu, Jing; Sun, Yuze; Howard, Daniel J; Frye-Mason, Greg; Thompson, Aaron K; Ja, Shiou-Jyh; Wang, Siao-Kwan; Bai, Mengjun; Taub, Haskell; Almasri, Mahmoud; Fan, Xudong

    2010-06-01

    We developed and characterized a Fabry-Pérot (FP) sensor module based micro gas chromatography (microGC) detector for multipoint on-column detection. The FP sensor was fabricated by depositing a thin layer of metal and a layer of gas-sensitive polymer consecutively on the endface of an optical fiber, which formed the FP cavity. Light partially reflected from the metal layer and the polymer-air interface generated an interference spectrum, which shifted as the polymer layer absorbed the gas analyte. The FP sensor module was then assembled by inserting the FP sensor into a hole drilled in the wall of a fused-silica capillary, which can be easily connected to the conventional gas chromatography (GC) column through a universal quick seal column connector, thus enabling on-column real-time detection. We characterized the FP sensor module based microGC detector. Sensitive detection of various gas analytes was achieved with subnanogram detection limits. The rapid separation capability of the FP sensor module assembled with both single- and tandem-column systems was demonstrated, in which gas analytes having a wide range of polarities and volatilities were well-resolved. The tandem-column system obtained increased sensitivity and selectivity by employing two FP sensor modules coated with different polymers, showing great system versatility. PMID:20441156

  18. Differentiation of mint (Mentha haplocalyx Briq.) from different regions in China using gas and liquid chromatography.

    PubMed

    Dong, Wenjiang; Ni, Yongnian; Kokot, Serge

    2015-02-01

    In this study, complex substances such as Mint (Mentha haplocalyx Briq.) samples from different growing regions in China were analyzed for phenolic compounds by high-performance liquid chromatography with diode array detection and for the volatile aroma compounds by gas chromatography with mass spectrometry. Chemometrics methods, e.g. principal component analysis, back-propagation artificial neural networks, and partial least squares discriminant analysis, were applied to resolve complex chromatographic profiles of Mint samples. A total of 49 aroma components and 23 phenolic compounds were identified in 79 Mint samples. Principal component analysis score plots from gas chromatography with mass spectrometry and high-performance liquid chromatography with diode array detection data sets showed a clear distinction among Mint from three different regions in China. Classification results showed that satisfactory performance of prediction ability for back-propagation artificial neural networks and partial least squares discriminant analysis. The major compounds that contributed to the discrimination were chlorogenic acid, unknown 3, kaempherol 7-O-rutinoside, salvianolic acid L, hesperidin, diosmetin, unknown 6 and pebrellin in Mint according to regression coefficients of the partial least squares discriminant analysis model. This study indicated that the proposed strategy could provide a simple and rapid technique to distinguish clearly complex profiles from samples such as Mint.

  19. Differentiation of mint (Mentha haplocalyx Briq.) from different regions in China using gas and liquid chromatography.

    PubMed

    Dong, Wenjiang; Ni, Yongnian; Kokot, Serge

    2015-02-01

    In this study, complex substances such as Mint (Mentha haplocalyx Briq.) samples from different growing regions in China were analyzed for phenolic compounds by high-performance liquid chromatography with diode array detection and for the volatile aroma compounds by gas chromatography with mass spectrometry. Chemometrics methods, e.g. principal component analysis, back-propagation artificial neural networks, and partial least squares discriminant analysis, were applied to resolve complex chromatographic profiles of Mint samples. A total of 49 aroma components and 23 phenolic compounds were identified in 79 Mint samples. Principal component analysis score plots from gas chromatography with mass spectrometry and high-performance liquid chromatography with diode array detection data sets showed a clear distinction among Mint from three different regions in China. Classification results showed that satisfactory performance of prediction ability for back-propagation artificial neural networks and partial least squares discriminant analysis. The major compounds that contributed to the discrimination were chlorogenic acid, unknown 3, kaempherol 7-O-rutinoside, salvianolic acid L, hesperidin, diosmetin, unknown 6 and pebrellin in Mint according to regression coefficients of the partial least squares discriminant analysis model. This study indicated that the proposed strategy could provide a simple and rapid technique to distinguish clearly complex profiles from samples such as Mint. PMID:25431171

  20. [Determination of aromatics in light petroleum products by comprehensive two-dimensional gas chromatography].

    PubMed

    Li, Yanyan

    2006-07-01

    In recent years, comprehensive two-dimensional gas chromatography (GC x GC) have been used widely, and the applications of this technique to many fields have already been reported. In the standard method of oil analysis, the concentrations of aromatics and naphthalene hydrocarbons in light petroleum products must be detected by more than two methods. Mono-aromatics, di-aromatics etc. in light petroleum products were detected only by comprehensive two-dimensional gas chromatography. After the proper selection of column system and optimization of chromatographic conditions, the method can achieve the group separations of paraffins, olefins, naphthenes, aromatics with 1 to 2 rings and some target components in light petroleum products with good reproducibility and good precision. The recoveries of standard compounds were 89.5% - 106.1%, and the relative standard deviations of repeatedly detecting the components were all lower than 5.8%. It took only 30 min to finish a determination.

  1. Investigating Solvent Purity Utilizing Comprehensive Gas Chromatography: A Study of Acetones

    SciTech Connect

    Wahl, Jon H.; Bolz, Cinnamon DH; Wahl, Karen L.

    2010-04-01

    Broad spectrum chemical analysis of trace level components is a continuing challenge for any analytical chemist. This challenge is further confounded when chemical impurities may be present in common organic solvents or when chemical artifacts may be formed, produced and introduced during an analytical procedure. Minimizing and understanding these chemical artifacts, is critical for trace level detection and is crucial for unambiguous analytical results. Comprehensive gas chromatography is an excellent analytical tool to help address these complex mixture challenges. This work examines the impurities present in various acetone sources utilizing comprehensive gas chromatography. This work highlights the extreme variability possible in solvent sources and hence the importance of understanding the impurities that may confound an analytical method or result.

  2. Characterization of pathogenic bacteria by automated headspace concentration-gas chromatography.

    PubMed

    Zechman, J M; Aldinger, S; Labows, J N

    1986-04-25

    Automated headspace concentration-gas chromatography (AHC-GC) was used to profile the volatile metabolites produced by Proteus mirabilis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus. Bacterial cultures were incubated in trypticase soy broth and examined at 24 h. The profiles were consistent for each genus examined and variation observed among the different strains of each species was chiefly quantitative. The volatiles were identified by concurrent headspace concentration-gas chromatography-mass spectrometry and consisted mainly of isobutanol, isopentanol, isopentyl acetate, 1-undecene and methyl ketones. There were sufficient differences in the profiles in the 4-6 min elution period to distinguish P. aeruginosa and S. aureus from each other and from the other two bacteria. P. mirabilis and K. pneumoniae typically showed three intense peaks which corresponded to isobutanol, isopentyl acetate and isopentanol. The determination of volatiles by AHC-GC is sensitive, rapid and offers a possible alternative for automatic detection and characterization of pathogenic bacteria. PMID:3086354

  3. Gas chromatography: an investigative tool in multiple allergies to essential oils.

    PubMed

    Dharmagunawardena, B; Takwale, A; Sanders, K J; Cannan, S; Rodger, A; Ilchyshyn, A

    2002-11-01

    Essential or fragrant oils are volatile odourous mixtures of organic chemical compounds that are widely used in aromatherapy and in the perfume industry. Because of their frequent use, allergy to essential oils is being increasingly recognized. We report 2 cases of multiple allergies to essential oils in professional aromatherapists. Gas chromatography/mass spectrometry was used to analyse the oils in order to identify a common allergen responsible for the contact dermatitis. In both the cases, alpha- and beta-pinene were found to be the most common constituent in the oils and thus appeared to be key allergens. alpha-pinene was confirmed as an allergen on repeat patch testing with pure alpha-pinene in both cases. 12 controls tested were negative for the same. Gas chromatography-mass spectrometry was found to be an extremely useful tool that could be utilized in investigating multiple allergies to essential oils.

  4. Determination of acenocoumarol in human plasma by capillary gas chromatography with mass-selective detection.

    PubMed

    Pommier, F; Ackermann, R; Sioufi, A; Godbillon, J

    1994-03-18

    A method for the determination of acenocoumarol in human plasma by capillary gas chromatography-mass-selective detection is described. After addition of a structurally related analogue as the internal standard, the compounds are extracted from plasma at acidic pH into toluene, back-extracted with a basic solution and re-extracted from hydrochloric acid solution with toluene, which is then evaporated to dryness. The compounds are converted into their methyl derivatives, which are determined by gas chromatography using a mass-selective detector at m/z 324 for acenocoumarol and m/z 338 for the internal standard. The reproducibility and accuracy of the method were found to be suitable over the acenocoumarol concentrations range 2.2-74 nmol/l. The method could be considered as selective for acenocoumarol in the presence of its major metabolites in plasma.

  5. Measuring fuel contamination using high speed gas chromatography and cone penetration techniques

    SciTech Connect

    Farrington, S.P.; Bratton, W.L.; Akard, M.L.

    1995-10-01

    Decision processes during characterization and cleanup of hazardous waste sites are greatly retarded by the turnaround time and expense incurred through the use of conventional sampling and laboratory analyses. Furthermore, conventional soil and groundwater sampling procedures present many opportunities for loss of volatile organic compounds (VOC) by exposing sample media to the atmosphere during transfers between and among sampling devices and containers. While on-site analysis by conventional gas chromatography can reduce analytical turnaround time, time-consuming sample preparation procedures are still often required, and the potential for loss of VOC is not reduced. This report describes the development of a high speed gas chromatography and cone penetration testing system which can detect and measure subsurface fuel contamination in situ during the cone penetration process.

  6. Gas-liquid chromatography in routine processing of blood cultures for detecting anaerobic bacteraemia.

    PubMed Central

    Reig, M; Molina, D; Loza, E; Ledesma, M A; Meseguer, M A

    1981-01-01

    Gas-liquid chromatography was performed on 233 positive blood cultures and findings were compared with culture results. Obligate anaerobic bacteria were recovered from 78 out of 79 blood cultures containing butyric or iso-valeric acids, or both; from 28 out of 69 blood cultures containing succinic acid; and from only one out of 41 blood cultures containing succinic but not butyric or iso-valeric acid. Good correlations (88%) were found for the recovery of anaerobic bacteria and the detection of butyric and/or iso-valeric acids. Detecting volatile fatty acids by gas-liquid chromatography performed on blood cultures at the first signs of growth can therefore provide an early and reliable indication of the presence of anaerobic bacteria. PMID:7014645

  7. Gas chromatography with flame photometric detection of 31 organophosphorus pesticide residues in Alpinia oxyphylla dried fruits.

    PubMed

    Zhao, Xiangsheng; Kong, Weijun; Wei, Jianhe; Yang, Meihua

    2014-11-01

    A simple, rapid and effective gas chromatography-flame photometric detection method was established for simultaneous multi-component determination of 31 organophosphorus pesticides (OPPs) residues in Alpinia oxyphylla, which is widely consumed as a traditional medicine and food in China. Sample preparation was completed in a single step without any clean-up procedure. All pesticides expressed good linear relationships between 0.004 and 1.0 μg/mL with correlation coefficients higher than 0.9973. The method gave satisfactory recoveries for most pesticides. The limits of detection varied from 1 to 10 ng/mL, and the limits of quantification (LOQs) were between 4 and 30 ng/mL. The proposed method was successfully applied to 55 commercial samples purchased from five different areas. Five pesticide residues were detected in four (7.27%) samples. The positive samples were confirmed by gas chromatography with tandem mass spectrometry (GC-MS/MS).

  8. Surface energy of microcrystalline cellulose determined by capillary intrusion and inverse gas chromatography.

    PubMed

    Steele, D Fraser; Moreton, R Christian; Staniforth, John N; Young, Paul M; Tobyn, Michael J; Edge, Stephen

    2008-09-01

    Surface energy data for samples of microcrystalline cellulose have been obtained using two techniques: capillary intrusion and inverse gas chromatography. Ten microcrystalline cellulose materials, studied using capillary intrusion, showed significant differences in the measured surface energetics (in terms of total surface energy and the acid-base characteristics of the cellulose surface), with variations noted between the seven different manufacturers who produced the microcrystalline cellulose samples. The surface energy data from capillary intrusion was similar to data obtained using inverse gas chromatography with the column maintained at 44% relative humidity for the three samples of microcrystalline cellulose studied. This suggests that capillary intrusion may be a suitable method to study the surface energy of pharmaceutical samples.

  9. Comprehensive two-dimensional gas chromatography-mass spectrometry: Recent evolution and current trends.

    PubMed

    Tranchida, Peter Q; Franchina, Flavio A; Dugo, Paola; Mondello, Luigi

    2016-07-01

    The present contribution is focused on the evolution and current trends of comprehensive two-dimensional gas chromatography-mass spectrometry (GC × GC-MS), with respect to a review that described this specific methodology published at the beginning of 2008 (Mondello et al., 2008). In fact, since then there has been considerable evolution in the MS field, certainly exceeding that observed in GC × GC. In particular, the present paper will cover the combination of novel MS machines [single quadrupole (Q) and triple quadrupole, isotope ratio, low- and high-resolution time-of-flight (ToF), hybrid (Q-ToF)] to GC × GC systems, and will position comprehensive two-dimensional gas chromatography within the wider context of separation science. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 35:524-534, 2016.

  10. Sample collection and preparation of biofluids and extracts for gas chromatography-mass spectrometry.

    PubMed

    Emwas, Abdul-Hamid M; Al-Talla, Zeyad A; Kharbatia, Najeh M

    2015-01-01

    To maximize the utility of gas chromatography-mass spectrometry (GC-MS) in metabonomics research, all stages of the experimental design should be standardized, including sample collection, storage, preparation, and sample separation. Moreover, the prerequisite for any GC-MS analysis is that a compound must be volatile and thermally stable if it is to be analyzed using this technique. Since many metabolites are nonvolatile and polar in nature, they are not readily amenable to analysis by GC-MS and require initial chemical derivatization of the polar functional groups in order to reduce the polarity and to increase the thermal stability and volatility of the analytes. In this chapter, an overview is presented of the optimum approach to sample collection, storage, and preparation for gas chromatography-mass spectrometry-based metabonomics with particular focus on urine samples as example of biofluids.

  11. Isotope Ratio Monitoring Gas Chromatography Mass Spectrometry (IRM-GCMS)

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Ricci, S. A.; Studley, A.; Hayes, J. M.

    1989-01-01

    On Earth, the C-13 content of organic compounds is depleted by roughly 13 to 23 permil from atmospheric carbon dioxide. This difference is largely due to isotope effects associated with the fixation of inorganic carbon by photosynthetic organisms. If life once existed on Mars, then it is reasonable to expect to observe a similar fractionation. Although the strongly oxidizing conditions on the surface of Mars make preservation of ancient organic material unlikely, carbon-isotope evidence for the existence of life on Mars may still be preserved. Carbon depleted in C-13 could be preserved either in organic compounds within buried sediments, or in carbonate minerals produced by the oxidation of organic material. A technique is introduced for rapid and precise measurement of the C-13 contents of individual organic compounds. A gas chromatograph is coupled to an isotope-ratio mass spectrometer through a combustion interface, enabling on-line isotopic analysis of isolated compounds. The isotope ratios are determined by integration of ion currents over the course of each chromatographic peak. Software incorporates automatic peak determination, corrections for background, and deconvolution of overlapped peaks. Overall performance of the instrument was evaluated by the analysis of a mixture of high purity n-alkanes of know isotopic composition. Isotopic values measured via IRM-GCMS averaged withing 0.55 permil of their conventionally measured values.

  12. Venus lower atmospheric composition: analysis by gas chromatography.

    PubMed

    Oyama, V I; Carle, G C; Woeller, F; Pollack, J B

    1979-02-23

    The first gas chromatographic analysis of the lower atmosphere of Venus is reported. Three atmospheric samples were analyzed. The third of these samples showed carbon dioxide (96.4 percent), molecular nitrogen (3.41 percent), water vapor (0.135 percent), molecular oxygen [69.3 parts per million (ppm)], argon (18.6 ppm), neon (4.31 ppm), and sulfuir dioxide (186 ppm). The amounts of water vapor and sulfur dioxide detected are roughly compatible with the requirements of greenhouse models of the high surface temperature of Venus. The large positive gradient of sulfur dioxide, molecular oxygen, and water vapor from the clould tops to their bottoms, as implied by Earth-based observations and these resuilts, gives added support for the presence of major quantities of aqueous sulfuric acid in the clouds. A comparison of the inventory of inert gases found in the atmospheres of Venus, Earth, and Mars suggests that these components are due to outgassing from the planetary interiors.

  13. Detection and Identification of Bacteria by Gas Chromatography1

    PubMed Central

    Henis, Y.; Gould, J. R.; Alexander, M.

    1966-01-01

    Ether extracts of cultures of 29 strains representing 6 species of Bacillus, and of individual strains of Escherichia coli, Aerobacter aerogenes, and Pseudomonas aeruginosa were examined in a gas chromatograph by use of flame ionization and electron capture detectors. Among the products detected were compounds with the chromatographic characteristics of acetic, propionic, and butyric acids, ethyl alcohol, diacetyl, acetoin, and 2,3-butanediol. The differences in peak areas of the various products formed by the bacteria were determined statistically for the chromatograms obtained with the two detectors, and the peaks were arranged in order of decreasing areas to yield a signature for each bacterial strain. Different signatures were obtained for the various genera and species and for strains of the same species. B. licheniformis, B. subtilis, and A. aerogenes formed significant quantities of a number of volatile compounds, and qualitative and quantitative differences between strains were noted. The electron capture detector was particularly sensitive to diacetyl and acetoin as well as to unknown compounds. By use of this detector, the presence of 5 pg of diacetyl and 20 pg of acetoin could be demonstrated. The quantity of acetoin detected in B. subtilis and B. licheniformis cultures was present in as little as 6.3 × 10-3 μliters of medium. Images Fig. 1 Fig. 2 Fig. 3 PMID:4959077

  14. Detection and identification of bacteria by gas chromatography.

    PubMed

    Henis, Y; Gould, J R; Alexander, M

    1966-07-01

    Ether extracts of cultures of 29 strains representing 6 species of Bacillus, and of individual strains of Escherichia coli, Aerobacter aerogenes, and Pseudomonas aeruginosa were examined in a gas chromatograph by use of flame ionization and electron capture detectors. Among the products detected were compounds with the chromatographic characteristics of acetic, propionic, and butyric acids, ethyl alcohol, diacetyl, acetoin, and 2,3-butanediol. The differences in peak areas of the various products formed by the bacteria were determined statistically for the chromatograms obtained with the two detectors, and the peaks were arranged in order of decreasing areas to yield a signature for each bacterial strain. Different signatures were obtained for the various genera and species and for strains of the same species. B. licheniformis, B. subtilis, and A. aerogenes formed significant quantities of a number of volatile compounds, and qualitative and quantitative differences between strains were noted. The electron capture detector was particularly sensitive to diacetyl and acetoin as well as to unknown compounds. By use of this detector, the presence of 5 pg of diacetyl and 20 pg of acetoin could be demonstrated. The quantity of acetoin detected in B. subtilis and B. licheniformis cultures was present in as little as 6.3 x 10(-3) muliters of medium.

  15. Venus lower atmospheric composition: analysis by gas chromatography.

    PubMed

    Oyama, V I; Carle, G C; Woeller, F; Pollack, J B

    1979-02-23

    The first gas chromatographic analysis of the lower atmosphere of Venus is reported. Three atmospheric samples were analyzed. The third of these samples showed carbon dioxide (96.4 percent), molecular nitrogen (3.41 percent), water vapor (0.135 percent), molecular oxygen [69.3 parts per million (ppm)], argon (18.6 ppm), neon (4.31 ppm), and sulfuir dioxide (186 ppm). The amounts of water vapor and sulfur dioxide detected are roughly compatible with the requirements of greenhouse models of the high surface temperature of Venus. The large positive gradient of sulfur dioxide, molecular oxygen, and water vapor from the clould tops to their bottoms, as implied by Earth-based observations and these resuilts, gives added support for the presence of major quantities of aqueous sulfuric acid in the clouds. A comparison of the inventory of inert gases found in the atmospheres of Venus, Earth, and Mars suggests that these components are due to outgassing from the planetary interiors. PMID:17833004

  16. Inverse gas chromatography and other chromatographic techniques in the examination of engine oils.

    PubMed

    Fall, Jacek; Voelkel, Adam

    2002-09-01

    The emerging market of engine oils consists of a number of products from different viscosity and quality classes. Determination of the base oil used in manufacturing of the final product (engine oil) as well as estimation of mutual miscibility of oils and their solubility could be crucial problems. Inverse gas chromatography and other chromatographic techniques are presented as an interesting and fruitful extension of normalised standard analytical methods used in the oil industry. PMID:12385390

  17. Determination of sultopride and tiapride in serum by gas chromatography using a surface ionisation detector.

    PubMed

    Kamizono, A; Inotsume, N; Miyamoto, K; Ueda, K; Miyakawa, T; Arimoto, H; Nakano, M

    1991-06-14

    A sensitive and selective method has been developed for the determination of sultopride and tiapride in serum using gas chromatography with a surface ionisation detector. No interfering peaks from endogenous substances were observed. The method showed good reproducibility and accuracy, and the standard curve was linear up to 2 micrograms/ml with a correlation coefficient of 0.999. This method is applicable to pharmacokinetic studies and therapeutic drug monitoring of sultopride and tiapride.

  18. Determination of tetrachloroethylene in olive oil by automated headspace gas chromatography.

    PubMed

    Norman, K N

    1991-01-01

    A rapid screening method for detecting low levels of tetrachloroethylene (perchloroethylene, PCE) in olive oils has been developed using headspace capillary gas chromatography. Modification of this method allows quantitative results to be obtained down to 0.001 mg kg-1. Results obtained show that olive oil samples received in this laboratory over a two year period have not contained PCE residues in excess of the European Commission guidelines.

  19. Gas chromatography-olfactometry analysis of the volatile compounds of two commercial Irish beef meats.

    PubMed

    Machiels, David; van Ruth, Saskia M; Posthumus, Maarten A; Istasse, Louis

    2003-07-01

    The volatile flavour compounds of two commercial Irish beef meats (labelled as conventional and organic) were evaluated by gas chromatography-olfactometry and were identified by gas chromatography-mass spectrometry. The volatile compounds were isolated in a model mouth system. Gas chromatography-olfactometry was performed by a group of eight assessors using the detection frequency methodology. The odours of the detected compounds were described as well. Eighty-one volatile compounds were identified, 11 compounds of which possessed odour activity in the first beef sample and 14 of which in the second meat sample. Ten volatile flavour compounds were common to both: methanethiol, dimethyl sulphide, 2-butanone, ethyl acetate, 2- and 3-methylbutanal, an unknown compound, 2-octanone, decanal and benzothiazole. Two unknown compounds were only detected in the first sample while 2,3-pentanedione, 4-methyl-3-penten-2-one, 2-heptanone, dimethyl trisulphide and nonanal were only perceived in the second beef. Significant differences in terms of detection frequency, odour characteristics and in nature of the volatile flavour compounds were emphasised between the two samples. PMID:18969100

  20. [Analysis of the vol atiles from pigeon's excrement with capillary gas chromatography].

    PubMed

    He, F; Sun, Y; Huang, A; Sun, Y

    1997-01-01

    The volatiles from pigeon's excrement were obtained with a simultaneous distillation and extraction (SDE) equipment. The chemical composition of the volatiles was examined by means of capillary gas chromatography and combined gas chromatography-mass spectrometry. Forty seven constitutents of the volatiles were identified by gas chromatography-mass spectrometry. Of these compounds, thirty nine were further identified by measuring their temperature-programmed retention indexes or retention times on OV-1 and PEG-20M columns and making comparison with those of the corresponding authentic samples. The total compounds identified make 57% of the total peak areas. The compound classes consist of alcohols (4), aldehydes (11), ketones(4), acids (8), esters (5), and phenols (2), amounting to 43.68% of the total peak areas. The ten compounds with highest contents are, hexadecanoic acid (9.03%), ethyl acetate (6.85%), ethanol (4.03%), 1-ethoxy-2-methylpropane (3.87%), acetic acid (3.23%), heptadecane-(8)-carbonic acid (3.20%), (Z,Z)-9,12-octadecadienoic acid (3.18%), nonanal (2.85%), 1,2-benzenedicarboxylic, dibutyl ester (2.65%), and acetaldehyde (2.32%). Pigeon's excrement has long been used as a Chinese traditional medicine for the therapeutic treatment of haemorrhoid. Some of the constituents identified in the work have been reported to have antibacterial activities.

  1. Surface energy of bovine dentin and enamel by means of inverse gas chromatography.

    PubMed

    Okulus, Zuzanna; Strzemiecka, Beata; Czarnecka, Beata; Buchwald, Tomasz; Voelkel, Adam

    2015-04-01

    Adhesion between tooth tissues and dental fillings depends on the surface energy of both connected materials. Bond strength can be determined directly or indirectly as a work of adhesion on the basis of values of surface energy of these materials. Inverse gas chromatography (IGC) is one of the methods of surface energy examination. In this study the values of total surface energy components of wet and dry teeth fragments (enamel, crown dentin and root dentin) were determined with the use of inverse gas chromatography. Inverse gas chromatography has never been used for investigation of surface energy of natural tooth tissues. Different storage conditions were examined - wet and dry. Different values of surface energy are observed according to the type of tooth tissue (dentin or enamel), occurring place (crown or root) and storage conditions (dry or wet). The effect of tissue type and occurring place was the greatest, while storage conditions were of secondary importance. Surface energy depends on composition of tissue, its surface area and the presence of pores.

  2. Gas and dust in the star-forming region ρ Oph A. The dust opacity exponent β and the gas-to-dust mass ratio g2d

    NASA Astrophysics Data System (ADS)

    Liseau, R.; Larsson, B.; Lunttila, T.; Olberg, M.; Rydbeck, G.; Bergman, P.; Justtanont, K.; Olofsson, G.; de Vries, B. L.

    2015-06-01

    Aims: We aim at determining the spatial distribution of the gas and dust in star-forming regions and address their relative abundances in quantitative terms. We also examine the dust opacity exponent β for spatial and/or temporal variations. Methods: Using mapping observations of the very dense ρ Oph A core, we examined standard 1D and non-standard 3D methods to analyse data of far-infrared and submillimetre (submm) continuum radiation. The resulting dust surface density distribution can be compared to that of the gas. The latter was derived from the analysis of accompanying molecular line emission, observed with Herschel from space and with APEX from the ground. As a gas tracer we used N2H+, which is believed to be much less sensitive to freeze-out than CO and its isotopologues. Radiative transfer modelling of the N2H+ (J = 3-2) and (J = 6-5) lines with their hyperfine structure explicitly taken into account provides solutions for the spatial distribution of the column density N(H2), hence the surface density distribution of the gas. Results: The gas-to-dust mass ratio is varying across the map, with very low values in the central regions around the core SM 1. The global average, = 88, is not far from the canonical value of 100, however. In ρ Oph A, the exponent β of the power-law description for the dust opacity exhibits a clear dependence on time, with high values of 2 for the envelope-dominated emission in starless Class -1 sources to low values close to 0 for the disk-dominated emission in Class III objects. β assumes intermediate values for evolutionary classes in between. Conclusions: Since β is primarily controlled by grain size, grain growth mostly occurs in circumstellar disks. The spatial segregation of gas and dust, seen in projection toward the core centre, probably implies that, like C18O, also N2H+ is frozen onto the grains. Based on observations with APEX, which is a 12 m diameter submillimetre telescope at 5100 m altitude on Llano Chajnantor

  3. An unambiguous identification of 2D electron gas features in the photoluminescence spectrum of AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Jana, Dipankar; Sharma, T. K.

    2016-07-01

    A fast and non-destructive method for probing the true signatures of 2D electron gas (2DEG) states in AlGaN/GaN heterostructures is presented. Two broad features superimposed with interference oscillations are observed in the low temperature photoluminescence (PL) spectrum. The two features are identified as the ground and excited 2DEG states which are confirmed by comparing the PL spectra of as-grown and top barrier layer etched samples. Broad PL features disappear at a certain temperature along with the associated interference oscillations. Furthermore, the two broad PL features depicts specific temperature and excitation intensity dependencies which make them easily distinguishable from the bandedge excitonic or defect related PL features. The presence of strong interference oscillations associated with the 2DEG PL features is explained by considering the localized generation of PL signal at the AlGaN/GaN heterointerface. Finally, a large value of the polarization induced electric field of ~1.01 MV cm-1 is reported from PL measurements for AlGaN/GaN HEMT structures. It became possible only when the true identification of 2DEG features was made possible by the proposed method.

  4. Sub-to super-ambient temperature programmable microfabricated gas chromatography column

    DOEpatents

    Robinson, Alex L.; Anderson, Lawrence F.

    2004-03-16

    A sub- to super-ambient temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by combining a thermoelectric cooler and temperature sensing on the microfabricated column. Sub-ambient temperature programming enables the efficient separation of volatile organic compounds and super-ambient temperature programming enables the elution of less volatile analytes within a reasonable time. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.

  5. [Application of gas chromatography in the identification of Enterobacter cloacae, Enterobacter aerogenes, and Enterobacter agglomerans].

    PubMed

    Robles Valderrama, E; Ramírez García, P; González Arreaga, M E; Sáinz Morales, M G; Martínez Rodríguez, B; Durán Díaz, A; Chávez Ramírez, D

    1999-01-01

    Enterobacter cloacae, Enterobacter aerogenes and Enterobacter agglomerans were identified using gas chromatography as a substitution of the traditional techniques. Their acid methyl esters profiles were determined using a gas chromatograph Hewlett Packard 5890A and a RSL-150 heliflex capillary column. A total of 120 samples were analyzed from reference strains (ATCC 13047, 13048, 27155) and environmental isolations, eleven fatty acids were included in the profiles from which cis-9, 10-methyleneoctadecanoic acid (peak 24), cis-9-hexadecenoic acid (peak 14), octadecanoic acid (peak 23) and dodecanoic acid (peak 3), were the most important for the differentiation of the three species analyzed.

  6. Analysis of benzo(a)pyrene in airborne particulates by gas chromatography

    NASA Technical Reports Server (NTRS)

    Luedecke, E.

    1976-01-01

    A routine method was developed to measure benzo(a)pyrene in airborne particulates. Samples were collected on a filter and the organic portion was extracted with cyclohexane. The polynuclear hydrocarbon (PNHC) fraction was separated from the aliphatics by column chromatography. An internal standard was added to the extract and a portion of it was injected into a gas chromatograph. Although the gas chromatographic method has often been reported in the literature, satisfactory separation of benzo(a)pyrene and benzo(e)pyrene has not been achieved. With the introduction of a nematic liquid crystal as the stationary phase good separation is now possible.

  7. ENANTIOMER SEPARATION OF POLYCHLORINATED BIPHENYL ATROPISOMERS AND POLYCHLORINATED BIPHENYL RETENTION BEHAVIOR ON MODIFIED CYCLODEXTRIN CAPILLARY GAS CHROMATOGRAPHY COLUMNS

    EPA Science Inventory

    Seven commercially-available chiral capillary gas chromatography columns containing modified cyclodextrins were evaluated for their ability to separate enantiomers of the 19 stable chiral polychlorinated biphenyl (PCB) atropisomers, and for their ability to separate these enantio...

  8. Multiresidue analysis of pesticides in traditional Chinese medicines using gas chromatography - negative chemical ionization tandem mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, a residue analysis method for the simultaneous determination of 107 pesticides in the traditional Chinese medicines (TCMs), Angelica sinensis, Angelica dahurica, Leonurus heterophyllus Sweet, Pogostemon cablin, and Lonicera japonica Thunb, was developed using gas chromatography couple...

  9. Screening test of stimulants in human urine utilizing headspace gas chromatography for field test.

    PubMed

    Tsuchihashi, H; Nakajima, K; Nishikawa, M; Suzuki, S; Oka, Y; Otsuki, K

    1990-03-01

    An accurate and simple screening method of stimulants in human urine using headspace gas chromatography utilizing heat of dissolution of potassium carbonate was developed. A 4.9-g portion of potassium carbonate was put into the vial prior to sending to the field, and a 5-ml aliquot of urine, suspected of containing stimulants and internal standard components was pipetted. After the vial was sealed and shaken by hand, 1 ml of its headspace gas was taken by disposable syringe and injected into the gas chromatograph. A compact gas chromatograph device with flame ionization detector and fused silica capillary column was developed for this experiment. Detection limits of methamphetamine and amphetamine were 1.0 micrograms/ml and 1.5 micrograms/ml, respectively. PMID:2335332

  10. Hollow waveguide quantum cascade laser spectrometer as an online microliter sensor for gas chromatography.

    PubMed

    Wu, Sheng; Deev, Andrei; Haught, Mark; Tang, Yongchun

    2008-04-25

    An optical absorption sensor for gas chromatography (GC) is presented. It consists of a quantum cascade laser along with a long piece of Hollow Waveguide for Infrared (HWIR) transmission inserted into the GC line. It measures the infrared absorption in each individual gas peak after separation by the GC column, and maintains the shapes of gas peaks after the HWIR sensor, making the gas samples further available for other sensors. By adding an inline combustion module before the HWIR sensor, the concentrations of many carbon containing compounds can be acquired by measuring CO2 absorption in their peaks. The HWIR sensor detects isotopologues of CO2 separately, and therefore can be used to measure carbon isotope ratios of heavy compounds. Application of the HWIR sensor to the detection of 13CO2 and CDH3 is described.

  11. Identification of Clinical Isolates of Mycobacteria with Gas-Liquid Chromatography Alone

    PubMed Central

    Tisdall, Philip A.; Roberts, Glenn D.; Anhalt, John P.

    1979-01-01

    Identification of 18 mycobacterial species was performed by analysis of profiles obtained by using gas-liquid chromatography. Organisms were saponified in methanolic NaOH, and the reaction mixture was treated with BF3 in methanol and extracted with a hexane-chloroform mixture. An identification scheme was developed from 128 stock strains and tested against a collection of 79 clinical isolates. By using gas-liquid chromatographic profiles alone, 58% of specimens were correctly identified to species level, and an additional 41% were correctly identified to a group of two or three organisms. Use in a clinical laboratory over a 2-month period proved chromatography to be as accurate as and more rapid than concurrent biochemical testing. Of 81 isolates tested, 64% were identified to species level by chromatography alone. An additional 35% were differentiated to the same groups of two or three organisms as found in our analysis of stock strains. These groups consisted of: Mycobacterium tuberculosis, M. bovis, and M. xenopi; M. avium complex, M. gastri, and M. scrofulaceum; or M. fortuitum and M. chelonei. Identification to species level from these groups could usually be done by colonial morphology alone and could always be done by the addition of one selected biochemical test. This study demonstrated the practical application of gas-liquid chromatography in the identification of mycobacteria in a clinical laboratory. In particular, all strains of M. gordonae and M. kansasii were identified to species level. M. tuberculosis was definitively identified in 85% of cases. When it could not be definitely identified, the only alternatives were M. bovis and M. xenopi, both of which are rare causes of infection. PMID:118984

  12. Optimization of sample pretreatment for determination of polycyclic aromatic hydrocarbons in estuarine sediments by gas chromatography

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Li, Xianguo; Peng, Xuewei; Tang, Xuli; Deng, Xiaoyan

    2012-06-01

    This study examined levels of polycyclic aromatic hydrocarbons (PAHs) in estuarine sediments in Licun (Qingdao, China) by gas chromatography under optimized conditions for sample pretreatment via ultrasonic extraction, column chromatography, and thin layer chromatography. Methanol and dichloromethane (DCM)/methanol (2:1, v/v) were used in ultrasonic extraction, and DCM was used as eluate for column chromatography. The developing system consisted of n-hexane and DCM at a ratio of 9:1 (v/v), with DCM as the extraction solvent for PAHs-containing silica gel scraped off the plate. When the spiking level is 100 ng, total recoveries of spiked matrices for four target PAHs (phenanthrene, anthracene, pyrene and chrysene) were 83.7%, 76.4%, 85.8%, and 88.7%, respectively, with relative standard deviation (RSD) between 5.0% and 6.5% ( n = 4). When the spiking level is 1000 ng, associated total recoveries were 78.6%, 72.7%, 82.7% and 85.3%, respectively, with RSD between 4.4% and 5.3% ( n = 4). The optimized method was advantageous for determination of PAHs in complex matrix due to its effective sample purification.

  13. The extraction and analysis of 1,4-dioxane from water using solid-phase microextraction coupled with gas chromatography and gas chromatography-mass spectrometry.

    PubMed

    Shirey, Robert E; Linton, Christopher M

    2006-08-01

    In this study, two methods are developed for the extraction of 1,4-dioxane (dioxane) from water using 80-microm carboxen-polydimethylsiloxane solid-phase microextraction fibers followed by either gas chromatography (GC)-flame ionization detection (FID) or GC-mass spectrometry (MS). With GC-FID, the lower limit of detection (LOD) for 1,4-dioxane is 2.5 microg/L (ppb) with a linear range of 5 to 10,000 microg/L, obtained by immersing the fiber in the sample for 20 min with agitation. Using GC-MS, the lower limit of quantitation is 0.5 microg/L, and the LOD is 0.25 microg/L. The upper linear range limit is 100 microg/L. Samples are extracted in 20 min using either heated headspace with agitation or direct immersion with agitation. PMID:16925942

  14. Identification and measurement of chlorinated organic pesticides in water by electron-capture gas chromatography

    USGS Publications Warehouse

    Lamar, William L.; Goerlitz, Donald F.; Law, LeRoy M.

    1965-01-01

    Pesticides, in minute quantities, may affect the regimen of streams, and because they may concentrate in sediments, aquatic organisms, and edible aquatic foods, their detection and their measurement in the parts-per-trillion range are considered essential. In 1964 the U.S. Geological Survey at Menlo Park, Calif., began research on methods for monitoring pesticides in water. Two systems were selected--electron-capture gas chromatography and microcoulometric-titration gas chromatography. Studies on these systems are now in progress. This report provides current information on the development and application of an electron-capture gas chromatographic procedure. This method is a convenient and extremely sensitive procedure for the detection and measurement of organic pesticides having high electron affinities, notably the chlorinated organic pesticides. The electron-affinity detector is extremely sensitive to these substances but it is not as sensitive to many other compounds. By this method, the chlorinated organic pesticide may be determined on a sample of convenient size in concentrations as low as the parts-per-trillion range. To insure greater accuracy in the identifications, the pesticides reported were separated and identified by their retention times on two different types of gas chromatographic columns.

  15. Separation and Detection of Toxic Gases with a Silicon Micromachined Gas Chromatography System

    NASA Technical Reports Server (NTRS)

    Kolesar, Edward S.; Reston, Rocky R.

    1995-01-01

    A miniature gas chromatography (GC) system was designed and fabricated using silicon micromachining and integrated circuit (IC) processing techniques. The silicon micromachined gas chromatography system (SMGCS) is composed of a miniature sample injector that incorporates a 10 microliter sample loop; a 0.9 meter long, rectangular shaped (300 micrometer width and 10 micrometer height) capillary column coated with a 0.2 micrometer thick copper phthalocyanine (CuPc) stationary phase; and a dual detector scheme based upon a CuPc-coated chemiresistor and a commercially available 125 micrometer diameter thermal conductivity detector (TCD) bead. Silicon micromachining was employed to fabricate the interface between the sample injector and the GC column, the column itself, and the dual detector cavity. A novel IC thin-film processing technique was developed to sublime the CuPc stationary phase coating on the column walls that were micromachined in the host silicon wafer substrate and Pyrex (r) cover plate, which were then electrostatically bonded together. The SMGCS can separate binary gas mixtures composed of parts-per-million (ppm) concentrations of ammonia (NH3) and nitrogen dioxide (NO2) when isothermally operated (55-80 degrees C). With a helium carrier gas and nitrogen diluent, a 10 microliter sample volume containing ammonia and nitrogen dioxide injected at 40 psi ((2.8 x 10(exp 5)Pa)) can be separated in less than 30 minutes.

  16. Gas Phase Chromatography of some Group 4, 5, and 6 Halides

    SciTech Connect

    Sylwester, Eric Robert

    1998-10-01

    Gas phase chromatography using The Heavy Element Volatility Instrument (HEVI) and the On Line Gas Apparatus (OLGA III) was used to determine volatilities of ZrBr{sub 4}, HfBr{sub 4}, RfBr{sub 4}, NbBr{sub 5}, TaOBr{sub 3}, HaCl{sub 5}, WBr{sub 6}, FrBr, and BiBr{sub 3}. Short-lived isotopes of Zr, Hf, Rf, Nb, Ta, Ha, W, and Bi were produced via compound nucleus reactions at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory and transported to the experimental apparatus using a He gas transport system. The isotopes were halogenated, separated from the other reaction products, and their volatilities determined by isothermal gas phase chromatography. Adsorption Enthalpy ({Delta}H{sub a}) values for these compounds were calculated using a Monte Carlo simulation program modeling the gas phase chromatography column. All bromides showed lower volatility than molecules of similar molecular structures formed as chlorides, but followed similar trends by central element. Tantalum was observed to form the oxybromide, analogous to the formation of the oxychloride under the same conditions. For the group 4 elements, the following order in volatility and {Delta}H{sub a} was observed: RfBr{sub 4} > ZrBr{sub 4} > HfBr{sub 4}. The {Delta}H{sub a} values determined for the group 4, 5, and 6 halides are in general agreement with other experimental data and theoretical predictions. Preliminary experiments were performed on Me-bromides. A new measurement of the half-life of {sup 261}Rf was performed. {sup 261}Rf was produced via the {sup 248}Cm({sup 18}O, 5n) reaction and observed with a half-life of 74{sub -6}{sup +7} seconds, in excellent agreement with the previous measurement of 78{sub -6}{sup +11} seconds. We recommend a new half-life of 75{+-}7 seconds for {sup 261}Rf based on these two measurements. Preliminary studies in transforming HEVI from an isothermal (constant temperature) gas phase chromatography instrument to a thermochromatographic (variable temperature

  17. Development of criteria for the detection of adrenosterone administration by gas chromatography-mass spectrometry and gas chromatography-combustion-isotope ratio mass spectrometry for doping control.

    PubMed

    Brooker, Lance; Parr, Maria Kristina; Cawley, Adam; Flenker, Ulrich; Howe, Christopher; Kazlauskas, Rymantas; Schänzer, Wilhelm; George, Adrian

    2009-11-01

    Adrenosterone (androst-4-ene-3,11,17-trione, 11-oxoandrostenedione) is an endogenous steroid hormone that has been promoted as a dietary supplement capable of reducing body fat and increasing muscle mass. It is proposed that adrenosterone may function as an inhibitor of the 11beta-hydroxysteroid dehydrogenase type 1 enzyme (11beta-HSD1), which is primarily responsible for reactivation of cortisol from cortisone. The urinary metabolism of adrenosterone was investigated, after a single oral administration in two male subjects, by gas chromatography-mass spectrometry (GC-MS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Substantially increased excretion of 11beta-hydroxyandrosterone, 11beta-hydroxyetiocholanolone, 11-oxoandrosterone and 11-oxoetiocholanolone was observed. Minor metabolites such as 3alpha,17beta-dihydroxy-5beta-androstan-11-one, 3alpha-hydroxyandrost-4-ene-11,17-dione and 3alpha,11beta-dihydroxyandrost-4-en-17-one were also identified. The exogenous origin of the most abundant adrenosterone metabolites was confirmed by GC-C-IRMS according to World Anti-Doping Agency criteria. Through analysis of a reference population data set obtained from urine samples provided by elite athlete volunteers (n = 85), GC-MS doping control screening criteria are proposed: 11beta-hydroxyandrosterone concentration greater than 10 000 ng/mL (specific gravity adjusted to 1.020) or 11beta-hydroxyandrosterone/11beta-hydroxyetiocholanolone ratio greater than 20.Urine samples fulfilling these screening criteria may be subjected to GC-C-IRMS analysis for confirmation of adrenosterone administration.

  18. Systematic ratio normalization of gas chromatography signals for biological sample discrimination and biomarker discovery.

    PubMed

    Lehallier, Benoist; Ratel, Jérémy; Hanafi, Mohamed; Engel, Erwan

    2012-07-01

    The present paper introduces a new gas chromatography data processing procedure dubbed systematic ratio normalization (SRN) enabling to improve both sample set discrimination and biomarker identification. SRN consists in (1) calculating, for each sample, all the log-ratios between abundances of chromatography-analyzed compounds, then (2) selecting the log-ratio(s) that best maximize the discrimination between sample-sets. The relevance of SRN was evaluated on two data sets acquired through gas chromatography-mass spectrometry as part of separate studies designed (i) to discriminate source-origins between vegetable oils analyzed via an analytical system exposed to instrument drift (data set 1) and (ii) to discriminate animal feed between meat samples aged for different durations (data set 2). Applying SRN to raw data made it possible to obtain robust discrimination models for the two data sets by enhancing the contribution to the data variance of the factor-of-interest while stabilizing the contribution of the disturbance factor. The most discriminant log-ratios were shown to employ the most relevant biomarkers presenting relative independence of the factor-of-interest as well as co-behavior of the disturbance effects potentially biasing the discrimination, such as instrument drift or sample biochemical changes. SRN can be run a posteriori on any data set, and might be generalizable to most of separating methods. PMID:22704370

  19. Fast and accurate numerical method for predicting gas chromatography retention time.

    PubMed

    Claumann, Carlos Alberto; Wüst Zibetti, André; Bolzan, Ariovaldo; Machado, Ricardo A F; Pinto, Leonel Teixeira

    2015-08-01

    Predictive modeling for gas chromatography compound retention depends on the retention factor (ki) and on the flow of the mobile phase. Thus, different approaches for determining an analyte ki in column chromatography have been developed. The main one is based on the thermodynamic properties of the component and on the characteristics of the stationary phase. These models can be used to estimate the parameters and to optimize the programming of temperatures, in gas chromatography, for the separation of compounds. Different authors have proposed the use of numerical methods for solving these models, but these methods demand greater computational time. Hence, a new method for solving the predictive modeling of analyte retention time is presented. This algorithm is an alternative to traditional methods because it transforms its attainments into root determination problems within defined intervals. The proposed approach allows for tr calculation, with accuracy determined by the user of the methods, and significant reductions in computational time; it can also be used to evaluate the performance of other prediction methods.

  20. Isomeric differentiation of chloroanilines by gas chromatography-mass spectrometry in combination with tosylation.

    PubMed

    Wang, Shanshan; Zhu, Guohua; Chen, Mengmeng; Liu, Jinsong; Jiang, Kezhi

    2016-01-01

    p-Chloroaniline is one of the banned aromatic amines in azo dyes, but it is very difficult to distinguish it from its isomers due to their identical retention time in chromatography and similar mass spectra. In this work, derivatization of the isomeric chloroanilines was carried out to yield the corresponding N-tosyl chloroanilines, which were completely separated by gas chromatography and also possessed clearly different electron ionization mass spectra. Thus, the three isomers could be differentiated and determined at the same time. Density functional theory calculation results indicated that the effect of the substituent pattern in electron ionization mass spectrometry is mainly due to the difference in the stability of the product ion (P2) at m/z 126, originating from the loss of tosyl radical from the precursor ion. PMID:27553734

  1. Characterization of odorant compounds of mussels (Mytilus edulis) according to their origin using gas chromatography-olfactometry and gas chromatography-mass spectrometry.

    PubMed

    Le Guen, S; Prost, C; Demaimay, M

    2000-10-27

    Gas chromatography-olfactometry consists of sniffing the effluent of a gas chromatograph and leads to the direct determination of potent odorants in food. GC-olfactometry and GC-MS were applied in order to identify volatile compounds, and to characterize potent odorants of cooked wild mussels and bouchot mussels. Eighty-five volatiles were identified by GC-MS, among those the majority were identified for the first time in mussels. Using GC-olfactometry, the main contributors of cooked mussels aroma were characterized. Of the 85 volatiles identified in the flavor, only 33 were odor-active and contribute to the overall aroma of mussels. Dimethyl disulfide (sulfury odor) was the odorant the most differently perceived between the two extracts and seems to be characteristic of wild mussels. Combined GC-MS and GC-olfactometry made it possible to point out odorants which actually contribute to the aroma of cooked mussels and those which showed typical dependence on the origin of mussels.

  2. Gas chromatography-vacuum ultraviolet spectroscopy for analysis of fatty acid methyl esters.

    PubMed

    Fan, Hui; Smuts, Jonathan; Bai, Ling; Walsh, Phillip; Armstrong, Daniel W; Schug, Kevin A

    2016-03-01

    A new vacuum ultraviolet (VUV) detector for gas chromatography was recently developed and applied to fatty acid methyl ester (FAME) analysis. VUV detection features full spectral acquisition in a wavelength range of 115-240nm, where virtually all chemical species absorb. VUV absorption spectra of 37 FAMEs, including saturated, monounsaturated, and polyunsaturated types were recorded. Unsaturated FAMEs show significantly different gas phase absorption profiles than saturated ones, and these classes can be easily distinguished with the VUV detector. Another advantage includes differentiating cis/trans-isomeric FAMEs (e.g. oleic acid methyl ester and linoleic acid methyl ester isomers) and the ability to use VUV data analysis software for deconvolution of co-eluting signals. As a universal detector, VUV also provides high specificity, sensitivity, and a fast data acquisition rate, making it a powerful tool for fatty acid screening when combined with gas chromatography. The fatty acid profile of several food oil samples (olive, canola, vegetable, corn, sunflower and peanut oils) were analyzed in this study to demonstrate applicability to real world samples.

  3. Determination of vaporization enthalpies of the branched esters from correlation gas chromatography and transpiration methods

    SciTech Connect

    Verevkin, S.P.; Heintz, A.

    1999-12-01

    Vaporization enthalpies are indispensable for the assessment of the environmental fate and behavior of environmental contaminants. The temperature dependencies of retention indices of a set of 80 esters with branched molecular structures were measured on a nonpolar gas chromatographic column. The correlation gas chromatography method and reliable data set of 16 esters selected from the literature were used to derive a correlation for the prediction of the standard molar enthalpies of vaporization {Delta}{sub 1}{sup g}H{sub m}{sup {degree}} at the temperature T = 298.15 K. Experimental values of {Delta}{sub 1}{sup g}H{sub m}{sup {degree}} for 64 branched esters were obtained with the help of this correlation. The vaporization enthalpies of isopentyl acetate, ethyl hexanoate, and neopentyl pivalate were additionally obtained by the transpiration method from the temperature dependence of the vapor pressure measured in a flow system and used for checking the validity of the correlation gas chromatography method.

  4. A single-vial analytical and quantitative gas chromatography-mass spectrometry assay for terpene synthases.

    PubMed

    O'Maille, Paul E; Chappell, Joe; Noel, Joseph P

    2004-12-15

    A quantitative assay for the analysis of sesquiterpene synthases, wherein each reaction mixture is formulated in glass gas chromatography vials, overlaid with organic solvent such as ethyl acetate, and subsequently vortexed to extract hydrocarbon reaction products into the organic phase after a suitable incubation period, was developed. The product-enriched organic phase is then sampled in an automated fashion and injected directly into a gas chromatograph-mass spectrometer without further workup for analysis and quantification of hydrocarbon products. Application of the vial assay to the analysis of amorpha-4,11-diene synthase (ADS), a sesquiterpene synthase, demonstrated the sensitivity of the assay for detection of major and minor reaction products and most notably for the identification of several sesquiterpene products that had escaped previous detection. A steady-state kinetic analysis of tobacco 5-epi-aristolochene synthase (TEAS), another sesquiterpene synthase, validated the quantitative nature of the assay, providing an alternative means to the established method of using radiolabeled substrate, extraction, and scintillation counting. This simplified assay provides a standardized method to facilitate analysis of terpene synthases and diverse mutant enzyme libraries by supplanting the common practice of using larger scale reactions, multiple extractions, and evaporative concentration of the organic phase prior to gas chromatography-mass spectrometry (GC-MS) analysis. PMID:15556559

  5. Enantiomeric separation of organophosphorus pesticides by high-performance liquid chromatography, gas chromatography and capillary electrophoresis and their applications to environmental fate and toxicity assays.

    PubMed

    Li, Ling; Zhou, Shanshan; Jin, Lixia; Zhang, Cheng; Liu, Weiping

    2010-05-15

    In recent years, the continuous evolution of the field of stereochemistry has produced a heightened awareness of the applications of pure enantiomers of agrochemicals. This review describes reports of the enantiomeric separation of commercial organophosphorus pesticides (OPs) and the applications of these methods to research on the enantioselectivity of the toxicity and environmental fate of these compounds. Chiral OPs can be analysed by high-performance liquid chromatography (HPLC), gas chromatography (GC), and capillary electrophoresis (CE). These different separation techniques for OP enantiomers are briefly discussed, and their applications are presented.

  6. Complete elution of vacuum gas oil resins by comprehensive high-temperature two-dimensional gas chromatography.

    PubMed

    Boursier, Laure; Souchon, Vincent; Dartiguelongue, Cyril; Ponthus, Jérémie; Courtiade, Marion; Thiébaut, Didier

    2013-03-01

    The development of efficient conversion processes requires extended knowledge on vacuum gas oils (VGOs). Among these processes, hydrocracking is certainly one of the best suited to meet the increasing demand on high quality diesel fuels. Most of refractory and inhibiting compounds towards hydrocracking and especially nitrogen containing compounds are contained in a fraction of the VGO called the resin fraction, which corresponds to the most polar fraction of a VGO obtained by liquid chromatography (LC) fractionation on a silica column. However, the lack of resolution observed through existing analytical methods does not allow a detailed characterization of these fractions. A recent study showed that comprehensive high temperature two-dimensional gas chromatography (HT-GC×GC) methods could be optimized in order to elute heavy compounds. This method was implemented for the analysis of VGO resin fractions and complete elution was reached. Firstly, the method was validated through repeatability, accuracy, linearity and response factors calculations. Four VGO resin fractions were analyzed and their HT-GC×GC simulated distillation curves were compared to their GC simulated distillation (GC-SimDist) curves. This comparison showed that the method allows complete elution of most of the analyzed VGO resin fractions. However, a detailed characterization of these fractions is not yet obtained due to the very large number of heteroatomic and aromatic species that a flame ionization detector can detect. Current work aims at increasing the selectivity of GC×GC by using heteroatom selective detectors in order to improve the characterization of such products. PMID:23375830

  7. Analysis of polyaromatic hydrocarbon mixtures with laser ionization gas chromatography/mass spectrometry

    SciTech Connect

    Rhodes, G.; Opsal, R.B.; Meek, J.T.; Reilly, J.P.

    1983-02-01

    Excimer laser induced multiphoton ionization has been utilized for ion generation in capillary gas chromatography/mass spectrometry and the technique applied to the separation and detection of polyaromatic hydrocarbons. Detection limits as low as 200 fg and linearity over a range of 5 x 10/sup +4/ were obtained for the polyaromatic hydrocarbons examined. Multiphoton ionization mass spectra were dominated by parent ions. Selective ionization based upon small differences in ionization potentials has been demonstrated for coeluting chrysene and triphenylene. Instrumental parameters have been investigated to assess improvements in sensitivity.

  8. Gas chromatography/mass spectrometry characterization of historical varnishes of ancient Italian lutes and violin.

    PubMed

    Echard, J P; Benoit, C; Peris-Vicente, J; Malecki, V; Gimeno-Adelantado, J V; Vaiedelich, S

    2007-02-12

    The organic constituents of historical vanishes from two ancient Italian lutes and a Stradivari violin, kept in the Musée de la musique in Paris, have been characterized using gas chromatography-mass spectrometry. Results have been compared with the chromatograms and mass spectra of recent as well as old naturally aged reference materials. The three historical varnishes analyzed have been shown to be oil varnishes, probably mixtures of linseed oil with resins. Identification of diterpenoids and triterpenoids compounds, and of the resins that may have been ingredients of the varnishes, are discussed in this paper. PMID:17386601

  9. Application of purge and trap extraction and gas chromatography for determination of minor esters in cider.

    PubMed

    Rodríguez Madrera, Roberto; Palacios García, Noemí; García Hevia, Ana; Suárez Valles, Belén

    2005-04-01

    The validation of a method based on the purge and trap technique combined with gas chromatography-mass spectrometry-flame ionization detection has been carried out in order to apply it to the analysis of ciders. Although 49 compounds were identified, our work was focused on the study of nine minor esters, obtaining recoveries ranging between 93% for ethyl decanoate and 117% for ethyl 3-methylbutyrate, and a precision (RSDs) ranging between 2.2% for hexyl acetate and ethyl decanoate and 10.9% for isopentyl acetate. To demonstrate the feasibility of the procedure, the method was applied to the analysis of commercial ciders. PMID:15830951

  10. Inverse gas chromatography. V - Computer simulation of diffusion processes on the column

    NASA Technical Reports Server (NTRS)

    Hattam, Paul; Munk, Petr

    1988-01-01

    The elution behavior of low molecular weight probes on inverse gas chromatography (IGC) columns is simulated using a computer. The IGC model is based on a polymer stationary phase of uniform thickness with a nonnegligible resitance to probe penetration. Three characteristic numbers are found to determine the whole process: Z(p) characterizing the distribution of the probe between phases, Z(f) describing the diffusion in the polymer phase, and Z(g) related to diffusion in the gaseous phase. For situations when Z(p)/Z(f) is less than 2, the standard evaluation procedures are virtually useless. The actual behavior of such systems is described.

  11. [Gas chromatography in quantitative analysis of hydrocyanic acid and its salts in cadaveric blood].

    PubMed

    Iablochkin, V D

    2003-01-01

    A direct gas chromatography method was designed for the quantitative determination of cyanides (prussic acid) in cadaveric blood. Its sensitivity is 0.05 mg/ml. The routine volatile products, including substances, which emerge due to putrefaction of organic matters, do not affect the accuracy and reproducibility of the method; the exception is H-propanol that was used as the internal standard. The method was used in legal chemical expertise related with acute cyanide poisoning (suicide) as well as with poisoning of products of combustion of nonmetals (foam-rubber). The absolute error does not exceed 10% with a mean quadratic deviation of 0.0029-0.0033 mg. PMID:14689782

  12. Analysis of the citric acid cycle intermediates using gas chromatography-mass spectrometry.

    PubMed

    Kombu, Rajan S; Brunengraber, Henri; Puchowicz, Michelle A

    2011-01-01

    Researchers view analysis of the citric acid cycle (CAC) intermediates as a metabolomic approach to identifying unexpected correlations between apparently related and unrelated pathways of metabolism. Relationships of the CAC intermediates, as measured by their concentrations and relative ratios, offer useful information to understanding interrelationships between the CAC and metabolic pathways under various physiological and pathological conditions. This chapter presents a relatively simple method that is sensitive for simultaneously measuring concentrations of CAC intermediates (relative and absolute) and other related intermediates of energy metabolism using gas chromatography-mass spectrometry.

  13. Determination of cyanide in blood by reaction head-space gas chromatography.

    PubMed

    Felby, Søren

    2009-01-01

    A method describing determination of cyanide in blood by head-space gas chromatography with electron capture detector was reported. The method involves transformation of cyanide into cyanogen chloride by reacting hydrogen cyanide with chloramine-T on a stick of filter paper in the space above the blood in the head-space vial. The recovery was 84-96% and the coefficient of variation was 3.3-7.2%. The limit of quantitation was about 0.01 mg cyanide/l.

  14. Simple, specific analysis of organophosphorus and carbamate pesticides in sediments using column extraction and gas chromatography

    USGS Publications Warehouse

    Belisle, A.A.; Swineford, D.M.

    1988-01-01

    A simple, specific procedure was developed for the analysis of organophosphorus and carbamate pesticides in sediment. The wet soil was mixed with anhydrous sodium sulfate to bind water and the residues were column extracted in acetone:methylene chloride (1:l,v/v). Coextracted water was removed by additional sodium sulfate packed below the sample mixture. The eluate was concentrated and analyzed directly by capillary gas chromatography using phosphorus and nitrogen specific detectors. Recoveries averaged 93 % for sediments extracted shortly after spiking, but decreased significantly as the samples aged.

  15. Simultaneous determination of spirapril and spiraprilat in plasma by capillary gas chromatography-mass spectrometry.

    PubMed

    Schürer, Michael; Amschler, Stefan; Schulz, Hans-Ulrich; Schäfer, Harald F

    2003-01-01

    A specific, sensitive and precise method for the simultaneous determination of spirapril (CAS 94841-17-5) and spiraprilat (CAS 83602-05-5) in human plasma is described. The method involves the use of enalapril as internal standard, solid-phase extraction, derivatization and capillary gas chromatography with mass sensitive detection. The working range is from 2.5 to 500 micrograms/l for spirapril and spiraprilat, respectively. Data demonstrating the precision and accuracy of the analytical method are given. Moreover, data concerning freeze-thaw stability, long-term stability of frozen samples, short-term stability of thawed samples, and stability of the extracts in the autosampler are given.

  16. Investigations into the initial composition of latent fingermark lipids by gas chromatography-mass spectrometry.

    PubMed

    Frick, A A; Chidlow, G; Lewis, S W; van Bronswijk, W

    2015-09-01

    A more comprehensive understanding of the variability of latent fingermark composition is essential to improving current fingermark detection capabilities in an informed manner. Gas chromatography-mass spectrometry was used to examine the composition of the lipid fraction of latent fingermarks collected from a population of over 100 donors. Variations in the appearances of chromatograms from different donors were apparent in the relative peak sizes of compounds including free fatty acids, squalene, cholesterol and wax esters. Principal component analysis was used as an exploratory tool to explore patterns in this variation, but no correlation to donor traits could be discerned. This study also highlights the practical and inherent difficulties in collecting reproducible samples.

  17. Investigation of the triacylglycerol composition of iceman's mummified tissue by high-temperature gas chromatography.

    PubMed

    Mayer, B X; Reiter, C; Bereuter, T L

    1997-04-25

    The pattern of intact triacylglycerols of a skin sample from the 5300-year-old Iceman mummy (nicknamed Otzi) was resolved on a diphenyl-dimethylpolysiloxane stationary phase by high-temperature gas chromatography. Adipocere from a 64-year-old glacier mummy as well as recent human subcutaneous fat served as a comparison in this study. Qualitatively, the results for mummy samples were similar with well-preserved saturated, but decomposed unsaturated, triacylglycerols, the latter being predominant in subcutaneous fat. Excellent preservation of triacylglycerols with odd carbon numbers and branched acyl chains was observed. The results presented here shed new light on the process of mummification.

  18. The use of rapid turnaround heated headspace/gas chromatography to support regulatory soil cleanup standards

    SciTech Connect

    Atwell, J.; Evans, C.; Francoeur, T.L.; Guerra, R.

    1995-12-31

    This paper addresses the use of rapid turnaround, heated headspace/gas chromatography (GC) to support a soil remediation project in the state of New Jersey. In the past, rapid turnaround, heated head space/GC procedures have been used primarily as a screening tool to delineate areas of volatile organic compound (VOC) contamination on-site. For this project, the heated headspace/GC method was the primary analytical tool used to support a large soil remediation project. This paper reviews the project goals, presents analytical protocol, presents internal quality assurance/quality control (QA/QC), evaluates laboratory split data, and discusses the advantages and disadvantages of this rapid turnaround method.

  19. [Gas chromatography in quantitative analysis of hydrocyanic acid and its salts in cadaveric blood].

    PubMed

    Iablochkin, V D

    2003-01-01

    A direct gas chromatography method was designed for the quantitative determination of cyanides (prussic acid) in cadaveric blood. Its sensitivity is 0.05 mg/ml. The routine volatile products, including substances, which emerge due to putrefaction of organic matters, do not affect the accuracy and reproducibility of the method; the exception is H-propanol that was used as the internal standard. The method was used in legal chemical expertise related with acute cyanide poisoning (suicide) as well as with poisoning of products of combustion of nonmetals (foam-rubber). The absolute error does not exceed 10% with a mean quadratic deviation of 0.0029-0.0033 mg.

  20. Speciation of volatile selenium species in plants using gas chromatography/inductively coupled plasma mass spectrometry.

    PubMed

    Meija, Juris; Montes-Bayón, Maria; Caruso, Joseph A; Leduc, Danika L; Terry, Norman

    2004-01-01

    Gas chromatography/inductively coupled plasma mass spectrometry (GC/ICP-MS) coupled with solid phase micro-extraction can provide a simple, extremely selective and sensitive technique for the analysis of volatile sulfur and selenium compounds in the headspace of growing plants. In this work, the technique was used to evaluate the volatilization of selenium in wild-type and genetically-modified Brassica juncea seedlings. By converting toxic inorganic selenium in the soil to less toxic, volatile organic selenium, B. juncea might be useful in bioremediation of selenium contaminated soil.

  1. Gas chromatography/mass spectrometry characterization of historical varnishes of ancient Italian lutes and violin.

    PubMed

    Echard, J P; Benoit, C; Peris-Vicente, J; Malecki, V; Gimeno-Adelantado, J V; Vaiedelich, S

    2007-02-12

    The organic constituents of historical vanishes from two ancient Italian lutes and a Stradivari violin, kept in the Musée de la musique in Paris, have been characterized using gas chromatography-mass spectrometry. Results have been compared with the chromatograms and mass spectra of recent as well as old naturally aged reference materials. The three historical varnishes analyzed have been shown to be oil varnishes, probably mixtures of linseed oil with resins. Identification of diterpenoids and triterpenoids compounds, and of the resins that may have been ingredients of the varnishes, are discussed in this paper.

  2. Development and Evaluation of Gold-Centered Monolayer Protected Nanoparticle Stationary Phases for Gas Chromatography

    SciTech Connect

    Gross, Gwen M.; Grate, Jay W.; Synovec, Robert E.

    2004-12-10

    The current status for the development of novel open-tubular gas chromatography (GC) stationary phases consists of thin films of gold-centered monolayer protected nanoparticles (MPNs) is reported. Dodecanethiol MPNs, in which the monolayer is dodecanethiol linked to the gold nanoparticle, have shown great promise as a GC stationary phase with efficient columns having been produced in a variety of capillary i.d.'s with stationary phase film depths ranging from 10-60 nm, +/- 2 nm at a given film depth. Stationary phase operational parameters are discussed including maximum operating temperature, sample capacity, and stationary phase lifetime and robustness.

  3. Comparison of photoacoustic radiometry to gas chromatography/mass spectrometry methods for monitoring chlorinated hydrocarbons

    SciTech Connect

    Sollid, J.E.; Trujillo, V.L.; Limback, S.P.; Woloshun, K.A.

    1996-03-01

    A comparison of two methods of gas chromatography mass spectrometry (GCMS) and a nondispersive infrared technique, photoacoustic radiometry (PAR), is presented in the context of field monitoring a disposal site. First is presented an historical account describing the site and early monitoring to provide an overview. The intent and nature of the monitoring program changed when it was proposed to expand the Radiological Waste Site close to the Hazardous Waste Site. Both the sampling methods and analysis techniques were refined in the course of this exercise.

  4. Partial least squares analysis of rocket propulsion fuel data using diaphragm valve-based comprehensive two-dimensional gas chromatography coupled with flame ionization detection.

    PubMed

    Freye, Chris E; Fitz, Brian D; Billingsley, Matthew C; Synovec, Robert E

    2016-06-01

    The chemical composition and several physical properties of RP-1 fuels were studied using comprehensive two-dimensional (2D) gas chromatography (GC×GC) coupled with flame ionization detection (FID). A "reversed column" GC×GC configuration was implemented with a RTX-wax column on the first dimension ((1)D), and a RTX-1 as the second dimension ((2)D). Modulation was achieved using a high temperature diaphragm valve mounted directly in the oven. Using leave-one-out cross-validation (LOOCV), the summed GC×GC-FID signal of three compound-class selective 2D regions (alkanes, cycloalkanes, and aromatics) was regressed against previously measured ASTM derived values for these compound classes, yielding root mean square errors of cross validation (RMSECV) of 0.855, 0.734, and 0.530mass%, respectively. For comparison, using partial least squares (PLS) analysis with LOOCV, the GC×GC-FID signal of the entire 2D separations was regressed against the same ASTM values, yielding a linear trend for the three compound classes (alkanes, cycloalkanes, and aromatics), yielding RMSECV values of 1.52, 2.76, and 0.945 mass%, respectively. Additionally, a more detailed PLS analysis was undertaken of the compounds classes (n-alkanes, iso-alkanes, mono-, di-, and tri-cycloalkanes, and aromatics), and of physical properties previously determined by ASTM methods (such as net heat of combustion, hydrogen content, density, kinematic viscosity, sustained boiling temperature and vapor rise temperature). Results from these PLS studies using the relatively simple to use and inexpensive GC×GC-FID instrumental platform are compared to previously reported results using the GC×GC-TOFMS instrumental platform.

  5. Quantitative analysis of fragrance in selectable one dimensional or two dimensional gas chromatography-mass spectrometry with simultaneous detection of multiple detectors in single injection.

    PubMed

    Tan, Hui Peng; Wan, Tow Shi; Min, Christina Liew Shu; Osborne, Murray; Ng, Khim Hui

    2014-03-14

    A selectable one-dimensional ((1)D) or two-dimensional ((2)D) gas chromatography-mass spectrometry (GC-MS) system coupled with flame ionization detector (FID) and olfactory detection port (ODP) was employed in this study to analyze perfume oil and fragrance in shower gel. A split/splitless (SSL) injector and a programmable temperature vaporization (PTV) injector are connected via a 2-way splitter of capillary flow technology (CFT) in this selectable (1)D/(2)D GC-MS/FID/ODP system to facilitate liquid sample injections and thermal desorption (TD) for stir bar sorptive extraction (SBSE) technique, respectively. The dual-linked injectors set-up enable the use of two different injector ports (one at a time) in single sequence run without having to relocate the (1)D capillary column from one inlet to another. Target analytes were separated in (1)D GC-MS/FID/ODP and followed by further separation of co-elution mixture from (1)D in (2)D GC-MS/FID/ODP in single injection without any instrumental reconfiguration. A (1)D/(2)D quantitative analysis method was developed and validated for its repeatability - tR; calculated linear retention indices (LRI); response ratio in both MS and FID signal, limit of detection (LOD), limit of quantitation (LOQ), as well as linearity over a concentration range. The method was successfully applied in quantitative analysis of perfume solution at different concentration level (RSD≤0.01%, n=5) and shower gel spiked with perfume at different dosages (RSD≤0.04%, n=5) with good recovery (96-103% for SSL injection; 94-107% for stir bar sorptive extraction-thermal desorption (SBSE-TD).

  6. Partial least squares analysis of rocket propulsion fuel data using diaphragm valve-based comprehensive two-dimensional gas chromatography coupled with flame ionization detection.

    PubMed

    Freye, Chris E; Fitz, Brian D; Billingsley, Matthew C; Synovec, Robert E

    2016-06-01

    The chemical composition and several physical properties of RP-1 fuels were studied using comprehensive two-dimensional (2D) gas chromatography (GC×GC) coupled with flame ionization detection (FID). A "reversed column" GC×GC configuration was implemented with a RTX-wax column on the first dimension ((1)D), and a RTX-1 as the second dimension ((2)D). Modulation was achieved using a high temperature diaphragm valve mounted directly in the oven. Using leave-one-out cross-validation (LOOCV), the summed GC×GC-FID signal of three compound-class selective 2D regions (alkanes, cycloalkanes, and aromatics) was regressed against previously measured ASTM derived values for these compound classes, yielding root mean square errors of cross validation (RMSECV) of 0.855, 0.734, and 0.530mass%, respectively. For comparison, using partial least squares (PLS) analysis with LOOCV, the GC×GC-FID signal of the entire 2D separations was regressed against the same ASTM values, yielding a linear trend for the three compound classes (alkanes, cycloalkanes, and aromatics), yielding RMSECV values of 1.52, 2.76, and 0.945 mass%, respectively. Additionally, a more detailed PLS analysis was undertaken of the compounds classes (n-alkanes, iso-alkanes, mono-, di-, and tri-cycloalkanes, and aromatics), and of physical properties previously determined by ASTM methods (such as net heat of combustion, hydrogen content, density, kinematic viscosity, sustained boiling temperature and vapor rise temperature). Results from these PLS studies using the relatively simple to use and inexpensive GC×GC-FID instrumental platform are compared to previously reported results using the GC×GC-TOFMS instrumental platform. PMID:27130110

  7. Quantitative analysis of fragrance in selectable one dimensional or two dimensional gas chromatography-mass spectrometry with simultaneous detection of multiple detectors in single injection.

    PubMed

    Tan, Hui Peng; Wan, Tow Shi; Min, Christina Liew Shu; Osborne, Murray; Ng, Khim Hui

    2014-03-14

    A selectable one-dimensional ((1)D) or two-dimensional ((2)D) gas chromatography-mass spectrometry (GC-MS) system coupled with flame ionization detector (FID) and olfactory detection port (ODP) was employed in this study to analyze perfume oil and fragrance in shower gel. A split/splitless (SSL) injector and a programmable temperature vaporization (PTV) injector are connected via a 2-way splitter of capillary flow technology (CFT) in this selectable (1)D/(2)D GC-MS/FID/ODP system to facilitate liquid sample injections and thermal desorption (TD) for stir bar sorptive extraction (SBSE) technique, respectively. The dual-linked injectors set-up enable the use of two different injector ports (one at a time) in single sequence run without having to relocate the (1)D capillary column from one inlet to another. Target analytes were separated in (1)D GC-MS/FID/ODP and followed by further separation of co-elution mixture from (1)D in (2)D GC-MS/FID/ODP in single injection without any instrumental reconfiguration. A (1)D/(2)D quantitative analysis method was developed and validated for its repeatability - tR; calculated linear retention indices (LRI); response ratio in both MS and FID signal, limit of detection (LOD), limit of quantitation (LOQ), as well as linearity over a concentration range. The method was successfully applied in quantitative analysis of perfume solution at different concentration level (RSD≤0.01%, n=5) and shower gel spiked with perfume at different dosages (RSD≤0.04%, n=5) with good recovery (96-103% for SSL injection; 94-107% for stir bar sorptive extraction-thermal desorption (SBSE-TD). PMID:24548435

  8. Methods of analysis-Determination of pesticides in sediment using gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Hladik, Michelle L.; McWayne, Megan M.

    2012-01-01

    A method for the determination of 119 pesticides in environmental sediment samples is described. The method was developed by the U.S. Geological Survey (USGS) in support of the National Water Quality Assessment (NAWQA) Program. The pesticides included in this method were chosen through prior prioritization. Herbicides, insecticides, and fungicides along with degradates are included in this method and span a variety of chemical classes including, but not limited to, chloroacetanilides, organochlorines, organophosphates, pyrethroids, triazines, and triazoles. Sediment samples are extracted by using an accelerated solvent extraction system (ASE®, and the compounds of interest are separated from co-extracted matrix interferences (including sulfur) by passing the extracts through high performance liquid chromatography (HPLC) with gel-permeation chromatography (GPC) along with the use of either stacked graphitized carbon and alumina solid-phase extraction (SPE) cartridges or packed Florisil®. Chromatographic separation, detection, and quantification of the pesticides from the sediment-sample extracts are done by using gas chromatography with mass spectrometry (GC/MS). Recoveries in test sediment samples fortified at 10 micrograms per kilogram (μg/kg) dry weight ranged from 75 to 102 percent; relative standard deviations ranged from 3 to 13 percent. Method detection limits (MDLs), calculated by using U.S. Environmental Protection Agency procedures (40 CFR 136, Appendix B), ranged from 0.6 to 3.4 μg/kg dry weight.

  9. Argentation high performance liquid chromatography on-line coupled to gas chromatography for the analysis of monounsaturated polyolefin oligomers in packaging materials and foods.

    PubMed

    Lommatzsch, Martin; Biedermann, Maurus; Simat, Thomas J; Grob, Koni

    2015-07-10

    Multidimensional chromatography based on two-dimensional high performance liquid chromatography on-line coupled to gas chromatography (on-line HPLC-HPLC-GC) enables the separate analysis of saturated, monounsaturated and aromatic hydrocarbons in packaging materials like polyolefins or paperboard and their migrates into foods. Since normal-phase HPLC on silica gel did not preseparate saturated from monounsaturated hydrocarbons, a separation step on a normal-phase HPLC column treated in the laboratory with an optimized amount of silver nitrate was added. The preparation of this HPLC column and the instrumental set-up are described, followed by examples showing the potential of the method. In a preliminary investigation of 11 polyolefin granulates for food contact up to 40% monounsaturated hydrocarbons among the oligomers C16-35 were determined.

  10. Volatile garlic odor components: gas phases and adsorbed exhaled air analysed by headspace gas chromatography-mass spectrometry.

    PubMed

    Laakso, I; Seppänen-Laakso, T; Hiltunen, R; Müller, B; Jansen, H; Knobloch, K

    1989-06-01

    Combined headspace gas chromatography-mass spectrometry (HSGC-MS) was used in the analysis of garlic volatile compounds. Twenty major components were identified in the gas phases enriched by fresh, sliced garlic cloves ( ALLIUM SATIVUM L, Allioceae, Liliidae). Suspended dry garlic powder and crushed garlic, incubated in vegetable oil, revealed a different pattern since mainly the amounts of di- and trisulfides were decreased. The considerable compositional differences found in the analyses for the gas phase of garlic cloves, kept in oil, are likely associated with the poor stability of allicin in a lipophilic environment; a marked increase in the amounts of 2-propene-1-thiol, acetic acid, and ethanol was observed in the gas phase, whereas trisulfides were present in traces only. The occurrence of 2-propene-1-thiol and diallyl disulfide, the two principal sulfur components in exhaled air, also may indicate a rapid degradation of most garlic volatile components probably caused by the enzymatically active human salivary or digestive system. PMID:17262412

  11. Separation of H2, HD and D2 using Low Temperature Gas Chromatography

    NASA Astrophysics Data System (ADS)

    Whisnant, C. Steven; Kelley, Travis; Burke, Ryan; Hansen, Patrick

    2008-10-01

    The frozen spin HD target developed for the study of photonuclear physics by the LEGS collaboration at Brookhaven National Laboratory (and now moved to JLab) requires high purity HD gas to produce targets with spin relaxation times on the order of months. Since this purity is not available commercially, the gas is distilled at low temperature to reduce the residual H2 and D2 contamination. Quantifying the remaining amount of these contaminants is important for preparing a target that obtains the desired polarization and spin relaxation time. To measure the relative concentrations of H2 and D2, a gas chromatography system has been developed that separates the isotopes of hydrogen. The system uses a 50 meter porous-layer open-tabular (PLOT) 5å carbon molsieve column with an inner diameter of 0.53 mm held at temperatures near 150K. The carrier gas is neon. The signal is produced by measuring differences in thermal conductivity between hydrogen and neon. Under these conditions, not only are H2 and D2 separated from HD, but o-H2 and p-H2 are also well separated from one another. The resulting chromatograms are fit to extract areas and corrected for isotopic differences in thermal conductivity to produce relative concentrations. The analysis of several gas samples will be presented and the status of the method discussed.

  12. [Evaluation of inverse gas chromatography (IGC) methods to measure astragaloside solubility parameter from Buyang Huanwu decoction].

    PubMed

    Tang, Yu; Hu, Chao; Liao, Qiong; Liu, Wen-long; Yang, Yan-tao; He, Hong; He, Fu-yuan

    2015-01-01

    The solubility parameter determination of astrageloside from Buyang Huanwu decoction with inverse gas chromatography (IGC) method evaluation was investigated in this paper. Di-n-octyl phthalate Kwai alternative sample was used to carry out methodological study. The accuracy of the measured correlation coefficient was 0.992 1. Experimental precision measured by IGC experiments showed that the results were accurate and reliable. The sample was uniformly coated on the surface of an inert carrier and N2 gas was carrier gas, a variety of polar solvents such as isopropanol, toluene, acetone, chloroform, cyclohexane as probes. TCD detector temperature was 150 degrees C, gas room temperature was 120 degrees C. Similar headspace method was used whichever over 1 μL gas into the GC measurement, Retention time t(R), t(0) and all the parameters of air and probes molecules within the column were tested. Astragaloside solubility parameter was (21.02 ± 2.4) [J x cm(-3)] ½, literature value was 19.24 [J x cm(-3)] ½, and relevant coefficient was 0.984 5. IGC method is effective and accurate to measure ingredients solubility parameter. PMID:26080552

  13. Validation of pentaacetylaldononitrile derivative for dual 2H gas chromatography/mass spectrometry and 13C gas chromatography/combustion/isotope ratio mass spectrometry analysis of glucose.

    PubMed

    Sauvinet, Valérie; Gabert, Laure; Qin, Du; Louche-Pélissier, Corinne; Laville, Martine; Désage, Michel

    2009-12-01

    A reference method to accurately define kinetics in response to the ingestion of glucose in terms of total, exogenous and endogenous glucose is to use stable-isotope-labelled compounds such as 2H and 13C glucose followed by gas chromatography/mass spectrometry (GC/MS) and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) analysis. The use of the usual pentaacetyl (5Ac) derivative generates difficulties in obtaining accurate and reproducible results due to the two chromatographic peaks for the syn and anti isomers, and to the isotopic effect occurring during acetylation. Therefore, the pentaacetylaldononitrile derivative (Aldo) was validated for both isotopes, and compared with the 5Ac derivative. A correction factor including carbon atom dilution (stoichiometric equation) and the kinetic isotopic effect (KIE) was determined. Analytical validation results for the 2H GC/MS and 13C GC/C/IRMS measurements produced acceptable results with both derivatives. When 2H enrichments of plasma samples were < or = 1 mol % excess (MPE), the repeatability (RSD(Aldo Intra assay and Intra day) <0.94%, RSD(5Ac Intra assay and Intra day) <3.29%), accuracy (Aldo <3.4%, 5Ac <29.0%), and stability of the derivatized samples were significantly better when the Aldo derivatives of the plasma samples were used (p < 0.05). When the glucose kinetics were assessed in nine human subjects, after glucose ingestion, the plasma glucose 2H enrichments were identical with both derivatives, whereas the 13C enrichments needed a correction factor to fit together. Due to KIE variation, this correction factor was not constant and had to be calculated for each batch of analyses, to obtain satisfactory results. Mean quantities of exogenous glucose exhibit marked difference (20.9 +/- 1.3g (5Ac) vs. 26.7 +/- 2.5g (Aldo)) when calculated with stoichiometric correction, but fit perfectly when calculated after application of the correction factor (22.1 +/- 1.3g (5Ac) vs. 22.9 +/- 1.9g

  14. [The express mode of identification of agents of bacteriemias using the technique of gas chromatography-mass spectrometry].

    PubMed

    Popov, D A; Ovseyenko, S T; Osipov, G A; Vostrikova, T Yu

    2013-05-01

    The comparative evaluation was carried out concerning the effectiveness of generic identification of hemocultures using the technique of gas chromatography-mass spectrometry by comparison with data of common cultural method. The content of vials with positive hemoculture was analyzed using both the common microbiologic methods and the technique of gas chromatography-mass spectrometry with detection of markers of the most widespread agents of nosocomial bacteriemias: microorganisms of genus Staphylococcus, Enterococcus, Klebsiella, Escherichia, Serratia, Pseudomonas, Acinetobacter, Stenotrophomonas, Candida. The possibility of applying the technique of gas chromatography-mass spectrometry for generic express-identification of agents of bacteriemias was established. The full concurrence of results obtained by gas chromatography-mass spectrometry with the results of common bacteriologic method was revealed. The time saving of analysis during generic identification of hemocultures using gas chromatography-mass spectrometry up to three and less hours against 1.5-2 days in case of common approach. The established information can input into earlier start of etiotropic therapy under severe infections.

  15. Characterization of crude oil biomarkers using comprehensive two-dimensional gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Mogollón, Noroska Gabriela Salazar; Prata, Paloma Santana; Dos Reis, Jadson Zeni; Neto, Eugênio Vaz Dos Santos; Augusto, Fabio

    2016-09-01

    Oil samples from Recôncavo basin (NE Brazil), previously analyzed by traditional techniques such as gas chromatography coupled to tandem mass spectrometry, were evaluated using comprehensive two-dimensional gas chromatography coupled to quadrupole mass spectrometry and comprehensive two-dimensional gas chromatography coupled to tandem mass spectrometry along with simplified methods of samples preparation to evaluate the differences and advantages of these analytical techniques to better understand the development of the organic matter in this basin without altering the normal distribution of the compounds in the samples. As a result, the geochemical parameters calculated by comprehensive two-dimensional gas chromatography coupled to tandem mass spectrometry described better the origin, maturity, and biodegradation of both samples probably by increased selectivity, resolution, and sensitivity inherent of the multidimensional technique. Additionally, the detection of the compounds such as, the C(14α-) homo-26-nor-17α-hopane series, diamoretanes, nor-spergulanes, C19 -C26 A-nor-steranes and 4α-methylsteranes resolved and detected by comprehensive two-dimensional gas chromatography coupled to tandem mass spectrometry were key to classify and differentiate these lacustrine samples according to their maturity and deposition conditions.

  16. Comprehensive two-dimensional gas chromatography for characterizing mineral oils in foods and distinguishing them from synthetic hydrocarbons.

    PubMed

    Biedermann, Maurus; Grob, Koni

    2015-01-01

    Many foods are contaminated by hydrocarbons of mineral oil or synthetic origin. High performance liquid chromatography on-line coupled with gas chromatography and flame ionization detection (HPLC-GC-FID) is a powerful tool for the quantitative determination, but it would often be desirable to obtain more information about the type of hydrocarbons in order to identify the source of the contamination and specify pertinent legislation. Comprehensive two-dimensional gas chromatography (GC×GC) is shown to produce plots distinguishing mineral oil saturated hydrocarbons (MOSH) from polymer oligomeric saturated hydrocarbons (POSH) and characterizing the degree of raffination of a mineral oil. The first dimension separation occurred on a phenyl methyl polysiloxane, the second on a dimethyl polysiloxane. Mass spectrometry (MS) was used for identification, FID for quantitative determination. This shows the substantial advances in chromatography to characterize complex hydrocarbon mixtures even as contaminants in food.

  17. Parallel dual secondary column-dual detection: a further way of enhancing the informative potential of two-dimensional comprehensive gas chromatography.

    PubMed

    Nicolotti, Luca; Cordero, Chiara; Bressanello, Davide; Cagliero, Cecilia; Liberto, Erica; Magagna, Federico; Rubiolo, Patrizia; Sgorbini, Barbara; Bicchi, Carlo

    2014-09-19

    Comprehensive two-dimensional gas chromatography (GC×GC) coupled with Mass Spectrometry (MS) is one of today's most powerful analytical platforms for detailed analysis of medium-to-high complexity samples. The column set usually consists of a long, conventional-inner-diameter first dimension ((1)D) (typically 15-30m long, 0.32-0.25mm dc), and a short, narrow-bore second dimension ((2)D) column (typically 0.5-2m, 0.1mm dc) where separation is run in a few seconds. However, when thermal modulation is used, since the columns of a set are coupled in series, a flow mismatch occurs between the two dimensions, making it impossible to operate simultaneously at optimized flow conditions. Further, short narrow-bore capillaries can easily be overloaded, because of their lower loadability, limiting the effectiveness of (2)D separation. In this study, improved gas linear velocities in both chromatographic dimensions were achieved by coupling the (1)D column with two parallel (2)D columns, having identical inner diameter, stationary phase chemistry, and film thickness. In turn, these were connected to two detectors: a fast quadrupole Mass Spectrometer (MS) and a Flame Ionization Detector (FID). Different configurations were tested and performances compared to a conventional set-up; experimental results on two model mixtures (n-alkanes and fourteen medium-to-high polarity volatiles of interest in the flavor and fragrance field) and on the essential oil of Artemisia umbelliformis Lam., show the system provides consistent results, in terms of analyte identification (reliability of spectra and MS matching) and quantitation, also affording an internal cross-validation of quantitation accuracy.

  18. Rapid determination of cholesterol in milk and milk products by direct saponification and capillary gas chromatography.

    PubMed

    Fletouris, D J; Botsoglou, N A; Psomas, I E; Mantis, A I

    1998-11-01

    A simple method is described for the determination of cholesterol in milk and milk products. Samples (0.2 g) are saponified in capped tubes with 0.5 M methanolic KOH solution by heating for 15 min at 80 degrees C. Water is added to the mixtures, and the unsaponifiable fractions are extracted with hexane to be further analyzed by capillary gas chromatography. Because of the rapid sample preparation and gas chromatographic procedures, a single sample can be analyzed in 30 min. Overall recovery was 98.6%, and the linearity was excellent for the fortification range examined. Precision data that were based on the variation within and between days suggested an overall relative standard deviation value of 1.4%. The method has been successfully applied to quantitate cholesterol in a variety of milk products.

  19. Forensic analysis of ignitable liquids in fire debris by comprehensive two-dimensional gas chromatography.

    PubMed

    Frysinger, Glenn S; Gaines, Richard B

    2002-05-01

    The application of comprehensive two-dimensional gas chromatography (GC x GC) for the forensic analysis of ignitable liquids in fire debris is reported. GC x GC is a high resolution, multidimensional gas chromatographic method in which each component of a complex mixture is subjected to two independent chromatographic separations. The high resolving power of GC x GC can separate hundreds of chemical components from a complex fire debris extract. The GC x GC chromatogram is a multicolor plot of two-dimensional retention time and detector signal intensity that is well suited for rapid identification and fingerprinting of ignitable liquids. GC x GC chromatograms were used to identify and classify ignitable liquids, detect minor differences between similar ignitable liquids, track the chemical changes associated with weathering, characterize the chemical composition of fire debris pyrolysates, and detect weathered ignitable liquids against a background of fire debris pyrolysates.

  20. Analysis of fatty oil in Semen Ziziphi Spinosae by capillary gas chromatography.

    PubMed

    Yu-Juan, Li; Kai-Shun, Bi; Xin-Miao, Liang; Hong-Bin, Xiao

    2003-01-01

    A simple and fast capillary gas chromatographic (CGC) method with flame ionization detection is developed for the analysis of fatty oil in Semen Ziziphi Spinosae. After methyl-esterification, eight components are identified by gas chromatography-mass spectrometry. The derivatization condition is investigated in order to validate this method. Palmitic acid and stearic acid are quantitated simultaneously. The limits of detection are 5.024 microg/mL for palmitic acid and 6.957 microg/mL for stearic acid, respectively. The limits of quantitation are 16.76 microg/mL for palmitic acid and 23.19 microg/mL for stearic acid, respectively. The percent recoveries of palmitic and stearic acid are 97.4% and 96.6%. CGC is shown to be a quick and informative tool for the analysis of fatty oil in Semen Ziziphi Spinosae. PMID:12597596

  1. In situ search for organics by gas chromatography analysis: new derivatization / thermochemolysis approach

    NASA Astrophysics Data System (ADS)

    Geffroy, Claude; Buch, Arnaud; David, Marc; Aissat, Lyes; El Mufleh, Amel; Papot, S.; Sternberg, Robert

    Many organic molecules are present in interstellar clouds and might be carried to the early Earth by comets and meteorites during the heavy bombardment phase in the first few hundred million years of the solar system. It has been suggested that extraterrestrial organic material may well represent an important part of the organic material available for the origin of life. Until samples, brought by future space missions, are available on Earth, in situ measurements are one of the way to get unaltered and non-contaminated samples for analysis. The analytical technique has to be robust, sensitive and non-specific due to the large scope of targets molecules. The only currently flight qualified technique of analysis of organic molecules in space is gas chromatography (Viking, Cassini-Huygens, SAM-MSL, COSAC-Rosetta). The main objective of this work is to present a new approach with multi step analysis using derivatisation and thermochemolysis reagents for a one pot in situ analysis of volatile and refractory organics in surface or sub-surface samples (Mars, comets).Indeed, no single technology enables to identify all organic compounds because naturally occurring molecules have different polarities, molecular weights, being extractible or recalcitrant, bonded trapped or adsorbed on minerals. Thus, we propose to wider the scope of chemical reagent already validated for in situ wet chemistry such as MTBSTFA (Rodier et al. 2001, 2002), DMF-DMA (Rodier et al. 2002), or TMAH (Rodier et al, 2005, Geffroy-Rodier et al; 2009) to analyze enantiomers of amino acids, carbohydrates and lipids in a one pot several steps sub system using a multi reagent and multi step approach. Thus using a new derivatizing agent, we successfully identified twenty one amino acids including twelve of the twenty proteinic amino acids without inhibiting following multi step thermochemolysis. *Geffroy-Rodier C, Grasset L, Sternberg R. Buch A. Amblès A. (2009) Thermochemolysis in search for organics in

  2. Determination of Free Fatty Acids and Triglycerides by Gas Chromatography Using Selective Esterification Reactions

    SciTech Connect

    Kail, Brian W; Link, Dirk D; Morreale, Bryan D

    2012-11-01

    A method for selectively determining both free fatty acids (FFA) and triacylglycerides (TAGs) in biological oils was investigated and optimized using gas chromatography after esterification of the target species to their corresponding fatty acid methyl esters (FAMEs). The method used acid catalyzed esterification in methanolic solutions under conditions of varying severity to achieve complete conversion of more reactive FFAs while preserving the concentration of TAGs. Complete conversion of both free acids and glycerides to corresponding FAMEs was found to require more rigorous reaction conditions involving heating to 120°C for up to 2 h. Method validation was provided using gas chromatography–flame ionization detection, gas chromatography–mass spectrometry, and liquid chromatography–mass spectrometry. The method improves on existing methods because it allows the total esterified lipid to be broken down by FAMEs contributed by FFA compared to FAMEs from both FFA and TAGs. Single and mixed-component solutions of pure fatty acids and triglycerides, as well as a sesame oil sample to simulate a complex biological oil, were used to optimize the methodologies. Key parameters that were investigated included: HCl-to-oil ratio, temperature and reaction time. Pure free fatty acids were found to esterify under reasonably mild conditions (10 min at 50°C with a 2.1:1 HCl to fatty acid ratio) with 97.6 ± 2.3% recovery as FAMEs, while triglycerides were largely unaffected under these reaction conditions. The optimized protocol demonstrated that it is possible to use esterification reactions to selectively determine the free acid content, total lipid content, and hence, glyceride content in biological oils. This protocol also allows gas chromatography analysis of FAMEs as a more ideal analyte than glyceride species in their native state.

  3. Multiple inert gas elimination technique by micropore membrane inlet mass spectrometry--a comparison with reference gas chromatography.

    PubMed

    Kretzschmar, Moritz; Schilling, Thomas; Vogt, Andreas; Rothen, Hans Ulrich; Borges, João Batista; Hachenberg, Thomas; Larsson, Anders; Baumgardner, James E; Hedenstierna, Göran

    2013-10-15

    The mismatching of alveolar ventilation and perfusion (VA/Q) is the major determinant of impaired gas exchange. The gold standard for measuring VA/Q distributions is based on measurements of the elimination and retention of infused inert gases. Conventional multiple inert gas elimination technique (MIGET) uses gas chromatography (GC) to measure the inert gas partial pressures, which requires tonometry of blood samples with a gas that can then be injected into the chromatograph. The method is laborious and requires meticulous care. A new technique based on micropore membrane inlet mass spectrometry (MMIMS) facilitates the handling of blood and gas samples and provides nearly real-time analysis. In this study we compared MIGET by GC and MMIMS in 10 piglets: 1) 3 with healthy lungs; 2) 4 with oleic acid injury; and 3) 3 with isolated left lower lobe ventilation. The different protocols ensured a large range of normal and abnormal VA/Q distributions. Eight inert gases (SF6, krypton, ethane, cyclopropane, desflurane, enflurane, diethyl ether, and acetone) were infused; six of these gases were measured with MMIMS, and six were measured with GC. We found close agreement of retention and excretion of the gases and the constructed VA/Q distributions between GC and MMIMS, and predicted PaO2 from both methods compared well with measured PaO2. VA/Q by GC produced more widely dispersed modes than MMIMS, explained in part by differences in the algorithms used to calculate VA/Q distributions. In conclusion, MMIMS enables faster measurement of VA/Q, is less demanding than GC, and produces comparable results.

  4. Detection for Non-Milk Fat in Dairy Product by Gas Chromatography

    PubMed Central

    2016-01-01

    The aim of this study was to evaluate the potential use of fatty acids, triacylglycerols, and cholesterol in the detection of adulterated milk fat. The fatty acid, triacylglycerol, and cholesterol profiles of the mixtures of milk and non-milk fat (adulteration ratios of 10%, 30%, 50%, 70%, and 90%) were analyzed by gas chromatography. The results showed that concentrations of the fatty acids with oleic acid (C18:1n9c) and linoleic acid (C18:2n6c), triglycerides with C52 and C54, and cholesterol detected are proportional to the adulteration ratios remarkably. Oleic acid (C18:1n9c), linoleic acid (C18:2n6c), C52, and C54 were lower in pure milk fat than in adulterated mixtures. In contrast, pure milk has a higher cholesterol concentration than all adulterated mixtures (adulteration concentration in the range 10-90%). Thus, we suggest that oleic acid (C18:1n9c), linoleic acid (C18:2n6c), C52, C54, and cholesterol are suitable indicators and can be used as biomarkers to rapidly detect adulterated milk fat by gas chromatography. This study is expected to provide basic data for adulteration and material usage. Moreover, this new approach can detect the presence of foreign oils and fats in the milk fat of cheese and can find application in related studies. PMID:27194929

  5. [Determination of residual glycol ethers in leather and leather products by gas chromatography/mass spectrometry].

    PubMed

    Wang, Ghengyun; Zhang, Weiya; Li, Lixia; Shen, Yalei; Lin, Junfeng; Xie, Tangtang; Chu, Naiqing

    2014-08-01

    An effective method was established for the simultaneous determination of residual glycol ethers in leather and leather products by gas chromatography/mass spectrometry. Glycol ethers in leather and leather products were ultrasonically extracted at 45 °C, using ethyl acetate as the extraction solvent. The extracts were purified by solid phase extraction (SPE) columns, and then analyzed by gas chromatography/mass spectrometry in selected ion monitoring mode. The content of each analyte was calibrated by external standard method. The limit of detection of ethylene glycol ethyl ether (EGEE) was 0. 10 mg/kg under the condition of signal to noise (S/N) of 3 and the limits of the other 11 glycol ethers were all less than 0.05 mg/kg. The spiked recoveries varied from 81. 2% to 95. 5% at three different spiked levels with the relative standard deviations (RSDs) ranged from 1.4% to 6. 6%. The proposed method is simple, rapid and accurate, with the limits of detection much less than the requirements of the Regulation Concerning Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) of European Union. It is applicable to the determination of residual glycol ethers in leather and leather products, and provides a reference for the relevant testing standards.

  6. [Determination of docosahexaenoic acid in milk powder by gas chromatography using acid hydrolysis].

    PubMed

    Shao, Shiping; Xiang, Dapeng; Li, Shuang; Xi, Xinglin; Chen, Wenrui

    2015-11-01

    A method to determine docosahexenoic acid (DHA) in milk powder by gas chromatography was established. The milk powder samples were hydrolyzed with hydrochloric acid, extracted to get total fatty acids by Soxhlet extractor, then esterified with potassium hydroxide methanol solution to form methyl esters, and treated with sodium hydrogen sulfate. The optimal experiment conditions were obtained from orthogonal experiment L9(3(3)) which performed with three factors and three levels, and it requires the reaction performed with 1 mol/L potassium hydroxide solution at 25 degrees C for 5 min. The derivative treated with sodium hydrogen sulfate was separated on a column of SP-2560 (100 m x 0.25 mm x 0.20 μm), and determined in 55 min by temperature programming-gas chromatography. Good linearity was obtained in the range 5.0-300 mg/L with the correlation coefficient of 0.999 9. The relative standard deviations (RSDs) were 3.4%, 1.2% and 1.1% for the seven repeated experiments of 10, 50 and 100 mg/L of DHA, respectively. The limit of detection was 2 mg/kg, and the recoveries of DHA were in the range of 90.4%-93.5%. The results are satisfactory through the tests of practical samples. PMID:26939370

  7. Detection for Non-Milk Fat in Dairy Product by Gas Chromatography.

    PubMed

    Kim, Ha-Jung; Park, Jung-Min; Lee, Jung-Hoon; Kim, Jin-Man

    2016-01-01

    The aim of this study was to evaluate the potential use of fatty acids, triacylglycerols, and cholesterol in the detection of adulterated milk fat. The fatty acid, triacylglycerol, and cholesterol profiles of the mixtures of milk and non-milk fat (adulteration ratios of 10%, 30%, 50%, 70%, and 90%) were analyzed by gas chromatography. The results showed that concentrations of the fatty acids with oleic acid (C18:1n9c) and linoleic acid (C18:2n6c), triglycerides with C52 and C54, and cholesterol detected are proportional to the adulteration ratios remarkably. Oleic acid (C18:1n9c), linoleic acid (C18:2n6c), C52, and C54 were lower in pure milk fat than in adulterated mixtures. In contrast, pure milk has a higher cholesterol concentration than all adulterated mixtures (adulteration concentration in the range 10-90%). Thus, we suggest that oleic acid (C18:1n9c), linoleic acid (C18:2n6c), C52, C54, and cholesterol are suitable indicators and can be used as biomarkers to rapidly detect adulterated milk fat by gas chromatography. This study is expected to provide basic data for adulteration and material usage. Moreover, this new approach can detect the presence of foreign oils and fats in the milk fat of cheese and can find application in related studies. PMID:27194929

  8. Determination of amines used in the oil and gas industry (upstream section) by ion chromatography.

    PubMed

    Kadnar, R

    1999-07-30

    During production and purification of crude oil and natural gas several different amines are used as chemicals or operating materials, e.g. film forming long chain amines as corrosion inhibitors, steam volatile amines for pH correction and corrosion protection, alkanolamines as absorbents in sour gas treatment plants, etc. For analytical checks, e.g. determination of corrosion inhibitor concentration in produced media, classical chemical methods are used predominantly, because most of them can be performed in small field laboratories. Some amines, especially the small molecular aliphatic and heterocyclic amines can also be determined by ion chromatography. In our laboratory two types of separation columns (IonPac CS10 and CS12A) were available for ion chromatographic separation. The analysis of the amines in low-salt-containing water, soft water or steam condensate can be performed without problems. The presence of alkali and/or alkaline earth ions in the sample can lead to coelution with these ions, to poor peak resolution or enhanced analysis times, depending on the chromatographic conditions. This work shows some examples of ion chromatography applications for the determination of low-molecular-mass ethanolamines, morpholine and piperazine and discusses the possible interferences and troubles caused by alkali and alkaline earth ions in the matrix.

  9. Simultaneous determination of three organophosphorus pesticides in different food commodities by gas chromatography with mass spectrometry.

    PubMed

    Vijaya Bhaskar Reddy, Ambavaram; Yusop, Zulkifli; Jaafar, Jafariah; Bin Aris, Azmi; Abdul Majid, Zaiton; Umar, Khalid; Talib, Juhaizah

    2016-06-01

    A sensitive and selective gas chromatography with mass spectrometry method was developed for the simultaneous determination of three organophosphorus pesticides, namely, chlorpyrifos, malathion, and diazinon in three different food commodities (milk, apples, and drinking water) employing solid-phase extraction for sample pretreatment. Pesticide extraction from different sample matrices was carried out on Chromabond C18 cartridges using 3.0 mL of methanol and 3.0 mL of a mixture of dichloromethane/acetonitrile (1:1 v/v) as the eluting solvent. Analysis was carried out by gas chromatography coupled with mass spectrometry using selected-ion monitoring mode. Good linear relationships were obtained in the range of 0.1-50 μg/L for chlorpyrifos, and 0.05-50 μg/L for both malathion and diazinon pesticides. Good repeatability and recoveries were obtained in the range of 78.54-86.73% for three pesticides under the optimized experimental conditions. The limit of detection ranged from 0.02 to 0.03 μg/L, and the limit of quantification ranged from 0.05 to 0.1 μg/L for all three pesticides. Finally, the developed method was successfully applied for the determination of three targeted pesticides in milk, apples, and drinking water samples each in triplicate. No pesticide was found in apple and milk samples, but chlorpyrifos was found in one drinking water sample below the quantification level. PMID:27095506

  10. Rapid separation of beryllium and lanthanide derivatives by capillary gas chromatography

    SciTech Connect

    Harvey, Scott D.; Lucke, Richard B.; Douglas, Matt

    2012-09-04

    Previous studies describe derivatization of metal ions followed by analysis using gas chromatography, usually on packed columns. In many of these studies, stable and volatile derivatives were formed using fluorinated β-diketonate reagents. This paper extends previous work by investigating separations of the derivatives on small-diameter capillary gas chromatography columns and exploring on-fiber, solid-phase microextraction derivatization techniques for beryllium. The β-diketonate used for these studies was 1,1,1,2,2,6,6,7,7,7-decafluoro-3,5-heptanedione. Derivatization of lanthanides also required addition of a neutral donor, dibutyl sulfoxide, in addition to 1,1,1,2,2,6,6,7,7,7-decafluoro-3,5-heptanedione. Unoptimized separations on a 100-μm i.d. capillary column proved capable of rapid separations (within 15 min) of lanthanide derivatives that are adjacent to one another in the periodic table. Full-scan mass spectra were obtained from derivatives containing 5 ng of each lanthanide. Studies also developed a simple on-fiber solid-phase microextraction derivatization of beryllium. Beryllium could be analyzed in the presence of other alkali earth elements (Ba(II) and Sr(II)) without interference. Finally, extension of the general approach was demonstrated for several additional elements (i.e. Cu(II), Cr(III), and Ga(III)).

  11. Preparation and characterization of alkyl methacrylate-based monolithic columns for capillary gas chromatography applications.

    PubMed

    Yusuf, Kareem; Aqel, Ahmad; A L Othman, Zeid; Badjah-Hadj-Ahmed, Ahmed Yacine

    2013-08-01

    Gas chromatography (GC) is considered the least common application of both polymer and silica-based monolithic columns. This study describes the fabrication of alkyl methacrylate monolithic materials for use as stationary phases in capillary gas chromatography. Following the deactivation of the capillary surface with 3-(trimethoxysilyl)propyl methacrylate (TMSM), the monoliths were formed by the co-polymerization of either hexyl methacrylate (HMA) or lauryl methacrylate (LMA) with different percentage of ethylene glycol dimethacrylate (EDMA) in presence of an initiator (azobisisobutyronitrile, AIBN) and a mixture of porogens include 1-propanol, 1,4-butanediol and water. The monoliths were prepared in 500mm length capillaries possessing inner diameters of 250μm. The efficiencies of the monolithic columns for low molecular weight compounds significantly improved as the percentage of crosslinker was increased, because of the greater proportion of pores less than 50nm. The columns containing lower percentages of crosslinker were able to rapidly separate a series of 8 alkane members in 0.7min, but the separation was less efficient for the light alkanes. Columns prepared with the lauryl methacrylate monomer yielded a different morphology for the monolith-interconnected channels. The channels were more branched, which increased the separation time, and unlike the other columns, allowed for temperature programming.

  12. Quantification of residual solvents in antibody drug conjugates using gas chromatography.

    PubMed

    Medley, Colin D; Kay, Jacob; Li, Yi; Gruenhagen, Jason; Yehl, Peter; Chetwyn, Nik P

    2014-11-19

    The detection and quantification of residual solvents present in clinical and commercial pharmaceutical products is necessary from both patient safety and regulatory perspectives. Head-space gas chromatography is routinely used for quantitation of residual solvents for small molecule APIs produced through synthetic processes; however residual solvent analysis is generally not needed for protein based pharmaceuticals produced through cultured cell lines where solvents are not introduced. In contrast, antibody drug conjugates and other protein conjugates where a drug or other molecule is covalently bound to a protein typically use solvents such as N,N-dimethylacetamide (DMA), N,N‑dimethylformamide (DMF), dimethyl sulfoxide (DMSO), or propylene glycol (PG) to dissolve the hydrophobic small molecule drug for conjugation to the protein. The levels of the solvent remaining following the conjugation step are therefore important to patient safety as these parental drug products are introduced directly into the patients bloodstream. We have developed a rapid sample preparation followed by a gas chromatography separation for the detection and quantification of several solvents typically used in these conjugation reactions. This generic method has been validated and can be easily implemented for use in quality control testing for clinical or commercial bioconjugated products.

  13. Determination of endogenous ethanol in blood and breath by gas chromatography-mass spectrometry.

    PubMed

    Jones, A W; Mårdh, G; Anggård, E

    1983-01-01

    We describe methods for the determination of endogenous ethanol in biological specimens from healthy abstaining subjects. The analytical methods were headspace gas chromatography (GC) for plasma samples and gas chromatography-mass spectometry (GC/MS) with deuterium labelled species 2H3-ethanol and 2H5-ethanol as internal standards for breath analysis. Ethanol in rebreathed air was about 10% higher than in directly analysed end-expired alveolar air. Known volumes of rebreathed air were passed through a liquid-N2 freeze trap and the volatile constituents of breath were concentrated prior to analysis by GC or GC/MS. Besides endogenous ethanol, peaks were seen on the chromatograms for methanol, acetone and acetaldehyde as well as several as yet unidentified substances. The endogenous alcohols ethanol and methanol were confirmed from their mass chromatograms and the GC/MS profile also indicated the presence of endogenous propan-1-ol. The concentration of endogenous ethanol in plasma showed wide inter-subject variations ranging from below detection limits to 1.6 micrograms/ml (34.8 mumol/l) and with mean +/- SD of 0.39 +/- 0.45 micrograms/ml (8.5 +/- 9.8 mumol/l). We aim to characterise further the role of endogenous ethanol with the main focus on dynamic aspects such as the rate of formation and turnover.

  14. Gas chromatography-mass spectrometry determination of phosphine residues in stored products and processed foods.

    PubMed

    Norman, K N; Leonard, K

    2000-09-01

    A gas chromatography-mass spectrometry (GC-MS) method was used for the quantitative confirmation of phosphine residues in stored products and processed foods. An established extraction technique was utilized for the preparation of headspace samples, which were analyzed by GC-MS and gas chromatography-nitrogen-phosphorus detection (GC-NPD). Wheat, oats, maize, white rice, brown rice, cornflakes, tortilla cornchips, groundnuts, and raisins were validated, showing excellent agreement between detectors when spiked at levels equivalent to 0.001 and 0.01 mg/kg phosphine and for samples containing incurred residues. The GC-MS method was reproducible and accurate when compared to the GC-NPD method and allowed five samples to be quantified in a working day. Subambient GC-MS oven temperatures were most suitable for phosphine residues ranging from 0.001 to 0.005 mg/kg, and a GC oven temperature of 100 degrees C was appropriate for residues >0.005 mg/kg. The method was sufficiently robust to be evaluated for other similar commodities as the need arises.

  15. Development of a technique for mercury speciation and quantification using gas chromatography/mass spectrometry

    SciTech Connect

    Barshick, S.A.; Barshick, C.M.; Britt, P.F.; Vance, M.A.; Duckworth, D.C.

    1997-07-01

    One element of concern to DOE is mercury. Mercury was used extensively at the DOE facilities in Oak Ridge, Tennessee from 1950 to 1963 in the process of making lithium deuteride, a component of nuclear weapons. Although both the inorganic and organometallic forms of mercury are toxic to humans, the organic compounds are often more toxic. Since the toxicity of mercury is a function of its chemical form, an understanding of the interactions between commercially discharged mercury, naturally occurring mercury, and the environment in which they are present is vital. In this report, the authors have been investigating gas chromatography/mass spectrometry (GC/MS) for the analysis of both the organometallic and inorganic forms of mercury in the same environmental sample (e.g., solutions, soils, and sludges). Although gas chromatography is the classical technique for analyzing organic molecules, (e.g., organometallic compounds) little has been done on the analysis of inorganic compounds. In a previous publication, the authors described how a solid phase microextraction (SPME) fiber could be used to sample organomercurials from aqueous samples. An alkylation reaction was then carried out to transform chemically mercury nitrate into dimethylmercury; subsequent GC/MS analysis of this compound permitted quantification of the inorganic constituent. Subsequently, several different alkylation reagents have been synthesized that methylate any inorganic mercury compound to methylmercury iodide. Here, the authors report results on alkylation reaction time and the effect of pH on the population of the product.

  16. Separation of cis- and trans-Asarone from Acorus tatarinowii by Preparative Gas Chromatography

    PubMed Central

    Zuo, H. L.; Yang, F. Q.; Zhang, X. M.; Xia, Z. N.

    2012-01-01

    A preparative gas chromatography (pGC) method was developed for the separation of isomers (cis- and trans-asarone) from essential oil of Acorus tatarinowii. The oil was primarily fractionated by silica gel chromatography using different ratios of petroleum ether and ethyl acetate as gradient elution solvents. And then the fraction that contains mixture of the isomers was further separated by pGC. The compounds were separated on a stainless steel column packed with 10% OV-101 (3 m × 6 mm, i.d.), and then the effluent was split into two gas flows. One percent of the effluent passed to the flame ionization detector (FID) for detection and the remaining 99% was directed to the fraction collector. Two isomers were collected after 90 single injections (5 uL) with the yield of 178 mg and 82 mg, respectively. Furthermore, the structures of the obtained compounds were identified as cis- and trans-asarone by 1H- and 13C-NMR spectra, respectively. PMID:22448339

  17. Pentachlorodibenzo-p-dioxin isomer differentiation by capillary gas chromatography fourier transform infrared spectroscopy

    SciTech Connect

    Grainger, J.; Reddy, V.V.; Patterson, D.G. Jr. )

    1988-09-01

    Analysis of polychlorinated dibenzo-p-dioxin (PCDD) isomers has been the focus of a number of recent investigations due to the extreme toxicities of specific laterally tetrachlorinated isomers. These investigations have primarily been directed toward 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), the most toxic PCDD isomer and toward isomer differentiation of TCDD isomers as a group. With the exception of pentachlorodibenzo-p-dioxin (PnCDD) isomer specific determinations based on calculated retention indices, isomer differentiation of the 14 PnCDD isomers has not been reported although 1,2,3,7,8-PnCDD is nearly as toxic as 2,3,7,8-TCDD. Chromatographically independent methods for PCDD isomer assignment have been reported by x-ray powder diffraction, proton nuclear magnetic resonance ({sup 1}H NMR), gas chromatography/matrix isolation Fourier transform infrared (MI/FTIR) spectroscopy, diffuse reflectance infrared Fourier transformation (DRIFT) spectroscopy and gas chromatography/Fourier transform infrared (GC/FTIR) spectroscopy. Although TCDD isomer assignments by the various methods are substantially in agreement, some differences are yet to be resolved. Vapor-phase reference infrared spectra are presented for the 14 PnCDD isomers. These spectra were recorded from low (< 10) microgram quantities for each isomer. The spectrum of each isomer is unique, allowing for positive isomer identification and individual group frequency absorption characteristics as a function of isomer structure.

  18. Simultaneous assessment of cholesterol absorption and synthesis in humans using on-line gas chromatography/ combustion and gas chromatography/pyrolysis/isotope-ratio mass spectrometry.

    PubMed

    Gremaud, G; Piguet, C; Baumgartner, M; Pouteau, E; Decarli, B; Berger, A; Fay, L B

    2001-01-01

    A number of dietary components and drugs are known to inhibit the absorption of dietary and biliary cholesterol, but at the same time can compensate by increasing cholesterol synthesis. It is, therefore, necessary to have a convenient and accurate method to assess both parameters simultaneously. Hence, we validated such a method in humans using on-line gas chromatography(GC)/combustion and GC/pyrolysis/isotope-ratio mass spectrometry (IRMS). Cholesterol absorption was measured using the ratio of [(13)C]cholesterol (injected intravenously) to [(18)O]cholesterol (administered orally). Simultaneously, cholesterol synthesis was measured using the deuterium incorporation method. Our methodology was applied to 12 mildly hypercholesterolemic men that were given a diet providing 2685 +/- 178 Kcal/day (mean +/- SD) and 255 +/- 8 mg cholesterol per day. Cholesterol fractional synthesis rates ranged from 5.0 to 10.5% pool/day and averaged 7.36% +/- 1.78% pool/day (668 +/- 133 mg/day). Cholesterol absorption ranged from 36.5-79.9% with an average value of 50.8 +/- 15.4%. These values are in agreement with already known data obtained with mildly hypercholesterolemic Caucasian males placed on a diet similar to the one used for this study. However, our combined IRMS method has the advantage over existing methods that it enables simultaneous measurement of cholesterol absorption and synthesis in humans, and is therefore an important research tool for studying the impact of dietary treatments on cholesterol parameters.

  19. Aroma active volatiles in four southern highbush blueberry cultivars determined by gas chromatography-olfactometry (GC-O) and gas chromatography-mass spectrometry (GC-MS).

    PubMed

    Du, Xiaofen; Rouseff, Russell

    2014-05-21

    Aroma active volatiles in four southern highbush blueberry cultivars ('Prima Dona', 'Jewel', 'Snow Chaser', and 'Kestrel') were determined using solid phase microextraction (SPME) in combination with gas chromatography-olfactometry (GC-O) and identified via GC-PFPD and GC-MS using retention indices of reference compounds and mass spectral data. The aromas of total, unseparated SPME extracts evaluated using GC-O were rated 8.2-9.0/10 for the four cultivars in terms of similarity to the original blueberry homogenates. In terms of GC-O aroma similarity, those aroma active volatile groups characterized as green, fruity, and floral were most intense. Of the 43 volatiles found to have aroma activity, 38 were identified and 13 had not been previously reported in blueberries. Although linalool and (E)-2-hexenal were common major aroma impact volatiles, dominant aroma-active volatiles were different for each cultivar. Principal component analysis confirmed that each cultivar possessed a unique aroma active profile as each cultivar was clustered into a separate score plot quadrant.

  20. Adsorption energies for a nanoporous carbon from gas-solid chromatography and molecular mechanics.

    PubMed

    Rybolt, Thomas R; Ziegler, Katherine A; Thomas, Howard E; Boyd, Jennifer L; Ridgeway, Mark E

    2006-04-01

    Gas-solid chromatography was used to obtain second gas-solid virial coefficients, B2s, in the temperature range 342-613 K for methane, ethane, propane, butane, 2-methylpropane, chloromethane, chlorodifluoromethane, dichloromethane, and dichlorodifluoromethane. The adsorbent used was Carbosieve S-III (Supelco), a carbon powder with fairly uniform, predominately 0.55 nm slit width pores and a N2 BET surface area of 995 m2/g. The temperature dependence of B2s was used to determine experimental values of the gas-solid interaction energy, E*, for each of these molecular adsorbates. MM2 and MM3 molecular mechanics calculations were used to determine the gas-solid interaction energy, E*(cal), for each of the molecules on various flat and nanoporous model surfaces. The flat model consisted of three parallel graphene layers with each graphene layer containing 127 interconnected benzene rings. The nanoporous model consisted of two sets of three parallel graphene layers adjacent to one another but separated to represent the pore diameter. A variety of calculated adsorption energies, E*(cal), were compared and correlated to the experimental E* values. It was determined that simple molecular mechanics could be used to calculate an attraction energy parameter between an adsorbed molecule and the carbon surface. The best correlation between the E*(cal) and E* values was provided by a 0.50 nm nanoporous model using MM2 parameters.

  1. Aroma characterization of chinese rice wine by gas chromatography-olfactometry, chemical quantitative analysis, and aroma reconstitution.

    PubMed

    Chen, Shuang; Xu, Yan; Qian, Michael C

    2013-11-27

    The aroma profile of Chinese rice wine was investigated in this study. The volatile compounds in a traditional Chinese rice wine were extracted using Lichrolut EN and further separated by silica gel normal phase chromatography. Seventy-three aroma-active compounds were identified by gas chromatography-olfactometry (GC-O) and gas chromatography-mass spectrometry (GC-MS). In addition to acids, esters, and alcohols, benzaldehyde, vanillin, geosmin, and γ-nonalactone were identified to be potentially important to Chinse rice wine. The concentration of these aroma-active compounds in the Chinese rice wine was further quantitated by combination of four different methods, including headsapce-gas chromatography, solid phase microextraction-gas chromatography (SPME)-GC-MS, solid-phase extraction-GC-MS, and SPME-GC-pulsed flame photometric detection (PFPD). Quantitative results showed that 34 aroma compounds were at concentrations higher than their corresponding odor thresholds. On the basis of the odor activity values (OAVs), vanillin, dimethyl trisulfide, β-phenylethyl alcohol, guaiacol, geosmin, and benzaldehyde could be responsible for the unique aroma of Chinese rice wine. An aroma reconstitution model prepared by mixing 34 aroma compounds with OAVs > 1 in an odorless Chinese rice wine matrix showed a good similarity to the aroma of the original Chinese rice wine.

  2. Hydrogenation Reactions during Pyrolysis-Gas Chromatography/Mass Spectrometry Analysis of Polymer Samples Using Hydrogen Carrier Gas.

    PubMed

    Watanabe, Atsushi; Watanabe, Chuichi; Freeman, Robert R; Teramae, Norio; Ohtani, Hajime

    2016-05-17

    Pyrolysis-gas chromatography/mass spectrometry of polymer samples is studied focusing on the effect of hydrogen (H2) carrier gas on chromatographic and spectral data. The pyrograms and the related mass spectra of high density polyethylene (HDPE), low density polyethylene, and polystyrene (PS) serve to illustrate the differences between the species formed in H2 and the helium environment. Differences in the pyrograms and the spectra are generally thought to be a result of the hydrogenation reaction of the pyrolyzates. From the peak intensity changes in the pyrograms of HDPE and PS, hydrogenation of unsaturated pyrolyzates is concluded to occur when the pyrolysis is done in H2. Moreover, additional hydrogenation of the pyrolyzates occurs in the electron ionization source of a MS detector when H2 is used as a carrier gas. Finally, the applicability of mass spectral libraries to characterize pyrograms obtained in H2 is illustrated using 24 polymers. The effect of the hydrogenation reaction on the library search results is found to be negligible for most polymer samples with polar and nonpolar monomer units. PMID:27125864

  3. The fabrication of all-silicon micro gas chromatography columns using gold diffusion eutectic bonding

    NASA Astrophysics Data System (ADS)

    Radadia, A. D.; Salehi-Khojin, A.; Masel, R. I.; Shannon, M. A.

    2010-01-01

    Temperature programming of gas chromatography (GC) separation columns accelerates the elution rate of chemical species through the column, increasing the speed of analysis, and hence making it a favorable technique to speedup separations in microfabricated GCs (micro-GC). Temperature-programmed separations would be preferred in an all-silicon micro-column compared to a silicon-Pyrex® micro-column given that the thermal conductivity and diffusivity of silicon is 2 orders of magnitude higher than Pyrex®. This paper demonstrates how to fabricate all-silicon micro-columns that can withstand the temperature cycling required for temperature-programmed separations. The columns were sealed using a novel bonding process where they were first bonded using a gold eutectic bond, then annealed at 1100 °C to allow gold diffusion into silicon and form what we call a gold diffusion eutectic bond. The gold diffusion eutectic-bonded micro-columns when examined using scanning electron microscopy (SEM), scanning acoustic microscopy (SAM) and blade insertion techniques showed bonding strength comparable to the previously reported anodic-bonded columns. Gas chromatography-based methane injections were also used as a novel way to investigate proper sealing between channels. A unique methane elution peak at various carrier gas inlet pressures demonstrated the suitability of gold diffusion eutectic-bonded channels as micro-GC columns. The application of gold diffusion eutectic-bonded all-silicon micro-columns to temperature-programmed separations (120 °C min-1) was demonstrated with the near-baseline separation of n-C6 to n-C12 alkanes in 35 s.

  4. On-line gas-free electrodialytic eluent generator for capillary ion chromatography.

    PubMed

    Yang, Bingcheng; Takeuchi, Masaki; Dasgupta, Purnendu K

    2008-01-01

    Both low- and high-pressure, gas-free, capillary-scale electrodialytic generators for eluents in ion chromatography are described. While the low-pressure devices rely on planar or tubular membranes, the high-pressure devices rely on ion-exchange beads used both as one-way ionic gates and as ball-on-seat valves to provide sealing. The high-pressure device is easily implemented in the form of a commercial cross fitting and can withstand at least 1400 psi. By design these devices do not produce gas in the eluent channel; hence, it is not necessary to remove gas afterward. With appropriate electrolytes and electrode polarities, such devices can produce either acid or base or salt. In regard to ionic transport, the behavior of these devices fully corresponds to that of a semiconductor diode. To our knowledge, this is the first time such complete equivalence of ion transport through ion-exchange media and with the more familiar example of electron transport through a semiconductor diode under both forward- and reverse-biased conditions have been demonstrated. Reverse bias can be applied to minimize/prevent Donnan-forbidden leakage or ion exchange. Even with 4 M KOH in the electrode compartments and 4 microL/min water flowing through the eluent channel, with a reverse bias of -12 V, the leakage KOH concentration is <30 microM, whereas the KOH concentration with zero voltage applied, herein after termed open circuit penetration (OCP), is 1600 microM. It is suggested that this OCP occurs not as much through Donnan-forbidden leakage but via ion exchange. Chromatograms and reproducibility data are presented for both isocratic and gradient chromatography, using ion-exchange, latex-modified, open tubular and packed monolithic columns.

  5. Liquid chromatography "on-flow" 1H nuclear magnetic resonance on native glycosphingolipid mixtures together with gas chromatography/mass spectrometry on the released oligosaccharides for screening and characterisation of carbohydrate-based antigens from pig lungs.

    PubMed

    Bäcker, A E; Thorbert, S; Rakotonirainy, O; Hallberg, E C; Olling, A; Gustavsson, M; Samuelsson, B E; Soussi, B

    1999-01-01

    Glycosphingolipids were prepared from pig lung and pooled into two fractions with (i) < or = 3 sugar residues, and (ii) > or = 3 sugar residues. Oligosaccharides were prepared and used for gas chromatography, gas chromatography/mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry. The glycolipid fractions i and ii were further characterised and purified using a novel method based on high performance liquid chromatography "on-flow" proton nuclear magnetic resonance. The LC "on-flow" NMR technique showed good chromatographic separation and gave NMR spectral information which could be used as guidance for pooling of the separated mixture glycolipids. Conventional 1H NMR, thin layer immunostaining, gas chromatography, gas chromatography/mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry were used to characterise the glycolipids and to validate LC-NMR spectral data.

  6. Detection of radiation-induced hydrocarbons in Camembert irradiated before and after the maturing process-comparison of florisil column chromatography and on-line coupled liquid chromatography-gas chromatography

    SciTech Connect

    Schulzki, G.; Spiegelberg, A.; Schreiber, G.A.

    1995-02-01

    The influence of the maturing process on the detection of radiation-induced volatile hydrocarbons in the fat of Camembert has been investigated. Two analytical methods for separation of the hydrocarbon fraction from the lipid were applied: Florisil column chromatography with subsequent gas chromatographic-mass spectrometric (GC-MS) determination as well as on-line coupled liquid chromatography-GC-MS. The maturing process had no influence on the detection of radiation-induced volatiles. Comparable results were achieved with both analytical methods. However, preference is given to the more effective on-line coupled LC-GC method. 17 refs., 5 figs., 2 tabs.

  7. Extension of the two-dimensional mass channel cluster plot method to fast separations utilizing low thermal mass gas chromatography with time-of-flight mass spectrometry.

    PubMed

    Fitz, Brian D; Synovec, Robert E

    2016-03-24

    Implementation of a data reduction and visualization method for use with high-speed gas chromatography and time-of-flight mass spectrometry (GC-TOFMS) is reported. The method, called the "2D m/z cluster method" facilitates analyte detection, deconvolution, and identification, by accurately measuring peak widths and retention times using a fast TOFMS sampling frequency (500 Hz). Characteristics and requirements for high speed GC are taken into consideration: fast separations with narrow peak widths and high peak capacity, rapid data collection rate, and effective peak deconvolution. Transitioning from standard GC (10-60+ minute separations) to fast GC (1-10 min separations) required consideration of how to properly analyze the data. This report validates use of the 2D m/z cluster method with newly developed GC technology that produces ultra-fast separations (∼1 min) with narrow analyte peak widths. Low thermal mass gas chromatography (LTM-GC) operated at a heating rate of 250 °C/min coupled to a LECO Pegasus III TOFMS analyzed a 115 component test mixture in 120 s with peak widths-at-base, wb (4σ), of 350 ms (average) to produce a separation with a high peak capacity, nc ∼ 340 (at unit resolution Rs = 1). The 2D m/z cluster method is shown to separate overlapped analytes to a limiting Rs ∼ 0.03, so the effective peak capacity was increased nearly 30-fold to nc ∼10,000 in the 120 s separation. The method, when coupled with LTM-GC-TOFMS, is demonstrated to provide unambiguous peak rank (i.e. the number of analytes per overlapped peak in the total ion current (TIC)), by visualizing locations of pure and chromatographically overlapped m/z. Hence, peak deconvolution and identification using MCR-ALS (multivariate curve resolution - alternating least squares) is demonstrated.

  8. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  9. Towards 2D nanocomposites

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Sook; Yu, Changqian; Hayes, Robert; Granick, Steve

    2015-03-01

    Polymer vesicles (``polymersomes'') are an intriguing class of soft materials, commonly used to encapsulate small molecules or particles. Here we reveal they can also effectively incorporate nanoparticles inside their polymer membrane, leading to novel ``2D nanocomposites.'' The embedded nanoparticles alter the capacity of the polymersomes to bend and to stretch upon external stimuli.

  10. Development and application of a milli-whistle for use in gas chromatography detection.

    PubMed

    Lin, Cheng-Huang; Lin, Chien-Hung; Li, Yi-Shiuan; He, Yi-San

    2010-09-01

    A simple milli-whistle was developed for the use in GC (gas chromatography) detection, in which, compared to a thermal conductivity detector (TCD), 1 order of magnitude superior sensitivity can be obtained. The milli-whistle can be connected to the outlet of a GC capillary. The gas and makeup gas passing through the capillary produces a sound as it passes through the milli-whistle (i.e., the gas of the GC eluate). The sound can easily be detected by a microphone, which, after a Fourier transform (FT) by means of a LabVIEW (Laboratory Virtual Instrumentation Engineering Workbench) built-in program, a very sharp frequency peak (full width at half-maximum, approximately 1.6 Hz) can be simultaneously observed. As a result, GC elutes can be qualitatively determined on the basis of their retention times, and a quantitative analysis can be achieved on the basis of the frequency shifts. When the makeup and carrier gases used were nitrogen, in the case of gas samples, including hydrogen, helium, argon, and carbon dioxide, the limits of detection were found to be approximately 3 microL/each injection; in the case of liquid samples, including methanol, cyclohexane, tetrahydrofuran, hexane, and acetone, the limits of detection were determined to be approximately 10 microg/each injection, respectively. When the gases were changed to hydrogen, the limits of detection were dramatically improved. When acetone was selected as the model sample, a linear relationship was found in the range of 0.2-200 microg/injection.

  11. Aircraft measurements of nitrogen dioxide and peroxyacyl nitrates using luminol chemiluminescence with fast capillary gas chromatography

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.; Drayton, P.J.

    1997-09-01

    Peroxyacyl nitrates (PANs) and nitrogen dioxide (NO{sub 2}) are important trace gas species associated with photochemical air pollution. The PANs are in thermal equilibrium with the peroxyacetyl radical and NO{sub 2}. Because PANs are trapped peroxy radicals, they are an important indicator species of the photochemical age of an air parcel, as well as being a means of long-range transporting of NO{sub 2}, leading to the formation of regional ozone and other oxidants. Typically, PANs are measured by using a gas chromatograph with electron-capture detection (ECD). Once automated, this method has been shown to be reliable and quite sensitive, allowing the levels of PANs to be measured at low parts per trillion in the troposphere. Unfortunately, a number of other atmospheric gases also have strong ECD signals or act as inferences and limit the speed in which the analysis can be completed. Currently, the shortest analysis time for PAN is approx. 5 minutes with ECD. The authors recent examined the luminol detection of NO{sub 2} and PANs using gas capillary chromatography for rapid monitoring of these important trace gases. Analysis of the PANs (PAN, PPN, and PBN) and NO{sub 2} in one minute has been demonstrated in laboratory studies by using this approach. Reported here are modifications of this instrument for aircraft operation and preliminary results from test flights taken near Pasco, Washington in August of 1997.

  12. Microfluidic valve geometries and possibilities for flow switching in gas chromatography

    NASA Astrophysics Data System (ADS)

    Marriott, Philip J.; Eyres, Graham T.; Urban, Sylvia; Rühle, Christian

    2008-12-01

    Classical multi-(two-)dimensional separations in gas chromatography (GC) require switching systems to transfer the gas flow stream from the first to second dimension. This can be accomplished by valve systems, but is more suitably effected by pressure balanced systems, such as the Deans' switch method. Recent developments in microfluidics and related micro-technologies should make gas phase switching much more effective. The capillary flow technology platform of Agilent Technologies is an example of recent developments introduced to GC. Thus various Deans' switch pressure balanced devices, stream splitters, and column couplings bring new capabilities to analytical GC. We are uniquely placed to take advantage of the new devices, owing to our development of advanced operational methods in GC which can make use of microfluidic capillary couplings, and novel cryogenic approaches that deliver performance previously impossible with conventional methods. Multidimensional chromatographic flow switching to isolate pure compounds from complex mixtures suggests many potential applications for enhanced chemical analysis. Multiple dimensions of GC analysis, capabilities for integrating different spectroscopic detection methods for chemical identification of isolated chemical species including mass spectrometry, nuclear magnetic resonance and Fourier transform infrared, can be proposed. Applications in the essential oils and petrochemical area will be outlined.

  13. Metal Nanoparticles Protected with Monolayers: Applications for Chemical Vapor Sensing and Gas Chromatography

    SciTech Connect

    Grate, Jay W.; Nelson, David A.; Skaggs, Rhonda L.; Synovec, Robert E.; Gross, Gwen M.

    2004-03-31

    Nanoparticles and nanoparticle-based materials are of considerable interest for their unique properties and their potential for use in a variety of applications. Metal nanoparticles, in which each particle’s surface is coated with a protective organic monolayer, are of particular interest because the surface monolayer stabilizes them relative to aggregation and they can be taken up into solutions.(1-4) As a result they can be processed into thin films for device applications. We will refer to these materials as monolayer-protected nanoparticles, or MPNs. Typically the metal is gold, the organic layer is a self-assembled thiol layer, and this composition will be assumed throughout the remainder of this chapter. A diversity of materials and properties is readily accessible by straightforward synthetic procedures, either by the structures of the monolayer-forming thiols used in the synthesis or by post-synthetic modifications of the monolayers. A particularly promising application for these materials is as selective layers on chemical vapor sensors. In this role, the thin film of MPNs on the device surface serves to collect and concentrate gas molecules at the sensor’s surface. Their sorptive properties also lend them to use as new nanostructured gas chromatographic stationary phases. This chapter will focus on the sorptive properties of MPNs as they relate to chemical sensors and gas chromatography.

  14. Direct Measurement of Trace Elemental Mercury in Hydrocarbon Matrices by Gas Chromatography with Ultraviolet Photometric Detection.

    PubMed

    Gras, Ronda; Luong, Jim; Shellie, Robert A

    2015-11-17

    We introduce a technique for the direct measurement of elemental mercury in light hydrocarbons such as natural gas. We determined elemental mercury at the parts-per-trillion level with high precision [<3% RSD (n = 20 manual injection)] using gas chromatography with ultraviolet photometric detection (GC-UV) at 254 nm. Our approach requires a small sample volume (1 mL) and does not rely on any form of sample preconcentration. The GC-UV separation employs an inert divinylbenzene porous layer open tubular column set to separate mercury from other components in the sample matrix. We incorporated a 10-port gas-sampling valve in the GC-UV system, which enables automated sampling, as well as back flushing capability to enhance system cleanliness and sample throughput. Total analysis time is <2 min, and the procedure is linear over a range of 2-83 μg/m(3) [correlation coefficient of R(2) = 0.998] with a measured recovery of >98% over this range.

  15. Simultaneous analysis of polychlorinated biphenyls and organochlorine pesticides in seawater samples by membrane-assisted solvent extraction combined with gas chromatography-electron capture detector and gas chromatography-tandem mass spectrometry.

    PubMed

    Shi, Xizhi; Tang, Zigang; Sun, Aili; Zhou, Lei; Zhao, Jian; Li, Dexiang; Chen, Jiong; Pan, Daodong

    2014-12-01

    A highly efficient and environment-friendly membrane-assisted solvent extraction system combined with gas chromatography-electron capture detector was applied in the simultaneous determination of 17 polychlorinated biphenyls and organochlorine pesticides in seawater samples. Variables affecting extraction efficiency, including extraction solvent used, stirring rate, extraction time, and temperature, were optimized extensively. Under optimal extraction conditions, recoveries between 76.9% and 104.6% in seawater samples were achieved, and relative standard deviation values below 10% were obtained. The limit of detection (signal-to-noise ratio=3) and limit of quantification (signal-to-noise ratio=10) of 17 polychlorinated biphenyls and organochlorine pesticides in seawater ranged from 0.14ngL(-1) to 0.36ngL(-1) and 0.46ngL(-1) to 1.19ngL(-1), respectively. Matrix effects on extraction efficiency were evaluated by comparing with the results obtained using tap water. The extraction effect of developed membrane-assisted solvent extraction method was further demonstrated by gas chromatography-tandem mass spectrometry which can provide structural information of the analytes for more accurate identification, and results identical to those produced by gas chromatography-electron capture detector were obtained. These findings demonstrate the applicability of the developed membrane-assisted solvent extraction determination method for coupling to gas chromatography-electron capture detector or tandem mass spectrometry for determining polychlorinated biphenyls and organochlorine pesticides in seawater samples.

  16. Simultaneous analysis of polychlorinated biphenyls and organochlorine pesticides in seawater samples by membrane-assisted solvent extraction combined with gas chromatography-electron capture detector and gas chromatography-tandem mass spectrometry.

    PubMed

    Shi, Xizhi; Tang, Zigang; Sun, Aili; Zhou, Lei; Zhao, Jian; Li, Dexiang; Chen, Jiong; Pan, Daodong

    2014-12-01

    A highly efficient and environment-friendly membrane-assisted solvent extraction system combined with gas chromatography-electron capture detector was applied in the simultaneous determination of 17 polychlorinated biphenyls and organochlorine pesticides in seawater samples. Variables affecting extraction efficiency, including extraction solvent used, stirring rate, extraction time, and temperature, were optimized extensively. Under optimal extraction conditions, recoveries between 76.9% and 104.6% in seawater samples were achieved, and relative standard deviation values below 10% were obtained. The limit of detection (signal-to-noise ratio=3) and limit of quantification (signal-to-noise ratio=10) of 17 polychlorinated biphenyls and organochlorine pesticides in seawater ranged from 0.14ngL(-1) to 0.36ngL(-1) and 0.46ngL(-1) to 1.19ngL(-1), respectively. Matrix effects on extraction efficiency were evaluated by comparing with the results obtained using tap water. The extraction effect of developed membrane-assisted solvent extraction method was further demonstrated by gas chromatography-tandem mass spectrometry which can provide structural information of the analytes for more accurate identification, and results identical to those produced by gas chromatography-electron capture detector were obtained. These findings demonstrate the applicability of the developed membrane-assisted solvent extraction determination method for coupling to gas chromatography-electron capture detector or tandem mass spectrometry for determining polychlorinated biphenyls and organochlorine pesticides in seawater samples. PMID:25310709

  17. Determination of synthetic musk compounds in sewage biosolids by gas chromatography/mass spectrometry.

    PubMed

    Osemwengie, Lantis I

    2006-09-01

    A review of sewage sludge regulations and land application practices by the United States National Research Council (2002) recommended development of improved analytical techniques to adequately identify and quantify new chemical contaminants, such as synthetic musk compounds in Class A sewage sludge (i.e., biosolids). This prompted the development of a rugged analytical method using gas chromatography coupled to mass spectrometry to detect this group of organic pollutants in biosolids. In this paper, the term "biosolids" is used interchangeably with "sewage sludge", which is defined in the regulations and used in the statue (Clean Water Act). Samples of Class A biosolids obtained from sewage treatment plants in Los Angeles, California, the City of Las Vegas, Nevada, and also in the form of a commercial fertilizer, were extracted using pressurized liquid extraction technique, subjected to gel permeation chromatography clean-up, and analyzed by GC/MS using the selected ion monitoring mode. The method developed has the potential to detect synthetic musk compounds in complex matrices, may provide accurate data useful in human health and environmental risk assessment, and may be useful in determining the efficacy of municipal sewage treatment plants for removing synthetic musk compounds. PMID:16951749

  18. Saccharomyces cerevisiae oxidative response evaluation by cyclic voltammetry and gas chromatography-mass spectrometry.

    PubMed

    Castro, Cristiana C; Gunning, Caitriona; Oliveira, Carla M; Couto, José A; Teixeira, José A; Martins, Rui C; Ferreira, António C Silva

    2012-07-25

    This study is focused on the evaluation of the impact of Saccharomyces cerevisiae metabolism in the profile of compounds with antioxidant capacity in a synthetic wine during fermentation. A bioanalytical pipeline, which allows for biological systems fingerprinting and sample classification by combining electrochemical features with biochemical background, is proposed. To achieve this objective, alcoholic fermentations of a minimal medium supplemented with phenolic acids were evaluated daily during 11 days, for electrochemical profile, phenolic acids, and the volatile fermentation fraction, using cyclic voltametry, high-performance liquid chromatography-diode array detection, and headspace/solid-phase microextraction/gas chromatography-mass spectrometry (target and nontarget approaches), respectively. It was found that acetic acid, 2-phenylethanol, and isoamyl acetate are compounds with a significative contribution for samples metabolic variability, and the electrochemical features demonstrated redox-potential changes throughout the alcoholic fermentations, showing at the end a similar pattern to normal wines. Moreover, S. cerevisiae had the capacity of producing chlorogenic acid in the supplemented medium fermentation from simple precursors present in the minimal medium. PMID:22746983

  19. Determination of synthetic musk compounds in sewage biosolids by gas chromatography/mass spectrometry.

    PubMed

    Osemwengie, Lantis I

    2006-09-01

    A review of sewage sludge regulations and land application practices by the United States National Research Council (2002) recommended development of improved analytical techniques to adequately identify and quantify new chemical contaminants, such as synthetic musk compounds in Class A sewage sludge (i.e., biosolids). This prompted the development of a rugged analytical method using gas chromatography coupled to mass spectrometry to detect this group of organic pollutants in biosolids. In this paper, the term "biosolids" is used interchangeably with "sewage sludge", which is defined in the regulations and used in the statue (Clean Water Act). Samples of Class A biosolids obtained from sewage treatment plants in Los Angeles, California, the City of Las Vegas, Nevada, and also in the form of a commercial fertilizer, were extracted using pressurized liquid extraction technique, subjected to gel permeation chromatography clean-up, and analyzed by GC/MS using the selected ion monitoring mode. The method developed has the potential to detect synthetic musk compounds in complex matrices, may provide accurate data useful in human health and environmental risk assessment, and may be useful in determining the efficacy of municipal sewage treatment plants for removing synthetic musk compounds.

  20. High resolution capillary column development for selective separations in gas chromatography

    SciTech Connect

    Przybyciel, M.

    1985-01-01

    A review of techniques for the preparation of high resolution capillary columns for gas chromatography is presented. Surface roughing, surface deactivation, stationary phase coating, and stationary phase crosslinking are discussed. Criteria for the selection of GC stationary phases and procedures for column evaluation are presented. A method is proposed for the isolation and determination of crude oil contamination in tropical plants and sediments. The method uses Florisil (TM) chromatography for the simultaneous clean-up and fractionation of aliphatic and aromatic hydrocarbons. Crosslinked SE-54 fused silica capillary columns prepared in our laboratory were employed for all GC separations. Mass spectrometry was used to help locate and identify specific oil components despite the intense background of the chromatogram. Crude oil components were identified in extracts of mangrove plant samples collected from the Peck Slip oil spill site at Media Munda, Puerto Rico. Crude oil components were also identified in sediment samples from controlled oil spill of Prudhoe Bay oil at Laguna de Chiriqui, Panama.

  1. Issues pertaining to the analysis of buprenorphine and its metabolites by gas chromatography-mass spectrometry.

    PubMed

    Wang, Yu-Shan; Lin, Dong-Liang; Yang, Shu-Ching; Wu, Meng-Yan; Liu, Ray H; Su, Lien-Wen; Cheng, Pai-Sheng; Liu, Chiareiy; Fuh, Ming-Ren

    2010-03-01

    "Substitution therapy" and the use of buprenorphine (B) as an agent for treating heroin addiction continue to gain acceptance and have recently been implemented in Taiwan. Mature and widely utilized gas chromatography-mass spectrometry (GC-MS) technology can complement the low cost and highly sensitive immunoassay (IA) approach to facilitate the implementation of analytical tasks supporting compliance monitoring and pharmacokinetic/pharmacogenetic studies. Issues critical to GC-MS analysis of B and norbuprenorphine (NB) (free and as glucuronides), including extraction, hydrolysis, derivatization, and quantitation approaches were studied, followed by comparing the resulting data against those derived from IA and two types of liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. Commercial solid-phase extraction devices, highly effective for recovering all metabolites, may not be suitable for the analysis of free B and NB; acetyl-derivatization products exhibit the most favorable chromatographic, ion intensity, and cross-contribution characteristics for GC-MS analysis. Evaluation of IA, GC-MS, and LC-MS/MS data obtained in three laboratories has proven the 2-aliquot GC-MS protocol effective for the determination of free B and NB and their glucuronides. PMID:20122691

  2. [Simultaneous determination of nine preservatives in fruits using gas chromatography-mass spectrometry].

    PubMed

    Peng, Shunü; Wang, Qiuquan; Fang, Lanlan; Guo, Shanyong; Zeng, Zhouhua; Lin, Zhuguang

    2014-01-01

    A gas chromatography-mass spectrometry (GC-MS) method was established for the simultaneous determination of nine typical preservatives (pyrimethanil, chlorothalonil, chlorpyrifos, triadimefon, thiabendazole, imazalil, myclobutanil, iprodione, prochloraz) in fruits. The fruit samples were subjected to ultrasonic extraction with hexane/ethyl acetate (1/1, v/v), and followed by purification using diatomite column chromatography with hexane/ethyl acetate (1/3, v/v) eluant. Qualitative and quantitative analysis of the nine preservatives were performed on the GC-MS at full-scan (SCAN) and selected ion monitoring (SIM) modes, in which triphenylphosphate was used as the internal standard. The detection limits obtained for the nine preservatives were ranged from 0.10 microg/kg to 2.16 microg/kg. The average recoveries were in the range of 75.3% to 128% at the spiked levels of 50, 100 and 200 microg/kg with the relative standard deviations (RSDs) of 1.57% to 11.6% (n = 5). The results showed that the developed method is sensitive and accurate for the determination of the nine preservatives in fruits.

  3. Comparison of sensitivity between gas chromatography-low-resolution mass spectrometry and gas chromatography-high-resolution mass spectrometry for determining metandienone metabolites in urine.

    PubMed

    Kokkonen, J; Leinonen, A; Tuominen, J; Seppälä, T

    1999-11-12

    In doping control laboratories the misuse of anabolic androgenic steroids is commonly investigated in urine by gas chromatography-low-resolution mass spectrometry with selected ion monitoring (GC-LRMS-SIM). By using high-resolution mass spectrometry (HRMS) detection sensitivity is improved due to reduction of biological background. In our study HRMS and LRMS methods were compared to each other. Two different sets were measured both with HRMS and LRMS. In the first set metandienone (I) metabolites 17alpha-methyl-5beta-androstan-3alpha,17beta-dio l (II), 17-epimetandienone (III), 17beta-methyl-5beta-androst-1-ene-3alpha,17alpha-diol (IV) and 6beta-hydroxymetandienone (V) were spiked in urine extract prepared by solid-phase extraction, hydrolysis with beta-glucuronidase from Escherichia coli and liquid-liquid extraction. In the second set the metabolites were first spiked in blank urine samples of four male persons before pretreatment. Concentration range of the spiked metabolites was 0.1-10 ng/ml in both sets. With HRMS (resolution of 5000) detection limits were 2-10 times lower than with LRMS. However, also with the HRMS method the biological background hampered detection and compounds from matrix were coeluted with some metabolites. For this reason the S/N values of the metabolites spiked had to be first compared to S/N values of coeluted matrix compounds to get any idea of detection limits. At trace concentrations selective isolation procedures should be implemented in order to confirm a positive result. The results suggest that metandienone misuse can be detected by HRMS for a prolonged period after stopping the intake of metandienone. PMID:10595716

  4. Rapid quantification of dimethyl methylphosphonate from activated carbon particles by static headspace gas chromatography mass spectrometry.

    PubMed

    Mitchell, Brendan L; Billingsley, Brit G; Logue, Brian A

    2013-06-01

    Activated carbon (AC) particles are utilized as an adsorbent for binding hazardous vapors in protective equipment. The binding affinity and utilization of these AC particles should be known to ensure effective and efficient use. Therefore, a simple and effective method was developed for the quantification of the chemical warfare agent simulant, dimethyl methylphosphonate (DMMP), from AC particles. Static headspace gas chromatography mass-spectrometry with internal standard, DMMP-d6, was used to perform the analysis. The method produced a linear dynamic range of 2.48-620g DMMP/kg carbon and a detection limit of 1.24g DMMP/kg carbon. Furthermore, the method produced a coefficient of variation of less than 16% for all intra- and inter-assay analyses. The method provided a simple and effective procedure for quantifying DMMP from AC particles and was applied to the analysis of a DMMP-exposed AC protective respirator filter.

  5. Sample purification for the analysis of caffeine in tobacco by gas chromatography-mass spectrometry.

    PubMed

    Song, S; Ashley, D L

    1998-07-24

    A commonly used additive to tobacco products is cocoa. A sensitive an selective method was developed to measure caffeine, a marker for cocoa, in tobacco by using gas chromatography-mass spectrometry (GC-MS). Tobacco components usually produce high background signals in GC-MS analysis. Therefore, a series of extraction steps were designed to effectively purify the tobacco extracts. The analytical recovery of caffeine was 100 when [trimethyl-13C3] caffeine was used as an isotope-dilution reference. A linear calibration curve was generated with caffeine concentration ranging from 0.01 to 20 micrograms/ml. The detection limit of caffeine was 0.02 microgram/ml in the final solution. This method was applied to several commercial tobacco products, of which the corresponding caffeine levels varied from below the detection limit to 125 micrograms/g.

  6. Keto acid profiling analysis as ethoxime/tert-butyldimethylsilyl derivatives by gas chromatography-mass spectrometry.

    PubMed

    Nguyen, Duc-Toan; Lee, Gwang; Paik, Man-Jeong

    2013-01-15

    Organic acids, including keto acids, are key intermediates of central pathways in cellular metabolism. In this study, a comprehensive and reliable method was developed and optimized for the simultaneous measurement of 17 keto acids in various biological samples. The keto acids were converted to solvent extractable forms by ethoximation followed by tert-butyldimethylsilylation for direct analysis by gas chromatography-mass spectrometry in selected ion monitoring mode. The proposed method was precise (0.05-8.3, % RSD) and accurate (-10.5 to 5.3, % RE) with low limit of detection (0.01-0.5ng/mL) and good linearity (r>0.995) in the range of 0.01-5.0μg/mL. This was suitable for profiling analysis of targeted keto acids in human plasma, urine and rat brain tissue.

  7. Determination of linoleic acid in toothpaste by gas chromatography with flame ionization detection.

    PubMed

    Wejnerowska, Grazyna; Gackowska, Alicja; Gaca, Jerzy

    2008-06-01

    A new method for the determination of linoleic acid (LA) in toothpaste by a routine analysis has been proposed. Studies were based on the ISO 5509 procedure, which was modified for the purpose of LA determination in the toothpaste. Gas chromatography (GC) was employed for the qualitative and quantitative determination of linoleic acid methyl ester. The content of LA (5.31%) in sunflower oil added to the toothpaste composition (0.5%) was determined, and then the optimization studies for the determination of LA in the toothpaste samples were carried out. The relative standard deviation (RSD) of the procedure developed was 9.96% (n = 9). The quantitative analysis showed that the content of LA in the toothpaste samples studied was 0.0258 +/- 0.0011%. The detection limit of LA in toothpaste was approximately 0.001%.

  8. Accurate determination of fiber water-retaining capability at process conditions by headspace gas chromatography.

    PubMed

    Zhang, Shu-Xin; Chai, Xin-Sheng; He, Liang

    2016-09-16

    This work reports on a method for the accurate determination of fiber water-retaining capability at process conditions by headspace gas chromatography (HS-GC) method. The method was based the HS-GC measurement of water vapor on a set closed vials containing in a given amount pulp with different amounts of water addition, from under-saturation to over-saturation. By plotting the equilibrated water vapor signal vs. the amount of water added in pulp, two different trend lines can be observed, in which the transition of the lines corresponds to fiber water-retaining capability. The results showed that the HS-GC method has good measurement precision (much better than the reference method) and good accuracy. The present method can be also used for determining pulp fiber water-retaining capability at the process temperatures in both laboratory research and mill applications. PMID:27554029

  9. Rapid measurement of phytosterols in fortified food using gas chromatography with flame ionization detection.

    PubMed

    Duong, Samantha; Strobel, Norbert; Buddhadasa, Saman; Stockham, Katherine; Auldist, Martin; Wales, Bill; Orbell, John; Cran, Marlene

    2016-11-15

    A novel method for the measurement of total phytosterols in fortified food was developed and tested using gas chromatography with flame ionization detection. Unlike existing methods, this technique is capable of simultaneously extracting sterols during saponification thus significantly reducing extraction time and cost. The rapid method is suitable for sterol determination in a range of complex fortified foods including milk, cheese, fat spreads, oils and meat. The main enhancements of this new method include accuracy and precision, robustness, cost effectiveness and labour/time efficiencies. To achieve these advantages, quantification and the critical aspects of saponification were investigated and optimised. The final method demonstrated spiked recoveries in multiple matrices at 85-110% with a relative standard deviation of 1.9% and measurement uncertainty value of 10%.

  10. Use of Gas Chromatography-Mass Spectrometry (GC-MS) in Nonscience Major Course Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Kostecka, Keith S.; Lerman, Zafra M.; Angelos, Sanford A.

    1996-06-01

    Gas chromatography-mass spectrometry (GC-MS) has been utilized with nonscience majors in the courses: "Modern Methods in Science: Discovering Molecular Secrets"; "The Extraordinary Chemistry of Ordinary Things"; "From Ozone to Oil Spills: Chemistry, the Environment and You"; and "Crime Lab Chemistry: Solving Crime through Analytical Chemistry". Our efforts have centered on introducing prospective science communicators (film, video, radio, television, and journalism majors) to science relative to their majors and personal interests. Quality lecture-discussion topics, "mystery"-based laboratory activities have assisted in introducing and/or explaining specific areas of chemistry that attempt to reduce fear of subject matter. Students have also used GC-MS, as a form of alternative assessment, in course projects that have been based on their majors, personal interests, and cultural backgrounds. Students have also conducted advanced independent work in different areas of chemistry, including the analysis of nail polishes and lacquers and eleven aromatic compounds present in three different brands of gasoline.

  11. Quantitative detection of trace explosive vapors by programmed temperature desorption gas chromatography-electron capture detector.

    PubMed

    Field, Christopher R; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C; Rose-Pehrsson, Susan L

    2014-07-25

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples.

  12. Gas chromatography-mass spectrometry-based metabolic profiling of cerebrospinal fluid from epileptic dogs.

    PubMed

    Hasegawa, Tetsuya; Sumita, Maho; Horitani, Yusuke; Tamai, Reo; Tanaka, Katsuhiro; Komori, Masayuki; Takenaka, Shigeo

    2014-04-01

    Epilepsy is a common neurological disorder with seizures, but diagnostic approaches in veterinary clinics remain limited. Cerebrospinal fluid (CSF) is a body fluid used for diagnosis in veterinary medicine. In this study, we explored canine epilepsy diagnostic biomarkers using gas chromatography-mass spectrometry (GC-MS)-based metabolic profiling of CSF and multivariate data analysis. Profiles for subjects with idiopathic epilepsy differed significantly from those of healthy controls and subjects with symptomatic epilepsy. Among 60 identified metabolites, the levels of 20 differed significantly among the three groups. Glutamic acid was significantly increased in idiopathic epilepsy, and some metabolites including ascorbic acid were changed in both forms of epilepsy. These findings show that metabolic profiles of CSF differ between idiopathic and symptomatic epilepsy and that metabolites including glutamic acid and ascorbic acid in CSF may be useful for diagnosis of canine epilepsy.

  13. Applied analysis of lacquer films based on pyrolysis-gas chromatography/mass spectrometry.

    PubMed

    Lu, Rong; Kamiya, Yukio; Miyakoshi, Tetsuo

    2006-09-15

    Ancient lacquer film, a Nanban lacquer film, an old lacquer-ware object imported from an Asian country, and the Baroque and Rococo lacquer films were analyzed by pyrolysis-gas chromatography/mass spectrometry. Compared with the results of the natural lacquer film, it was revealed that the ancient lacquer film and Nanban lacquer film were made from Rhus vernicifera, and the old lacquer-ware imported from an Asian country was made from Melanorrhoea usitata. However, the Baroque and Rococo lacquer films obtained from the Doerner Institute in Munich, Germany were made from natural resins. 3-Pentadecylcatechol (MW=320) (urushiol), 3-heptadecylcatechol (MW=348) (laccol), and 4-heptadecylcatechol (MW=348) (thitsiol) were the main products of the pyrolysis of R. vernicifera, Rhus succedanea, and M. usitata. PMID:18970777

  14. Surface Lewis acid-base properties of polymers measured by inverse gas chromatography.

    PubMed

    Shi, Baoli; Zhang, Qianru; Jia, Lina; Liu, Yang; Li, Bin

    2007-05-18

    Surface Lewis acid-base properties are significant for polymers materials. The acid constant, K(a) and base constant, K(b) of many polymers were characterized by some researchers with inverse gas chromatography (IGC) in recent years. In this paper, the surface acid-base constants, K(a) and K(b) of 20 kinds of polymers measured by IGC in recent years are summarized and discussed, including seven polymers characterized in this work. After plotting K(b) versus K(a), it is found that the polymers can be encircled by a triangle. They scatter in two regions of the triangle. Four polymers exist in region I. K(b)/K(a) of the polymers in region I are 1.4-2.1. The other polymers exist in region II. Most of the polymers are relative basic materials.

  15. Accelerating analysis for metabolomics, drugs and their metabolites in biological samples using multidimensional gas chromatography.

    PubMed

    Mitrevski, Blagoj S; Kouremenos, Konstantinos A; Marriott, Philip J

    2009-05-01

    Gas chromatography (GC) with mass spectrometry (MS) is one of the great enabling analytical tools available to the chemical and biochemical analyst for the measurement of volatile and semi-volatile compounds. From the analysis result, it is possible to assess progress in chemical reactions, to monitor environmental pollutants in a wide range of soil, water or air samples, to determine if an athlete or horse trainer has contravened doping laws, or if crude oil has migrated through subsurface rock to a reservoir. Each of these scenarios and samples has an associated implementation method for GC-MS. However, few samples and the associated interpretation of data is as complex or important as biochemical sample analysis for trace drugs or metabolites. Improving the analysis in both the GC and MS domains is a continual search for better separation, selectivity and sensitivity. Multidimensional methods are playing important roles in providing quality data to address the needs of analysts.

  16. [Determination of doping in human urine by gas chromatography-high resolution mass spectrometry].

    PubMed

    Xing, Yan-Yi; Liu, Xin; Zhang, Yu-Mei; Wang, Xiao-Bing; Xu, You-Xuan

    2012-12-01

    A method was evaluated for determination of twenty-one doping (including nandrolone, boldenone and methandienone) in human urine by gas chromatography-high resolution mass spectrometry. Samples were prepared by liquid-liquid extraction, concentrated, TMS derivatization and limit of detection at ng x mL(-1) by MID/GC/HRMS. According to the code of the World Anti-Doping Agency (WADA), precision and recoveries of the procedure were evaluated by replicate analysis (n = 6), the recoveries in the range of 66%-103%, with the RSD below 10.0%. The precision within the day of the method with three different concentrations was also determined RSD were less than 9.5%, 10.0% and 9.7%. PMID:23460974

  17. Determination of Hexachlorocyclohexane by Gas Chromatography Combined with Femtosecond Laser Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Yang, Xixiang; Imasaka, Tomoko; Li, Adan; Imasaka, Totaro

    2016-09-01

    Structural isomers and enantiomers of hexachlorocyclohexane (HCH) were separated using a chiral column by gas chromatography and quantitatively determined by multiphoton ionization mass spectrometry using an ultraviolet femtosecond laser (200 and 267 nm) as the ionization source. The order of elution of the enantiomers (i.e., (+)-α-HCH and (-)-α-HCH) was predicted from stabilization energies calculated for the complexes using permethylated γ-cyclodextrin as the stationary phase of the column, and the results were compared with the experimental data. The molecular ions observed for HCH were weak, even though they can be ionized through a process of resonance enhanced two-photon ionization at 200 nm. This unfavorable result can be attributed to the dissociation of the molecular ion, as predicted from quantum chemical calculations.

  18. Analysis of acetamiprid in vegetables using gas chromatography-tandem mass spectrometry.

    PubMed

    Mateu-Sánchez, Manuel; Moreno, Mercedes; Arrebola, F Javier; Martínez Vidal, José Luis

    2003-05-01

    A new analytical method has been validated for determining the insecticide acetamiprid in vegetables using gas chromatography (OC) and different mass spectrometric detection techniques, such as full-scan mass spectrometry (MS), and tandem mass spectrometry (MS/MS). For this purpose, a previous extraction of the vegetable sample was carried out with ethyl acetate. In GC-MS/MS, the lowest detectable concentration was 0.001 mg kg(-1), the average recovery rates at various fortification levels (0.015 and 0.030 mg kg(-1)) ranged between 82.4 and 85.7% and the relative standard deviations were lower than 12.2% in all cases. PMID:12769368

  19. Determination of descriptors for fragrance compounds by gas chromatography and liquid-liquid partition.

    PubMed

    Karunasekara, Thushara; Poole, Colin F

    2012-04-27

    Retention factors on a minimum of eight stationary phases at various temperatures by gas-liquid chromatography and liquid-liquid partition coefficients for five totally organic biphasic systems were combined to estimate descriptors for 28 fragrance compounds with an emphasis on compounds that are known or potential allergens. The descriptors facilitated the estimation of several properties of biological and environmental interest (sensory irritation threshold, odor detection threshold, nasal pungency threshold, skin permeability from water, skin-water partition coefficients, octanol-water partition coefficients, absorption by air particles, adsorption by diesel soot particles, air-water partition coefficients, and adsorption by film water). The descriptors are suitable for use in the solvation parameter model and facilitate the estimation of a wide range of physicochemical, chromatographic, biological, and environmental properties using existing models.

  20. Identification of 19 phthalic acid esters in dairy products by gas chromatography with mass spectrometry.

    PubMed

    Wu, Pinggu; Cai, Chenggang; Yang, Dajin; Wang, Liyuan; Zhou, Yan; Shen, Xianghong; Ma, Bingjie; Tang, Jun

    2015-01-01

    A detection method for 19 kinds of phthalic acid ester compounds analyzed by n-hexane/ether/acetonitrile 1:7:8 v/v/v mixed solvent extraction, quick, easy, cheap, effective, rugged, and safe purification and internal standard method of quantitative gas chromatography with mass spectrometry was established. This method can effectively remove interfering materials, such as lipids, fatty acids, and pigments, from dairy products. The 19 kinds of phthalic acid ester compounds were within a 0.025-0.2 mg/kg range, the recovery rate was 65.2-125.7%, relative standard deviation was 7.9-15.4% (n = 6), and the limit of detection was 0.005-0.02 mg/kg. Concentrations of the 19 kinds of phthalic acid ester compounds ranged between 0.01 and 0.12 mg/kg in ten dairy materials and 20 dairy products. The established method is simple, rapid, accurate, and highly sensitive.

  1. Pyrolysis gas chromatography-mass spectrometry of polychlorinated biphenyls on sediment

    SciTech Connect

    McMurtrey, K.D.; Wildman, N.J.; Tai, H.

    1983-12-01

    Polychlorinated biphenyls (PCBs) are common environmental contaminants which were freely employed for many years in numerous industrial applications but whose use has now been regulated. Many analytical schemes for monitoring these materials in environmental samples have been developed over the last decades, however, PCBs remain difficult analytical subjects. Most protocols rely on a combination of wet chemical pre-analytical isolation and purification whose complexity depends on the sample matrix. The time required for these manipulations may greatly hamper efforts directed towards emergency cleanup of accidental or illicit contamination of the environment. Thus, a clear need exists for methods which will allow rapid analysis of relatively intransigent samples for PCB contamination. Preliminary experiments directed to assessing the use of pyrolysis/gas chromatography/mass spectrometry in determining PCB contamination of soils and sediments are reported. In these experiments pyrolytic desorption at 1000/sup 0/C during 10 sec was used to completely replace more lengthy wet chemical manipulations.

  2. Gas Chromatography/Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry for Fingerprinting the Macondo Oil Spill.

    PubMed

    Lobodin, Vladislav V; Maksimova, Ekaterina V; Rodgers, Ryan P

    2016-07-01

    We report the first application of a new mass spectrometry technique (gas chromatography combined to atmospheric pressure chemical ionization tandem mass spectrometry, GC/APCI-MS/MS) for fingerprinting a crude oil and environmental samples from the largest accidental marine oil spill in history (the Macondo oil spill, the Gulf of Mexico, 2010). The fingerprinting of the oil spill is based on a trace analysis of petroleum biomarkers (steranes, diasteranes, and pentacyclic triterpanes) naturally occurring in crude oil. GC/APCI enables soft ionization of petroleum compounds that form abundant molecular ions without (or little) fragmentation. The ability to operate the instrument simultaneously in several tandem mass spectrometry (MS/MS) modes (e.g., full scan, product ion scan, reaction monitoring) significantly improves structural information content and sensitivity of analysis. For fingerprinting the oil spill, we constructed diagrams and conducted correlation studies that measure the similarity between environmental samples and enable us to differentiate the Macondo oil spill from other sources.

  3. Determination of pyrethroid residues in tobacco and cigarette smoke by capillary gas chromatography.

    PubMed

    Cai, Jibao; Liu, Baizhan; Zhu, Xiaolan; Su, Qingde

    2002-07-26

    The extraction of fenpropathrin, cyhalothrin, cypermethrin, fenvalerate and deltamethrin from tobacco (Nicotina tobaccum) and cigarette smoke condensate with acetone, followed by partition of resulting acetone mixture with petroleum ether, was investigated and found suitable for capillary gas chromatography (GC) residue analysis. Florisil column clean-up was found to provide clean-up procedure for tobacco and cigarette smoke condensate permitting analysis to < or = 0.01 microgram.g-1 for most of the pyrethroids by GC with a 63Ni electron capture detector (GC-ECD). Quantitative determination was obtained by the method of external standards. Cigarettes made from flue-cured tobacco spiked with different amounts of pyrethroids were used and the pyrethroid levels in mainstream smoke were determined. For all the pyrethroid residues, 1.51-15.50% were transferred from tobacco into cigarette smoke.

  4. Effects of the sniffing port air makeup in gas chromatography-olfactometry.

    PubMed

    Hanaoka, K; Sieffermann, J M; Giampaoli, P

    2000-06-01

    A time-intensity gas chromatography-olfactometry (GCO) apparatus was developed to study some aerodynamic parameters that may influence odor detection and intensity measurements by the subjects. The addition of humidified air at the elution place of the compounds is generally recommended for several reasons (essentially to prevent nasal mucosa dehydration and to improve chromatographic effluent carriage out of the column), but clues about these effects are yet to be published. This question is studied through two complementary experiments using synthetic solutions of 3-methyl-1-butanethiol, hexan-2-one, octanal, nonanal, furfural, citronellal, benzaldehyde, octan-1-ol, 2-phenylethyl acetate, guaiacol, 2-phenylethanol, and vanillin. This work demonstrates the need for an air makeup to increase odor detection frequency and intensity rating. With the conditions tested, a minimum makeup air flow rate of 50 L.min(-)(1) is necessary. On the contrary, humidification of the makeup is useless for the sniffers comfort and to improve the quantitative GCO results.

  5. Analysis of Iranian rosemary essential oil: application of gas chromatography-mass spectrometry combined with chemometrics.

    PubMed

    Jalali-Heravi, Mehdi; Moazeni, Rudabeh Sadat; Sereshti, Hassan

    2011-05-01

    This paper focuses on characterization of the components of Iranian rosemary essential oil using gas chromatography-mass spectrometry (GC-MS). Multivariate curve resolution (MCR) approach was used to overcome the problem of background, baseline offset and overlapping/embedded peaks in GC-MS. The analysis of GC-MS data revealed that sixty eight components exist in the rosemary essential oil. However, with the help of MCR this number was extended to ninety nine components with concentrations higher than 0.01%, which accounts for 98.23% of the total relative content of the rosemary essential oil. The most important constituents of the Iranian rosemary are 1,8-cineole (23.47%), α-pinene (21.74%), berbonone (7.57%), camphor (7.21%) and eucalyptol (4.49%).

  6. Through the years with on-a-chip gas chromatography: a review.

    PubMed

    Haghighi, F; Talebpour, Z; Sanati-Nezhad, A

    2015-06-21

    In recent years, the need for measurement and detection of samples in situ or with very small volume and low concentration (low and sub-parts per billion) is a cause for miniaturizing systems via microelectromechanical system (MEMS) technology. Gas chromatography (GC) is a common technique that is widely used for separating and measuring semi-volatile and volatile compounds. Conventional GCs are bulky and cannot be used for in situ analysis, hence in the past decades many studies have been reported with the aim of designing and developing chip-based GC. The focus of this review is to follow and investigate the development and the achievements in the field of chip-based GC and its components from the beginning up to the present.

  7. H2S Analysis in Biological Samples Using Gas Chromatography with Sulfur Chemiluminescence Detection

    PubMed Central

    Vitvitsky, Victor; Banerjee, Ruma

    2015-01-01

    Hydrogen sulfide (H2S) is a metabolite and signaling molecule in biological tissues that regulates many physiological processes. Reliable and sensitive methods for H2S analysis are necessary for a better understanding of H2S biology and for the pharmacological modulation of H2S levels in vivo. In this chapter, we describe the use of gas chromatography coupled to sulfur chemiluminescence detection to measure the rates of H2S production and degradation by tissue homogenates at physiologically relevant concentrations of substrates. This method allows separation of H2S from other sulfur compounds and provides sensitivity of detection to ~15 pg (or 0.5 pmol) of H2S per injected sample. PMID:25725519

  8. Characterization of gamma irradiated petrolatum eye ointment base by headspace-gas chromatography-mass spectrometry.

    PubMed

    Hong, Lan; Altorfer, Hans

    2002-06-20

    The effects of gamma irradiation on petrolatum eye ointment base (EOB) and its ingredients (white petrolatum, liquid paraffin, and wool fat) were studied at different irradiation doses. Forty-one volatile radiolysis products were detected and identified by a combined system of headspace-gas chromatography-mass spectrometry (HS-GC-MS). The characteristics of the radiolysis products and the degradation pathway were discussed in each case, respectively. GC method demonstrates that the component distribution patterns of eye ointment as well as its individual ingredients have no differences before and after gamma irradiation. The influence of gamma treatment on EOB was quantitatively determined at 15, 25 and 50 kGy. The concentrations of the radiolysis products increase linearly with increasing doses. Both qualitative and quantitative data show that irradiated eye ointment is safe for human use.

  9. Application of inverse gas chromatography in physicochemical characterization of phenolic resin adhesives.

    PubMed

    Strzemiecka, Beata; Voelkel, Adam; Hinz, Mateusz; Rogozik, Mateusz

    2014-11-14

    One of the most important stages during production of abrasive tools is their hardening. The degree of hardening is very important and influence toughness of the final product. During hardening process the cross-linking of the phenolic resins, used as a binder, occurs. Nowadays, there is no standard, accurate and simple method for the estimation of the hardening degree of abrasive tools. The procedure of the determination of hardening degree of the binder (phenolic resins) by means of inverse gas chromatography (IGC) was presented in this paper. Results obtained by use of IGC derived method was verified by Soxhlet extraction and by FTIR method. Good agreement was found for results from IGC and Soxhlet extraction whereas those from FTIR were much lower. FTIR method supplies data concerning bulk properties not the surface as in case of IGC and Soxhlet methods. These results indicate that resins are more cross-linked on the surface than inside the material.

  10. Rapid determination of moisture content in paper materials by multiple headspace extraction gas chromatography.

    PubMed

    Xie, Wei-Qi; Chai, Xin-Sheng

    2016-04-22

    This paper describes a new method for the rapid determination of the moisture content in paper materials. The method is based on multiple headspace extraction gas chromatography (MHE-GC) at a temperature above the boiling point of water, from which an integrated water loss from the tested sample due to evaporation can be measured and from which the moisture content in the sample can be determined. The results show that the new method has a good precision (with the relative standard deviation <0.96%), high sensitivity (the limit of quantitation=0.005%) and good accuracy (the relative differences <1.4%). Therefore, the method is quite suitable for many uses in research and industrial applications. PMID:27033986

  11. Through the years with on-a-chip gas chromatography: a review.

    PubMed

    Haghighi, F; Talebpour, Z; Sanati-Nezhad, A

    2015-06-21

    In recent years, the need for measurement and detection of samples in situ or with very small volume and low concentration (low and sub-parts per billion) is a cause for miniaturizing systems via microelectromechanical system (MEMS) technology. Gas chromatography (GC) is a common technique that is widely used for separating and measuring semi-volatile and volatile compounds. Conventional GCs are bulky and cannot be used for in situ analysis, hence in the past decades many studies have been reported with the aim of designing and developing chip-based GC. The focus of this review is to follow and investigate the development and the achievements in the field of chip-based GC and its components from the beginning up to the present. PMID:25994317

  12. Verification of chemical composition of commercially available propolis extracts by gas chromatography-mass spectrometry analysis.

    PubMed

    Czyżewska, Urszula; Konończuk, Joanna; Teul, Joanna; Drągowski, Paweł; Pawlak-Morka, Renata; Surażyński, Arkadiusz; Miltyk, Wojciech

    2015-05-01

    Propolis is a resin that is collected by honeybees from various plant sources. Due to its pharmacological properties, it is used in commercial production of nutritional supplements in pharmaceutical industry. In this study, gas chromatography-mass spectrometry was applied for quality control analysis of the three commercial specimens containing aqueous-alcoholic extracts of bee propolis. More than 230 constituents were detected in analyzed products, including flavonoids, chalcones, cinnamic acids and their esters, phenylpropenoid glycerides, and phenylpropenoid sesquiterpenoids. An allergenic benzyl cinnamate ester was also identified in all tested samples. This analytical method allows to evaluate biological activity and potential allergenic components of bee glue simultaneously. Studies on chemical composition of propolis samples may provide new approach to quality and safety control analysis in production of propolis supplementary specimens.

  13. Gas chromatography/mass spectrometry for the determination of nitrosamines in red wine.

    PubMed

    Lona-Ramirez, Fernando J; Gonzalez-Alatorre, Guillermo; Rico-Ramírez, Vicente; Perez-Perez, Ma Cristina I; Castrejón-González, Edgar O

    2016-04-01

    N-nitrosamines (NAms) are highly active carcinogens that have been detected in food and beverages. Currently certain studies report their presence in red wine, while others fail to detect their presence. In this study the head space solid phase micro-extraction technique coupled to gas chromatography-mass spectrometry (HS-SPME-GC-MS) was applied to quantify four NAms in different types of red wine. The technique was found to be a simple, precise, fast and environmentally friendly alternative for the quantification of volatile NAms. A factorial analysis was carried out to evaluate the influence of the parameters on the HS-SPME technique. This is the first study that such analysis has been reported and where NAms in red wine have been quantified using HS-SPME-GC-MS. The method was validated by calculating the linearity, limit of detection and quantification. Two of the four NAms analyzed were found to be present in red wine samples.

  14. Quantitative detection of trace explosive vapors by programmed temperature desorption gas chromatography-electron capture detector.

    PubMed

    Field, Christopher R; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C; Rose-Pehrsson, Susan L

    2014-01-01

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples. PMID:25145416

  15. Spectral deconvolution for gas chromatography mass spectrometry-based metabolomics: current status and future perspectives.

    PubMed

    Du, Xiuxia; Zeisel, Steven H

    2013-01-01

    Mass spectrometry coupled to gas chromatography (GC-MS) has been widely applied in the field of metabolomics. Success of this application has benefited greatly from computational workflows that process the complex raw mass spectrometry data and extract the qualitative and quantitative information of metabolites. Among the computational algorithms within a workflow, deconvolution is critical since it reconstructs a pure mass spectrum for each component that the mass spectrometer observes. Based on the pure spectrum, the corresponding component can be eventually identified and quantified. Deconvolution is challenging due to the existence of co-elution. In this review, we focus on progress that has been made in the development of deconvolution algorithms and provide thoughts on future developments that will expand the application of GC-MS in metabolomics.

  16. Gas chromatography on wall-coated open-tubular columns with ionic liquid stationary phases.

    PubMed

    Poole, Colin F; Lenca, Nicole

    2014-08-29

    Ionic liquids have moved from novel to practical stationary phases for gas chromatography with an increasing portfolio of applications. Ionic liquids complement conventional stationary phases because of a combination of thermophysical and solvation properties that only exist for ionic solvents. Their high thermal stability and low vapor pressure makes them suitable as polar stationary phases for separations requiring high temperatures. Ionic liquids are good solvents and can be used to expand the chemical space for separations. They are the only stationary phases with significant hydrogen-bond acidity in common use; they extend the hydrogen-bond basicity of conventional stationary phases; they are as dipolar/polarizable as the most polar conventional stationary phases; and some ionic liquids are significantly less cohesive than conventional polar stationary phases. Problems in column coating techniques and related low column performance, column activity, and stationary phase reactivity require further exploration as the reasons for these features are poorly understood at present.

  17. Rapid quantification of dimethyl methylphosphonate from activated carbon particles by static headspace gas chromatography mass spectrometry.

    PubMed

    Mitchell, Brendan L; Billingsley, Brit G; Logue, Brian A

    2013-06-01

    Activated carbon (AC) particles are utilized as an adsorbent for binding hazardous vapors in protective equipment. The binding affinity and utilization of these AC particles should be known to ensure effective and efficient use. Therefore, a simple and effective method was developed for the quantification of the chemical warfare agent simulant, dimethyl methylphosphonate (DMMP), from AC particles. Static headspace gas chromatography mass-spectrometry with internal standard, DMMP-d6, was used to perform the analysis. The method produced a linear dynamic range of 2.48-620g DMMP/kg carbon and a detection limit of 1.24g DMMP/kg carbon. Furthermore, the method produced a coefficient of variation of less than 16% for all intra- and inter-assay analyses. The method provided a simple and effective procedure for quantifying DMMP from AC particles and was applied to the analysis of a DMMP-exposed AC protective respirator filter. PMID:23639122

  18. [Determination of primary aromatic amines in crayons gas chromatography-mass spectrometry].

    PubMed

    Kang, Suyuan; Zhang, Qing; Bai, Hua; Wang, Chao; Lü, Qing

    2011-05-01

    A method for the determination of nine primary aromatic amines in crayon by solid phase extraction (SPE) and gas chromatography-mass spectrometry (GC-MS) was developed. The alkanes in the sample were removed with n-hexane. Then the sample was extracted twice with ultrasonic extraction by methanol. The extract was evaporated, then the concentrated solution reacted with the reducing agent (sodium hydrosulfite) for 30 min at 70 degrees C. After the extraction with a diatomite SPE column, the aromatic amines were collected and separated on an HP-5M column, determined by MS. The nine primary aromatic amines can be separated and determined successfully. Under the optimized conditions, the detection limits were 5 mg/kg and the spiked recoveries of the samples were in the range of 86.02%-102.43%. The method is accurate and stable. It can be applied in the analysis of the primary aromatic amine of real crayon samples. PMID:21847976

  19. Rapid determination of moisture content in paper materials by multiple headspace extraction gas chromatography.

    PubMed

    Xie, Wei-Qi; Chai, Xin-Sheng

    2016-04-22

    This paper describes a new method for the rapid determination of the moisture content in paper materials. The method is based on multiple headspace extraction gas chromatography (MHE-GC) at a temperature above the boiling point of water, from which an integrated water loss from the tested sample due to evaporation can be measured and from which the moisture content in the sample can be determined. The results show that the new method has a good precision (with the relative standard deviation <0.96%), high sensitivity (the limit of quantitation=0.005%) and good accuracy (the relative differences <1.4%). Therefore, the method is quite suitable for many uses in research and industrial applications.

  20. Gas chromatography of safranal as preferable method for the commercial grading of saffron (Crocus sativus L.).

    PubMed

    Bononi, Monica; Milella, Paola; Tateo, Fernando

    2015-06-01

    We present a new extraction protocol, using ethyl alcohol as a solvent, to evaluate safranal by gas chromatography (GC). A linear response was obtained with R(2)=0.995 and a reproducibility standard deviation of 4.7-6.0%. The limit of detection and limit of quantitation were 0.05 and 0.25gkg(-1), respectively. The GC data for several samples of powdered saffron from different origins were compared to specific absorbance values measured according to the ISO Normative 3632-1:2011 method. The aroma strength of saffron samples quantitated by GC and the specific absorbance values of safranal by the UV method did not correlate. Quantitative evaluation of safranal by GC appears to be more specific and useful for commercial comparisons of saffron quality.

  1. Solvating gas chromatography with chemiluminescence detection of nitroglycerine and other explosives.

    PubMed

    Bowerbank, C R; Smith, P A; Fetterolf, D D; Lee, M L

    2000-12-15

    A separation technique known as solvating gas chromatography (SGC), which utilizes packed capillary columns and neat carbon dioxide as mobile phase, was used for the separation of nitroglycerine (NG) and other nitrogen-containing explosives including 2,6-dinitrotoluene (2,6-DNT), 2,4-dinitrotolulene (2,4-DNT), 2,4,6-trinitrotoluene (2,4,6-TNT), and pentaerythritol tetranitrate (PETN). SGC was coupled for the first time to a selective chemiluminescence thermal energy analyzer (TEA) detector for nitro-functional group specificity and sensitive detection of these compounds. TEA calibration curve for NG showed linearity in the sub-microg ml(-1) range. Soil samples containing NG were used to test the validity of the technique. Detector response of SGC-TEA versus SGC-flame ionization detection for NG was also evaluated. PMID:11192173

  2. Determination of dexamethasone in urine by gas chromatography with negative chemical ionization mass spectrometry.

    PubMed

    Huetos Hidalgo, Olga; Jiménez López, Manuel; Ajenjo Carazo, Elisa; San Andrés Larrea, Manuel; Reuvers, Thea B A

    2003-05-01

    Dexamethasone, as some other synthetic corticosteroids, is licensed for therapy in veterinary practice, but its misuse as a growth promotor, often in combination with beta-agonists, is forbidden. In this report an analytical method is described for the detection and confirmation of very low concentrations of dexamethasone in urine. The influence of enzymatic hydrolysis time of samples with glucuronidase was studied. The proposed method consisted of the enzymatic hydrolysis of urine samples, which were then extracted and concentrated using solid-phase cartridges with mixed reversed-phase materials (OASIS). No further clean-up step was found to be necessary. Eluates were derivatized following a previously described method [Analyst 119 (1994) 2557]. Detection, identification and quantification of residues of this compound was carried out by gas chromatography with mass spectrometry in the negative chemical ionization mode. The proposed procedure permits the determination of dexamethasone in urine at levels as low as 0.2 ng ml(-1)

  3. Determination of phthalates in diet and bedding for experimental animals using gas chromatography-mass spectrometry.

    PubMed

    Kondo, Fumio; Okumura, Masanao; Oka, Hisao; Nakazawa, Hiroyuki; Izumi, Shun-Ichiro; Makino, Tsunehisa

    2010-02-01

    We have developed a gas chromatography-mass spectrometry method to measure five phthalates (dibutyl phthalate, butylbenzyl phthalate, di-2-ethylhexyl phthalate, diisooctyl phthalate, and diisononyl phthalate) in diets and beddings for experimental animals. The recoveries from diets and beddings spiked with five phthalates were 98.8%-148% with coefficients of variation of 0.4%-7.8% for diets and 94.7%-146% with coefficients of variation of 1.0%-5.0% for beddings. We analyzed commercial animal diets and beddings, and found that the levels of phthalates varied from sample to sample; the concentrations of five phthalates were 141-1,410 ng/g for diets and 20.5-7,560 ng/g for beddings.

  4. Buprenorphine and norbuprenorphine determination in mice plasma and brain by gas chromatography-mass spectrometry.

    PubMed

    Chiadmi, Fouad; Schlatter, Joël

    2014-01-01

    A gas chromatography tandem mass spectrometry method for quantification of buprenorphine (BUP) and norbuprenorphine (NBUP) in brain and plasma samples from mice was developed and validated. Analytes were extracted from the brain or plasma by solid phase extraction and quantified within 20 minutes. Calibration was achieved by linear regression with a 1/x weighting factor and d4-buprenorphine internal standard. All products were linear from 1 to 2000 ng/mL with a correlation of determination >0.99. Assay accuracy and precision of back-calculated standards were within ±10%. The lower limit of quantification for both BUP and NBUP from the brain and plasma was 1 ng/mL. This sensitive and specific method can be used for the investigation of BUP mechanism of action and clinical profile. PMID:24653644

  5. Determination of nitrated polycyclic aromatic hydrocarbons in diesel particulates by gas chromatography with chemiluminescent detection

    SciTech Connect

    Yu, W.C.; Fine, D.H.; Chiu, S.K.; Biemann, K.

    1984-06-01

    An analytical technique is described for the determination of nitrated polycyclic aromatic hydrocarbons (nitro-PAH) in diesel particulates. It involves the use of capillary gas chromatography for the separation of nitro-PAH and subsequent detection by chemiluminescence. The detection limit of the method is determined to 10-25 pg injected on-column. 1-Nitronaphthalene, 2-nitronaphthalene, 2-nitrofluorene, and 1-nitropyrene were selectively detected in the sample. The presence of 1-nitronaphthalene and 1-nitropyrene were unequivocally confirmed by mass spectrometry. Because of detector selectivity to nitro compounds, the presence of PAH and related derivatives does not interfere with the analysis. The technique is useful for the screening of nitroaromatics in complex environmental samples. 35 references, 3 figures, 2 tables.

  6. Investigation of thermodynamic properties of hyperbranched aliphatic polyesters by inverse gas chromatography.

    PubMed

    Dritsas, G S; Karatasos, K; Panayiotou, C

    2009-12-18

    Thermodynamic properties of a series of commercial hyperbranched aliphatic polyesters (Boltorn H20, H30 and H40) were examined for the first time by inverse gas chromatography (IGC) using 13 different solvents at infinite dilution as probes. Retention data of probes were utilized for an extensive characterization of polymers, which includes the determination of the Flory-Huggins interaction parameter, the weight fraction activity coefficient as well as the total and partial solubility parameters. Analysis of the results indicated that the total and partial solubility parameters decrease with increase of temperature. Furthermore, upon increase of the molecular weight, while the hydrogen bonding component decreases, no influence on the total solubility parameter is noticed within the experimental error margins. Results from the present study while providing new insight to the thermodynamic characteristics of the examined systems, they are also expected to reflect more general aspects of the behavior of hyperbranched polymers bearing similar end-groups.

  7. Rapid measurement of phytosterols in fortified food using gas chromatography with flame ionization detection.

    PubMed

    Duong, Samantha; Strobel, Norbert; Buddhadasa, Saman; Stockham, Katherine; Auldist, Martin; Wales, Bill; Orbell, John; Cran, Marlene

    2016-11-15

    A novel method for the measurement of total phytosterols in fortified food was developed and tested using gas chromatography with flame ionization detection. Unlike existing methods, this technique is capable of simultaneously extracting sterols during saponification thus significantly reducing extraction time and cost. The rapid method is suitable for sterol determination in a range of complex fortified foods including milk, cheese, fat spreads, oils and meat. The main enhancements of this new method include accuracy and precision, robustness, cost effectiveness and labour/time efficiencies. To achieve these advantages, quantification and the critical aspects of saponification were investigated and optimised. The final method demonstrated spiked recoveries in multiple matrices at 85-110% with a relative standard deviation of 1.9% and measurement uncertainty value of 10%. PMID:27283669

  8. Retention indices by wide-bore capillary gas chromatography with nitrogen-phosphorus detection.

    PubMed

    Christ, D W; Noomano, P; Rosas, M; Rhone, D

    1988-01-01

    The use of wide-bore capillary columns in gas chromatography (GC) with nitrogen-phosphorus detectors (NPD) is gaining popularity in the toxicology laboratory. Though the preferred method to achieve reproducible results and to make interlaboratory comparisons of GC data is by retention index (RI), the selectivity of the NPD has relegated its users to calculations of relative retention time. The present study utilizes a set of drugs as reference standards under temperature programmed conditions and presents a unique method of RI calculation. RI calculations are highly reproducible with this technique (day-to-day variations range from 0.3 to 3.4 RI units) and are comparable to packed column, FID generated reference data. A program, written in Basic, calculates RI values based on daily injections of the reference standards and searches a library of over 100 basic and acidic drugs. PMID:3379927

  9. Multiresidue analysis of 30 organochlorine pesticides in milk and milk powder by gel permeation chromatography-solid phase extraction-gas chromatography-tandem mass spectrometry.

    PubMed

    Zheng, Guocan; Han, Chao; Liu, Yi; Wang, Jing; Zhu, Meiwen; Wang, Chengjun; Shen, Yan

    2014-10-01

    A method for simultaneous determination of the 30 organochlorine pesticides (OCP) in milk and milk powder samples has been developed. Prior to the gas chromatography-tandem mass spectrometric analysis, the residual OCP in samples were extracted with n-hexane and acetone mixture (1/1, vol/vol) and cleaned up by gel permeation chromatography and solid phase extraction. Selected reaction monitoring mode was used for gas chromatography-tandem mass spectrometric data acquisition to identify and quantify the OCP. To avoid the matrix effects, matrix-matched calibration solutions ranging from 2 to 50 ng/mL were used to record the calibration curve. Limits of quantification of all OCP were 0.8 μg/kg. With the exception of endrin, limits of quantification are significantly lower than maximum residue limits set by the European Union and China. The average recoveries were in the range of 70.1 to 114.7% at 3 spiked concentration levels (0.8, 2.0, and 10.0 μg/kg) with residual standard deviation lower than 12.9%. The developed method was successfully applied to analyze the OCP in commercial milk products.

  10. Analysis of 4-bromo-3-fluorobenzaldehyde and separation of its regioisomers by one-dimensional and two-dimensional gas chromatography.

    PubMed

    Shen, Bo; Semin, David; Fang, Jan; Guo, Gary

    2016-09-01

    A starting material, 4-bromo-3-fluorobenzaldehyde, was used for active drug substance (API) AMG 369 production. The presence of the regioisomer impurities in the starting material 4-bromo-3-fluorobenzaldehyde presented significant challenges for the API synthetic route development due to the physical-chemical similarities of the impurities. These impurities significantly impact on the purity of the starting-material and final drug substance. Control of these impurities is important due to the potential genotoxicity of these impurities (p-GTI). Analytical development was carried out to develop GC methods with high resolving power and high sensitivity to quantify the regioisomers presented in starting material and therefore to control the purity of the starting material and the final drug substance. In the study, complete resolution of the ten regioisomers by 1D-GC and heart-cutting two-dimensional GC (2D-GC) was achieved. A sensitive GC/micro electron capture detection (μ-ECD) method with high resolving power and sensitivity to fully resolve all the ten regioisomers of 4-bromo-3-fluorobenzaldehyde was obtained by using a CHIRALDEX GC column (1D- GC). To facilitate the systematic GC method development, heart-cutting two-dimensional gas chromatography (2D-GC) using a Deans switch was exploited for the separation of the ten regioisomers. The resulting heart-cutting 2D-GC method successfully separated all the ten regioisomers with better sensitivity and resolution. Regioisomer impurities in the starting material were identified and quantified by these GC methods. The sensitivity for the methods is in the range of 0.004ng to 0.02ng for the regioisomers. Linearity for the methods is: R(2)=0.999 to 1.000. The methods were suitable for control of the regioisomer impurities, p-GTIs, in the starting material and final drug substance. PMID:27492600

  11. Measurement of activity coefficients of mixtures by head-space gas chromatography: general procedure.

    PubMed

    Luis, Patricia; Wouters, Christine; Van der Bruggen, Bart; Sandler, Stanley I

    2013-08-01

    Head-space gas chromatography (HS-GC) is an applicable method to perform vapor-liquid equilibrium measurements and determine activity coefficients. However, the reproducibility of the data may be conditioned by the experimental procedure concerning to the automated pressure-balanced system. The study developed in this work shows that a minimum volume of liquid in the vial is necessary to ensure the reliability of the activity coefficients since it may become a parameter that influences the magnitude of the peak areas: the helium introduced during the pressurization step may produce significant variations of the results when too small volume of liquid is selected. The minimum volume required should thus be evaluated prior to obtain experimentally the concentration in the vapor phase and the activity coefficients. In this work, the mixture acetonitrile-toluene is taken as example, requiring a sample volume of more than 5mL (about more than 25% of the vial volume). The vapor-liquid equilibrium and activity coefficients of mixtures at different concentrations (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 molar fraction) and four temperatures (35, 45, 55 and 70°C) have been determined. Relative standard deviations (RSD) lower than 5% have been obtained, indicating the good reproducibility of the method when a sample volume larger than 5mL is used. Finally, a general procedure to measure activity coefficients by means of pressure-balanced head-space gas chromatography is proposed. PMID:23809803

  12. Comprehensive two-dimensional gas chromatography and food sensory properties: potential and challenges.

    PubMed

    Cordero, Chiara; Kiefl, Johannes; Schieberle, Peter; Reichenbach, Stephen E; Bicchi, Carlo

    2015-01-01

    Modern omics disciplines dealing with food flavor focus the analytical efforts on the elucidation of sensory-active compounds, including all possible stimuli of multimodal perception (aroma, taste, texture, etc.) by means of a comprehensive, integrated treatment of sample constituents, such as physicochemical properties, concentration in the matrix, and sensory properties (odor/taste quality, perception threshold). Such analyses require detailed profiling of known bioactive components as well as advanced fingerprinting techniques to catalog sample constituents comprehensively, quantitatively, and comparably across samples. Multidimensional analytical platforms support comprehensive investigations required for flavor analysis by combining information on analytes' identities, physicochemical behaviors (volatility, polarity, partition coefficient, and solubility), concentration, and odor quality. Unlike other omics, flavor metabolomics and sensomics include the final output of the biological phenomenon (i.e., sensory perceptions) as an additional analytical dimension, which is specifically and exclusively triggered by the chemicals analyzed. However, advanced omics platforms, which are multidimensional by definition, pose challenging issues not only in terms of coupling with detection systems and sample preparation, but also in terms of data elaboration and processing. The large number of variables collected during each analytical run provides a high level of information, but requires appropriate strategies to exploit fully this potential. This review focuses on advances in comprehensive two-dimensional gas chromatography and analytical platforms combining two-dimensional gas chromatography with olfactometry, chemometrics, and quantitative assays for food sensory analysis to assess the quality of a given product. We review instrumental advances and couplings, automation in sample preparation, data elaboration, and a selection of applications.

  13. Fast derivatization of fatty acids in different meat samples for gas chromatography analysis.

    PubMed

    Figueiredo, Ingrid Lima; Claus, Thiago; Oliveira Santos Júnior, Oscar; Almeida, Vitor Cinque; Magon, Thiago; Visentainer, Jesuí Vergilio

    2016-07-22

    In order to analyze the composition of fatty acids employing gas chromatography as the separation method, a derivatization of lipids using esterification and transesterification reactions is needed. The methodologies currently available are time consuming and use large amounts of sample and reagents. Thus, this work proposes a new procedure to carry out the derivatization of fatty acids without the need for prior extraction of lipids. The use of small amounts of sample (100mg) allows the analysis to be performed in specific parts of animals, in most cases without having them slaughtered. Another benefit is the use of small amounts of reagents (only 2mL of NaOH/Methanol and H2SO4/Methanol). The use of an experimental design procedure (Design Expert software) allows the optimization of the alkaline and acid reaction times. The procedure was validated for five minutes in both steps. The method was validated for bovine fat, beef, chicken, pork, fish and shrimp meats. The results for the merit figures of accuracy (from 101.07% to 109.18%), precision (RSDintra-day (from 0.65 to 3.93%), RSDinter-day (from 1.57 to 5.22%)), linearity (R(2)=0.9864) and robustness confirmed that the new method is satisfactory within the linear range of 2-30% of lipids in the sample. Besides the benefits of minimizing the amount of samples and reagents, the procedure enables gas chromatography sample preparation in a very short time compared with traditional procedures. PMID:27320376

  14. [Analysis of polycyclic aromatic hydrocarbons in air samples by gas chromatography-triple quadrupole mass spectrometry].

    PubMed

    Zhao, Bo; Li, Yuqing; Zhang, Sukun; Han, Jinglei; Xu, Zhencheng; Fang, Jiande

    2014-09-01

    A method of gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-MS/MS) has been optimized for the determination of polycyclic aromatic hydrocarbons (PAHs) in air samples. In the analysis step, isotope dilution was introduced to the quantification of PAHs. The GC-MS/MS method was applied to the analysis of the real air samples around a big petrochemical power plant in South China. The results were compared with those obtained by gas chromatography coupled to mass spectrometry (GC-MS). The results showed that better selectivity and sensitivity were obtained by GC-MS/MS. It was found that the external standard of deuterated-PAHs and internal standard of hexamethyl benzene were disturbed seriously with GC-MS, and the problems were both solved effectively by GC-MS/MS. Therefore more accurate quantification results of PAHs were obtained with GC-MS/MS. For the analysis of real samples, the RSDs of relative response factors ranged from 2.60% to 15.6% in standard curves; the recoveries of deuterated-PAHs ranged from 55.2% to 82.3%; the recoveries of spiked samples ranged from 98.9% to 111%; the RSDs of parallel specimens ranged from 6.50% to 18.4%; the concentrations of field blank samples ranged from not detected to 44.3 pg/m3; and the concentrations of library blank samples ranged from not detected to 36.5 pg/m3. The study indicated that the application of GC-MS/MS on the analysis of PAHs in air samples was recommended. PMID:25752088

  15. A novel fully automated on-line coupled liquid chromatography-gas chromatography technique used for the determination of organochlorine pesticide residues in tobacco and tobacco products.

    PubMed

    Qi, Dawei; Fei, Ting; Sha, Yunfei; Wang, Leijun; Li, Gang; Wu, Da; Liu, Baizhan

    2014-12-29

    In this study, a novel fully automated on-line coupled liquid chromatography-gas chromatography (LC-GC) technique was reported and applied for the determination of organochlorine pesticide residues (OCPs) in tobacco and tobacco products. Using a switching valve to isolate the capillary pre-column and the analytical column during the solvent evaporation period, the LC solvent can be completely removed and prevented from reaching the GC column and the detector. The established method was used to determinate the OCPs in tobacco samples. By using Florisil SPE column and employing GPC technique, polarity impurities and large molecule impurities were removed. A dynamic range 1-100ng/mL was achieved with detection limits from 1.5 to 3.3μg/kg. The method exhibited good repeatability and recoveries. This technology may provide an alternative way for trace analysis of complex samples.

  16. Detailed analysis of petroleum hydrocarbon attenuation in biopiles by high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography.

    PubMed

    Mao, Debin; Lookman, Richard; Van De Weghe, Hendrik; Van Look, Dirk; Vanermen, Guido; De Brucker, Nicole; Diels, Ludo

    2009-02-27

    Enhanced bioremediation of petroleum hydrocarbons in two biopiles was quantified by high-performance liquid chromatography (HPLC) followed by comprehensive two-dimensional gas chromatography (GCXGC). The attenuation of 34 defined hydrocarbon classes was calculated by HPLC-GCXGC analysis of representative biopile samples at start-up and after 18 weeks of biopile operation. In general, a-cyclic alkanes were most efficiently removed from the biopiles, followed by monoaromatic hydrocarbons. Cycloalkanes and polycyclic aromatic hydrocarbons (PAHs) were more resistant to degradation. A-cyclic biomarkers farnesane, trimethyl-C13, norpristane, pristane and phytane dropped to only about 10% of their initial concentrations. On the other hand, C29-C31 hopane concentrations remained almost unaltered after 18 weeks of biopile operation, confirming their resistance to biodegradation. They are thus reliable indicators to estimate attenuation potential of petroleum hydrocarbons in biopile processed soils.

  17. Determination of butylated hydroxytoluene in food samples by high-performance liquid chromatography with ultraviolet detection and gas chromatography/mass spectrometry.

    PubMed

    Sanches-Silva, Ana; Cruz, José M; Sendón-García, Raquel; Paseiro-Losada, Perfecto

    2007-01-01

    A reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and compared with a gas chromatography/mass spectrometry (GC/MS) method for determining butylated hydroxytoluene (BHT) in foodstuffs as a result of migration from plastic packaging. Similar extraction procedures were used in both methods. BHT was quantitated using an external standard in the HPLC method and an internal standard in the GC/MS method. Both methods presented good linearity (r(2) > or = 0.9917) and low detection limits. Recoveries obtained with the HPLC method (chicken meat, 95.8%, and Gouda cheese, 83.9%) were better than with the GC/MS method (chicken meat, 85.6%, and Gouda cheese, 71.3%).

  18. Analysis of wax esters in edible oils by automated on-line coupling liquid chromatography-gas chromatography using the through oven transfer adsorption desorption (TOTAD) interface.

    PubMed

    Aragón, Alvaro; Cortés, José M; Toledano, Rosa M; Villén, Jesús; Vázquez, Ana

    2011-07-29

    An automated method for the direct analysis of wax esters in edible oils is presented. The proposed method uses the TOTAD (through oven transfer adsorption desorption) interface for the on-line coupling of normal phase liquid chromatography and gas chromatography. In this fully automated system, the oil with C32 wax ester as internal standard and diluted with heptane is injected directly with no sample pre-treatment step other than filtration. The proposed method allows analysis of different wax esters, and is simpler and faster than the European Union Official Method, which is tedious and time-consuming. The obtained results closely match the certified values obtained from the median of the analytical results of the inter-labs certification study. Relative standard deviations of the concentrations are less than 5%. The method is appropriate for routine analysis as it is totally automated.

  19. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  20. Detection of Caribbean fruit fly [(Anastrepha suspensa Loew (Diptera: Tephritidae)]-infested grapefruit with portable gas chromatography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New technologies are being sought by plant protection officials to more quickly and efficiently identify concealed pests in imported commodities. The zNose portable gas chromatography unit was investigated as a tool for identifying organic volatile signatures indicative of Caribbean fruit fly infest...

  1. Quantitation of Phenol Levels in Oil of Wintergreen Using Gas Chromatography-Mass Spectrometry with Selected Ion Monitoring

    ERIC Educational Resources Information Center

    Sobel, Robert M.; Ballantine, David S.; Ryzhov, Victor

    2005-01-01

    Industrial application of gas chromatography-mass spectrometry (GC-MS) analysis is a powerful technique that could be used to elucidate components of a complex mixture while offering the benefits of high-precision quantitative analysis. The natural wintergreen oil is examined for its phenol concentration to determine the level of refining…

  2. The Use of Gas Chromatography and Mass Spectrometry to Introduce General Chemistry Students to Percent Mass and Atomic Mass Calculations

    ERIC Educational Resources Information Center

    Pfennig, Brian W.; Schaefer, Amy K.

    2011-01-01

    A general chemistry laboratory experiment is described that introduces students to instrumental analysis using gas chromatography-mass spectrometry (GC-MS), while simultaneously reinforcing the concepts of mass percent and the calculation of atomic mass. Working in small groups, students use the GC to separate and quantify the percent composition…

  3. An Advanced Analytical Chemistry Experiment Using Gas Chromatography-Mass Spectrometry, MATLAB, and Chemometrics to Predict Biodiesel Blend Percent Composition

    ERIC Educational Resources Information Center

    Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.

    2011-01-01

    We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…

  4. CAPILLARY GAS CHROMATOGRAPHY-ATOMIC EMISSION DETECTION METHOD FOR THE DETERMINATION OF PENTYLATED ORGANOTIN COMPOUNDS: INTERLABORATORY STUDY

    EPA Science Inventory

    A capillary gas chromatography-atomic emission detection (GC-AED) method was developed for the U. S. Environmental Protection Agency's Environmental Monitoring Systems Laboratory in Las Vegas, NV, for determination of selected organotin compounds. Here we report on an interlabora...

  5. Implementation of Gas Chromatography and Microscale Distillation into the General Chemistry Laboratory Curriculum as Vehicles for Examining Intermolecular Forces

    ERIC Educational Resources Information Center

    Csizmar, Clifford M.; Force, Dee Ann; Warner, Don L.

    2011-01-01

    As part of an NSF-funded Course Curriculum and Laboratory Improvement (CCLI) project that seeks, in part, to increase student exposure to scientific instrumentation, a gas chromatography experiment has been integrated into the second-semester general chemistry laboratory curriculum. The experiment uses affordable, commercially available equipment…

  6. SIMULTANEOUS DETERMINATION OF ORGANOTIN, ORGANOLEAD, AND ORGANOMERCURY COMPOUNDS IN ENVIRONMENTAL SAMPLES USING CAPILLARY GAS CHROMATOGRAPHY WITH ATOMIC EMISSION DETECTION

    EPA Science Inventory

    As part of a continuing evaluation of new analytical and sample preparation techniques conducted by the US Environmental Protection Agency (EPA), the use of capillary gas chromatography with atomic emission detection (GC-AED) for the simultaneous determination of organotin, organ...

  7. Analyzing Inquiry Questions of High-School Students in a Gas Chromatography Open-Ended Laboratory Experiment

    ERIC Educational Resources Information Center

    Blonder, Ron; Mamlock-Naaman, Rachel; Hofstein, Avi

    2008-01-01

    This paper describes the implementation of an open-ended inquiry experiment for high-school students, based on gas chromatography (GC). The research focuses on identifying the level of questions that students ask during the GC open inquiry laboratory, and it examines whether implementing the advanced inquiry laboratory opens up new directions for…

  8. Pilot study on feasibility of application of gas chromatography for the assessment of acrylamide concentration in sewage sludge.

    PubMed

    Włodarczyk, Elżbieta; Próba, Marta; Wolny, Lidia; Wojtal, Łukasz

    2014-01-01

    The aim of this study was to determine the possibility of using gas chromatography to measurement of the acrylamide concentration in sewage sludge. Acrylamide, as a toxic substance, is not indifferent to human health, but it is used in the production of plastics, dyes, adhesives, cosmetics, mortar, as well as a coagulant for water treatment, wastewater or sewage sludge conditioning. Determination of acrylamide by gas chromatography was based on standard: EPA Method 8032A "Acrylamid by gas chromatography." It consists of a bromination reaction of the compound in the presence of dibromopropendial derivative, a triple extraction with the ethyl acetate, a concentration of the eluate sample up to the 1 ml volume, and an analysis by the gas chromatography using an electron capture detector (ECD). The acrylamide concentration of was calculated according to the formula presented in the mentioned standard. All samples were performed twice (the difference between the results was not greater than 10%), and the average value of the four samples was 17.64 µg/L(-1). The presence of acrylamide in sewage sludge has been confirmed.

  9. Determination of BROMATE AT PARTS-PER-TRILLION LEVELS BY GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH NEGATIVE CHEMICAL IONIZATION

    EPA Science Inventory

    The ozonation of bromide-containing source waters produces bromate as a class 2B carcinogenic disinfection by-product. The present work describes the determination of bromate by gas chromatography-negative chemical ionization mass spectrometry (GC-NCIMS) following a bromate react...

  10. ANALYSIS OF TRACE-LEVEL ORGANIC COMBUSTION PROCESS EMISSIONS USING NOVEL MULTIDIMENSIONAL GAS CHROMATOGRAPHY-MASS SPECTROMETRY PROCEDURES

    EPA Science Inventory

    The paper discusses the analysis of trace-level organic combustion process emissions using novel multidimensional gas chromatography-mass spectrometry (MDGC-MS) procedures. It outlines the application of the technique through the analyses of various incinerator effluent and produ...

  11. Introducing Students to Gas Chromatography-Mass Spectrometry Analysis and Determination of Kerosene Components in a Complex Mixture

    ERIC Educational Resources Information Center

    Pacot, Giselle Mae M.; Lee, Lyn May; Chin, Sung-Tong; Marriott, Philip J.

    2016-01-01

    Gas chromatography-mass spectrometry (GC-MS) and GC-tandem MS (GC-MS/MS) are useful in many separation and characterization procedures. GC-MS is now a common tool in industry and research, and increasingly, GC-MS/MS is applied to the measurement of trace components in complex mixtures. This report describes an upper-level undergraduate experiment…

  12. Application of oil gas-chromatography in reservoir compartmentalization in a mature Venezuelan oil field

    SciTech Connect

    Munoz, N.G.; Mompart, L.; Talukdar, S.C.

    1996-08-01

    Gas chromatographic oil {open_quotes}fingerprinting{close_quotes} was successfully applied in a multidisciplinary production geology project by Maraven, S.A. to define the extent of vertical and lateral continuity of Eocene and Miocene sandstone reservoirs in the highly faulted Bloque I field, Maracaibo Basin, Venezuela. Seventy-five non-biodegraded oils (20{degrees}-37.4{degrees} API) were analyzed with gas chromatography. Fifty were produced from the Eocene Misoa C-4, C-5, C-6 or C-7 horizons, fifteen from the Miocene basal La Rosa and ten from multizone completions. Gas chromatographic and terpane and sterane biomarker data show that all of the oils are genetically related. They were expelled from a type II, Upper Cretaceous marine La Luna source rock at about 0.80-0.90% R{sub o} maturity. Alteration in the reservoir by gas stripping with or without subsequent light hydrocarbons mixing was observed in some oils. Detailed chromatographic comparisons among the oils shown by star plots and cluster analysis utilizing several naphthenic and aromatic peak height ratios, resulted in oil pool groupings. This led to finding previously unknown lateral and vertical reservoir communication and also helped in checking and updating the scaling character of faults. In the commingled oils, percentages of each contributing zone in the mixture were also determined giving Maraven engineers a proven, rapid and inexpensive tool for production allocation and reservoir management The oil pool compartmentalization defined by the geochemical fingerprinting is in very good agreement with the sequence stratigraphic interpretation of the reservoirs and helped evaluate the influence of structure in oil migration and trapping.

  13. Studies on thermionic ionisation detection in comprehensive two-dimensional gas chromatography.

    PubMed

    Ryan, Danielle; Marriott, Philip

    2006-10-01

    This study explores the application of specific thermionic ionisation detection in comprehensive 2-D GC (GC x GC) and represents the first report of GC x GC with nitrogen phosphorus detection (GC x GC-NPD). Of particular interest is the performance of the NPD with respect to peak parameters of asymmetry and sensitivity. Since GC x GC produces much narrower peaks than obtained with fast GC (e.g. 100 ms vs. <1 s) the effect of detector response time and any lack of symmetry arising from the detection step is important if peak separation (resolution) is to be maintained. It was observed that detector gas flows had a significant impact on peak asymmetry and peak magnitude, and that optimisation of the detector was critical, particularly for complex sample analysis by GC x GC-NPD. Peak asymmetries ranging from As = 1.8 to 8.0 were observed under different conditions of detector gas flows. Comparison of GC x GC-NPD with GC x GC-flame ionisation detection (FID) showed the former to be approximately 20 times more sensitive for the detection of nitrogen-containing methoxypyrazines analytes, and GC x GC-NPD had a larger linear detection range compared to GC x GC-FID. Furthermore, comparison of GC x GC-NPD and GC x GC-TOFMS chromatograms for the analysis of coffee head-space demonstrated the benefits of selective detection, ultimately realised in a comparatively simplified contour plot.

  14. Analysis of small carbohydrates in several bioactive botanicals by gas chromatography with mass spectrometry and liquid chromatography with tandem mass spectrometry.

    PubMed

    Moldoveanu, Serban; Scott, Wayne; Zhu, Jeff

    2015-11-01

    Bioactive botanicals contain natural compounds with specific biological activity, such as antibacterial, antioxidant, immune stimulating, and taste improving. A full characterization of the chemical composition of these botanicals is frequently necessary. A study of small carbohydrates from the plant materials of 18 bioactive botanicals is further described. The study presents the identification of the carbohydrate using a gas chromatographic-mass spectrometric analysis that allows detection of molecules as large as maltotetraose, after changing them into trimethylsilyl derivatives. A number of carbohydrates in the plant (fructose, glucose, mannose, sucrose, maltose, xylose, sorbitol, and myo-, chiro-, and scyllo-inositols) were quantitated using a novel liquid chromatography with tandem mass spectrometric technique. Both techniques involved new method developments. The gas chromatography with mass spectrometric analysis involved derivatization and separation on a Rxi(®)-5Sil MS column with H2 as a carrier gas. The liquid chromatographic separation was obtained using a hydrophilic interaction type column, YMC-PAC Polyamine II. The tandem mass spectrometer used an electrospray ionization source in multiple reaction monitoring positive ion mode with the detection of the adducts of the carbohydrates with Cs(+) ions. The validated quantitative procedure showed excellent precision and accuracy allowing the analysis in a wide range of concentrations of the analytes. PMID:26315495

  15. Analysis of small carbohydrates in several bioactive botanicals by gas chromatography with mass spectrometry and liquid chromatography with tandem mass spectrometry.

    PubMed

    Moldoveanu, Serban; Scott, Wayne; Zhu, Jeff

    2015-11-01

    Bioactive botanicals contain natural compounds with specific biological activity, such as antibacterial, antioxidant, immune stimulating, and taste improving. A full characterization of the chemical composition of these botanicals is frequently necessary. A study of small carbohydrates from the plant materials of 18 bioactive botanicals is further described. The study presents the identification of the carbohydrate using a gas chromatographic-mass spectrometric analysis that allows detection of molecules as large as maltotetraose, after changing them into trimethylsilyl derivatives. A number of carbohydrates in the plant (fructose, glucose, mannose, sucrose, maltose, xylose, sorbitol, and myo-, chiro-, and scyllo-inositols) were quantitated using a novel liquid chromatography with tandem mass spectrometric technique. Both techniques involved new method developments. The gas chromatography with mass spectrometric analysis involved derivatization and separation on a Rxi(®)-5Sil MS column with H2 as a carrier gas. The liquid chromatographic separation was obtained using a hydrophilic interaction type column, YMC-PAC Polyamine II. The tandem mass spectrometer used an electrospray ionization source in multiple reaction monitoring positive ion mode with the detection of the adducts of the carbohydrates with Cs(+) ions. The validated quantitative procedure showed excellent precision and accuracy allowing the analysis in a wide range of concentrations of the analytes.

  16. Development of an automated high temperature valveless injection system for on-line gas chromatography

    DOE PAGES

    Kreisberg, N. M.; Worton, D. R.; Zhao, Y.; Isaacman, G.; Goldstein, A. H.; Hering, S. V.

    2014-07-23

    A reliable method of sample introduction is presented for on-line gas chromatography with a special application to in-situ field portable atmospheric sampling instruments. A traditional multi-port valve is replaced with a controlled pressure switching device that offers the advantage of long term reliability and stable sample transfer efficiency. An engineering design model is presented and tested that allows customizing the interface for other applications. Flow model accuracy is within measurement accuracy (1%) when parameters are tuned for an ambient detector and 15% accurate when applied to a vacuum based detector. Laboratory comparisons made between the two methods of sample introductionmore » using a thermal desorption aerosol gas chromatograph (TAG) show approximately three times greater reproducibility maintained over the equivalent of a week of continuous sampling. Field performance results for two versions of the valveless interface used in the in-situ instrument demonstrate minimal trending and a zero failure rate during field deployments ranging up to four weeks of continuous sampling. Extension of the VLI to dual collection cells is presented with less than 3% cell-to-cell carry-over.« less

  17. Rapid diagnosis of anaerobic infections by direct gas-liquid chromatography of clinical speciments.

    PubMed Central

    Gorbach, S L; Mayhew, J W; Bartlett, J G; Thadepalli, H; Onderdonk, A B

    1976-01-01

    Current methods to isolate and identify anaerobic bacteria are laborious and time consuming. It was postulated that the short-chain fatty acids (SCFA) produced by these organisms might serve as microbial markers in clinical material. 98 specimens of pus or serous fluid were analyzed by gas-liquid chromatography, and findings were compared with culture results. Good correlations were found for the recovery of anaerobic Gram-negative bacilli and the presence of isobutyric, butyric, and succinic acids. 19 of 20 specimens with significant amounts of these acids (greater than 0.01 mumol/ml) yielded bacteroides or fusobacteria. Culture of the single "false-positive" specimen failed to grow anaerobic Gram-negative bacilli, although clinical data and Gram-stain suggested their presence. 77 of 78 specimens which has insignificant concentrations of the marker acids failed to yield anaerobic, Gram-negative bacilli in culture. The single "false-negative" specimen yielded Bacteroides pneumosintes, an organism which does not ferment carbohydrates. It is concluded that direct gas-liquid chromatographic analysis of clinical specimens provides a rapid presumptive test for the presence of anaerobic, Gram-negative bacilli. PMID:1254729

  18. Development of an automated high-temperature valveless injection system for online gas chromatography

    DOE PAGES

    Kreisberg, N. M.; Worton, D. R.; Zhao, Y.; Isaacman, G.; Goldstein, A. H.; Hering, S. V.

    2014-12-12

    A reliable method of sample introduction is presented for online gas chromatography with a special application to in situ field portable atmospheric sampling instruments. A traditional multi-port valve is replaced with a valveless sample introduction interface that offers the advantage of long-term reliability and stable sample transfer efficiency. An engineering design model is presented and tested that allows customizing this pressure-switching-based device for other applications. Flow model accuracy is within measurement accuracy (1%) when parameters are tuned for an ambient-pressure detector and 15% accurate when applied to a vacuum-based detector. Laboratory comparisons made between the two methods of sample introductionmore » using a thermal desorption aerosol gas chromatograph (TAG) show that the new interface has approximately 3 times greater reproducibility maintained over the equivalent of a week of continuous sampling. Field performance results for two versions of the valveless interface used in the in situ instrument demonstrate typically less than 2% week-1 response trending and a zero failure rate during field deployments ranging up to 4 weeks of continuous sampling. Extension of the valveless interface to dual collection cells is presented with less than 3% cell-to-cell carryover.« less

  19. Development of a Mesoscale Pulsed Discharge Helium Ionization Detector for Portable Gas Chromatography.

    PubMed

    Manginell, Ronald P; Mowry, Curtis D; Pimentel, Adam S; Mangan, Michael A; Moorman, Matthew W; Sparks, Elizabeth S; Allen, Amy; Achyuthan, Komandoor E

    2015-01-01

    Miniaturization of gas chromatography (GC) instrumentation enables field detection of volatile organic compounds (VOCs) for chembio-applications such as clandestine human transport and disease diagnostics. We fabricated a mesoscale pulsed discharge helium ionization detector (micro-PDHID) for integrating with our previously described mini-GC hardware. Stainless steel electrodes fabricated by photochemical etching and electroforming facilitated rapid prototyping and enabled nesting of inter-electrode insulators for self-alignment of the detector core during assembly. The prototype was ∼10 cm(3) relative to >400 cm(3) of a commercial PDHID, but with a comparable time to sweep a VOC peak from the detector cell (170 ms and 127 ms, respectively). Electron trajectory modeling, gas flow rate, voltage bias, and GC outlet location were optimized for improving sensitivity. Despite 40-fold miniaturization, the micro-PDHID detected 18 ng of the human emanation, 3-methyl-2-hexenoic acid with <3-fold decrease in sensitivity relative to the commercial detector. The micro-PDHID was rugged and operated for 9 months without failure. PMID:26561264

  20. Nitrogen isotopic analyses by isotope-ratio-monitoring gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Hayes, J. M.

    1994-01-01

    Amino acids containing natural-abundance levels of 15N were derivatized and analyzed isotopically using a technique in which individual compounds are separated by gas chromatography, combusted on-line, and the product stream sent directly to an isotope-ratio mass spectrometer. For samples of N2 gas, standard deviations of ratio measurement were better than 0.1% (Units for delta are parts per thousand or per million (%).) for samples larger than 400 pmol and better than 0.5% for samples larger than 25 pmol (0.1% 15N is equivalent to 0.00004 atom % 15N). Results duplicated those of conventional, batchwise analyses to within 0.05%. For combustion of organic compounds yielding CO2/N2 ratios between 14 and 28, in particular for N-acetyl n-propyl derivatives of amino acids, delta values were within 0.25% of results obtained using conventional techniques and standard deviations were better than 0.35%. Pooled data for measurements of all amino acids produced an accuracy and precision of 0.04 and 0.23%, respectively, when 2 nmol of each amino acid was injected on column and 20% of the stream of combustion products was delivered to the mass spectrometer.

  1. Determination of trace sulfides in turbid waters by gas dialysis/ion chromatography

    SciTech Connect

    Goodwin, L.R.; Francom, D.; Urso, A.; Dieken, F.P.

    1988-02-01

    The accuracy of the methylene blue colorimetric procedure for the determination of sulfide in environmental waters and waste waters is influenced by turbidity interferences even after application of recommended pretreatment techniques. The direct analysis of sulfide by ion chromatography (IC), without sample pretreatment, is complicated by field preservation of samples with zinc ion (or equivalent). A continuous-flow procedure has been developed that converts the acid-extractable sulfide to H/sub 2/S, which is separated from the sample matrix by a gas dialysis membrane and then trapped in a dilute sodium hydroxide solution. A 200-..mu..L portion of this solution is injected into the ion chromatograph for analysis with an electrochemical detector. Detection limits as low as 1.9 ng/mL have been obtained. Good agreement was found between the gas dialysis/IC and methylene blue methods for nonturbid standards. The addition of ascorbic acid as an antioxidant is required to obtain adequate recoveries from spiked tap and well waters.

  2. Determination of methenamine in biological samples by gas-liquid chromatography.

    PubMed

    Nieminen, A L; Kangas, L; Anttila, M; Hautoniemi, L

    1980-01-11

    Methenamine (hexamethylenetetramine), a urinary disinfectant, was determined in human plasma and urine by gas-liquid chromatography with a short (10 m) open-bore glass capillary column (split ratio 1:20) and nitrogen-selective detector. An almost quantitative recovery (92.1%) was achieved by simple dilution of water-containing samples (0.5 ml) with acetone (4.5 ml). After centrifugation an aliquot (2 microliter) of the supernatant was injected into the gas chromatograph. Selectivity and sensitivity of the nitrogen detector allowed the quantitation of unchanged methenamine in plasma and urine up to 24 h after a single therapeutic dose of 1 g. Reproducibility of the method was 7.6 and 2.1% (C.V.) in serum and urine, respectively. The time required for the analysis of one sample was approx. 2 min. Due to the simple extraction and short analysis time it was possible to analyze the samples concurrently with sample taking. Absorption of standard tablets and an enterosoluble preparation of methenamine hippurate was compared.

  3. Properties of water as a novel stationary phase in capillary gas chromatography.

    PubMed

    Gallant, Jonathan A; Thurbide, Kevin B

    2014-09-12

    A novel method of separation that uses water as a stationary phase in capillary gas chromatography (GC) is presented. Through applying a water phase to the interior walls of a stainless steel capillary, good separations were obtained for a large variety of analytes in this format. It was found that carrier gas humidification and backpressure were key factors in promoting stable operation over time at various temperatures. For example, with these measures in place, the retention time of an acetone test analyte was found to reduce by only 44s after 100min of operation at a column temperature of 100°C. In terms of efficiency, under optimum conditions the method produced about 20,000 plates for an acetone test analyte on a 250μm i.d.×30m column. Overall, retention on the stationary phase generally increased with analyte water solubility and polarity, but was relatively little correlated with analyte volatility. Conversely, non-polar analytes were essentially unretained in the system. These features were applied to the direct analysis of different polar analytes in both aqueous and organic samples. Results suggest that this approach could provide an interesting alternative tool in capillary GC separations.

  4. Determination of levamisole in plasma and animal tissues by gas chromatography with thermionic specific detection.

    PubMed

    Woestenborghs, R; Michielsen, L; Heykants, J

    1981-06-12

    A rapid and sensitive method has been developed for the determination of the anthelmintic levamisole in plasma and tissues from man and animals. The procedure involves the extraction of the drug and its internal standard from the biological material at alkaline pH, back-extraction into sulphuric acid and re-extraction into the organic phase (heptane-isoamyl alcohol). Several extraction steps can be omitted, however, whenever the gas chromatographic background permits and some operations can be simplified using Clin ElutTM extraction tubes. The analyses were carried out by gas chromatography using a nitrogen-selective thermionic specific detector. The detection limit was 5 ng, contained in 1 ml of plasma or in 1 g of the various tissues, and recoveries were sufficiently high (79-86%). The method was applied to human plasma samples in a comprehensive bioavailability study of levamisole in healthy volunteers, and to plasma and tissues in a residue trial in cattle. The effect of the blood collection technique on the plasma levels was also studied and pointed to decreased plasma concentrations when Vacutainer tubes were used.

  5. Rapid and sensitive determination of nalmefene in human plasma by gas chromatography-mass spectrometry.

    PubMed

    Xie, Shan; Suckow, Raymond F; Mason, Barbara J; Allen, David; Cooper, Thomas B

    2002-06-25

    A rapid gas chromatography-mass spectrometric method for the determination of nalmefene in human plasma is described. The procedure involves protein precipitation, extraction with ethanol-chloroform mixture and derivatization with pentafluropropionic anhydride. The deuterated analog of nalmefene, 6beta-naltrexol-d(7), was used as the internal standard. Quantitation was achieved on a HP-1 column (12 mx0.2 mm I.D.) with negative chemical ionization (NCI) using methane:ammonia (95:5) as the reagent gas. The standard curves were fitted using a quadratic equation with the curve encompassing a range of 0.5 to 200 ng/ml, and the intra- and inter-assay variations for three different nalmefene levels were less than 10% throughout. The limit of quantitation was found to be 0.5 ng/ml. The method described is highly specific and reproducible, and could also be applied for the determination of naltrexone and 6beta-naltrexol. Application of the method to actual human plasma samples is demonstrated.

  6. Identification of gasoline adulteration using comprehensive two-dimensional gas chromatography combined to multivariate data processing.

    PubMed

    Pedroso, Marcio Pozzobon; de Godoy, Luiz Antonio Fonseca; Ferreira, Ernesto Correa; Poppi, Ronei Jesus; Augusto, Fabio

    2008-08-01

    A method to detect potential adulteration of commercial gasoline (Type C gasoline, available in Brazil and containing 25% (v/v) ethanol) is presented here. Comprehensive two-dimensional gas chromatography with flame ionization detection (GCxGC-FID) data and multivariate calibration (multi-way partial least squares regression, N-PLS) were combined to obtain regression models correlating the concentration of gasoline on samples from chromatographic data. Blends of gasoline and white spirit, kerosene and paint thinner (adopted as model adulterants) were used for calibration; the regression models were evaluated using samples of Type C gasoline spiked with these solvents, as well as with ethanol. The method was also checked with real samples collected from gas stations and analyzed using the official method. The root mean square error of prediction (RMSEP) for gasoline concentrations on test samples calculated using the regression model ranged from 3.3% (v/v) to 8.2% (v/v), depending on the composition of the blends; in addition, the results for the real samples agree with the official method. These observations suggest that GCxGC-FID and N-PLS can be an alternative for routine monitoring of fuel adulteration, as well as to solve several other similar analytical problems where mixtures should be detected and quantified as single species in complex samples. PMID:18571187

  7. Pyrolytic Methylation-Gas Chromatography of Whole Bacterial Cells for Rapid Profiling of Cellular Fatty Acids

    PubMed Central

    Dworzanski, Jacek P.; Berwald, Luc; Meuzelaar, Henk L. C.

    1990-01-01

    A novel, on-line derivatization technique has been developed which enables generation of fatty acid methyl ester (FAME) profiles from microorganisms by gas chromatography-mass spectrometry without the need for laborious and time-consuming sample preparation. Microgram amounts of bacterial cells are directly applied to a thin ferromagnetic filament and covered with a single drop of methanolic solution of tetramethylammonium hydroxide. After air drying, the filament is inserted into a special gas chromatograph inlet equipped with a high-frequency coil, thus enabling rapid inductive heating of the ferromagnetic filament. This so-called Curie-point heating technique is shown to produce patterns of bacterial FAMEs which are qualitatively and quantitatively nearly identical to those obtained from extracts of methylated lipids prepared by conventional sample pretreatment methods. Relatively minor differences involve the loss of hydroxy-substituted fatty acids by the pyrolytic approach as well as strongly enhanced signals of FAMEs derived from mycolic acids. This type of pyrolysis enables on-line derivatization and thermal extraction of volatile derivatives for analysis, whereas the residual components remain on a disposable probe (ferromagnetic wire) of a pyrolytic device. The reduced sample size (micrograms instead of milligrams) and the lack of sample preparation requirements open up the possibility of rapid microbiological identification of single colonies (thus overcoming the need for time-consuming subculturing) as well as analysis of FAME profiles directly from complex environmental samples. PMID:16348214

  8. Review of recent developments and applications in low-pressure (vacuum outlet) gas chromatography.

    PubMed

    Sapozhnikova, Yelena; Lehotay, Steven J

    2015-10-29

    The concept of low pressure (LP) vacuum outlet gas chromatography (GC) was introduced more than 50 years ago, but it was not until the 2000s that its theoretical applicability to fast analysis of GC-amenable chemicals was realized. In practice, LPGC is implemented by placing the outlet of a short, wide (typically 10-15 m, 0.53 mm inner diameter) analytical column under vacuum conditions, which speeds the separation by reducing viscosity of the carrier gas, thereby leading to a higher optimal flow rate for the most separation efficiency. To keep the inlet at normal operating pressures, the analytical column is commonly coupled to a short, narrow uncoated restriction capillary that also acts as a guard column. The faster separations in LPGC usually result in worse separation efficiency relative to conventional GC, but selective detection usually overcomes this drawback. Mass spectrometry (MS) provides highly selective and sensitive universal detection, and nearly all GC-MS instruments provide vacuum outlet conditions for implementation of LPGC-MS(/MS) without need for adaptations. In addition to higher sample throughput, LPGC provides other benefits, including lower detection limits, less chance of analyte degradation, reduced peak tailing, increased sample loadability, and more ruggedness without overly narrow peaks that would necessitate excessively fast data acquisition rates. This critical review summarizes recent developments in the application of LPGC with MS and other detectors in the analysis of pesticides, environmental contaminants, explosives, phytosterols, and other semi-volatile compounds. PMID:26547491

  9. The decomposition of benzodiazepines during analysis by capillary gas chromatography/mass spectrometry.

    PubMed

    Joyce, J R; Bal, T S; Ardrey, R E; Stevens, H M; Moffat, A C

    1984-06-01

    A capillary gas chromatography column directly interfaced to a mass spectrometer was used for the analysis of sixteen benzodiazepines. The thermal stability of the drugs was found to be related to their chemical structure. Nine of the benzodiazepines were thermally unstable indicating that care should be taken in the interpretation of gas chromatographic data from this class of drugs. The unstable benzodiazepines were: ketazolam which decomposes to diazepam; N-4 oxides (chlordiazepoxide and demoxepam) which lose an oxygen radical; aromatic 7-nitro compounds (nitrazepam and clonazepam) which are partially reduced to the corresponding amine; alpha-hydroxy ketones (lorazepam and oxazepam) which decompose with the loss of water and N-methyl-alpha-hydroxy ketones (lormetazepam and temazepam) which partially decompose with the loss of a hydrogen molecule to produce the corresponding alpha, beta-diketones. Few problems were encountered in distinguishing the drugs by their mass spectra, the exceptions being ketazolam which decomposes to diazepam and demoxepam which decomposes to desmethyldiazepam. In general, good spectra were obtained from 20-50 ng of drug injected. However, for those compounds where the decompositions were not quantitative (nitrazepam, clonazepam, lormetazepam, temazepam) detection limits were poor.

  10. Development of a Mesoscale Pulsed Discharge Helium Ionization Detector for Portable Gas Chromatography.

    PubMed

    Manginell, Ronald P; Mowry, Curtis D; Pimentel, Adam S; Mangan, Michael A; Moorman, Matthew W; Sparks, Elizabeth S; Allen, Amy; Achyuthan, Komandoor E

    2015-01-01

    Miniaturization of gas chromatography (GC) instrumentation enables field detection of volatile organic compounds (VOCs) for chembio-applications such as clandestine human transport and disease diagnostics. We fabricated a mesoscale pulsed discharge helium ionization detector (micro-PDHID) for integrating with our previously described mini-GC hardware. Stainless steel electrodes fabricated by photochemical etching and electroforming facilitated rapid prototyping and enabled nesting of inter-electrode insulators for self-alignment of the detector core during assembly. The prototype was ∼10 cm(3) relative to >400 cm(3) of a commercial PDHID, but with a comparable time to sweep a VOC peak from the detector cell (170 ms and 127 ms, respectively). Electron trajectory modeling, gas flow rate, voltage bias, and GC outlet location were optimized for improving sensitivity. Despite 40-fold miniaturization, the micro-PDHID detected 18 ng of the human emanation, 3-methyl-2-hexenoic acid with <3-fold decrease in sensitivity relative to the commercial detector. The micro-PDHID was rugged and operated for 9 months without failure.

  11. Review of recent developments and applications in low-pressure (vacuum outlet) gas chromatography.

    PubMed

    Sapozhnikova, Yelena; Lehotay, Steven J

    2015-10-29

    The concept of low pressure (LP) vacuum outlet gas chromatography (GC) was introduced more than 50 years ago, but it was not until the 2000s that its theoretical applicability to fast analysis of GC-amenable chemicals was realized. In practice, LPGC is implemented by placing the outlet of a short, wide (typically 10-15 m, 0.53 mm inner diameter) analytical column under vacuum conditions, which speeds the separation by reducing viscosity of the carrier gas, thereby leading to a higher optimal flow rate for the most separation efficiency. To keep the inlet at normal operating pressures, the analytical column is commonly coupled to a short, narrow uncoated restriction capillary that also acts as a guard column. The faster separations in LPGC usually result in worse separation efficiency relative to conventional GC, but selective detection usually overcomes this drawback. Mass spectrometry (MS) provides highly selective and sensitive universal detection, and nearly all GC-MS instruments provide vacuum outlet conditions for implementation of LPGC-MS(/MS) without need for adaptations. In addition to higher sample throughput, LPGC provides other benefits, including lower detection limits, less chance of analyte degradation, reduced peak tailing, increased sample loadability, and more ruggedness without overly narrow peaks that would necessitate excessively fast data acquisition rates. This critical review summarizes recent developments in the application of LPGC with MS and other detectors in the analysis of pesticides, environmental contaminants, explosives, phytosterols, and other semi-volatile compounds.

  12. Two-dimensional gas chromatography-online hydrogenation for improved characterization of petrochemical samples.

    PubMed

    Potgieter, H; Bekker, R; Govender, A; Rohwer, E

    2016-05-01

    The Fischer-Tropsch (FT) process produces a variety of hydrocarbons over a wide carbon number range and during subsequent product workup a large variety of synthetic fuels and chemicals are produced. The complexity of the product slate obtained from this process is well documented and the high temperature FT (HT-FT) process products are spread over gas, oil and water phases. The characterization of these phases is very challenging even when using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS). Despite the increase in separation power, peak co-elution still occurs when samples containing isomeric compounds are analysed by comprehensive two dimensional GC. The separation of isomeric compounds with the same double bond equivalents is especially difficult since these compounds elute in a similar position on the GC×GC chromatogram and have identical molecular masses and similar fragmentation patterns in their electron ionization (EI) mass spectra. On-line hydrogenation after GC×GC separation is a possible way to distinguish between these isomeric compounds since the number of rings and alkene double bonds can be determined from the mass spectra of the compounds before and after hydrogenation. This paper describes development of a GC×GC method with post column hydrogenation for the determination of the backbone of cyclic/olefinic structures enabling us to differentiate between classes like dienes and cyclic olefins in complex petrochemical streams.

  13. Characterization of Secondary Organic Aerosol Precursors Using Two-Dimensional Gas-Chromatography

    NASA Astrophysics Data System (ADS)

    Roskamp, M.; Lou, W.; Pankow, J. F.; Harley, P. C.; Turnipseed, A.; Barsanti, K. C.

    2012-12-01

    The oxidation of volatile organic compounds (VOCs) plays a role in both regional and global air quality. However, field and laboratory research indicate that the body of knowledge around the identities, quantities and oxidation processes of these compounds in the ambient atmosphere is still incomplete (e.g., Goldstein & Galbally, 2007; Robinson et al., 2009). VOCs emitted to the atmosphere largely are of biogenic origin (Guenther et al., 2006), and many studies of ambient secondary organic aerosol (SOA) suggest that SOA is largely of biogenic origin (albeit closely connected to anthropogenic activities, e.g., de Gouw and Jimenez, 2009). Accurate modeling of SOA levels and properties will require a more complete understanding of biogenic VOCs (BOCs) and their atmospheric oxidation products. For example, satellite measurements indicate that biogenic VOC emissions are two to three times greater than levels currently included in models (Heald et al., 2010). Two-dimensional gas chromatography (GC×GC) is a powerful analytical technique that shows much promise in advancing the state-of-knowledge regarding BVOCs and their role in SOA formation. In this work, samples were collected during BEACHON-RoMBAS (Bio-hydro-atmosphere Interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study) in July and August of 2011. The field site was a Ponderosa Pine forest near Woodland, CO, inside the Manitou Experimental Forest, which is operated by the US Forest Service. The area is characteristic of the central Rocky Mountains and trace gas monitoring indicates that little anthropogenic pollution is transported from the nearby urban areas (Kim et al. 2010 and references therein). Ambient and enclosure samples were collected on ATD (adsorption/thermal desorption) cartridges and analyzed for BVOCs using two-dimensional gas chromatography (GC×GC) with time of flight mass spectrometry (TOFMS) and flame ionized detection (FID). Measurements of

  14. Evaluation of Enhanced Comprehensive 2-D Gas Chromatography-Time-Of-Flight Mass Spectrometry for the Separation of Recalcitrant Polychlorinated Biphenyl Isomers

    EPA Science Inventory

    The separation of some recalcitrant polychlorinated biphenyl (PCB) isomers in extracts from environmental compartments has been a daunting task for environmental chemists. Summed quantitation values for coeluting PCB isomers are often reported. This composite data obscures the ac...

  15. Multi-dimensional gas chromatography with a planar microfluidic device for the characterization of volatile oxygenated organic compounds.

    PubMed

    Luong, J; Gras, R; Cortes, H; Shellie, R A

    2012-09-14

    Oxygenated compounds like methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, acetaldehyde, crotonaldehyde, ethylene oxide, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, and 2-chloromethyl-1,3-dioxolane are commonly encountered in industrial manufacturing processes. Despite the availability of a variety of column stationary phases for chromatographic separation, it is difficult to separate these solutes from their respective matrices using single dimension gas chromatography. Implemented with a planar microfluidic device, conventional two-dimensional gas chromatography and the employment of chromatographic columns using dissimilar separation mechanisms like that of a selective wall-coated open tubular column and an ionic sorbent column have been successfully applied to resolve twelve industrially significant volatile oxygenated compounds in both gas and aqueous matrices. A Large Volume Gas Injection System (LVGIS) was also employed for sample introduction to enhance system automation and precision. By successfully integrating these concepts, in addition to having the capability to separate all twelve components in one single analysis, features associated with multi-dimensional gas chromatography like dual retention time capability, and the ability to quarantine undesired chromatographic contaminants or matrix components in the first dimension column to enhance overall system cleanliness were realized. With this technique, a complete separation for all the compounds mentioned can be carried out in less than 15 min. The compounds cited can be analyzed over a range of 250 ppm (v/v) to 100 ppm (v/v) with a relative standard deviation of less than 5% (n=20) with high degree of reliability.

  16. Evaluation of gas radiation heat transfer in a 2D axisymmetric geometry using the line-by-line integration and WSGG models

    NASA Astrophysics Data System (ADS)

    Centeno, Felipe Roman; Brittes, Rogério; França, Francis. H. R.; Ezekoye, Ofodike A.

    2015-05-01

    The weighted-sum-of-gray-gases (WSGG) model is widely used in engineering computations of radiative heat transfer due to its relative simplicity, robustness and flexibility. This paper presents the computation of radiative heat transfer in a 2D axisymmetric chamber using two WSGG models to compute radiation in H2O and CO2 mixtures. The first model considers a fixed ratio between the molar concentrations of H2O and CO2, while the second allows the solution for arbitrary ratios. The correlations for both models are based on the HITEMP2010 database. The test case considers typical conditions found in turbulent methane flames, with steep variations in the temperature field as well as in the molar concentrations of the participating species. To assess the accuracy of the WSGG model, the results are compared with a solution obtained by line-by-line integration (LBL) of the spectrum.

  17. Determination of the origin of urinary norandrosterone traces by gas chromatography combustion isotope ratio mass spectrometry.

    PubMed

    Hebestreit, Moritz; Flenker, Ulrich; Fusshöller, Gregor; Geyer, Hans; Güntner, Ute; Mareck, Ute; Piper, Thomas; Thevis, Mario; Ayotte, Christiane; Schänzer, Wilhelm

    2006-09-01

    On the one hand, 19-norandrosterone (NA) is the most abundant metabolite of the synthetic anabolic steroid 19-nortestosterone and related prohormones. On the other hand, small amounts are biosynthesized by pregnant women and further evidence exists for physiological origin of this compound. The World Anti-Doping Agency (WADA) formerly introduced threshold concentrations of 2 or 5 ng of NA per ml of urine to discriminate 19-nortestosterone abuse from biosynthetic origin. Recent findings showed however, that formation of NA resulting in concentrations in the range of the threshold levels might be due to demethylation of androsterone in urine, and the WADA 2006 Prohibited List has defined NA as endogenous steroid. To elucidate the endogenous or exogenous origin of NA, (13)C/(12)C-analysis is the method of choice since synthetic 19-nortestosterone is derived from C(3)-plants by partial synthesis and shows delta(13)C(VPDB)-values of around -28 per thousand. Endogenous steroids are less depleted in (13)C due to a dietary mixture of C(3)- and C(4)-plants. An extensive cleanup based on two high performance liquid chromatography cleanup steps was applied to quality control and doping control samples, which contained NA in concentrations down to 2 ng per ml of urine. (13)C/(12)C-ratios of NA, androsterone and etiocholanolone were measured by gas chromatography/combustion/isotope ratio mass spectrometry. By comparing delta(13)C(VPDB)-values of androsterone as endogenous reference compound with NA, the origin of NA in doping control samples was determined as either endogenous or exogenous.

  18. Application of capillary gas chromatography mass spectrometry/computer techniques to synoptic survey of organic material in bed sediment

    USGS Publications Warehouse

    Steinheimer, T.R.; Pereira, W.E.; Johnson, S.M.

    1981-01-01

    A bed sediment sample taken from an area impacted by heavy industrial activity was analyzed for organic compounds of environmental significance. Extraction was effected on a Soxhlet apparatus using a freeze-dried sample. The Soxhlet extract was fractionated by silica gel micro-column adsorption chromatography. Separation and identification of the organic compounds was accomplished by capillary gas chromatography/mass spectrometry techniques. More than 50 compounds were identified; these include saturated hydrocarbons, olefins, aromatic hydrocarbons, alkylated polycyclic aromatic hydrocarbons, and oxygenated compounds such as aldehydes and ketones. The role of bed sediments as a source or sink for organic pollutants is discussed. ?? 1981.

  19. Determination of the triacylglycerol fraction in fish oil by comprehensive liquid chromatography techniques with the support of gas chromatography and mass spectrometry data.

    PubMed

    Beccaria, Marco; Costa, Rosaria; Sullini, Giuseppe; Grasso, Elisa; Cacciola, Francesco; Dugo, Paola; Mondello, Luigi

    2015-07-01

    Fish oil made from menhaden (Brevoortia tyrannus) can be used as a dietary supplement for the presence of high levels of the long-chained omega-3 fatty acids, viz. epentaenoic and docosahexanoic. In this work, for the first time, two different multidimensional approaches were developed and compared, in terms of peak capacity, for triacylglycerol characterization. In particular, silver ion chromatography with a silver-ion column and non-aqueous reverse-phase liquid chromatography with a C18 column were tested in both comprehensive (stop-flow) and off-line modes. The use of mass spectra attained by atmospheric pressure chemical ionization for both LC approaches, and the fatty acids methyl esters profile of menhaden oil obtained by gas chromatography analysis, greatly supported the elucidation of the triacylglycerol content in menhaden oil. The off-line approach afforded a better separation and, thus, higher peak capacity to allow identifying and semiquantifying more than 250 triacylglycerols. Such a huge number has never been reported for a menhaden oil sample.The main disadvantage of such an approach over the stop-flow one was the longer analysis time, mainly attributable to solvent exchange between the two dimensions. PMID:25963648

  20. A deterministic solver for the transport of the AlGaN/GaN 2D electron gas including hot-phonon and degeneracy effects

    SciTech Connect

    Galler, M. . E-mail: galler@itp.tu-graz.ac.at; Schuerrer, F. . E-mail: schuerrer@itp.tu-graz.ac.at

    2005-12-10

    The transport of the two-dimensional electron gas formed at an AlGaN/GaN heterostructure in the presence of strain polarization fields is investigated. For this purpose, we develop a deterministic multigroup model to the Boltzmann transport equations. The envelope wave functions for the confined electrons are calculated using a self-consistent Poisson-Schroedinger solver. The electron gas degeneracy and hot phonons are included in our transport equations. Numerical results are given for the dependence of macroscopic quantities on the electric field strength and on time and for the electron and phonon distribution functions. We compare our results to those of Monte Carlo simulations and with experiments.