Science.gov

Sample records for 2d gaussian fitting

  1. NGMIX: Gaussian mixture models for 2D images

    NASA Astrophysics Data System (ADS)

    Sheldon, Erin

    2015-08-01

    NGMIX implements Gaussian mixture models for 2D images. Both the PSF profile and the galaxy are modeled using mixtures of Gaussians. Convolutions are thus performed analytically, resulting in fast model generation as compared to methods that perform the convolution in Fourier space. For the galaxy model, NGMIX supports exponential disks and de Vaucouleurs and Sérsic profiles; these are implemented approximately as a sum of Gaussians using the fits from Hogg & Lang (2013). Additionally, any number of Gaussians can be fit, either completely free or constrained to be cocentric and co-elliptical.

  2. A real-time multi-scale 2D Gaussian filter based on FPGA

    NASA Astrophysics Data System (ADS)

    Luo, Haibo; Gai, Xingqin; Chang, Zheng; Hui, Bin

    2014-11-01

    Multi-scale 2-D Gaussian filter has been widely used in feature extraction (e.g. SIFT, edge etc.), image segmentation, image enhancement, image noise removing, multi-scale shape description etc. However, their computational complexity remains an issue for real-time image processing systems. Aimed at this problem, we propose a framework of multi-scale 2-D Gaussian filter based on FPGA in this paper. Firstly, a full-hardware architecture based on parallel pipeline was designed to achieve high throughput rate. Secondly, in order to save some multiplier, the 2-D convolution is separated into two 1-D convolutions. Thirdly, a dedicate first in first out memory named as CAFIFO (Column Addressing FIFO) was designed to avoid the error propagating induced by spark on clock. Finally, a shared memory framework was designed to reduce memory costs. As a demonstration, we realized a 3 scales 2-D Gaussian filter on a single ALTERA Cyclone III FPGA chip. Experimental results show that, the proposed framework can computing a Multi-scales 2-D Gaussian filtering within one pixel clock period, is further suitable for real-time image processing. Moreover, the main principle can be popularized to the other operators based on convolution, such as Gabor filter, Sobel operator and so on.

  3. Constrained fits with non-Gaussian distributions

    NASA Astrophysics Data System (ADS)

    Frühwirth, R.; Cencic, O.

    2016-10-01

    Non-normally distributed data are ubiquitous in many areas of science, including high-energy physics. We present a general formalism for constrained fits, also called data reconciliation, with data that are not normally distributed. It is based on Bayesian reasoning and implemented via MCMC sampling. We show how systems of both linear and non-linear constraints can be efficiently treated. We also show how the fit can be made robust against outlying observations. The method is demonstrated on a couple of examples ranging from material flow analysis to the combination of non-normal measurements. Finally, we discuss possible applications in the field of event reconstruction, such as vertex fitting and kinematic fitting with non-normal track errors.

  4. Numerical Fitting of Molecular Properties to Hermite Gaussians

    PubMed Central

    Cisneros, G. Andrés; Elking, Dennis; Piquemal, Jean-Philip; Darden, Thomas A.

    2008-01-01

    A procedure is presented to fit gridded molecular properties to auxiliary basis sets (ABSs) of Hermite Gaussians, analogous to the density fitting (DF) method (Dunlap; et al. J. Chem. Phys. 1979, 71, 4993). In this procedure, the ab initio calculated properties (density, electrostatic potential, and/or electric field) are fitted via a linear- or nonlinear-least-squares procedure to auxiliary basis sets (ABS). The calculated fitting coefficients from the numerical grids are shown to be more robust than analytic density fitting due to the neglect of the core contributions. The fitting coefficients are tested by calculating intermolecular Coulomb and exchange interactions for a set of dimers. It is shown that the numerical instabilities observed in DF are caused by the attempt of the ABS to fit the core contributions. In addition, this new approach allows us to reduce the number of functions required to obtain an accurate fit. This results in decreased computational cost, which is shown by calculating the Coulomb energy of a 4096 water box in periodic boundary conditions. Using atom centered Hermite Gaussians, this calculation is only 1 order of magnitude slower than conventional atom–centered point charges. PMID:17973464

  5. Navigating the protein fitness landscape with Gaussian processes.

    PubMed

    Romero, Philip A; Krause, Andreas; Arnold, Frances H

    2013-01-15

    Knowing how protein sequence maps to function (the "fitness landscape") is critical for understanding protein evolution as well as for engineering proteins with new and useful properties. We demonstrate that the protein fitness landscape can be inferred from experimental data, using Gaussian processes, a Bayesian learning technique. Gaussian process landscapes can model various protein sequence properties, including functional status, thermostability, enzyme activity, and ligand binding affinity. Trained on experimental data, these models achieve unrivaled quantitative accuracy. Furthermore, the explicit representation of model uncertainty allows for efficient searches through the vast space of possible sequences. We develop and test two protein sequence design algorithms motivated by Bayesian decision theory. The first one identifies small sets of sequences that are informative about the landscape; the second one identifies optimized sequences by iteratively improving the Gaussian process model in regions of the landscape that are predicted to be optimized. We demonstrate the ability of Gaussian processes to guide the search through protein sequence space by designing, constructing, and testing chimeric cytochrome P450s. These algorithms allowed us to engineer active P450 enzymes that are more thermostable than any previously made by chimeragenesis, rational design, or directed evolution.

  6. Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures

    PubMed Central

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2015-01-01

    Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices. PMID:26679513

  7. Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures.

    PubMed

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2015-12-18

    Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices.

  8. Recursive anisotropic 2-D Gaussian filtering based on a triple-axis decomposition.

    PubMed

    Lam, Stanley Yiu Man; Shi, Bertram E

    2007-07-01

    We describe a recursive algorithm for anisotropic 2-D Gaussian filtering, based on separating the filter into the cascade of three, rather two, 1-D filters. The filters operate along axes obtained by integer horizontal and/or vertical pixel shifts. This eliminates interpolation, which removes spatial inhomogeneity in the filter, and produces more elliptically shaped kernels. It also results in a more regular filter structure, which facilitates implementation in DSP chips. Finally, it improves matching between filters with the same eccentricity and width, but different orientations. Our analysis and experiments indicate that the computational complexity is similar to an algorithm that operates along two axes (<11 ms for a 512 x 512 image using a 3.2-GHz Pentium 4 PC). On the other hand, given a limited set of basis filter axes, there is an orientation dependent lower bound on the achievable aspect ratios.

  9. Error Thresholds in Single-Peak Gaussian Distributed Fitness Landscapes

    NASA Astrophysics Data System (ADS)

    Feng, Xiao-Li; Gu, Jian-Zhong; Li, Yu-Xiao; Zhuo, Yi-Zhong

    2007-10-01

    Based on the Eigen and Crow-Kimura models with a single-peak fitness landscape, we propose the fitness values of all sequence types to be Gaussian distributed random variables to incorporate the effects of the fluctuations of the fitness landscapes (noise of environments) and investigate the concentration distribution and error threshold of quasispecies by performing an ensemble average within this theoretical framework. We find that a small fluctuation of the fitness landscape causes only a slight change in the concentration distribution and error threshold, which implies that the error threshold is stable against small perturbations. However, for a sizable fluctuation, quite different from the previous deterministic models, our statistical results show that the transition from quasi-species to error catastrophe is not so sharp, indicating that the error threshold is located within a certain range and has a shift toward a larger value. Our results are qualitatively in agreement with the experimental data and provide a new implication for antiviral strategies.

  10. Automatic fitting of Gaussian peaks using abductive machine learning

    SciTech Connect

    Abdel-Aal, R.E.

    1998-02-01

    Analytical techniques have been used for many years for fitting Gaussian peaks in nuclear spectroscopy. However, the complexity of the approach warrants looking for machine-learning alternatives where intensive computations are required only once (during training), while actual analysis on individual spectra is greatly simplified and quickened. This should allow the use of simple portable systems for fast and automated analysis of large numbers of spectra, particularly in situations where accuracy may be traded for speed and simplicity. This paper proposes the use of abductive networks machine learning for this purpose. The Abductory Induction Mechanism (AIM) tool was used to build models for analyzing both single and double Gaussian peaks in the presence of noise depicting statistical uncertainties in collected spectra. AIM networks were synthesized by training on 1,000 representative simulated spectra and evaluated on 500 new spectra. A classifier network determines the multiplicity of single/double peaks with an accuracy of 98%. With statistical uncertainties corresponding to a peak count of 100, average percentage absolute errors for the height, position, and width of single peaks are 4.9, 2.9, and 4.2%, respectively. For double peaks, these average errors are within 7.0, 3.1, and 5.9%, respectively. Models have been developed which account for the effect of a linear background on a single peak. Performance is compared with a neural network application and with an analytical curve-fitting routine, and the new technique is applied to actual data of an alpha spectrum.

  11. On Barnes Beta Distributions and Applications to the Maximum Distribution of the 2D Gaussian Free Field

    NASA Astrophysics Data System (ADS)

    Ostrovsky, Dmitry

    2016-09-01

    A new family of Barnes beta distributions on (0, ∞) is introduced and its infinite divisibility, moment determinacy, scaling, and factorization properties are established. The Morris integral probability distribution is constructed from Barnes beta distributions of types (1, 0) and (2, 2), and its moment determinacy and involution invariance properties are established. For application, the maximum distributions of the 2D gaussian free field on the unit interval and circle with a non-random logarithmic potential are conjecturally related to the critical Selberg and Morris integral probability distributions, respectively, and expressed in terms of sums of Barnes beta distributions of types (1, 0) and (2, 2).

  12. Curve Fit Technique for a Smooth Curve Using Gaussian Sections.

    DTIC Science & Technology

    1983-08-01

    curve-fitting. Furthermore, the algorithm that does the fitting is simple enough to be used on a programmable calculator . 8 -I.F , A X i 4. Y-14 .4. - -* F.J OR;r IF 17 r*~~ , ac ~J ’a vt. . S ~ :.. *~All, a-4k .16’.- a1 1, t

  13. 2D-ELDOR using full S(c-) fitting and absorption lineshapes.

    PubMed

    Chiang, Yun-Wei; Costa-Filho, Antonio; Freed, Jack H

    2007-10-01

    Recent progress in developing 2D-ELDOR (2D electron-electron double resonance) techniques to better capture molecular dynamics in complex fluids, particularly in model and biological membranes, is reported. The new "full S(c-) method", which corrects the spectral analysis for the phase distortion effects present in the experiments, is demonstrated to enhance the sensitivity of 2D-ELDOR in reporting on molecular dynamics in complex membrane environments. That is, instead of performing spectral fitting in the magnitude mode, our new method enables simultaneous fitting of both the real and imaginary components of the S(c-) signal. The full S(c-) fitting not only corrects the phase distortions in the experimental data but also more accurately determines instrumental dead times. The phase corrections applied to the S(c-) spectrum enable the extraction of the pure absorption-mode spectrum, which is characterized by much better resolution than the magnitude-mode spectrum. In the absorption mode, the variation of homogeneous broadening, which reports on the dynamics of the spin probe, can even be observed by visual inspection. This new method is illustrated with results from model membranes of dipalmitoyl-sn-glycero-phosphatidylcholine (DPPC)-cholesterol binary mixtures, as well as with results from plasma membrane vesicles of mast cells. In addition to the dynamic parameters, which provide quantitative descriptions for membranes at the molecular level, the high-resolution absorption spectra themselves may be used as a "fingerprint" to characterize membrane phases and distinguish coexisting components in biomembranes. Thus we find that 2D-ELDOR is greatly improved with the new "full S(c-) method" especially for exploring the complexity of model and biological membranes.

  14. 2D-ELDOR using full Sc- fitting and absorption lineshapes

    NASA Astrophysics Data System (ADS)

    Chiang, Yun-Wei; Costa-Filho, Antonio; Freed, Jack H.

    2007-10-01

    Recent progress in developing 2D-ELDOR (2D electron-electron double resonance) techniques to better capture molecular dynamics in complex fluids, particularly in model and biological membranes, is reported. The new "full Sc- method", which corrects the spectral analysis for the phase distortion effects present in the experiments, is demonstrated to enhance the sensitivity of 2D-ELDOR in reporting on molecular dynamics in complex membrane environments. That is, instead of performing spectral fitting in the magnitude mode, our new method enables simultaneous fitting of both the real and imaginary components of the Sc- signal. The full Sc- fitting not only corrects the phase distortions in the experimental data but also more accurately determines instrumental dead times. The phase corrections applied to the Sc- spectrum enable the extraction of the pure absorption-mode spectrum, which is characterized by much better resolution than the magnitude-mode spectrum. In the absorption mode, the variation of homogeneous broadening, which reports on the dynamics of the spin probe, can even be observed by visual inspection. This new method is illustrated with results from model membranes of dipalmitoyl-sn-glycero-phosphatidylcholine (DPPC)-cholesterol binary mixtures, as well as with results from plasma membrane vesicles of mast cells. In addition to the dynamic parameters, which provide quantitative descriptions for membranes at the molecular level, the high-resolution absorption spectra themselves may be used as a "fingerprint" to characterize membrane phases and distinguish coexisting components in biomembranes. Thus we find that 2D-ELDOR is greatly improved with the new "full Sc- method" especially for exploring the complexity of model and biological membranes.

  15. Statistical Analyses of Brain Surfaces Using Gaussian Random Fields on 2-D Manifolds

    PubMed Central

    Staib, Lawrence H.; Xu, Dongrong; Zhu, Hongtu; Peterson, Bradley S.

    2008-01-01

    Interest in the morphometric analysis of the brain and its subregions has recently intensified because growth or degeneration of the brain in health or illness affects not only the volume but also the shape of cortical and subcortical brain regions, and new image processing techniques permit detection of small and highly localized perturbations in shape or localized volume, with remarkable precision. An appropriate statistical representation of the shape of a brain region is essential, however, for detecting, localizing, and interpreting variability in its surface contour and for identifying differences in volume of the underlying tissue that produce that variability across individuals and groups of individuals. Our statistical representation of the shape of a brain region is defined by a reference region for that region and by a Gaussian random field (GRF) that is defined across the entire surface of the region. We first select a reference region from a set of segmented brain images of healthy individuals. The GRF is then estimated as the signed Euclidean distances between points on the surface of the reference region and the corresponding points on the corresponding region in images of brains that have been coregistered to the reference. Correspondences between points on these surfaces are defined through deformations of each region of a brain into the coordinate space of the reference region using the principles of fluid dynamics. The warped, coregistered region of each subject is then unwarped into its native space, simultaneously bringing into that space the map of corresponding points that was established when the surfaces of the subject and reference regions were tightly coregistered. The proposed statistical description of the shape of surface contours makes no assumptions, other than smoothness, about the shape of the region or its GRF. The description also allows for the detection and localization of statistically significant differences in the shapes of

  16. Prediction of {sup 2}D Rydberg energy levels of {sup 6}Li and {sup 7}Li based on very accurate quantum mechanical calculations performed with explicitly correlated Gaussian functions

    SciTech Connect

    Bubin, Sergiy; Sharkey, Keeper L.; Adamowicz, Ludwik

    2013-04-28

    Very accurate variational nonrelativistic finite-nuclear-mass calculations employing all-electron explicitly correlated Gaussian basis functions are carried out for six Rydberg {sup 2}D states (1s{sup 2}nd, n= 6, Horizontal-Ellipsis , 11) of the {sup 7}Li and {sup 6}Li isotopes. The exponential parameters of the Gaussian functions are optimized using the variational method with the aid of the analytical energy gradient determined with respect to these parameters. The experimental results for the lower states (n= 3, Horizontal-Ellipsis , 6) and the calculated results for the higher states (n= 7, Horizontal-Ellipsis , 11) fitted with quantum-defect-like formulas are used to predict the energies of {sup 2}D 1s{sup 2}nd states for {sup 7}Li and {sup 6}Li with n up to 30.

  17. Level set segmentation of brain magnetic resonance images based on local Gaussian distribution fitting energy.

    PubMed

    Wang, Li; Chen, Yunjie; Pan, Xiaohua; Hong, Xunning; Xia, Deshen

    2010-05-15

    This paper presents a variational level set approach in a multi-phase formulation to segmentation of brain magnetic resonance (MR) images with intensity inhomogeneity. In our model, the local image intensities are characterized by Gaussian distributions with different means and variances. We define a local Gaussian distribution fitting energy with level set functions and local means and variances as variables. The means and variances of local intensities are considered as spatially varying functions. Therefore, our method is able to deal with intensity inhomogeneity without inhomogeneity correction. Our method has been applied to 3T and 7T MR images with promising results.

  18. Hyper-Fit: Fitting Linear Models to Multidimensional Data with Multivariate Gaussian Uncertainties

    NASA Astrophysics Data System (ADS)

    Robotham, A. S. G.; Obreschkow, D.

    2015-09-01

    Astronomical data is often uncertain with errors that are heteroscedastic (different for each data point) and covariant between different dimensions. Assuming that a set of D-dimensional data points can be described by a (D - 1)-dimensional plane with intrinsic scatter, we derive the general likelihood function to be maximised to recover the best fitting model. Alongside the mathematical description, we also release the hyper-fit package for the R statistical language (http://github.com/asgr/hyper.fit) and a user-friendly web interface for online fitting (http://hyperfit.icrar.org). The hyper-fit package offers access to a large number of fitting routines, includes visualisation tools, and is fully documented in an extensive user manual. Most of the hyper-fit functionality is accessible via the web interface. In this paper, we include applications to toy examples and to real astronomical data from the literature: the mass-size, Tully-Fisher, Fundamental Plane, and mass-spin-morphology relations. In most cases, the hyper-fit solutions are in good agreement with published values, but uncover more information regarding the fitted model.

  19. An Accurate and Efficient Gaussian Fit Centroiding Algorithm for Star Trackers

    NASA Astrophysics Data System (ADS)

    Delabie, Tjorven; Schutter, Joris De; Vandenbussche, Bart

    2015-06-01

    This paper presents a novel centroiding algorithm for star trackers. The proposed algorithm, which is referred to as the Gaussian Grid algorithm, fits an elliptical Gaussian function to the measured pixel data and derives explicit expressions to determine the centroids of the stars. In tests, the algorithm proved to yield accuracy comparable to that of the most accurate existing algorithms, while being significantly less computationally intensive. Hence, the Gaussian Grid algorithm can deliver high centroiding accuracy to spacecraft with limited computational power. Furthermore, a hybrid algorithm is proposed in which the Gaussian Grid algorithm yields an accurate initial estimate for a least squares fitting method, resulting in a reduced number of iterations and hence reduced computational cost. The low computational cost allows to improve performance by acquiring the attitude estimates at a higher rate or use more stars in the estimation algorithms. It is also a valuable contribution to the expanding field of small satellites, where it could enable low-cost platforms to have highly accurate attitude estimation.

  20. A 2D Gaussian-Beam-Based Method for Modeling the Dichroic Surfaces of Quasi-Optical Systems

    NASA Astrophysics Data System (ADS)

    Elis, Kevin; Chabory, Alexandre; Sokoloff, Jérôme; Bolioli, Sylvain

    2016-08-01

    In this article, we propose an approach in the spectral domain to treat the interaction of a field with a dichroic surface in two dimensions. For a Gaussian beam illumination of the surface, the reflected and transmitted fields are approximated by one reflected and one transmitted Gaussian beams. Their characteristics are determined by means of a matching in the spectral domain, which requires a second-order approximation of the dichroic surface response when excited by plane waves. This approximation is of the same order as the one used in Gaussian beam shooting algorithm to model curved interfaces associated with lenses, reflector, etc. The method uses general analytical formulations for the GBs that depend either on a paraxial or far-field approximation. Numerical experiments are led to test the efficiency of the method in terms of accuracy and computation time. They include a parametric study and a case for which the illumination is provided by a horn antenna. For the latter, the incident field is firstly expressed as a sum of Gaussian beams by means of Gabor frames.

  1. Ellipse fitting of short light stripe for structured-light-based 2D vision inspection

    NASA Astrophysics Data System (ADS)

    Zhang, Guangjun; Wei, Zhenzhong

    2003-09-01

    Structured light based 3D vision has wide applications in inspecting the form and position errors like straightness and coaxiality of cylindrical workpieces. But for these applications, the light stripe on the workpiece's surface is much too short, and contains inadequate data information, even with some noise. Under such circumstances, the ellipse fitting to the scattered data of the light stripe is not efficient enough, and its fitting accuracy is usually poor. To address this problem, a new least-square fitting method based on the constraint of ellipse minor axis (called CEMA method) is proposed in detail in this paper. Simulations are given for the proposed method and for five other popular methods described in the literature. The results show that the proposed method can efficiently improve the accuracy and the robustness of ellipse fitting to the scattered data of short light stripe.

  2. The research of spectrophotometric color matching based on multi-peaks Gaussian fit

    NASA Astrophysics Data System (ADS)

    Li, Xiaopeng; Lv, Xuliang; Wang, Jing; Yang, Gaofeng; Jiang, Xiaojun

    2013-08-01

    Spectrophotometric color matching is an important method for computer color matching, which is more accurate but difficult than tri-stimulus values color matching, because which will result in metamerism. The fundamental theory of computer color matching is the linear relationship between Kubelka-Munk function and concentration of dye. In fact, the spectral reflectivity of every pixel in hyperspectral image composed of subpixel mixing in instantaneous field of view. According to the Glassman laws of color mixing, the mixed pixel's spectral reflectivity equals to the algebra sum of each reflectivity of subpixel multiply its area percentage. In this case, spectrophotometric color matching match the spectral reflectivity curve by adjusting the combined form of subpixel which constitute the pixel. According to numerical methods for Multi-peaks Guassian fitting, the spectral reflectivity curve can be fit as the sum of several characteristic peak, which accord with Normal Distribution. Then the spectrophotometric color matching can simplify the solution with infinite wavelength into solving the linear equations with finite known peak intensity. By using Imaging Spectrometer measure the color samples in standard color cards from different distance, the spectral reflectivity curve of each single color sample and the mixed color samples can be gotten, and the experiments results show that the spectrophotometric color matching based on Multi-peaks Gaussian fitting is superior to the tri-stimulus values color matching, and which is easy to operate.

  3. Active Contours Driven by Multi-Feature Gaussian Distribution Fitting Energy with Application to Vessel Segmentation.

    PubMed

    Wang, Lei; Zhang, Huimao; He, Kan; Chang, Yan; Yang, Xiaodong

    2015-01-01

    Active contour models are of great importance for image segmentation and can extract smooth and closed boundary contours of the desired objects with promising results. However, they cannot work well in the presence of intensity inhomogeneity. Hence, a novel region-based active contour model is proposed by taking image intensities and 'vesselness values' from local phase-based vesselness enhancement into account simultaneously to define a novel multi-feature Gaussian distribution fitting energy in this paper. This energy is then incorporated into a level set formulation with a regularization term for accurate segmentations. Experimental results based on publicly available STructured Analysis of the Retina (STARE) demonstrate our model is more accurate than some existing typical methods and can successfully segment most small vessels with varying width.

  4. Statistical properties and error threshold of quasispecies on single-peak Gaussian-distributed fitness landscapes.

    PubMed

    Li, Duo-Fang; Cao, Tian-Guang; Geng, Jin-Peng; Gu, Jian-Zhong; An, Hai-Long; Zhan, Yong

    2015-09-07

    The stochastic Eigen model proposed by Feng et al. (2007) (Journal of Theoretical Biology, 246, 28) showed that error threshold is no longer a phase transition point but a crossover region whose width depends on the strength of the random fluctuation in an environment. The underlying cause of this phenomenon has not yet been well examined. In this article, we adopt a single peak Gaussian distributed fitness landscape instead of a constant one to investigate and analyze the change of the error threshold and the statistical property of the quasi-species population. We find a roughly linear relation between the width of the error threshold and the fitness fluctuation strength. For a given quasi-species, the fluctuation of the relative concentration has a minimum with a normal distribution of the relative concentration at the maximum of the averaged relative concentration, it has however a largest value with a bimodal distribution of the relative concentration near the error threshold. The above results deepen our understanding of the quasispecies and error threshold and are heuristic for exploring practicable antiviral strategies.

  5. On the Least-Squares Fitting of Slater-Type Orbitals with Gaussians: Reproduction of the STO-NG Fits Using Microsoft Excel and Maple

    ERIC Educational Resources Information Center

    Pye, Cory C.; Mercer, Colin J.

    2012-01-01

    The symbolic algebra program Maple and the spreadsheet Microsoft Excel were used in an attempt to reproduce the Gaussian fits to a Slater-type orbital, required to construct the popular STO-NG basis sets. The successes and pitfalls encountered in such an approach are chronicled. (Contains 1 table and 3 figures.)

  6. Model fitting of kink waves in the solar atmosphere: Gaussian damping and time-dependence

    NASA Astrophysics Data System (ADS)

    Morton, R. J.; Mooroogen, K.

    2016-09-01

    Aims: Observations of the solar atmosphere have shown that magnetohydrodynamic waves are ubiquitous throughout. Improvements in instrumentation and the techniques used for measurement of the waves now enables subtleties of competing theoretical models to be compared with the observed waves behaviour. Some studies have already begun to undertake this process. However, the techniques employed for model comparison have generally been unsuitable and can lead to erroneous conclusions about the best model. The aim here is to introduce some robust statistical techniques for model comparison to the solar waves community, drawing on the experiences from other areas of astrophysics. In the process, we also aim to investigate the physics of coronal loop oscillations. Methods: The methodology exploits least-squares fitting to compare models to observational data. We demonstrate that the residuals between the model and observations contain significant information about the ability for the model to describe the observations, and show how they can be assessed using various statistical tests. In particular we discuss the Kolmogorov-Smirnoff one and two sample tests, as well as the runs test. We also highlight the importance of including any observational trend line in the model-fitting process. Results: To demonstrate the methodology, an observation of an oscillating coronal loop undergoing standing kink motion is used. The model comparison techniques provide evidence that a Gaussian damping profile provides a better description of the observed wave attenuation than the often used exponential profile. This supports previous analysis from Pascoe et al. (2016, A&A, 585, L6). Further, we use the model comparison to provide evidence of time-dependent wave properties of a kink oscillation, attributing the behaviour to the thermodynamic evolution of the local plasma.

  7. On the maximal size of large-average and ANOVA-fit submatrices in a Gaussian random matrix.

    PubMed

    Sun, Xing; Nobel, Andrew B

    2013-01-01

    We investigate the maximal size of distinguished submatrices of a Gaussian random matrix. Of interest are submatrices whose entries have an average greater than or equal to a positive constant, and submatrices whose entries are well fit by a two-way ANOVA model. We identify size thresholds and associated (asymptotic) probability bounds for both large-average and ANOVA-fit submatrices. Probability bounds are obtained when the matrix and submatrices of interest are square and, in rectangular cases, when the matrix and submatrices of interest have fixed aspect ratios. Our principal result is an almost sure interval concentration result for the size of large average submatrices in the square case.

  8. Multi-Gaussian fitting for pulse waveform using Weighted Least Squares and multi-criteria decision making method.

    PubMed

    Wang, Lu; Xu, Lisheng; Feng, Shuting; Meng, Max Q-H; Wang, Kuanquan

    2013-11-01

    Analysis of pulse waveform is a low cost, non-invasive method for obtaining vital information related to the conditions of the cardiovascular system. In recent years, different Pulse Decomposition Analysis (PDA) methods have been applied to disclose the pathological mechanisms of the pulse waveform. All these methods decompose single-period pulse waveform into a constant number (such as 3, 4 or 5) of individual waves. Furthermore, those methods do not pay much attention to the estimation error of the key points in the pulse waveform. The estimation of human vascular conditions depends on the key points' positions of pulse wave. In this paper, we propose a Multi-Gaussian (MG) model to fit real pulse waveforms using an adaptive number (4 or 5 in our study) of Gaussian waves. The unknown parameters in the MG model are estimated by the Weighted Least Squares (WLS) method and the optimized weight values corresponding to different sampling points are selected by using the Multi-Criteria Decision Making (MCDM) method. Performance of the MG model and the WLS method has been evaluated by fitting 150 real pulse waveforms of five different types. The resulting Normalized Root Mean Square Error (NRMSE) was less than 2.0% and the estimation accuracy for the key points was satisfactory, demonstrating that our proposed method is effective in compressing, synthesizing and analyzing pulse waveforms.

  9. FPGA-based design and implementation of arterial pulse wave generator using piecewise Gaussian-cosine fitting.

    PubMed

    Wang, Lu; Xu, Lisheng; Zhao, Dazhe; Yao, Yang; Song, Dan

    2015-04-01

    Because arterial pulse waves contain vital information related to the condition of the cardiovascular system, considerable attention has been devoted to the study of pulse waves in recent years. Accurate acquisition is essential to investigate arterial pulse waves. However, at the stage of developing equipment for acquiring and analyzing arterial pulse waves, specific pulse signals may be unavailable for debugging and evaluating the system under development. To produce test signals that reflect specific physiological conditions, in this paper, an arterial pulse wave generator has been designed and implemented using a field programmable gate array (FPGA), which can produce the desired pulse waves according to the feature points set by users. To reconstruct a periodic pulse wave from the given feature points, a method known as piecewise Gaussian-cosine fitting is also proposed in this paper. Using a test database that contains four types of typical pulse waves with each type containing 25 pulse wave signals, the maximum residual error of each sampling point of the fitted pulse wave in comparison with the real pulse wave is within 8%. In addition, the function for adding baseline drift and three types of noises is integrated into the developed system because the baseline occasionally wanders, and noise needs to be added for testing the performance of the designed circuits and the analysis algorithms. The proposed arterial pulse wave generator can be considered as a special signal generator with a simple structure, low cost and compact size, which can also provide flexible solutions for many other related research purposes.

  10. Gaussian-mixture umbrella sampling

    PubMed Central

    van der Vaart, Arjan; Karplus, Martin

    2009-01-01

    We introduce the Gaussian-mixture umbrella sampling method (GAMUS), a biased molecular dynamics technique based on adaptive umbrella sampling that efficiently escapes free energy minima in multi-dimensional problems. The prior simulation data are reweighted with a maximum likelihood formulation, and the new approximate probability density is fit to a Gaussian-mixture model, augmented by information about the unsampled areas. The method can be used to identify free energy minima in multi-dimensional reaction coordinates. To illustrate GAMUS, we apply it to the alanine dipeptide (2D reaction coordinate) and tripeptide (4D reaction coordinate). PMID:19284746

  11. Electrochemical incineration of indigo. A comparative study between 2D (plate) and 3D (mesh) BDD anodes fitted into a filter-press reactor.

    PubMed

    Nava, José L; Sirés, Ignasi; Brillas, Enric

    2014-01-01

    This paper compares the performance of 2D (plate) and 3D (mesh) boron-doped diamond (BDD) electrodes, fitted into a filter-press reactor, during the electrochemical incineration of indigo textile dye as a model organic compound in chloride medium. The electrolyses were carried out in the FM01-LC reactor at mean fluid velocities between 0.9 ≤ u ≤ 10.4 and 1.2 ≤ u ≤ 13.9 cm s(-1) for the 2D BDD and the 3D BDD electrodes, respectively, at current densities of 5.63 and 15 mA cm(-2). The oxidation of the organic matter was promoted, on the one hand, via the physisorbed hydroxyl radicals (BDD(·OH)) formed from water oxidation at the BDD surface and, on the other hand, via active chlorine formed from the oxidation of chloride ions on BDD. The performance of 2D BDD and 3D BDD electrodes in terms of current efficiency, energy consumption, and charge passage during the treatments is discussed.

  12. Skew-t fits to mortality data--can a Gaussian-related distribution replace the Gompertz-Makeham as the basis for mortality studies?

    PubMed

    Clark, Jeremy S C; Kaczmarczyk, Mariusz; Mongiało, Zbigniew; Ignaczak, Paweł; Czajkowski, Andrzej A; Klęsk, Przemysław; Ciechanowicz, Andrzej

    2013-08-01

    Gompertz-related distributions have dominated mortality studies for 187 years. However, nonrelated distributions also fit well to mortality data. These compete with the Gompertz and Gompertz-Makeham data when applied to data with varying extents of truncation, with no consensus as to preference. In contrast, Gaussian-related distributions are rarely applied, despite the fact that Lexis in 1879 suggested that the normal distribution itself fits well to the right of the mode. Study aims were therefore to compare skew-t fits to Human Mortality Database data, with Gompertz-nested distributions, by implementing maximum likelihood estimation functions (mle2, R package bbmle; coding given). Results showed skew-t fits obtained lower Bayesian information criterion values than Gompertz-nested distributions, applied to low-mortality country data, including 1711 and 1810 cohorts. As Gaussian-related distributions have now been found to have almost universal application to error theory, one conclusion could be that a Gaussian-related distribution might replace Gompertz-related distributions as the basis for mortality studies.

  13. Optimal fitting of Gaussian-apodized or under-resolved emission lines in Fourier transform spectra providing new insights on the velocity structure of NGC 6720

    NASA Astrophysics Data System (ADS)

    Martin, Thomas B.; Prunet, Simon; Drissen, Laurent

    2016-12-01

    An analysis of the kinematics of NGC 6720 is performed on the commissioning data obtained with SITELLE, the Canada-France-Hawaii Telescope's new imaging Fourier transform spectrometer. In order to measure carefully the small broadening effect of a shell expansion on an unresolved emission line, we have determined a computationally robust implementation of the convolution of a Gaussian with a sinc instrumental line shape which avoids arithmetic overflows. This model can be used to measure line broadening of typically a few km s-1 even at low spectral resolution (R < 5000). We have also designed the corresponding set of Gaussian apodizing functions that are now used by ORBS, the SITELLE's reduction pipeline. We have implemented this model in ORCS, a fitting engine for SITELLE's data, and used it to derive the [S II] density map of the central part of the nebula. The study of the broadening of the [N II] lines shows that the main ring and the central lobe are two different shells with different expansion velocities. We have also derived deep and spatially resolved velocity maps of the halo in [N II] and Hα and found that the brightest bubbles are originating from two bipolar structures with a velocity difference of more than 35 km s-1 lying at the poles of a possibly unique halo shell expanding at a velocity of more than 15 km s-1.

  14. Some results on Gaussian mixtures

    NASA Astrophysics Data System (ADS)

    Felgueiras, Miguel; Santos, Rui; Martins, João Paulo

    2014-10-01

    We investigate Gaussian mixtures with independent components, whose parameters are numerically estimated. A decomposition of a Gaussian mixture is presented when the components have a common variance. We introduce a shifted and scaled t-Student distribution as an approximation for the distribution of Gaussian mixtures when their components have a common mean and develop a hypothesis test for testing the equality of the components means. Finally, we analyse the fitness of the approximate model to the logarithmic daily returns of the Portuguese stock index PSI-20.

  15. From almost Gaussian to Gaussian

    NASA Astrophysics Data System (ADS)

    Costa, Max H. M.; Rioul, Olivier

    2015-01-01

    We consider lower and upper bounds on the difference of differential entropies of a Gaussian random vector and an approximately Gaussian random vector after they are "smoothed" by an arbitrarily distributed random vector of finite power. These bounds are important to establish the optimality of the corner points in the capacity region of Gaussian interference channels. A problematic issue in a previous attempt to establish these bounds was detected in 2004 and the mentioned corner points have since been dubbed "the missing corner points". The importance of the given bounds comes from the fact that they induce Fano-type inequalities for the Gaussian interference channel. Usual Fano inequalities are based on a communication requirement. In this case, the new inequalities are derived from a non-disturbance constraint. The upper bound on the difference of differential entropies is established by the data processing inequality (DPI). For the lower bound, we do not have a complete proof, but we present an argument based on continuity and the DPI.

  16. AUTONOMOUS GAUSSIAN DECOMPOSITION

    SciTech Connect

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian; Heiles, Carl; Hennebelle, Patrick; Dickey, John

    2015-04-15

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.

  17. Autonomous Gaussian Decomposition

    NASA Astrophysics Data System (ADS)

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian; Heiles, Carl; Hennebelle, Patrick; Goss, W. M.; Dickey, John

    2015-04-01

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.

  18. Non-Gaussian error bars in galaxy surveys - I

    NASA Astrophysics Data System (ADS)

    Harnois-Déraps, Joachim; Pen, Ue-Li

    2012-07-01

    We propose a method to estimate non-Gaussian error bars on the matter power spectrum from galaxy surveys in the presence of non-trivial survey selection functions. The estimators are often obtained from formalisms like Feldmann, Kaiser and Peacock (FKP) and pseudo-Karhunen-Loève (PKL), which rely on the assumption that the underlying field is Gaussian. The Monte Carlo method is more accurate but involves the tedious process of running and cross-correlating a large number of N-body simulations, in which the survey volume is embedded. From 200 N-body simulations, we extract a non-linear covariance matrix as a function of two scales and of the angle between two Fourier modes. All the non-Gaussian features of that matrix are then simply parametrized in terms of a few fitting functions and eigenvectors. We furthermore develop a fast and accurate strategy that combines our parametrization with a general galaxy survey selection function, and incorporate non-Gaussian Poisson uncertainty. We describe how to incorporate these two distinct non-Gaussian contributions into a typical analysis pipeline, and apply our method with the selection function from the 2dFGRS. We find that the observed Fourier modes correlate at much larger scales than that predicted by both FKP formalism or pure N-body simulations in a 'top hat' selection function. In particular, the observed Fourier modes are already 50 per cent correlated at k˜ 0.1 h Mpc-1, and the non-Gaussian fractional variance on the power spectrum [?] is about a factor of 3.0 larger than the FKP prescription. At k˜ 0.4 h Mpc-1, the deviations are an order of magnitude.

  19. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  20. Gaussian Decomposition of Laser Altimeter Waveforms

    NASA Technical Reports Server (NTRS)

    Hofton, Michelle A.; Minster, J. Bernard; Blair, J. Bryan

    1999-01-01

    We develop a method to decompose a laser altimeter return waveform into its Gaussian components assuming that the position of each Gaussian within the waveform can be used to calculate the mean elevation of a specific reflecting surface within the laser footprint. We estimate the number of Gaussian components from the number of inflection points of a smoothed copy of the laser waveform, and obtain initial estimates of the Gaussian half-widths and positions from the positions of its consecutive inflection points. Initial amplitude estimates are obtained using a non-negative least-squares method. To reduce the likelihood of fitting the background noise within the waveform and to minimize the number of Gaussians needed in the approximation, we rank the "importance" of each Gaussian in the decomposition using its initial half-width and amplitude estimates. The initial parameter estimates of all Gaussians ranked "important" are optimized using the Levenburg-Marquardt method. If the sum of the Gaussians does not approximate the return waveform to a prescribed accuracy, then additional Gaussians are included in the optimization procedure. The Gaussian decomposition method is demonstrated on data collected by the airborne Laser Vegetation Imaging Sensor (LVIS) in October 1997 over the Sequoia National Forest, California.

  1. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  2. 2D semiconductor optoelectronics

    NASA Astrophysics Data System (ADS)

    Novoselov, Kostya

    The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.

  3. A deconvolution extraction method for 2D multi-object fibre spectroscopy based on the regularized least-squares QR-factorization algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Jian; Yin, Qian; Guo, Ping; Luo, A.-li

    2014-09-01

    This paper presents an efficient method for the extraction of astronomical spectra from two-dimensional (2D) multifibre spectrographs based on the regularized least-squares QR-factorization (LSQR) algorithm. We address two issues: we propose a modified Gaussian point spread function (PSF) for modelling the 2D PSF from multi-emission-line gas-discharge lamp images (arc images), and we develop an efficient deconvolution method to extract spectra in real circumstances. The proposed modified 2D Gaussian PSF model can fit various types of 2D PSFs, including different radial distortion angles and ellipticities. We adopt the regularized LSQR algorithm to solve the sparse linear equations constructed from the sparse convolution matrix, which we designate the deconvolution spectrum extraction method. Furthermore, we implement a parallelized LSQR algorithm based on graphics processing unit programming in the Compute Unified Device Architecture to accelerate the computational processing. Experimental results illustrate that the proposed extraction method can greatly reduce the computational cost and memory use of the deconvolution method and, consequently, increase its efficiency and practicability. In addition, the proposed extraction method has a stronger noise tolerance than other methods, such as the boxcar (aperture) extraction and profile extraction methods. Finally, we present an analysis of the sensitivity of the extraction results to the radius and full width at half-maximum of the 2D PSF.

  4. Irreversibility-inversions in 2D turbulence

    NASA Astrophysics Data System (ADS)

    Bragg, Andrew; de Lillo, Filippo; Boffetta, Guido

    2016-11-01

    We consider a recent theoretical prediction that for inertial particles in 2D turbulence, the nature of the irreversibility of their pair dispersion inverts when the particle inertia exceeds a certain value. In particular, when the particle Stokes number, St , is below a certain value, the forward-in-time (FIT) dispersion should be faster than the backward-in-time (BIT) dispersion, but for St above this value, this should invert so that BIT becomes faster than FIT dispersion. This non-trivial behavior arises because of the competition between two physically distinct irreversibility mechanisms that operate in different regimes of St . In 3D turbulence, both mechanisms act to produce faster BIT than FIT dispersion, but in 2D, the two mechanisms have opposite effects because of the inverse energy cascade in the turbulent velocity field. We supplement the qualitative argument given by Bragg et al. by deriving quantitative predictions of this effect in the short-time dispersion limit. These predictions are then confirmed by results of inertial particle dispersion in a direct numerical simulation of 2D turbulence.

  5. Gaussian entanglement of formation

    SciTech Connect

    Wolf, M.M.; Giedke, G.; Krueger, O.; Werner, R. F.; Cirac, J.I.

    2004-05-01

    We introduce a Gaussian version of the entanglement of formation adapted to bipartite Gaussian states by considering decompositions into pure Gaussian states only. We show that this quantity is an entanglement monotone under Gaussian operations and provide a simplified computation for states of arbitrary many modes. For the case of one mode per site the remaining variational problem can be solved analytically. If the considered state is in addition symmetric with respect to interchanging the two modes, we prove additivity of the considered entanglement measure. Moreover, in this case and considering only a single copy, our entanglement measure coincides with the true entanglement of formation.

  6. E-2D Advanced Hawkeye Aircraft (E-2D AHE)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-364 E-2D Advanced Hawkeye Aircraft (E-2D AHE) As of FY 2017 President’s Budget Defense...Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined

  7. 2-D mapping of skin chromophores in the spectral range 500 - 700 nm.

    PubMed

    Jakovels, Dainis; Spigulis, Janis

    2010-03-01

    The multi-spectral imaging technique has been used for distant mapping of in-vivo skin chromophores by analyzing spectral data at each reflected image pixel and constructing 2-D maps of the relative concentrations of oxy-/deoxy-haemoglobin and melanin. Instead of using a broad visible-NIR spectral range, this study focuses on narrowed spectral band 500-700 nm, speeding-up the signal processing procedure. Regression analysis confirmed that superposition of three Gaussians is optimal analytic approximation for the oxy-haemoglobin absorption tabular spectrum in this spectral band, while superposition of two Gaussians fits well for deoxy-haemoglobin absorption and exponential function - for melanin absorption. The proposed approach was clinically tested for three types of in-vivo skin provocations: ultraviolet irradiance, chemical reaction with vinegar essence and finger arterial occlusion. Spectral range 500-700 nm provided better sensitivity to oxy-haemoglobin changes and higher response stability to melanin than two reduced ranges 500-600 nm and 530-620 nm.

  8. Gaussian Intrinsic Entanglement

    NASA Astrophysics Data System (ADS)

    Mišta, Ladislav; Tatham, Richard

    2016-12-01

    We introduce a cryptographically motivated quantifier of entanglement in bipartite Gaussian systems called Gaussian intrinsic entanglement (GIE). The GIE is defined as the optimized mutual information of a Gaussian distribution of outcomes of measurements on parts of a system, conditioned on the outcomes of a measurement on a purifying subsystem. We show that GIE vanishes only on separable states and exhibits monotonicity under Gaussian local trace-preserving operations and classical communication. In the two-mode case, we compute GIE for all pure states as well as for several important classes of symmetric and asymmetric mixed states. Surprisingly, in all of these cases, GIE is equal to Gaussian Rényi-2 entanglement. As GIE is operationally associated with the secret-key agreement protocol and can be computed for several important classes of states, it offers a compromise between computable and physically meaningful entanglement quantifiers.

  9. Intensity Conserving Spectral Fitting

    NASA Astrophysics Data System (ADS)

    Klimchuk, J. A.; Patsourakos, S.; Tripathi, D.

    2016-01-01

    The detailed shapes of spectral-line profiles provide valuable information about the emitting plasma, especially when the plasma contains an unresolved mixture of velocities, temperatures, and densities. As a result of finite spectral resolution, the intensity measured by a spectrometer is the average intensity across a wavelength bin of non-zero size. It is assigned to the wavelength position at the center of the bin. However, the actual intensity at that discrete position will be different if the profile is curved, as it invariably is. Standard fitting routines (spline, Gaussian, etc.) do not account for this difference, and this can result in significant errors when making sensitive measurements. We have developed an iterative procedure that corrects for this effect. It converges rapidly and is very flexible in that it can be used with any fitting function. We present examples of cubic-spline and Gaussian fits and give special attention to measurements of blue-red asymmetries of coronal emission lines.

  10. Non-Gaussian extrema counts for CMB maps

    SciTech Connect

    Pogosyan, Dmitri; Pichon, Christophe; Gay, Christophe

    2011-10-15

    In the context of the geometrical analysis of weakly non-Gaussian cosmic microwave background maps, the 2D differential extrema counts as functions of the excursion set threshold is derived from the full moments expansion of the joint probability distribution of an isotropic random field, its gradient, and invariants of the Hessian. Analytic expressions for these counts are given to second order in the non-Gaussian correction, while a Monte Carlo method to compute them to arbitrary order is presented. Matching count statistics to these estimators is illustrated on fiducial non-Gaussian Planck data.

  11. Performance Analysis of Error Probabilities for Arbitrary 2-D Signaling with I/Q Unbalances over Nakagami-m Fading Channels

    NASA Astrophysics Data System (ADS)

    Lee, Jaeyoon; Yoon, Dongweon; Park, Sang Kyu

    Recently, we provided closed-form expressions involving two-dimensional (2-D) joint Gaussian Q-function for the symbol error rate (SER) and bit error rate (BER) of an arbitrary 2-D signal with I/Q unbalances over an additive white Gaussian noise (AWGN) channel [1]. In this letter, we extend the expressions to Nakagami-m fading channels. Using Craig representation of the 2-D joint Gaussian Q-function, we derive an exact and general expression for the error probabilities of arbitrary 2-D signaling with I/Q phase and amplitude unbalances over Nakagami-m fading channels.

  12. George: Gaussian Process regression

    NASA Astrophysics Data System (ADS)

    Foreman-Mackey, Daniel

    2015-11-01

    George is a fast and flexible library, implemented in C++ with Python bindings, for Gaussian Process regression useful for accounting for correlated noise in astronomical datasets, including those for transiting exoplanet discovery and characterization and stellar population modeling.

  13. Are Bragg Peaks Gaussian?

    PubMed Central

    Hammouda, Boualem

    2014-01-01

    It is common practice to assume that Bragg scattering peaks have Gaussian shape. The Gaussian shape function is used to perform most instrumental smearing corrections. Using Monte Carlo ray tracing simulation, the resolution of a realistic small-angle neutron scattering (SANS) instrument is generated reliably. Including a single-crystal sample with large d-spacing, Bragg peaks are produced. Bragg peaks contain contributions from the resolution function and from spread in the sample structure. Results show that Bragg peaks are Gaussian in the resolution-limited condition (with negligible sample spread) while this is not the case when spread in the sample structure is non-negligible. When sample spread contributes, the exponentially modified Gaussian function is a better account of the Bragg peak shape. This function is characterized by a non-zero third moment (skewness) which makes Bragg peaks asymmetric for broad neutron wavelength spreads. PMID:26601025

  14. Gaussian operations and privacy

    SciTech Connect

    Navascues, Miguel; Acin, Antonio

    2005-07-15

    We consider the possibilities offered by Gaussian states and operations for two honest parties, Alice and Bob, to obtain privacy against a third eavesdropping party, Eve. We first extend the security analysis of the protocol proposed in [Navascues et al. Phys. Rev. Lett. 94, 010502 (2005)]. Then, we prove that a generalized version of this protocol does not allow one to distill a secret key out of bound entangled Gaussian states.

  15. Making tensor factorizations robust to non-gaussian noise.

    SciTech Connect

    Chi, Eric C.; Kolda, Tamara Gibson

    2011-03-01

    Tensors are multi-way arrays, and the CANDECOMP/PARAFAC (CP) tensor factorization has found application in many different domains. The CP model is typically fit using a least squares objective function, which is a maximum likelihood estimate under the assumption of independent and identically distributed (i.i.d.) Gaussian noise. We demonstrate that this loss function can be highly sensitive to non-Gaussian noise. Therefore, we propose a loss function based on the 1-norm because it can accommodate both Gaussian and grossly non-Gaussian perturbations. We also present an alternating majorization-minimization (MM) algorithm for fitting a CP model using our proposed loss function (CPAL1) and compare its performance to the workhorse algorithm for fitting CP models, CP alternating least squares (CPALS).

  16. Optoelectronics with 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  17. Temperature modes for nonlinear Gaussian beams.

    PubMed

    Myers, Matthew R; Soneson, Joshua E

    2009-07-01

    In assessing the influence of nonlinear acoustic propagation on thermal bioeffects, approximate methods for quickly estimating the temperature rise as operational parameters are varied can be very useful. This paper provides a formula for the transient temperature rise associated with nonlinear propagation of Gaussian beams. The pressure amplitudes for the Gaussian modes can be obtained rapidly using a method previously published for simulating nonlinear propagation of Gaussian beams. The temperature-mode series shows that the nth temperature mode generated by nonlinear propagation, when normalized by the fundamental, is weaker than the nth heat-rate mode (also normalized by the fundamental in the heat-rate series) by a factor of log(n)/n, where n is the mode number. Predictions of temperature rise and thermal dose were found to be in close agreement with full, finite-difference calculations of the pressure fields, temperature rise, and thermal dose. Applications to non-Gaussian beams were made by fitting the main lobe of the significant modes to Gaussian functions.

  18. Highly crystalline 2D superconductors

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro

    2016-12-01

    Recent advances in materials fabrication have enabled the manufacturing of ordered 2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more than an order of magnitude lower than that of conventional amorphous or granular thin films. In this Review, we explore recent developments in the field of highly crystalline 2D superconductors and highlight the unprecedented physical properties of these systems. In particular, we explore the quantum metallic state (or possible metallic ground state), the quantum Griffiths phase observed in out-of-plane magnetic fields and the superconducting state maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a discussion of how these unconventional properties make highly crystalline 2D systems promising platforms for the exploration of new quantum physics and high-temperature superconductors.

  19. Extensions of 2D gravity

    SciTech Connect

    Sevrin, A.

    1993-06-01

    After reviewing some aspects of gravity in two dimensions, I show that non-trivial embeddings of sl(2) in a semi-simple (super) Lie algebra give rise to a very large class of extensions of 2D gravity. The induced action is constructed as a gauged WZW model and an exact expression for the effective action is given.

  20. On Gaussian feedback capacity

    NASA Technical Reports Server (NTRS)

    Dembo, Amir

    1989-01-01

    Pinsker and Ebert (1970) proved that in channels with additive Gaussian noise, feedback at most doubles the capacity. Cover and Pombra (1989) proved that feedback at most adds half a bit per transmission. Following their approach, the author proves that in the limit as signal power approaches either zero (very low SNR) or infinity (very high SNR), feedback does not increase the finite block-length capacity (which for nonstationary Gaussian channels replaces the standard notion of capacity that may not exist). Tighter upper bounds on the capacity are obtained in the process. Specializing these results to stationary channels, the author recovers some of the bounds recently obtained by Ozarow.

  1. Calculation of 2D electronic band structure using matrix mechanics

    NASA Astrophysics Data System (ADS)

    Pavelich, R. L.; Marsiglio, F.

    2016-12-01

    We extend previous work, applying elementary matrix mechanics to one-dimensional periodic arrays (to generate energy bands), to two-dimensional arrays. We generate band structures for the square-lattice "2D Kronig-Penney model" (square wells), the "muffin-tin" potential (circular wells), and Gaussian wells. We then apply the method to periodic arrays of more than one atomic site in a unit cell, specifically to the case of materials with hexagonal lattices like graphene. These straightforward extensions of undergraduate-level calculations allow students to readily determine band structures of current research interest.

  2. Optimal Gaussian entanglement swapping

    SciTech Connect

    Hoelscher-Obermaier, Jason; Loock, Peter van

    2011-01-15

    We consider entanglement swapping with general mixed two-mode Gaussian states and calculate the optimal gains for a broad class of such states including those states most relevant in communication scenarios. We show that, for this class of states, entanglement swapping adds no additional mixedness; that is, the ensemble-average output state has the same purity as the input states. This implies that, by using intermediate entanglement swapping steps, it is, in principle, possible to distribute entangled two-mode Gaussian states of higher purity as compared to direct transmission. We then apply the general results on optimal Gaussian swapping to the problem of quantum communication over a lossy fiber and demonstrate that, in contrast to the negative conclusions in the literature, swapping-based schemes in fact often perform better than direct transmission for high input squeezing. However, an effective transmission analysis reveals that the hope for improved performance based on optimal Gaussian entanglement swapping is spurious since the swapping does not lead to an enhancement of the effective transmission. This implies that the same or better results can always be obtained using direct transmission in combination with, in general, less squeezing.

  3. Imfit: A Fast, Flexible Program for Astronomical Image Fitting

    NASA Astrophysics Data System (ADS)

    Erwin, Peter

    2014-08-01

    Imift is an open-source astronomical image-fitting program specialized for galaxies but potentially useful for other sources, which is fast, flexible, and highly extensible. Its object-oriented design allows new types of image components (2D surface-brightness functions) to be easily written and added to the program. Image functions provided with Imfit include Sersic, exponential, and Gaussian galaxy decompositions along with Core-Sersic and broken-exponential profiles, elliptical rings, and three components that perform line-of-sight integration through 3D luminosity-density models of disks and rings seen at arbitrary inclinations. Available minimization algorithms include Levenberg-Marquardt, Nelder-Mead simplex, and Differential Evolution, allowing trade-offs between speed and decreased sensitivity to local minima in the fit landscape. Minimization can be done using the standard chi^2 statistic (using either data or model values to estimate per-pixel Gaussian errors, or else user-supplied error images) or the Cash statistic; the latter is particularly appropriate for cases of Poisson data in the low-count regime. The C++ source code for Imfit is available under the GNU Public License.

  4. Speech Enhancement Using Gaussian Scale Mixture Models.

    PubMed

    Hao, Jiucang; Lee, Te-Won; Sejnowski, Terrence J

    2010-08-11

    This paper presents a novel probabilistic approach to speech enhancement. Instead of a deterministic logarithmic relationship, we assume a probabilistic relationship between the frequency coefficients and the log-spectra. The speech model in the log-spectral domain is a Gaussian mixture model (GMM). The frequency coefficients obey a zero-mean Gaussian whose covariance equals to the exponential of the log-spectra. This results in a Gaussian scale mixture model (GSMM) for the speech signal in the frequency domain, since the log-spectra can be regarded as scaling factors. The probabilistic relation between frequency coefficients and log-spectra allows these to be treated as two random variables, both to be estimated from the noisy signals. Expectation-maximization (EM) was used to train the GSMM and Bayesian inference was used to compute the posterior signal distribution. Because exact inference of this full probabilistic model is computationally intractable, we developed two approaches to enhance the efficiency: the Laplace method and a variational approximation. The proposed methods were applied to enhance speech corrupted by Gaussian noise and speech-shaped noise (SSN). For both approximations, signals reconstructed from the estimated frequency coefficients provided higher signal-to-noise ratio (SNR) and those reconstructed from the estimated log-spectra produced lower word recognition error rate because the log-spectra fit the inputs to the recognizer better. Our algorithms effectively reduced the SSN, which algorithms based on spectral analysis were not able to suppress.

  5. On Gaussian random supergravity

    NASA Astrophysics Data System (ADS)

    Bachlechner, Thomas C.

    2014-04-01

    We study the distribution of metastable vacua and the likelihood of slow roll inflation in high dimensional random landscapes. We consider two examples of landscapes: a Gaussian random potential and an effective supergravity potential defined via a Gaussian random superpotential and a trivial Kähler potential. To examine these landscapes we introduce a random matrix model that describes the correlations between various derivatives and we propose an efficient algorithm that allows for a numerical study of high dimensional random fields. Using these novel tools, we find that the vast majority of metastable critical points in N dimensional random supergravities are either approximately supersymmetric with | F| ≪ M susy or supersymmetric. Such approximately supersymmetric points are dynamical attractors in the landscape and the probability that a randomly chosen critical point is metastable scales as log( P ) ∝ - N. We argue that random supergravities lead to potentially interesting inflationary dynamics.

  6. Adaptive Gaussian Pattern Classification

    DTIC Science & Technology

    1988-08-01

    redundant model of the data to be used in classification . There are two classes of learning, or adaptation schemes. The first, unsupervised learning...37, No. 3, pp. 242-247, 1983. [2] E. F. Codd, Cellular Automata , Academic Press, 1968. [31 H. Everett, G. Gilbreath, S. Alderson, D. J. Marchette...Na al Oca aytm aete !JTI FL E COPY AD-A 199 030 Technical Document 1335 August 1988 Adaptive Gaussian Pattern Classif ication C. E. Priebe D. J

  7. Resonant non-gaussianity

    SciTech Connect

    Flauger, Raphael; Pajer, Enrico E-mail: ep295@cornell.edu

    2011-01-01

    We provide a derivation from first principles of the primordial bispectrum of scalar perturbations produced during inflation driven by a canonically normalized scalar field whose potential exhibits small sinusoidal modulations. A potential of this type has been derived in a class of string theory models of inflation based on axion monodromy. We use this model as a concrete example, but we present our derivations and results for a general slow-roll potential with superimposed modulations. We show analytically that a resonance between the oscillations of the background and the oscillations of the fluctuations is responsible for the production of an observably large non-Gaussian signal. We provide an explicit expression for the shape of this resonant non-Gaussianity. We show that there is essentially no overlap between this shape and the local, equilateral, and orthogonal shapes, and we stress that resonant non-Gaussianity is not captured by the simplest version of the effective field theory of inflation. We hope our analytic expression will be useful to further observationally constrain this class of models.

  8. 2D quasiperiodic plasmonic crystals

    PubMed Central

    Bauer, Christina; Kobiela, Georg; Giessen, Harald

    2012-01-01

    Nanophotonic structures with irregular symmetry, such as quasiperiodic plasmonic crystals, have gained an increasing amount of attention, in particular as potential candidates to enhance the absorption of solar cells in an angular insensitive fashion. To examine the photonic bandstructure of such systems that determines their optical properties, it is necessary to measure and model normal and oblique light interaction with plasmonic crystals. We determine the different propagation vectors and consider the interaction of all possible waveguide modes and particle plasmons in a 2D metallic photonic quasicrystal, in conjunction with the dispersion relations of a slab waveguide. Using a Fano model, we calculate the optical properties for normal and inclined light incidence. Comparing measurements of a quasiperiodic lattice to the modelled spectra for angle of incidence variation in both azimuthal and polar direction of the sample gives excellent agreement and confirms the predictive power of our model. PMID:23209871

  9. Valleytronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Schaibley, John R.; Yu, Hongyi; Clark, Genevieve; Rivera, Pasqual; Ross, Jason S.; Seyler, Kyle L.; Yao, Wang; Xu, Xiaodong

    2016-11-01

    Semiconductor technology is currently based on the manipulation of electronic charge; however, electrons have additional degrees of freedom, such as spin and valley, that can be used to encode and process information. Over the past several decades, there has been significant progress in manipulating electron spin for semiconductor spintronic devices, motivated by potential spin-based information processing and storage applications. However, experimental progress towards manipulating the valley degree of freedom for potential valleytronic devices has been limited until very recently. We review the latest advances in valleytronics, which have largely been enabled by the isolation of 2D materials (such as graphene and semiconducting transition metal dichalcogenides) that host an easily accessible electronic valley degree of freedom, allowing for dynamic control.

  10. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  11. A study of Gaussian approximations of fluorescence microscopy PSF models

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zerubia, Josiane; Olivo-Marin, Jean-Christophe

    2006-02-01

    Despite the availability of rigorous physical models of microscopy point spread functions (PSFs), approximative PSFs, particularly separable Gaussian approximations are widely used in practical microscopic data processing. In fact, compared with a physical PSF model, which usually involves non-trivial terms such as integrals and infinite series, a Gaussian function has the advantage that it is much simpler and can be computed much faster. Moreover, due to its special analytical form, a Gaussian PSF is often preferred to facilitate the analysis of theoretical models such as Fluorescence Recovery After Photobleaching (FRAP) process and of processing algorithms such as EM deconvolution. However, in these works, the selection of Gaussian parameters and the approximation accuracy were rarely investigated. In this paper, we present a comprehensive study of Gaussian approximations for diffraction-limited 2D/3D paraxial/non-paraxial PSFs of Wide Field Fluorescence Microscopy (WFFM), Laser Scanning Confocal Microscopy (LSCM) and Disk Scanning Confocal Microscopy (DSCM) described using the Debye integral. Besides providing an optimal Gaussian parameter for the 2D paraxial WFFM PSF case, we further derive nearly optimal parameters in explicit forms for each of the other cases, based on Maclaurin series matching. Numerical results show that the accuracy of the 2D approximations is very high (Relative Squared Error (RSE) < 2% in WFFM, < 0.3% in LSCM and < 4% in DSCM). For the 3D PSFs, the approximations are average in WFFM (RSE ~= 16-20%), accurate in DSCM (RSE~= 3-6%) and nearly perfect in LSCM (RSE ~= 0.3-0.5%).

  12. Quantum coherence selective 2D Raman–2D electronic spectroscopy

    PubMed Central

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-01-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541

  13. Quantum coherence selective 2D Raman-2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-03-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  14. Quantum coherence selective 2D Raman-2D electronic spectroscopy.

    PubMed

    Spencer, Austin P; Hutson, William O; Harel, Elad

    2017-03-10

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  15. A novel hybrid motion detection algorithm based on 2D histogram

    NASA Astrophysics Data System (ADS)

    Su, Xiaomeng; Wang, Haiying

    2015-03-01

    This article proposes a novel hybrid motion detection algorithm based on 2-D (2-Dimensional) spatio-temporal states histogram. The new algorithm combines the idea of image change detection based on 2-D histogram and spatio-temporal entropy image segmentation. It quantifies the continuity of pixel state in time and space domain which are called TDF (Time Domain Filter) and SDF (Space Domain Filter) respectively. After this, put both channels of output data from TDF and SDF into a 2-D histogram. In the 2-D histogram, a curve division method helps to separate the foreground state points and the background ones more accurately. Innovatively, the new algorithm converts the video sequence to its histogram sequence, and transforms the difference of pixel's value in the video sequence into the difference of pixel's position in the 2-D histogram. Experimental results on different types of scenes added Gaussian noise shows that the proposed technique has strong ability of detecting moving objects.

  16. Gaussian mixture models as flux prediction method for central receivers

    NASA Astrophysics Data System (ADS)

    Grobler, Annemarie; Gauché, Paul; Smit, Willie

    2016-05-01

    Flux prediction methods are crucial to the design and operation of central receiver systems. Current methods such as the circular and elliptical (bivariate) Gaussian prediction methods are often used in field layout design and aiming strategies. For experimental or small central receiver systems, the flux profile of a single heliostat often deviates significantly from the circular and elliptical Gaussian models. Therefore a novel method of flux prediction was developed by incorporating the fitting of Gaussian mixture models onto flux profiles produced by flux measurement or ray tracing. A method was also developed to predict the Gaussian mixture model parameters of a single heliostat for a given time using image processing. Recording the predicted parameters in a database ensures that more accurate predictions are made in a shorter time frame.

  17. Dynamical Models of SAURON and CALIFA Galaxies: 1D and 2D Rotational Curves

    NASA Astrophysics Data System (ADS)

    Kalinova, Veselina; van de Ven, G.; Lyubenova, M.; Falcon-Barroso, J.; van den Bosch, R.

    2013-01-01

    The mass of a galaxy is the most important parameter to understand its structure and evolution. The total mass we can infer by constructing dynamical models that fit the motion of the stars and gas in the galaxy. The dark matter content then follows after subtracting the luminous matter inferred from colors and/or spectra. Here, we present the mass distribution of a sample of 18 late-type spiral (Sb-Sd) galaxies, using two-dimensional stellar kinematics obtained with the integral-field spectrograph SAURON. The observed second order velocity moments of these galaxies are fitted with solutions of the Axisymmetric Jeans equations and give us an accurate estimation of the mass-to-light ratio profiles and rotational curves. The rotation curves of the galaxies are obtained by the Asymmetric Drift Correction (ADC) and Multi-Gaussian Expansion (MGE) methods, corresponding to one- and two-dimensional mass distribution. Their comparison shows that the mass distribution based on the 2D stellar kinematics is much more reliable than 1D one. SAURON integral field of view looks at the inner parts of the galaxies in contrast with CALIFA survey. CALIFA survey provides PMAS/PPAK integral-field spectroscopic data of ~ 600 nearby galaxies as part of the Calar Alto Legacy Integral Field Area. We show the first CALIFA dynamical models of different morphological type of galaxies, giving the clue about the mass distribution of galaxies through the whole Hubble sequence and their evolution from the blue cloud to the red sequence.

  18. Truncated Gaussians as tolerance sets

    NASA Technical Reports Server (NTRS)

    Cozman, Fabio; Krotkov, Eric

    1994-01-01

    This work focuses on the use of truncated Gaussian distributions as models for bounded data measurements that are constrained to appear between fixed limits. The authors prove that the truncated Gaussian can be viewed as a maximum entropy distribution for truncated bounded data, when mean and covariance are given. The characteristic function for the truncated Gaussian is presented; from this, algorithms are derived for calculation of mean, variance, summation, application of Bayes rule and filtering with truncated Gaussians. As an example of the power of their methods, a derivation of the disparity constraint (used in computer vision) from their models is described. The authors' approach complements results in Statistics, but their proposal is not only to use the truncated Gaussian as a model for selected data; they propose to model measurements as fundamentally in terms of truncated Gaussians.

  19. Binomial Gaussian mixture filter

    NASA Astrophysics Data System (ADS)

    Raitoharju, Matti; Ali-Löytty, Simo; Piché, Robert

    2015-12-01

    In this work, we present a novel method for approximating a normal distribution with a weighted sum of normal distributions. The approximation is used for splitting normally distributed components in a Gaussian mixture filter, such that components have smaller covariances and cause smaller linearization errors when nonlinear measurements are used for the state update. Our splitting method uses weights from the binomial distribution as component weights. The method preserves the mean and covariance of the original normal distribution, and in addition, the resulting probability density and cumulative distribution functions converge to the original normal distribution when the number of components is increased. Furthermore, an algorithm is presented to do the splitting such as to keep the linearization error below a given threshold with a minimum number of components. The accuracy of the estimate provided by the proposed method is evaluated in four simulated single-update cases and one time series tracking case. In these tests, it is found that the proposed method is more accurate than other Gaussian mixture filters found in the literature when the same number of components is used and that the proposed method is faster and more accurate than particle filters.

  20. Spatial Solitons in 2D Graded-Index Waveguides with Different Distributed Transverse Diffractions

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Xiang

    2014-02-01

    We discuss the nonlinear Schrödinger equation with variable coefficients in 2D graded-index waveguides with different distributed transverse diffractions and obtain exact bright and dark soliton solutions. Based on these solutions, we mainly investigate the dynamical behaviors of solitons in three different diffraction decreasing waveguides with the hyperbolic, Gaussian and Logarithmic profiles. Results indicate that for the same parameters, the amplitude of bright solitons in the Logarithmic profile and the amplitude of dark solitons in the Gaussian profile are biggest respectively, and the amplitude in the hyperbolic profile is smallest, while the width of solitons has the opposite case.

  1. Image estimation using doubly stochastic gaussian random field models.

    PubMed

    Woods, J W; Dravida, S; Mediavilla, R

    1987-02-01

    The two-dimensional (2-D) doubly stochastic Gaussian (DSG) model was introduced by one of the authors to provide a complete model for spatial filters which adapt to the local structure in an image signal. Here we present the optimal estimator and 2-D fixed-lag smoother for this DSG model extending earlier work of Ackerson and Fu. As the optimal estimator has an exponentially growing state space, we investigate suboptimal estimators using both a tree and a decision-directed method. Experimental results are presented.

  2. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  3. Angles-centroids fitting calibration and the centroid algorithm applied to reverse Hartmann test

    NASA Astrophysics Data System (ADS)

    Zhao, Zhu; Hui, Mei; Xia, Zhengzheng; Dong, Liquan; Liu, Ming; Liu, Xiaohua; Kong, Lingqin; Zhao, Yuejin

    2017-02-01

    In this paper, we develop an angles-centroids fitting (ACF) system and the centroid algorithm to calibrate the reverse Hartmann test (RHT) with sufficient precision. The essence of ACF calibration is to establish the relationship between ray angles and detector coordinates. Centroids computation is used to find correspondences between the rays of datum marks and detector pixels. Here, the point spread function of RHT is classified as circle of confusion (CoC), and the fitting of a CoC spot with 2D Gaussian profile to identify the centroid forms the basis of the centroid algorithm. Theoretical and experimental results of centroids computation demonstrate that the Gaussian fitting method has a less centroid shift or the shift grows at a slower pace when the quality of the image is reduced. In ACF tests, the optical instrumental alignments reach an overall accuracy of 0.1 pixel with the application of laser spot centroids tracking program. Locating the crystal at different positions, the feasibility and accuracy of ACF calibration are further validated to 10-6-10-4 rad root-mean-square error of the calibrations differences.

  4. Non Gaussian Minkowski functionals and extrema counts for CMB maps

    NASA Astrophysics Data System (ADS)

    Pogosyan, Dmitri; Codis, Sandrine; Pichon, Christophe

    2016-10-01

    In the conference presentation we have reviewed the theory of non-Gaussian geometrical measures for 3D Cosmic Web of the matter distribution in the Universe and 2D sky data, such as Cosmic Microwave Background (CMB) maps that was developed in a series of our papers. The theory leverages symmetry of isotropic statistics such as Minkowski functionals and extrema counts to develop post Gaussian expansion of the statistics in orthogonal polynomials of invariant descriptors of the field, its first and second derivatives. The application of the approach to 2D fields defined on a spherical sky was suggested, but never rigorously developed. In this paper we present such development treating the effects of the curvature and finiteness of the spherical space $S_2$ exactly, without relying on flat-sky approximation. We present Minkowski functionals, including Euler characteristic and extrema counts to the first non-Gaussian correction, suitable for weakly non-Gaussian fields on a sphere, of which CMB is the prime example.

  5. Effective Hamiltonians of 2D Spin Glass Clusters

    NASA Astrophysics Data System (ADS)

    Clement, Colin; Liarte, Danilo; Middleton, Alan; Sethna, James

    2015-03-01

    We have a method for directly identifying the clusters which are thought to dominate the dynamics of spin glasses. We also have a method for generating an effective Hamiltonian treating each cluster as an individual spin. We used these methods on a 2D Ising spin glass with Gaussian bonds. We study these systems by generating samples and correlation functions using a combination of Monte Carlo and high-performance numerically exact Pfaffian methods. With effective cluster Hamiltonians we can calculate the free energy asymmetry of the original clusters and perform a scaling analysis. The scaling exponents found are consistent with Domain-Wall Renormalization Group methods, and probe all length scales. We can also study the flow of these effective Hamiltonians by clustering the clustered spins, and we find that our hard spin Hamiltonians at high temperature retain accurate low-temperature fluctuations when compared to their parent models.

  6. Normal form decomposition for Gaussian-to-Gaussian superoperators

    SciTech Connect

    De Palma, Giacomo; Mari, Andrea; Giovannetti, Vittorio; Holevo, Alexander S.

    2015-05-15

    In this paper, we explore the set of linear maps sending the set of quantum Gaussian states into itself. These maps are in general not positive, a feature which can be exploited as a test to check whether a given quantum state belongs to the convex hull of Gaussian states (if one of the considered maps sends it into a non-positive operator, the above state is certified not to belong to the set). Generalizing a result known to be valid under the assumption of complete positivity, we provide a characterization of these Gaussian-to-Gaussian (not necessarily positive) superoperators in terms of their action on the characteristic function of the inputs. For the special case of one-mode mappings, we also show that any Gaussian-to-Gaussian superoperator can be expressed as a concatenation of a phase-space dilatation, followed by the action of a completely positive Gaussian channel, possibly composed with a transposition. While a similar decomposition is shown to fail in the multi-mode scenario, we prove that it still holds at least under the further hypothesis of homogeneous action on the covariance matrix.

  7. Normal form decomposition for Gaussian-to-Gaussian superoperators

    NASA Astrophysics Data System (ADS)

    De Palma, Giacomo; Mari, Andrea; Giovannetti, Vittorio; Holevo, Alexander S.

    2015-05-01

    In this paper, we explore the set of linear maps sending the set of quantum Gaussian states into itself. These maps are in general not positive, a feature which can be exploited as a test to check whether a given quantum state belongs to the convex hull of Gaussian states (if one of the considered maps sends it into a non-positive operator, the above state is certified not to belong to the set). Generalizing a result known to be valid under the assumption of complete positivity, we provide a characterization of these Gaussian-to-Gaussian (not necessarily positive) superoperators in terms of their action on the characteristic function of the inputs. For the special case of one-mode mappings, we also show that any Gaussian-to-Gaussian superoperator can be expressed as a concatenation of a phase-space dilatation, followed by the action of a completely positive Gaussian channel, possibly composed with a transposition. While a similar decomposition is shown to fail in the multi-mode scenario, we prove that it still holds at least under the further hypothesis of homogeneous action on the covariance matrix.

  8. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  9. Gaussian and non-Gaussian fluctuations in pure classical fluids

    NASA Astrophysics Data System (ADS)

    Naleem, Nawavi; Ploetz, Elizabeth A.; Smith, Paul E.

    2017-03-01

    The particle number, energy, and volume probability distributions in the canonical, isothermal-isobaric, grand canonical, and isobaric-isenthalpic ensembles are investigated. In particular, we consider Gaussian and non-Gaussian behavior and formulate the results in terms of a single expression valid for all the ensembles employing common, experimentally accessible, thermodynamic derivatives. This is achieved using Fluctuation Solution Theory to help manipulate derivatives of the entropy. The properties of the distributions are then investigated using available equations of state for fluid water and argon. Purely Gaussian behavior is not observed for any of the state points considered here. A set of simple measures, involving thermodynamic derivatives, indicating non-Gaussian behavior is proposed. A general expression, valid in the high temperature limit, for small energy fluctuations in the canonical ensemble is provided.

  10. 2-D nonlinear IIR-filters for image processing - An exploratory analysis

    NASA Technical Reports Server (NTRS)

    Bauer, P. H.; Sartori, M.

    1991-01-01

    A new nonlinear IIR filter structure is introduced and its deterministic properties are analyzed. It is shown to be better suited for image processing applications than its linear shift-invariant counterpart. The new structure is obtained from causality inversion of a 2D quarterplane causal linear filter with respect to the two directions of propagation. It is demonstrated, that by using this design, a nonlinear 2D lowpass filter can be constructed, which is capable of effectively suppressing Gaussian or impulse noise without destroying important image information.

  11. High accuracy determination of the thermal properties of supported 2D materials.

    PubMed

    Judek, Jarosław; Gertych, Arkadiusz P; Świniarski, Michał; Łapińska, Anna; Dużyńska, Anna; Zdrojek, Mariusz

    2015-07-16

    We present a novel approach for the simultaneous determination of the thermal conductivity κ and the total interface conductance g of supported 2D materials by the enhanced opto-thermal method. We harness the property of the Gaussian laser beam that acts as a heat source, whose size can easily and precisely be controlled. The experimental data for multi-layer graphene and MoS2 flakes are supplemented using numerical simulations of the heat distribution in the Si/SiO2/2D material system. The procedure of κ and g extraction is tested in a statistical approach, demonstrating the high accuracy and repeatability of our method.

  12. High accuracy determination of the thermal properties of supported 2D materials

    NASA Astrophysics Data System (ADS)

    Judek, Jarosław; Gertych, Arkadiusz P.; Świniarski, Michał; Łapińska, Anna; Dużyńska, Anna; Zdrojek, Mariusz

    2015-07-01

    We present a novel approach for the simultaneous determination of the thermal conductivity κ and the total interface conductance g of supported 2D materials by the enhanced opto-thermal method. We harness the property of the Gaussian laser beam that acts as a heat source, whose size can easily and precisely be controlled. The experimental data for multi-layer graphene and MoS2 flakes are supplemented using numerical simulations of the heat distribution in the Si/SiO2/2D material system. The procedure of κ and g extraction is tested in a statistical approach, demonstrating the high accuracy and repeatability of our method.

  13. Shear viscosity measurements in a 2D Yukawa liquid

    NASA Astrophysics Data System (ADS)

    Nosenko, Volodymyr

    2005-03-01

    Shear viscosity was measured for a 2D strongly-coupled Yukawa liquid. First, we formed a dilute monolayer suspension of microspheres in a partially-ionized rarefied gas, i.e., a dusty plasma. In the absence of manipulation, the suspension forms a 2D triangular lattice. We used a new in-situ method of applying a shear stress using the scattering forces applied by counter-propagating laser beams. The lattice melted and a shear flow formed. Using digital video microscopy for direct imaging and particle tracking, the microscopic dynamics of the shear flow are observed. Averaging the velocities of individual microspheres, a velocity flow profile was calculated. Using the Navier-Stokes equation with an additional frictional term to account for gas drag, we fit the velocity profile. The fit yielded the value of the shear viscosity. The kinematic viscosity of our particle suspension is of order 1 mm^2s-1, which is comparable to that for liquid water. We believe this is the first report of a rheological measurement in a 2D dusty plasma. This talk is based on V. Nosenko and J. Goree, PRL 93, 155004 (2004).

  14. The effect of noise and lipid signals on determination of Gaussian and non-Gaussian diffusion parameters in skeletal muscle.

    PubMed

    Cameron, Donnie; Bouhrara, Mustapha; Reiter, David A; Fishbein, Kenneth W; Choi, Seongjin; Bergeron, Christopher M; Ferrucci, Luigi; Spencer, Richard G

    2017-04-06

    This work characterizes the effect of lipid and noise signals on muscle diffusion parameter estimation in several conventional and non-Gaussian models, the ultimate objectives being to characterize popular fat suppression approaches for human muscle diffusion studies, to provide simulations to inform experimental work and to report normative non-Gaussian parameter values. The models investigated in this work were the Gaussian monoexponential and intravoxel incoherent motion (IVIM) models, and the non-Gaussian kurtosis and stretched exponential models. These were evaluated via simulations, and in vitro and in vivo experiments. Simulations were performed using literature input values, modeling fat contamination as an additive baseline to data, whereas phantom studies used a phantom containing aliphatic and olefinic fats and muscle-like gel. Human imaging was performed in the hamstring muscles of 10 volunteers. Diffusion-weighted imaging was applied with spectral attenuated inversion recovery (SPAIR), slice-select gradient reversal and water-specific excitation fat suppression, alone and in combination. Measurement bias (accuracy) and dispersion (precision) were evaluated, together with intra- and inter-scan repeatability. Simulations indicated that noise in magnitude images resulted in <6% bias in diffusion coefficients and non-Gaussian parameters (α, K), whereas baseline fitting minimized fat bias for all models, except IVIM. In vivo, popular SPAIR fat suppression proved inadequate for accurate parameter estimation, producing non-physiological parameter estimates without baseline fitting and large biases when it was used. Combining all three fat suppression techniques and fitting data with a baseline offset gave the best results of all the methods studied for both Gaussian diffusion and, overall, for non-Gaussian diffusion. It produced consistent parameter estimates for all models, except IVIM, and highlighted non-Gaussian behavior perpendicular to muscle fibers (

  15. Volume Calculation of Venous Thrombosis Using 2D Ultrasound Images.

    PubMed

    Dhibi, M; Puentes, J; Bressollette, L; Guias, B; Solaiman, B

    2005-01-01

    Venous thrombosis screening exams use 2D ultrasound images, from which medical experts obtain a rough idea of the thrombosis aspect and infer an approximate volume. Such estimation is essential to follow up the thrombosis evolution. This paper proposes a method to calculate venous thrombosis volume from non-parallel 2D ultrasound images, taking advantage of a priori knowledge about the thrombosis shape. An interactive ellipse fitting contour segmentation extracts the 2D thrombosis contours. Then, a Delaunay triangulation is applied to the set of 2D segmented contours positioned in 3D, and the area that each contour defines, to obtain a global thrombosis 3D surface reconstruction, with a dense triangulation inside the contours. Volume is calculated from the obtained surface and contours triangulation, using a maximum unit normal component approach. Preliminary results obtained on 3 plastic phantoms and 3 in vitro venous thromboses, as well as one in vivo case are presented and discussed. An error rate of volume estimation inferior to 4,5% for the plastic phantoms, and 3,5% for the in vitro venous thromboses was obtained.

  16. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  17. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  18. Arbitrage with fractional Gaussian processes

    NASA Astrophysics Data System (ADS)

    Zhang, Xili; Xiao, Weilin

    2017-04-01

    While the arbitrage opportunity in the Black-Scholes model driven by fractional Brownian motion has a long history, the arbitrage strategy in the Black-Scholes model driven by general fractional Gaussian processes is in its infancy. The development of stochastic calculus with respect to fractional Gaussian processes allowed us to study such models. In this paper, following the idea of Shiryaev (1998), an arbitrage strategy is constructed for the Black-Scholes model driven by fractional Gaussian processes, when the stochastic integral is interpreted in the Riemann-Stieltjes sense. Arbitrage opportunities in some fractional Gaussian processes, including fractional Brownian motion, sub-fractional Brownian motion, bi-fractional Brownian motion, weighted-fractional Brownian motion and tempered fractional Brownian motion, are also investigated.

  19. The Multilinear Compound Gaussian Distribution

    DTIC Science & Technology

    2012-05-01

    which we call the Multilinear Compound Gaussian (MCG) distribution, subsumes both GSM [1] and the previously developed MICA [3-4] distributions as...modeling various natural phenomena of interest. Index Terms— GSM, MICA , MCG, Bayesian, Nonlinear I. INTRODUCTION The compound Gaussian (CG) model—also...We will see how the MCG model developed subsumes both CG and the previously developed multilinear ICA ( MICA ) distribution [3-4] as complementary

  20. Continuous ultrasound speckle tracking with Gaussian mixtures.

    PubMed

    Schretter, Colas; Sun, Jianyong; Bundervoet, Shaun; Dooms, Ann; Schelkens, Peter; de Brito Carvalho, Catarina; Slagmolen, Pieter; D'hooge, Jan

    2015-01-01

    Speckle tracking echocardiography (STE) is now widely used for measuring strain, deformations, and motion in cardiology. STE involves three successive steps: acquisition of individual frames, speckle detection, and image registration using speckles as landmarks. This work proposes to avoid explicit detection and registration by representing dynamic ultrasound images as sparse collections of moving Gaussian elements in the continuous joint space-time space. Individual speckles or local clusters of speckles are approximated by a single multivariate Gaussian kernel with associated linear trajectory over a short time span. A hierarchical tree-structured model is fitted to sampled input data such that predicted image estimates can be retrieved by regression after reconstruction, allowing a (bias-variance) trade-off between model complexity and image resolution. The inverse image reconstruction problem is solved with an online Bayesian statistical estimation algorithm. Experiments on clinical data could estimate subtle sub-pixel accurate motion that is difficult to capture with frame-to-frame elastic image registration techniques.

  1. Non-Gaussian error distribution of 7Li abundance measurements

    NASA Astrophysics Data System (ADS)

    Crandall, Sara; Houston, Stephen; Ratra, Bharat

    2015-07-01

    We construct the error distribution of 7Li abundance measurements for 66 observations (with error bars) used by Spite et al. (2012) that give A(Li) = 2.21 ± 0.065 (median and 1σ symmetrized error). This error distribution is somewhat non-Gaussian, with larger probability in the tails than is predicted by a Gaussian distribution. The 95.4% confidence limits are 3.0σ in terms of the quoted errors. We fit the data to four commonly used distributions: Gaussian, Cauchy, Student’s t and double exponential with the center of the distribution found with both weighted mean and median statistics. It is reasonably well described by a widened n = 8 Student’s t distribution. Assuming Gaussianity, the observed A(Li) is 6.5σ away from that expected from standard Big Bang Nucleosynthesis (BBN) given the Planck observations. Accounting for the non-Gaussianity of the observed A(Li) error distribution reduces the discrepancy to 4.9σ, which is still significant.

  2. Quantum correlations in Gaussian states via Gaussian channels: steering, entanglement, and discord

    NASA Astrophysics Data System (ADS)

    Wang, Zhong-Xiao; Wang, Shuhao; Li, Qiting; Wang, Tie-Jun; Wang, Chuan

    2016-06-01

    Here we study the quantum steering, quantum entanglement, and quantum discord for Gaussian Einstein-Podolsky-Rosen states via Gaussian channels. And the sudden death phenomena for Gaussian steering and Gaussian entanglement are theoretically observed. We find that some Gaussian states have only one-way steering, which confirms the asymmetry of quantum steering. Also we investigate that the entangled Gaussian states without Gaussian steering and correlated Gaussian states own no Gaussian entanglement. Meanwhile, our results support the assumption that quantum entanglement is intermediate between quantum discord and quantum steering. Furthermore, we give experimental recipes for preparing quantum states with desired types of quantum correlations.

  3. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  4. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  5. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  6. 2D/3D switchable displays

    NASA Astrophysics Data System (ADS)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  7. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L. A.; Hallquist, J. O.

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  8. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology.

  9. Information geometry of Gaussian channels

    SciTech Connect

    Monras, Alex; Illuminati, Fabrizio

    2010-06-15

    We define a local Riemannian metric tensor in the manifold of Gaussian channels and the distance that it induces. We adopt an information-geometric approach and define a metric derived from the Bures-Fisher metric for quantum states. The resulting metric inherits several desirable properties from the Bures-Fisher metric and is operationally motivated by distinguishability considerations: It serves as an upper bound to the attainable quantum Fisher information for the channel parameters using Gaussian states, under generic constraints on the physically available resources. Our approach naturally includes the use of entangled Gaussian probe states. We prove that the metric enjoys some desirable properties like stability and covariance. As a by-product, we also obtain some general results in Gaussian channel estimation that are the continuous-variable analogs of previously known results in finite dimensions. We prove that optimal probe states are always pure and bounded in the number of ancillary modes, even in the presence of constraints on the reduced state input in the channel. This has experimental and computational implications. It limits the complexity of optimal experimental setups for channel estimation and reduces the computational requirements for the evaluation of the metric: Indeed, we construct a converging algorithm for its computation. We provide explicit formulas for computing the multiparametric quantum Fisher information for dissipative channels probed with arbitrary Gaussian states and provide the optimal observables for the estimation of the channel parameters (e.g., bath couplings, squeezing, and temperature).

  10. Truncated Gaussian and derived methods

    NASA Astrophysics Data System (ADS)

    Beucher, Hélène; Renard, Didier

    2016-09-01

    The interest of a digital model to represent the geological characteristics of the field is well established. However, the way to obtain it is not straightforward because this translation is necessarily a simplification of the actual field. This paper describes a stochastic model called truncated Gaussian simulations (TGS), which distributes a collection of facies or lithotypes over an area of interest. This method is based on facies proportions, spatial distribution and relationships, which can be easily tuned to produce numerous different textures. Initially developed for ordered facies, this model has been extended to complex organizations, where facies are not sequentially ordered. This method called pluri-Gaussian simulation (PGS) considers several Gaussian random functions, which can be correlated. PGS can produce a large variety of lithotype setups, as illustrated by several examples such as oriented deposits or high frequency layering.

  11. Gaussian entanglement distribution via satellite

    NASA Astrophysics Data System (ADS)

    Hosseinidehaj, Nedasadat; Malaney, Robert

    2015-02-01

    In this work we analyze three quantum communication schemes for the generation of Gaussian entanglement between two ground stations. Communication occurs via a satellite over two independent atmospheric fading channels dominated by turbulence-induced beam wander. In our first scheme, the engineering complexity remains largely on the ground transceivers, with the satellite acting simply as a reflector. Although the channel state information of the two atmospheric channels remains unknown in this scheme, the Gaussian entanglement generation between the ground stations can still be determined. On the ground, distillation and Gaussification procedures can be applied, leading to a refined Gaussian entanglement generation rate between the ground stations. We compare the rates produced by this first scheme with two competing schemes in which quantum complexity is added to the satellite, thereby illustrating the tradeoff between space-based engineering complexity and the rate of ground-station entanglement generation.

  12. Orthotropic Piezoelectricity in 2D Nanocellulose

    NASA Astrophysics Data System (ADS)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  13. Orthotropic Piezoelectricity in 2D Nanocellulose

    PubMed Central

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-01-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V−1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies. PMID:27708364

  14. Orthotropic Piezoelectricity in 2D Nanocellulose.

    PubMed

    García, Y; Ruiz-Blanco, Yasser B; Marrero-Ponce, Yovani; Sotomayor-Torres, C M

    2016-10-06

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V(-1), ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  15. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  16. Large Area Synthesis of 2D Materials

    NASA Astrophysics Data System (ADS)

    Vogel, Eric

    Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.

  17. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  18. Assessing 2D electrophoretic mobility spectroscopy (2D MOSY) for analytical applications.

    PubMed

    Fang, Yuan; Yushmanov, Pavel V; Furó, István

    2016-12-08

    Electrophoretic displacement of charged entity phase modulates the spectrum acquired in electrophoretic NMR experiments, and this modulation can be presented via 2D FT as 2D mobility spectroscopy (MOSY) spectra. We compare in various mixed solutions the chemical selectivity provided by 2D MOSY spectra with that provided by 2D diffusion-ordered spectroscopy (DOSY) spectra and demonstrate, under the conditions explored, a superior performance of the former method. 2D MOSY compares also favourably with closely related LC-NMR methods. The shape of 2D MOSY spectra in complex mixtures is strongly modulated by the pH of the sample, a feature that has potential for areas such as in drug discovery and metabolomics. Copyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. StartCopTextCopyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

  19. Cognitive fitness.

    PubMed

    Gilkey, Roderick; Kilts, Clint

    2007-11-01

    Recent neuroscientific research shows that the health of your brain isn't, as experts once thought, just the product of childhood experiences and genetics; it reflects your adult choices and experiences as well. Professors Gilkey and Kilts of Emory University's medical and business schools explain how you can strengthen your brain's anatomy, neural networks, and cognitive abilities, and prevent functions such as memory from deteriorating as you age. The brain's alertness is the result of what the authors call cognitive fitness -a state of optimized ability to reason, remember, learn, plan, and adapt. Certain attitudes, lifestyle choices, and exercises enhance cognitive fitness. Mental workouts are the key. Brain-imaging studies indicate that acquiring expertise in areas as diverse as playing a cello, juggling, speaking a foreign language, and driving a taxicab expands your neural systems and makes them more communicative. In other words, you can alter the physical makeup of your brain by learning new skills. The more cognitively fit you are, the better equipped you are to make decisions, solve problems, and deal with stress and change. Cognitive fitness will help you be more open to new ideas and alternative perspectives. It will give you the capacity to change your behavior and realize your goals. You can delay senescence for years and even enjoy a second career. Drawing from the rapidly expanding body of neuroscience research as well as from well-established research in psychology and other mental health fields, the authors have identified four steps you can take to become cognitively fit: understand how experience makes the brain grow, work hard at play, search for patterns, and seek novelty and innovation. Together these steps capture some of the key opportunities for maintaining an engaged, creative brain.

  20. 2012 Problem 1: Gaussian Cannon

    NASA Astrophysics Data System (ADS)

    Xia, Qing; Gao, Wenli; Wang, Sihui; Zhou, Huijun

    2015-10-01

    Using the theory of elasticity, we establish an accurate collision model and quantitatively explain how Gaussian Cannon gains its most powerful shot under certain experimental parameters. The work done by magnetic force on the steel ball is obtained by measuring the magnetic force. Essential factors to acquire higher ejection speed have been found.

  1. 2D Distributed Sensing Via TDR

    DTIC Science & Technology

    2007-11-02

    plate VEGF CompositeSensor Experimental Setup Air 279 mm 61 78 VARTM profile: slope RTM profile: rectangle 22 1 Jul 2003© 2003 University of Delaware...2003 University of Delaware All rights reserved Vision: Non-contact 2D sensing ü VARTM setup constructed within TL can be sensed by its EM field: 2D...300.0 mm/ns. 1 2 1 Jul 2003© 2003 University of Delaware All rights reserved Model Validation “ RTM Flow” TDR Response to 139 mm VEGC

  2. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials.

  3. GAUSSIAN BEAM LASER RESONATOR PROGRAM

    NASA Technical Reports Server (NTRS)

    Cross, P. L.

    1994-01-01

    In designing a laser cavity, the laser engineer is frequently concerned with more than the stability of the resonator. Other considerations include the size of the beam at various optical surfaces within the resonator or the performance of intracavity line-narrowing or other optical elements. Laser resonators obey the laws of Gaussian beam propagation, not geometric optics. The Gaussian Beam Laser Resonator Program models laser resonators using Gaussian ray trace techniques. It can be used to determine the propagation of radiation through laser resonators. The algorithm used in the Gaussian Beam Resonator program has three major components. First, the ray transfer matrix for the laser resonator must be calculated. Next calculations of the initial beam parameters, specifically, the beam stability, the beam waist size and location for the resonator input element, and the wavefront curvature and beam radius at the input surface to the first resonator element are performed. Finally the propagation of the beam through the optical elements is computed. The optical elements can be modeled as parallel plates, lenses, mirrors, dummy surfaces, or Gradient Index (GRIN) lenses. A Gradient Index lens is a good approximation of a laser rod operating under a thermal load. The optical system may contain up to 50 elements. In addition to the internal beam elements the optical system may contain elements external to the resonator. The Gaussian Beam Resonator program was written in Microsoft FORTRAN (Version 4.01). It was developed for the IBM PS/2 80-071 microcomputer and has been implemented on an IBM PC compatible under MS DOS 3.21. The program was developed in 1988 and requires approximately 95K bytes to operate.

  4. Gaussian Velocity Distributions in Avalanches

    NASA Astrophysics Data System (ADS)

    Shattuck, Mark

    2004-03-01

    Imagine a world where gravity is so strong that if an ice cube is tilted the shear forces melt the surface and water avalanches down. Further imagine that the ambient temperature is so low that the water re-freezes almost immediately. This is the world of granular flows. As a granular solid is tilted the surface undergoes a sublimation phase transition and a granular gas avalanches down the surface, but the inelastic collisions rapidly remove energy from the flow lowering the granular temperature (kinetic energy per particle) until the gas solidifies again. It is under these extreme conditions that we attempt to uncover continuum granular flow properties. Typical continuum theories like Navier-Stokes equation for fluids follow the space-time evolution of the first few moments of the velocity distribution. We study continuously avalanching flow in a rotating two-dimensional granular drum using high-speed video imaging and extract the position and velocities of the particles. We find a universal near Gaussian velocity distribution throughout the flowing regions, which are characterized by a liquid-like radial distribution function. In the remaining regions, in which the radial distribution function develops sharp crystalline peaks, the velocity distribution has a Gaussian peak but is much broader in the tails. In a companion experiment on a vibrated two-dimensional granular fluid under constant pressure, we find a clear gas-solid phase transition in which both the temperature and density change discontinuously. This suggests that a low temperature crystal and a high temperature gas can coexist in steady state. This coexistence could result in a narrower, cooler, Gaussian peak and a broader, warmer, Gaussian tail like the non-Gaussian behavior seen in the crystalline portions of the rotating drum.

  5. Deming's General Least Square Fitting

    SciTech Connect

    Rinard, Phillip

    1992-02-18

    DEM4-26 is a generalized least square fitting program based on Deming''s method. Functions built into the program for fitting include linear, quadratic, cubic, power, Howard''s, exponential, and Gaussian; others can easily be added. The program has the following capabilities: (1) entry, editing, and saving of data; (2) fitting of any of the built-in functions or of a user-supplied function; (3) plotting the data and fitted function on the display screen, with error limits if requested, and with the option of copying the plot to the printer; (4) interpolation of x or y values from the fitted curve with error estimates based on error limits selected by the user; and (5) plotting the residuals between the y data values and the fitted curve, with the option of copying the plot to the printer. If the plot is to be copied to a printer, GRAPHICS should be called from the operating system disk before the BASIC interpreter is loaded.

  6. Duality Between Spin Networks and the 2D Ising Model

    NASA Astrophysics Data System (ADS)

    Bonzom, Valentin; Costantino, Francesco; Livine, Etera R.

    2016-06-01

    The goal of this paper is to exhibit a deep relation between the partition function of the Ising model on a planar trivalent graph and the generating series of the spin network evaluations on the same graph. We provide respectively a fermionic and a bosonic Gaussian integral formulation for each of these functions and we show that they are the inverse of each other (up to some explicit constants) by exhibiting a supersymmetry relating the two formulations. We investigate three aspects and applications of this duality. First, we propose higher order supersymmetric theories that couple the geometry of the spin networks to the Ising model and for which supersymmetric localization still holds. Secondly, after interpreting the generating function of spin network evaluations as the projection of a coherent state of loop quantum gravity onto the flat connection state, we find the probability distribution induced by that coherent state on the edge spins and study its stationary phase approximation. It is found that the stationary points correspond to the critical values of the couplings of the 2D Ising model, at least for isoradial graphs. Third, we analyze the mapping of the correlations of the Ising model to spin network observables, and describe the phase transition on those observables on the hexagonal lattice. This opens the door to many new possibilities, especially for the study of the coarse-graining and continuum limit of spin networks in the context of quantum gravity.

  7. Ab initio modeling of 2D layered organohalide lead perovskites

    NASA Astrophysics Data System (ADS)

    Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele; Marchese, Leonardo; Cossi, Maurizio

    2016-04-01

    A number of 2D layered perovskites A2PbI4 and BPbI4, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps have been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another's place.

  8. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-23

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  9. The basics of 2D DIGE.

    PubMed

    Beckett, Phil

    2012-01-01

    The technique of two-dimensional (2D) gel electrophoresis is a powerful tool for separating complex mixtures of proteins, but since its inception in the mid 1970s, it acquired the stigma of being a very difficult application to master and was generally used to its best effect by experts. The introduction of commercially available immobilized pH gradients in the early 1990s provided enhanced reproducibility and easier protocols, leading to a pronounced increase in popularity of the technique. However gel-to-gel variation was still difficult to control without the use of technical replicates. In the mid 1990s (at the same time as the birth of "proteomics"), the concept of multiplexing fluorescently labeled proteins for 2D gel separation was realized by Jon Minden's group and has led to the ability to design experiments to virtually eliminate gel-to-gel variation, resulting in biological replicates being used for statistical analysis with the ability to detect very small changes in relative protein abundance. This technology is referred to as 2D difference gel electrophoresis (2D DIGE).

  10. Parallel stitching of 2D materials

    DOE PAGES

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; ...

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  11. Inseparability of photon-added Gaussian states

    SciTech Connect

    Li Hongrong; Li Fuli; Zhu Shiyao

    2007-06-15

    The inseparability of photon-added Gaussian states which are generated from two-mode Gaussian states by adding photons is investigated. According to the established inseparability conditions [New J. Phys. 7, 211 (2005); Phys. Rev. Lett. 96, 050503 (2006)], we find that even if a two-mode Gaussian state is separable, the photon-added Gaussian state becomes entangled when the purity of the Gaussian state is larger than a certain value. The lower bound of entanglement of symmetric photon-added Gaussian states is derived. The result shows that entanglement of the photon-added Gaussian states is involved with high-order moment correlations. We find that fidelity of teleporting coherent states cannot be raised by employing the photon-added Gaussian states as a quantum channel of teleportation.

  12. Gaussian statistics for palaeomagnetic vectors

    USGS Publications Warehouse

    Love, J.J.; Constable, C.G.

    2003-01-01

    With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimoda) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to

  13. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  14. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-02-06

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  15. Gaussian mapping of chemical fragments in ligand binding sites

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Murcia, Marta; Constans, Pere; Pérez, Carlos; Ortiz, Angel R.

    2004-02-01

    We present a new approach to automatically define a quasi-optimal minimal set of pharmacophoric points mapping the interaction properties of a user-defined ligand binding site. The method is based on a fitting algorithm where a grid of sampled interaction energies of the target protein with small chemical fragments in the binding site is approximated by a linear expansion of Gaussian functions. A heuristic approximation selects from this expansion the smallest possible set of Gaussians required to describe the interaction properties of the binding site within a prespecified accuracy. We have evaluated the performance of the approach by comparing the computed Gaussians with the positions of aromatic sites found in experimental protein-ligand complexes. For a set of 53 complexes, good correspondence is found in general. At a 95% significance level, ˜65% of the predicted interaction points have an aromatic binding site within 1.5 Å. We then studied the utility of these points in docking using the program DOCK. Short docking times, with an average of ˜0.18 s per conformer, are obtained, while retaining, both for rigid and flexible docking, the ability to sample native-like binding modes for the ligand. An average 4-5-fold speed-up in docking times and a similar success rate is estimated with respect to the standard DOCK protocol. Abbreviations: RMSD - root mean square deviation; ASA - Atomic Shell Approximation; LSF - Least-Squares Fitting; 3D - three-dimensional; VDW - Van der Waals.

  16. Compatible embedding for 2D shape animation.

    PubMed

    Baxter, William V; Barla, Pascal; Anjyo, Ken-Ichi

    2009-01-01

    We present new algorithms for the compatible embedding of 2D shapes. Such embeddings offer a convenient way to interpolate shapes having complex, detailed features. Compared to existing techniques, our approach requires less user input, and is faster, more robust, and simpler to implement, making it ideal for interactive use in practical applications. Our new approach consists of three parts. First, our boundary matching algorithm locates salient features using the perceptually motivated principles of scale-space and uses these as automatic correspondences to guide an elastic curve matching algorithm. Second, we simplify boundaries while maintaining their parametric correspondence and the embedding of the original shapes. Finally, we extend the mapping to shapes' interiors via a new compatible triangulation algorithm. The combination of our algorithms allows us to demonstrate 2D shape interpolation with instant feedback. The proposed algorithms exhibit a combination of simplicity, speed, and accuracy that has not been achieved in previous work.

  17. Schottky diodes from 2D germanane

    NASA Astrophysics Data System (ADS)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  18. Extrinsic Cation Selectivity of 2D Membranes

    PubMed Central

    2017-01-01

    From a systematic study of the concentration driven diffusion of positive and negative ions across porous 2D membranes of graphene and hexagonal boron nitride (h-BN), we prove their cation selectivity. Using the current–voltage characteristics of graphene and h-BN monolayers separating reservoirs of different salt concentrations, we calculate the reversal potential as a measure of selectivity. We tune the Debye screening length by exchanging the salt concentrations and demonstrate that negative surface charge gives rise to cation selectivity. Surprisingly, h-BN and graphene membranes show similar characteristics, strongly suggesting a common origin of selectivity in aqueous solvents. For the first time, we demonstrate that the cation flux can be increased by using ozone to create additional pores in graphene while maintaining excellent selectivity. We discuss opportunities to exploit our scalable method to use 2D membranes for applications including osmotic power conversion. PMID:28157333

  19. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  20. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  1. Darwinian fitness.

    PubMed

    Demetrius, Lloyd; Ziehe, Martin

    2007-11-01

    The term Darwinian fitness refers to the capacity of a variant type to invade and displace the resident population in competition for available resources. Classical models of this dynamical process claim that competitive outcome is a deterministic event which is regulated by the population growth rate, called the Malthusian parameter. Recent analytic studies of the dynamics of competition in terms of diffusion processes show that growth rate predicts invasion success only in populations of infinite size. In populations of finite size, competitive outcome is a stochastic process--contingent on resource constraints--which is determined by the rate at which a population returns to its steady state condition after a random perturbation in the individual birth and death rates. This return rate, a measure of robustness or population stability, is analytically characterized by the demographic parameter, evolutionary entropy, a measure of the uncertainty in the age of the mother of a randomly chosen newborn. This article appeals to computational and numerical methods to contrast the predictive power of the Malthusian and the entropic principles. The computational analysis rejects the Malthusian model and is consistent with of the entropic principle. These studies thus provide support for the general claim that entropy is the appropriate measure of Darwinian fitness and constitutes an evolutionary parameter with broad predictive and explanatory powers.

  2. Quasiparticle interference in unconventional 2D systems

    NASA Astrophysics Data System (ADS)

    Chen, Lan; Cheng, Peng; Wu, Kehui

    2017-03-01

    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe2), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  3. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  4. 2D Metals by Repeated Size Reduction.

    PubMed

    Liu, Hanwen; Tang, Hao; Fang, Minghao; Si, Wenjie; Zhang, Qinghua; Huang, Zhaohui; Gu, Lin; Pan, Wei; Yao, Jie; Nan, Cewen; Wu, Hui

    2016-10-01

    A general and convenient strategy for manufacturing freestanding metal nanolayers is developed on large scale. By the simple process of repeatedly folding and calendering stacked metal sheets followed by chemical etching, free-standing 2D metal (e.g., Ag, Au, Fe, Cu, and Ni) nanosheets are obtained with thicknesses as small as 1 nm and with sizes of the order of several micrometers.

  5. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  6. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  7. 2D superconductivity by ionic gating

    NASA Astrophysics Data System (ADS)

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially

  8. E-2D Advanced Hawkeye: primary flight display

    NASA Astrophysics Data System (ADS)

    Paolillo, Paul W.; Saxena, Ragini; Garruba, Jonathan; Tripathi, Sanjay; Blanchard, Randy

    2006-05-01

    This paper is a response to the challenge of providing a large area avionics display for the E-2D AHE aircraft. The resulting display design provides a pilot with high-resolution visual information content covering an image area of almost three square feet (Active Area of Samsung display = 33.792cm x 27.0336 cm = 13.304" x 10.643" = 141.596 square inches = 0.983 sq. ft x 3 = 2.95 sq. ft). The avionics display application, design and performance being described is the Primary Flight Display for the E-2D Advanced Hawkeye aircraft. This cockpit display has a screen diagonal size of 17 inches. Three displays, with minimum bezel width, just fit within the available instrument panel area. The significant design constraints of supporting an upgrade installation have been addressed. These constraints include a display image size that is larger than the mounting opening in the instrument panel. This, therefore, requires that the Electromagnetic Interference (EMI) window, LCD panel and backlight all fit within the limited available bezel depth. High brightness and a wide dimming range are supported with a dual mode Cold Cathode Fluorescent Tube (CCFT) and LED backlight. Packaging constraints dictated the use of multiple U shaped fluorescent lamps in a direct view backlight design for a maximum display brightness of 300 foot-Lamberts. The low intensity backlight levels are provided by remote LEDs coupled through a fiber optic mesh. This architecture generates luminous uniformity within a minimum backlight depth. Cross-cockpit viewing is supported with ultra-wide field-of-view performance including contrast and the color stability of an advanced LCD cell design supports. Display system design tradeoffs directed a priority to high optical efficiency for minimum power and weight.

  9. Model-based segmentation and quantification of subcellular structures in 2D and 3D fluorescent microscopy images

    NASA Astrophysics Data System (ADS)

    Wörz, Stefan; Heinzer, Stephan; Weiss, Matthias; Rohr, Karl

    2008-03-01

    We introduce a model-based approach for segmenting and quantifying GFP-tagged subcellular structures of the Golgi apparatus in 2D and 3D microscopy images. The approach is based on 2D and 3D intensity models, which are directly fitted to an image within 2D circular or 3D spherical regions-of-interest (ROIs). We also propose automatic approaches for the detection of candidates, for the initialization of the model parameters, and for adapting the size of the ROI used for model fitting. Based on the fitting results, we determine statistical information about the spatial distribution and the total amount of intensity (fluorescence) of the subcellular structures. We demonstrate the applicability of our new approach based on 2D and 3D microscopy images.

  10. Self-organized 2D periodic arrays of nanostructures in silicon by nanosecond laser irradiation.

    PubMed

    Nayak, Barada K; Sun, Keye; Rothenbach, Christian; Gupta, Mool C

    2011-06-01

    We report a phenomenon of spontaneous formation of self-organized 2D periodic arrays of nanostructures (protrusions) by directly exposing a silicon surface to multiple nanosecond laser pulses. These self-organized 2D periodic nanostructures are produced toward the edge as an annular region around the circular laser spot. The heights of these nanostructures are around 500 nm with tip diameter ~100 nm. The period of the nanostructures is about 1064 nm, the wavelength of the incident radiation. In the central region of the laser spot, nanostructures are destroyed because of the higher laser intensity (due to the Gaussian shape of the laser beam) and accumulation of large number of laser pulses. Optical diffraction from these nanostructures indicates a threefold symmetry, which is in accordance with the observed morphological symmetries of these nanostructures.

  11. Development of an Implicit, Charge and Energy Conserving 2D Electromagnetic PIC Code on Advanced Architectures

    NASA Astrophysics Data System (ADS)

    Payne, Joshua; Taitano, William; Knoll, Dana; Liebs, Chris; Murthy, Karthik; Feltman, Nicolas; Wang, Yijie; McCarthy, Colleen; Cieren, Emanuel

    2012-10-01

    In order to solve problems such as the ion coalescence and slow MHD shocks fully kinetically we developed a fully implicit 2D energy and charge conserving electromagnetic PIC code, PlasmaApp2D. PlasmaApp2D differs from previous implicit PIC implementations in that it will utilize advanced architectures such as GPUs and shared memory CPU systems, with problems too large to fit into cache. PlasmaApp2D will be a hybrid CPU-GPU code developed primarily to run on the DARWIN cluster at LANL utilizing four 12-core AMD Opteron CPUs and two NVIDIA Tesla GPUs per node. MPI will be used for cross-node communication, OpenMP will be used for on-node parallelism, and CUDA will be used for the GPUs. Development progress and initial results will be presented.

  12. Measuring Your Fitness Level

    MedlinePlus

    Healthy Lifestyle Fitness Ready to start a fitness program? Measure your fitness level with a few simple tests. ... 14, 2017 Original article: http://www.mayoclinic.org/healthy-lifestyle/fitness/in-depth/fitness/art-20046433 . Mayo Clinic ...

  13. Revealing nonclassicality beyond Gaussian states via a single marginal distribution

    NASA Astrophysics Data System (ADS)

    Park, Jiyong; Lu, Yao; Lee, Jaehak; Shen, Yangchao; Zhang, Kuan; Zhang, Shuaining; Zubairy, Muhammad Suhail; Kim, Kihwan; Nha, Hyunchul

    2017-01-01

    A standard method to obtain information on a quantum state is to measure marginal distributions along many different axes in phase space, which forms a basis of quantum-state tomography. We theoretically propose and experimentally demonstrate a general framework to manifest nonclassicality by observing a single marginal distribution only, which provides a unique insight into nonclassicality and a practical applicability to various quantum systems. Our approach maps the 1D marginal distribution into a factorized 2D distribution by multiplying the measured distribution or the vacuum-state distribution along an orthogonal axis. The resulting fictitious Wigner function becomes unphysical only for a nonclassical state; thus the negativity of the corresponding density operator provides evidence of nonclassicality. Furthermore, the negativity measured this way yields a lower bound for entanglement potential—a measure of entanglement generated using a nonclassical state with a beam-splitter setting that is a prototypical model to produce continuous-variable (CV) entangled states. Our approach detects both Gaussian and non-Gaussian nonclassical states in a reliable and efficient manner. Remarkably, it works regardless of measurement axis for all non-Gaussian states in finite-dimensional Fock space of any size, also extending to infinite-dimensional states of experimental relevance for CV quantum informatics. We experimentally illustrate the power of our criterion for motional states of a trapped ion, confirming their nonclassicality in a measurement-axis–independent manner. We also address an extension of our approach combined with phase-shift operations, which leads to a stronger test of nonclassicality, that is, detection of genuine non-Gaussianity under a CV measurement.

  14. Revealing nonclassicality beyond Gaussian states via a single marginal distribution

    PubMed Central

    Park, Jiyong; Lu, Yao; Lee, Jaehak; Shen, Yangchao; Zhang, Kuan; Zhang, Shuaining; Zubairy, Muhammad Suhail; Kim, Kihwan; Nha, Hyunchul

    2017-01-01

    A standard method to obtain information on a quantum state is to measure marginal distributions along many different axes in phase space, which forms a basis of quantum-state tomography. We theoretically propose and experimentally demonstrate a general framework to manifest nonclassicality by observing a single marginal distribution only, which provides a unique insight into nonclassicality and a practical applicability to various quantum systems. Our approach maps the 1D marginal distribution into a factorized 2D distribution by multiplying the measured distribution or the vacuum-state distribution along an orthogonal axis. The resulting fictitious Wigner function becomes unphysical only for a nonclassical state; thus the negativity of the corresponding density operator provides evidence of nonclassicality. Furthermore, the negativity measured this way yields a lower bound for entanglement potential—a measure of entanglement generated using a nonclassical state with a beam-splitter setting that is a prototypical model to produce continuous-variable (CV) entangled states. Our approach detects both Gaussian and non-Gaussian nonclassical states in a reliable and efficient manner. Remarkably, it works regardless of measurement axis for all non-Gaussian states in finite-dimensional Fock space of any size, also extending to infinite-dimensional states of experimental relevance for CV quantum informatics. We experimentally illustrate the power of our criterion for motional states of a trapped ion, confirming their nonclassicality in a measurement-axis–independent manner. We also address an extension of our approach combined with phase-shift operations, which leads to a stronger test of nonclassicality, that is, detection of genuine non-Gaussianity under a CV measurement. PMID:28077456

  15. FPGA design and implementation of Gaussian filter

    NASA Astrophysics Data System (ADS)

    Yang, Zhihui; Zhou, Gang

    2015-12-01

    In this paper , we choose four different variances of 1,3,6 and 12 to conduct FPGA design with three kinds of Gaussian filtering algorithm ,they are implementing Gaussian filter with a Gaussian filter template, Gaussian filter approximation with mean filtering and Gaussian filter approximation with IIR filtering. By waveform simulation and synthesis, we get the processing results on the experimental image and the consumption of FPGA resources of the three methods. We set the result of Gaussian filter used in matlab as standard to get the result error. By comparing the FPGA resources and the error of FPGA implementation methods, we get the best FPGA design to achieve a Gaussian filter. Conclusions can be drawn based on the results we have already got. When the variance is small, the FPGA resources is enough for the algorithm to implement Gaussian filter with a Gaussian filter template which is the best choice. But when the variance is so large that there is no more FPGA resources, we can chose the mean to approximate Gaussian filter with IIR filtering.

  16. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  17. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  18. Codon Constraints on Closed 2D Shapes,

    DTIC Science & Technology

    2014-09-26

    19843$ CODON CONSTRAINTS ON CLOSED 2D SHAPES Go Whitman Richards "I Donald D. Hoffman’ D T 18 Abstract: Codons are simple primitives for describing plane...RSONAL AUT"ORtIS) Richards, Whitman & Hoffman, Donald D. 13&. TYPE OF REPORT 13b. TIME COVERED N/A P8 AT F RRrT t~r. Ago..D,) is, PlE COUNT Reprint...outlines, if figure and ground are ignored. Later, we will address the problem of indexing identical codon descriptors that have different figure

  19. Comparison of non-Gaussian and Gaussian diffusion models of diffusion weighted imaging of rectal cancer at 3.0 T MRI

    PubMed Central

    Zhang, Guangwen; Wang, Shuangshuang; Wen, Didi; Zhang, Jing; Wei, Xiaocheng; Ma, Wanling; Zhao, Weiwei; Wang, Mian; Wu, Guosheng; Zhang, Jinsong

    2016-01-01

    Water molecular diffusion in vivo tissue is much more complicated. We aimed to compare non-Gaussian diffusion models of diffusion-weighted imaging (DWI) including intra-voxel incoherent motion (IVIM), stretched-exponential model (SEM) and Gaussian diffusion model at 3.0 T MRI in patients with rectal cancer, and to determine the optimal model for investigating the water diffusion properties and characterization of rectal carcinoma. Fifty-nine consecutive patients with pathologically confirmed rectal adenocarcinoma underwent DWI with 16 b-values at a 3.0 T MRI system. DWI signals were fitted to the mono-exponential and non-Gaussian diffusion models (IVIM-mono, IVIM-bi and SEM) on primary tumor and adjacent normal rectal tissue. Parameters of standard apparent diffusion coefficient (ADC), slow- and fast-ADC, fraction of fast ADC (f), α value and distributed diffusion coefficient (DDC) were generated and compared between the tumor and normal tissues. The SEM exhibited the best fitting results of actual DWI signal in rectal cancer and the normal rectal wall (R2 = 0.998, 0.999 respectively). The DDC achieved relatively high area under the curve (AUC = 0.980) in differentiating tumor from normal rectal wall. Non-Gaussian diffusion models could assess tissue properties more accurately than the ADC derived Gaussian diffusion model. SEM may be used as a potential optimal model for characterization of rectal cancer. PMID:27934928

  20. Non-Gaussian Stochastic Processes.

    DTIC Science & Technology

    1986-02-28

    Underwriting Risk and Return Paradox Revisited," J. Risk and Insurance .24.L 621-627 (1982). P. Brockett and B. Arnold, "Identifiability for Dependent...Some Ruin Calculations," J. Risk and Insurance 5DIAL 727-731 (1983). P. Brockett, S. Cox, and R. Witt, "Self-Insurance and the Probability of...Financial Regret," J. Risk and Insurance 51(4) 720-729 (1984). P. Brockett, "The Likelihood Ratio Detector for Non-Gaussian Infinitely Divisible and Linear

  1. Gaussian effective potential: Quantum mechanics

    NASA Astrophysics Data System (ADS)

    Stevenson, P. M.

    1984-10-01

    We advertise the virtues of the Gaussian effective potential (GEP) as a guide to the behavior of quantum field theories. Much superior to the usual one-loop effective potential, the GEP is a natural extension of intuitive notions familiar from quantum mechanics. A variety of quantum-mechanical examples are studied here, with an eye to field-theoretic analogies. Quantum restoration of symmetry, dynamical mass generation, and "quantum-mechanical resuscitation" are among the phenomena discussed. We suggest how the GEP could become the basis of a systematic approximation procedure. A companion paper will deal with scalar field theory.

  2. Gaussian Cubes: Real-Time Modeling for Visual Exploration of Large Multidimensional Datasets.

    PubMed

    Wang, Zhe; Ferreira, Nivan; Wei, Youhao; Bhaskar, Aarthy Sankari; Scheidegger, Carlos

    2017-01-01

    Recently proposed techniques have finally made it possible for analysts to interactively explore very large datasets in real time. However powerful, the class of analyses these systems enable is somewhat limited: specifically, one can only quickly obtain plots such as histograms and heatmaps. In this paper, we contribute Gaussian Cubes, which significantly improves on state-of-the-art systems by providing interactive modeling capabilities, which include but are not limited to linear least squares and principal components analysis (PCA). The fundamental insight in Gaussian Cubes is that instead of precomputing counts of many data subsets (as state-of-the-art systems do), Gaussian Cubes precomputes the best multivariate Gaussian for the respective data subsets. As an example, Gaussian Cubes can fit hundreds of models over millions of data points in well under a second, enabling novel types of visual exploration of such large datasets. We present three case studies that highlight the visualization and analysis capabilities in Gaussian Cubes, using earthquake safety simulations, astronomical catalogs, and transportation statistics. The dataset sizes range around one hundred million elements and 5 to 10 dimensions. We present extensive performance results, a discussion of the limitations in Gaussian Cubes, and future research directions.

  3. A note on population analysis of dissolution-absorption models using the inverse Gaussian function.

    PubMed

    Wang, Jian; Weiss, Michael; D'Argenio, David Z

    2008-06-01

    Because conventional absorption models often fail to describe plasma concentration-time profiles following oral administration, empirical input functions such as the inverse Gaussian function have been successfully used. The purpose of this note is to extend this model by adding a first-order absorption process and to demonstrate the application of population analysis using maximum likelihood estimation via the EM algorithm (implemented in ADAPT 5). In one example, the analysis of bioavailability data of an extended-release formulation, as well as the mean dissolution times estimated in vivo and in vitro with the use of the inverse Gaussian function, is well in accordance, suggesting that the inverse Gaussian function indeed accounts for the in vivo dissolution process. In the other example, the kinetics of trapidil in patients with liver disease, the absorption/dissolution parameters are characterized by a high interindividual variability. Adding a first-order absorption process to the inverse Gaussian function improved the fit in both cases.

  4. Remarks on thermalization in 2D CFT

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; Engelhardt, Dalit

    2016-12-01

    We revisit certain aspects of thermalization in 2D conformal field theory (CFT). In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a Banados-Teitelboim-Zanelli black hole. The extra conserved charges, while rendering c <1 theories essentially integrable, therefore seem to have little effect on large-c conformal field theories.

  5. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  6. Information bounds for Gaussian copulas

    PubMed Central

    Hoff, Peter D.; Niu, Xiaoyue; Wellner, Jon A.

    2013-01-01

    Often of primary interest in the analysis of multivariate data are the copula parameters describing the dependence among the variables, rather than the univariate marginal distributions. Since the ranks of a multivariate dataset are invariant to changes in the univariate marginal distributions, rank-based estimators are natural candidates for semiparametric copula estimation. Asymptotic information bounds for such estimators can be obtained from an asymptotic analysis of the rank likelihood, i.e. the probability of the multivariate ranks. In this article, we obtain limiting normal distributions of the rank likelihood for Gaussian copula models. Our results cover models with structured correlation matrices, such as exchangeable or circular correlation models, as well as unstructured correlation matrices. For all Gaussian copula models, the limiting distribution of the rank likelihood ratio is shown to be equal to that of a parametric likelihood ratio for an appropriately chosen multivariate normal model. This implies that the semiparametric information bounds for rank-based estimators are the same as the information bounds for estimators based on the full data, and that the multivariate normal distributions are least favorable. PMID:25313292

  7. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  8. Monogamy inequality for distributed gaussian entanglement.

    PubMed

    Hiroshima, Tohya; Adesso, Gerardo; Illuminati, Fabrizio

    2007-02-02

    We show that for all n-mode Gaussian states of continuous variable systems, the entanglement shared among n parties exhibits the fundamental monogamy property. The monogamy inequality is proven by introducing the Gaussian tangle, an entanglement monotone under Gaussian local operations and classical communication, which is defined in terms of the squared negativity in complete analogy with the case of n-qubit systems. Our results elucidate the structure of quantum correlations in many-body harmonic lattice systems.

  9. Fast methods for training Gaussian processes on large datasets

    PubMed Central

    Moore, C. J.; Berry, C. P. L.; Gair, J. R.

    2016-01-01

    Gaussian process regression (GPR) is a non-parametric Bayesian technique for interpolating or fitting data. The main barrier to further uptake of this powerful tool rests in the computational costs associated with the matrices which arise when dealing with large datasets. Here, we derive some simple results which we have found useful for speeding up the learning stage in the GPR algorithm, and especially for performing Bayesian model comparison between different covariance functions. We apply our techniques to both synthetic and real data and quantify the speed-up relative to using nested sampling to numerically evaluate model evidences. PMID:27293793

  10. Extremes of Some Gaussian Random Interfaces

    NASA Astrophysics Data System (ADS)

    Chiarini, Alberto; Cipriani, Alessandra; Hazra, Rajat Subhra

    2016-11-01

    In this article we give a general criterion for some dependent Gaussian models to belong to maximal domain of attraction of Gumbel, following an application of the Stein-Chen method studied in Arratia et al. (Ann Probab 17(1):9-25, 1989). We also show the convergence of the associated point process. As an application, we show the conditions are satisfied by some of the well-known supercritical Gaussian interface models, namely, membrane model, massive and massless discrete Gaussian free field, fractional Gaussian free field.

  11. Elegant Gaussian beams for enhanced optical manipulation

    SciTech Connect

    Alpmann, Christina Schöler, Christoph; Denz, Cornelia

    2015-06-15

    Generation of micro- and nanostructured complex light beams attains increasing impact in photonics and laser applications. In this contribution, we demonstrate the implementation and experimental realization of the relatively unknown, but highly versatile class of complex-valued Elegant Hermite- and Laguerre-Gaussian beams. These beams create higher trapping forces compared to standard Gaussian light fields due to their propagation changing properties. We demonstrate optical trapping and alignment of complex functional particles as nanocontainers with standard and Elegant Gaussian light beams. Elegant Gaussian beams will inspire manifold applications in optical manipulation, direct laser writing, or microscopy, where the design of the point-spread function is relevant.

  12. Breaking Gaussian incompatibility on continuous variable quantum systems

    SciTech Connect

    Heinosaari, Teiko; Kiukas, Jukka; Schultz, Jussi

    2015-08-15

    We characterise Gaussian quantum channels that are Gaussian incompatibility breaking, that is, transform every set of Gaussian measurements into a set obtainable from a joint Gaussian observable via Gaussian postprocessing. Such channels represent local noise which renders measurements useless for Gaussian EPR-steering, providing the appropriate generalisation of entanglement breaking channels for this scenario. Understanding the structure of Gaussian incompatibility breaking channels contributes to the resource theory of noisy continuous variable quantum information protocols.

  13. Transition to turbulence: 2D directed percolation

    NASA Astrophysics Data System (ADS)

    Chantry, Matthew; Tuckerman, Laurette; Barkley, Dwight

    2016-11-01

    The transition to turbulence in simple shear flows has been studied for well over a century, yet in the last few years has seen major leaps forward. In pipe flow, this transition shows the hallmarks of (1 + 1) D directed percolation, a universality class of continuous phase transitions. In spanwisely confined Taylor-Couette flow the same class is found, suggesting the phenomenon is generic to shear flows. However in plane Couette flow the largest simulations and experiments to-date find evidence for a discrete transition. Here we study a planar shear flow, called Waleffe flow, devoid of walls yet showing the fundamentals of planar transition to turbulence. Working with a quasi-2D yet Navier-Stokes derived model of this flow we are able to attack the (2 + 1) D transition problem. Going beyond the system sizes previously possible we find all of the required scalings of directed percolation and thus establish planar shears flow in this class.

  14. 2D quantum gravity from quantum entanglement.

    PubMed

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  15. Simulation of Yeast Cooperation in 2D.

    PubMed

    Wang, M; Huang, Y; Wu, Z

    2016-03-01

    Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse.

  16. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  17. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  18. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  19. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  20. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  1. Anatomy of the Generalized Inverse Gaussian-Poisson Distribution with Special Applications to Bibliometric Studies.

    ERIC Educational Resources Information Center

    Sichel, H. S.

    1992-01-01

    Discusses the use of the generalized inverse Gaussian-Poisson (GIGP) distribution in bibliometric studies. The main types of size-frequency distributions are described, bibliometric distributions in logarithms are examined; parameter estimation is discussed; and goodness-of-fit tests are considered. Examples of applications are included. (17…

  2. A Systematic Approach for Understanding Slater-Gaussian Functions in Computational Chemistry

    ERIC Educational Resources Information Center

    Stewart, Brianna; Hylton, Derrick J.; Ravi, Natarajan

    2013-01-01

    A systematic way to understand the intricacies of quantum mechanical computations done by a software package known as "Gaussian" is undertaken via an undergraduate research project. These computations involve the evaluation of key parameters in a fitting procedure to express a Slater-type orbital (STO) function in terms of the linear…

  3. Modeling Non-Gaussian Time Series with Nonparametric Bayesian Model.

    PubMed

    Xu, Zhiguang; MacEachern, Steven; Xu, Xinyi

    2015-02-01

    We present a class of Bayesian copula models whose major components are the marginal (limiting) distribution of a stationary time series and the internal dynamics of the series. We argue that these are the two features with which an analyst is typically most familiar, and hence that these are natural components with which to work. For the marginal distribution, we use a nonparametric Bayesian prior distribution along with a cdf-inverse cdf transformation to obtain large support. For the internal dynamics, we rely on the traditionally successful techniques of normal-theory time series. Coupling the two components gives us a family of (Gaussian) copula transformed autoregressive models. The models provide coherent adjustments of time scales and are compatible with many extensions, including changes in volatility of the series. We describe basic properties of the models, show their ability to recover non-Gaussian marginal distributions, and use a GARCH modification of the basic model to analyze stock index return series. The models are found to provide better fit and improved short-range and long-range predictions than Gaussian competitors. The models are extensible to a large variety of fields, including continuous time models, spatial models, models for multiple series, models driven by external covariate streams, and non-stationary models.

  4. Matching optics for Gaussian beams

    NASA Technical Reports Server (NTRS)

    Gunter, William D. (Inventor)

    1991-01-01

    A system of matching optics for Gaussian beams is described. The matching optics system is positioned between a light beam emitter (such as a laser) and the input optics of a second optics system whereby the output from the light beam emitter is converted into an optimum input for the succeeding parts of the second optical system. The matching optics arrangement includes the combination of a light beam emitter, such as a laser with a movable afocal lens pair (telescope) and a single movable lens placed in the laser's output beam. The single movable lens serves as an input to the telescope. If desired, a second lens, which may be fixed, is positioned in the beam before the adjustable lens to serve as an input processor to the movable lens. The system provides the ability to choose waist diameter and position independently and achieve the desired values with two simple adjustments not requiring iteration.

  5. Cylindrical quasi-Gaussian beams.

    PubMed

    Mitri, F G

    2013-11-15

    Making use of the complex-source-point method in cylindrical coordinates, an exact solution representing a cylindrical quasi-Gaussian beam of arbitrary waist w(0) satisfying both the Helmholtz and Maxwell's equations is introduced. The Cartesian components of the electromagnetic field are derived stemming from different polarizations of the magnetic and electric vector potentials based on Maxwell's vectorial equations and Lorenz's gauge condition, without any approximations. Computations illustrate the theory for tightly focused and quasi-collimated cylindrical beams. The results are particularly useful in beam-forming design using high-aperture or collimated cylindrical laser beams in imaging microscopy, particle manipulation, optical tweezers, and the study of scattering, radiation forces, and torque on cylindrical structures.

  6. Fitting Photometry of Blended Microlensing Events

    NASA Astrophysics Data System (ADS)

    Thomas, Christian L.; Griest, Kim

    2006-03-01

    We reexamine the usefulness of fitting blended light-curve models to microlensing photometric data. We find agreement with previous workers (e.g., Woźniak & Paczyński) that this is a difficult proposition because of the degeneracy of blend fraction with other fit parameters. We show that follow-up observations at specific point along the light curve (peak region and wings) of high-magnification events are the most helpful in removing degeneracies. We also show that very small errors in the baseline magnitude can result in problems in measuring the blend fraction and study the importance of non-Gaussian errors in the fit results. The biases and skewness in the distribution of the recovered blend fraction is discussed. We also find a new approximation formula relating the blend fraction and the unblended fit parameters to the underlying event duration needed to estimate microlensing optical depth.

  7. Gaussian analysis of temperature effects on the reflectance spectra of mafic minerals in the 1-micron region

    NASA Technical Reports Server (NTRS)

    Roush, T. L.; Singer, R. B.

    1986-01-01

    Gaussian band-fitting analysis has been applied to the reflectance spectra of mafic silicates, which are of geologic importance throughout much of the solar system. Reflectance spectra obtained over a sample temperature range of about 80 to 448 K of olivine, clinopyroxene, and orthopyroxene were used in order to characterize the spectral changes in the 1-micron wavelength region of these minerals as a function of temperature. Four Gaussians are required to characterize the olivine, while two Gaussians are necessary to characterize both the orthopyroxene. The trends of the individual Gaussian parameters (integrated area, width, and center position) are presented as a function of temperature for each mineral. The characterization by Gaussian analysis of the 1-micron absorption feature of all minerals yields consistent trends in center position, integrated area, and width that may prove useful in quantitative determination of these minerals in mineral mixtures.

  8. fits2hdf: FITS to HDFITS conversion

    NASA Astrophysics Data System (ADS)

    Price, D. C.; Barsdell, B. R.; Greenhill, L. J.

    2015-05-01

    fits2hdf ports FITS files to Hierarchical Data Format (HDF5) files in the HDFITS format. HDFITS allows faster reading of data, higher compression ratios, and higher throughput. HDFITS formatted data can be presented transparently as an in-memory FITS equivalent by changing the import lines in Python-based FITS utilities. fits2hdf includes a utility to port MeasurementSets (MS) to HDF5 files.

  9. Measurement-induced Nonlocality for Gaussian States

    NASA Astrophysics Data System (ADS)

    Ma, Ruifen; Hou, Jinchuan; Qi, Xiaofei

    2017-04-01

    We establish an analytic formula of measurement-induced nonlocality (MIN) for two-mode squeezed thermal states and mixed thermal states. Different from the quantum discord case, we show that there is no Gaussian version of MIN by Gaussian positive operator valued measurements.

  10. Conditional and unconditional Gaussian quantum dynamics

    NASA Astrophysics Data System (ADS)

    Genoni, Marco G.; Lami, Ludovico; Serafini, Alessio

    2016-07-01

    This article focuses on the general theory of open quantum systems in the Gaussian regime and explores a number of diverse ramifications and consequences of the theory. We shall first introduce the Gaussian framework in its full generality, including a classification of Gaussian (also known as 'general-dyne') quantum measurements. In doing so, we will give a compact proof for the parametrisation of the most general Gaussian completely positive map, which we believe to be missing in the existing literature. We will then move on to consider the linear coupling with a white noise bath, and derive the diffusion equations that describe the evolution of Gaussian states under such circumstances. Starting from these equations, we outline a constructive method to derive general master equations that apply outside the Gaussian regime. Next, we include the general-dyne monitoring of the environmental degrees of freedom and recover the Riccati equation for the conditional evolution of Gaussian states. Our derivation relies exclusively on the standard quantum mechanical update of the system state, through the evaluation of Gaussian overlaps. The parametrisation of the conditional dynamics we obtain is novel and, at variance with existing alternatives, directly ties in to physical detection schemes. We conclude our study with two examples of conditional dynamics that can be dealt with conveniently through our formalism, demonstrating how monitoring can suppress the noise in optical parametric processes as well as stabilise systems subject to diffusive scattering.

  11. Planck 2013 results. XXIV. Constraints on primordial non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Heavens, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Smith, K.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutter, P.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    The Planck nominal mission cosmic microwave background (CMB) maps yield unprecedented constraints on primordial non-Gaussianity (NG). Using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result fNLlocal = 2.7 ± 5.8, fNLequil = -42 ± 75, and fNLorth = -25 ± 39 (68% CL statistical). Non-Gaussianity is detected in the data; using skew-Cℓ statistics we find a nonzero bispectrum from residual point sources, and the integrated-Sachs-Wolfe-lensing bispectrum at a level expected in the ΛCDM scenario. The results are based on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are confirmed by skew-Cℓ, wavelet bispectrum and Minkowski functional estimators. Beyond estimates of individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and thus derive constraints on early-Universe scenarios that generate primordial NG, including general single-field models of inflation, excited initial states (non-Bunch-Davies vacua), and directionally-dependent vector models. We provide an initial survey of scale-dependent feature and resonance models. These results bound both general single-field and multi-field model parameter ranges, such as the speed of sound, cs ≥ 0.02 (95% CL), in an effective field theory parametrization, and the curvaton decay fraction rD ≥ 0.15 (95% CL). The Planck data significantly limit the viable parameter space of the ekpyrotic/cyclic scenarios. The amplitude of the four-point function in the local model τNL< 2800 (95% CL). Taken together, these constraints represent the highest precision tests to date of physical mechanisms for the origin of cosmic structure.

  12. Persistence Measures for 2d Soap Froth

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Ruskin, H. J.; Zhu, B.

    Soap froths as typical disordered cellular structures, exhibiting spatial and temporal evolution, have been studied through their distributions and topological properties. Recently, persistence measures, which permit representation of the froth as a two-phase system, have been introduced to study froth dynamics at different length scales. Several aspects of the dynamics may be considered and cluster persistence has been observed through froth experiment. Using a direct simulation method, we have investigated persistent properties in 2D froth both by monitoring the persistence of survivor cells, a topologically independent measure, and in terms of cluster persistence. It appears that the area fraction behavior for both survivor and cluster persistence is similar for Voronoi froth and uniform froth (with defects). Survivor and cluster persistent fractions are also similar for a uniform froth, particularly when geometries are constrained, but differences observed for the Voronoi case appear to be attributable to the strong topological dependency inherent in cluster persistence. Survivor persistence, on the other hand, depends on the number rather than size and position of remaining bubbles and does not exhibit the characteristic decay to zero.

  13. SEM signal emulation for 2D patterns

    NASA Astrophysics Data System (ADS)

    Sukhov, Evgenii; Muelders, Thomas; Klostermann, Ulrich; Gao, Weimin; Braylovska, Mariya

    2016-03-01

    The application of accurate and predictive physical resist simulation is seen as one important use model for fast and efficient exploration of new patterning technology options, especially if fully qualified OPC models are not yet available at an early pre-production stage. The methodology of using a top-down CD-SEM metrology to extract the 3D resist profile information, such as the critical dimension (CD) at various resist heights, has to be associated with a series of presumptions which may introduce such small, but systematic CD errors. Ideally, the metrology effects should be carefully minimized during measurement process, or if possible be taken into account through proper metrology modeling. In this paper we discuss the application of a fast SEM signal emulation describing the SEM image formation. The algorithm is applied to simulated resist 3D profiles and produces emulated SEM image results for 1D and 2D patterns. It allows estimating resist simulation quality by comparing CDs which were extracted from the emulated and from the measured SEM images. Moreover, SEM emulation is applied for resist model calibration to capture subtle error signatures through dose and defocus. Finally, it should be noted that our SEM emulation methodology is based on the approximation of physical phenomena which are taking place in real SEM image formation. This approximation allows achieving better speed performance compared to a fully physical model.

  14. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  15. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  16. Curve fitting methods for solar radiation data modeling

    SciTech Connect

    Karim, Samsul Ariffin Abdul E-mail: balbir@petronas.com.my; Singh, Balbir Singh Mahinder E-mail: balbir@petronas.com.my

    2014-10-24

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R{sup 2}. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.

  17. Hamiltonian inclusive fitness: a fitter fitness concept

    PubMed Central

    Costa, James T.

    2013-01-01

    In 1963–1964 W. D. Hamilton introduced the concept of inclusive fitness, the only significant elaboration of Darwinian fitness since the nineteenth century. I discuss the origin of the modern fitness concept, providing context for Hamilton's discovery of inclusive fitness in relation to the puzzle of altruism. While fitness conceptually originates with Darwin, the term itself stems from Spencer and crystallized quantitatively in the early twentieth century. Hamiltonian inclusive fitness, with Price's reformulation, provided the solution to Darwin's ‘special difficulty’—the evolution of caste polymorphism and sterility in social insects. Hamilton further explored the roles of inclusive fitness and reciprocation to tackle Darwin's other difficulty, the evolution of human altruism. The heuristically powerful inclusive fitness concept ramified over the past 50 years: the number and diversity of ‘offspring ideas’ that it has engendered render it a fitter fitness concept, one that Darwin would have appreciated. PMID:24132089

  18. Estimating errors in least-squares fitting

    NASA Technical Reports Server (NTRS)

    Richter, P. H.

    1995-01-01

    While least-squares fitting procedures are commonly used in data analysis and are extensively discussed in the literature devoted to this subject, the proper assessment of errors resulting from such fits has received relatively little attention. The present work considers statistical errors in the fitted parameters, as well as in the values of the fitted function itself, resulting from random errors in the data. Expressions are derived for the standard error of the fit, as a function of the independent variable, for the general nonlinear and linear fitting problems. Additionally, closed-form expressions are derived for some examples commonly encountered in the scientific and engineering fields, namely ordinary polynomial and Gaussian fitting functions. These results have direct application to the assessment of the antenna gain and system temperature characteristics, in addition to a broad range of problems in data analysis. The effects of the nature of the data and the choice of fitting function on the ability to accurately model the system under study are discussed, and some general rules are deduced to assist workers intent on maximizing the amount of information obtained form a given set of measurements.

  19. Non-Gaussian Analysis of Turbulent Boundary Layer Fluctuating Pressure on Aircraft Skin Panels

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Steinwolf, Alexander

    2005-01-01

    The purpose of the study is to investigate the probability density function (PDF) of turbulent boundary layer fluctuating pressures measured on the outer sidewall of a supersonic transport aircraft and to approximate these PDFs by analytical models. Experimental flight results show that the fluctuating pressure PDFs differ from the Gaussian distribution even for standard smooth surface conditions. The PDF tails are wider and longer than those of the Gaussian model. For pressure fluctuations in front of forward-facing step discontinuities, deviations from the Gaussian model are more significant and the PDFs become asymmetrical. There is a certain spatial pattern of the skewness and kurtosis behavior depending on the distance upstream from the step. All characteristics related to non-Gaussian behavior are highly dependent upon the distance from the step and the step height, less dependent on aircraft speed, and not dependent on the fuselage location. A Hermite polynomial transform model and a piecewise-Gaussian model fit the flight data well both for the smooth and stepped conditions. The piecewise-Gaussian approximation can be additionally regarded for convenience in usage after the model is constructed.

  20. Online measurement for geometrical parameters based on 2D laser sensor

    NASA Astrophysics Data System (ADS)

    He, Hongtao; Shao, Shuangyun; Feng, Qibo

    2015-02-01

    Based on 2-D laser sensor, an optimized system for dynamically measuring geomet rical parameters of train wheels is proposed in this paper. The calibrat ion of the system is simplified by combining a 1-D laser sensor and a 2-D laser sensor. Accuracy of the 2-D laser sensor reaches 0.2mm and it ensures that most information of the wheel tread surface is acquired. The geometrical parameters including wheel diameter, flange thickness, flange height, tread wear and rim width can be calculated once the information is processed. In order to improve the measurement accuracy of wheel diameter, a new method for spatial circle fitting is proposed. According to the results acquired in the field, the measurement system can satisfy the requirements of dynamically measuring the geometrical parameters of train wheels.

  1. 2D discrete Fourier transform on sliding windows.

    PubMed

    Park, Chun-Su

    2015-03-01

    Discrete Fourier transform (DFT) is the most widely used method for determining the frequency spectra of digital signals. In this paper, a 2D sliding DFT (2D SDFT) algorithm is proposed for fast implementation of the DFT on 2D sliding windows. The proposed 2D SDFT algorithm directly computes the DFT bins of the current window using the precalculated bins of the previous window. Since the proposed algorithm is designed to accelerate the sliding transform process of a 2D input signal, it can be directly applied to computer vision and image processing applications. The theoretical analysis shows that the computational requirement of the proposed 2D SDFT algorithm is the lowest among existing 2D DFT algorithms. Moreover, the output of the 2D SDFT is mathematically equivalent to that of the traditional DFT at all pixel positions.

  2. 3D reconstruction of a carotid bifurcation from 2D transversal ultrasound images.

    PubMed

    Yeom, Eunseop; Nam, Kweon-Ho; Jin, Changzhu; Paeng, Dong-Guk; Lee, Sang-Joon

    2014-12-01

    Visualizing and analyzing the morphological structure of carotid bifurcations are important for understanding the etiology of carotid atherosclerosis, which is a major cause of stroke and transient ischemic attack. For delineation of vasculatures in the carotid artery, ultrasound examinations have been widely employed because of a noninvasive procedure without ionizing radiation. However, conventional 2D ultrasound imaging has technical limitations in observing the complicated 3D shapes and asymmetric vasodilation of bifurcations. This study aims to propose image-processing techniques for better 3D reconstruction of a carotid bifurcation in a rat by using 2D cross-sectional ultrasound images. A high-resolution ultrasound imaging system with a probe centered at 40MHz was employed to obtain 2D transversal images. The lumen boundaries in each transverse ultrasound image were detected by using three different techniques; an ellipse-fitting, a correlation mapping to visualize the decorrelation of blood flow, and the ellipse-fitting on the correlation map. When the results are compared, the third technique provides relatively good boundary extraction. The incomplete boundaries of arterial lumen caused by acoustic artifacts are somewhat resolved by adopting the correlation mapping and the distortion in the boundary detection near the bifurcation apex was largely reduced by using the ellipse-fitting technique. The 3D lumen geometry of a carotid artery was obtained by volumetric rendering of several 2D slices. For the 3D vasodilatation of the carotid bifurcation, lumen geometries at the contraction and expansion states were simultaneously depicted at various view angles. The present 3D reconstruction methods would be useful for efficient extraction and construction of the 3D lumen geometries of carotid bifurcations from 2D ultrasound images.

  3. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1989-03-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculations assume local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  4. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1988-08-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculation assumes local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  5. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Hallquist, J. O.; Sanford, Larry

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  6. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  7. NIKE2D96. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Raboin, P.; Engelmann, B.; Halquist, J.O.

    1992-01-24

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  8. JetCurry: Modeling 3D geometry of AGN jets from 2D images

    NASA Astrophysics Data System (ADS)

    Kosak, Katie; Li, KunYang; Avachat, Sayali S.; Perlman, Eric S.

    2017-02-01

    Written in Python, JetCurry models the 3D geometry of jets from 2-D images. JetCurry requires NumPy and SciPy and incorporates emcee (ascl:1303.002) and AstroPy (ascl:1304.002), and optionally uses VPython. From a defined initial part of the jet that serves as a reference point, JetCurry finds the position of highest flux within a bin of data in the image matrix and fits along the x axis for the general location of the bends in the jet. A spline fitting is used to smooth out the resulted jet stream.

  9. JetCurry: Modeling 3D geometry of AGN jets from 2D images

    NASA Astrophysics Data System (ADS)

    Li, Kunyang; Kosak, Katie; Avachat, Sayali S.; Perlman, Eric S.

    2017-02-01

    Written in Python, JetCurry models the 3D geometry of AGN jets from 2-D images. JetCurry requires NumPy and SciPy and incorporates emcee (ascl:1303.002) and AstroPy (ascl:1304.002), and optionally uses VPython. From a defined initial part of the jet that serves as a reference point, JetCurry finds the position of highest flux within a bin of data in the image matrix and fits along the x axis for the general location of the bends in the jet. A spline fitting is used to smooth out the resulted jet stream.

  10. R2d2 Drives Selfish Sweeps in the House Mouse.

    PubMed

    Didion, John P; Morgan, Andrew P; Yadgary, Liran; Bell, Timothy A; McMullan, Rachel C; Ortiz de Solorzano, Lydia; Britton-Davidian, Janice; Bult, Carol J; Campbell, Karl J; Castiglia, Riccardo; Ching, Yung-Hao; Chunco, Amanda J; Crowley, James J; Chesler, Elissa J; Förster, Daniel W; French, John E; Gabriel, Sofia I; Gatti, Daniel M; Garland, Theodore; Giagia-Athanasopoulou, Eva B; Giménez, Mabel D; Grize, Sofia A; Gündüz, İslam; Holmes, Andrew; Hauffe, Heidi C; Herman, Jeremy S; Holt, James M; Hua, Kunjie; Jolley, Wesley J; Lindholm, Anna K; López-Fuster, María J; Mitsainas, George; da Luz Mathias, Maria; McMillan, Leonard; Ramalhinho, Maria da Graça Morgado; Rehermann, Barbara; Rosshart, Stephan P; Searle, Jeremy B; Shiao, Meng-Shin; Solano, Emanuela; Svenson, Karen L; Thomas-Laemont, Patricia; Threadgill, David W; Ventura, Jacint; Weinstock, George M; Pomp, Daniel; Churchill, Gary A; Pardo-Manuel de Villena, Fernando

    2016-06-01

    A selective sweep is the result of strong positive selection driving newly occurring or standing genetic variants to fixation, and can dramatically alter the pattern and distribution of allelic diversity in a population. Population-level sequencing data have enabled discoveries of selective sweeps associated with genes involved in recent adaptations in many species. In contrast, much debate but little evidence addresses whether "selfish" genes are capable of fixation-thereby leaving signatures identical to classical selective sweeps-despite being neutral or deleterious to organismal fitness. We previously described R2d2, a large copy-number variant that causes nonrandom segregation of mouse Chromosome 2 in females due to meiotic drive. Here we show population-genetic data consistent with a selfish sweep driven by alleles of R2d2 with high copy number (R2d2(HC)) in natural populations. We replicate this finding in multiple closed breeding populations from six outbred backgrounds segregating for R2d2 alleles. We find that R2d2(HC) rapidly increases in frequency, and in most cases becomes fixed in significantly fewer generations than can be explained by genetic drift. R2d2(HC) is also associated with significantly reduced litter sizes in heterozygous mothers, making it a true selfish allele. Our data provide direct evidence of populations actively undergoing selfish sweeps, and demonstrate that meiotic drive can rapidly alter the genomic landscape in favor of mutations with neutral or even negative effects on overall Darwinian fitness. Further study will reveal the incidence of selfish sweeps, and will elucidate the relative contributions of selfish genes, adaptation and genetic drift to evolution.

  11. R2d2 Drives Selfish Sweeps in the House Mouse

    PubMed Central

    Didion, John P.; Morgan, Andrew P.; Yadgary, Liran; Bell, Timothy A.; McMullan, Rachel C.; Ortiz de Solorzano, Lydia; Britton-Davidian, Janice; Bult, Carol J.; Campbell, Karl J.; Castiglia, Riccardo; Ching, Yung-Hao; Chunco, Amanda J.; Crowley, James J.; Chesler, Elissa J.; Förster, Daniel W.; French, John E.; Gabriel, Sofia I.; Gatti, Daniel M.; Garland, Theodore; Giagia-Athanasopoulou, Eva B.; Giménez, Mabel D.; Grize, Sofia A.; Gündüz, İslam; Holmes, Andrew; Hauffe, Heidi C.; Herman, Jeremy S.; Holt, James M.; Hua, Kunjie; Jolley, Wesley J.; Lindholm, Anna K.; López-Fuster, María J.; Mitsainas, George; da Luz Mathias, Maria; McMillan, Leonard; Ramalhinho, Maria da Graça Morgado; Rehermann, Barbara; Rosshart, Stephan P.; Searle, Jeremy B.; Shiao, Meng-Shin; Solano, Emanuela; Svenson, Karen L.; Thomas-Laemont, Patricia; Threadgill, David W.; Ventura, Jacint; Weinstock, George M.; Pomp, Daniel; Churchill, Gary A.; Pardo-Manuel de Villena, Fernando

    2016-01-01

    A selective sweep is the result of strong positive selection driving newly occurring or standing genetic variants to fixation, and can dramatically alter the pattern and distribution of allelic diversity in a population. Population-level sequencing data have enabled discoveries of selective sweeps associated with genes involved in recent adaptations in many species. In contrast, much debate but little evidence addresses whether “selfish” genes are capable of fixation—thereby leaving signatures identical to classical selective sweeps—despite being neutral or deleterious to organismal fitness. We previously described R2d2, a large copy-number variant that causes nonrandom segregation of mouse Chromosome 2 in females due to meiotic drive. Here we show population-genetic data consistent with a selfish sweep driven by alleles of R2d2 with high copy number (R2d2HC) in natural populations. We replicate this finding in multiple closed breeding populations from six outbred backgrounds segregating for R2d2 alleles. We find that R2d2HC rapidly increases in frequency, and in most cases becomes fixed in significantly fewer generations than can be explained by genetic drift. R2d2HC is also associated with significantly reduced litter sizes in heterozygous mothers, making it a true selfish allele. Our data provide direct evidence of populations actively undergoing selfish sweeps, and demonstrate that meiotic drive can rapidly alter the genomic landscape in favor of mutations with neutral or even negative effects on overall Darwinian fitness. Further study will reveal the incidence of selfish sweeps, and will elucidate the relative contributions of selfish genes, adaptation and genetic drift to evolution. PMID:26882987

  12. Turbulent Convection: Is 2D a good proxy of 3D?

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.

    2000-01-01

    Several authors have recently carried out 2D simulations of turbulent convection for both solar and massive stars. Fitting the 2D results with the MLT, they obtain that alpha(sub MLT) greater than 1 specifically, 1.4 less than alpha(sub MLT) less than 1.8. The authors further suggest that this methodology could be used to calibrate the MLT used in stellar evolutionary codes. We suggest the opposite viewpoint: the 2D results show that MLT is internally inconsistent because the resulting alpha(sub MLT) greater than 1 violates the MLT basic assumption that alpha(sub MLT) less than 1. When the 2D results are fitted with the CM model, alpha(sub CMT) less than 1, in accord with the basic tenet of the model. On the other hand, since both MLT and CM are local models, they should be replaced by the next generation of non-local, time dependent turbulence models which we discuss in some detail.

  13. Asymmetric Laguerre-Gaussian beams

    NASA Astrophysics Data System (ADS)

    Kovalev, A. A.; Kotlyar, V. V.; Porfirev, A. P.

    2016-06-01

    We introduce a family of asymmetric Laguerre-Gaussian (aLG) laser beams. The beams have been derived via a complex-valued shift of conventional LG beams in the Cartesian plane. While propagating in a uniform medium, the first bright ring of the aLG beam becomes less asymmetric and the energy is redistributed toward peripheral diffraction rings. The projection of the orbital angular momentum (OAM) onto the optical axis is calculated. The OAM is shown to grow quadratically with increasing asymmetry parameter of the aLG beam, which equals the ratio of the shift to the waist radius. Conditions for the OAM becoming equal to the topological charge have been derived. For aLG beams with zero radial index, we have deduced an expression to define the intensity maximum coordinates and shown the crescent-shaped intensity pattern to rotate during propagation. Results of the experimental generation and rotation of aLG beams agree well with theoretical predictions.

  14. Quantum bit commitment under Gaussian constraints

    NASA Astrophysics Data System (ADS)

    Mandilara, Aikaterini; Cerf, Nicolas J.

    2012-06-01

    Quantum bit commitment has long been known to be impossible. Nevertheless, just as in the classical case, imposing certain constraints on the power of the parties may enable the construction of asymptotically secure protocols. Here, we introduce a quantum bit commitment protocol and prove that it is asymptotically secure if cheating is restricted to Gaussian operations. This protocol exploits continuous-variable quantum optical carriers, for which such a Gaussian constraint is experimentally relevant as the high optical nonlinearity needed to effect deterministic non-Gaussian cheating is inaccessible.

  15. Gaussian measures of entanglement versus negativities: Ordering of two-mode Gaussian states

    SciTech Connect

    Adesso, Gerardo; Illuminati, Fabrizio

    2005-09-15

    We study the entanglement of general (pure or mixed) two-mode Gaussian states of continuous-variable systems by comparing the two available classes of computable measures of entanglement: entropy-inspired Gaussian convex-roof measures and positive partial transposition-inspired measures (negativity and logarithmic negativity). We first review the formalism of Gaussian measures of entanglement, adopting the framework introduced in M. M. Wolf et al., Phys. Rev. A 69, 052320 (2004), where the Gaussian entanglement of formation was defined. We compute explicitly Gaussian measures of entanglement for two important families of nonsymmetric two-mode Gaussian state: namely, the states of extremal (maximal and minimal) negativities at fixed global and local purities, introduced in G. Adesso et al., Phys. Rev. Lett. 92, 087901 (2004). This analysis allows us to compare the different orderings induced on the set of entangled two-mode Gaussian states by the negativities and by the Gaussian measures of entanglement. We find that in a certain range of values of the global and local purities (characterizing the covariance matrix of the corresponding extremal states), states of minimum negativity can have more Gaussian entanglement of formation than states of maximum negativity. Consequently, Gaussian measures and negativities are definitely inequivalent measures of entanglement on nonsymmetric two-mode Gaussian states, even when restricted to a class of extremal states. On the other hand, the two families of entanglement measures are completely equivalent on symmetric states, for which the Gaussian entanglement of formation coincides with the true entanglement of formation. Finally, we show that the inequivalence between the two families of continuous-variable entanglement measures is somehow limited. Namely, we rigorously prove that, at fixed negativities, the Gaussian measures of entanglement are bounded from below. Moreover, we provide some strong evidence suggesting that they

  16. 2D-3D registration for brain radiation therapy using a 3D CBCT and a single limited field-of-view 2D kV radiograph

    NASA Astrophysics Data System (ADS)

    Munbodh, R.; Moseley, D. J.

    2014-03-01

    We report results of an intensity-based 2D-3D rigid registration framework for patient positioning and monitoring during brain radiotherapy. We evaluated two intensity-based similarity measures, the Pearson Correlation Coefficient (ICC) and Maximum Likelihood with Gaussian noise (MLG) derived from the statistics of transmission images. A useful image frequency band was identified from the bone-to-no-bone ratio. Validation was performed on gold-standard data consisting of 3D kV CBCT scans and 2D kV radiographs of an anthropomorphic head phantom acquired at 23 different poses with parameter variations along six degrees of freedom. At each pose, a single limited field of view kV radiograph was registered to the reference CBCT. The ground truth was determined from markers affixed to the phantom and visible in the CBCT images. The mean (and standard deviation) of the absolute errors in recovering each of the six transformation parameters along the x, y and z axes for ICC were varphix: 0.08(0.04)°, varphiy: 0.10(0.09)°, varphiz: 0.03(0.03)°, tx: 0.13(0.11) mm, ty: 0.08(0.06) mm and tz: 0.44(0.23) mm. For MLG, the corresponding results were varphix: 0.10(0.04)°, varphiy: 0.10(0.09)°, varphiz: 0.05(0.07)°, tx: 0.11(0.13) mm, ty: 0.05(0.05) mm and tz: 0.44(0.31) mm. It is feasible to accurately estimate all six transformation parameters from a 3D CBCT of the head and a single 2D kV radiograph within an intensity-based registration framework that incorporates the physics of transmission images.

  17. Physical Fitness at Camp.

    ERIC Educational Resources Information Center

    Steen, Thomas B.; And Others

    1990-01-01

    Describes decline in youth fitness, emphasizing role of camping programs in youth fitness education. Describes Michigan camp's fitness program, consisting of daily workouts, fitness education, and record keeping. Describes fitness consultants' role in program. Discusses program's highlights and problems, suggesting changes for future use. Shows…

  18. The infrared spectrum of the Ne-C2D2 complex.

    PubMed

    Moazzen-Ahmadi, N; McKellar, A R W; Fernández, Berta; Farrelly, David

    2015-11-28

    Infrared spectra of Ne-C2D2 are observed in the region of the ν3 fundamental band (asymmetric C-D stretch, ≈2440 cm(-1)) using a tunable optical parametric oscillator to probe a pulsed supersonic slit jet expansion from a cooled nozzle. Like helium-acetylene, this system lies close to the free rotor limit, making analysis tricky because stronger transitions tend to pile up close to monomer (C2D2) rotation-vibration transitions. Assignments are aided by predicted rotational energies calculated from a published ab initio intermolecular potential energy surface. The analysis extends up to the j = 3←2 band, where j labels C2D2 rotation within the dimer, and is much more complete than the limited infrared assignments previously reported for Ne-C2H2 and Ne-C2HD. Two previous microwave transitions within the j = 1 state of Ne-C2D2 are reassigned. Coriolis model fits to the theoretical levels and to the spectrum are compared. Since the variations observed as a function of C2D2 vibrational excitation are comparable to those noted between theory and experiment, it is evident that more detailed testing of theory will require vibrational averaging over the acetylene intramolecular modes.

  19. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  20. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  1. Fit for purpose: Australia's National Fitness Campaign.

    PubMed

    Collins, Julie A; Lekkas, Peter

    2011-12-19

    During a time of war, the federal government passed the National Fitness Act 1941 to improve the fitness of the youth of Australia and better prepare them for roles in the armed services and industry. Implementation of the National Fitness Act made federal funds available at a local level through state-based national fitness councils, which coordinated promotional campaigns, programs, education and infrastructure for physical fitness, with volunteers undertaking most of the work. Specifically focused on children and youth, national fitness councils supported the provision of children's playgrounds, youth clubs and school camping programs, as well as the development of physical education in schools and its teaching and research in universities. By the time the Act was repealed in 1994, fitness had become associated with leisure and recreation rather than being seen as equipping people for everyday life and work. The emergence of the Australian National Preventive Health Agency Act 2010 offers the opportunity to reflect on synergies with its historic precedent.

  2. Goodness-of-fit test for copulas

    NASA Astrophysics Data System (ADS)

    Panchenko, Valentyn

    2005-09-01

    Copulas are often used in finance to characterize the dependence between assets. However, a choice of the functional form for the copula is an open question in the literature. This paper develops a goodness-of-fit test for copulas based on positive definite bilinear forms. The suggested test avoids the use of plug-in estimators that is the common practice in the literature. The test statistics can be consistently computed on the basis of V-estimators even in the case of large dimensions. The test is applied to a dataset of US large cap stocks to assess the performance of the Gaussian copula for the portfolios of assets of various dimension. The Gaussian copula appears to be inadequate to characterize the dependence between assets.

  3. 2D modeling of DC potential structures induced by RF sheaths with transverse currents in front of ICRF antenna

    SciTech Connect

    Faudot, E.; Heuraux, S.; Colas, L.

    2005-09-26

    Understanding DC potential generation in front of ICRF antennas is crucial for long pulse high RF power systems. DC potentials are produced by sheath rectification of these RF potentials. To reach this goal, near RF parallel electric fields have to be computed in 3D and integrated along open magnetic field lines to yield a 2D RF potential map in a transverse plane. DC potentials are produced by sheath rectification of these RF potentials. As RF potentials are spatially inhomogeneous, transverse polarization currents are created, modifying RF and DC maps. Such modifications are quantified on a 'test map' having initially a Gaussian shape and assuming that the map remains Gaussian near its summit,the time behavior of the peak can be estimated analytically in presence of polarization current as a function of its width r0 and amplitude {phi}0 (normalized to a characteristic length for transverse transport and to the local temperature). A 'peaking factor' is built from the DC peak potential normalized to {phi}0, and validated with a 2D fluid code and a 2D PIC code (XOOPIC). In an unexpected way transverse currents can increase this factor. Realistic situations of a Tore Supra antenna are also studied, with self-consistent near fields provided by ICANT code. Basic processes will be detailed and an evaluation of the 'peaking factor' for ITER will be presented for a given configuration.

  4. Galaxy bias and primordial non-Gaussianity

    SciTech Connect

    Assassi, Valentin; Baumann, Daniel; Schmidt, Fabian E-mail: D.D.Baumann@uva.nl

    2015-12-01

    We present a systematic study of galaxy biasing in the presence of primordial non-Gaussianity. For a large class of non-Gaussian initial conditions, we define a general bias expansion and prove that it is closed under renormalization, thereby showing that the basis of operators in the expansion is complete. We then study the effects of primordial non-Gaussianity on the statistics of galaxies. We show that the equivalence principle enforces a relation between the scale-dependent bias in the galaxy power spectrum and that in the dipolar part of the bispectrum. This provides a powerful consistency check to confirm the primordial origin of any observed scale-dependent bias. Finally, we also discuss the imprints of anisotropic non-Gaussianity as motivated by recent studies of higher-spin fields during inflation.

  5. Non-Gaussianities in New Ekpyrotic Cosmology.

    PubMed

    Buchbinder, Evgeny I; Khoury, Justin; Ovrut, Burt A

    2008-05-02

    The new ekpyrotic model is an alternative scenario of the early Universe which relies on a phase of slow contraction before the big bang. We calculate the 3-point and 4-point correlation functions of primordial density perturbations and find a generically large non-Gaussian signal, just below the current sensitivity level of cosmic microwave background experiments. This is in contrast with slow-roll inflation, which predicts negligible non-Gaussianity. The model is also distinguishable from alternative inflationary scenarios that can yield large non-Gaussianity, such as Dirac-Born-Infeld inflation and the simplest curvatonlike models, through the shape dependence of the correlation functions. Non-Gaussianity therefore provides a distinguishing and testable prediction of New Ekpyrotic Cosmology.

  6. Improved Gaussian Beam-Scattering Algorithm

    NASA Technical Reports Server (NTRS)

    Lock, James A.

    1995-01-01

    The localized model of the beam-shape coefficients for Gaussian beam-scattering theory by a spherical particle provides a great simplification in the numerical implementation of the theory. We derive an alternative form for the localized coefficients that is more convenient for computer computations and that provides physical insight into the details of the scattering process. We construct a FORTRAN program for Gaussian beam scattering with the localized model and compare its computer run time on a personal computer with that of a traditional Mie scattering program and with three other published methods for computing Gaussian beam scattering. We show that the analytical form of the beam-shape coefficients makes evident the fact that the excitation rate of morphology-dependent resonances is greatly enhanced for far off-axis incidence of the Gaussian beam.

  7. Lecture Notes on Non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Byrnes, Christian T.

    We discuss how primordial non-Gaussianity of the curvature perturbation helps to constrain models of the early universe. Observations are consistent with Gaussian initial conditions, compatible with the predictions of the simplest models of inflation. Deviations are constrained to be at the sub percent level, constraining alternative models such as those with multiple fields, non-canonical kinetic terms or breaking the slow-roll conditions. We introduce some of the most important models of inflation which generate non-Gaussian perturbations and provide practical tools on how to calculate the three-point correlation function for a popular class of non-Gaussian models. The current state of the field is summarised and an outlook is given.

  8. Optimal cloning of mixed Gaussian states

    SciTech Connect

    Guta, Madalin; Matsumoto, Keiji

    2006-09-15

    We construct the optimal one to two cloning transformation for the family of displaced thermal equilibrium states of a harmonic oscillator, with a fixed and known temperature. The transformation is Gaussian and it is optimal with respect to the figure of merit based on the joint output state and norm distance. The proof of the result is based on the equivalence between the optimal cloning problem and that of optimal amplification of Gaussian states which is then reduced to an optimization problem for diagonal states of a quantum oscillator. A key concept in finding the optimum is that of stochastic ordering which plays a similar role in the purely classical problem of Gaussian cloning. The result is then extended to the case of n to m cloning of mixed Gaussian states.

  9. Analytic functions fit to proton transfer potentials

    NASA Astrophysics Data System (ADS)

    Duan, Xiaofeng; Scheiner, Steve

    1992-07-01

    Proton transfer potentials are traced out in (H 2OH 2OH +OH 2OH 2) and (H 3NH 3NH +NH 3NH 3) by ab initio computations for a series of different H-bond lengths. Attempts are then made to fit these quantum mechanical results by various forms of analytic functions. Best results are achieved by a pair of Morse functions with correlation coefficients in excess of 0.997. The numerical values of the Morse parameters are fairly insensitive to H-bond length, allowing their use in more general situations. The Φ 4 function and its related fourth-order polynomial also fit well, but the parameters are much more sensitive to H-bond length. Gaussian-type functions or a Lippincott—Schroeder potential do not fit as well and a sinusoidal function gives rather poor agreement with the quantum mechanical results.

  10. Gaussian-Beam Laser-Resonator Program

    NASA Technical Reports Server (NTRS)

    Cross, Patricia L.; Bair, Clayton H.; Barnes, Norman

    1989-01-01

    Gaussian Beam Laser Resonator Program models laser resonators by use of Gaussian-beam-propagation techniques. Used to determine radii of beams as functions of position in laser resonators. Algorithm used in program has three major components. First, ray-transfer matrix for laser resonator must be calculated. Next, initial parameters of beam calculated. Finally, propagation of beam through optical elements computed. Written in Microsoft FORTRAN (Version 4.01).

  11. Ultrasonic transducer with Gaussian radial pressure distribution

    NASA Technical Reports Server (NTRS)

    Claus, R. O.; Zerwekh, P. S. (Inventor)

    1984-01-01

    An ultrasonic transducer that produces an output that is a symmetrical function comprises a piezoelectric crystal with several concentric ring electrodes on one side of the crystal. A resistor network applies different amplitudes of an ac source to each of the several electrodes. A plot of the different amplitudes from the outermost electrode to the innermost electrode is the first half of a Gaussian function. Consequently, the output of the crystal from the side opposite the electrodes has a Gaussian profile.

  12. Gaussian particle flow implementation of PHD filter

    NASA Astrophysics Data System (ADS)

    Zhao, Lingling; Wang, Junjie; Li, Yunpeng; Coates, Mark J.

    2016-05-01

    Particle filter and Gaussian mixture implementations of random finite set filters have been proposed to tackle the issue of jointly estimating the number of targets and their states. The Gaussian mixture PHD (GM-PHD) filter has a closed-form expression for the PHD for linear and Gaussian target models, and extensions using the extended Kalman filter or unscented Kalman Filter have been developed to allow the GM-PHD filter to accommodate mildly nonlinear dynamics. Errors resulting from linearization or model mismatch are unavoidable. A particle filter implementation of the PHD filter (PF-PHD) is more suitable for nonlinear and non-Gaussian target models. The particle filter implementations are much more computationally expensive and performance can suffer when the proposal distribution is not a good match to the posterior. In this paper, we propose a novel implementation of the PHD filter named the Gaussian particle flow PHD filter (GPF-PHD). It employs a bank of particle flow filters to approximate the PHD; these play the same role as the Gaussian components in the GM-PHD filter but are better suited to non-linear dynamics and measurement equations. Using the particle flow filter allows the GPF-PHD filter to migrate particles to the dense regions of the posterior, which leads to higher efficiency than the PF-PHD. We explore the performance of the new algorithm through numerical simulations.

  13. Comparison of spatiotemporal interpolators for 4D image reconstruction from 2D transesophageal ultrasound

    NASA Astrophysics Data System (ADS)

    Haak, Alexander; van Stralen, Marijn; van Burken, Gerard; Klein, Stefan; Pluim, Josien P. W.; de Jong, Nico; van der Steen, Antonius F. W.; Bosch, Johan G.

    2012-03-01

    °For electrophysiology intervention monitoring, we intend to reconstruct 4D ultrasound (US) of structures in the beating heart from 2D transesophageal US by scanplane rotation. The image acquisition is continuous but unsynchronized to the heart rate, which results in a sparsely and irregularly sampled dataset and a spatiotemporal interpolation method is desired. Previously, we showed the potential of normalized convolution (NC) for interpolating such datasets. We explored 4D interpolation by 3 different methods: NC, nearest neighbor (NN), and temporal binning followed by linear interpolation (LTB). The test datasets were derived by slicing three 4D echocardiography datasets at random rotation angles (θ, range: 0-180) and random normalized cardiac phase (τ, range: 0-1). Four different distributions of rotated 2D images with 600, 900, 1350, and 1800 2D input images were created from all TEE sets. A 2D Gaussian kernel was used for NC and optimal kernel sizes (σθ and στ) were found by performing an exhaustive search. The RMS gray value error (RMSE) of the reconstructed images was computed for all interpolation methods. The estimated optimal kernels were in the range of σθ = 3.24 - 3.69°/ στ = 0.045 - 0.048, σθ = 2.79°/ στ = 0.031 - 0.038, σθ = 2.34°/ στ = 0.023 - 0.026, and σθ = 1.89°/ στ = 0.021 - 0.023 for 600, 900, 1350, and 1800 input images respectively. We showed that NC outperforms NN and LTB. For a small number of input images the advantage of NC is more pronounced.

  14. Spin relaxations in 2D electron gas determined by the memory in the carrier dynamics.

    NASA Astrophysics Data System (ADS)

    Sherman, Eugene; Glazov, Mikhail

    2007-03-01

    The effects of long memory, in carrier dynamics in a magnetic field, on spin polarization evolution in 2D electron gas are investigated qualitatively and quantitatively. As examples we consider (i) systems with random Rashba-type SO coupling and (ii) quantum wells with rigid short-range scatterers (antidotes) and regular Dresselhaus SO coupling. In both cases the spin dynamics is strongly non-Markovian. In the system with the random SO coupling the time dependence of the spin polarization shows Gaussian rather than exponential behavior with the cusps corresponding to the electron revolutions. The relaxation speeds up with the increase of the magnetic field. In the system with antidotes scattering, the spin polarization shows a long-tail behavior with the relaxation rate determined by inelastic electron-phonon and electron-electron collisions and demonstrates unusual field dependence.

  15. 2D full wave modeling for a synthetic Doppler backscattering diagnostic

    SciTech Connect

    Hillesheim, J. C.; Schmitz, L.; Kubota, S.; Rhodes, T. L.; Carter, T. A.; Holland, C.

    2012-10-15

    Doppler backscattering (DBS) is a plasma diagnostic used in tokamaks and other magnetic confinement devices to measure the fluctuation level of intermediate wavenumber (k{sub {theta}}{rho}{sub s}{approx} 1) density fluctuations and the lab frame propagation velocity of turbulence. Here, a synthetic DBS diagnostic is described, which has been used for comparisons between measurements in the DIII-D tokamak and predictions from nonlinear gyrokinetic simulations. To estimate the wavenumber range to which a Gaussian beam would be sensitive, a ray tracing code and a 2D finite difference, time domain full wave code are used. Experimental density profiles and magnetic geometry are used along with the experimental antenna and beam characteristics. An example of the effect of the synthetic diagnostic on the output of a nonlinear gyrokinetic simulation is presented.

  16. Residual lens effects in 2D mode of auto-stereoscopic lenticular-based switchable 2D/3D displays

    NASA Astrophysics Data System (ADS)

    Sluijter, M.; IJzerman, W. L.; de Boer, D. K. G.; de Zwart, S. T.

    2006-04-01

    We discuss residual lens effects in multi-view switchable auto-stereoscopic lenticular-based 2D/3D displays. With the introduction of a switchable lenticular, it is possible to switch between a 2D mode and a 3D mode. The 2D mode displays conventional content, whereas the 3D mode provides the sensation of depth to the viewer. The uniformity of a display in the 2D mode is quantified by the quality parameter modulation depth. In order to reduce the modulation depth in the 2D mode, birefringent lens plates are investigated analytically and numerically, by ray tracing. We can conclude that the modulation depth in the 2D mode can be substantially decreased by using birefringent lens plates with a perfect index match between lens material and lens plate. Birefringent lens plates do not disturb the 3D performance of a switchable 2D/3D display.

  17. Non-Gaussianity and intermittency in an ensemble of Gaussian fields

    NASA Astrophysics Data System (ADS)

    Wilczek, Michael

    2016-12-01

    Motivated by the need to capture statistical properties of turbulent systems in simple, analytically tractable models, an ensemble of Gaussian sub-ensembles with varying properties of the correlation function such as variance and length scale is investigated. The ensemble statistics naturally exhibit non-Gaussianity and intermittency. Due to the simplicity of Gaussian random fields, many explicit results can be obtained analytically, revealing the origin of non-Gaussianity in this framework. Potential applications of the proposed model ensemble for the description of non-equilibrium statistical mechanics of complex turbulent systems are briefly discussed.

  18. On the relationship between Gaussian stochastic blockmodels and label propagation algorithms

    NASA Astrophysics Data System (ADS)

    Zhang, Junhao; Chen, Tongfei; Hu, Junfeng

    2015-03-01

    The problem of community detection has received great attention in recent years. Many methods have been proposed to discover communities in networks. In this paper, we propose a Gaussian stochastic blockmodel that uses Gaussian distributions to fit weight of edges in networks for non-overlapping community detection. The maximum likelihood estimation of this model has the same objective function as general label propagation with node preference. The node preference of a specific vertex turns out to be a value proportional to the intra-community eigenvector centrality (the corresponding entry in principal eigenvector of the adjacency matrix of the subgraph inside that vertex's community) under maximum likelihood estimation. Additionally, the maximum likelihood estimation of a constrained version of our model is highly related to another extension of the label propagation algorithm, namely, the label propagation algorithm under constraint. Experiments show that the proposed Gaussian stochastic blockmodel performs well on various benchmark networks.

  19. Differential CYP 2D6 metabolism alters primaquine pharmacokinetics.

    PubMed

    Potter, Brittney M J; Xie, Lisa H; Vuong, Chau; Zhang, Jing; Zhang, Ping; Duan, Dehui; Luong, Thu-Lan T; Bandara Herath, H M T; Dhammika Nanayakkara, N P; Tekwani, Babu L; Walker, Larry A; Nolan, Christina K; Sciotti, Richard J; Zottig, Victor E; Smith, Philip L; Paris, Robert M; Read, Lisa T; Li, Qigui; Pybus, Brandon S; Sousa, Jason C; Reichard, Gregory A; Marcsisin, Sean R

    2015-04-01

    Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity.

  20. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  1. Modeling and forecasting foreign exchange daily closing prices with normal inverse Gaussian

    NASA Astrophysics Data System (ADS)

    Teneng, Dean

    2013-09-01

    We fit the normal inverse Gaussian(NIG) distribution to foreign exchange closing prices using the open software package R and select best models by Käärik and Umbleja (2011) proposed strategy. We observe that daily closing prices (12/04/2008 - 07/08/2012) of CHF/JPY, AUD/JPY, GBP/JPY, NZD/USD, QAR/CHF, QAR/EUR, SAR/CHF, SAR/EUR, TND/CHF and TND/EUR are excellent fits while EGP/EUR and EUR/GBP are good fits with a Kolmogorov-Smirnov test p-value of 0.062 and 0.08 respectively. It was impossible to estimate normal inverse Gaussian parameters (by maximum likelihood; computational problem) for JPY/CHF but CHF/JPY was an excellent fit. Thus, while the stochastic properties of an exchange rate can be completely modeled with a probability distribution in one direction, it may be impossible the other way around. We also demonstrate that foreign exchange closing prices can be forecasted with the normal inverse Gaussian (NIG) Lévy process, both in cases where the daily closing prices can and cannot be modeled by NIG distribution.

  2. Receiver deghosting in the t-x domain based on super-Gaussianity

    NASA Astrophysics Data System (ADS)

    Lu, Wenkai; Xu, Ziqiang; Fang, Zhongyu; Wang, Ruiliang; Yan, Chengzhi

    2017-01-01

    Deghosting methods in the time-space (t-x) domain have attracted a lot of attention because of their flexibility for various source/receiver configurations. Based on the well-known knowledge that the seismic signal has a super-Gaussian distribution, we present a Super-Gaussianity based Receiver Deghosting (SRD) method in the t-x domain. In our method, we denote the upgoing wave and its ghost (downgoing wave) as a single seismic signal, and express the relationship between the upgoing wave and its ghost using two ghost parameters: the sea surface reflection coefficient and the time-shift between the upgoing wave and its ghost. For a single seismic signal, we estimate these two parameters by maximizing the super-Gaussianity of the deghosted output, which is achieved by a 2D grid search method using an adaptively predefined discrete solution space. Since usually a large number of seismic signals are mixed together in a seismic trace, in the proposed method we divide the seismic trace into overlapping frames using a sliding time window with a step of one time sample, and consider each frame as a replacement for a single seismic signal. For a 2D seismic gather, we obtain two 2D maps of the ghost parameters. By assuming that these two parameters vary slowly in the t-x domain, we apply a 2D average filter to these maps, to improve their reliability further. Finally, these deghosted outputs are merged to form the final deghosted result. To demonstrate the flexibility of the proposed method for arbitrary variable depths of the receivers, we apply it to several synthetic and field seismic datasets acquired by variable depth streamer.

  3. ProFit: Bayesian galaxy fitting tool

    NASA Astrophysics Data System (ADS)

    Robotham, A. S. G.; Taranu, D.; Tobar, R.

    2016-12-01

    ProFit is a Bayesian galaxy fitting tool that uses the fast C++ image generation library libprofit (ascl:1612.003) and a flexible R interface to a large number of likelihood samplers. It offers a fully featured Bayesian interface to galaxy model fitting (also called profiling), using mostly the same standard inputs as other popular codes (e.g. GALFIT ascl:1104.010), but it is also able to use complex priors and a number of likelihoods.

  4. Computational Screening of 2D Materials for Photocatalysis.

    PubMed

    Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G

    2015-03-19

    Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.

  5. Separation of the atmospheric variability into non-Gaussian multidimensional sources by projection pursuit techniques

    NASA Astrophysics Data System (ADS)

    Pires, Carlos A. L.; Ribeiro, Andreia F. S.

    2017-02-01

    We develop an expansion of space-distributed time series into statistically independent uncorrelated subspaces (statistical sources) of low-dimension and exhibiting enhanced non-Gaussian probability distributions with geometrically simple chosen shapes (projection pursuit rationale). The method relies upon a generalization of the principal component analysis that is optimal for Gaussian mixed signals and of the independent component analysis (ICA), optimized to split non-Gaussian scalar sources. The proposed method, supported by information theory concepts and methods, is the independent subspace analysis (ISA) that looks for multi-dimensional, intrinsically synergetic subspaces such as dyads (2D) and triads (3D), not separable by ICA. Basically, we optimize rotated variables maximizing certain nonlinear correlations (contrast functions) coming from the non-Gaussianity of the joint distribution. As a by-product, it provides nonlinear variable changes `unfolding' the subspaces into nearly Gaussian scalars of easier post-processing. Moreover, the new variables still work as nonlinear data exploratory indices of the non-Gaussian variability of the analysed climatic and geophysical fields. The method (ISA, followed by nonlinear unfolding) is tested into three datasets. The first one comes from the Lorenz'63 three-dimensional chaotic model, showing a clear separation into a non-Gaussian dyad plus an independent scalar. The second one is a mixture of propagating waves of random correlated phases in which the emergence of triadic wave resonances imprints a statistical signature in terms of a non-Gaussian non-separable triad. Finally the method is applied to the monthly variability of a high-dimensional quasi-geostrophic (QG) atmospheric model, applied to the Northern Hemispheric winter. We find that quite enhanced non-Gaussian dyads of parabolic shape, perform much better than the unrotated variables in which concerns the separation of the four model's centroid regimes

  6. Synthetic Covalent and Non-Covalent 2D Materials.

    PubMed

    Boott, Charlotte E; Nazemi, Ali; Manners, Ian

    2015-11-16

    The creation of synthetic 2D materials represents an attractive challenge that is ultimately driven by their prospective uses in, for example, electronics, biomedicine, catalysis, sensing, and as membranes for separation and filtration. This Review illustrates some recent advances in this diverse field with a focus on covalent and non-covalent 2D polymers and frameworks, and self-assembled 2D materials derived from nanoparticles, homopolymers, and block copolymers.

  7. From particle counting to Gaussian tomography

    NASA Astrophysics Data System (ADS)

    Parthasarathy, K. R.; Sengupta, Ritabrata

    2015-12-01

    The momentum and position observables in an n-mode boson Fock space Γ(ℂn) have the whole real line ℝ as their spectrum. But the total number operator N has a discrete spectrum ℤ+ = {0, 1, 2,…}. An n-mode Gaussian state in Γ(ℂn) is completely determined by the mean values of momentum and position observables and their covariance matrix which together constitute a family of n(2n + 3) real parameters. Starting with N and its unitary conjugates by the Weyl displacement operators and operators from a representation of the symplectic group Sp(2n) in Γ(ℂn), we construct n(2n + 3) observables with spectrum ℤ+ but whose expectation values in a Gaussian state determine all its mean and covariance parameters. Thus measurements of discrete-valued observables enable the tomography of the underlying Gaussian state and it can be done by using five one-mode and four two-mode Gaussian symplectic gates in single and pair mode wires of Γ(ℂn) = Γ(ℂ)⊗n. Thus the tomography protocol admits a simple description in a language similar to circuits in quantum computation theory. Such a Gaussian tomography applied to outputs of a Gaussian channel with coherent input states permit a tomography of the channel parameters. However, in our procedure the number of counting measurements exceeds the number of channel parameters slightly. Presently, it is not clear whether a more efficient method exists for reducing this tomographic complexity. As a byproduct of our approach an elementary derivation of the probability generating function of N in a Gaussian state is given. In many cases the distribution turns out to be infinitely divisible and its underlying Lévy measure can be obtained. However, we are unable to derive the exact distribution in all cases. Whether this property of infinite divisibility holds in general is left as an open problem.

  8. Bayesian Gaussian Process Tomography of W7-X bolometers using the Minerva framework

    NASA Astrophysics Data System (ADS)

    Svensson, Jakob; Zhang, Daihong

    2016-10-01

    We develop a new Bayesian tomographic method based on Gaussian processes (Gaussian Process Tomography, GPT) where the model complexity is adjusted automatically, varying between 1D flux surface constancy and full 2D using a Bayesian Occam's razor criteria. The GPT method for non-flux surface constrained tomography has been prevously developed and used for soft x-ray, bolometer, interferometer and current tomography problems. In this paper we present an extension of this method which allows for a probabilistic flux surface constraint, that finds the most probable underlying complexity of the emission distribution. The distribution is defined in 2D flux coordinates, where the poloidal coordinate is described by a periodic Gaussian process. As with the standard GPT method, this method also gives uncertainties of the tomographic reconstruction that includes uncertainties both from measurements and from intrinsic ambiguities of the ill-posed tomography problem. The method has been applied to the bolometer system for the first experimental phase of W7-X and results will be shown here. The model has been implemented in the Minerva Bayesian modeling framework, which is used for a number of W7-X diagnostics.

  9. Epitaxial 2D SnSe2/ 2D WSe2 van der Waals Heterostructures.

    PubMed

    Aretouli, Kleopatra Emmanouil; Tsoutsou, Dimitra; Tsipas, Polychronis; Marquez-Velasco, Jose; Aminalragia Giamini, Sigiava; Kelaidis, Nicolaos; Psycharis, Vassilis; Dimoulas, Athanasios

    2016-09-07

    van der Waals heterostructures of 2D semiconductor materials can be used to realize a number of (opto)electronic devices including tunneling field effect devices (TFETs). It is shown in this work that high quality SnSe2/WSe2 vdW heterostructure can be grown by molecular beam epitaxy on AlN(0001)/Si(111) substrates using a Bi2Se3 buffer layer. A valence band offset of 0.8 eV matches the energy gap of SnSe2 in such a way that the VB edge of WSe2 and the CB edge of SnSe2 are lined up, making this materials combination suitable for (nearly) broken gap TFETs.

  10. Machine learning for molecular scattering dynamics: Gaussian Process models for improved predictions of molecular collision observables

    NASA Astrophysics Data System (ADS)

    Krems, Roman; Cui, Jie; Li, Zhiying

    2016-05-01

    We show how statistical learning techniques based on kriging (Gaussian Process regression) can be used for improving the predictions of classical and/or quantum scattering theory. In particular, we show how Gaussian Process models can be used for: (i) efficient non-parametric fitting of multi-dimensional potential energy surfaces without the need to fit ab initio data with analytical functions; (ii) obtaining scattering observables as functions of individual PES parameters; (iii) using classical trajectories to interpolate quantum results; (iv) extrapolation of scattering observables from one molecule to another; (v) obtaining scattering observables with error bars reflecting the inherent inaccuracy of the underlying potential energy surfaces. We argue that the application of Gaussian Process models to quantum scattering calculations may potentially elevate the theoretical predictions to the same level of certainty as the experimental measurements and can be used to identify the role of individual atoms in determining the outcome of collisions of complex molecules. We will show examples and discuss the applications of Gaussian Process models to improving the predictions of scattering theory relevant for the cold molecules research field. Work supported by NSERC of Canada.

  11. Probabilistic landslide run-out assessment with a 2-D dynamic numerical model using a Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Cepeda, Jose; Luna, Byron Quan; Nadim, Farrokh

    2013-04-01

    An essential component of a quantitative landslide hazard assessment is establishing the extent of the endangered area. This task requires accurate prediction of the run-out behaviour of a landslide, which includes the estimation of the run-out distance, run-out width, velocities, pressures, and depth of the moving mass and the final configuration of the deposits. One approach to run-out modelling is to reproduce accurately the dynamics of the propagation processes. A number of dynamic numerical models are able to compute the movement of the flow over irregular topographic terrains (3-D) controlled by a complex interaction between mechanical properties that may vary in space and time. Given the number of unknown parameters and the fact that most of the rheological parameters cannot be measured in the laboratory or field, the parametrization of run-out models is very difficult in practice. For this reason, the application of run-out models is mostly used for back-analysis of past events and very few studies have attempted to achieve forward predictions. Consequently all models are based on simplified descriptions that attempt to reproduce the general features of the failed mass motion through the use of parameters (mostly controlling shear stresses at the base of the moving mass) which account for aspects not explicitly described or oversimplified. The uncertainties involved in the run-out process have to be approached in a stochastic manner. It is of significant importance to develop methods for quantifying and properly handling the uncertainties in dynamic run-out models, in order to allow a more comprehensive approach to quantitative risk assessment. A method was developed to compute the variation in run-out intensities by using a dynamic run-out model (MassMov2D) and a probabilistic framework based on a Monte Carlo simulation in order to analyze the effect of the uncertainty of input parameters. The probability density functions of the rheological parameters

  12. Minimum relative entropy distributions with a large mean are Gaussian

    NASA Astrophysics Data System (ADS)

    Smerlak, Matteo

    2016-12-01

    Entropy optimization principles are versatile tools with wide-ranging applications from statistical physics to engineering to ecology. Here we consider the following constrained problem: Given a prior probability distribution q , find the posterior distribution p minimizing the relative entropy (also known as the Kullback-Leibler divergence) with respect to q under the constraint that mean (p ) is fixed and large. We show that solutions to this problem are approximately Gaussian. We discuss two applications of this result. In the context of dissipative dynamics, the equilibrium distribution of a Brownian particle confined in a strong external field is independent of the shape of the confining potential. We also derive an H -type theorem for evolutionary dynamics: The entropy of the (standardized) distribution of fitness of a population evolving under natural selection is eventually increasing in time.

  13. Large-scale structure non-Gaussianities with modal methods

    NASA Astrophysics Data System (ADS)

    Schmittfull, Marcel

    2016-10-01

    Relying on a separable modal expansion of the bispectrum, the implementation of a fast estimator for the full bispectrum of a 3d particle distribution is presented. The computational cost of accurate bispectrum estimation is negligible relative to simulation evolution, so the bispectrum can be used as a standard diagnostic whenever the power spectrum is evaluated. As an application, the time evolution of gravitational and primordial dark matter bispectra was measured in a large suite of N-body simulations. The bispectrum shape changes characteristically when the cosmic web becomes dominated by filaments and halos, therefore providing a quantitative probe of 3d structure formation. Our measured bispectra are determined by ~ 50 coefficients, which can be used as fitting formulae in the nonlinear regime and for non-Gaussian initial conditions. We also compare the measured bispectra with predictions from the Effective Field Theory of Large Scale Structures (EFTofLSS).

  14. Test of the cosmic evolution using Gaussian processes

    NASA Astrophysics Data System (ADS)

    Zhang, Ming-Jian; Xia, Jun-Qing

    2016-12-01

    Much focus was on the possible slowing down of cosmic acceleration under the dark energy parametrization. In the present paper, we investigate this subject using the Gaussian processes (GP), without resorting to a particular template of dark energy. The reconstruction is carried out by abundant data including luminosity distance from Union2, Union2.1 compilation and gamma-ray burst, and dynamical Hubble parameter. It suggests that slowing down of cosmic acceleration cannot be presented within 95% C.L., in considering the influence of spatial curvature and Hubble constant. In order to reveal the reason of tension between our reconstruction and previous parametrization constraint for Union2 data, we compare them and find that slowing down of acceleration in some parametrization is only a ``mirage". Although these parameterizations fits well with the observational data, their tension can be revealed by high order derivative of distance D. Instead, GP method is able to faithfully model the cosmic expansion history.

  15. Full-waveform inversion in 2D VTI media

    NASA Astrophysics Data System (ADS)

    Kamath, Nishant

    Full-waveform inversion (FWI) is a technique designed to produce a high-resolution model of the subsurface by using information contained in entire seismic waveforms. This thesis presents a methodology for FWI in elastic VTI (transversely isotropic with a vertical axis of symmetry) media and discusses synthetic results for heterogeneous VTI models. First, I develop FWI for multicomponent data from a horizontally layered VTI model. The reflectivity method, which permits computation of only PP reflections or a combination of PP and PSV events, is employed to model the data. The Gauss-Newton technique is used to invert for the interval Thomsen parameters, while keeping the densities fixed at the correct values. Eigenvalue/eigenvector decompostion of the Hessian matrix helps analyze the sensitivity of the objective function to the model parameters. Whereas PP data alone are generally sufficient to constrain all four Thomsen parameters even for conventional spreads, including PS reflections provides better constraints, especially for the deeper part of the model. Next, I derive the gradients of the FWI objective function with respect to the stiffness coefficients of arbitrarily anisotropic media by employing the adjoint-state method. From these expressions, it is straightforward to compute the gradients for parameters of 2D heterogeneous VTI media. FWI is implemented in the time domain with the steepest-descent method used to iteratively update the model. The algorithm is tested on transmitted multicomponent data generated for Gaussian anomalies in Thomsen parameters embedded in homogeneous VTI media. To test the sensitivity of the objective function to different model parameters, I derive an an- alytic expression for the Frechet kernel of FWI for arbitrary anisotropic symmetry by using the Born approximation and asymptotic Green's functions. The amplitude of the kernel, which represents the radiation pattern of a secondary source (that source describes a perturbation

  16. Hydraulic conductivity fields: Gaussian or not?

    NASA Astrophysics Data System (ADS)

    Meerschaert, Mark M.; Dogan, Mine; Dam, Remke L.; Hyndman, David W.; Benson, David A.

    2013-08-01

    Hydraulic conductivity (K) fields are used to parameterize groundwater flow and transport models. Numerical simulations require a detailed representation of the K field, synthesized to interpolate between available data. Several recent studies introduced high-resolution K data (HRK) at the Macro Dispersion Experiment (MADE) site, and used ground-penetrating radar (GPR) to delineate the main structural features of the aquifer. This paper describes a statistical analysis of these data, and the implications for K field modeling in alluvial aquifers. Two striking observations have emerged from this analysis. The first is that a simple fractional difference filter can have a profound effect on data histograms, organizing non-Gaussian ln K data into a coherent distribution. The second is that using GPR facies allows us to reproduce the significantly non-Gaussian shape seen in real HRK data profiles, using a simulated Gaussian ln K field in each facies. This illuminates a current controversy in the literature, between those who favor Gaussian ln K models, and those who observe non-Gaussian ln K fields. Both camps are correct, but at different scales.

  17. Graphical calculus for Gaussian pure states

    SciTech Connect

    Menicucci, Nicolas C.; Flammia, Steven T.; Loock, Peter van

    2011-04-15

    We provide a unified graphical calculus for all Gaussian pure states, including graph transformation rules for all local and semilocal Gaussian unitary operations, as well as local quadrature measurements. We then use this graphical calculus to analyze continuous-variable (CV) cluster states, the essential resource for one-way quantum computing with CV systems. Current graphical approaches to CV cluster states are only valid in the unphysical limit of infinite squeezing, and the associated graph transformation rules only apply when the initial and final states are of this form. Our formalism applies to all Gaussian pure states and subsumes these rules in a natural way. In addition, the term 'CV graph state' currently has several inequivalent definitions in use. Using this formalism we provide a single unifying definition that encompasses all of them. We provide many examples of how the formalism may be used in the context of CV cluster states: defining the 'closest' CV cluster state to a given Gaussian pure state and quantifying the error in the approximation due to finite squeezing; analyzing the optimality of certain methods of generating CV cluster states; drawing connections between this graphical formalism and bosonic Hamiltonians with Gaussian ground states, including those useful for CV one-way quantum computing; and deriving a graphical measure of bipartite entanglement for certain classes of CV cluster states. We mention other possible applications of this formalism and conclude with a brief note on fault tolerance in CV one-way quantum computing.

  18. Hydraulic Conductivity Fields: Gaussian or Not?

    PubMed

    Meerschaert, Mark M; Dogan, Mine; Van Dam, Remke L; Hyndman, David W; Benson, David A

    2013-08-01

    Hydraulic conductivity (K) fields are used to parameterize groundwater flow and transport models. Numerical simulations require a detailed representation of the K field, synthesized to interpolate between available data. Several recent studies introduced high resolution K data (HRK) at the Macro Dispersion Experiment (MADE) site, and used ground-penetrating radar (GPR) to delineate the main structural features of the aquifer. This paper describes a statistical analysis of these data, and the implications for K field modeling in alluvial aquifers. Two striking observations have emerged from this analysis. The first is that a simple fractional difference filter can have a profound effect on data histograms, organizing non-Gaussian ln K data into a coherent distribution. The second is that using GPR facies allows us to reproduce the significantly non-Gaussian shape seen in real HRK data profiles, using a simulated Gaussian ln K field in each facies. This illuminates a current controversy in the literature, between those who favor Gaussian ln K models, and those who observe non-Gaussian ln K fields. Both camps are correct, but at different scales.

  19. Comparison of Gaussian and super Gaussian laser beams for addressing atomic qubits

    NASA Astrophysics Data System (ADS)

    Gillen-Christandl, Katharina; Gillen, Glen D.; Piotrowicz, M. J.; Saffman, M.

    2016-05-01

    We study the fidelity of single-qubit quantum gates performed with two-frequency laser fields that have a Gaussian or super Gaussian spatial mode. Numerical simulations are used to account for imperfections arising from atomic motion in an optical trap, spatially varying Stark shifts of the trapping and control beams, and transverse and axial misalignment of the control beams. Numerical results that account for the three-dimensional distribution of control light show that a super Gaussian mode with intensity I˜ e^{-2(r/w_0)^n} provides reduced sensitivity to atomic motion and beam misalignment. Choosing a super Gaussian with n=6 the decay time of finite temperature Rabi oscillations can be increased by a factor of 60 compared to an n=2 Gaussian beam, while reducing crosstalk to neighboring qubit sites.

  20. Circular photogalvanic effect caused by the transitions between edge and 2D states in a 2D topological insulator

    NASA Astrophysics Data System (ADS)

    Magarill, L. I.; Entin, M. V.

    2016-12-01

    The electron absorption and the edge photocurrent of a 2D topological insulator are studied for transitions between edge states to 2D states. The circular polarized light is found to produce the edge photocurrent, the direction of which is determined by light polarization and edge orientation. It is shown that the edge-state current is found to exceed the 2D current owing to the topological protection of the edge states.

  1. The effects of age and emotional valence on recognition memory: an ex-Gaussian components analysis.

    PubMed

    Moret-Tatay, Carmen; Moreno-Cid, Amparo; Argimon, Irani Iracema de Lima; Quarti Irigaray, Tatiana; Szczerbinski, Marcin; Murphy, Mike; Vázquez-Martínez, Andrea; Vázquez-Molina, Joan; Sáiz-Mauleón, Begoña; Navarro-Pardo, Esperanza; Fernández de Córdoba Castellá, Pedro

    2014-10-01

    The aim of this work was to study the effects of valence and age on visual image recognition memory. The International Affective Picture System (IAPS) battery was used, and response time data were analyzed using analysis of variance, as well as an ex-Gaussian fit method. Older participants were slower and more variable in their reaction times. Response times were longer for negative valence pictures, however this was statistically significant only for young participants. This suggests that negative emotional valence has a strong effect on recognition memory in young but not in old participants. The τ parameter, often related to attention in the literature, was smaller for young than old participants in an ex-Gaussian fit. Differences on the τ parameter might suggest poorer attentional performance in old participants.

  2. Infrared imaging of 2-D temperature distribution during cryogen spray cooling.

    PubMed

    Choi, Bernard; Welch, Ashley J

    2002-12-01

    Cryogen spray cooling (CSC) is used in conjunction with pulsed laser irradiation for treatment of dermatologic indications. The main goal of this study was to determine the radial temperature distribution created by CSC and evaluate the importance of radial temperature gradients upon the subsequent analysis of tissue cooling throughout the skin. Since direct measurement of surface temperatures during CSC are hindered by the formation of a liquid cryogen layer, temperature distributions were estimated using a thin, black aluminum sheet. An infrared focal plane array camera was used to determine the 2-D backside temperature distribution during a cryogen spurt, which preliminary measurements have shown is a good indicator of the front-side temperature distribution. The measured temperature distribution was approximately gaussian in shape. Next, the transient temperature distributions in skin were calculated for two cases: 1) the standard 1-D solution which assumes a uniform cooling temperature distribution, and 2) a 2-D solution using a nonuniform surface cooling temperature distribution based upon the back-side infrared temperature measurements. At the end of a 100-ms cryogen spurt, calculations showed that, for the two cases, large discrepancies in temperatures at the surface and at a 60-micron depth were found at radii greater than 2.5 mm. These results suggest that it is necessary to consider radial temperature gradients during cryogen spray cooling of tissue.

  3. Planck 2015 results. XVII. Constraints on primordial non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hamann, J.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Heavens, A.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kim, J.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Münchmeyer, M.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Shiraishi, M.; Smith, K.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutter, P.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Troja, A.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    The Planck full mission cosmic microwave background (CMB) temperature and E-mode polarization maps are analysed to obtain constraints on primordial non-Gaussianity (NG). Using three classes of optimal bispectrum estimators - separable template-fitting (KSW), binned, and modal - we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result from temperature alone ƒlocalNL = 2.5 ± 5.7, ƒequilNL= -16 ± 70, , and ƒorthoNL = -34 ± 32 (68% CL, statistical). Combining temperature and polarization data we obtain ƒlocalNL = 0.8 ± 5.0, ƒequilNL= -4 ± 43, and ƒorthoNL = -26 ± 21 (68% CL, statistical). The results are based on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are consistent with estimators based on measuring the Minkowski functionals of the CMB. The effect of time-domain de-glitching systematics on the bispectrum is negligible. In spite of these test outcomes we conservatively label the results including polarization data as preliminary, owing to a known mismatch of the noise model in simulations and the data. Beyond estimates of individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and derive constraints on early universe scenarios that generate primordial NG, including general single-field models of inflation, axion inflation, initial state modifications, models producing parity-violating tensor bispectra, and directionally dependent vector models. We present a wide survey of scale-dependent feature and resonance models, accounting for the "look elsewhere" effect in estimating the statistical significance of features. We also look for isocurvature NG, and find no signal, but we obtain constraints that improve significantly with the inclusion of polarization. The primordial

  4. Experimental studies of spin-imbalanced Fermi gases in 2D geometries

    NASA Astrophysics Data System (ADS)

    Thomas, John

    We study the thermodynamics of a quasi-two-dimensional Fermi gas, which is not quite two-dimensional (2D), but far from three dimensional (3D). This system offers opportunities to test predictions that cross interdisciplinary boundaries, such as enhanced superfluid transition temperatures in spin-imbalanced quasi-2D superconductors, and provides important benchmarks for calculations of the phase diagrams. In the experiments, an ultra-cold Fermi gas is confined in an infrared CO2 laser standing-wave, which produces periodic pancake-shaped potential wells, separated by 5.3 μm. To study the thermodynamics, we load an ultra-cold mixture of N1 = 800 spin 1/2 -up and N2 2D-BCS theory, but can be fit by a 2D-polaron gas model, where each atom is surrounded by a cloud of particle-hole pairs of the opposite spin. However, this model fails to predict a transition to a spin-balanced central region as N2/N1is increased. Supported by the physics divisions of ARO, AFOSR, and NSF and by the Division of Materials Science and Engineering, the Office of Basic Energy Sciences, DOE.

  5. Intercalation of organic molecules in 2D copper (II) nitroprusside: Intermolecular interactions and magnetic properties

    SciTech Connect

    Osiry, H.; Cano, A.; Lemus-Santana, A.A.; Rodríguez, A.; Carbonio, R.E.; Reguera, E.

    2015-10-15

    This contribution discusses the intercalation of imidazole and its 2-ethyl derivative, and pyridine in 2D copper nitroprusside. In the interlayer region, neighboring molecules remain interacting throu gh their dipole and quadrupole moments, which supports the solid 3D crystal structure. The crystal structure of this series of intercalation compounds was solved and refined from powder X-ray diffraction patterns complemented with spectroscopic information. The intermolecular interactions were studied from the refined crystal structures and low temperature magnetic measurements. Due to strong attractive forces between neighboring molecules, the resulting π–π cloud overlapping enables the ferromagnetic coupling between metal centers on neighboring layers, which was actually observed for the solids containing imidazole and pyridine as intercalated molecules. For these two solids, the magnetic data were properly described with a model of six neighbors. For the solid containing 2-ethylimidazole and for 2D copper nitroprusside, a model of four neighbors in a plane is sufficient to obtain a reliable data fitting. - Highlights: • Intercalation of organic molecules in 2D copper (II) nitroprusside. • Molecular properties of intercalation compounds of 2D copper (II) nitroprusside. • Magnetic properties of hybrid inorganic–organic solids. • Hybrid inorganic–organic 3D framework.

  6. Energy Efficiency of D2D Multi-User Cooperation.

    PubMed

    Zhang, Zufan; Wang, Lu; Zhang, Jie

    2017-03-28

    The Device-to-Device (D2D) communication system is an important part of heterogeneous networks. It has great potential to improve spectrum efficiency, throughput and energy efficiency cooperation of multiple D2D users with the advantage of direct communication. When cooperating, D2D users expend extraordinary energy to relay data to other D2D users. Hence, the remaining energy of D2D users determines the life of the system. This paper proposes a cooperation scheme for multiple D2D users who reuse the orthogonal spectrum and are interested in the same data by aiming to solve the energy problem of D2D users. Considering both energy availability and the Signal to Noise Ratio (SNR) of each D2D user, the Kuhn-Munkres algorithm is introduced in the cooperation scheme to solve relay selection problems. Thus, the cooperation issue is transformed into a maximum weighted matching (MWM) problem. In order to enhance energy efficiency without the deterioration of Quality of Service (QoS), the link outage probability is derived according to the Shannon Equation by considering the data rate and delay. The simulation studies the relationships among the number of cooperative users, the length of shared data, the number of data packets and energy efficiency.

  7. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  8. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density.

  9. Adaptation algorithms for 2-D feedforward neural networks.

    PubMed

    Kaczorek, T

    1995-01-01

    The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).

  10. Selective inhibition of the cytochrome P450 isoform by hyperoside and its potent inhibition of CYP2D6.

    PubMed

    Song, Min; Hong, Miri; Lee, Min Young; Jee, Jun-Goo; Lee, You Mie; Bae, Jong-Sup; Jeong, Tae Cheon; Lee, Sangkyu

    2013-09-01

    Hyperoside, quercetin-3-O-galactoside, is a flavonoid isolated from Oenanthe javanica. In the present study, we investigated potential herb-drug inhibitory effects of hyperoside on nine cytochrome P450 (CYP) isoforms in pooled human liver microsomes (HLMs) and human recombinant cDNA expressed CYP using a cocktail probe assay. Hyperoside strongly inhibited CYP2D6-catalyzed dextromethorphan O-demethylation, with IC₅₀ values of 1.2 and 0.81 μM after 0 and 15 min of preincubation, and a Ki value of 2.01 μM in HLMs, respectively. Hyperoside strongly decreased CYP2D6 activity dose-, but not time-, dependently in HLMs. In addition, the Lineweaver-Burk and Secondary plots for the inhibition of CYP2D6 in HLMs fitted a competitive inhibition mode. Furthermore, hyperoside decreased CYP2D6-catalyzed dextromethorphan O-demethylation activity of human recombinant cDNA-expressed CYP2D6, with an IC₅₀ value of 3.87 μM. However, other CYPs were not inhibited significantly by hyperoside. In conclusion, our data demonstrate that hyperoside is a potent selective CYP2D6 inhibitor in HLMs, and suggest that hyperoside might cause herb-drug interactions when co-administrated with CYP2D substrates.

  11. Optimizing QSAR models for predicting ligand binding to the drug-metabolizing cytochrome P450 isoenzyme CYP2D6.

    PubMed

    Saraceno, Marilena; Massarelli, Ilaria; Imbriani, Marcello; James, Thomas L; Bianucci, Anna M

    2011-08-01

    The cytochrome P450 isozyme CYP2D6 binds a large variety of drugs, oxidizing many of them, and plays a crucial role in establishing in vivo drug levels, especially in multidrug regimens. The current study aimed to develop reliable predictive models for estimating the CYP2D6 inhibition properties of drug candidates. Quantitative structure-activity relationship (QSAR) studies utilizing 51 known CYP2D6 inhibitors were carried out. Performance achieved using models based on two-dimensional (2D) molecular descriptors was compared with performance using models entailing additional molecular descriptors that depend upon the three-dimensional (3D) structure of ligands. To properly compute the descriptors, all the 3D inhibitor structures were optimized such that induced-fit binding of the ligand to the active site was accommodated. CODESSA software was used to obtain equations for correlating the structural features of the ligands to their pharmacological effects on CYP2D6 (inhibition). The predictive power of all the QSAR models obtained was estimated by applying rigorous statistical criteria. To assess the robustness and predictability of the models, predictions were carried out on an additional set of known molecules (prediction set). The results showed that only models incorporating 3D descriptors in addition to 2D molecular descriptors possessed the requisite high predictive power for CYP2D6 inhibition.

  12. Majorization preservation of Gaussian bosonic channels

    NASA Astrophysics Data System (ADS)

    Jabbour, Michael G.; García-Patrón, Raúl; Cerf, Nicolas J.

    2016-07-01

    It is shown that phase-insensitive Gaussian bosonic channels are majorization-preserving over the set of passive states of the harmonic oscillator. This means that comparable passive states under majorization are transformed into equally comparable passive states by any phase-insensitive Gaussian bosonic channel. Our proof relies on a new preorder relation called Fock-majorization, which coincides with regular majorization for passive states but also induces another order relation in terms of mean boson number, thereby connecting the concepts of energy and disorder of a quantum state. The consequences of majorization preservation are discussed in the context of the broadcast communication capacity of Gaussian bosonic channels. Because most of our results are independent of the specific nature of the system under investigation, they could be generalized to other quantum systems and Hamiltonians, providing a new tool that may prove useful in quantum information theory and especially quantum thermodynamics.

  13. CMB non-gaussianity from vector fields

    SciTech Connect

    Peloso, Marco

    2014-01-01

    The Planck satellite has recently measured the CMB temperature anisotropies with unprecedented accuracy, and it has provided strong bounds on primordial non-gaussianity. Such bounds constrain models of inflation, and mechanisms that produce the primordial perturbations. We discuss the non-gaussian signatures from the interactions of the inflation φ with spin-1 fields. We study the two different cases in which the inflaton is (i) a pseudo-scalar field with a (φ)/(fa) F·F interaction with a vector field, and (ii) a scalar field with a f (φ)F² interaction. In the first case we obtain the strong limit f{sub a} ≥ 10¹⁶GeV on the decay constant. In the second case, specific choices of the function f (φ) can lead to a non-gaussianity with a characteristic shape not encountered in standard models of scalar field inflation, and which has also been constrained by Planck.

  14. Gaussian state for the bouncing quantum cosmology

    NASA Astrophysics Data System (ADS)

    Mielczarek, Jakub; Piechocki, Włodzimierz

    2012-10-01

    We present results concerning propagation of the Gaussian state across the cosmological quantum bounce. The reduced phase space quantization of loop quantum cosmology is applied to the Friedman-Robertson-Walker universe with a free massless scalar field. Evolution of quantum moments of the canonical variables is investigated. The covariance turns out to be a monotonic function so it may be used as an evolution parameter having quantum origin. We show that for the Gaussian state the Universe is least quantum at the bounce. We propose explanation of this counter-intuitive feature using the entropy of squeezing. The obtained time dependence of entropy is in agreement with qualitative predictions based on von Neumann entropy for mixed states. We show that, for the considered Gaussian state, semiclassicality is preserved across the bounce, so there is no cosmic forgetfulness.

  15. Index Distribution of Gaussian Random Matrices

    SciTech Connect

    Majumdar, Satya N.; Nadal, Celine; Scardicchio, Antonello; Vivo, Pierpaolo

    2009-11-27

    We compute analytically, for large N, the probability distribution of the number of positive eigenvalues (the index N{sub +}) of a random NxN matrix belonging to Gaussian orthogonal (beta=1), unitary (beta=2) or symplectic (beta=4) ensembles. The distribution of the fraction of positive eigenvalues c=N{sub +}/N scales, for large N, as P(c,N){approx_equal}exp[-betaN{sup 2}PHI(c)] where the rate function PHI(c), symmetric around c=1/2 and universal (independent of beta), is calculated exactly. The distribution has non-Gaussian tails, but even near its peak at c=1/2 it is not strictly Gaussian due to an unusual logarithmic singularity in the rate function.

  16. Gaussian entanglement in the turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Bohmann, M.; Semenov, A. A.; Sperling, J.; Vogel, W.

    2016-07-01

    We provide a rigorous treatment of the entanglement properties of two-mode Gaussian states in atmospheric channels by deriving and analyzing the input-output relations for the corresponding entanglement test. A key feature of such turbulent channels is a nontrivial dependence of the transmitted continuous-variable entanglement on coherent displacements of the quantum state of the input field. Remarkably, this allows one to optimize the entanglement certification by modifying local coherent amplitudes using a finite, but optimal amount of squeezing. In addition, we propose a protocol which, in principle, renders it possible to transfer the Gaussian entanglement through any turbulent channel over arbitrary distances. Therefore, our approach provides the theoretical foundation for advanced applications of Gaussian entanglement in free-space quantum communication.

  17. Regulation of ligands for the NKG2D activating receptor

    PubMed Central

    Raulet, David H.; Gasser, Stephan; Gowen, Benjamin G.; Deng, Weiwen; Jung, Heiyoun

    2014-01-01

    NKG2D is an activating receptor expressed by all NK cells and subsets of T cells. It serves as a major recognition receptor for detection and elimination of transformed and infected cells and participates in the genesis of several inflammatory diseases. The ligands for NKG2D are self-proteins that are induced by pathways that are active in certain pathophysiological states. NKG2D ligands are regulated transcriptionally, at the level of mRNA and protein stability, and by cleavage from the cell surface. In some cases, ligand induction can be attributed to pathways that are activated specifically in cancer cells or infected cells. We review the numerous pathways that have been implicated in the regulation of NKG2D ligands, discuss the pathologic states in which those pathways are likely to act, and attempt to synthesize the findings into general schemes of NKG2D ligand regulation in NK cell responses to cancer and infection. PMID:23298206

  18. 2D materials and van der Waals heterostructures.

    PubMed

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.

  19. New generation transistor technologies enabled by 2D crystals

    NASA Astrophysics Data System (ADS)

    Jena, D.

    2013-05-01

    The discovery of graphene opened the door to 2D crystal materials. The lack of a bandgap in 2D graphene makes it unsuitable for electronic switching transistors in the conventional field-effect sense, though possible techniques exploiting the unique bandstructure and nanostructures are being explored. The transition metal dichalcogenides have 2D crystal semiconductors, which are well-suited for electronic switching. We experimentally demonstrate field effect transistors with current saturation and carrier inversion made from layered 2D crystal semiconductors such as MoS2, WS2, and the related family. We also evaluate the feasibility of such semiconducting 2D crystals for tunneling field effect transistors for low-power digital logic. The article summarizes the current state of new generation transistor technologies either proposed, or demonstrated, with a commentary on the challenges and prospects moving forward.

  20. Semisupervised Gaussian Process for Automated Enzyme Search.

    PubMed

    Mellor, Joseph; Grigoras, Ioana; Carbonell, Pablo; Faulon, Jean-Loup

    2016-06-17

    Synthetic biology is today harnessing the design of novel and greener biosynthesis routes for the production of added-value chemicals and natural products. The design of novel pathways often requires a detailed selection of enzyme sequences to import into the chassis at each of the reaction steps. To address such design requirements in an automated way, we present here a tool for exploring the space of enzymatic reactions. Given a reaction and an enzyme the tool provides a probability estimate that the enzyme catalyzes the reaction. Our tool first considers the similarity of a reaction to known biochemical reactions with respect to signatures around their reaction centers. Signatures are defined based on chemical transformation rules by using extended connectivity fingerprint descriptors. A semisupervised Gaussian process model associated with the similar known reactions then provides the probability estimate. The Gaussian process model uses information about both the reaction and the enzyme in providing the estimate. These estimates were validated experimentally by the application of the Gaussian process model to a newly identified metabolite in Escherichia coli in order to search for the enzymes catalyzing its associated reactions. Furthermore, we show with several pathway design examples how such ability to assign probability estimates to enzymatic reactions provides the potential to assist in bioengineering applications, providing experimental validation to our proposed approach. To the best of our knowledge, the proposed approach is the first application of Gaussian processes dealing with biological sequences and chemicals, the use of a semisupervised Gaussian process framework is also novel in the context of machine learning applied to bioinformatics. However, the ability of an enzyme to catalyze a reaction depends on the affinity between the substrates of the reaction and the enzyme. This affinity is generally quantified by the Michaelis constant KM

  1. Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice.

    PubMed

    Pan, Xian; Jeong, Hyunyoung

    2015-07-01

    Cholestasis activates bile acid receptor farnesoid X receptor (FXR) and subsequently enhances hepatic expression of small heterodimer partner (SHP). We previously demonstrated that SHP represses the transactivation of cytochrome P450 2D6 (CYP2D6) promoter by hepatocyte nuclear factor (HNF) 4α. In this study, we investigated the effects of estrogen-induced cholestasis on CYP2D6 expression. Estrogen-induced cholestasis occurs in subjects receiving estrogen for contraception or hormone replacement, or in susceptible women during pregnancy. In CYP2D6-humanized transgenic (Tg-CYP2D6) mice, cholestasis triggered by administration of 17α-ethinylestradiol (EE2) at a high dose led to 2- to 3-fold decreases in CYP2D6 expression. This was accompanied by increased hepatic SHP expression and subsequent decreases in the recruitment of HNF4α to CYP2D6 promoter. Interestingly, estrogen-induced cholestasis also led to increased recruitment of estrogen receptor (ER) α, but not that of FXR, to Shp promoter, suggesting a predominant role of ERα in transcriptional regulation of SHP in estrogen-induced cholestasis. EE2 at a low dose (that does not cause cholestasis) also increased SHP (by ∼ 50%) and decreased CYP2D6 expression (by 1.5-fold) in Tg-CYP2D6 mice, the magnitude of differences being much smaller than that shown in EE2-induced cholestasis. Taken together, our data indicate that EE2-induced cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice in part through ERα transactivation of Shp promoter.

  2. Invariant measures on multimode quantum Gaussian states

    SciTech Connect

    Lupo, C.; Mancini, S.; De Pasquale, A.; Facchi, P.; Florio, G.; Pascazio, S.

    2012-12-15

    We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom-the symplectic eigenvalues-which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.

  3. Cosmological Applications of the Gaussian Kinematic Formula

    NASA Astrophysics Data System (ADS)

    Fantaye, Yabebal T.; Marinucci, Domenico

    2014-05-01

    The Gaussian Kinematic Formula (GKF, see Adler and Taylor (2007,2011)) is an extremely powerful tool allowing for explicit analytic predictions of expected values of Minkowski functionals under realistic experimental conditions for cosmological data collections. In this paper, we implement Minkowski functionals on multipoles and needlet components of CMB fields, thus allowing a better control of cosmic variance and extraction of information on both harmonic and real domains; we then exploit the GKF to provide their expected values on spherical maps, in the presence of arbitrary sky masks, and under nonGaussian circumstances.

  4. Invariant measures on multimode quantum Gaussian states

    NASA Astrophysics Data System (ADS)

    Lupo, C.; Mancini, S.; De Pasquale, A.; Facchi, P.; Florio, G.; Pascazio, S.

    2012-12-01

    We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom—the symplectic eigenvalues—which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.

  5. Gaussian Quadrature Formulae for Arbitrary Positive Measures

    PubMed Central

    Fernandes, Andrew D.; Atchley, William R.

    2007-01-01

    We present computational methods and subroutines to compute Gaussian quadrature integration formulas for arbitrary positive measures. For expensive integrands that can be factored into well-known forms, Gaussian quadrature schemes allow for efficient evaluation of high-accuracy and -precision numerical integrals, especially compared to general ad hoc schemes. In addition, for certain well-known density measures (the normal, gamma, log-normal, Student’s t, inverse-gamma, beta, and Fisher’s F) we present exact formulae for computing the respective quadrature scheme. PMID:19455218

  6. Tracking objects outside the line of sight using 2D intensity images

    PubMed Central

    Klein, Jonathan; Peters, Christoph; Martín, Jaime; Laurenzis, Martin; Hullin, Matthias B.

    2016-01-01

    The observation of objects located in inaccessible regions is a recurring challenge in a wide variety of important applications. Recent work has shown that using rare and expensive optical setups, indirect diffuse light reflections can be used to reconstruct objects and two-dimensional (2D) patterns around a corner. Here we show that occluded objects can be tracked in real time using much simpler means, namely a standard 2D camera and a laser pointer. Our method fundamentally differs from previous solutions by approaching the problem in an analysis-by-synthesis sense. By repeatedly simulating light transport through the scene, we determine the set of object parameters that most closely fits the measured intensity distribution. We experimentally demonstrate that this approach is capable of following the translation of unknown objects, and translation and orientation of a known object, in real time. PMID:27577969

  7. 2D and 3D anatomical analyses of hand dimensions for custom-made gloves.

    PubMed

    Yu, A; Yick, K L; Ng, S P; Yip, J

    2013-05-01

    Measuring hand anthropometric data for the development of good-fitting gloves is crucial. In pursuing higher accuracy in hand anthropometric measurements, scanning of hand surfaces with the aids of image analysis system to acquire measurements is an alternative to the manual methods. This study proposes a new hand measuring approach by using 2D and 3D scanning which are evaluated through comparisons of manual measurements. Thirty-three dimensions are measured by using (1) tape and calliper measurement; (2) 2D image analysis; (3) 3D image analysis based on ten captures; and (4) 3D image analysis based on three captures, respectively. Repeated-measures ANOVA, correlation analysis and RMSE are used to examine the results. The hand dimensions obtained from the four methods are highly linearly correlated. Hand data taken from 3D image analysis has no significant difference compared with manual measurements on hand and wrist circumferences, length and breadth dimension, regardless of the number of captures.

  8. Critical fitness collapse in three-dimensional spatial population genetics

    NASA Astrophysics Data System (ADS)

    Lavrentovich, Maxim O.

    2015-05-01

    If deleterious mutations near a fitness maximum in a spatially distributed population are sufficiently frequent or detrimental, the population can undergo a fitness collapse, similarly to the Muller's ratchet effect in well-mixed populations. Recent studies of 1D habitats (e.g. the frontier of a 2D range expansion) have shown that the onset of the fitness collapse is described by a directed percolation phase transition with its associated critical exponents. We consider population fitness collapse in 3D range expansions with both inflating and fixed-size frontiers (applicable to, e.g. expanding and treadmilling spherical tumors, respectively). We find that the onset of fitness collapse in these two cases obeys different scaling laws, and that competition between species at the frontier leads to a deviation from directed percolation scaling. As in 2D range expansions, inflating frontiers modify the critical behavior by causally disconnecting well-separated portions of the population.

  9. Quantum steering of multimode Gaussian states by Gaussian measurements: monogamy relations and the Peres conjecture

    NASA Astrophysics Data System (ADS)

    Ji, Se-Wan; Kim, M. S.; Nha, Hyunchul

    2015-04-01

    It is a topic of fundamental and practical importance how a quantum correlated state can be reliably distributed through a noisy channel for quantum information processing. The concept of quantum steering recently defined in a rigorous manner is relevant to study it under certain circumstances and here we address quantum steerability of Gaussian states to this aim. In particular, we attempt to reformulate the criterion for Gaussian steering in terms of local and global purities and show that it is sufficient and necessary for the case of steering a 1-mode system by an N-mode system. It subsequently enables us to reinforce a strong monogamy relation under which only one party can steer a local system of 1-mode. Moreover, we show that only a negative partial-transpose state can manifest quantum steerability by Gaussian measurements in relation to the Peres conjecture. We also discuss our formulation for the case of distributing a two-mode squeezed state via one-way quantum channels making dissipation and amplification effects, respectively. Finally, we extend our approach to include non-Gaussian measurements, more precisely, all orders of higher-order squeezing measurements, and find that this broad set of non-Gaussian measurements is not useful to demonstrate steering for Gaussian states beyond Gaussian measurements.

  10. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-04

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples.

  11. First evidence of non-Gaussian solar flare EUV spectral line profiles and accelerated non-thermal ion motion

    NASA Astrophysics Data System (ADS)

    Jeffrey, Natasha L. S.; Fletcher, Lyndsay; Labrosse, Nicolas

    2016-05-01

    Context. The properties of solar flare plasma can be determined from the observation of optically thin lines. The emitting ion distribution determines the shape of the spectral line profile, with an isothermal Maxwellian ion distribution producing a Gaussian profile. Non-Gaussian line profiles may indicate more complex ion distributions. Aims: We investigate the possibility of determining flare-accelerated non-thermal ion and/or plasma velocity distributions. Methods: We study EUV spectral lines produced during a flare SOL2013-05-15T01:45 using the Hinode EUV Imaging Spectrometer (EIS). The flare is located close to the eastern solar limb with an extended loop structure, allowing the different flare features: ribbons, hard X-ray (HXR) footpoints and the loop-top source to be clearly observed in UV, EUV and X-rays. EUV line spectroscopy is performed in seven different regions covering the flare. We study the line profiles of the isolated and unblended Fe XVI lines (λ262.9760 Å ) mainly formed at temperatures of ~2 to 4 MK. Suitable Fe XVI line profiles at one time close to the peak soft X-ray emission and free of directed mass motions are examined using: 1. a higher moments analysis, 2. Gaussian fitting, and 3. by fitting a kappa distribution line profile convolved with a Gaussian to account for the EIS instrumental profile. Results: Fe XVI line profiles in the flaring loop-top, HXR footpoint and ribbon regions can be confidently fitted with a kappa line profile with an extra variable κ, giving low, non-thermal κ values between 2 and 3.3. An independent higher moments analysis also finds that many of the spectral line kurtosis values are higher than the Gaussian value of 3, even with the presence of a broad Gaussian instrumental profile. Conclusions: A flare-accelerated non-thermal ion population could account for both the observed non-Gaussian line profiles, and for the Fe XVI "excess" broadening found from Gaussian fitting, if the emitting ions are interacting

  12. Family Activities for Fitness

    ERIC Educational Resources Information Center

    Grosse, Susan J.

    2009-01-01

    This article discusses how families can increase family togetherness and improve physical fitness. The author provides easy ways to implement family friendly activities for improving and maintaining physical health. These activities include: walking, backyard games, and fitness challenges.

  13. Outdoor fitness routine

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000891.htm Outdoor fitness routine To use the sharing features on this ... you and is right for your level of fitness. Here are some ideas: Warm up first. Get ...

  14. Efficient 2D MRI relaxometry using compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.

    2015-06-01

    Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.

  15. 2D vs. 3D mammography observer study

    NASA Astrophysics Data System (ADS)

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  16. Non-Gaussian states from continuous-wave Gaussian light sources

    NASA Astrophysics Data System (ADS)

    Mølmer, Klaus

    2006-06-01

    We present a general analysis of the state obtained by subjecting a continuous-wave (cw) Gaussian field to non-Gaussian measurements. The generic multimode state of a cw Gaussian field is fully characterized by the time dependent mean values and variances and the two-time covariances of the field quadrature variables. We present a general theory to extract from this information the results of detection and quantum state reduction within specific temporal output modes. The formalism is applied to schemes for heralded production of propagating light pulses with single photon and Schrödinger kitten states from a cw squeezed beam of light.

  17. Joint 2D and 3D phase processing for quantitative susceptibility mapping: application to 2D echo-planar imaging.

    PubMed

    Wei, Hongjiang; Zhang, Yuyao; Gibbs, Eric; Chen, Nan-Kuei; Wang, Nian; Liu, Chunlei

    2017-04-01

    Quantitative susceptibility mapping (QSM) measures tissue magnetic susceptibility and typically relies on time-consuming three-dimensional (3D) gradient-echo (GRE) MRI. Recent studies have shown that two-dimensional (2D) multi-slice gradient-echo echo-planar imaging (GRE-EPI), which is commonly used in functional MRI (fMRI) and other dynamic imaging techniques, can also be used to produce data suitable for QSM with much shorter scan times. However, the production of high-quality QSM maps is difficult because data obtained by 2D multi-slice scans often have phase inconsistencies across adjacent slices and strong susceptibility field gradients near air-tissue interfaces. To address these challenges in 2D EPI-based QSM studies, we present a new data processing procedure that integrates 2D and 3D phase processing. First, 2D Laplacian-based phase unwrapping and 2D background phase removal are performed to reduce phase inconsistencies between slices and remove in-plane harmonic components of the background phase. This is followed by 3D background phase removal for the through-plane harmonic components. The proposed phase processing was evaluated with 2D EPI data obtained from healthy volunteers, and compared against conventional 3D phase processing using the same 2D EPI datasets. Our QSM results were also compared with QSM values from time-consuming 3D GRE data, which were taken as ground truth. The experimental results show that this new 2D EPI-based QSM technique can produce quantitative susceptibility measures that are comparable with those of 3D GRE-based QSM across different brain regions (e.g. subcortical iron-rich gray matter, cortical gray and white matter). This new 2D EPI QSM reconstruction method is implemented within STI Suite, which is a comprehensive shareware for susceptibility imaging and quantification. Copyright © 2016 John Wiley & Sons, Ltd.

  18. NKG2D receptor and its ligands in host defense

    PubMed Central

    Lanier, Lewis L.

    2015-01-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8+ T cells, and subsets of CD4+ T cells, iNKT cells, and γδ T cells. In humans NKG2D transmits signals by its association with the DAP10 adapter subunit and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least 8 genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and post-translation. In general healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyper-proliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves a mechanism for the immune system to detect and eliminate cells that have undergone “stress”. Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases. PMID:26041808

  19. NKG2D Receptor and Its Ligands in Host Defense.

    PubMed

    Lanier, Lewis L

    2015-06-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8(+) T cells, and subsets of CD4(+) T cells, invariant NKT cells (iNKT), and γδ T cells. In humans, NKG2D transmits signals by its association with the DAP10 adapter subunit, and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least eight genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and posttranslation. In general, healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyperproliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves as a mechanism for the immune system to detect and eliminate cells that have undergone "stress." Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system, and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases.

  20. 2-D Versus 3-D Magnetotelluric Data Interpretation

    NASA Astrophysics Data System (ADS)

    Ledo, Juanjo

    2005-09-01

    In recent years, the number of publications dealing with the mathematical and physical 3-D aspects of the magnetotelluric method has increased drastically. However, field experiments on a grid are often impractical and surveys are frequently restricted to single or widely separated profiles. So, in many cases we find ourselves with the following question: is the applicability of the 2-D hypothesis valid to extract geoelectric and geological information from real 3-D environments? The aim of this paper is to explore a few instructive but general situations to understand the basics of a 2-D interpretation of 3-D magnetotelluric data and to determine which data subset (TE-mode or TM-mode) is best for obtaining the electrical conductivity distribution of the subsurface using 2-D techniques. A review of the mathematical and physical fundamentals of the electromagnetic fields generated by a simple 3-D structure allows us to prioritise the choice of modes in a 2-D interpretation of responses influenced by 3-D structures. This analysis is corroborated by numerical results from synthetic models and by real data acquired by other authors. One important result of this analysis is that the mode most unaffected by 3-D effects depends on the position of the 3-D structure with respect to the regional 2-D strike direction. When the 3-D body is normal to the regional strike, the TE-mode is affected mainly by galvanic effects, while the TM-mode is affected by galvanic and inductive effects. In this case, a 2-D interpretation of the TM-mode is prone to error. When the 3-D body is parallel to the regional 2-D strike the TE-mode is affected by galvanic and inductive effects and the TM-mode is affected mainly by galvanic effects, making it more suitable for 2-D interpretation. In general, a wise 2-D interpretation of 3-D magnetotelluric data can be a guide to a reasonable geological interpretation.

  1. Rovibrational analysis of the ethylene isotopologue 13C2D4 by high-resolution Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, T. L.; Gabona, M. G.; Godfrey, Peter D.; McNaughton, Don

    2015-01-01

    The Fourier transform infrared (FTIR) spectrum of the unperturbed a-type ν12 band of 13C2D4 was recorded at an unapodized resolution of 0.0063 cm-1 between 1000 and 1140 cm-1 for a rovibrational analysis. By assigning and fitting a total of 2068 infrared transitions using a Watson's A-reduced and S-reduced Hamiltonians in the Ir representation, rovibrational constants for the upper state (ν12 = 1) up to five quartic centrifugal distortion terms were derived for the first time. The root-mean-square (rms) deviation of the fits was 0.00034 cm-1 both in the A-reduction and S-reduction Hamiltonian. The ground state rovibrational constants of 13C2D4 in the A-reduced and S-reduced Hamiltonians were also determined for the first time by a fit of 985 combination-differences from the present infrared measurements, with rms deviation of 0.00036 cm-1. The ν12 band centre of 13C2D4 was at 1069.970824(17) cm-1 and at 1069.970799(17) cm-1 for the A-reduced and S-reduced Hamiltonians respectively. The ground state constants of 13C2D4 from this experimental work are in close agreement to those derived from theoretical calculations using the B3LYP/cc-pVTZ, MP2/cc-pVTZ, and CSSD(T)/cc-pVTZ levels of theory.

  2. Recent advances in 2D materials for photocatalysis.

    PubMed

    Luo, Bin; Liu, Gang; Wang, Lianzhou

    2016-04-07

    Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.

  3. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  4. Primordial non-Gaussianity and reionization

    NASA Astrophysics Data System (ADS)

    Lidz, Adam; Baxter, Eric J.; Adshead, Peter; Dodelson, Scott

    2013-07-01

    The statistical properties of the primordial perturbations contain clues about their origins. Although the Planck collaboration has recently obtained tight constraints on primordial non-Gaussianity from cosmic microwave background measurements, it is still worthwhile to mine upcoming data sets in an effort to place independent or competitive limits. The ionized bubbles that formed at redshift z˜6-20 during the epoch of reionization were seeded by primordial overdensities, and so the statistics of the ionization field at high redshift are related to the statistics of the primordial field. Here we model the effect of primordial non-Gaussianity on the reionization field. The epoch and duration of reionization are affected, as are the sizes of the ionized bubbles, but these changes are degenerate with variations in the properties of the ionizing sources and the surrounding intergalactic medium. A more promising signature is the power spectrum of the spatial fluctuations in the ionization field, which may be probed by upcoming 21 cm surveys. This has the expected 1/k2 dependence on large scales, characteristic of a biased tracer of the matter field. We project how well upcoming 21 cm observations will be able to disentangle this signal from foreground contamination. Although foreground cleaning inevitably removes the large-scale modes most impacted by primordial non-Gaussianity, we find that primordial non-Gaussianity can be separated from foreground contamination for a narrow range of length scales. In principle, futuristic redshifted 21 cm surveys may allow constraints competitive with Planck.

  5. Diffusion of Super-Gaussian Profiles

    ERIC Educational Resources Information Center

    Rosenberg, C.-J.; Anderson, D.; Desaix, M.; Johannisson, P.; Lisak, M.

    2007-01-01

    The present analysis describes an analytically simple and systematic approximation procedure for modelling the free diffusive spreading of initially super-Gaussian profiles. The approach is based on a self-similar ansatz for the evolution of the diffusion profile, and the parameter functions involved in the modelling are determined by suitable…

  6. How Gaussian can our Universe be?

    NASA Astrophysics Data System (ADS)

    Cabass, G.; Pajer, E.; Schmidt, F.

    2017-01-01

    Gravity is a non-linear theory, and hence, barring cancellations, the initial super-horizon perturbations produced by inflation must contain some minimum amount of mode coupling, or primordial non-Gaussianity. In single-field slow-roll models, where this lower bound is saturated, non-Gaussianity is controlled by two observables: the tensor-to-scalar ratio, which is uncertain by more than fifty orders of magnitude; and the scalar spectral index, or tilt, which is relatively well measured. It is well known that to leading and next-to-leading order in derivatives, the contributions proportional to the tilt disappear from any local observable, and suspicion has been raised that this might happen to all orders, allowing for an arbitrarily low amount of primordial non-Gaussianity. Employing Conformal Fermi Coordinates, we show explicitly that this is not the case. Instead, a contribution of order the tilt appears in local observables. In summary, the floor of physical primordial non-Gaussianity in our Universe has a squeezed-limit scaling of kl2/ks2, similar to equilateral and orthogonal shapes, and a dimensionless amplitude of order 0.1 × (ns‑1).

  7. Transitional behavior of quantum Gaussian memory channels

    NASA Astrophysics Data System (ADS)

    Lupo, C.; Mancini, S.

    2010-05-01

    We address the question of optimality of entangled input states in quantum Gaussian memory channels. For a class of such channels, which can be traced back to the memoryless setting, we state a criterion which relates the optimality of entangled inputs to the symmetry properties of the channels’ action. Several examples of channel models belonging to this class are discussed.

  8. Non-Gaussianity effects in petrophysical quantities

    NASA Astrophysics Data System (ADS)

    Koohi Lai, Z.; Jafari, G. R.

    2013-10-01

    It has been proved that there are many indicators (petrophysical quantities) for the estimation of petroleum reservoirs. The value of information contained in each indicator is yet to be addressed. In this work, the most famous and applicable petrophysical quantities for a reservoir, which are the gamma emission (GR), sonic transient time (DT), neutron porosity (NPHI), bulk density (RHOB), and deep induced resistivity (ILD), have been analyzed in order to characterize a reservoir. The implemented technique is the well-logging method. Based on the log-normal model defined in random multiplicative processes, the probability distribution function (PDF) for the data sets is described. The shape of the PDF depends on the parameter λ2 which determines the efficiency of non-Gaussianity. When non-Gaussianity appears, it is a sign of uncertainty and phase transition in the critical regime. The large value and scale-invariant behavior of the non-Gaussian parameter λ2 is an indication of a new phase which proves adequate for the existence of petroleum reservoirs. Our results show that one of the indicators (GR) is more non-Gaussian than the other indicators, scale wise. This means that GR is a continuously critical indicator. But by moving windows with various scales, the estimated λ2 shows that the most appropriate indicator for distinguishing the critical regime is ILD, which shows an increase at the end of the measured region of the well.

  9. A preliminary 3D model for cytochrome P450 2D6 constructed by homology model building.

    PubMed

    Koymans, L M; Vermeulen, N P; Baarslag, A; Donné-Op den Kelder, G M

    1993-06-01

    A homology model building study of cytochrome P450 2D6 has been carried out based on the crystal structure of cytochrome P450 101. The primary sequences of P450 101 and P450 2D6 were aligned by making use of an automated alignment procedure. This alignment was adjusted manually by matching alpha-helices (C, D, G, I, J, K and L) and beta-sheets (beta 3/beta 4) of P450 101 that are proposed to be conserved in membrane-bound P450s (Ouzounis and Melvin [Eur. J. Biochem., 198 (1991) 307]) to the corresponding regions in the primary amino acid sequence of P450 2D6. Furthermore, alpha-helices B, B' and F were found to be conserved in P450 2D6. No significant homology between the remaining regions of P450 101 and P450 2D6 could be found and these regions were therefore deleted. A 3D model of P450 2D6 was constructed by copying the coordinates of the residues from the crystal structure of P450 101 to the corresponding residues in P450 2D6. The regions without a significant homology with P450 101 were not incorporated into the model. After energy-minimization of the resulting 3D model of P450 2D6, possible active site residues were identified by fitting the substrates debrisoquine and dextrometorphan into the proposed active site. Both substrates could be positioned into a planar pocket near the heme region formed by residues Val370, Pro371, Leu372, Trp316, and part of the oxygen binding site of P450 2D6. Furthermore, the carboxylate group of either Asp100 or Asp301 was identified as a possible candidate for the proposed interaction with basic nitrogen atom(s) of the substrates.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. High resolution study of the six lowest doubly excited vibrational states of PH 2D

    NASA Astrophysics Data System (ADS)

    Leroy, C.; Ulenikov, O. N.; Bekhtereva, E. S.; Onopenko, G. A.; Chudinova, T. D.

    2005-12-01

    The five lowest doubly excited deformational vibrational bands ν4 + ν6, 2 ν6, ν3 + ν4, ν3 + ν6, and 2 ν3 of PH 2D have been recorded for the first time using a Bruker 120 HR interferometer with a resolution 0.0033 cm -1 and analysed. Some transitions belonging to a very weak band 2 ν4 have been also assigned. From the fit 24 and 86, respectively, diagonal and resonance interaction parameters were obtained which reproduce 1089 upper energy levels obtained from more than 4600 assigned transitions with the rms deviation of 0.00059 cm -1.

  11. Orbit computation of the TELECOM-2D satellite with a Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Deleflie, Florent; Coulot, David; Vienne, Alain; Decosta, Romain; Richard, Pascal; Lasri, Mohammed Amjad

    2014-07-01

    In order to test a preliminary orbit determination method, we fit an orbit of the geostationary satellite TELECOM-2D, as if we did not know any a priori information on its trajectory. The method is based on a genetic algorithm coupled to an analytical propagator of the trajectory, that is used over a couple of days, and that uses a whole set of altazimutal data that are acquired by the tracking network made up of the two TAROT telescopes. The adjusted orbit is then compared to a numerical reference. The method is described, and the results are analyzed, as a step towards an operational method of preliminary orbit determination for uncatalogued objects.

  12. Gaussian benchmark for optical communication aiming towards ultimate capacity

    NASA Astrophysics Data System (ADS)

    Lee, Jaehak; Ji, Se-Wan; Park, Jiyong; Nha, Hyunchul

    2016-05-01

    We establish the fundamental limit of communication capacity within Gaussian schemes under phase-insensitive Gaussian channels, which employ multimode Gaussian states for encoding and collective Gaussian operations and measurements for decoding. We prove that this Gaussian capacity is additive, i.e., its upper bound occurs with separable encoding and separable receivers so that a single-mode communication suffices to achieve the largest capacity under Gaussian schemes. This rigorously characterizes the gap between the ultimate Holevo capacity and the capacity within Gaussian communication, showing that Gaussian regime is not sufficient to achieve the Holevo bound particularly in the low-photon regime. Furthermore, the Gaussian benchmark established here can be used to critically assess the performance of non-Gaussian protocols for optical communication. We move on to identify non-Gaussian schemes to beat the Gaussian capacity and show that a non-Gaussian receiver recently implemented by Becerra et al. [F. E. Becerra et al., Nat. Photon. 7, 147 (2013), 10.1038/nphoton.2012.316] can achieve this aim with an appropriately chosen encoding strategy.

  13. Quasispecies on Fitness Landscapes.

    PubMed

    Schuster, Peter

    2016-01-01

    Selection-mutation dynamics is studied as adaptation and neutral drift on abstract fitness landscapes. Various models of fitness landscapes are introduced and analyzed with respect to the stationary mutant distributions adopted by populations upon them. The concept of quasispecies is introduced, and the error threshold phenomenon is analyzed. Complex fitness landscapes with large scatter of fitness values are shown to sustain error thresholds. The phenomenological theory of the quasispecies introduced in 1971 by Eigen is compared to approximation-free numerical computations. The concept of strong quasispecies understood as mutant distributions, which are especially stable against changes in mutations rates, is presented. The role of fitness neutral genotypes in quasispecies is discussed.

  14. Radiation pressure acceleration of corrugated thin foils by Gaussian and super-Gaussian beams

    SciTech Connect

    Adusumilli, K.; Goyal, D.; Tripathi, V. K.

    2012-01-15

    Rayleigh-Taylor instability of radiation pressure accelerated ultrathin foils by laser having Gaussian and super-Gaussian intensity distribution is investigated using a single fluid code. The foil is allowed to have ring shaped surface ripples. The radiation pressure force on such a foil is non-uniform with finite transverse component F{sub r}; F{sub r} varies periodically with r. Subsequently, the ripple grows as the foil moves ahead along z. With a Gaussian beam, the foil acquires an overall curvature due to non-uniformity in radiation pressure and gets thinner. In the process, the ripple perturbation is considerably washed off. With super-Gaussian beam, the ripple is found to be more strongly washed out. In order to avoid transmission of the laser through the thinning foil, a criterion on the foil thickness is obtained.

  15. MAG2D: Interactive 2-1/2-dimensional magnetic modeling program (User's Guide and Documentation for Rev. 1)

    SciTech Connect

    Nutter, C.

    1981-04-01

    MAG2D is an interactive computer program used for modeling 2-1/2-dimensional magnetic data. A forward algorithm is used to give the theoretical attraction of magnetic intensity at a station due to a perturbing body given by the initial model. The resultant model can then be adjusted for a better fit by a combination of manual adjustment, one-dimensional automatic search, and Marquardt inversion. MAG2D has an interactive data management system for data manipulation and display built around subroutines to do a forward problem, a one-dimensional direct search and an inversion. These subroutines were originally separate batch-mode programs.

  16. Double resonance rotational spectroscopy of CH2D+

    NASA Astrophysics Data System (ADS)

    Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2016-09-01

    Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.

  17. Recovering 3D particle size distributions from 2D sections

    NASA Astrophysics Data System (ADS)

    Cuzzi, Jeffrey N.; Olson, Daniel M.

    2017-03-01

    We discuss different ways to convert observed, apparent particle size distributions from 2D sections (thin sections, SEM maps on planar surfaces, etc.) into true 3D particle size distributions. We give a simple, flexible, and practical method to do this; show which of these techniques gives the most faithful conversions; and provide (online) short computer codes to calculate both 2D-3D recoveries and simulations of 2D observations by random sectioning. The most important systematic bias of 2D sectioning, from the standpoint of most chondrite studies, is an overestimate of the abundance of the larger particles. We show that fairly good recoveries can be achieved from observed size distributions containing 100-300 individual measurements of apparent particle diameter.

  18. Phonon thermal conduction in novel 2D materials

    NASA Astrophysics Data System (ADS)

    Xu, Xiangfan; Chen, Jie; Li, Baowen

    2016-12-01

    Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS2, black phosphorous and silicene.

  19. Recent developments in 2D layered inorganic nanomaterials for sensing

    NASA Astrophysics Data System (ADS)

    Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar

    2015-08-01

    Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.

  20. Phonon thermal conduction in novel 2D materials.

    PubMed

    Xu, Xiangfan; Chen, Jie; Li, Baowen

    2016-12-07

    Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS2, black phosphorous and silicene.

  1. Exact Solution of Ising Model in 2d Shortcut Network

    NASA Astrophysics Data System (ADS)

    Shanker, O.

    We give the exact solution to the Ising model in the shortcut network in the 2D limit. The solution is found by mapping the model to the square lattice model with Brascamp and Kunz boundary conditions.

  2. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  3. Reconstruction-based 3D/2D image registration.

    PubMed

    Tomazevic, Dejan; Likar, Bostjan; Pernus, Franjo

    2005-01-01

    In this paper we present a novel 3D/2D registration method, where first, a 3D image is reconstructed from a few 2D X-ray images and next, the preoperative 3D image is brought into the best possible spatial correspondence with the reconstructed image by optimizing a similarity measure. Because the quality of the reconstructed image is generally low, we introduce a novel asymmetric mutual information similarity measure, which is able to cope with low image quality as well as with different imaging modalities. The novel 3D/2D registration method has been evaluated using standardized evaluation methodology and publicly available 3D CT, 3DRX, and MR and 2D X-ray images of two spine phantoms, for which gold standard registrations were known. In terms of robustness, reliability and capture range the proposed method outperformed the gradient-based method and the method based on digitally reconstructed radiographs (DRRs).

  4. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-09

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices.

  5. Dominant 2D magnetic turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.

    1995-01-01

    There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevector aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of inertial ranged magnetic spectra in the solar wind. The first test is based upon a characteristic difference between perpendicular and parallel reduced power spectra which is expected for the 2D component but not for the slab component. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant (approximately 85 percent by energy) 2D component in solar wind magnetic turbulence.

  6. Studying Zeolite Catalysts with a 2D Model System

    SciTech Connect

    Boscoboinik, Anibal

    2016-12-07

    Anibal Boscoboinik, a materials scientist at Brookhaven’s Center for Functional Nanomaterials, discusses the surface-science tools and 2D model system he uses to study catalysis in nanoporous zeolites, which catalyze reactions in many industrial processes.

  7. ORION96. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L.A.; Hallquist, J.O.

    1992-02-02

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  8. Emerging and potential opportunities for 2D flexible nanoelectronics

    NASA Astrophysics Data System (ADS)

    Zhu, Weinan; Park, Saungeun; Akinwande, Deji

    2016-05-01

    The last 10 years have seen the emergence of two-dimensional (2D) nanomaterials such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP) among the growing portfolio of layered van der Waals thin films. Graphene, the prototypical 2D material has advanced rapidly in device, circuit and system studies that has resulted in commercial large-area applications. In this work, we provide a perspective of the emerging and potential translational applications of 2D materials including semiconductors, semimetals, and insulators that comprise the basic material set for diverse nanosystems. Applications include RF transceivers, smart systems, the so-called internet of things, and neurotechnology. We will review the DC and RF electronic performance of graphene and BP thin film transistors. 2D materials at sub-um channel length have so far enabled cut-off frequencies from baseband to 100GHz suitable for low-power RF and sub-THz concepts.

  9. Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics.

    PubMed

    Nemilentsau, Andrei; Low, Tony; Hanson, George

    2016-02-12

    Motivated by the recent emergence of a new class of anisotropic 2D materials, we examine their electromagnetic modes and demonstrate that a broad class of the materials can host highly directional hyperbolic plasmons. Their propagation direction can be manipulated on the spot by gate doping, enabling hyperbolic beam reflection, refraction, and bending. The realization of these natural 2D hyperbolic media opens up a new avenue in dynamic control of hyperbolic plasmons not possible in the 3D version.

  10. RNA folding pathways and kinetics using 2D energy landscapes.

    PubMed

    Senter, Evan; Dotu, Ivan; Clote, Peter

    2015-01-01

    RNA folding pathways play an important role in various biological processes, such as (i) the hok/sok (host-killing/suppression of killing) system in E. coli to check for sufficient plasmid copy number, (ii) the conformational switch in spliced leader (SL) RNA from Leptomonas collosoma, which controls trans splicing of a portion of the '5 exon, and (iii) riboswitches--portions of the 5' untranslated region of messenger RNA that regulate genes by allostery. Since RNA folding pathways are determined by the energy landscape, we describe a novel algorithm, FFTbor2D, which computes the 2D projection of the energy landscape for a given RNA sequence. Given two metastable secondary structures A, B for a given RNA sequence, FFTbor2D computes the Boltzmann probability p(x, y) = Z(x,y)/Z that a secondary structure has base pair distance x from A and distance y from B. Using polynomial interpolationwith the fast Fourier transform,we compute p(x, y) in O(n(5)) time and O(n(2)) space, which is an improvement over an earlier method, which runs in O(n(7)) time and O(n(4)) space. FFTbor2D has potential applications in synthetic biology, where one might wish to design bistable switches having target metastable structures A, B with favorable pathway kinetics. By inverting the transition probability matrix determined from FFTbor2D output, we show that L. collosoma spliced leader RNA has larger mean first passage time from A to B on the 2D energy landscape, than 97.145% of 20,000 sequences, each having metastable structures A, B. Source code and binaries are freely available for download at http://bioinformatics.bc.edu/clotelab/FFTbor2D. The program FFTbor2D is implemented in C++, with optional OpenMP parallelization primitives.

  11. Supported and Free-Standing 2D Semimetals

    DTIC Science & Technology

    2015-01-15

    of this effort on focusing on rare- earth arsenides (RE-A), although not a van der Waals 2D solid, nonetheless, exhibits substantial 2D quantum size...this effort on focusing on rare- earth arsenides (RE- A), although not a van der Waals 20 solid, nonetheless, exhibits substantial 20 quantum size...Brongersma and S.R. Bank, "Rare- earth monopnictide alloys for tunable, epitaxial metals" in preparation. iii. S. Rahimi, E. M. Krivoy, J. Lee, M. E

  12. Application of 2-D graphical representation of DNA sequence

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Tan, Mingshu; Ding, Kequan

    2005-10-01

    Recently, we proposed a 2-D graphical representation of DNA sequence [Bo Liao, A 2-D graphical representation of DNA sequence, Chem. Phys. Lett. 401 (2005) 196-199]. Based on this representation, we consider properties of mutations and compute the similarities among 11 mitochondrial sequences belonging to different species. The elements of the similarity matrix are used to construct phylogenic tree. Unlike most existing phylogeny construction methods, the proposed method does not require multiple alignment.

  13. phase_space_cosmo_fisher: Fisher matrix 2D contours

    NASA Astrophysics Data System (ADS)

    Stark, Alejo

    2016-11-01

    phase_space_cosmo_fisher produces Fisher matrix 2D contours from which the constraints on cosmological parameters can be derived. Given a specified redshift array and cosmological case, 2D marginalized contours of cosmological parameters are generated; the code can also plot the derivatives used in the Fisher matrix. In addition, this package can generate 3D plots of qH^2 and other cosmological quantities as a function of redshift and cosmology.

  14. A simultaneous 2D/3D autostereo workstation

    NASA Astrophysics Data System (ADS)

    Chau, Dennis; McGinnis, Bradley; Talandis, Jonas; Leigh, Jason; Peterka, Tom; Knoll, Aaron; Sumer, Aslihan; Papka, Michael; Jellinek, Julius

    2012-03-01

    We present a novel immersive workstation environment that scientists can use for 3D data exploration and as their everyday 2D computer monitor. Our implementation is based on an autostereoscopic dynamic parallax barrier 2D/3D display, interactive input devices, and a software infrastructure that allows client/server software modules to couple the workstation to scientists' visualization applications. This paper describes the hardware construction and calibration, software components, and a demonstration of our system in nanoscale materials science exploration.

  15. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  16. Density of states for Gaussian unitary ensemble, Gaussian orthogonal ensemble, and interpolating ensembles through supersymmetric approach

    SciTech Connect

    Shamis, Mira

    2013-11-15

    We use the supersymmetric formalism to derive an integral formula for the density of states of the Gaussian Orthogonal Ensemble, and then apply saddle-point analysis to give a new derivation of the 1/N-correction to Wigner's law. This extends the work of Disertori on the Gaussian Unitary Ensemble. We also apply our method to the interpolating ensembles of Mehta–Pandey.

  17. Regulation of NKG2D ligand gene expression.

    PubMed

    Eagle, Robert A; Traherne, James A; Ashiru, Omodele; Wills, Mark R; Trowsdale, John

    2006-03-01

    The activating immunoreceptor NKG2D has seven known host ligands encoded by the MHC class I chain-related MIC and ULBP/RAET genes. Why there is such diversity of NKG2D ligands is not known but one hypothesis is that they are differentially expressed in different tissues in response to different stresses. To explore this, we compared expression patterns and promoters of NKG2D ligand genes. ULBP/RAET genes were transcribed independent of each other in a panel of cell lines. ULBP/RAET gene expression was upregulated on infection with human cytomegalovirus; however, a clinical strain, Toledo, induced expression more slowly than did a laboratory strain, AD169. ULBP4/RAET1E was not induced by infection with either strain. To investigate the mechanisms behind the similarities and differences in NKG2D ligand gene expression a comparative sequence analysis of NKG2D ligand gene putative promoter regions was conducted. Sequence alignments demonstrated that there was significant sequence diversity; however, one region of high similarity between most of the genes is evident. This region contains a number of potential transcription factor binding sites, including those involved in shock responses and sites for retinoic acid-induced factors. Promoters of some NKG2D ligand genes are polymorphic and several sequence alterations in these alleles abolished putative transcription factor binding.

  18. CYP2D6 variability in populations from Venezuela.

    PubMed

    Moreno, Nancy; Flores-Angulo, Carlos; Villegas, Cecilia; Mora, Yuselin

    2016-12-01

    CYP2D6 is an important cytochrome P450 enzyme that plays an important role in the metabolism of about 25% of currently prescribed drugs. The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatments. The most prevalent diseases in the admixed population from Venezuela are cardiovascular and cancer, whereas viral, bacterial and parasitic diseases, particularly malaria, are prevalent in Amerindian populations; in the treatment of these diseases, several drugs that are metabolized by CYP2D6 are used. In this work, we reviewed the data on CYP2D6 variability and predicted metabolizer phenotypes, in healthy volunteers of two admixed and five Amerindian populations from Venezuela. The Venezuelan population is very heterogeneous as a result of the genetic admixture of three major ethnical components: Europeans, Africans and Amerindians. There are noticeable inter-regional and inter-population differences in the process of mixing of this population. Hitherto, there are few published studies in Venezuela on CYP2D6; therefore, it is necessary to increase research in this regard, in particular to develop studies with a larger sample size. There is a considerable amount of work remaining before CYP2D6 is integrated into clinical practice in Venezuela.

  19. 2D microscopic model of graphene fracture properties

    NASA Astrophysics Data System (ADS)

    Hess, Peter

    2015-05-01

    An analytical two-dimensional (2D) microscopic fracture model based on Morse-type interaction is derived containing no adjustable parameter. From the 2D Young’s moduli and 2D intrinsic strengths of graphene measured by nanoindentation based on biaxial tension and calculated by density functional theory for uniaxial tension the widely unknown breaking force, line or edge energy, surface energy, fracture toughness, and strain energy release rate were determined. The simulated line energy agrees well with ab initio calculations and the fracture toughness of perfect graphene sheets is in good agreement with molecular dynamics simulations and the fracture toughness evaluated for defective graphene using the Griffith relation. Similarly, the estimated critical strain energy release rate agrees well with result of various theoretical approaches based on the J-integral and surface energy. The 2D microscopic model, connecting 2D and three-dimensional mechanical properties in a consistent way, provides a versatile relationship to easily access all relevant fracture properties of pristine 2D solids.

  20. Propagation of modified Bessel-Gaussian beams in turbulence

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil Tanyer; Hardalaç, Fırat

    2008-03-01

    We investigate the propagation characteristics of modified Bessel-Gaussian beams traveling in a turbulent atmosphere. The source beam formulation comprises a Gaussian exponential and the summation of modified Bessel functions. Based on an extended Huygens-Fresnel principle, the receiver plane intensity is formulated and solved down to a double integral stage. Source beam illustrations show that modified Bessel-Gaussian beams, except the lowest order case, will have well-like shapes. Modified Bessel-Gaussian beams with summations will experience lobe slicing and will display more or less the same profile regardless of order content. After propagating in turbulent atmosphere, it is observed that a modified Bessel-Gaussian beam will transform into a Bessel-Gaussian beam. Furthermore it is seen that modified Bessel-Gaussian beams with different Bessel function combinations, but possessing nearly the same profile, will differentiate during propagation. Increasing turbulence strength is found to accelerate the beam transformation toward the eventual Gaussian shape.

  1. 2D Hexagonal Boron Nitride (2D-hBN) Explored for the Electrochemical Sensing of Dopamine.

    PubMed

    Khan, Aamar F; Brownson, Dale A C; Randviir, Edward P; Smith, Graham C; Banks, Craig E

    2016-10-04

    Crystalline 2D hexagonal boron nitride (2D-hBN) nanosheets are explored as a potential electrocatalyst toward the electroanalytical sensing of dopamine (DA). The 2D-hBN nanosheets are electrically wired via a drop-casting modification process onto a range of commercially available carbon supporting electrodes, including glassy carbon (GC), boron-doped diamond (BDD), and screen-printed graphitic electrodes (SPEs). 2D-hBN has not previously been explored toward the electrochemical detection/electrochemical sensing of DA. We critically evaluate the potential electrocatalytic performance of 2D-hBN modified electrodes, the effect of supporting carbon electrode platforms, and the effect of "mass coverage" (which is commonly neglected in the 2D material literature) toward the detection of DA. The response of 2D-hBN modified electrodes is found to be largely dependent upon the interaction between 2D-hBN and the underlying supporting electrode material. For example, in the case of SPEs, modification with 2D-hBN (324 ng) improves the electrochemical response, decreasing the electrochemical oxidation potential of DA by ∼90 mV compared to an unmodified SPE. Conversely, modification of a GC electrode with 2D-hBN (324 ng) resulted in an increased oxidation potential of DA by ∼80 mV when compared to the unmodified electrode. We explore the underlying mechanisms of the aforementioned examples and infer that electrode surface interactions and roughness factors are critical considerations. 2D-hBN is utilized toward the sensing of DA in the presence of the common interferents ascorbic acid (AA) and uric acid (UA). 2D-hBN is found to be an effective electrocatalyst in the simultaneous detection of DA and UA at both pH 5.0 and 7.4. The peak separations/resolution between DA and UA increases by ∼70 and 50 mV (at pH 5.0 and 7.4, respectively, when utilizing 108 ng of 2D-hBN) compared to unmodified SPEs, with a particularly favorable response evident in pH 5.0, giving rise to a

  2. Fitting of the Thomson scattering density and temperature profiles on the COMPASS tokamak

    NASA Astrophysics Data System (ADS)

    Stefanikova, E.; Peterka, M.; Bohm, P.; Bilkova, P.; Aftanas, M.; Sos, M.; Urban, J.; Hron, M.; Panek, R.

    2016-11-01

    A new technique for fitting the full radial profiles of electron density and temperature obtained by the Thomson scattering diagnostic in H-mode discharges on the COMPASS tokamak is described. The technique combines the conventionally used modified hyperbolic tangent function for the edge transport barrier (pedestal) fitting and a modification of a Gaussian function for fitting the core plasma. Low number of parameters of this combined function and their straightforward interpretability and controllability provide a robust method for obtaining physically reasonable profile fits. Deconvolution with the diagnostic instrument function is applied on the profile fit, taking into account the dependence on the actual magnetic configuration.

  3. Fitting of the Thomson scattering density and temperature profiles on the COMPASS tokamak.

    PubMed

    Stefanikova, E; Peterka, M; Bohm, P; Bilkova, P; Aftanas, M; Sos, M; Urban, J; Hron, M; Panek, R

    2016-11-01

    A new technique for fitting the full radial profiles of electron density and temperature obtained by the Thomson scattering diagnostic in H-mode discharges on the COMPASS tokamak is described. The technique combines the conventionally used modified hyperbolic tangent function for the edge transport barrier (pedestal) fitting and a modification of a Gaussian function for fitting the core plasma. Low number of parameters of this combined function and their straightforward interpretability and controllability provide a robust method for obtaining physically reasonable profile fits. Deconvolution with the diagnostic instrument function is applied on the profile fit, taking into account the dependence on the actual magnetic configuration.

  4. High-index asymptotics of spherical Bessel products averaged with modulated Gaussian power laws

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2014-12-01

    Bessel integrals of type are investigated, where the kernel g( k) is a modulated Gaussian power-law distribution , and the jl ( m) are multiple derivatives of spherical Bessel functions. These integrals define the multipole moments of Gaussian random fields on the unit sphere, arising in multipole fits of temperature and polarization power spectra of the cosmic microwave background. Two methods allowing efficient numerical calculation of these integrals are presented, covering Bessel indices l in the currently accessible multipole range 0 ≤ l ≤ 104 and beyond. The first method is based on a representation of spherical Bessel functions by Lommel polynomials. Gaussian power-law averages can then be calculated in closed form as finite Hankel series of parabolic cylinder functions, which allow high-precision evaluation. The second method is asymptotic, covering the high- l regime, and is applicable to general distribution functions g( k) in the integrand; it is based on the uniform Nicholson approximation of the Bessel derivatives in conjunction with an integral representation of squared Airy functions. A numerical comparison of these two methods is performed, employing Gaussian power laws and Kummer distributions to average the Bessel products.

  5. MEASURING PRIMORDIAL NON-GAUSSIANITY THROUGH WEAK-LENSING PEAK COUNTS

    SciTech Connect

    Marian, Laura; Hilbert, Stefan; Smith, Robert E.; Schneider, Peter; Desjacques, Vincent

    2011-02-10

    We explore the possibility of detecting primordial non-Gaussianity of the local type using weak-lensing peak counts. We measure the peak abundance in sets of simulated weak-lensing maps corresponding to three models f{sub NL} = 0, - 100, and 100. Using survey specifications similar to those of EUCLID and without assuming any knowledge of the lens and source redshifts, we find the peak functions of the non-Gaussian models with f{sub NL} = {+-}100 to differ by up to 15% from the Gaussian peak function at the high-mass end. For the assumed survey parameters, the probability of fitting an f{sub NL} = 0 peak function to the f{sub NL} = {+-}100 peak functions is less than 0.1%. Assuming the other cosmological parameters are known, f{sub NL} can be measured with an error {Delta}f{sub NL} {approx} 13. It is therefore possible that future weak-lensing surveys like EUCLID and LSST may detect primordial non-Gaussianity from the abundance of peak counts, and provide information complementary to that obtained from the cosmic microwave background.

  6. The design of Gaussian beam zoom system in intermediate and long distance measurement

    NASA Astrophysics Data System (ADS)

    Wang, Mengcheng; Zhou, Jian

    2016-10-01

    It is well known that laser possesses high brightness, high coherence, good directivity and other unique properties. In many practical applications, it is necessary to get small light spot in intermediate and long distance. Intermediate and long distance laser measurement demands to minimize the spot radius in order to improve the spatial resolution of the system and signal quality. Therefore, the study of Gaussian beam focusing property has high value for practical applications. In order to achieve intermediate and long distance laser measurement, this paper studies the method to adjust Gaussian beam spot diameter within a certain range after a near-field optical system transformation to improve the signal quality. Based on the fundamental characteristics of the Gaussian beam, this paper deduces the theoretical formula for the position and radius of the Gaussian beam waist and measures them by means of the CCD method. Then Matlab is used to simulate the spot diameter in the far field, and by combining numerical simulation results as well as optimizing the structure of the actual optical system, we make the light spot diameter in the target area fit the requirements of the laser velocimeter in intermediate and long distance measurement.

  7. Analytic Matrix Elements and Gradients with Shifted Correlated Gaussians

    NASA Astrophysics Data System (ADS)

    Fedorov, D. V.

    2017-01-01

    Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are shown to be analytic. Their gradients with respect to the non-linear parameters of the Gaussians are also analytic. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics.

  8. On the classical capacity of quantum Gaussian channels

    NASA Astrophysics Data System (ADS)

    Lupo, Cosmo; Pirandola, Stefano; Aniello, Paolo; Mancini, Stefano

    2011-02-01

    The set of quantum Gaussian channels acting on one bosonic mode can be classified according to the action of the group of Gaussian unitaries. We look for bounds on the classical capacity for channels belonging to such a classification. Lower bounds can be efficiently calculated by restricting the study to Gaussian encodings, for which we provide analytical expressions.

  9. IMFIT: A Fast, Flexible New Program for Astronomical Image Fitting

    NASA Astrophysics Data System (ADS)

    Erwin, Peter

    2015-02-01

    I describe a new, open-source astronomical image-fitting program called IMFIT, specialized for galaxies but potentially useful for other sources, which is fast, flexible, and highly extensible. A key characteristic of the program is an object-oriented design that allows new types of image components (two-dimensional surface-brightness functions) to be easily written and added to the program. Image functions provided with IMFIT include the usual suspects for galaxy decompositions (Sérsic, exponential, Gaussian), along with Core-Sérsic and broken-exponential profiles, elliptical rings, and three components that perform line-of-sight integration through three-dimensional luminosity-density models of disks and rings seen at arbitrary inclinations. Available minimization algorithms include Levenberg-Marquardt, Nelder-Mead simplex, and Differential Evolution, allowing trade-offs between speed and decreased sensitivity to local minima in the fit landscape. Minimization can be done using the standard χ2 statistic (using either data or model values to estimate per-pixel Gaussian errors, or else user-supplied error images) or Poisson-based maximum-likelihood statistics; the latter approach is particularly appropriate for cases of Poisson data in the low-count regime. I show that fitting low-signal-to-noise ratio galaxy images using χ2 minimization and individual-pixel Gaussian uncertainties can lead to significant biases in fitted parameter values, which are avoided if a Poisson-based statistic is used; this is true even when Gaussian read noise is present.

  10. IMFIT: A FAST, FLEXIBLE NEW PROGRAM FOR ASTRONOMICAL IMAGE FITTING

    SciTech Connect

    Erwin, Peter

    2015-02-01

    I describe a new, open-source astronomical image-fitting program called IMFIT, specialized for galaxies but potentially useful for other sources, which is fast, flexible, and highly extensible. A key characteristic of the program is an object-oriented design that allows new types of image components (two-dimensional surface-brightness functions) to be easily written and added to the program. Image functions provided with IMFIT include the usual suspects for galaxy decompositions (Sérsic, exponential, Gaussian), along with Core-Sérsic and broken-exponential profiles, elliptical rings, and three components that perform line-of-sight integration through three-dimensional luminosity-density models of disks and rings seen at arbitrary inclinations. Available minimization algorithms include Levenberg-Marquardt, Nelder-Mead simplex, and Differential Evolution, allowing trade-offs between speed and decreased sensitivity to local minima in the fit landscape. Minimization can be done using the standard χ{sup 2} statistic (using either data or model values to estimate per-pixel Gaussian errors, or else user-supplied error images) or Poisson-based maximum-likelihood statistics; the latter approach is particularly appropriate for cases of Poisson data in the low-count regime. I show that fitting low-signal-to-noise ratio galaxy images using χ{sup 2} minimization and individual-pixel Gaussian uncertainties can lead to significant biases in fitted parameter values, which are avoided if a Poisson-based statistic is used; this is true even when Gaussian read noise is present.

  11. Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints

    NASA Astrophysics Data System (ADS)

    Hinton, Samuel R.; Kazin, Eyal; Davis, Tamara M.; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Glazebrook, Karl; Jurek, Russell J.; Parkinson, David; Pimbblet, Kevin A.; Poole, Gregory B.; Pracy, Michael; Woods, David

    2017-02-01

    We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ωc h2, H(z), and DA(z) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey.

  12. Development of ultra-fast 2D ion Doppler tomography using image intensified CMOS fast camera

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroshi; Kuwahata, Akihiro; Yamanaka, Haruki; Inomoto, Michiaki; Ono, Yasushi; TS-group Team

    2015-11-01

    The world fastest novel time-resolved 2D ion Doppler tomography diagnostics has been developed using fast camera with high-speed gated image intensifier (frame rate: 200kfps. phosphor decay time: ~ 1 μ s). Time evolution of line-integrated spectra are diffracted from a f=1m, F/8.3 and g=2400L/mm Czerny-Turner polychromator, whose output is intensified and recorded to a high-speed camera with spectral resolution of ~0.005nm/pixel. The system can accommodate up to 36 (9 ×4) spatial points recorded at 5 μs time resolution, tomographic reconstruction is applied for the line-integrated spectra, time-resolved (5 μs/frame) local 2D ion temperature measurement has been achieved without any assumption of shot repeatability. Ion heating during intermittent reconnection event which tends to happen during high guide field merging tokamak was measured around diffusion region in UTST. The measured 2D profile shows ion heating inside the acceleration channel of reconnection outflow jet, stagnation point and downstream region where reconnected field forms thick closed flux surface as in MAST. Achieved maximum ion temperature increases as a function of Brec2 and shows good fit with MAST experiment, demonstrating promising CS-less startup scenario for spherical tokamak. This work is supported by JSPS KAKENHI Grant Number 15H05750 and 15K20921.

  13. Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints.

    PubMed

    Hinton, Samuel R; Kazin, Eyal; Davis, Tamara M; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J; Drinkwater, Michael J; Glazebrook, Karl; Jurek, Russell J; Parkinson, David; Pimbblet, Kevin A; Poole, Gregory B; Pracy, Michael; Woods, David

    2017-02-01

    We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ω c  h(2), H(z), and DA (z) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey.

  14. Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints

    PubMed Central

    Hinton, Samuel R.; Kazin, Eyal; Davis, Tamara M.; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Glazebrook, Karl; Jurek, Russell J.; Parkinson, David; Pimbblet, Kevin A.; Poole, Gregory B.; Pracy, Michael; Woods, David

    2016-01-01

    We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ωc h2, H(z), and DA(z) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey. PMID:28066154

  15. CMB B -mode non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Meerburg, P. Daniel; Meyers, Joel; van Engelen, Alexander; Ali-Haïmoud, Yacine

    2016-06-01

    We study the degree to which the cosmic microwave background (CMB) can be used to constrain primordial non-Gaussianity involving one tensor and two scalar fluctuations, focusing on the correlation of one polarization B mode with two temperature modes. In the simplest models of inflation, the tensor-scalar-scalar primordial bispectrum is nonvanishing and is of the same order in slow-roll parameters as the scalar-scalar-scalar bispectrum. We calculate the ⟨B T T ⟩ correlation arising from a primordial tensor-scalar-scalar bispectrum, and show that constraints from an experiment like CMB-Stage IV using this observable are more than an order of magnitude better than those on the same primordial coupling obtained from temperature measurements alone. We argue that B -mode non-Gaussianity opens up an as-yet-unexplored window into the early Universe, demonstrating that significant information on primordial physics remains to be harvested from CMB anisotropies.

  16. Quantum Fidelity for Arbitrary Gaussian States.

    PubMed

    Banchi, Leonardo; Braunstein, Samuel L; Pirandola, Stefano

    2015-12-31

    We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode Gaussian states which is simply expressed in terms of their first- and second-order statistical moments. We also show how such a formula can be written in terms of symplectic invariants and used to derive closed forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information, and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses, and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with arbitrary multimode Gaussian resources.

  17. A Fast Incremental Gaussian Mixture Model

    PubMed Central

    Pinto, Rafael Coimbra; Engel, Paulo Martins

    2015-01-01

    This work builds upon previous efforts in online incremental learning, namely the Incremental Gaussian Mixture Network (IGMN). The IGMN is capable of learning from data streams in a single-pass by improving its model after analyzing each data point and discarding it thereafter. Nevertheless, it suffers from the scalability point-of-view, due to its asymptotic time complexity of O(NKD3) for N data points, K Gaussian components and D dimensions, rendering it inadequate for high-dimensional data. In this work, we manage to reduce this complexity to O(NKD2) by deriving formulas for working directly with precision matrices instead of covariance matrices. The final result is a much faster and scalable algorithm which can be applied to high dimensional tasks. This is confirmed by applying the modified algorithm to high-dimensional classification datasets. PMID:26444880

  18. Fock expansion of multimode pure Gaussian states

    SciTech Connect

    Cariolaro, Gianfranco; Pierobon, Gianfranco

    2015-12-15

    The Fock expansion of multimode pure Gaussian states is derived starting from their representation as displaced and squeezed multimode vacuum states. The approach is new and appears to be simpler and more general than previous ones starting from the phase-space representation given by the characteristic or Wigner function. Fock expansion is performed in terms of easily evaluable two-variable Hermite–Kampé de Fériet polynomials. A relatively simple and compact expression for the joint statistical distribution of the photon numbers in the different modes is obtained. In particular, this result enables one to give a simple characterization of separable and entangled states, as shown for two-mode and three-mode Gaussian states.

  19. Large Non-Gaussianity in Axion Inflation

    SciTech Connect

    Barnaby, Neil; Peloso, Marco

    2011-05-06

    The inflationary paradigm has enjoyed phenomenological success; however, a compelling particle physics realization is still lacking. Axions are among the best-motivated inflaton candidates, since the flatness of their potential is naturally protected by a shift symmetry. We reconsider the cosmological perturbations in axion inflation, consistently accounting for the coupling to gauge fields c{phi}FF-tilde, which is generically present in these models. This coupling leads to production of gauge quanta, which provide a new source of inflaton fluctuations, {delta}{phi}. For c > or approx. 10{sup 2}M{sub p}{sup -1}, these dominate over the vacuum fluctuations, and non-Gaussianity exceeds the current observational bound. This regime is typical for concrete realizations that admit a UV completion; hence, large non-Gaussianity is easily obtained in minimal and natural realizations of inflation.

  20. Gaussian quadrature for multiple orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Coussement, Jonathan; van Assche, Walter

    2005-06-01

    We study multiple orthogonal polynomials of type I and type II, which have orthogonality conditions with respect to r measures. These polynomials are connected by their recurrence relation of order r+1. First we show a relation with the eigenvalue problem of a banded lower Hessenberg matrix Ln, containing the recurrence coefficients. As a consequence, we easily find that the multiple orthogonal polynomials of type I and type II satisfy a generalized Christoffel-Darboux identity. Furthermore, we explain the notion of multiple Gaussian quadrature (for proper multi-indices), which is an extension of the theory of Gaussian quadrature for orthogonal polynomials and was introduced by Borges. In particular, we show that the quadrature points and quadrature weights can be expressed in terms of the eigenvalue problem of Ln.

  1. Remarkably Gaussian Tephra Fallout from Basaltic Eruptions

    NASA Astrophysics Data System (ADS)

    Courtland, L. M.; Kruse, S.; Connor, C.

    2008-12-01

    Tephra fallout models used to forecast volcanic hazards rely on the advection-diffusion equation to forecast hazards. If the advection-diffusion equation applies, then the thickness of tephra blanket deposits should show Gaussian crosswind profiles and exponential decay with distance from the vent. Complications may arise due to factors such as particle size distributions, particle density, and atmospheric effects not incorporated in the advection-diffusion model. Continuous profiles derived from GPR surveys collected on the tephra blanket of Cerro Negro Volcano, Nicaragua allow us to test the advection-diffusion model. Steady trade winds coupled with eruptions that tend to be brief and relatively low energy create relatively simple deposits. Data was collected for cross wind profiles at varying distances from the vent. Horizons identified in these profiles exhibit Gaussian distributions with a high degree of statistical confidence. Additionally, the shape of one continuous profile leading from the crater rim out onto the tephra blanket is examined.

  2. Quantum Fidelity for Arbitrary Gaussian States

    NASA Astrophysics Data System (ADS)

    Banchi, Leonardo; Braunstein, Samuel L.; Pirandola, Stefano

    2015-12-01

    We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode Gaussian states which is simply expressed in terms of their first- and second-order statistical moments. We also show how such a formula can be written in terms of symplectic invariants and used to derive closed forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information, and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses, and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with arbitrary multimode Gaussian resources.

  3. Comparison of 2D and 3D modeled tumor motion estimation/prediction for dynamic tumor tracking during arc radiotherapy.

    PubMed

    Liu, Wu; Ma, Xiangyu; Yan, Huagang; Chen, Zhe; Nath, Ravinder; Li, Haiyun

    2017-03-06

    Many real-time imaging techniques have been developed to localize the target in 3D space or in 2D beam's eye view (BEV) plane for intrafraction motion tracking in radiation therapy. With tracking system latency, 3D-modeled method is expected to be more accurate even in terms of 2D BEV tracking error. No quantitative analysis, however, has been reported. In this study, we simulated co-planar arc deliveries using respiratory motion data acquired from 42 patients to quantitatively compare the accuracy between 2D BEV and 3D-modeled tracking in arc therapy and determine whether 3D information is needed for motion tracking. We used our previously developed low kV dose adaptive MV-kV imaging and motion compensation framework as a representative of 3D-modeled methods. It optimizes the balance between additional kV imaging dose and 3D tracking accuracy and solves the MLC blockage issue. With simulated Gaussian marker detection errors (zero mean and 0.39 mm standard deviation) and ~155/310/460 ms tracking system latencies, the mean percentage of time that the target moved >2 mm from the predicted 2D BEV position are 1.1%/4.0%/7.8% and 1.3%/5.8%/11.6% for 3D-modeled and 2D-only tracking, respectively. The corresponding average BEV RMS errors are 0.67/0.90/1.13 mm and 0.79/1.10/1.37 mm. Compared to the 2D method, the 3D method reduced the average RMS unresolved motion along the beam direction from ~3 mm to ~1 mm, resulting on average only <1% dosimetric advantage in the depth direction. Only for a small fraction of the patients, when tracking latency is long, the 3D-modeled method showed significant improvement of BEV tracking accuracy, indicating potential dosimetric advantage. However, if the tracking latency is short (~150 ms or less), those improvements are limited. Therefore, 2D BEV tracking has sufficient targeting accuracy for most clinical cases. The 3D technique is, however, still important in solving the MLC blockage problem during 2D BEV tracking.

  4. Improving NEC Fit

    DTIC Science & Technology

    2015-09-01

    requirements and in managing personnel by tracking sailors who have acquired these skills. NEC Fit is one of two primary metrics that Navy leadership...with a rating. They are used in defining manpower requirements and in personnel management to track sailors who have acquired these skills. NEC Fit...of the new NEC requirements in the Total Force Manpower Management System (TFMMS) for Fit levels to reach their steady state. The primary reason for

  5. Entanglement Rate for Gaussian Continuous Variable Beams

    DTIC Science & Technology

    2016-08-24

    e.g. when cavities are involved. To exemplify itsmeaning and potential, we apply it to a four-mode optomechanical setup that enables the simultaneous up...natural characteristics of such a source is obviously the rate at which it generates entanglement. If the source sends out pairs of entangled particles...entanglement rate in such nontrivial situations. It will turn out that our general definition, when applied to stationaryGaussianCVbeams, gives rise to a

  6. Non-Markovianity of Gaussian Channels.

    PubMed

    Torre, G; Roga, W; Illuminati, F

    2015-08-14

    We introduce a necessary and sufficient criterion for the non-Markovianity of Gaussian quantum dynamical maps based on the violation of divisibility. The criterion is derived by defining a general vectorial representation of the covariance matrix which is then exploited to determine the condition for the complete positivity of partial maps associated with arbitrary time intervals. Such construction does not rely on the Choi-Jamiolkowski representation and does not require optimization over states.

  7. Entropic Fluctuations in Gaussian Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Jakšić, V.; Pillet, C.-A.; Shirikyan, A.

    2016-06-01

    We study nonequilibrium statistical mechanics of a Gaussian dynamical system and compute in closed form the large deviation functionals describing the fluctuations of the entropy production observable with respect to the reference state and the nonequilibrium steady state. The entropy production observable of this model is an unbounded function on the phase space, and its large deviation functionals have a surprisingly rich structure. We explore this structure in some detail.

  8. Leak test fitting

    DOEpatents

    Pickett, P.T.

    A hollow fitting for use in gas spectrometry leak testing of conduit joints is divided into two generally symmetrical halves along the axis of the conduit. A clip may quickly and easily fasten and unfasten the halves around the conduit joint under test. Each end of the fitting is sealable with a yieldable material, such as a piece of foam rubber. An orifice is provided in a wall of the fitting for the insertion or detection of helium during testing. One half of the fitting also may be employed to test joints mounted against a surface.

  9. Leak test fitting

    DOEpatents

    Pickett, Patrick T.

    1981-01-01

    A hollow fitting for use in gas spectrometry leak testing of conduit joints is divided into two generally symmetrical halves along the axis of the conduit. A clip may quickly and easily fasten and unfasten the halves around the conduit joint under test. Each end of the fitting is sealable with a yieldable material, such as a piece of foam rubber. An orifice is provided in a wall of the fitting for the insertion or detection of helium during testing. One half of the fitting also may be employed to test joints mounted against a surface.

  10. Improved rovibrational constants for the v7 = 1 state of ethylene-cis-1,2-d2 (cis-C2H2D2) by high-resolution synchrotron FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, T. L.; Ng, L. L.; Gabona, M. G.; Aruchunan, G.; Wong, Andy; Appadoo, Dominique R. T.; McNaughton, Don

    2017-01-01

    Using the far-infrared beamline of the Australian Synchrotron, the spectrum of the ν7 band of ethylene-cis-1,2-d2 (cis-C2H2D2) was recorded in the 640-990 cm-1 region at an unapodized resolution of 0.00096 cm-1. A rovibrational analysis of a total of 2823 infrared transitions of the ν7 band was carried out using an asymmetric rotor fitting program based on the Watson's A-reduced Hamiltonian in the Ir representation to derive up to four sextic constants with a rms deviation of 0.00035 cm-1. From the fitting of 2634 ground state combination differences (GSCDs) of cis-C2H2D2 which were derived from the infrared transitions of the ν7 band of this work, and ν10 and ν12 bands of previous studies, together with 22 microwave frequencies, accurate ground state constants of cis-C2H2D2 up to four sextic terms were obtained. The rotational constants (A, B, and C) of the v7 = 1 state of cis-C2H2D2 were found to agree within 0.5% with the calculated values using B3LYP/cc-pVTZ and MP2/cc-pVTZ levels of theory. From this work, the band center of ν7 at 842.209489(20) cm-1 and the rovibrational constants of the v7 = 1 state of cis-C2H2D2 were determined with better accuracy than previously reported.

  11. Least-squares Gaussian beam migration

    NASA Astrophysics Data System (ADS)

    Yuan, Maolin; Huang, Jianping; Liao, Wenyuan; Jiang, Fuyou

    2017-02-01

    A theory of least-squares Gaussian beam migration (LSGBM) is presented to optimally estimate a subsurface reflectivity. In the iterative inversion scheme, a Gaussian beam (GB) propagator is used as the kernel of linearized forward modeling (demigration) and its adjoint (migration). Born approximation based GB demigration relies on the calculation of Green’s function by a Gaussian-beam summation for the downward and upward wavefields. The adjoint operator of GB demigration accounts for GB prestack depth migration under the cross-correlation imaging condition, where seismic traces are processed one by one for each shot. A numerical test on the point diffractors model suggests that GB demigration can successfully simulate primary scattered data, while migration (adjoint) can yield a corresponding image. The GB demigration/migration algorithms are used for the least-squares migration scheme to deblur conventional migrated images. The proposed LSGBM is illustrated with two synthetic data for a four-layer model and the Marmousi2 model. Numerical results show that LSGBM, compared to migration (adjoint) with GBs, produces images with more balanced amplitude, higher resolution and even fewer artifacts. Additionally, the LSGBM shows a robust convergence rate.

  12. Unitarily localizable entanglement of Gaussian states

    SciTech Connect

    Serafini, Alessio; Adesso, Gerardo; Illuminati, Fabrizio

    2005-03-01

    We consider generic (mxn)-mode bipartitions of continuous-variable systems, and study the associated bisymmetric multimode Gaussian states. They are defined as (m+n)-mode Gaussian states invariant under local mode permutations on the m-mode and n-mode subsystems. We prove that such states are equivalent, under local unitary transformations, to the tensor product of a two-mode state and of m+n-2 uncorrelated single-mode states. The entanglement between the m-mode and the n-mode blocks can then be completely concentrated on a single pair of modes by means of local unitary operations alone. This result allows us to prove that the PPT (positivity of the partial transpose) condition is necessary and sufficient for the separability of (m+n)-mode bisymmetric Gaussian states. We determine exactly their negativity and identify a subset of bisymmetric states whose multimode entanglement of formation can be computed analytically. We consider explicit examples of pure and mixed bisymmetric states and study their entanglement scaling with the number of modes.

  13. Regulation of ligands for the activating receptor NKG2D

    PubMed Central

    Mistry, Anita R; O'Callaghan, Chris A

    2007-01-01

    The outcome of an encounter between a cytotoxic cell and a potential target cell depends on the balance of signals from inhibitory and activating receptors. Natural Killer group 2D (NKG2D) has recently emerged as a major activating receptor on T lymphocytes and natural killer cells. In both humans and mice, multiple different genes encode ligands for NKG2D, and these ligands are non-classical major histocompatibility complex class I molecules. The NKG2D–ligand interaction triggers an activating signal in the cell expressing NKG2D and this promotes cytotoxic lysis of the cell expressing the ligand. Most normal tissues do not express ligands for NKG2D, but ligand expression has been documented in tumour and virus-infected cells, leading to lysis of these cells. Tight regulation of ligand expression is important. If there is inappropriate expression in normal tissues, this will favour autoimmune processes, whilst failure to up-regulate the ligands in pathological conditions would favour cancer development or dissemination of intracellular infection. PMID:17614877

  14. Rotation invariance principles in 2D/3D registration

    NASA Astrophysics Data System (ADS)

    Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Gellrich, Niels C.; Jacob, Augustinus L.; Regazzoni, Pietro; Messmer, Peter

    2003-05-01

    2D/3D patient-to-computed tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 2D/3D registration is the fast that finding a registration includes sovling a minimization problem in six degrees-of-freedom in motion. This results in considerable time expenses since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations aroudn a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of its original value. The method was implemented and extensively tested on simulated x-ray images of a pelvis. We conclude that this hardware-indepenent optimization of 2D/3D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications.

  15. 2D nanostructures for water purification: graphene and beyond.

    PubMed

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future.

  16. 2D Materials for Optical Modulation: Challenges and Opportunities.

    PubMed

    Yu, Shaoliang; Wu, Xiaoqin; Wang, Yipei; Guo, Xin; Tong, Limin

    2017-02-21

    Owing to their atomic layer thickness, strong light-material interaction, high nonlinearity, broadband optical response, fast relaxation, controllable optoelectronic properties, and high compatibility with other photonic structures, 2D materials, including graphene, transition metal dichalcogenides and black phosphorus, have been attracting increasing attention for photonic applications. By tuning the carrier density via electrical or optical means that modifies their physical properties (e.g., Fermi level or nonlinear absorption), optical response of the 2D materials can be instantly changed, making them versatile nanostructures for optical modulation. Here, up-to-date 2D material-based optical modulation in three categories is reviewed: free-space, fiber-based, and on-chip configurations. By analysing cons and pros of different modulation approaches from material and mechanism aspects, the challenges faced by using these materials for device applications are presented. In addition, thermal effects (e.g., laser induced damage) in 2D materials, which are critical to practical applications, are also discussed. Finally, the outlook for future opportunities of these 2D materials for optical modulation is given.

  17. 2D DIGE saturation labeling for minute sample amounts.

    PubMed

    Arnold, Georg J; Fröhlich, Thomas

    2012-01-01

    The 2D DIGE technique, based on fluorophores covalently linked to amino acid side chain residues and the concept of an internal standard, has significantly improved reproducibility, sensitivity, and the dynamic range of protein quantification. In saturation DIGE, sulfhydryl groups of cysteines are labeled with cyanine dyes to completion, providing a so far unraveled sensitivity for protein detection and quantification in 2D gel-based proteomic experiments. Only a few micrograms of protein per 2D gel facilitate the analysis of about 2,000 analytes from complex mammalian cell or tissue samples. As a consequence, 2D saturation DIGE is the method of choice when only minute sample amounts are available for quantitative proteome analysis at the level of proteins rather than peptides. Since very low amounts of samples have to be handled in a reproducible manner, saturation DIGE-based proteomic experiments are technically demanding. Moreover, successful saturation DIGE approaches require a strict adherence to adequate reaction conditions at each step. This chapter is dedicated to colleagues already experienced in 2D PAGE protein separation and intends to support the establishment of this ultrasensitive technique in proteomic workgroups. We provide basic guidelines for the experimental design and discuss crucial aspects concerning labeling chemistry, sample preparation, and pitfalls caused by labeling artifacts. A detailed step-by-step protocol comprises all aspects from initial sample preparation to image analysis and statistical evaluation. Furthermore, we describe the generation of preparative saturation DIGE gels necessary for mass spectrometry-based spot identification.

  18. Mermin–Wagner fluctuations in 2D amorphous solids

    PubMed Central

    Illing, Bernd; Fritschi, Sebastian; Kaiser, Herbert; Klix, Christian L.; Maret, Georg; Keim, Peter

    2017-01-01

    In a recent commentary, J. M. Kosterlitz described how D. Thouless and he got motivated to investigate melting and suprafluidity in two dimensions [Kosterlitz JM (2016) J Phys Condens Matter 28:481001]. It was due to the lack of broken translational symmetry in two dimensions—doubting the existence of 2D crystals—and the first computer simulations foretelling 2D crystals (at least in tiny systems). The lack of broken symmetries proposed by D. Mermin and H. Wagner is caused by long wavelength density fluctuations. Those fluctuations do not only have structural impact, but additionally a dynamical one: They cause the Lindemann criterion to fail in 2D in the sense that the mean squared displacement of atoms is not limited. Comparing experimental data from 3D and 2D amorphous solids with 2D crystals, we disentangle Mermin–Wagner fluctuations from glassy structural relaxations. Furthermore, we demonstrate with computer simulations the logarithmic increase of displacements with system size: Periodicity is not a requirement for Mermin–Wagner fluctuations, which conserve the homogeneity of space on long scales. PMID:28137872

  19. Sparse radar imaging using 2D compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Radar imaging is an ill-posed linear inverse problem and compressed sensing (CS) has been proved to have tremendous potential in this field. This paper surveys the theory of radar imaging and a conclusion is drawn that the processing of ISAR imaging can be denoted mathematically as a problem of 2D sparse decomposition. Based on CS, we propose a novel measuring strategy for ISAR imaging radar and utilize random sub-sampling in both range and azimuth dimensions, which will reduce the amount of sampling data tremendously. In order to handle 2D reconstructing problem, the ordinary solution is converting the 2D problem into 1D by Kronecker product, which will increase the size of dictionary and computational cost sharply. In this paper, we introduce the 2D-SL0 algorithm into the reconstruction of imaging. It is proved that 2D-SL0 can achieve equivalent result as other 1D reconstructing methods, but the computational complexity and memory usage is reduced significantly. Moreover, we will state the results of simulating experiments and prove the effectiveness and feasibility of our method.

  20. Mean flow and anisotropic cascades in decaying 2D turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki

    2015-11-01

    Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.

  1. 2-D Clinostat for Simulated Microgravity Experiments with Arabidopsis Seedlings

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Li, Xugang; Krause, Lars; Görög, Mark; Schüler, Oliver; Hauslage, Jens; Hemmersbach, Ruth; Kircher, Stefan; Lasok, Hanna; Haser, Thomas; Rapp, Katja; Schmidt, Jürgen; Yu, Xin; Pasternak, Taras; Aubry-Hivet, Dorothée; Tietz, Olaf; Dovzhenko, Alexander; Palme, Klaus; Ditengou, Franck Anicet

    2016-04-01

    Ground-based simulators of microgravity such as fast rotating 2-D clinostats are valuable tools to study gravity related processes. We describe here a versatile g-value-adjustable 2-D clinostat that is suitable for plant analysis. To avoid seedling adaptation to 1 g after clinorotation, we designed chambers that allow rapid fixation. A detailed protocol for fixation, RNA isolation and the analysis of selected genes is described. Using this clinostat we show that mRNA levels of LONG HYPOCOTYL 5 (HY5), MIZU-KUSSEI 1 (MIZ1) and microRNA MIR163 are down-regulated in 5-day-old Arabidopsis thaliana roots after 3 min and 6 min of clinorotation using a maximal reduced g-force of 0.02 g, hence demonstrating that this 2-D clinostat enables the characterization of early transcriptomic events during root response to microgravity. We further show that this 2-D clinostat is able to compensate the action of gravitational force as both gravitropic-dependent statolith sedimentation and subsequent auxin redistribution (monitoring D R5 r e v :: G F P reporter) are abolished when plants are clinorotated. Our results demonstrate that 2-D clinostats equipped with interchangeable growth chambers and tunable rotation velocity are suitable for studying how plants perceive and respond to simulated microgravity.

  2. Local Gaussian operations can enhance continuous-variable entanglement distillation

    SciTech Connect

    Zhang Shengli; Loock, Peter van

    2011-12-15

    Entanglement distillation is a fundamental building block in long-distance quantum communication. Though known to be useless on their own for distilling Gaussian entangled states, local Gaussian operations may still help to improve non-Gaussian entanglement distillation schemes. Here we show that by applying local squeezing operations both the performance and the efficiency of existing distillation protocols can be enhanced. We find that such an enhancement through local Gaussian unitaries can be obtained even when the initially shared Gaussian entangled states are mixed, as, for instance, after their distribution through a lossy-fiber communication channel.

  3. Evolution of the Magnetic Field Line Diffusion Coefficient and Non-Gaussian Statistics

    NASA Astrophysics Data System (ADS)

    Snodin, A. P.; Ruffolo, D.; Matthaeus, W. H.

    2016-08-01

    The magnetic field line random walk (FLRW) plays an important role in the transport of energy and particles in turbulent plasmas. For magnetic fluctuations that are transverse or almost transverse to a large-scale mean magnetic field, theories describing the FLRW usually predict asymptotic diffusion of magnetic field lines perpendicular to the mean field. Such theories often depend on the assumption that one can relate the Lagrangian and Eulerian statistics of the magnetic field via Corrsin’s hypothesis, and additionally take the distribution of magnetic field line displacements to be Gaussian. Here we take an ordinary differential equation (ODE) model with these underlying assumptions and test how well it describes the evolution of the magnetic field line diffusion coefficient in 2D+slab magnetic turbulence, by comparisons to computer simulations that do not involve such assumptions. In addition, we directly test the accuracy of the Corrsin approximation to the Lagrangian correlation. Over much of the studied parameter space we find that the ODE model is in fairly good agreement with computer simulations, in terms of both the evolution and asymptotic values of the diffusion coefficient. When there is poor agreement, we show that this can be largely attributed to the failure of Corrsin’s hypothesis rather than the assumption of Gaussian statistics of field line displacements. The degree of non-Gaussianity, which we measure in terms of the kurtosis, appears to be an indicator of how well Corrsin’s approximation works.

  4. Secretory pathways generating immunosuppressive NKG2D ligands

    PubMed Central

    Baragaño Raneros, Aroa; Suarez-Álvarez, Beatriz; López-Larrea, Carlos

    2014-01-01

    Natural Killer Group 2 member D (NKG2D) activating receptor, present on the surface of various immune cells, plays an important role in activating the anticancer immune response by their interaction with stress-inducible NKG2D ligands (NKG2DL) on transformed cells. However, cancer cells have developed numerous mechanisms to evade the immune system via the downregulation of NKG2DL from the cell surface, including the release of NKG2DL from the cell surface in a soluble form. Here, we review the mechanisms involved in the production of soluble NKG2DL (sNKG2DL) and the potential therapeutic strategies aiming to block the release of these immunosuppressive ligands. Therapeutically enabling the NKG2D-NKG2DL interaction would promote immunorecognition of malignant cells, thus abrogating disease progression. PMID:25050215

  5. Splashing transients of 2D plasmons launched by swift electrons

    PubMed Central

    Lin, Xiao; Kaminer, Ido; Shi, Xihang; Gao, Fei; Yang, Zhaoju; Gao, Zhen; Buljan, Hrvoje; Joannopoulos, John D.; Soljačić, Marin; Chen, Hongsheng; Zhang, Baile

    2017-01-01

    Launching of plasmons by swift electrons has long been used in electron energy–loss spectroscopy (EELS) to investigate the plasmonic properties of ultrathin, or two-dimensional (2D), electron systems. However, the question of how a swift electron generates plasmons in space and time has never been answered. We address this issue by calculating and demonstrating the spatial-temporal dynamics of 2D plasmon generation in graphene. We predict a jet-like rise of excessive charge concentration that delays the generation of 2D plasmons in EELS, exhibiting an analog to the hydrodynamic Rayleigh jet in a splashing phenomenon before the launching of ripples. The photon radiation, analogous to the splashing sound, accompanies the plasmon emission and can be understood as being shaken off by the Rayleigh jet–like charge concentration. Considering this newly revealed process, we argue that previous estimates on the yields of graphene plasmons in EELS need to be reevaluated. PMID:28138546

  6. Available information in 2D motional Stark effect imaging.

    PubMed

    Creese, Mathew; Howard, John

    2010-10-01

    Recent advances in imaging techniques have allowed the extension of the standard polarimetric 1D motional Stark effect (MSE) diagnostic to 2D imaging of the internal magnetic field of fusion devices [J. Howard, Plasma Phys. Controlled Fusion 50, 125003 (2008)]. This development is met with the challenge of identifying and extracting the new information, which can then be used to increase the accuracy of plasma equilibrium and current density profile determinations. This paper develops a 2D analysis of the projected MSE polarization orientation and Doppler phase shift. It is found that, for a standard viewing position, the 2D MSE imaging system captures sufficient information to allow imaging of the internal vertical magnetic field component B(Z)(r,z) in a tokamak.

  7. Perception-based reversible watermarking for 2D vector maps

    NASA Astrophysics Data System (ADS)

    Men, Chaoguang; Cao, Liujuan; Li, Xiang

    2010-07-01

    This paper presents an effective and reversible watermarking approach for digital copyright protection of 2D-vector maps. To ensure that the embedded watermark is insensitive for human perception, we only select the noise non-sensitive regions for watermark embedding by estimating vertex density within each polyline. To ensure the exact recovery of original 2D-vector map after watermark extraction, we introduce a new reversible watermarking scheme based on reversible high-frequency wavelet coefficients modification. Within the former-selected non-sensitive regions, our watermarking operates on the lower-order vertex coordinate decimals with integer wavelet transform. Such operation further reduces the visual distortion caused by watermark embedding. We have validated the effectiveness of our scheme on our real-world city river/building 2D-vector maps. We give extensive experimental comparisons with state-of-the-art methods, including embedding capability, invisibility, and robustness over watermark attacking.

  8. Microscale 2D separation systems for proteomic analysis

    PubMed Central

    Xu, Xin; Liu, Ke; Fan, Z. Hugh

    2012-01-01

    Microscale 2D separation systems have been implemented in capillaries and microfabricated channels. They offer advantages of faster analysis, higher separation efficiency and less sample consumption than the conventional methods, such as liquid chromatography (LC) in a column and slab gel electrophoresis. In this article, we review their recent advancement, focusing on three types of platforms, including 2D capillary electrophoresis (CE), CE coupling with capillary LC, and microfluidic devices. A variety of CE and LC modes have been employed to construct 2D separation systems via sophistically designed interfaces. Coupling of different separation modes has also been realized in a number of microfluidic devices. These separation systems have been applied for the proteomic analysis of various biological samples, ranging from a single cell to tumor tissues. PMID:22462786

  9. 2D materials for photon conversion and nanophotonics

    NASA Astrophysics Data System (ADS)

    Tahersima, Mohammad H.; Sorger, Volker J.

    2015-09-01

    The field of two-dimensional (2D) materials has the potential to enable unique applications across a wide range of the electromagnetic spectrum. While 2D-layered materials hold promise for next-generation photon-conversion intrinsic limitations and challenges exist that shall be overcome. Here we discuss the intrinsic limitations as well as application opportunities of this new class of materials, and is sponsored by the NSF program Designing Materials to Revolutionize and Engineer our Future (DMREF) program, which links to the President's Materials Genome Initiative. We present general material-related details for photon conversion, and show that taking advantage of the mechanical flexibility of 2D materials by rolling MoS2/graphene/hexagonal boron nitride stack to a spiral solar cell allows for solar absorption up to 90%.

  10. Rapid-scan coherent 2D fluorescence spectroscopy.

    PubMed

    Draeger, Simon; Roeding, Sebastian; Brixner, Tobias

    2017-02-20

    We developed pulse-shaper-assisted coherent two-dimensional (2D) electronic spectroscopy in liquids using fluorescence detection. A customized pulse shaper facilitates shot-to-shot modulation at 1 kHz and is employed for rapid scanning over all time delays. A full 2D spectrum with 15 × 15 pixels is obtained in approximately 6 s of measurement time (plus further averaging if needed). Coherent information is extracted from the incoherent fluorescence signal via 27-step phase cycling. We exemplify the technique on cresyl violet in ethanol and recover literature-known oscillations as a function of population time. Signal-to-noise behavior is analyzed as a function of the amount of averaging. Rapid scanning provides a 2D spectrum with a root-mean-square error of < 0.05 after 1 min of measurement time.

  11. 2D-3D transition of gold cluster anions resolved

    NASA Astrophysics Data System (ADS)

    Johansson, Mikael P.; Lechtken, Anne; Schooss, Detlef; Kappes, Manfred M.; Furche, Filipp

    2008-05-01

    Small gold cluster anions Aun- are known for their unusual two-dimensional (2D) structures, giving rise to properties very different from those of bulk gold. Previous experiments and calculations disagree about the number of gold atoms nc where the transition to 3D structures occurs. We combine trapped ion electron diffraction and state of the art electronic structure calculations to resolve this puzzle and establish nc=12 . It is shown that theoretical studies using traditional generalized gradient functionals are heavily biased towards 2D structures. For a correct prediction of the 2D-3D crossover point it is crucial to use density functionals yielding accurate jellium surface energies, such as the Tao-Perdew-Staroverov-Scuseria (TPSS) functional or the Perdew-Burke-Ernzerhof functional modified for solids (PBEsol). Further, spin-orbit effects have to be included, and large, flexible basis sets employed. This combined theoretical-experimental approach is promising for larger gold and other metal clusters.

  12. IUPAP Award: Ion transport in 2D materials

    NASA Astrophysics Data System (ADS)

    Bao, Wenzhong

    Intercalation in 2D materials drastically influences both physical and chemical properties, which leads to a new degree of freedom for fundamental studies and expands the potential applications of 2D materials. In this talk, I will discuss our work in the past two years related to ion intercalation of 2D materials, including insertion of Li and Na ions in graphene and MoS2. We focused on both fundamental mechanism and potential application, e.g. we measured in-situ optical transmittance spectra and electrical transport properties of few-layer graphene (FLG) nanostructures upon electrochemical lithiation/delithiation. By observing a simultaneous increase of both optical transmittance and DC conductivity, strikingly different from other materials, we proposed its application as a next generation transparent electrode.

  13. 2d-retrieval For Mipas-envisat

    NASA Astrophysics Data System (ADS)

    Steck, T.; von Clarmann, T.; Grabowski, U.; Höpfner, M.

    Limb sounding of the Earth's atmosphere provides vertically high resolved profiles of geophysical parameters. The long ray path through the atmosphere makes limb sounders sensitive to even little abundant species. On the other hand, horizontal in- homogeneities, if not taken into account properly, can cause systematic errors within the retrieval process. Especially for limb emission measurements in the mid IR, at- mopheric temperature gradients result in considerable vmr retrieval errors if they are neglected. We present a dedicated method of taking full 2D fields of state parameters (indepen- dent of tangent points) into account in the forward model and in the retrieval. The basic idea is that the 2D state vector is updated sequentially for each limb scan. This method is applied to the 2D retrieval of temperature and vmr for simulated radiances as expected from MIPAS-ENVISAT.

  14. Genetics, genomics, and evolutionary biology of NKG2D ligands.

    PubMed

    Carapito, Raphael; Bahram, Seiamak

    2015-09-01

    Human and mouse NKG2D ligands (NKG2DLs) are absent or only poorly expressed by most normal cells but are upregulated by cell stress, hence, alerting the immune system in case of malignancy or infection. Although these ligands are numerous and highly variable (at genetic, genomic, structural, and biochemical levels), they all belong to the major histocompatibility complex class I gene superfamily and bind to a single, invariant, receptor: NKG2D. NKG2D (CD314) is an activating receptor expressed on NK cells and subsets of T cells that have a key role in the recognition and lysis of infected and tumor cells. Here, we review the molecular diversity of NKG2DLs, discuss the increasing appreciation of their roles in a variety of medical conditions, and propose several explanations for the evolutionary force(s) that seem to drive the multiplicity and diversity of NKG2DLs while maintaining their interaction with a single invariant receptor.

  15. Graphene based 2D-materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  16. Chemical vapour deposition: Transition metal carbides go 2D

    DOE PAGES

    Gogotsi, Yury

    2015-08-17

    Here, the research community has been steadily expanding the family of few-atom-thick crystals beyond graphene, discovering new materials or producing known materials in a 2D state and demonstrating their unique properties1, 2. Recently, nanometre-thin 2D transition metal carbides have also joined this family3. Writing in Nature Materials, Chuan Xu and colleagues now report a significant advance in the field, showing the synthesis of large-area, high-quality, nanometre-thin crystals of molybdenum carbide that demonstrate low-temperature 2D superconductivity4. Moreover, they also show that other ultrathin carbide crystals, such as tungsten and tantalum carbides, can be grown by chemical vapour deposition with a highmore » crystallinity and very low defect concentration.« less

  17. Optoelectronics based on 2D TMDs and heterostructures

    NASA Astrophysics Data System (ADS)

    Huo, Nengjie; Yang, Yujue; Li, Jingbo

    2017-03-01

    2D materials including graphene and TMDs have proven interesting physical properties and promising optoelectronic applications. We reviewed the growth, characterization and optoelectronics based on 2D TMDs and their heterostructures, and demonstrated their unique and high quality of performances. For example, we observed the large mobility, fast response and high photo-responsivity in MoS2, WS2 and WSe2 phototransistors, as well as the novel performances in vdW heterostructures such as the strong interlayer coupling, am-bipolar and rectifying behaviour, and the obvious photovoltaic effect. It is being possible that 2D family materials could play an increasingly important role in the future nano- and opto-electronics, more even than traditional semiconductors such as silicon.

  18. Applications of Doppler Tomography in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Richards, M.; Budaj, J.; Agafonov, M.; Sharova, O.

    2010-12-01

    Over the past few years, the applications of Doppler tomography have been extended beyond the usual calculation of 2D velocity images of circumstellar gas flows. This technique has now been used with the new Shellspec spectrum synthesis code to demonstrate the effective modeling of the accretion disk and gas stream in the TT Hya Algol binary. The 2D tomography procedure projects all sources of emission onto a single central (Vx, Vy) velocity plane even though the gas is expected to flow beyond that plane. So, new 3D velocity images were derived with the Radioastronomical Approach method by assuming a grid of Vz values transverse to the central 2D plane. The 3D approach has been applied to the U CrB and RS Vul Algol-type binaries to reveal substantial flow structures beyond the central velocity plane.

  19. Chemical vapour deposition: Transition metal carbides go 2D

    SciTech Connect

    Gogotsi, Yury

    2015-08-17

    Here, the research community has been steadily expanding the family of few-atom-thick crystals beyond graphene, discovering new materials or producing known materials in a 2D state and demonstrating their unique properties1, 2. Recently, nanometre-thin 2D transition metal carbides have also joined this family3. Writing in Nature Materials, Chuan Xu and colleagues now report a significant advance in the field, showing the synthesis of large-area, high-quality, nanometre-thin crystals of molybdenum carbide that demonstrate low-temperature 2D superconductivity4. Moreover, they also show that other ultrathin carbide crystals, such as tungsten and tantalum carbides, can be grown by chemical vapour deposition with a high crystallinity and very low defect concentration.

  20. A new stationary gridline artifact suppression method based on the 2D discrete wavelet transform

    PubMed Central

    Tang, Hui; Tong, Dan; Bao, Xudong; Dillenseger, Jean-Louis

    2015-01-01

    Purpose In digital X-ray radiography, an anti-scatter grid is inserted between the patient and the image receptor to reduce scattered radiation. If the anti-scatter grid is used in a stationary way, gridline artifacts will appear in the final image. In most of the gridline removal image processing methods, the useful information with spatial frequencies close to that of the gridline is usually lost or degraded. In this study, a new stationary gridline suppression method is designed to preserve more of the useful information. Methods The method is as follows. The input image is first recursively decomposed into several smaller sub-images using a multi-scale 2D discrete wavelet transform (DWT). The decomposition process stops when the gridline signal is found to be greater than a threshold in one or several of these sub-images using a gridline detection module. An automatic Gaussian band-stop filter is then applied to the detected sub-images to remove the gridline signal. Finally, the restored image is achieved using the corresponding 2D inverse discrete wavelet transform (IDWT). Results The processed images show that the proposed method can remove the gridline signal efficiently while maintaining the image details. The spectra of a 1-dimensional Fourier transform of the processed images demonstrate that, compared with some existing gridline removal methods, the proposed method has better information preservation after the removal of the gridline artifacts. Additionally, the performance speed is relatively high. Conclusions The experimental results demonstrate the efficiency of the proposed method. Compared with some existing gridline removal methods, the proposed method can preserve more information within an acceptable execution time. PMID:25832061

  1. A new stationary gridline artifact suppression method based on the 2D discrete wavelet transform

    SciTech Connect

    Tang, Hui; Tong, Dan; Dong Bao, Xu; Dillenseger, Jean-Louis

    2015-04-15

    Purpose: In digital x-ray radiography, an antiscatter grid is inserted between the patient and the image receptor to reduce scattered radiation. If the antiscatter grid is used in a stationary way, gridline artifacts will appear in the final image. In most of the gridline removal image processing methods, the useful information with spatial frequencies close to that of the gridline is usually lost or degraded. In this study, a new stationary gridline suppression method is designed to preserve more of the useful information. Methods: The method is as follows. The input image is first recursively decomposed into several smaller subimages using a multiscale 2D discrete wavelet transform. The decomposition process stops when the gridline signal is found to be greater than a threshold in one or several of these subimages using a gridline detection module. An automatic Gaussian band-stop filter is then applied to the detected subimages to remove the gridline signal. Finally, the restored image is achieved using the corresponding 2D inverse discrete wavelet transform. Results: The processed images show that the proposed method can remove the gridline signal efficiently while maintaining the image details. The spectra of a 1D Fourier transform of the processed images demonstrate that, compared with some existing gridline removal methods, the proposed method has better information preservation after the removal of the gridline artifacts. Additionally, the performance speed is relatively high. Conclusions: The experimental results demonstrate the efficiency of the proposed method. Compared with some existing gridline removal methods, the proposed method can preserve more information within an acceptable execution time.

  2. Wideband 2-D Array Design Optimization With Fabrication Constraints for 3-D US Imaging.

    PubMed

    Roux, Emmanuel; Ramalli, Alessandro; Liebgott, Herve; Cachard, Christian; Robini, Marc C; Tortoli, Piero

    2017-01-01

    Ultrasound (US) 2-D arrays are of increasing interest due to their electronic steering capability to investigate 3-D regions without requiring any probe movement. These arrays are typically populated by thousands of elements that, ideally, should be individually driven by the companion scanner. Since this is not convenient, the so-called microbeamforming methods, yielding a prebeamforming stage performed in the probe handle by suitable custom integrated circuits, have so far been implemented in a few commercial high-end scanners. A possible approach to implement relatively cheap and efficient 3-D US imaging systems is using 2-D sparse arrays in which a limited number of elements can be coupled to an equal number of independent transmit/receive channels. In order to obtain US beams with adequate characteristics all over the investigated volume, the layout of such arrays must be carefully designed. This paper provides guidelines to design, by using simulated annealing optimization, 2-D sparse arrays capable of fitting specific applications or fabrication/implementation constraints. In particular, an original energy function based on multidepth 3-D analysis of the beam pattern is also exploited. A tutorial example is given, addressed to find the N e elements that should be activated in a 2-D fully populated array to yield efficient acoustic radiating performance over the entire volume. The proposed method is applied to a 32 ×32 array centered at 3 MHz to select the 128, 192, and 256 elements that provide the best acoustic performance. It is shown that the 256-element optimized array yields sidelobe levels even lower (by 5.7 dB) than that of the reference 716-element circular and (by 10.3 dB) than that of the reference 1024-element array.

  3. Non-Gaussian forecasts of weak lensing with and without priors

    NASA Astrophysics Data System (ADS)

    Sellentin, Elena; Schäfer, Björn Malte

    2016-02-01

    Including priors into a data analysis can mask the information content of a given data set alone. However, since the information content of a data set is usually estimated with the Fisher matrix, priors are added to enforce an approximately Gaussian likelihood. Here, we estimate the information content of a Euclid-like weak lensing data set with and without priors. Without priors, the Fisher matrix for 2d-weak lensing includes unphysical values of Ωm and h. The Cramer-Rao inequality then does not need to apply. We find that the new DALI expansion and Monte Carlo Markov Chains agree well and predict the presence of a dark energy with high significance, whereas a Fisher forecast also allows decelerated expansion. We find that a 2d-weak lensing analysis provides a sharp lower limit on the Hubble constant of h > 0.4, even if the equation of state of dark energy is jointly estimated. This is not predicted by the Fisher matrix and usually masked in other works by a sharp prior on h. Additionally, we find that DALI estimates Figures of Merit in the presence of non-Gaussianities better than the Fisher matrix and demonstrate how DALI allows switching to a speedy Hamiltonian Monte Carlo sampling of a highly curved likelihood with acceptance rates of ≈0.5. This shows how quick forecasts can be upgraded to accurate forecasts whenever needed. Results were gained with the public code from DALI.

  4. Composite bosons in the two-dimensional BCS-BEC crossover from Gaussian fluctuations

    NASA Astrophysics Data System (ADS)

    Salasnich, L.; Toigo, F.

    2015-01-01

    We study Gaussian fluctuations of the zero-temperature attractive Fermi gas in the two-dimensional (2D) BCS-BEC crossover showing that they are crucial to get a reliable equation of state in the Bose-Einstein condensation (BEC) regime of composite bosons, bound states of fermionic pairs. A low-momentum expansion up to the fourth order of the quadratic action of the fluctuating pairing field gives an ultraviolent divergent contribution of the Gaussian fluctuations to the grand potential. Performing dimensional regularization we evaluate the effective coupling constant in the beyond-mean-field grand potential. Remarkably, in the BEC regime our grand potential gives exactly the Popov's equation of state of 2D interacting bosons, and allows us to identify the scattering length aB of the interaction between composite bosons as aB=aF/(21 /2e1 /4) =0.551 ...aF , with aF is the scattering length of fermions. Remarkably, the value from our analytical relationship between the two scattering lengths is in full agreement with that obtained by recent Monte Carlo calculations.

  5. Accurate and efficient computation of nonlocal potentials based on Gaussian-sum approximation

    NASA Astrophysics Data System (ADS)

    Exl, Lukas; Mauser, Norbert J.; Zhang, Yong

    2016-12-01

    We introduce an accurate and efficient method for the numerical evaluation of nonlocal potentials, including the 3D/2D Coulomb, 2D Poisson and 3D dipole-dipole potentials. Our method is based on a Gaussian-sum approximation of the singular convolution kernel combined with a Taylor expansion of the density. Starting from the convolution formulation of the nonlocal potential, for smooth and fast decaying densities, we make a full use of the Fourier pseudospectral (plane wave) approximation of the density and a separable Gaussian-sum approximation of the kernel in an interval where the singularity (the origin) is excluded. The potential is separated into a regular integral and a near-field singular correction integral. The first is computed with the Fourier pseudospectral method, while the latter is well resolved utilizing a low-order Taylor expansion of the density. Both parts are accelerated by fast Fourier transforms (FFT). The method is accurate (14-16 digits), efficient (O (Nlog ⁡ N) complexity), low in storage, easily adaptable to other different kernels, applicable for anisotropic densities and highly parallelizable.

  6. Real-time 2-D temperature imaging using ultrasound.

    PubMed

    Liu, Dalong; Ebbini, Emad S

    2010-01-01

    We have previously introduced methods for noninvasive estimation of temperature change using diagnostic ultrasound. The basic principle was validated both in vitro and in vivo by several groups worldwide. Some limitations remain, however, that have prevented these methods from being adopted in monitoring and guidance of minimally invasive thermal therapies, e.g., RF ablation and high-intensity-focused ultrasound (HIFU). In this letter, we present first results from a real-time system for 2-D imaging of temperature change using pulse-echo ultrasound. The front end of the system is a commercially available scanner equipped with a research interface, which allows the control of imaging sequence and access to the RF data in real time. A high-frame-rate 2-D RF acquisition mode, M2D, is used to capture the transients of tissue motion/deformations in response to pulsed HIFU. The M2D RF data is streamlined to the back end of the system, where a 2-D temperature imaging algorithm based on speckle tracking is implemented on a graphics processing unit. The real-time images of temperature change are computed on the same spatial and temporal grid of the M2D RF data, i.e., no decimation. Verification of the algorithm was performed by monitoring localized HIFU-induced heating of a tissue-mimicking elastography phantom. These results clearly demonstrate the repeatability and sensitivity of the algorithm. Furthermore, we present in vitro results demonstrating the possible use of this algorithm for imaging changes in tissue parameters due to HIFU-induced lesions. These results clearly demonstrate the value of the real-time data streaming and processing in monitoring, and guidance of minimally invasive thermotherapy.

  7. Towards functional assembly of 3D and 2D nanomaterials

    NASA Astrophysics Data System (ADS)

    Jacobs, Christopher B.; Wang, Kai; Ievlev, Anton V.; Muckley, Eric S.; Ivanov, Ilia N.

    2016-09-01

    Functional assemblies of materials can be realized by tuning the work function and band gap of nanomaterials by rational material selection and design. Here we demonstrate the structural assembly of 2D and 3D nanomaterials and show that layering a 2D material monolayer on a 3D metal oxide leads to substantial alteration of both the surface potential and optical properties of the 3D material. A 40 nm thick film of polycrystalline NiO was produced by room temperature rf-sputtering, resulting in a 3D nanoparticle assembly. Chemical vapor deposition (CVD) grown 10-30 μm WS2 flakes (2D material) were placed on the NiO surface using a PDMS stamp transfer technique. The 2D/3D WS2/NiO assembly was characterized using confocal micro Raman spectroscopy to evaluate the vibrational properties and using Kelvin probe force microscopy (KPFM) to evaluate the surface potential. Raman maps of the 2D/3D assembly show spatial non-uniformity of the A1g mode ( 418 cm-1) and the disorder-enhanced longitudinal acoustic mode, 2LA(M) ( 350 cm-1), suggesting that the WS2 exists in a strained condition on when transferred onto 3D polycrystalline NiO. KPFM measurements show that single layer WS2 on SiO2 has a surface potential 75 mV lower than that of SiO2, whereas the surface potential of WS2 on NiO is 15 mV higher than NiO, indicating that WS2 could act as electron donor or acceptor depending on the 3D material it is interfaced with. Thus 2D and 3D materials can be organized into functional assemblies with electron flow controlled by the WS2 either as the electron donor or acceptor.

  8. Fitness and Americans.

    ERIC Educational Resources Information Center

    Nordholm, Catherine R.

    This document makes a number of observations about physical fitness in America. Among them are: (1) the symptoms of aging (fat accumulation, lowered basal metabolic rate, loss of muscular strength, reduction in motor fitness, reduction in work capacity, etc.) are not the result of disease but disuse; (2) society conditions the individual to…

  9. Physical Fitness and Counseling.

    ERIC Educational Resources Information Center

    Helmkamp, Jill M.

    Human beings are a delicate balance of mind, body, and spirit, so an imbalance in one domain affects all others. The purpose of this paper is to examine the effects that physical fitness may have on such human characteristics as personality and behavior. A review of the literature reveals that physical fitness is related to, and can affect,…

  10. Fitness in Special Populations.

    ERIC Educational Resources Information Center

    Shephard, Roy J.

    This book examines fitness research among special populations, including research on fitness assessment, programming, and performance for persons with various forms of physical disabilities. The book covers such topics as diseases that complicate life in a wheelchair, disability classifications, physiological responses to training, positive…

  11. Fitness Day. Lesson Plan.

    ERIC Educational Resources Information Center

    McNamara, Jeanne

    This lesson plan introduces students to the concept of supply and demand by appealing to bodily/kinesthetic intelligences. Students participate in a fitness class and then analyze the economic motives behind making an individual feel better after a fitness activity; i.e., analyzing how much an individual would pay for a drink and snack after a…

  12. Outfitting Campus Fitness Centers.

    ERIC Educational Resources Information Center

    Fickes, Michael

    1999-01-01

    Explains how universities and colleges, both private and public, are including fitness centers as ways of increasing their student enrollment levels. Comments are provided on school experiences in fitness-center design, equipment purchasing, and maintenance and operating-costs issues. (GR)

  13. Fun & Fitness with Balloons

    ERIC Educational Resources Information Center

    Farrell, Anne; Faigenbaum, Avery; Radler, Tracy

    2010-01-01

    The urgency to improve fitness levels and decrease the rate of childhood obesity has been at the forefront of physical education philosophy and praxis. Few would dispute that school-age youth need to participate regularly in physical activities that enhance and maintain both skill- and health-related physical fitness. Regular physical activity…

  14. Fit for Life.

    ERIC Educational Resources Information Center

    Klahr, Gary Peter

    1992-01-01

    Although the 1980's fitness craze is wearing off and adults are again becoming "couch potatoes," this trend does not justify expansion of high school compulsory physical education requirements. To encourage commitment to lifetime physical fitness, the Phoenix (Arizona) Union High School District offers students private showers, relaxed…

  15. Laboratory Experiments On Continually Forced 2d Turbulence

    NASA Astrophysics Data System (ADS)

    Wells, M. G.; Clercx, H. J. H.; Van Heijst, G. J. F.

    There has been much recent interest in the advection of tracers by 2D turbulence in geophysical flows. While there is a large body of literature on decaying 2D turbulence or forced 2D turbulence in unbounded domains, there have been very few studies of forced turbulence in bounded domains. In this study we present new experimental results from a continuously forced quasi 2D turbulent field. The experiments are performed in a square Perspex tank filled with water. The flow is made quasi 2D by a steady background rotation. The rotation rate of the tank has a small (<8 %) sinusoidal perturbation which leads to the periodic formation of eddies in the corners of the tank. When the oscillation period of the perturbation is greater than an eddy roll-up time-scale, dipole structures are observed to form. The dipoles can migrate away from the walls, and the interior of the tank is continually filled with vortexs. From experimental visualizations the length scale of the vortexs appears to be largely controlled by the initial formation mechanism and large scale structures are not observed to form at large times. Thus the experiments provide a simple way of cre- ating a continuously forced 2D turbulent field. The resulting structures are in contrast with most previous laboratory experiments on 2D turbulence which have investigated decaying turbulence and have observed the formations of large scale structure. In these experiments, decaying turbulence had been produced by a variety of methods such as the decaying turbulence in the wake of a comb of rods (Massen et al 1999), organiza- tion of vortices in thin conducting liquids (Cardoso et al 1994) or in rotating systems where there are sudden changes in angular rotation rate (Konijnenberg et al 1998). Results of dye visualizations, particle tracking experiments and a direct numerical simulation will be presented and discussed in terms of their oceanographic application. Bibliography Cardoso,O. Marteau, D. &Tabeling, P

  16. 2dF grows up: Echidna for the AAT

    NASA Astrophysics Data System (ADS)

    McGrath, Andrew; Barden, Sam; Miziarski, Stan; Rambold, William; Smith, Greg

    2008-07-01

    We present the concept design of a new fibre positioner and spectrograph system for the Anglo-Australian Telescope, as a proposed enhancement to the Anglo-Australian Observatory's well-known 2dF facility. A four-fold multiplex enhancement is accomplished by replacing the 400-fibre 2dF fibre positioning robot with a 1600-fibre Echidna unit, feeding three clones of the AAOmega optical spectrograph. Such a facility has the capability of a redshift 1 survey of a large fraction of the southern sky, collecting five to ten thousand spectra per night for a million-galaxy survey.

  17. Noninvasive deep Raman detection with 2D correlation analysis

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug

    2014-07-01

    The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.

  18. Evaluation of 2D ceramic matrix composites in aeroconvective environments

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R.; Love, Wendell L.; Balter-Peterson, Aliza

    1992-01-01

    An evaluation is conducted of a novel ceramic-matrix composite (CMC) material system for use in the aeroconvective-heating environments encountered by the nose caps and wing leading edges of such aerospace vehicles as the Space Shuttle, during orbit-insertion and reentry from LEO. These CMCs are composed of an SiC matrix that is reinforced with Nicalon, Nextel, or carbon refractory fibers in a 2D architecture. The test program conducted for the 2D CMCs gave attention to their subsurface oxidation.

  19. Radiative heat transfer in 2D Dirac materials.

    PubMed

    Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A R

    2015-06-03

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  20. Quantum process tomography by 2D fluorescence spectroscopy

    SciTech Connect

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  1. Radiative heat transfer in 2D Dirac materials

    DOE PAGES

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  2. Experimental validation of equations for 2D DIC uncertainty quantification.

    SciTech Connect

    Reu, Phillip L.; Miller, Timothy J.

    2010-03-01

    Uncertainty quantification (UQ) equations have been derived for predicting matching uncertainty in two-dimensional image correlation a priori. These equations include terms that represent the image noise and image contrast. Researchers at the University of South Carolina have extended previous 1D work to calculate matching errors in 2D. These 2D equations have been coded into a Sandia National Laboratories UQ software package to predict the uncertainty for DIC images. This paper presents those equations and the resulting error surfaces for trial speckle images. Comparison of the UQ results with experimentally subpixel-shifted images is also discussed.

  3. Scale Invariance in 2D BCS-BEC Crossover

    NASA Astrophysics Data System (ADS)

    Sensarma, Rajdeep; Taylor, Edward; Randeria, Mohit

    2013-03-01

    In 2D BCS-BEC crossover, the frequency of the breathing mode in a harmonic trap, as well as the lower edge of the radio frequency spectroscopy response, show remarkable scale-invariance throughout the crossover regime, i.e. they are independent of the coupling constant. Using functional integral methods, we study the behaviour of these quantities in the 2D BCS-BEC crossover and comment on the possible reasons for this scale independence. RS was supported by DAE, Govt. of India. MR was supported by NSF Grant No. DMR-1006532. ET was supported by NSERC and the Canadian Institute for Advanced Research.

  4. Closed-shell and open-shell 2D nanographenes.

    PubMed

    Sun, Zhe; Wu, Jishan

    2014-01-01

    This chapter describes a series of two-dimensional (2D) expanded arene networks, also known as nanographenes, with either closed-shell or open-shell electronic structure in the ground state. These systems are further categorized into three classes on a basis of different edge structures: those with zigzag edges only, those with armchair edges only, and those possessing both. Distinctive physical properties of these 2D aromatic systems are closely related to their structural characteristics and provide great potential for them as materials for different applications.

  5. 2D Log-Gabor Wavelet Based Action Recognition

    NASA Astrophysics Data System (ADS)

    Li, Ning; Xu, De

    The frequency response of log-Gabor function matches well the frequency response of primate visual neurons. In this letter, motion-salient regions are extracted based on the 2D log-Gabor wavelet transform of the spatio-temporal form of actions. A supervised classification technique is then used to classify the actions. The proposed method is robust to the irregular segmentation of actors. Moreover, the 2D log-Gabor wavelet permits more compact representation of actions than the recent neurobiological models using Gabor wavelet.

  6. A novel improved method for analysis of 2D diffusion relaxation data—2D PARAFAC-Laplace decomposition

    NASA Astrophysics Data System (ADS)

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  7. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction.

    PubMed

    Rowley-Neale, Samuel J; Fearn, Jamie M; Brownson, Dale A C; Smith, Graham C; Ji, Xiaobo; Banks, Craig E

    2016-08-21

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm(-2) modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.

  8. Novel Methods for Surface EMG Analysis and Exploration Based on Multi-Modal Gaussian Mixture Models

    PubMed Central

    Vögele, Anna Magdalena; Zsoldos, Rebeka R.; Krüger, Björn; Licka, Theresia

    2016-01-01

    This paper introduces a new method for data analysis of animal muscle activation during locomotion. It is based on fitting Gaussian mixture models (GMMs) to surface EMG data (sEMG). This approach enables researchers/users to isolate parts of the overall muscle activation within locomotion EMG data. Furthermore, it provides new opportunities for analysis and exploration of sEMG data by using the resulting Gaussian modes as atomic building blocks for a hierarchical clustering. In our experiments, composite peak models representing the general activation pattern per sensor location (one sensor on the long back muscle, three sensors on the gluteus muscle on each body side) were identified per individual for all 14 horses during walk and trot in the present study. Hereby we show the applicability of the method to identify composite peak models, which describe activation of different muscles throughout cycles of locomotion. PMID:27362752

  9. Bayesian source separation with mixture of Gaussians prior for sources and Gaussian prior for mixture coefficients

    NASA Astrophysics Data System (ADS)

    Snoussi, Hichem; Mohammad-Djafari, Ali

    2001-05-01

    In this contribution, we present new algorithms to source separation for the case of noisy instantaneous linear mixture, within the Bayesian statistical framework. The source distribution prior is modeled by a mixture of Gaussians [1] and the mixing matrix elements distributions by a Gaussian [2]. We model the mixture of Gaussians hierarchically by mean of hidden variables representing the labels of the mixture. Then, we consider the joint a posteriori distribution of sources, mixing matrix elements, labels of the mixture and other parameters of the mixture with appropriate prior probability laws to eliminate degeneracy of the likelihood function of variance parameters and we propose two iterative algorithms to estimate jointly sources, mixing matrix and hyperparameters: Joint MAP (Maximum a posteriori) algorithm and penalized EM algorithm. The illustrative example is taken in [3] to compare with other algorithms proposed in literature. .

  10. Gaussian capacity of the quantum bosonic memory channel with additive correlated Gaussian noise

    SciTech Connect

    Schaefer, Joachim; Karpov, Evgueni; Cerf, Nicolas J.

    2011-09-15

    We present an algorithm for calculation of the Gaussian classical capacity of a quantum bosonic memory channel with additive Gaussian noise. The algorithm, restricted to Gaussian input states, is applicable to all channels with noise correlations obeying certain conditions and works in the full input energy domain, beyond previous treatments of this problem. As an illustration, we study the optimal input states and capacity of a quantum memory channel with Gauss-Markov noise [J. Schaefer, Phys. Rev. A 80, 062313 (2009)]. We evaluate the enhancement of the transmission rate when using these optimal entangled input states by comparison with a product coherent-state encoding and find out that such a simple coherent-state encoding achieves not less than 90% of the capacity.

  11. Application of Gaussian Moment Closures to Three-Dimensional Micro-Scale Flows

    NASA Astrophysics Data System (ADS)

    Lam, Christopher

    A parallel, implicit, adaptive mesh refinement (AMR), finite-volume scheme is described for the solution of the standard and regularized Gaussian moment closures on three-dimensional, multi-block, body-fitted, hexahedral meshes. The standard Gaussian closure has been shown to accurately predict non-equilibrium phenomena at moderate Knudsen numbers through an anisotropic treatment of pressure. The regularized closure builds on these advantages and includes the effects of non-equilibrium heat transfer by means of a first-order correction to the standard Gaussian closure. The combined moment closure treatment / numerical method is applied to the prediction of three-dimensional, non-equilibrium, micro-scale, gaseous flows. Unlike other regularized moment closures, the underlying closure is the standard maximum-entropy Gaussian closure which provides a fully-realizable and strictly hyperbolic description of non-equilibrium gaseous flows that is valid from the continuum limit, through the transition regime, and up to the free-molecular flow limit. The proposed finite-volume scheme uses Riemann-solver-based flux functions and limited linear reconstruction to provide accurate and monotonic solutions, even in the presence of large solution gradients and/or under-resolved solution content. A rather effective and highly scalable parallel implicit time-marching scheme based on a Jacobian-free inexact Newton-Krylov-Schwarz (NKS) approach with additive Schwarz preconditioning and domain partitioning following from the multi-block AMR mesh is used to obtain solutions to the non-linear ordinary-differential equations that result from finite-volume spatial discretization procedure. Details are given of the standard and regularized Gaussian closure, extensions for diatomic gases, and slip-flow boundary treatment. Numerical results for several canonical flow problems demonstrate the potential of the closures, that when combined with an efficient parallel solution method, provide an

  12. Search for primordial non-Gaussianity in the quasars of SDSS-III BOSS DR9

    NASA Astrophysics Data System (ADS)

    Karagiannis, D.; Shanks, T.; Ross, Nicholas P.

    2014-06-01

    We analyse the clustering of 22 361 quasars between redshift 2.2 < z < 2.9 observed with the Sloan Digital Sky Survey (SDSS)-III Baryon Oscillation Spectroscopic Survey (BOSS), which are included in the ninth data release (DR9). We fit the clustering results with a Λcold dark matter (ΛCDM) model to calculate the linear bias of the quasar sample, b = 3.74 ± 0.12. The measured value of bias is consistent with the findings of White et al., where they analyse almost the same quasar sample, although only in the range s < 40 h-1 Mpc. At large scales we observe an excess or plateau in the clustering correlation function. By fitting a model that incorporates a scale dependent additional term in the bias introduced by primordial non-Gaussianity of the local type, we calculate the amplitude of the deviation from the Gaussian initial conditions as 70 < fNLlocal < 190 at the 95 per cent confidence level. We correct the sample from systematics according to the methods of Ross et al. and Ho et al., with the fNLlocal measurements after the application of the two methods being consistent with each other. Finally, we use cross-correlations across redshift slices to test the corrected sample for any remaining unknown sources of systematics, but the results give no indication of any such further errors. We consider as our final results on non-Gaussianity, 46 < fNLlocal < 158 at 95 per cent confidence, after correcting the sample with the weights method of Ross et al. These results are consistent with previous tight constraints on non-Gaussianity from other Large-Scale Structures surveys, but are in tension with the latest results from the cosmic microwave background.

  13. Ideogram-based Gaussian Estimator for the Model Uncertainty in the Extraction of Qw(p) from PVES Data

    NASA Astrophysics Data System (ADS)

    Smith, Gregory; Qweak Collaboration

    2016-09-01

    As the Qweak collaboration gets closer to unblinding our final result, a method to account for the model uncertainty in the extraction of Qw(p) from a fit to existing parity-violating electron scattering data has been developed. Choices made in selecting the database used in the fit, the strange dipole mass, the functional form of GE, M s, axial constraints, charge-symmetry breaking effects, and in the electromagnetic form factors all contribute to this model uncertainty. An ideogram-inspired Gaussian estimator of this model uncertainty is derived from a fit to a sum of Gaussians, each characterized by the central value and uncertainty of the weak charge obtained from fits using each choice. The width of the resulting summed Gaussian is used to extract the model uncertainty in quadrature from the statistical and systematic errors assumed in the baseline analysis. Finally, this result is compared to the ``stand-alone'' weak charge determined from the single datum representing the asymmetry expected from the (as yet unblinded) Qweak experiment, using calculated electromagnetic, strange, and axial contributions. This work was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract DE-AC05-06OR23177.

  14. Image Outlier Detection and Feature Extraction via L1-Norm-Based 2D Probabilistic PCA.

    PubMed

    Ju, Fujiao; Sun, Yanfeng; Gao, Junbin; Hu, Yongli; Yin, Baocai

    2015-12-01

    This paper introduces an L1-norm-based probabilistic principal component analysis model on 2D data (L1-2DPPCA) based on the assumption of the Laplacian noise model. The Laplacian or L1 density function can be expressed as a superposition of an infinite number of Gaussian distributions. Under this expression, a Bayesian inference can be established based on the variational expectation maximization approach. All the key parameters in the probabilistic model can be learned by the proposed variational algorithm. It has experimentally been demonstrated that the newly introduced hidden variables in the superposition can serve as an effective indicator for data outliers. Experiments on some publicly available databases show that the performance of L1-2DPPCA has largely been improved after identifying and removing sample outliers, resulting in more accurate image reconstruction than the existing PCA-based methods. The performance of feature extraction of the proposed method generally outperforms other existing algorithms in terms of reconstruction errors and classification accuracy.

  15. Experimental Study of Internal-Tide Scattering by 2D Topography

    NASA Astrophysics Data System (ADS)

    Mercier, M.; Peacock, T.; Dauxois, T.

    2009-04-01

    Scattering of internal tides is an important mechanism to understand energy transfer in the ocean. Numerical [1] and oceanographic [2] studies have shown that topography can be responsible for conversion from low to high modes, thereby transferring energy from larger to smaller scales. To understand and quantify more precisely low-to-high mode scattering by topography, we performed a series of experiments in which we generated a mode-1 internal tide using a new configuration for the wavemaker recently developed by Gostiaux et al. [3]. The experiments used PIV to visualize the wave field and took place on the Coriolis Turntable in Grenoble (France). We first studied the free evolution of the internal tide, in order to check its monochromaticity and vertical structure. Thereafter, we analyzed the interaction of the internal tide with idealized 2D topographies (knife-edge, gaussian bump) using modal decomposition techniques. [1] T. M. S Johnston & M. A. Merrifeld, Internal Tide Scattering at the Line Islands Ridge, J. Geophys. Res. (2003), 108:3180. [2] R. D. Ray & G. T. Mitchum, Surface Manifestation of Internal Tides in the Deep Ocean: Observations from Altimetry and Island Gauges, Prog. Ocean. (1997), 40:135-162. [3] L. Gostiaux, H. Didelle, S. Mercier & T. Dauxois, A Novel Internal Waves Generator, Exp. in Fluids (2007), 42:123—130.

  16. Dynamics and Universality of AN Isothermal Combustion Problem in 2D

    NASA Astrophysics Data System (ADS)

    Qi, Y. W.

    In this paper, the Cauchy problem of the system $$u_{1,t} = \\Delta u_{1} - u_1 u_2^{m}, \\quad u_{2,t} = d \\Delta u_2 + u_1 u_2^{m}$$ is studied, where x ∈ R2, m ≥ 1 and d > 0 is the Lewis number. This system models isothermal combustion (see [7]), and auto-catalytic chemical reaction. We show the global existence and regularity of solutions with non-negative initial values having mild decay as |x| → ∞. More importantly, we establish the exact spatio-temporal profiles for such solutions. In particular, we prove that for m = 1, the exact large time behavior of solutions is characterized by a universal, non-Gaussian spatio-temporal profile, with anomalous exponents, due to the fact that quadratic nonlinearity is critical in 2D. Our approach is a combination of iteration using Renormalization Group method, which has been developed into a very powerful tool in the study of nonlinear PDEs largely by the pioneering works of Bricmont, Kupiainen and Lin [6], Bricmont, Kupiainen and Xin, [7], (see also [9]) and key estimates using the PDE method.

  17. An analytical approach to estimate the number of small scatterers in 2D inverse scattering problems

    NASA Astrophysics Data System (ADS)

    Fazli, Roohallah; Nakhkash, Mansor

    2012-07-01

    This paper presents an analytical method to estimate the location and number of actual small targets in 2D inverse scattering problems. This method is motivated from the exact maximum likelihood estimation of signal parameters in white Gaussian noise for the linear data model. In the first stage, the method uses the MUSIC algorithm to acquire all possible target locations and in the next stage, it employs an analytical formula that works as a spatial filter to determine which target locations are associated to the actual ones. The ability of the method is examined for both the Born and multiple scattering cases and for the cases of well-resolved and non-resolved targets. Many numerical simulations using both the coincident and non-coincident arrays demonstrate that the proposed method can detect the number of actual targets even in the case of very noisy data and when the targets are closely located. Using the experimental microwave data sets, we further show that this method is successful in specifying the number of small inclusions.

  18. 40 CFR Table 27 to Subpart G of... - Summary of Internal Floating Deck Fitting Loss Factors (KF) and Typical Number of Fittings (NF)

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Summary of Internal Floating Deck Fitting Loss Factors (KF) and Typical Number of Fittings (NF) 27 Table 27 to Subpart G of Part 63... seal, 10 percent open area b 12 Stub drain, 1-in diameter d 1.2 (D 2/125) c. Vacuum breaker 1....

  19. 40 CFR Table 27 to Subpart G of... - Summary of Internal Floating Deck Fitting Loss Factors (KF) and Typical Number of Fittings (NF)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Summary of Internal Floating Deck Fitting Loss Factors (KF) and Typical Number of Fittings (NF) 27 Table 27 to Subpart G of Part 63... seal, 10 percent open area b 12 Stub drain, 1-in diameter d 1.2 (D 2/125) c. Vacuum breaker 1....

  20. Simplified algebraic description of weak measurements with Hermite-Gaussian and Laguerre-Gaussian pointer states

    NASA Astrophysics Data System (ADS)

    de Lima Bernardo, Bertúlio; Azevedo, Sérgio; Rosas, Alexandre

    2014-11-01

    Weak measurements are recognized as a very powerful tool in measuring tiny effects that are perpendicular to the propagation direction of a light beam. In this paper, we develop a simple algebraic description of the weak measurement protocol for both Laguerre-Gaussian and Hermite-Gaussian pointer states in the Schrödinger representation. Since a novel class of position and momentum expectation values could be derived, the present scenario appeared to be very efficient and insightful when compared to analytical methods.

  1. Discrepant Results in a 2-D Marble Collision

    ERIC Educational Resources Information Center

    Kalajian, Peter

    2013-01-01

    Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many…

  2. 2-D Finite Element Cable and Box IEMP Analysis

    SciTech Connect

    Scivner, G.J.; Turner, C.D.

    1998-12-17

    A 2-D finite element code has been developed for the solution of arbitrary geometry cable SGEMP and box IEMP problems. The quasi- static electric field equations with radiation- induced charge deposition and radiation-induced conductivity y are numerically solved on a triangular mesh. Multiple regions of different dielectric materials and multiple conductors are permitted.

  3. 2D Orthogonal Locality Preserving Projection for Image Denoising.

    PubMed

    Shikkenawis, Gitam; Mitra, Suman K

    2016-01-01

    Sparse representations using transform-domain techniques are widely used for better interpretation of the raw data. Orthogonal locality preserving projection (OLPP) is a linear technique that tries to preserve local structure of data in the transform domain as well. Vectorized nature of OLPP requires high-dimensional data to be converted to vector format, hence may lose spatial neighborhood information of raw data. On the other hand, processing 2D data directly, not only preserves spatial information, but also improves the computational efficiency considerably. The 2D OLPP is expected to learn the transformation from 2D data itself. This paper derives mathematical foundation for 2D OLPP. The proposed technique is used for image denoising task. Recent state-of-the-art approaches for image denoising work on two major hypotheses, i.e., non-local self-similarity and sparse linear approximations of the data. Locality preserving nature of the proposed approach automatically takes care of self-similarity present in the image while inferring sparse basis. A global basis is adequate for the entire image. The proposed approach outperforms several state-of-the-art image denoising approaches for gray-scale, color, and texture images.

  4. 2D signature for detection and identification of drugs

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Shen, Jingling; Zhang, Cunlin; Zhou, Qingli; Shi, Yulei

    2011-06-01

    The method of spectral dynamics analysis (SDA-method) is used for obtaining the2D THz signature of drugs. This signature is used for the detection and identification of drugs with similar Fourier spectra by transmitted THz signal. We discuss the efficiency of SDA method for the identification problem of pure methamphetamine (MA), methylenedioxyamphetamine (MDA), 3, 4-methylenedioxymethamphetamine (MDMA) and Ketamine.

  5. Optoelectronics of supported and suspended 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Bolotin, Kirill

    2014-03-01

    Two-dimensional semiconductors, materials such monolayer molybdenum disulfide (MoS2) are characterized by strong spin-orbit and electron-electron interactions. However, both electronic and optoelectronic properties of these materials are dominated by disorder-related scattering. In this talk, we investigate approaches to reduce scattering and explore physical phenomena arising in intrinsic 2D semiconductors. First, we discuss fabrication of pristine suspended monolayer MoS2 and use photocurrent spectroscopy measurements to study excitons in this material. We observe band-edge and van Hove singularity excitons and estimate their binding energies. Furthermore, we study dissociation of these excitons and uncover the mechanism of their contribution to photoresponse of MoS2. Second, we study strain-induced modification of bandstructures of 2D semiconductors. With increasing strain, we find large and controllable band gap reduction of both single- and bi-layer MoS2. We also detect experimental signatures consistent with strain-induced transition from direct to indirect band gap in monolayer MoS2. Finally, we fabricate heterostructures of dissimilar 2D semiconductors and study their photoresponse. For closely spaced 2D semiconductors we detect charge transfer, while for separation larger than 10nm we observe Forster-like energy transfer between excitations in different layers.

  6. Graphene band structure and its 2D Raman mode

    NASA Astrophysics Data System (ADS)

    Narula, Rohit; Reich, Stephanie

    2014-08-01

    High-precision simulations are used to generate the 2D Raman mode of graphene under a range of screening conditions and laser energies EL. We reproduce the decreasing trend of the 2D mode FWHM vs EL and the nearly linearly increasing dispersion ∂ω2D/∂EL seen experimentally in freestanding (unscreened) graphene, and propose relations between these experimentally accessible quantities and the local, two-dimensional gradients |∇ | of the electronic and TO phonon bands. In light of state-of-the-art electronic structure calculations that acutely treat the long-range e-e interactions of isolated graphene and its experimentally observed 2D Raman mode, our calculations determine a 40% greater slope of the TO phonons about K than given by explicit phonon measurements performed in graphite or GW phonon calculations in graphene. We also deduce the variation of the broadening energy γ [EL] for freestanding graphene and find a nominal value γ ˜140 meV, showing a gradually increasing trend for the range of frequencies available experimentally.

  7. Development of a MEMS 2D separations device

    NASA Astrophysics Data System (ADS)

    Bloschock, Kristen P.; Flyer, Jonathan N.; Schneider, Thomas W.; Hussam, Abul; Van Keuren, Edward R.

    2004-12-01

    A polymer based biochip for rapid 2D separations of peptides, proteins, and other biomedically relevant molecules was designed and fabricated. Like traditional 2D polyacrylamide gel electrophoresis (2D-PAGE) methods, the device will allow molecules to separate based on isoelectric point (pI) and molecular weight (MW). Our design, however, integrates both an initial capillary isoelectric focusing (cIEF) step followed by capillary electrophoresis (CE) in multiple parallel channels, all on a single microfluidic chip. Not only is the "lab-on-a-chip" design easier to use and less expensive, but the miniaturization of the device produces very rapid separations. Compared to traditional 2D-PAGE, which can take hours to complete, we estimate separation times on the order of seconds. Fluorescence detection will be used in the preliminary stages of testing, but the device also is equipped with integrated electrodes in the electrophoresis channels to perform multiplexed electrochemical detection for quantitative analysis. We will present preliminary results of the chip development and testing.

  8. The 2dF Galaxy Redshift Survey: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Maddox, Steve; 2DF Galaxy Redshift Survey Team; Bland-Hawthorn, Joss; Cannon, Russell; Cole, Shaun; Colless, Matthew; Collins, Chris; Couch, Warrick; Dalton, Gavin; Driver, Simon; Ellis, Richard; Efstathiou, George; Folkes, Simon; Frenk, Carlos; Glazebrook, Karl; Kaiser, Nick; Lahav, Ofer; Lumsden, Stuart; Peterson, Bruce; Peacock, John; Sutherland, Will; Taylor, Keith

    Spectroscopic observations for a new survey of 250 000 galaxy redshifts are underway, using the 2dF instrument at the AAT. The input galaxy catalogue and commissioning data are described. The first result from the preliminary data is a new estimate of the galaxy luminosity function at = 0.1.

  9. ELLIPT2D: A Flexible Finite Element Code Written Python

    SciTech Connect

    Pletzer, A.; Mollis, J.C.

    2001-03-22

    The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.

  10. Rheological Properties of Quasi-2D Fluids in Microgravity

    NASA Technical Reports Server (NTRS)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  11. Validation and testing of the VAM2D computer code

    SciTech Connect

    Kool, J.B.; Wu, Y.S. )

    1991-10-01

    This document describes two modeling studies conducted by HydroGeoLogic, Inc. for the US NRC under contract no. NRC-04089-090, entitled, Validation and Testing of the VAM2D Computer Code.'' VAM2D is a two-dimensional, variably saturated flow and transport code, with applications for performance assessment of nuclear waste disposal. The computer code itself is documented in a separate NUREG document (NUREG/CR-5352, 1989). The studies presented in this report involve application of the VAM2D code to two diverse subsurface modeling problems. The first one involves modeling of infiltration and redistribution of water and solutes in an initially dry, heterogeneous field soil. This application involves detailed modeling over a relatively short, 9-month time period. The second problem pertains to the application of VAM2D to the modeling of a waste disposal facility in a fractured clay, over much larger space and time scales and with particular emphasis on the applicability and reliability of using equivalent porous medium approach for simulating flow and transport in fractured geologic media. Reflecting the separate and distinct nature of the two problems studied, this report is organized in two separate parts. 61 refs., 31 figs., 9 tabs.

  12. NKG2D ligands mediate immunosurveillance of senescent cells

    PubMed Central

    Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery

    2016-01-01

    Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797

  13. Studying Zeolite Catalysts with a 2D Model System

    ScienceCinema

    Boscoboinik, Anibal

    2016-12-14

    Anibal Boscoboinik, a materials scientist at Brookhaven’s Center for Functional Nanomaterials, discusses the surface-science tools and 2D model system he uses to study catalysis in nanoporous zeolites, which catalyze reactions in many industrial processes.

  14. 2D nanomaterials based electrochemical biosensors for cancer diagnosis.

    PubMed

    Wang, Lu; Xiong, Qirong; Xiao, Fei; Duan, Hongwei

    2017-03-15

    Cancer is a leading cause of death in the world. Increasing evidence has demonstrated that early diagnosis holds the key towards effective treatment outcome. Cancer biomarkers are extensively used in oncology for cancer diagnosis and prognosis. Electrochemical sensors play key roles in current laboratory and clinical analysis of diverse chemical and biological targets. Recent development of functional nanomaterials offers new possibilities of improving the performance of electrochemical sensors. In particular, 2D nanomaterials have stimulated intense research due to their unique array of structural and chemical properties. The 2D materials of interest cover broadly across graphene, graphene derivatives (i.e., graphene oxide and reduced graphene oxide), and graphene-like nanomaterials (i.e., 2D layered transition metal dichalcogenides, graphite carbon nitride and boron nitride nanomaterials). In this review, we summarize recent advances in the synthesis of 2D nanomaterials and their applications in electrochemical biosensing of cancer biomarkers (nucleic acids, proteins and some small molecules), and present a personal perspective on the future direction of this area.

  15. Conformation and electronic population transfer in membrane-supported self-assembled porphyrin dimers by 2D fluorescence spectroscopy.

    PubMed

    Perdomo-Ortiz, Alejandro; Widom, Julia R; Lott, Geoffrey A; Aspuru-Guzik, Alán; Marcus, Andrew H

    2012-09-06

    Two-dimensional fluorescence spectroscopy (2D FS) is applied to determine the conformation and femtosecond electronic population transfer in a dimer of magnesium meso tetraphenylporphyrin. The dimers are prepared by self-assembly of the monomer within the amphiphilic regions of 1,2-distearoyl-sn-glycero-3-phosphocholine liposomes. A theoretical framework to describe 2D FS experiments is presented, and a direct comparison is made between the observables of this measurement and those of 2D electronic spectroscopy (2D ES). The sensitivity of the method to varying dimer conformation is explored. A global multivariable fitting analysis of linear and 2D FS data indicates that the dimer adopts a "bent T-shaped" conformation. Moreover, the manifold of singly excited excitons undergoes rapid electronic dephasing and downhill population transfer on the time scale of ∼95 fs. The open conformation of the dimer suggests that its self-assembly is favored by an increase in entropy of the local membrane environment.

  16. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.

    2016-08-01

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets

  17. WE-AB-BRA-07: Quantitative Evaluation of 2D-2D and 2D-3D Image Guided Radiation Therapy for Clinical Trial Credentialing, NRG Oncology/RTOG

    SciTech Connect

    Giaddui, T; Yu, J; Xiao, Y; Jacobs, P; Manfredi, D; Linnemann, N

    2015-06-15

    Purpose: 2D-2D kV image guided radiation therapy (IGRT) credentialing evaluation for clinical trial qualification was historically qualitative through submitting screen captures of the fusion process. However, as quantitative DICOM 2D-2D and 2D-3D image registration tools are implemented in clinical practice for better precision, especially in centers that treat patients with protons, better IGRT credentialing techniques are needed. The aim of this work is to establish methodologies for quantitatively reviewing IGRT submissions based on DICOM 2D-2D and 2D-3D image registration and to test the methodologies in reviewing 2D-2D and 2D-3D IGRT submissions for RTOG/NRG Oncology clinical trials qualifications. Methods: DICOM 2D-2D and 2D-3D automated and manual image registration have been tested using the Harmony tool in MIM software. 2D kV orthogonal portal images are fused with the reference digital reconstructed radiographs (DRR) in the 2D-2D registration while the 2D portal images are fused with DICOM planning CT image in the 2D-3D registration. The Harmony tool allows alignment of the two images used in the registration process and also calculates the required shifts. Shifts calculated using MIM are compared with those submitted by institutions for IGRT credentialing. Reported shifts are considered to be acceptable if differences are less than 3mm. Results: Several tests have been performed on the 2D-2D and 2D-3D registration. The results indicated good agreement between submitted and calculated shifts. A workflow for reviewing these IGRT submissions has been developed and will eventually be used to review IGRT submissions. Conclusion: The IROC Philadelphia RTQA center has developed and tested a new workflow for reviewing DICOM 2D-2D and 2D-3D IGRT credentialing submissions made by different cancer clinical centers, especially proton centers. NRG Center for Innovation in Radiation Oncology (CIRO) and IROC RTQA center continue their collaborative efforts to enhance

  18. AN Fitting Reconditioning Tool

    NASA Technical Reports Server (NTRS)

    Lopez, Jason

    2011-01-01

    A tool was developed to repair or replace AN fittings on the shuttle external tank (ET). (The AN thread is a type of fitting used to connect flexible hoses and rigid metal tubing that carry fluid. It is a U.S. military-derived specification agreed upon by the Army and Navy, hence AN.) The tool is used on a drill and is guided by a pilot shaft that follows the inside bore. The cutting edge of the tool is a standard-size replaceable insert. In the typical Post Launch Maintenance/Repair process for the AN fittings, the six fittings are removed from the ET's GUCP (ground umbilical carrier plate) for reconditioning. The fittings are inspected for damage to the sealing surface per standard operations maintenance instructions. When damage is found on the sealing surface, the condition is documented. A new AN reconditioning tool is set up to cut and remove the surface damage. It is then inspected to verify the fitting still meets drawing requirements. The tool features a cone-shaped interior at 36.5 , and may be adjusted at a precise angle with go-no-go gauges to insure that the cutting edge could be adjusted as it wore down. One tool, one setting block, and one go-no-go gauge were fabricated. At the time of this reporting, the tool has reconditioned/returned to spec 36 AN fittings with 100-percent success of no leakage. This tool provides a quick solution to repair a leaky AN fitting. The tool could easily be modified with different-sized pilot shafts to different-sized fittings.

  19. A statistical approach to estimate the 3D size distribution of spheres from 2D size distributions

    USGS Publications Warehouse

    Kong, M.; Bhattacharya, R.N.; James, C.; Basu, A.

    2005-01-01

    Size distribution of rigidly embedded spheres in a groundmass is usually determined from measurements of the radii of the two-dimensional (2D) circular cross sections of the spheres in random flat planes of a sample, such as in thin sections or polished slabs. Several methods have been devised to find a simple factor to convert the mean of such 2D size distributions to the actual 3D mean size of the spheres without a consensus. We derive an entirely theoretical solution based on well-established probability laws and not constrained by limitations of absolute size, which indicates that the ratio of the means of measured 2D and estimated 3D grain size distribution should be r/4 (=.785). Actual 2D size distribution of the radii of submicron sized, pure Fe0 globules in lunar agglutinitic glass, determined from backscattered electron images, is tested to fit the gamma size distribution model better than the log-normal model. Numerical analysis of 2D size distributions of Fe0 globules in 9 lunar soils shows that the average mean of 2D/3D ratio is 0.84, which is very close to the theoretical value. These results converge with the ratio 0.8 that Hughes (1978) determined for millimeter-sized chondrules from empirical measurements. We recommend that a factor of 1.273 (reciprocal of 0.785) be used to convert the determined 2D mean size (radius or diameter) of a population of spheres to estimate their actual 3D size. ?? 2005 Geological Society of America.

  20. Half-metallicity in 2D organometallic honeycomb frameworks.

    PubMed

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-26

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  1. 2d-LCA - an alternative to x-wires

    NASA Astrophysics Data System (ADS)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2014-11-01

    The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.

  2. 2D/3D Image Registration using Regression Learning

    PubMed Central

    Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen

    2013-01-01

    In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object’s 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region’s motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method’s application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof. PMID:24058278

  3. Half-metallicity in 2D organometallic honeycomb frameworks

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-01

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  4. Monthly streamflow forecasting using Gaussian Process Regression

    NASA Astrophysics Data System (ADS)

    Sun, Alexander Y.; Wang, Dingbao; Xu, Xianli

    2014-04-01

    Streamflow forecasting plays a critical role in nearly all aspects of water resources planning and management. In this work, Gaussian Process Regression (GPR), an effective kernel-based machine learning algorithm, is applied to probabilistic streamflow forecasting. GPR is built on Gaussian process, which is a stochastic process that generalizes multivariate Gaussian distribution to infinite-dimensional space such that distributions over function values can be defined. The GPR algorithm provides a tractable and flexible hierarchical Bayesian framework for inferring the posterior distribution of streamflows. The prediction skill of the algorithm is tested for one-month-ahead prediction using the MOPEX database, which includes long-term hydrometeorological time series collected from 438 basins across the U.S. from 1948 to 2003. Comparisons with linear regression and artificial neural network models indicate that GPR outperforms both regression methods in most cases. The GPR prediction of MOPEX basins is further examined using the Budyko framework, which helps to reveal the close relationships among water-energy partitions, hydrologic similarity, and predictability. Flow regime modification and the resulting loss of predictability have been a major concern in recent years because of climate change and anthropogenic activities. The persistence of streamflow predictability is thus examined by extending the original MOPEX data records to 2012. Results indicate relatively strong persistence of streamflow predictability in the extended period, although the low-predictability basins tend to show more variations. Because many low-predictability basins are located in regions experiencing fast growth of human activities, the significance of sustainable development and water resources management can be even greater for those regions.

  5. Twisted Gaussian Schell-model beams

    SciTech Connect

    Simon, R. ); Mukunda, N. Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore )

    1993-01-01

    The authors introduce a new class of partially coherent axially symmetric Gaussian Schell-model (GSM) beams incorporating a new twist phase quadratic in configuration variables. This phase twists the beam about its axis during propagation and is shown to be bounded in strength because of the positive semidefiniteness of the cross-spectral density. Propagation characteristics and invariants for such beams are derived and interpreted, and two different geometric representations are developed. Direct effects of the twist phase on free propagation as well as in parabolic index fibers are demonstrated. Production of such twisted GSM beams, starting with Li-Wolf anisotropic GSM beams, is described. 34 refs., 3 figs.

  6. A Gaussian measure of quantum phase noise

    NASA Technical Reports Server (NTRS)

    Schleich, Wolfgang P.; Dowling, Jonathan P.

    1992-01-01

    We study the width of the semiclassical phase distribution of a quantum state in its dependence on the average number of photons (m) in this state. As a measure of phase noise, we choose the width, delta phi, of the best Gaussian approximation to the dominant peak of this probability curve. For a coherent state, this width decreases with the square root of (m), whereas for a truncated phase state it decreases linearly with increasing (m). For an optimal phase state, delta phi decreases exponentially but so does the area caught underneath the peak: all the probability is stored in the broad wings of the distribution.

  7. Non-gaussianity from broken symmetries

    SciTech Connect

    Kolb, Edward W.; Riotto, Antonio; Vallinotto, Alberto; /Chicago U. /Fermilab

    2005-11-01

    Recently we studied inflation models in which the inflation potential is characterized by an underlying approximate global symmetry. In the first work we pointed out that in such a model curvature perturbations are generated after the end of the slow-roll phase of inflation. In this work we develop further the observational implications of the model and compute the degree of non-Gaussianity predicted in the scenario. We find that the corresponding nonlinearity parameter, F{sub NL}, can be as large as 10{sup 2}.

  8. Integrating the Levels of Person-Environment Fit: The Roles of Vocational Fit and Group Fit

    ERIC Educational Resources Information Center

    Vogel, Ryan M.; Feldman, Daniel C.

    2009-01-01

    Previous research on fit has largely focused on person-organization (P-O) fit and person-job (P-J) fit. However, little research has examined the interplay of person-vocation (P-V) fit and person-group (P-G) fit with P-O fit and P-J fit in the same study. This article advances the fit literature by examining these relationships with data collected…

  9. BF_dist: Busy Function fitting

    NASA Astrophysics Data System (ADS)

    Westmeier, Tobias; Jurek, Russell; Obreschkow, Danail; Koribalski, Bärbel S.; Staveley-Smith, Lister

    2014-02-01

    The "busy function" accurately describes the characteristic double-horn HI profile of many galaxies. Implemented in a C/C++ library and Python module called BF_dist, it is a continuous, differentiable function that consists of only two basic functions, the error function, erf(x), and a polynomial, |x|^n, of degree n >= 2. BF_dist offers great flexibility in fitting a wide range of HI profiles from the Gaussian profiles of dwarf galaxies to the broad, asymmetric double-horn profiles of spiral galaxies, and can be used to parametrize observed HI spectra of galaxies and the construction of spectral templates for simulations and matched filtering algorithms accurately and efficiently.

  10. Exploration of lagged relationships between mastitis and milk yield in dairycows using a Bayesian structural equation Gaussian-threshold model

    PubMed Central

    Wu, Xiao-Lin; Heringstad, Bjørg; Gianola, Daniel

    2008-01-01

    A Gaussian-threshold model is described under the general framework of structural equation models for inferring simultaneous and recursive relationships between binary and Gaussian characters, and estimating genetic parameters. Relationships between clinical mastitis (CM) and test-day milk yield (MY) in first-lactation Norwegian Red cows were examined using a recursive Gaussian-threshold model. For comparison, the data were also analyzed using a standard Gaussian-threshold, a multivariate linear model, and a recursive multivariate linear model. The first 180 days of lactation were arbitrarily divided into three periods of equal length, in order to investigate how these relationships evolve in the course of lactation. The recursive model showed negative within-period effects from (liability to) CM to test-day MY in all three lactation periods, and positive between-period effects from test-day MY to (liability to) CM in the following period. Estimates of recursive effects and of genetic parameters were time-dependent. The results suggested unfavorable effects of production on liability to mastitis, and dynamic relationships between mastitis and test-dayMYin the course of lactation. Fitting recursive effects had little influence on the estimation of genetic parameters. However, some differences were found in the estimates of heritability, genetic, and residual correlations, using different types of models (Gaussian-threshold vs. multivariate linear). PMID:18558070

  11. Finding Time for Fitness

    MedlinePlus

    ... exercise strategy to improve health and fitness? Applied Physiology Nutrition and Metabolism. 2014;39:409. Gibala MJ, ... interval training in health and disease. Journal of Physiology. 2012;590:1077. Aug. 06, 2016 Original article: ...

  12. Exponentially fitted symplectic integrator

    NASA Astrophysics Data System (ADS)

    Simos, T. E.; Vigo-Aguiar, Jesus

    2003-01-01

    In this paper a procedure for constructing efficient symplectic integrators for Hamiltonian problems is introduced. This procedure is based on the combination of the exponential fitting technique and symplecticness conditions. Based on this procedure, a simple modified Runge-Kutta-Nyström second-order algebraic exponentially fitted method is developed. We give explicitly the symplecticness conditions for the modified Runge-Kutta-Nyström method. We also give the exponential fitting and trigonometric fitting conditions. Numerical results indicate that the present method is much more efficient than the “classical” symplectic Runge-Kutta-Nyström second-order algebraic method introduced by M.P. Calvo and J.M. Sanz-Serna [J. Sci. Comput. (USA) 14, 1237 (1993)]. We note that the present procedure is appropriate for all near-unimodal systems.

  13. Exercise and Physical Fitness

    MedlinePlus

    ... Increase your chances of living longer Fitting regular exercise into your daily schedule may seem difficult at ... fine. The key is to find the right exercise for you. It should be fun and should ...

  14. ACSM Fit Society Page

    MedlinePlus

    ... 2011 -- Exercise for Special Populations 2011 -- Behavior Change & Exercise Adherence 2011 -- Nutrition 2011 -- Winter Health 2010 -- Healthy Aging 2010 -- Weight Loss & Weight Management 2010 -- Fitness Assessment & Injury Prevention 2009 -- Strength Training 2009 -- Menopause ...

  15. Proper fitting shoes (image)

    MedlinePlus

    Shoes should be comfortable and fit well when you buy them. Never buy shoes that are tight, hoping they will stretch as ... damage, people with diabetes may not feel a shoe rubbing against the skin of their foot. Blisters ...

  16. Gaussian Random Field: Physical Origin of Sersic Profiles

    NASA Astrophysics Data System (ADS)

    Cen, Renyue

    2014-08-01

    While the Sersic profile family provides adequate fits for the surface brightness profiles of observed galaxies, its physical origin is unknown. We show that if the cosmological density field is seeded by random Gaussian fluctuations, as in the standard cold dark matter model, galaxies with steep central profiles have simultaneously extended envelopes of shallow profiles in the outskirts, whereas galaxies with shallow central profiles are accompanied by steep density profiles in the outskirts. These properties are in accord with those of the Sersic profile family. Moreover, galaxies with steep central profiles form their central regions in smaller denser subunits that possibly merge subsequently, which naturally leads to the formation of bulges. In contrast, galaxies with shallow central profiles form their central regions in a coherent fashion without significant substructure, a necessary condition for disk galaxy formation. Thus, the scenario is self-consistent with respect to the correlation between observed galaxy morphology and the Sersic index. We further predict that clusters of galaxies should display a similar trend, which should be verifiable observationally.

  17. GAUSSIAN RANDOM FIELD: PHYSICAL ORIGIN OF SERSIC PROFILES

    SciTech Connect

    Cen, Renyue

    2014-08-01

    While the Sersic profile family provides adequate fits for the surface brightness profiles of observed galaxies, its physical origin is unknown. We show that if the cosmological density field is seeded by random Gaussian fluctuations, as in the standard cold dark matter model, galaxies with steep central profiles have simultaneously extended envelopes of shallow profiles in the outskirts, whereas galaxies with shallow central profiles are accompanied by steep density profiles in the outskirts. These properties are in accord with those of the Sersic profile family. Moreover, galaxies with steep central profiles form their central regions in smaller denser subunits that possibly merge subsequently, which naturally leads to the formation of bulges. In contrast, galaxies with shallow central profiles form their central regions in a coherent fashion without significant substructure, a necessary condition for disk galaxy formation. Thus, the scenario is self-consistent with respect to the correlation between observed galaxy morphology and the Sersic index. We further predict that clusters of galaxies should display a similar trend, which should be verifiable observationally.

  18. Revisiting Gaussian Process Regression Modeling for Localization in Wireless Sensor Networks.

    PubMed

    Richter, Philipp; Toledano-Ayala, Manuel

    2015-09-08

    Signal strength-based positioning in wireless sensor networks is a key technology for seamless, ubiquitous localization, especially in areas where Global Navigation Satellite System (GNSS) signals propagate poorly. To enable wireless local area network (WLAN) location fingerprinting in larger areas while maintaining accuracy, methods to reduce the effort of radio map creation must be consolidated and automatized. Gaussian process regression has been applied to overcome this issue, also with auspicious results, but the fit of the model was never thoroughly assessed. Instead, most studies trained a readily available model, relying on the zero mean and squared exponential covariance function, without further scrutinization. This paper studies the Gaussian process regression model selection for WLAN fingerprinting in indoor and outdoor environments. We train several models for indoor/outdoor- and combined areas; we evaluate them quantitatively and compare them by means of adequate model measures, hence assessing the fit of these models directly. To illuminate the quality of the model fit, the residuals of the proposed model are investigated, as well. Comparative experiments on the positioning performance verify and conclude the model selection. In this way, we show that the standard model is not the most appropriate, discuss alternatives and present our best candidate.

  19. Revisiting Gaussian Process Regression Modeling for Localization in Wireless Sensor Networks

    PubMed Central

    Richter, Philipp; Toledano-Ayala, Manuel

    2015-01-01

    Signal strength-based positioning in wireless sensor networks is a key technology for seamless, ubiquitous localization, especially in areas where Global Navigation Satellite System (GNSS) signals propagate poorly. To enable wireless local area network (WLAN) location fingerprinting in larger areas while maintaining accuracy, methods to reduce the effort of radio map creation must be consolidated and automatized. Gaussian process regression has been applied to overcome this issue, also with auspicious results, but the fit of the model was never thoroughly assessed. Instead, most studies trained a readily available model, relying on the zero mean and squared exponential covariance function, without further scrutinization. This paper studies the Gaussian process regression model selection for WLAN fingerprinting in indoor and outdoor environments. We train several models for indoor/outdoor- and combined areas; we evaluate them quantitatively and compare them by means of adequate model measures, hence assessing the fit of these models directly. To illuminate the quality of the model fit, the residuals of the proposed model are investigated, as well. Comparative experiments on the positioning performance verify and conclude the model selection. In this way, we show that the standard model is not the most appropriate, discuss alternatives and present our best candidate. PMID:26370996

  20. A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.

    PubMed

    Qiu, Weibao; Wang, Congzhi; Li, Yongchuan; Zhou, Juan; Yang, Ge; Xiao, Yang; Feng, Ge; Jin, Qiaofeng; Mu, Peitian; Qian, Ming; Zheng, Hairong

    2015-09-01

    Ultrasound elastography is widely used for the non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) is a quantitative method for assessing tissue stiffness. SWI has been demonstrated to be less operator dependent than quasi-static elastography, and has the ability to acquire quantitative elasticity information in contrast with acoustic radiation force impulse (ARFI) imaging. However, traditional SWI implementations cannot acquire two dimensional (2D) quantitative images of the tissue elasticity distribution. This study proposes and evaluates a scanning-mode 2D SWI (s2D-SWI) system. The hardware and image processing algorithms are presented in detail. Programmable devices are used to support flexible control of the system and the image processing algorithms. An analytic signal based cross-correlation method and a Radon transformation based shear wave speed determination method are proposed, which can be implemented using parallel computation. Imaging of tissue mimicking phantoms, and in vitro, and in vivo imaging test are conducted to demonstrate the performance of the proposed system. The s2D-SWI system represents a new choice for the quantitative mapping of tissue elasticity, and has great potential for implementation in commercial ultrasound scanners.

  1. 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures

    NASA Astrophysics Data System (ADS)

    Roy, Tania; Tosun, Mahmut; Hettick, Mark; Ahn, Geun Ho; Hu, Chenming; Javey, Ali

    2016-02-01

    Two-dimensional materials present a versatile platform for developing steep transistors due to their uniform thickness and sharp band edges. We demonstrate 2D-2D tunneling in a WSe2/SnSe2 van der Waals vertical heterojunction device, where WSe2 is used as the gate controlled p-layer and SnSe2 is the degenerately n-type layer. The van der Waals gap facilitates the regulation of band alignment at the heterojunction, without the necessity of a tunneling barrier. ZrO2 is used as the gate dielectric, allowing the scaling of gate oxide to improve device subthreshold swing. Efficient gate control and clean interfaces yield a subthreshold swing of ˜100 mV/dec for >2 decades of drain current at room temperature, hitherto unobserved in 2D-2D tunneling devices. The subthreshold swing is independent of temperature, which is a clear signature of band-to-band tunneling at the heterojunction. A maximum switching ratio ION/IOFF of 107 is obtained. Negative differential resistance in the forward bias characteristics is observed at 77 K. This work bodes well for the possibilities of two-dimensional materials for the realization of energy-efficient future-generation electronics.

  2. The Langley Fitness Center

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA Langley recognizes the importance of healthy employees by committing itself to offering a complete fitness program. The scope of the program focuses on promoting overall health and wellness in an effort to reduce the risks of illness and disease and to increase productivity. This is accomplished through a comprehensive Health and Fitness Program offered to all NASA employees. Various aspects of the program are discussed.

  3. Multichannel response analysis on 2D projection views for detection of clustered microcalcifications in digital breast tomosynthesis

    SciTech Connect

    Wei, Jun Chan, Heang-Ping; Hadjiiski, Lubomir M.; Helvie, Mark A.; Lu, Yao; Zhou, Chuan; Samala, Ravi

    2014-04-15

    Purpose: To investigate the feasibility of a new two-dimensional (2D) multichannel response (MCR) analysis approach for the detection of clustered microcalcifications (MCs) in digital breast tomosynthesis (DBT). Methods: With IRB approval and informed consent, a data set of two-view DBTs from 42 breasts containing biopsy-proven MC clusters was collected in this study. The authors developed a 2D approach for MC detection using projection view (PV) images rather than the reconstructed three-dimensional (3D) DBT volume. Signal-to-noise ratio (SNR) enhancement processing was first applied to each PV to enhance the potential MCs. The locations of MC candidates were then identified with iterative thresholding. The individual MCs were decomposed with Hermite–Gaussian (HG) and Laguerre–Gaussian (LG) basis functions and the channelized Hotelling model was trained to produce the MCRs for each MC on the 2D images. The MCRs from the PVs were fused in 3D by a coincidence counting method that backprojects the MC candidates on the PVs and traces the coincidence of their ray paths in 3D. The 3D MCR was used to differentiate the true MCs from false positives (FPs). Finally a dynamic clustering method was used to identify the potential MC clusters in the DBT volume based on the fact that true MCs of clinical significance appear in clusters. Using two-fold cross validation, the performance of the 3D MCR for classification of true and false MCs was estimated by the area under the receiver operating characteristic (ROC) curve and the overall performance of the MCR approach for detection of clustered MCs was assessed by free response receiver operating characteristic (FROC) analysis. Results: When the HG basis function was used for MCR analysis, the detection of MC cluster achieved case-based test sensitivities of 80% and 90% at the average FP rates of 0.65 and 1.55 FPs per DBT volume, respectively. With LG basis function, the average FP rates were 0.62 and 1.57 per DBT volume at

  4. Inclusive fitness in agriculture

    PubMed Central

    Kiers, E. Toby; Denison, R. Ford

    2014-01-01

    Trade-offs between individual fitness and the collective performance of crop and below-ground symbiont communities are common in agriculture. Plant competitiveness for light and soil resources is key to individual fitness, but higher investments in stems and roots by a plant community to compete for those resources ultimately reduce crop yields. Similarly, rhizobia and mycorrhizal fungi may increase their individual fitness by diverting resources to their own reproduction, even if they could have benefited collectively by providing their shared crop host with more nitrogen and phosphorus, respectively. Past selection for inclusive fitness (benefits to others, weighted by their relatedness) is unlikely to have favoured community performance over individual fitness. The limited evidence for kin recognition in plants and microbes changes this conclusion only slightly. We therefore argue that there is still ample opportunity for human-imposed selection to improve cooperation among crop plants and their symbionts so that they use limited resources more efficiently. This evolutionarily informed approach will require a better understanding of how interactions among crops, and interactions with their symbionts, affected their inclusive fitness in the past and what that implies for current interactions. PMID:24686938

  5. Multivariate Bayesian analysis of Gaussian, right censored Gaussian, ordered categorical and binary traits using Gibbs sampling.

    PubMed

    Korsgaard, Inge Riis; Lund, Mogens Sandø; Sorensen, Daniel; Gianola, Daniel; Madsen, Per; Jensen, Just

    2003-01-01

    A fully Bayesian analysis using Gibbs sampling and data augmentation in a multivariate model of Gaussian, right censored, and grouped Gaussian traits is described. The grouped Gaussian traits are either ordered categorical traits (with more than two categories) or binary traits, where the grouping is determined via thresholds on the underlying Gaussian scale, the liability scale. Allowances are made for unequal models, unknown covariance matrices and missing data. Having outlined the theory, strategies for implementation are reviewed. These include joint sampling of location parameters; efficient sampling from the fully conditional posterior distribution of augmented data, a multivariate truncated normal distribution; and sampling from the conditional inverse Wishart distribution, the fully conditional posterior distribution of the residual covariance matrix. Finally, a simulated dataset was analysed to illustrate the methodology. This paper concentrates on a model where residuals associated with liabilities of the binary traits are assumed to be independent. A Bayesian analysis using Gibbs sampling is outlined for the model where this assumption is relaxed.

  6. Response to CYP2D6 substrate antidepressants is predicted by a CYP2D6 composite phenotype based on genotype and comedications with CYP2D6 inhibitors.

    PubMed

    Gressier, F; Verstuyft, C; Hardy, P; Becquemont, L; Corruble, E

    2015-01-01

    The cytochrome P450 2D6 (CYP2D6) is involved in the metabolism of most antidepressants. Comedication with a potent CYP2D6 inhibitor can convert patients with extensive metabolizer (EM) or ultra-rapid metabolizer (UM) genotypes into poor metabolizer (PM) phenotypes. Since comedication is frequent in depressed patients treated with antidepressants, we investigated the effect of the CYP2D6 composite phenotype on antidepressant efficacy, taking into account both the CYP2D6 genotype and comedication with CYP2D6 inhibitors. 87 Caucasian in patients with a major depressive episode were prospectively treated with flexible doses of antidepressant monotherapy as well as comedications and genotyped for the major CYP2D6 alleles (CYP2D6*3 rs35742686, *4 rs3892097, *5 del, *6 rs5030655, and *2xN). They were classified for CYP2D6 composite phenotype and assessed for antidepressant response after 4 weeks. In terms of genotypes (g), 6 subjects were UMg, 6 PMg, and 75 EMg. Ten patients were coprescribed a CYP2D6 inhibitor, resulting in the following composite phenotypes (cp): 5 UMcp, 16 PMcp, and 66 EMcp. Whereas none of the CYP2D6 genotypes were significantly associated with antidepressant response, UMcp had a lower antidepressant response than PMcp or EMcp (respectively: 39.0 ± 17.9, 50.0 ± 26.0, and 61.6 ± 23.4, p = 0.02). Despite small sample size, this study suggests that a CYP2D6 composite phenotype, taking into account both genotype and comedications with CYP2D6 inhibitors, could predict CYP2D6 substrate antidepressants response. Thus, to optimize antidepressant response, CYP2D6 genotype could be performed and comedications with CYP2D6 inhibitors should be avoided, when prescribing CYP2D6 substrate antidepressants.

  7. Escape through an unstable limit cycle driven by multiplicative colored non-Gaussian and additive white Gaussian noises.

    PubMed

    Bag, Bidhan Chandra; Hu, Chin-Kun

    2007-04-01

    In a previous paper [Bag and Hu, Phys. Rev. E 73, 061107 (2006)], we studied the mean lifetime (MLT) for the escape of a Brownian particle through an unstable limit cycle driven by multiplicative colored Gaussian and additive Gaussian white noises and found resonant activation (RA) behavior. In the present paper we switch from Gaussian to non-Gaussian multiplicative colored noise. We find that in the RA phenomenon, the minimum appears at a smaller noise correlation time (tau) for non-Gaussian noises compared to Gaussian noises in the plot of MLT vs tau for a fixed noise variance; the same plot for a given noise strength increases linearly and the increasing rate is smaller for non-Gaussian noises than for the Gaussian noises; the plot of logarithm of inverse of MLT vs inverse of the strength of additive noise is Arrhenius-like for Gaussian colored noise and it becomes similar to the quantum-Kramers rate if the multiplicative noise is non-Gaussian.

  8. 2-D linear motion system. Innovative technology summary report

    SciTech Connect

    1998-11-01

    The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology

  9. Gold-standard performance for 2D hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Pasternack, G. B.; MacVicar, B. J.

    2013-12-01

    Two-dimensional, depth-averaged hydrodynamic (2D) models are emerging as an increasingly useful tool for environmental water resources engineering. One of the remaining technical hurdles to the wider adoption and acceptance of 2D modeling is the lack of standards for 2D model performance evaluation when the riverbed undulates, causing lateral flow divergence and convergence. The goal of this study was to establish a gold-standard that quantifies the upper limit of model performance for 2D models of undulating riverbeds when topography is perfectly known and surface roughness is well constrained. A review was conducted of published model performance metrics and the value ranges exhibited by models thus far for each one. Typically predicted velocity differs from observed by 20 to 30 % and the coefficient of determination between the two ranges from 0.5 to 0.8, though there tends to be a bias toward overpredicting low velocity and underpredicting high velocity. To establish a gold standard as to the best performance possible for a 2D model of an undulating bed, two straight, rectangular-walled flume experiments were done with no bed slope and only different bed undulations and water surface slopes. One flume tested model performance in the presence of a porous, homogenous gravel bed with a long flat section, then a linear slope down to a flat pool bottom, and then the same linear slope back up to the flat bed. The other flume had a PVC plastic solid bed with a long flat section followed by a sequence of five identical riffle-pool pairs in close proximity, so it tested model performance given frequent undulations. Detailed water surface elevation and velocity measurements were made for both flumes. Comparing predicted versus observed velocity magnitude for 3 discharges with the gravel-bed flume and 1 discharge for the PVC-bed flume, the coefficient of determination ranged from 0.952 to 0.987 and the slope for the regression line was 0.957 to 1.02. Unsigned velocity

  10. Instantons in 2D U(1) Higgs model and 2D CP(N-1) sigma models

    NASA Astrophysics Data System (ADS)

    Lian, Yaogang

    2007-12-01

    In this thesis I present the results of a study of the topological structures of 2D U(1) Higgs model and 2D CP N-1 sigma models. Both models have been studied using the overlap Dirac operator construction of topological charge density. The overlap operator provides a more incisive probe into the local topological structure of gauge field configurations than the traditional plaquette-based operator. In the 2D U(1) Higgs model, we show that classical instantons with finite sizes violate the negativity of topological charge correlator by giving a positive contribution to the correlator at non-zero separation. We argue that instantons in 2D U(1) Higgs model must be accompanied by large quantum fluctuations in order to solve this contradiction. In 2D CPN-1 sigma models, we observe the anomalous scaling behavior of the topological susceptibility chi t for N ≤ 3. The divergence of chi t in these models is traced to the presence of small instantons with a radius of order a (= lattice spacing), which are directly observed on the lattice. The observation of these small instantons provides detailed confirmation of Luscher's argument that such short-distance excitations, with quantized topological charge, should be the dominant topological fluctuations in CP1 and CP 2, leading to a divergent topological susceptibility in the continuum limit. For the CPN-1 models with N > 3 the topological susceptibility is observed to scale properly with the mass gap. Another topic presented in this thesis is an implementation of the Zolotarev optimal rational approximation for the overlap Dirac operator. This new implementation has reduced the time complexity of the overlap routine from O(N3 ) to O(N), where N is the total number of sites on the lattice. This opens up a door to more accurate lattice measurements in the future.

  11. Gaussian beam decomposition of high frequency wave fields

    SciTech Connect

    Tanushev, Nicolay M. Engquist, Bjoern; Tsai, Richard

    2009-12-10

    In this paper, we present a method of decomposing a highly oscillatory wave field into a sparse superposition of Gaussian beams. The goal is to extract the necessary parameters for a Gaussian beam superposition from this wave field, so that further evolution of the high frequency waves can be computed by the method of Gaussian beams. The methodology is described for R{sup d} with numerical examples for d=2. In the first example, a field generated by an interface reflection of Gaussian beams is decomposed into a superposition of Gaussian beams. The beam parameters are reconstructed to a very high accuracy. The data in the second example is not a superposition of a finite number of Gaussian beams. The wave field to be approximated is generated by a finite difference method for a geometry with two slits. The accuracy in the decomposition increases monotonically with the number of beams.

  12. Compressive tracking with incremental multivariate Gaussian distribution

    NASA Astrophysics Data System (ADS)

    Li, Dongdong; Wen, Gongjian; Zhu, Gao; Zeng, Qiaoling

    2016-09-01

    Various approaches have been proposed for robust visual tracking, among which compressive tracking (CT) yields promising performance. In CT, Haar-like features are efficiently extracted with a very sparse measurement matrix and modeled as an online updated naïve Bayes classifier to account for target appearance change. The naïve Bayes classifier ignores overlap between Haar-like features and assumes that Haar-like features are independently distributed, which leads to drift in complex scenario. To address this problem, we present an extended CT algorithm, which assumes that all Haar-like features are correlated with each other and have multivariate Gaussian distribution. The mean vector and covariance matrix of multivariate normal distribution are incrementally updated with constant computational complexity to adapt to target appearance change. Each frame is associated with a temporal weight to expend less modeling power on old observation. Based on temporal weight, an update scheme with changing but convergent learning rate is derived with strict mathematic proof. Compared with CT, our extended algorithm achieves a richer representation of target appearance. The incremental multivariate Gaussian distribution is integrated into the particle filter framework to achieve better tracking performance. Extensive experiments on the CVPR2013 tracking benchmark demonstrate that our proposed tracker achieves superior performance both qualitatively and quantitatively over several state-of-the-art trackers.

  13. Gravitational Wave Emulation Using Gaussian Process Regression

    NASA Astrophysics Data System (ADS)

    Doctor, Zoheyr; Farr, Ben; Holz, Daniel

    2017-01-01

    Parameter estimation (PE) for gravitational wave signals from compact binary coalescences (CBCs) requires reliable template waveforms which span the parameter space. Waveforms from numerical relativity are accurate but computationally expensive, so approximate templates are typically used for PE. These `approximants', while quick to compute, can introduce systematic errors and bias PE results. We describe a machine learning method for generating CBC waveforms and uncertainties using existing accurate waveforms as a training set. Coefficients of a reduced order waveform model are computed and each treated as arising from a Gaussian process. These coefficients and their uncertainties are then interpolated using Gaussian process regression (GPR). As a proof of concept, we construct a training set of approximant waveforms (rather than NR waveforms) in the two-dimensional space of chirp mass and mass ratio and interpolate new waveforms with GPR. We demonstrate that the mismatch between interpolated waveforms and approximants is below the 1% level for an appropriate choice of training set and GPR kernel hyperparameters.

  14. Radiation damping in pulsed Gaussian beams

    NASA Astrophysics Data System (ADS)

    Harvey, Chris; Marklund, Mattias

    2012-01-01

    We consider the effects of radiation damping on the electron dynamics in a Gaussian-beam model of a laser field. For high intensities, i.e., with dimensionless intensity a0≫1, it is found that the dynamics divides into three regimes. For low-energy electrons (low initial γ factor, γ0) the radiation damping effects are negligible. At higher energies, but still at 2γ0a0 one is in a regime of radiation-reaction-induced electron capture. This capture is found to be stable with respect to the spatial properties of the electron beam and results in a significant energy loss of the electrons. In this regime the plane-wave model of the laser field provides a good description of the dynamics, whereas for lower energies the Gaussian-beam and plane-wave models differ significantly. Finally the dynamics is considered for the case of an x-ray free-electron laser field. It is found that the significantly lower intensities of such fields inhibit the damping effects.

  15. On the optimization of Gaussian basis sets

    NASA Astrophysics Data System (ADS)

    Petersson, George A.; Zhong, Shijun; Montgomery, John A.; Frisch, Michael J.

    2003-01-01

    A new procedure for the optimization of the exponents, αj, of Gaussian basis functions, Ylm(ϑ,φ)rle-αjr2, is proposed and evaluated. The direct optimization of the exponents is hindered by the very strong coupling between these nonlinear variational parameters. However, expansion of the logarithms of the exponents in the orthonormal Legendre polynomials, Pk, of the index, j: ln αj=∑k=0kmaxAkPk((2j-2)/(Nprim-1)-1), yields a new set of well-conditioned parameters, Ak, and a complete sequence of well-conditioned exponent optimizations proceeding from the even-tempered basis set (kmax=1) to a fully optimized basis set (kmax=Nprim-1). The error relative to the exact numerical self-consistent field limit for a six-term expansion is consistently no more than 25% larger than the error for the completely optimized basis set. Thus, there is no need to optimize more than six well-conditioned variational parameters, even for the largest sets of Gaussian primitives.

  16. Multiqubit spectroscopy of Gaussian quantum noise

    NASA Astrophysics Data System (ADS)

    Paz-Silva, Gerardo A.; Norris, Leigh M.; Viola, Lorenza

    2017-02-01

    We introduce multipulse quantum noise spectroscopy protocols for spectral estimation of the noise affecting multiple qubits coupled to Gaussian dephasing environments including both classical and quantum sources. Our protocols are capable of reconstructing all the noise auto- and cross-correlation spectra entering the multiqubit dynamics, providing access, in particular, to the asymmetric spectra associated with nonclassical environments. Our result relies on (i) an exact analytic solution for the reduced multiqubit dynamics that holds in the presence of an arbitrary Gaussian environment and dephasing-preserving control; (ii) the use of specific timing symmetries, which allow for a frequency comb to be engineered for all filter functions of interest, and for the spectra to be related to experimentally accessible observables. We show that quantum spectra have distinctive dynamical signatures, which we explore in two paradigmatic open-system models describing spin and charge qubits coupled to bosonic environments. Complete noise spectroscopy is demonstrated numerically in a realistic setting consisting of two-exciton qubits coupled to a phonon bath. The estimated spectra allow us to accurately predict the exciton dynamics as well as extract the temperature and spectral density of the quantum environment.

  17. Impact of bounded noise on the formation and instability of spiral wave in a 2D Lattice of neurons

    PubMed Central

    Yao, Yuangen; Deng, Haiyou; Yi, Ming; Ma, Jun

    2017-01-01

    Spiral waves in the neocortex may provide a spatial framework to organize cortical oscillations, thus help signal communication. However, noise influences spiral wave. Many previous theoretical studies about noise mainly focus on unbounded Gaussian noise, which contradicts that a real physical quantity is always bounded. Furthermore, non-Gaussian noise is also important for dynamical behaviors of excitable media. Nevertheless, there are no results concerning the effect of bounded noise on spiral wave till now. Based on Hodgkin-Huxley neuron model subjected to bounded noise with the form of Asin[ωt + σW(t)], the influences of bounded noise on the formation and instability of spiral wave in a two-dimensional (2D) square lattice of neurons are investigated in detail by separately adjusting the intensity σ, amplitude A, and frequency f of bounded noise. It is found that the increased intensity σ can facilitate the formation of spiral wave while the increased amplitude A tends to destroy spiral wave. Furthermore, frequency of bounded noise has the effect of facilitation or inhibition on pattern synchronization. Interestingly, for the appropriate intensity, amplitude and frequency can separately induce resonance-like phenomenon. PMID:28220877

  18. Impact of bounded noise on the formation and instability of spiral wave in a 2D Lattice of neurons

    NASA Astrophysics Data System (ADS)

    Yao, Yuangen; Deng, Haiyou; Yi, Ming; Ma, Jun

    2017-02-01

    Spiral waves in the neocortex may provide a spatial framework to organize cortical oscillations, thus help signal communication. However, noise influences spiral wave. Many previous theoretical studies about noise mainly focus on unbounded Gaussian noise, which contradicts that a real physical quantity is always bounded. Furthermore, non-Gaussian noise is also important for dynamical behaviors of excitable media. Nevertheless, there are no results concerning the effect of bounded noise on spiral wave till now. Based on Hodgkin-Huxley neuron model subjected to bounded noise with the form of Asin[ωt + σW(t)], the influences of bounded noise on the formation and instability of spiral wave in a two-dimensional (2D) square lattice of neurons are investigated in detail by separately adjusting the intensity σ, amplitude A, and frequency f of bounded noise. It is found that the increased intensity σ can facilitate the formation of spiral wave while the increased amplitude A tends to destroy spiral wave. Furthermore, frequency of bounded noise has the effect of facilitation or inhibition on pattern synchronization. Interestingly, for the appropriate intensity, amplitude and frequency can separately induce resonance-like phenomenon.

  19. Constraints on scale-dependent non-Gaussianity

    SciTech Connect

    Shandera, Sarah E.

    2007-11-20

    We review why detection of non-Gaussianity in the spectrum of primordial fluctuations would be an indication of interesting inflationary physics and discuss the observational constraints on a simple type of scale-dependent non-Gaussianity. In particular, if the amount non-Gaussianity increases during inflation then observations on scales smaller than those probed by the Cosmic Microwave Background may provide important constraints. Clusters number counts can be a useful tool in this context.

  20. Relaxation oscillations in a laser with a Gaussian mirror.

    PubMed

    Mossakowska-Wyszyńska, Agnieszka; Witoński, Piotr; Szczepański, Paweł

    2002-03-20

    We present an analysis of the relaxation oscillations in a laser with a Gaussian mirror by taking into account the three-dimensional spatial field distribution of the laser modes and the spatial hole burning effect. In particular, we discuss the influence of the Gaussian mirror peak reflectivity and a Gaussian parameter on the damping rate and frequency of the relaxation oscillation for two different laser structures, i.e., with a classically unstable resonator and a classically stable resonator.