Science.gov

Sample records for 2d graphene oxide

  1. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  2. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  3. Bottom-Up Preparation of Ultrathin 2D Aluminum Oxide Nanosheets by Duplicating Graphene Oxide.

    PubMed

    Huang, Zhifeng; Zhou, Anan; Wu, Jifeng; Chen, Yunqiang; Lan, Xiaoli; Bai, Hua; Li, Lei

    2016-02-24

    2D ultrathin aluminum oxide (2D-Al2O3) nanosheets are prepared by duplicating graphene oxide. An amorphous precursor of the hydroxide of aluminum is first deposited onto graphene oxide sheets, which are then converted into 2D-Al2 O3 nanosheets by calcination, while the graphene oxide is removed. The 2D-Al2O3 nanosheets have a large specific surface area and a superior adsorption capacity to fluoride ions. PMID:26678843

  4. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-01

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples. PMID:27378648

  5. Manganese oxide nanosheets and a 2D hybrid of graphene-manganese oxide nanosheets synthesized by liquid-phase exfoliation

    NASA Astrophysics Data System (ADS)

    Coelho, João; Mendoza-Sánchez, Beatriz; Pettersson, Henrik; Pokle, Anuj; McGuire, Eva K.; Long, Edmund; McKeon, Lorcan; Bell, Alan P.; Nicolosi, Valeria

    2015-06-01

    Manganese oxide nanosheets were synthesized using liquid-phase exfoliation that achieved suspensions in isopropanol (IPA) with concentrations of up to 0.45 mg ml-1. A study of solubility parameters showed that the exfoliation was optimum in N,N-dimethylformamide followed by IPA and diethylene glycol. IPA was the solvent of choice due to its environmentally friendly nature and ease of use for further processing. For the first time, a hybrid of graphene and manganese oxide nanosheets was synthesized using a single-step co-exfoliation process. The two-dimensional (2D) hybrid was synthesized in IPA suspensions with concentrations of up to 0.5 mg ml-1 and demonstrated stability against re-aggregation for up to six months. The co-exfoliation was found to be a energetically favorable process in which both solutes, graphene and manganese oxide nanosheets, exfoliate with an improved yield as compared to the single-solute exfoliation procedure. This work demonstrates the remarkable versatility of liquid-phase exfoliation with respect to the synthesis of hybrids with tailored properties, and it provides proof-of-concept ground work for further future investigation and exploitation of hybrids made of two or more 2D nanomaterials that have key complementary properties for various technological applications.

  6. Atomic thin titania nanosheet-coupled reduced graphene oxide 2D heterostructures for enhanced photocatalytic activity and fast lithium storage

    NASA Astrophysics Data System (ADS)

    Li, Dong Jun; Huang, Zhegang; Hwang, Tae Hoon; Narayan, Rekha; Choi, Jang Wook; Kim, Sang Ouk

    2016-03-01

    Realizing practical high performance materials and devices using the properties of 2D materials is of key research interest in the materials science field. In particular, building well-defined heterostructures using more than two different 2D components in a rational way is highly desirable. In this paper, a 2D heterostructure consisting of atomic thin titania nanosheets densely grown on reduced graphene oxide surface is successfully prepared through incorporating polymer functionalized graphene oxide into the novel TiO2 nanosheets synthesis scheme. As a result of the synergistic combination of a highly accessible surface area and abundant interface, which can modulate the physicochemical properties, the resultant heterostructure can be used in high efficiency visible light photocatalysis as well as fast energy storage with a long lifecycle. [Figure not available: see fulltext.

  7. 2D/2D nano-hybrids of γ-MnO₂ on reduced graphene oxide for catalytic ozonation and coupling peroxymonosulfate activation.

    PubMed

    Wang, Yuxian; Xie, Yongbing; Sun, Hongqi; Xiao, Jiadong; Cao, Hongbin; Wang, Shaobin

    2016-01-15

    Two-dimensional reduced graphene oxide (2D rGO) was employed as both a shape-directing medium and support to fabricate 2D γ-MnO2/2D rGO nano-hybrids (MnO2/rGO) via a facile hydrothermal route. For the first time, the 2D/2D hybrid materials were used for catalytic ozonation of 4-nitrophenol. The catalytic efficiency of MnO2/rGO was much higher than either MnO2 or rGO only, and rGO was suggested to play the role for promoting electron transfers. Quenching tests using tert-butanol, p-benzoquinone, and sodium azide suggested that the major radicals responsible for 4-nitrophenol degradation and mineralization are O2(-) and (1)O2, but not ·OH. Reusability tests demonstrated a high stability of the materials in catalytic ozonation with minor Mn leaching below 0.5 ppm. Degradation mechanism, reaction kinetics, reusability and a synergistic effect between catalytic ozonation and coupling peroxymonosulfate (PMS) activation were also discussed. PMID:26342576

  8. 2D Graphene Oxide Nanosheets as an Adhesive Over-Coating Layer for Flexible Transparent Conductive Electrodes

    NASA Astrophysics Data System (ADS)

    Moon, In Kyu; Kim, Jae Il; Lee, Hanleem; Hur, Kangheon; Kim, Woon Chun; Lee, Hyoyoung

    2013-01-01

    In recent, highly transparent and flexible, two-dimensional (2D) graphene oxide (GO) nanosheet has been paid attention for various applications. Due to an existence of a large amount of oxygen functional groups, the single 2D GO nanosheet has an insulating, transparent, highly dispersible in the eco-friendly water, and hydrophilic property that has strong adhesion to the hydrophilic surface, which will be the best candidate for the use of an over-coating layer (OCL) and protecting layer for a conductive nanowire based indium-free transparent conductive film (TCF). The ultrathin 2D adhesive GO OCL nanosheet is expected to tightly hold silver nanowires (AgNWs), reduce sheet resistance and produce uniform TCF, providing complete solution that simultaneously solves a high haze, low transparency with a conventional OCL and mechanical instability in cases without a thick OCL. Our novel 2D insulating and hydrophilic GO OCL successfully provided a large-area, flexible, and highly transparent AgNW TCF.

  9. Large-scale fabrication of 2-D nanoporous graphene using a thin anodic aluminum oxide etching mask.

    PubMed

    Lee, Jae-Hyun; Jang, Yamujin; Heo, Keun; Lee, Jeong-Mi; Choi, Soon Hyung; Joo, Won-Jae; Hwang, Sung Woo; Whang, Dongmok

    2013-11-01

    A large-scale nanoporous graphene (NPG) fabrication method via a thin anodic aluminum oxide (AAO) etching mask is presented in this paper. A thin AAO film is successfully transferred onto a hydrophobic graphene surface under no external force. The AAO film is completely stacked on the graphene due to the van der Waals force. The neck width of the NPG can be controlled ranging from 10 nm to 30 nm with different AAO pore widening times. Extension of the NPG structure is demonstrated on a centimeter scale up to 2 cm2. AAO and NPG structures are characterized using optical microscopy (OM), Raman spectroscopy and field-emission scanning electron microscopy (FE-SEM). A field effect transistor (FET) is realized by using NPG. Its electrical characteristics turn out to be different from that of pristine graphene, which is due to the periodic nanostructures. The proposed fabrication method could be adapted to a future graphene-based nano device. PMID:24245263

  10. Probing the effects of 2D confinement on hydrogen dynamics in water and ice adsorbed in graphene oxide sponges.

    PubMed

    Romanelli, Giovanni; Senesi, Roberto; Zhang, Xuan; Loh, Kian Ping; Andreani, Carla

    2015-12-21

    We studied the single particle dynamics of water and ice adsorbed in graphene oxide (GO) sponges at T = 293 K and T = 20 K. We used Deep Inelastic Neutron Scattering (DINS) at the ISIS neutron and muon spallation source to derive the hydrogen mean kinetic energy, 〈EK〉, and momentum distribution, n(p). The goal of this work was to study the hydrogen dynamics under 2D confinement and the potential energy surface, fingerprinting the hydrogen interaction with the layered structure of the GO sponge. The observed scattering is interpreted within the framework of the impulse approximation. Samples of both water and ice adsorbed in GO show n(p) functions with almost harmonic and anisotropic line shapes and 〈EK〉 values in excess of the values found at the corresponding temperatures in the bulk. The hydrogen dynamics are discussed in the context of the interaction between the interfacial water and ice and the confining hydrophilic surface of the GO sponge. PMID:26556604

  11. A single-stage functionalization and exfoliation method for the production of graphene in water: stepwise construction of 2D-nanostructured composites with iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ihiawakrim, Dris; Ersen, Ovidiu; Melin, Frédéric; Hellwig, Petra; Janowska, Izabela; Begin, Dominique; Baaziz, Walid; Begin-Colin, Sylvie; Pham-Huu, Cuong; Baati, Rachid

    2013-09-01

    A practically simple top-down process for the exfoliation of graphene (GN) and few-layer graphene (FLG) from graphite is described. We have discovered that a biocompatible amphiphilic pyrene-based hexahistidine peptide is able to exfoliate, functionalize, and dissolve few layer graphene flakes in pure water under exceptionally mild, sustainable and virtually innocuous low intensity cavitation conditions. Large area functionalized graphene flakes with the hexahistidine oligopeptide (His6-TagGN = His6@GN) have been produced efficiently at room temperature and characterized by TEM, Raman, and UV spectroscopy. Conductivity experiments carried out on His6-TagGN samples revealed superior electric performances as compared to reduced graphene oxide (rGO) and non-functionalized graphene, demonstrating the non-invasive features of our non-covalent functionalization process. We postulated a rational exfoliation mechanism based on the intercalation of the peptide amphiphile under cavitational chemistry. We also demonstrated the ability of His6-TagGN nanoassemblies to self-assemble spontaneously with inorganic iron oxide nanoparticles generating magnetic two-dimensional (2D) His6-TagGN/Fe3O4 nanocomposites under mild and non-hydrothermal conditions. The set of original experiments described here open novel perspectives in the facile production of water dispersible high quality GN and FLG sheets that will improve and facilitate the interfacing, processing and manipulation of graphene for promising applications in catalysis, nanocomposite construction, integrated nanoelectronic devices and bionanotechnology.A practically simple top-down process for the exfoliation of graphene (GN) and few-layer graphene (FLG) from graphite is described. We have discovered that a biocompatible amphiphilic pyrene-based hexahistidine peptide is able to exfoliate, functionalize, and dissolve few layer graphene flakes in pure water under exceptionally mild, sustainable and virtually innocuous low

  12. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  13. 2D nanostructures for water purification: graphene and beyond.

    PubMed

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future. PMID:27506268

  14. 2D materials: Graphene and others

    NASA Astrophysics Data System (ADS)

    Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh

    2016-05-01

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  15. Ion Transport in 2-D Graphene Nanochannels

    NASA Astrophysics Data System (ADS)

    Xie, Quan; Foo, Elbert; Duan, Chuanhua

    2015-11-01

    Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).

  16. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  17. Synthesis of 2D/2D Structured Mesoporous Co3O4 Nanosheet/N-Doped Reduced Graphene Oxide Composites as a Highly Stable Negative Electrode for Lithium Battery Applications.

    PubMed

    Sennu, Palanichamy; Kim, Hyo Sang; An, Jae Youn; Aravindan, Vanchiappan; Lee, Yun-Sung

    2015-08-01

    Mesoporous Co3O4 nanosheets (Co3 O4 -NS) and nitrogen-doped reduced graphene oxide (N-rGO) are synthesized by a facile hydrothermal approach, and the N-rGO/Co3O4 -NS composite is formulated through an infiltration procedure. Eventually, the obtained composites are subjected to various characterization techniques, such as XRD, Raman spectroscopy, surface area analysis, X-ray photoelectron spectroscopy (XPS), and TEM. The lithium-storage properties of N-rGO/Co3O4 -NS composites are evaluated in a half-cell assembly to ascertain their suitability as a negative electrode for lithium-ion battery applications. The 2D/2D nanostructured mesoporous N-rGO/Co3O4 -NS composite delivered a reversible capacity of about 1305 and 1501 mAh g(-1) at a current density of 80 mA g(-1) for the 1st and 50th cycles, respectively. Furthermore, excellent cyclability, rate capability, and capacity retention characteristics are noted for the N-rGO/Co3O4 -NS composite. This improved performance is mainly related to the existence of mesoporosity and a sheet-like 2D hierarchical morphology, which translates into extra space for lithium storage and a reduced electron pathway. Also, the presence of N-rGO and carbon shells in Co3O4 -NS should not be excluded from such exceptional performance, which serves as a reliable conductive channel for electrons and act as synergistically to accommodate volume expansion upon redox reactions. Ex-situ TEM, impedance spectroscopy, and XPS, are also conducted to corroborate the significance of the 2D morphology towards sustained lithium storage. PMID:26033848

  18. Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials

    NASA Astrophysics Data System (ADS)

    Kim, Sang Jin; Choi, Kyoungjun; Lee, Bora; Kim, Yuna; Hong, Byung Hee

    2015-07-01

    Recently, 2D materials have been intensively studied as emerging materials for future electronics, including flexible electronics, photonics, and electrochemical energy storage devices. Among representative 2D materials (such as graphene, boron nitride, and transition metal dichalcogenides) that exhibit extraordinary properties, graphene stands out in the flexible electronics field due to its combination of high electron mobility, high thermal conductivity, high specific surface area, high optical transparency, excellent mechanical flexibility, and environmental stability. This review covers the synthesis, transfer, and characterization methods of graphene and 2D materials and graphene's application to flexible devices as well as comparison with other competing materials.

  19. Tailor-made Au@Ag core-shell nanoparticle 2D arrays on protein-coated graphene oxide with assembly enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Wang, Huiqiao; Liu, Jinbin; Wu, Xuan; Tong, Zhonghua; Deng, Zhaoxiang

    2013-05-01

    Water-dispersible two-dimensional (2D) assemblies of Au@Ag core-shell nanoparticles are obtained through a highly selective electroless silver deposition on pre-assembled gold nanoparticles on bovine serum albumin (BSA)-coated graphene oxide (BSA-GO). While neither BSA-GO nor AuNP-decorated BSA-GO shows any antibacterial ability, the silver-coated GO@Au nanosheets (namely GO@Au@Ag) exhibit an enhanced antibacterial activity against Gram-negative Escherichia coli (E. coli) bacteria, superior to unassembled Au@Ag nanoparticles and even ionic Ag. Such an improvement may be attributed to the increased local concentration of silver nanoparticles around a bacterium and a polyvalent interaction with the bacterial surface. In addition, the colloidal stability of this novel nano-antimicrobial against the formation of random nanoparticle aggregates guarantees a minimized activity loss of the Au@Ag nanoparticles. The antibacterial efficacy of GO@Au@Ag is less sensitive to the existence of Cl-, in comparison with silver ions, providing another advantage for wound dressing applications. Our research unambiguously reveals a strong and very specific interaction between the GO@Au@Ag nanoassembly and E. coli, which could be an important clue toward a rational design, synthesis and assembly of innovative and highly active antibacterial nanomaterials.

  20. Graphene and graphene-like 2D materials for optical biosensing and bioimaging: a review

    NASA Astrophysics Data System (ADS)

    Zhu, Chengzhou; Du, Dan; Lin, Yuehe

    2015-09-01

    The increasing demands of bioassay and biomedical applications have significantly promoted the rational design and fabrication of a wide range of functional nanomaterials. Coupling these advanced nanomaterials with biomolecule recognition events leads to novel sensing and diagnostic platforms. Because of their unique structures and multifunctionalities, two-dimensional nanomaterials, such as graphene and graphene-like materials (e.g., graphitic carbon nitride, transition metal dichalcogenides, boron nitride, and transition metal oxides), have stimulated great interest in the field of optical biosensors and imaging because of their innovative mechanical, physicochemical and optical properties. Depending on the different applications, the graphene and graphene-like nanomaterials can be tailored to form either fluorescent emitters or efficient fluorescence quenchers, making them powerful platforms for fabricating a series of optical biosensors to sensitively detect various targets including ions, small biomolecules, DNA/RNA and proteins. This review highlights the recent progress in optical biosensors based on graphene and graphene-like 2D materials and their imaging applications. Finally, the opportunities and some critical challenges in this field are also addressed.

  1. Graphene based 2D-materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  2. Topological Toughening of graphene and other 2D materials

    NASA Astrophysics Data System (ADS)

    Gao, Huajian

    It has been claimed that graphene, with the elastic modulus of 1TPa and theoretical strength as high as 130 GPa, is the strongest material. However, from an engineering point of view, it is the fracture toughness that determines the actual strength of materials, as crack-like flaws (i.e., cracks, holes, notches, corners, etc.) are inevitable in the design, fabrication, and operation of practical devices and systems. Recently, it has been demonstrated that graphene has very low fracture toughness, in fact close to that of ideally brittle solids. These findings have raised sharp questions and are calling for efforts to explore effective methods to toughen graphene. Recently, we have been exploring the potential use of topological effects to enhance the fracture toughness of graphene. For example, it has been shown that a sinusoidal graphene containing periodically distributed disclination quadrupoles can achieve a mode I fracture toughness nearly twice that of pristine graphene. Here we report working progresses on further studies of topological toughening of graphene and other 2D materials. A phase field crystal method is adopted to generate the atomic coordinates of material with specific topological patterns. We then perform molecular dynamics simulations of fracture in the designed samples, and observe a variety of toughening mechanisms, including crack tip blunting, crack trapping, ligament bridging, crack deflection and daughter crack initiation and coalescence.

  3. Self-Construction from 2D to 3D: One-Pot Layer-by-Layer Assembly of Graphene Oxide Sheets Held Together by Coordination Polymers.

    PubMed

    Zakaria, Mohamed B; Li, Cuiling; Ji, Qingmin; Jiang, Bo; Tominaka, Satoshi; Ide, Yusuke; Hill, Jonathan P; Ariga, Katsuhiko; Yamauchi, Yusuke

    2016-07-11

    Deposition of Ni-based cyanide bridged coordination polymer (NiCNNi) flakes onto the surfaces of graphene oxide (GO) sheets, which allows precise control of the resulting lamellar nanoarchitecture by in situ crystallization, is reported. GO sheets are utilized as nucleation sites that promote the optimized crystal growth of NiCNNi flakes. The NiCNNi-coated GO sheets then self-assemble and are stabilized as ordered lamellar nanomaterials. Regulated thermal treatment under nitrogen results in a Ni3 C-GO composite with a similar morphology to the starting material, and the Ni3 C-GO composite exhibits outstanding electrocatalytic activity and excellent durability for the oxygen reduction reaction. PMID:27167720

  4. Biological applications of graphene oxide

    NASA Astrophysics Data System (ADS)

    Gürel, Hikmet Hakan; Salmankurt, Bahadır

    2016-03-01

    Graphene as a 2D material has unique chemical and electronic properties. Because of its unique physical, chemical, and electronic properties, its interesting shape and size make it a promising nanomaterial in many biological applications. However, the lower water-solubility and the irreversible aggregation due to the strong π-π stacking hinder the wide application of graphene nanosheets in biomedical field. Thus, graphene oxide (GO), one derivative of graphene, has been used more frequently in the biological system owing to its relatively higher water solubility and biocompatibility. Recently, it has been demonstrated that nanomaterials with different functional groups on the surface can be used to bind the drug molecules with high affinity. GO has different functional groups such as H, OH and O on its surface; it can be a potential candidate as a drug carrier. The interactions of biomolecules and graphene like structures are long-ranged and very weak. Development of new techniques is very desirable for design of bioelectronics sensors and devices. In this work, we present first-principles spin polarized calculations within density functional theory to calculate effects of charging on DNA/RNA nucleobases on graphene oxide. It is shown that how modify structural and electronic properties of nucleobases on graphene oxide by applied charging.

  5. Valley and electric photocurrents in 2D silicon and graphene

    SciTech Connect

    Tarasenko, S. A.; Ivchenko, E. L.; Olbrich, P.; Ganichev, S. D.

    2013-12-04

    We show that the optical excitation of multi-valley systems leads to valley currents which depend on the light polarization. The net electric current, determined by the vector sum of single-valley contributions, vanishes for some peculiar distributions of carriers in the valley and momentum spaces forming a pure valley current. We report on the study of this phenomenon, both experimental and theoretical, for graphene and 2D electron channels on the silicon surface.

  6. Graphene as a platform to study 2D electronic transitions

    NASA Astrophysics Data System (ADS)

    Bouchiat, Vincent; Kessler, Brian; Girit, Caglar; Zettl, Alex

    2010-03-01

    The easily accessible 2D electron gas in graphene provides an ideal platform on which to tune, via application of an electrostatic gate, the coupling between electronically ordered dopants deposited on its surface. To demonstrate this concept, we have measured arrays of superconducting clusters deposited on Graphene capable to induce via the proximity effect a gate-tunable superconducting transition. Using a simple fabrication procedure based on metal layer dewetting, doped graphene sheets can be decorated with a non percolating network on nanoscale tin clusters. This hybrid material displays a two-step superconducting transition. The higher transition step is gate independent and corresponds to the transition of the tin clusters to the superconducting state. The lower transition step towards a real zero resistance state exhibiting a well developped supercurrent, is strongly gate-tunable and is quantitatively described by Berezinskii-Kosterlitz-Thouless 2D vortex unbinding. Our simple self-assembly method and tunable coupling can readily be extended to other electronic order parameters such as ferro/antiferromagnetism, charge/spin density waves using similar decoration techniques. [1] B. M. Kessler, C.O. Girit, A. Zettl, and V. Bouchiat, Tunable Superconducting Phase Transition in Metal-Decorated Graphene Sheets submitted to PRL, arXiv:0907.3661

  7. Biomedical applications of graphene and graphene oxide.

    PubMed

    Chung, Chul; Kim, Young-Kwan; Shin, Dolly; Ryoo, Soo-Ryoon; Hong, Byung Hee; Min, Dal-Hee

    2013-10-15

    Graphene has unique mechanical, electronic, and optical properties, which researchers have used to develop novel electronic materials including transparent conductors and ultrafast transistors. Recently, the understanding of various chemical properties of graphene has facilitated its application in high-performance devices that generate and store energy. Graphene is now expanding its territory beyond electronic and chemical applications toward biomedical areas such as precise biosensing through graphene-quenched fluorescence, graphene-enhanced cell differentiation and growth, and graphene-assisted laser desorption/ionization for mass spectrometry. In this Account, we review recent efforts to apply graphene and graphene oxides (GO) to biomedical research and a few different approaches to prepare graphene materials designed for biomedical applications. Because of its excellent aqueous processability, amphiphilicity, surface functionalizability, surface enhanced Raman scattering (SERS), and fluorescence quenching ability, GO chemically exfoliated from oxidized graphite is considered a promising material for biological applications. In addition, the hydrophobicity and flexibility of large-area graphene synthesized by chemical vapor deposition (CVD) allow this material to play an important role in cell growth and differentiation. The lack of acceptable classification standards of graphene derivatives based on chemical and physical properties has hindered the biological application of graphene derivatives. The development of an efficient graphene-based biosensor requires stable biofunctionalization of graphene derivatives under physiological conditions with minimal loss of their unique properties. For the development graphene-based therapeutics, researchers will need to build on the standardization of graphene derivatives and study the biofunctionalization of graphene to clearly understand how cells respond to exposure to graphene derivatives. Although several

  8. Graphene and graphene oxide for desalination.

    PubMed

    You, Yi; Sahajwalla, Veena; Yoshimura, Masamichi; Joshi, Rakesh K

    2016-01-01

    There is a huge scope for graphene-based materials to be used as membranes for desalination. A very recent study has confirmed that 100% salt rejection can be achieved for commonly used ions by utilizing single layer nonporous graphene. However, the cost effective fabrication procedure for graphene oxide membranes with precise control of pore size can offer a practical solution for filtration if one can achieve 100% percent salt rejection. PMID:26615882

  9. Raman enhancement by graphene-Ga2O3 2D bilayer film

    PubMed Central

    2014-01-01

    2D β-Ga2O3 flakes on a continuous 2D graphene film were prepared by a one-step chemical vapor deposition on liquid gallium surface. The composite was characterized by optical microscopy, scanning electron microscopy, Raman spectroscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy (XPS). The experimental results indicate that Ga2O3 flakes grew on the surface of graphene film during the cooling process. In particular, tenfold enhancement of graphene Raman scattering signal was detected on Ga2O3 flakes, and XPS indicates the C-O bonding between graphene and Ga2O3. The mechanism of Raman enhancement was discussed. The 2D Ga2O3-2D graphene structure may possess potential applications. PMID:24472433

  10. Graphene Oxide Nanosheets Reshape Synaptic Function in Cultured Brain Networks.

    PubMed

    Rauti, Rossana; Lozano, Neus; León, Veronica; Scaini, Denis; Musto, Mattia; Rago, Ilaria; Ulloa Severino, Francesco P; Fabbro, Alessandra; Casalis, Loredana; Vázquez, Ester; Kostarelos, Kostas; Prato, Maurizio; Ballerini, Laura

    2016-04-26

    Graphene offers promising advantages for biomedical applications. However, adoption of graphene technology in biomedicine also poses important challenges in terms of understanding cell responses, cellular uptake, or the intracellular fate of soluble graphene derivatives. In the biological microenvironment, graphene nanosheets might interact with exposed cellular and subcellular structures, resulting in unexpected regulation of sophisticated biological signaling. More broadly, biomedical devices based on the design of these 2D planar nanostructures for interventions in the central nervous system require an accurate understanding of their interactions with the neuronal milieu. Here, we describe the ability of graphene oxide nanosheets to down-regulate neuronal signaling without affecting cell viability. PMID:27030936

  11. The Enzymatic Oxidation of Graphene Oxide

    PubMed Central

    Kotchey, Gregg P.; Allen, Brett L.; Vedala, Harindra; Yanamala, Naveena; Kapralov, Alexander A.; Tyurina, Yulia Y.; Klein-Seetharaman, Judith; Kagan, Valerian E.; Star, Alexander

    2011-01-01

    Two-dimensional graphitic carbon is a new material with many emerging applications, and studying its chemical properties is an important goal. Here, we reported a new phenomenon – the enzymatic oxidation of a single layer of graphitic carbon by horseradish peroxidase (HRP). In the presence of low concentrations of hydrogen peroxide (~40 µM), HRP catalyzed the oxidation of graphene oxide, which resulted in the formation of holes on its basal plane. During the same period of analysis, HRP failed to oxidize chemically reduced graphene oxide (RGO). The enzymatic oxidation was characterized by Raman, UV-Vis, EPR and FT-IR spectroscopy, TEM, AFM, SDS-PAGE, and GC-MS. Computational docking studies indicated that HRP was preferentially bound to the basal plane rather than the edge for both graphene oxide and RGO. Due to the more dynamic nature of HRP on graphene oxide, the heme active site of HRP was in closer proximity to graphene oxide compared to RGO, thereby facilitating the oxidation of the basal plane of graphene oxide. We also studied the electronic properties of the reduced intermediate product, holey reduced graphene oxide (hRGO), using field-effect transistor (FET) measurements. While RGO exhibited a V-shaped transfer characteristic similar to a single layer of graphene that was attributed to its zero band gap, hRGO demonstrated a p-type semiconducting behavior with a positive shift in the Dirac points. This p-type behavior rendered hRGO, which can be conceptualized as interconnected graphene nanoribbons, as a potentially attractive material for FET sensors. PMID:21344859

  12. Substrate-Sensitive Graphene Oxidation.

    PubMed

    Zhang, Zhuhua; Yin, Jun; Liu, Xiaofei; Li, Jidong; Zhang, Jiahuan; Guo, Wanlin

    2016-03-01

    The inertness of graphene toward reaction with ambient molecules is essential for realizing durable devices with stable performance. Many device applications require graphene to contact with substrates, but whose impact on the chemical property of graphene has been largely overlooked. Here, we combine comprehensive first-principles analyses with experiments to show that graphene oxidation is highly sensitive to substrates. Graphene remains inert on SiO2 and hexagonal boron nitride but becomes increasingly weak against oxidation on metal substrates because of enhanced charge transfer and chemical interaction between them. In particular, Ni and Co substrates lead to spontaneous oxidation of graphene, while a Cu substrate maximally promotes the oxygen diffusion on graphene, with an estimated diffusivity 13 orders of magnitude higher than that on freestanding graphene. Bilayer graphene is revealed to have high oxidation resistance independent of substrate and thus is a better choice for high-performance nanoelectronics. Our findings should be extendable to a wide spectrum of chemical functionalizations of two-dimensional materials mediated by substrates. PMID:26884318

  13. Understanding the interaction between energetic ions and freestanding graphene towards practical 2D perforation

    NASA Astrophysics Data System (ADS)

    Buchheim, Jakob; Wyss, Roman M.; Shorubalko, Ivan; Park, Hyung Gyu

    2016-04-01

    We report experimentally and theoretically the behavior of freestanding graphene subjected to bombardment of energetic ions, investigating the capability of large-scale patterning of freestanding graphene with nanometer sized features by focused ion beam technology. A precise control over the He+ and Ga+ irradiation offered by focused ion beam techniques enables investigating the interaction of the energetic particles and graphene suspended with no support and allows determining sputter yields of the 2D lattice. We found a strong dependency of the 2D sputter yield on the species and kinetic energy of the incident ion beams. Freestanding graphene shows material semi-transparency to He+ at high energies (10-30 keV) allowing the passage of >97% He+ particles without creating destructive lattice vacancy. Large Ga+ ions (5-30 keV), in contrast, collide far more often with the graphene lattice to impart a significantly higher sputter yield of ~50%. Binary collision theory applied to monolayer and few-layer graphene can successfully elucidate this collision mechanism, in great agreement with experiments. Raman spectroscopy analysis corroborates the passage of a large fraction of He+ ions across graphene without much damaging the lattice whereas several colliding ions create single vacancy defects. Physical understanding of the interaction between energetic particles and suspended graphene can practically lead to reproducible and efficient pattern generation of unprecedentedly small features on 2D materials by design, manifested by our perforation of sub-5 nm pore arrays. This capability of nanometer-scale precision patterning of freestanding 2D lattices shows the practical applicability of focused ion beam technology to 2D material processing for device fabrication and integration.We report experimentally and theoretically the behavior of freestanding graphene subjected to bombardment of energetic ions, investigating the capability of large-scale patterning of

  14. Understanding the interaction between energetic ions and freestanding graphene towards practical 2D perforation.

    PubMed

    Buchheim, Jakob; Wyss, Roman M; Shorubalko, Ivan; Park, Hyung Gyu

    2016-04-21

    We report experimentally and theoretically the behavior of freestanding graphene subjected to bombardment of energetic ions, investigating the capability of large-scale patterning of freestanding graphene with nanometer sized features by focused ion beam technology. A precise control over the He(+) and Ga(+) irradiation offered by focused ion beam techniques enables investigating the interaction of the energetic particles and graphene suspended with no support and allows determining sputter yields of the 2D lattice. We found a strong dependency of the 2D sputter yield on the species and kinetic energy of the incident ion beams. Freestanding graphene shows material semi-transparency to He(+) at high energies (10-30 keV) allowing the passage of >97% He(+) particles without creating destructive lattice vacancy. Large Ga(+) ions (5-30 keV), in contrast, collide far more often with the graphene lattice to impart a significantly higher sputter yield of ∼50%. Binary collision theory applied to monolayer and few-layer graphene can successfully elucidate this collision mechanism, in great agreement with experiments. Raman spectroscopy analysis corroborates the passage of a large fraction of He(+) ions across graphene without much damaging the lattice whereas several colliding ions create single vacancy defects. Physical understanding of the interaction between energetic particles and suspended graphene can practically lead to reproducible and efficient pattern generation of unprecedentedly small features on 2D materials by design, manifested by our perforation of sub-5 nm pore arrays. This capability of nanometer-scale precision patterning of freestanding 2D lattices shows the practical applicability of focused ion beam technology to 2D material processing for device fabrication and integration. PMID:27043304

  15. Raman Characterization of Graphene and 2D TMD Heterostructures

    NASA Astrophysics Data System (ADS)

    Derby, Benjamin; Hight Walker, Angela

    2015-03-01

    We report efforts to produce and characterize graphene and two-dimensional transition-metal dichalcogenides (TMD) heterostructures. Using PDMS stamps, exfoliation of graphene, MoS2, h-BN, and TaS2 precedes the stacking of these mono- and few layers into heterostructures. The goal is to engineer mis-orientation to enhanced Raman signatures of various layers within the heterostructures. Previous studies have reported a Raman signal strength that is angle dependent between bi-layers. Using resonant Raman spectroscopy, we probe the quality of these constructed heterostructures. Ultimately, we plan to combine our optical measurements with an applied magnetic field to probe the complex magneto-Raman interaction. Previous studies show a magneto-phonon resonance at specific field strengths and laser excitations. Our results to date will be summarized.

  16. The 2-D growth of gold on single-layer graphene/Ru(0001): Enhancement of CO adsorption

    SciTech Connect

    Liu, Li; Zhou, Zihao; Guo, Qinlin; Yan, Zhen; Yao, Yunxi; Goodman, D. Wayne

    2011-09-01

    The growth and morphology of two-dimensional (2-D) gold islands on a single-layer graphene supported on Ru(0001) have been studied by scanning tunneling microscopy (STM). Our findings show that gold exhibits 2-D structures up to a gold dosage of 0.75 equivalent monolayers, and that these 2-D gold islands are thermally stable at room temperature. Parallel polarization modulation infrared reflection absorption spectroscopic (PM-IRAS) and high resolution electron energy loss spectroscopic (HREELS) studies indicate that carbon monoxide (CO) adsorbs on these 2-D gold islands at 85 K, showing a characteristic CO stretching feature at 2095 cm-1 for a saturation coverage of CO. The red shift of the CO stretching frequency compared to that on charge neutral gold is consistent with electron transfer from graphene to gold, i.e., an electron-rich gold overlayer. Preliminary data obtained by dosing molecular oxygen onto this CO pre-covered surface suggest that the 2-D gold islands catalyze the oxidation of CO.

  17. The 2-D growth of gold on single-layer graphene/Ru(0001): Enhancement of CO adsorption

    NASA Astrophysics Data System (ADS)

    Liu, Li; Zhou, Zihao; Guo, Qinlin; Yan, Zhen; Yao, Yunxi; Goodman, D. Wayne

    2011-09-01

    The growth and morphology of two-dimensional (2-D) gold islands on a single-layer graphene supported on Ru(0001) have been studied by scanning tunneling microscopy (STM). Our findings show that gold exhibits 2-D structures up to a gold dosage of 0.75 equivalent monolayers, and that these 2-D gold islands are thermally stable at room temperature. Parallel polarization modulation infrared reflection absorption spectroscopic (PM-IRAS) and high resolution electron energy loss spectroscopic (HREELS) studies indicate that carbon monoxide (CO) adsorbs on these 2-D gold islands at 85 K, showing a characteristic CO stretching feature at 2095 cm - 1 for a saturation coverage of CO. The red shift of the CO stretching frequency compared to that on charge neutral gold is consistent with electron transfer from graphene to gold, i.e., an electron-rich gold overlayer. Preliminary data obtained by dosing molecular oxygen onto this CO pre-covered surface suggest that the 2-D gold islands catalyze the oxidation of CO.

  18. Universal Fabrication of 2D Electron Systems in Functional Oxides.

    PubMed

    Rödel, Tobias Chris; Fortuna, Franck; Sengupta, Shamashis; Frantzeskakis, Emmanouil; Fèvre, Patrick Le; Bertran, François; Mercey, Bernard; Matzen, Sylvia; Agnus, Guillaume; Maroutian, Thomas; Lecoeur, Philippe; Santander-Syro, Andrés Felipe

    2016-03-01

    2D electron systems (2DESs) in functional oxides are promising for applications, but their fabrication and use, essentially limited to SrTiO3 -based heterostructures, are hampered by the need for growing complex oxide overlayers thicker than 2 nm using evolved techniques. It is demonstrated that thermal deposition of a monolayer of an elementary reducing agent suffices to create 2DESs in numerous oxides. PMID:26753522

  19. [Solidification of volatile oil with graphene oxide].

    PubMed

    Yan, Hong-Mei; Jia, Xiao-Bin; Zhang, Zhen-Hai; Sun, E; Xu, Yi-Hao

    2015-02-01

    To evaluate the properties of solidifying volatile oil with graphene oxide, clove oil and zedoary turmeric oil were solidified by graphene oxide. The amount of graphene oxide was optimized with the eugenol yield and curcumol yield as criteria. Curing powder was characterized by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The effects of graphene oxide on dissolution in vitro and thermal stability of active components were studied. The optimum solidification ratio of graphene oxide to volatile oil was 1:1. Dissolution rate of active components had rare influence while their thermal stability improved after volatile oil was solidified. Solidifying herbal volatile oil with graphene oxide deserves further study. PMID:25975033

  20. Photochemical Transformation of Graphene Oxide in Sunlight

    EPA Science Inventory

    Graphene oxide (GO) is a graphene derivative that is more easily manufactured in large scale and used to synthesize reduced graphene oxide (rGO) with properties analogous to graphene. In this study, we investigate the photochemical fate of GO under sunlight conditions. The resu...

  1. Reduced graphene oxide molecular sensors.

    PubMed

    Robinson, Jeremy T; Perkins, F Keith; Snow, Eric S; Wei, Zhongqing; Sheehan, Paul E

    2008-10-01

    We demonstrate reduced graphene oxide as the active material for high-performance molecular sensors. Sensors are fabricated from exfoliated graphene oxide platelets that are deposited to form an ultrathin continuous network. These graphene oxide networks are tunably reduced toward graphene by varying the exposure time to a hydrazine hydrate vapor. The conductance change of the networks upon exposure to trace levels of vapor is measured as a function of the chemical reduction. The level of reduction affects both the sensitivity and the level of 1/ f noise. The sensors are capable of detecting 10 s exposures to simulants of the three main classes of chemical-warfare agents and an explosive at parts-per-billion concentrations. PMID:18763832

  2. Highly oxidized graphene oxide and methods for production thereof

    DOEpatents

    Tour, James M.; Kosynkin, Dmitry V.

    2016-08-30

    A highly oxidized form of graphene oxide and methods for production thereof are described in various embodiments of the present disclosure. In general, the methods include mixing a graphite source with a solution containing at least one oxidant and at least one protecting agent and then oxidizing the graphite source with the at least one oxidant in the presence of the at least one protecting agent to form the graphene oxide. Graphene oxide synthesized by the presently described methods is of a high structural quality that is more oxidized and maintains a higher proportion of aromatic rings and aromatic domains than does graphene oxide prepared in the absence of at least one protecting agent. Methods for reduction of graphene oxide into chemically converted graphene are also disclosed herein. The chemically converted graphene of the present disclosure is significantly more electrically conductive than is chemically converted graphene prepared from other sources of graphene oxide.

  3. Free-Standing 2-D Graphene Carbon Nanostructures

    NASA Astrophysics Data System (ADS)

    Holloway, Brian; Quinlan, Ronald; Hou, Kun

    2008-03-01

    Carbon nanosheets -- a new, free-standing, two-dimensional carbon nanostructure -- have been deposited on a metal, semiconductor, and insulating substrates by RF PECVD. Raman, SEM, TEM, SAED, XPS, AES, FTIR, and XRD all indicate that nanosheets are graphite sheets up to 8 μm in height but <=1 nm in edge thickness. The nanosheets stand off the growth substrate in a manner similar to aligned nanotubes grown by CVD. In contrast to nanotubes, nanosheets do not require catalyst for growth and can be patterned after deposition using standard lithographic techniques. Hydrogen etching promotes the formation of the atomically thin structures while the anisotropic dipole created in the graphene planes by the plasma sheath promotes the vertical orientation. Due to their uniform height and the large number of edge emission sites, nanosheets have proven to be excellent field emitters. Nanosheet samples have produced up to 33 mA of current (32 mm^2 sample area); similar nanosheet samples have sustained 1.3 mA of current over 200 hours of testing with no degradation.

  4. Raman 2D response of graphene in hBN sandwich as a function of doping

    NASA Astrophysics Data System (ADS)

    Wang, Xuanye; Christopher, Jason; Swan, Anna

    Graphene on SiO2 is plagued by accidental strain and charge doping which cause significant deterioration in electrical, thermal and optical properties. The stacking of Van der Waals layers can not only provide better properties, e.g., electrical mobility, but can also be used for novel interactions between layers. Here we use gated and contacted hBN-graphene-hBN heterostructures to calibrate the 2D Raman response to doping, particularly the low doping region less than 1 ×1012 cm-2 . This will enable the use of the correlation between Raman G and 2D band to determine effects from doping and strain or compression separately. The dielectric environment of hBN as compared to SiO2 affects the phonon dispersion and the Fermi velocity which results in approximately 7 cm-1 blue shift in 2D band per side of graphene contacted with hBN. Charge dependent Raman measurements of the G band provide the means to determine the electron-phonon coupling and the Fermi velocity for graphene in an hBN sandwich. NSF DMR 1411008.

  5. Basal-plane dislocations in bilayer graphene - Peculiarities in a quasi-2D material

    NASA Astrophysics Data System (ADS)

    Butz, Benjamin

    2015-03-01

    Dislocations represent one of the most fascinating and fundamental concepts in materials science. First and foremost, they are the main carriers of plastic deformation in crystalline materials. Furthermore, they can strongly alter the local electronic or optical properties of semiconductors and ionic crystals. In layered crystals like graphite dislocation movement is restricted to the basal plane. Thus, those basal-plane dislocations cannot escape enabling their confinement in between only two atomic layers of the material. So-called bilayer graphene is the thinnest imaginable quasi-2D crystal to explore the nature and behavior of dislocations under such extreme boundary conditions. Robust graphene membranes derived from epitaxial graphene on SiC provide an ideal platform for their investigation. The presentation will give an insight in the direct observation of basal-plane partial dislocations by transmission electron microscopy and their detailed investigation by diffraction contrast analysis and atomistic simulations. The investigation reveals striking size effects. First, the absence of stacking fault energy, a unique property of bilayer graphene, leads to a characteristic dislocation pattern, which corresponds to an alternating AB <--> BA change of the stacking order. Most importantly, our experiments in combination with atomistic simulations reveal a pronounced buckling of the bilayer graphene membrane, which directly results from accommodation of strain. In fact, the buckling completely changes the strain state of the bilayer graphene and is of key importance for its electronic/spin transport properties. Due to the high degree of disorder in our quasi-2D material it is one of the very few examples for a perfect linear magnetoresistance, i.e. the linear dependency of the in-plane electrical resistance on a magnetic field applied perpendicular to the graphene sheet up to field strengths of more than 60 T. This research is financed by the German Research

  6. Luminomagnetic bifunctionality of Mn2+-bonded graphene oxide/reduced graphene oxide two dimensional nanosheets

    NASA Astrophysics Data System (ADS)

    Amandeep; Kedawat, Garima; Kumar, Pawan; Anshul, Avaneesh; Deshmukh, Abhay D.; Singh, Om Pal; Gupta, R. K.; Amritphale, S. S.; Gupta, Govind; Singh, V. N.; Gupta, Bipin Kumar

    2015-07-01

    Herein, we report the luminomagnetic bifunctional properties of two-dimensional (2D) Mn2+ bonded graphene oxide (GO)/reduced graphene oxide (RGO) nanosheets synthesized using a facile route of oxidation followed by a solvothermal reduction method. Photoluminescence (PL) studies (excited by different wavelengths) revealed that the resonant energy transfer between Mn2+ and sp3/sp2 clusters of GO/RGO is responsible for the enhancement of emissions. Moreover, pH-sensitive PL behaviors have also been investigated in detail. The ferromagnetic behavior is believed to arise due to defects in Mn2+ bonded GO composites. Thus, present reduction method provides a direct route to tune and enhance the optical properties of GO and RGO nanosheets bonded with Mn2+ ions, which creates an opportunity for various technological applications.Herein, we report the luminomagnetic bifunctional properties of two-dimensional (2D) Mn2+ bonded graphene oxide (GO)/reduced graphene oxide (RGO) nanosheets synthesized using a facile route of oxidation followed by a solvothermal reduction method. Photoluminescence (PL) studies (excited by different wavelengths) revealed that the resonant energy transfer between Mn2+ and sp3/sp2 clusters of GO/RGO is responsible for the enhancement of emissions. Moreover, pH-sensitive PL behaviors have also been investigated in detail. The ferromagnetic behavior is believed to arise due to defects in Mn2+ bonded GO composites. Thus, present reduction method provides a direct route to tune and enhance the optical properties of GO and RGO nanosheets bonded with Mn2+ ions, which creates an opportunity for various technological applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01095k

  7. Ultrafast graphene oxide humidity sensors.

    PubMed

    Borini, Stefano; White, Richard; Wei, Di; Astley, Michael; Haque, Samiul; Spigone, Elisabetta; Harris, Nadine; Kivioja, Jani; Ryhänen, Tapani

    2013-12-23

    Sensors allow an electronic device to become a gateway between the digital and physical worlds, and sensor materials with unprecedented performance can create new applications and new avenues for user interaction. Graphene oxide can be exploited in humidity and temperature sensors with a number of convenient features such as flexibility, transparency and suitability for large-scale manufacturing. Here we show that the two-dimensional nature of graphene oxide and its superpermeability to water combine to enable humidity sensors with unprecedented response speed (∼30 ms response and recovery times). This opens the door to various applications, such as touchless user interfaces, which we demonstrate with a 'whistling' recognition analysis. PMID:24206232

  8. Mesoporous metal oxide graphene nanocomposite materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Kou, Rong; Wang, Donghai

    2016-05-24

    A nanocomposite material formed of graphene and a mesoporous metal oxide having a demonstrated specific capacity of more than 200 F/g with particular utility when employed in supercapacitor applications. A method for making these nanocomposite materials by first forming a mixture of graphene, a surfactant, and a metal oxide precursor, precipitating the metal oxide precursor with the surfactant from the mixture to form a mesoporous metal oxide. The mesoporous metal oxide is then deposited onto a surface of the graphene.

  9. Production of quasi-2D graphene nanosheets through the solvent exfoliation of pitch-based carbon fiber.

    PubMed

    Yeon, Youngju; Lee, Mi Yeon; Kim, Sang Youl; Lee, Jihoon; Kim, Bongsoo; Park, Byoungnam; In, Insik

    2015-09-18

    Stable dispersion of quasi-2D graphene sheets with a concentration up to 1.27 mg mL(-1) was prepared by sonication-assisted solvent exfoliation of pitch-based carbon fiber in N-methyl pyrrolidone with the mass yield of 2.32%. Prepared quasi-2D graphene sheets have multi-layered 2D plate-like morphology with rich inclusions of graphitic carbons, a low number of structural defects, and high dispersion stability in aprotic polar solvents, and facilitate the utilization of quasi-2D graphene sheets prepared from pitch-based carbon fiber for various electronic and structural applications. Thin films of quasi-2D graphene sheets prepared by vacuum filtration of the dispersion of quasi-2D graphene sheets demonstrated electrical conductivity up to 1.14 × 10(4) Ω/□ even without thermal treatment, which shows that pitch-based carbon fiber might be useful as the source of graphene-related nanomaterials. Because pitch-based carbon fiber could be prepared from petroleum pitch, a very cheap structural material for the pavement of asphalt roads, our approach might be promising for the mass production of quasi-2D graphene nanomaterials. PMID:26313887

  10. Production of quasi-2D graphene nanosheets through the solvent exfoliation of pitch-based carbon fiber

    NASA Astrophysics Data System (ADS)

    Yeon, Youngju; Lee, Mi Yeon; Kim, Sang Youl; Lee, Jihoon; Kim, Bongsoo; Park, Byoungnam; In, Insik

    2015-09-01

    Stable dispersion of quasi-2D graphene sheets with a concentration up to 1.27 mg mL-1 was prepared by sonication-assisted solvent exfoliation of pitch-based carbon fiber in N-methyl pyrrolidone with the mass yield of 2.32%. Prepared quasi-2D graphene sheets have multi-layered 2D plate-like morphology with rich inclusions of graphitic carbons, a low number of structural defects, and high dispersion stability in aprotic polar solvents, and facilitate the utilization of quasi-2D graphene sheets prepared from pitch-based carbon fiber for various electronic and structural applications. Thin films of quasi-2D graphene sheets prepared by vacuum filtration of the dispersion of quasi-2D graphene sheets demonstrated electrical conductivity up to 1.14 × 104 Ω/□ even without thermal treatment, which shows that pitch-based carbon fiber might be useful as the source of graphene-related nanomaterials. Because pitch-based carbon fiber could be prepared from petroleum pitch, a very cheap structural material for the pavement of asphalt roads, our approach might be promising for the mass production of quasi-2D graphene nanomaterials.

  11. Synthesis, properties and applications of 2D non-graphene materials.

    PubMed

    Wang, Feng; Wang, Zhenxing; Wang, Qisheng; Wang, Fengmei; Yin, Lei; Xu, Kai; Huang, Yun; He, Jun

    2015-07-24

    As an emerging class of new materials, two-dimensional (2D) non-graphene materials, including layered and non-layered, and their heterostructures are currently attracting increasing interest due to their promising applications in electronics, optoelectronics and clean energy. In contrast to traditional semiconductors, such as Si, Ge and III-V group materials, 2D materials show significant merits of ultrathin thickness, very high surface-to-volume ratio, and high compatibility with flexible devices. Owing to these unique properties, while scaling down to ultrathin thickness, devices based on these materials as well as artificially synthetic heterostructures exhibit novel and surprising functions and performances. In this review, we aim to provide a summary on the state-of-the-art research activities on 2D non-graphene materials. The scope of the review will cover the preparation of layered and non-layered 2D materials, construction of 2D vertical van der Waals and lateral ultrathin heterostructures, and especially focus on the applications in electronics, optoelectronics and clean energy. Moreover, the review is concluded with some perspectives on the future developments in this field. PMID:26134271

  12. Engineering the Charge Transfer in all 2D Graphene-Nanoplatelets Heterostructure Photodetectors.

    PubMed

    Robin, A; Lhuillier, E; Xu, X Z; Ithurria, S; Aubin, H; Ouerghi, A; Dubertret, B

    2016-01-01

    Two dimensional layered (i.e. van der Waals) heterostructures open up great prospects, especially in photodetector applications. In this context, the control of the charge transfer between the constituting layers is of crucial importance. Compared to bulk or 0D system, 2D materials are characterized by a large exciton binding energy (0.1-1 eV) which considerably affects the magnitude of the charge transfer. Here we investigate a model system made from colloidal 2D CdSe nanoplatelets and epitaxial graphene in a phototransistor configuration. We demonstrate that using a heterostructured layered material, we can tune the magnitude and the direction (i.e. electron or hole) of the charge transfer. We further evidence that graphene functionalization by nanocrystals only leads to a limited change in the magnitude of the 1/f noise. These results draw some new directions to design van der Waals heterostructures with enhanced optoelectronic properties. PMID:27143413

  13. Engineering the Charge Transfer in all 2D Graphene-Nanoplatelets Heterostructure Photodetectors

    NASA Astrophysics Data System (ADS)

    Robin, A.; Lhuillier, E.; Xu, X. Z.; Ithurria, S.; Aubin, H.; Ouerghi, A.; Dubertret, B.

    2016-05-01

    Two dimensional layered (i.e. van der Waals) heterostructures open up great prospects, especially in photodetector applications. In this context, the control of the charge transfer between the constituting layers is of crucial importance. Compared to bulk or 0D system, 2D materials are characterized by a large exciton binding energy (0.1–1 eV) which considerably affects the magnitude of the charge transfer. Here we investigate a model system made from colloidal 2D CdSe nanoplatelets and epitaxial graphene in a phototransistor configuration. We demonstrate that using a heterostructured layered material, we can tune the magnitude and the direction (i.e. electron or hole) of the charge transfer. We further evidence that graphene functionalization by nanocrystals only leads to a limited change in the magnitude of the 1/f noise. These results draw some new directions to design van der Waals heterostructures with enhanced optoelectronic properties.

  14. Engineering the Charge Transfer in all 2D Graphene-Nanoplatelets Heterostructure Photodetectors

    PubMed Central

    Robin, A.; Lhuillier, E.; Xu, X. Z.; Ithurria, S.; Aubin, H.; Ouerghi, A.; Dubertret, B.

    2016-01-01

    Two dimensional layered (i.e. van der Waals) heterostructures open up great prospects, especially in photodetector applications. In this context, the control of the charge transfer between the constituting layers is of crucial importance. Compared to bulk or 0D system, 2D materials are characterized by a large exciton binding energy (0.1–1 eV) which considerably affects the magnitude of the charge transfer. Here we investigate a model system made from colloidal 2D CdSe nanoplatelets and epitaxial graphene in a phototransistor configuration. We demonstrate that using a heterostructured layered material, we can tune the magnitude and the direction (i.e. electron or hole) of the charge transfer. We further evidence that graphene functionalization by nanocrystals only leads to a limited change in the magnitude of the 1/f noise. These results draw some new directions to design van der Waals heterostructures with enhanced optoelectronic properties. PMID:27143413

  15. Beyond Graphene: Electronic and Mechanical Properties of Defective 2-D Materials

    NASA Astrophysics Data System (ADS)

    Terrones, Humberto

    One of the challenges in the production of 2-D materials is the synthesis of defect free systems which can achieve the desired properties for novel applications. However, the reality so far indicates that we need to deal with defective systems and understand their main features in order to perform defect engineering in such a way that we can engineer a new material. In this talk I discuss first, the introduction of defects in a hierarchic way starting from 2-D graphene to form giant Schwarzites or graphene foams, which also can exhibit further defects, thus we can have several levels of defectiveness. In this context, it will be shown that giant Schwarzites, depending on their symmetry, can exhibit Dirac-Fermion behavior and further, possess protected topological states as shown by other authors. Regarding the mechanical properties of these systems, it is possible to tune the Poisson Ratio by the addition of defects, thus shedding light to the explanation of the almost zero Poisson ratios in experimentally obtained graphene foams. Second, the idea of Haeckelites, a planar sp2 graphene-like structure with heptagons and pentagons, can be extended to transition metal dichalcogenides (TMDs) with square and octagonal-like defects, finding semi-metallic behaviors with Dirac-Fermions, and even topological insulating properties. National Science Foundation (EFRI-1433311).

  16. Ultrathin 2D Photodetectors Utilizing Chemical Vapor Deposition Grown WS2 With Graphene Electrodes.

    PubMed

    Tan, Haijie; Fan, Ye; Zhou, Yingqiu; Chen, Qu; Xu, Wenshuo; Warner, Jamie H

    2016-08-23

    In this report, graphene (Gr) is used as a 2D electrode and monolayer WS2 as the active semiconductor in ultrathin photodetector devices. All of the 2D materials are grown by chemical vapor deposition (CVD) and thus pose as a viable route to scalability. The monolayer thickness of both electrode and semiconductor gives these photodetectors ∼2 nm thickness. We show that graphene is different to conventional metal (Au) electrodes due to the finite density of states from the Dirac cones of the valence and conduction bands, which enables the photoresponsivity to be modulated by electrostatic gating and light input control. We demonstrate lateral Gr-WS2-Gr photodetectors with photoresponsivities reaching 3.5 A/W under illumination power densities of 2.5 × 10(7) mW/cm(2). The performance of monolayer WS2 is compared to bilayer WS2 in photodetectors and we show that increased photoresponsivity is achieved in the thicker bilayer WS2 crystals due to increased optical absorption. This approach of incorporating graphene electrodes in lateral TMD based devices provides insights on the contact engineering in 2D optoelectronics, which is crucial for the development of high performing ultrathin photodetector arrays for versatile applications. PMID:27440384

  17. Cobalt oxide 2D nano-assemblies from infinite coordination polymer precursors mediated by a multidentate pyridyl ligand.

    PubMed

    Li, Guo-Rong; Xie, Chen-Chao; Shen, Zhu-Rui; Chang, Ze; Bu, Xian-He

    2016-05-01

    In this work, the construction of Co3O4 two dimensional (2D) nano-assemblies utilizing infinite coordination polymers (ICPs) as precursors was investigated, aiming at the morphology targeted fabrication and utilization of 2D materials. Based on the successful modulation of morphology, a rose-like Co based ICP precursor was obtained, which was further transformed into porous Co3O4 nanoflake assemblies with a well-preserved 2D morphology and a large surface area. The mechanism of the morphology modulation was illustrated by systematic investigation, which demonstrated the crucial role of a modulating agent in the formation of 2D nano-assemblies. In addition, the cobalt oxide 2D nano-assemblies are fabricated into a lithium anode combined with graphene, and the remarkable capacity and stability (900 mA h g(-1) after 50 cycles) of the resulting Co3O4/G nanocomposite indicates its potential in lithium battery applications. PMID:27064264

  18. Electronic structure of graphene oxide and reduced graphene oxide monolayers

    SciTech Connect

    Sutar, D. S.; Singh, Gulbagh; Divakar Botcha, V.

    2012-09-03

    Graphene oxide (GO) monolayers obtained by Langmuir Blodgett route and suitably treated to obtain reduced graphene oxide (RGO) monolayers were studied by photoelectron spectroscopy. Upon reduction of GO to form RGO C1s x-ray photoelectron spectra showed increase in graphitic carbon content, while ultraviolet photoelectron spectra showed increase in intensity corresponding to C2p-{pi} electrons ({approx}3.5 eV). X-ray excited Auger transitions C(KVV) and plasmon energy loss of C1s photoelectrons have been analyzed to elucidate the valence band structure. The effective number of ({pi}+{sigma}) electrons as obtained from energy loss spectra was found to increase by {approx}28% on reduction of GO.

  19. Enhanced thermoelectric properties of graphene oxide patterned by nanoroads.

    PubMed

    Zhou, Si; Guo, Yu; Zhao, Jijun

    2016-04-21

    The thermoelectric properties of two-dimensional (2D) materials are of great interest for both fundamental science and device applications. Graphene oxide (GO), whose physical properties are highly tailorable by chemical and structural modifications, is a potential 2D thermoelectric material. In this report, we pattern nanoroads on GO sheets with epoxide functionalization, and investigate their ballistic thermoelectric transport properties based on density functional theory and the nonequilibrium Green's function method. These graphene oxide nanoroads (GONRDs) are all semiconductors with their band gaps tunable by the road width, edge orientation, and the structure of the GO matrix. These nanostructures show appreciable electrical conductance at certain doping levels and enhanced thermopower of 127-287 μV K(-1), yielding a power factor 4-22 times of the graphene value; meanwhile, the lattice thermal conductance is remarkably reduced to 15-22% of the graphene value; consequently, attaining the figure of merit of 0.05-0.75. Our theoretical results are not only helpful for understanding the thermoelectric properties of graphene and its derivatives, but also would guide the theoretical design and experimental fabrication of graphene-based thermoelectric devices of high performance. PMID:27035740

  20. Tuning of giant 2D-chiroptical response using achiral metasurface integrated with graphene.

    PubMed

    Cao, Tun; Wei, Chen-Wei; Mao, Li-Bang; Wang, Shuai

    2015-07-13

    Tuning the chiroptical response of a molecule is crucial for detecting the material's chirality. Here, we demonstrate a pronounced circular conversion dichroism (CCD) by using an achiral metasurface (AMS) which is composed of a rectangular reflectarray of Au squares separated from a continuous Au film by a dielectric interlayer. This extrinsically 2D chirality originates from the mutual orientation between the AMS and oblique incident wave. The AMS is further incorporated with graphene to tune the CCD spectra in the mid-infrared (MIR) region by electrically modulating the graphene's Fermi level. This approach offers a high fabrication tolerance and will be a promising candidate for controlling electromagnetic (EM) waves in the MIR region from 1500 to 3000 nm. PMID:26191920

  1. Fluidic behaviours in a 2D folded-graphene aerogel monolith

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Zhang, Qiangqiang; Yu, Yikang; Yang, Kaichun; He, Qiuyu; Chen, Weizhe; Li, Hui; Qiao, Yu

    2015-10-01

    Conduction of pressurized water through two-dimensional (2D) layers in monolithic folded-graphene aerogels (FGA) is investigated experimentally. The synthesized FGA has a regular layered structure with a uniform d-spacing around 20 nm. Compared with one-dimensional nanofluidics in carbon nanotube arrays that have a similar characteristic length scale, the conduction pressure of FGA is much lower by nearly 2/3. The reduction in pressure may be attributed to the more energetically favourable molecular configurations in the 2D nanoenvironment, associated with the relaxation of lateral constraints of water molecules. The water conduction pressure through FGA rises exponentially with the sample thickness, due to the interlayer resistance. This finding may find wide applications in nanotransportation, nanofiltration, and nanofluidic energy management.

  2. Graphene coatings: An efficient protection from oxidation

    NASA Astrophysics Data System (ADS)

    Topsakal, Mehmet; Sahin, Hasan; Ciraci, Salim

    2012-02-01

    We demonstrate that graphene coating can provide an efficient protection from oxidation by posing a high energy barrier to the path of oxygen atom, which could have penetrated from the top of graphene to the reactive surface underneath. Graphene bilayer, which blocks the diffusion of oxygen with a relatively higher energy barrier provides even better protection from oxidation. While an oxygen molecule is weakly bound to bare graphene surface and hence becomes rather inactive, it can easily dissociates into two oxygen atoms adsorbed to low coordinated carbon atoms at the edges of a vacancy. For these oxygen atoms the oxidation barrier is reduced and hence the protection from oxidation provided by graphene coatings is weakened. Our predictions obtained from the state of the art first-principles calculations of electronic structure, phonon density of states and reaction path will unravel how a graphene can be used as a corrosion resistant coating and guide further studies aiming at developing more efficient nanocoating materials.

  3. Synthesis and characterizations of graphene oxide and reduced graphene oxide nanosheets

    SciTech Connect

    Venkanna, M. Chakraborty, Amit K.

    2014-04-24

    Interest in graphene on its excellent mechanical, electrical, thermal and optical properties, it’s very high specific surface area, and our ability to influence these properties through chemical functionalization. Chemical reduction of graphene oxide is one of the main routes of preparation for large quantities of graphenes. Hydrazine hydrate used as reducing agent to prepare for the reduced graphene oxide (RGO). There are a number of methods for generating graphene and chemically modified graphene from natural graphite flakes, graphite derivative (such as graphite oxide) and graphite interaction compounds (i.e. expandable graphite). Here we review the use of colloidal suspensions of reduced graphene oxide (RGO) with large scalable, and is adaptable to a wide variety of applications. The graphene oxide (GO) and the reduced material (RGO) were characterized by XRD, UV-Vis spectroscopy, Thermo-gravimetric analysis (TGA), Raman spectroscopy and Field emission Scanning electron microscopy (FESEM) etc.

  4. Graphene oxide reduction by microwave heating

    NASA Astrophysics Data System (ADS)

    Longo, Angela; Carotenuto, Gianfranco

    2016-05-01

    The possibility to prepare thermal reduced graphene oxide (Tr-GO) colloidal suspensions by microwave heating of graphene oxide (GO) suspensions in N-methyl-2-pyrrolidone (NMP) has been investigated. According to transmission electron microscopy (TEM) and absorption and emission spectroscopy characterization, such a type of thermal reduction does not lead to graphene quantum dots formation because only mono-functional oxygen-containing groups are removed.

  5. Spin Hall effect and spin transport in graphene and 2D heterostructures

    NASA Astrophysics Data System (ADS)

    Oezyilmaz, Barbaros

    Semiconducting 2D materials offer new opportunities in both alternative technologies and fundamental discoveries by using the spin degree freedom of electrons. One of the main challenges in this field is to identify new materials which allow the control of spin currents by means of the electric field effect. This requires either a sizeable spin-orbit coupling strength or a sizeable bandgap or both. Unfortunately, pristine graphene has a negligibly small spin-orbit coupling strength. Recently we have addressed this problem in three distinct ways. First we have used chemical functionalization to introduce locally sp3 type bonding. Next we used metal ad-atoms to increase spin-orbit coupling via local enhancement of the spin-orbit coupling strength due to resonant scattering. Finally, I will show that the proximity of graphene on transition metal dichalcogenides can also lead to a significant enhancement of the spin-orbit coupling strength. I will complete my talk with a brief discussion on the possibility of all electrical spin injection into complementary 2D crystals such as WS2, MoS2 or black phosphorus. Membership Pending in the abstract Special Instructions field.

  6. Spanning graphene to carbon-nitride: A 2-D semiconductor alloy system of carbon and nitrogen

    NASA Astrophysics Data System (ADS)

    Therrien, Joel; Li, Yancen; Schmidt, Daniel

    2014-03-01

    With the explosion of materials that form 2-D structures in the past few years, there have been a much more diverse ecosystem of combinations of characteristics to explore. Yet with the majority of materials investigated, the properties are fixed according to the composition of the material. Ideally, one wishes to have a tunable system similar to the semiconductor alloy systems, such as AlxGa1-xAs. There have been some theoretical studies of transition metal dichalogenides, none have been reported experimentally as of this writing. The tertianary alloy of BCN has been synthesized, however it was found that the boron had the tendency to cause phase segregation of the material into domains of graphene and boron nitride. Here we will report on the synthesis of non-phase seperated carbon-nitrogen 2D alloys ranging from graphene (Eg = 0 eV) to carbon-nitride, or melon, (Eg = 2.7 eV). We will report on synthesis methods and a summary of relevant electronic and material properties of selected alloys.

  7. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2015-06-30

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  8. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  9. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  10. Current applications of graphene oxide in nanomedicine

    PubMed Central

    Wu, Si-Ying; An, Seong Soo A; Hulme, John

    2015-01-01

    Graphene has attracted the attention of the entire scientific community due to its unique mechanical and electrochemical, electronic, biomaterial, and chemical properties. The water-soluble derivative of graphene, graphene oxide, is highly prized and continues to be intensely investigated by scientists around the world. This review seeks to provide an overview of the currents applications of graphene oxide in nanomedicine, focusing on delivery systems, tissue engineering, cancer therapies, imaging, and cytotoxicity, together with a short discussion on the difficulties and the trends for future research regarding this amazing material. PMID:26345988

  11. Making graphene holey. Gold-nanoparticle-mediated hydroxyl radical attack on reduced graphene oxide.

    PubMed

    Radich, James G; Kamat, Prashant V

    2013-06-25

    Graphene oxide (GO) and reduced graphene oxide (RGO) have important applications in the development of new electrode and photocatalyst architectures. Gold nanoparticles (AuNPs) have now been employed as catalyst to generate OH(•) and oxidize RGO via hydroxyl radical attack. The oxidation of RGO is marked by pores and wrinkles within the 2-D network. Nanosecond laser flash photolysis was used in conjunction with competition kinetics to elucidate the oxidative mechanism and calculate rate constants for the AuNP-catalyzed and direct reaction between RGO and OH(•). The results highlight the use of the AuNP-mediated oxidation reaction to tune the properties of RGO through the degree of oxidation and/or functional group selectivity in addition to the nanoporous and wrinkle facets. The ability of AuNPs to catalyze the photolytic decomposition of H2O2 as well as the hydroxyl radical-induced oxidation of RGO raises new issues concerning graphene stability in energy conversion and storage (photocatalysis, fuel cells, Li-ion batteries, etc.). Understanding RGO oxidation by free radicals will aid in maintaining the long-term stability of RGO-based functional composites where intimate contact with radical species is inevitable. PMID:23641756

  12. Toxicity of Graphene Shells, Graphene Oxide, and Graphene Oxide Paper Evaluated with Escherichia coli Biotests.

    PubMed

    Efremova, Ludmila V; Vasilchenko, Alexey S; Rakov, Eduard G; Deryabin, Dmitry G

    2015-01-01

    The plate-like graphene shells (GS) produced by an original methane pyrolysis method and their derivatives graphene oxide (GO) and graphene oxide paper (GO-P) were evaluated with luminescent Escherichia coli biotests and additional bacterial-based assays which together revealed the graphene-family nanomaterials' toxicity and bioactivity mechanisms. Bioluminescence inhibition assay, fluorescent two-component staining to evaluate cell membrane permeability, and atomic force microscopy data showed GO expressed bioactivity in aqueous suspension, whereas GS suspensions and the GO-P surface were assessed as nontoxic materials. The mechanism of toxicity of GO was shown not to be associated with oxidative stress in the targeted soxS::lux and katG::lux reporter cells; also, GO did not lead to significant mechanical disruption of treated bacteria with the release of intracellular DNA contents into the environment. The well-coordinated time- and dose-dependent surface charge neutralization and transport and energetic disorders in the Escherichia coli cells suggest direct membrane interaction, internalization, and perturbation (i.e., "membrane stress") as a clue to graphene oxide's mechanism of toxicity. PMID:26221608

  13. Toxicity of Graphene Shells, Graphene Oxide, and Graphene Oxide Paper Evaluated with Escherichia coli Biotests

    PubMed Central

    Efremova, Ludmila V.; Vasilchenko, Alexey S.; Rakov, Eduard G.; Deryabin, Dmitry G.

    2015-01-01

    The plate-like graphene shells (GS) produced by an original methane pyrolysis method and their derivatives graphene oxide (GO) and graphene oxide paper (GO-P) were evaluated with luminescent Escherichia coli biotests and additional bacterial-based assays which together revealed the graphene-family nanomaterials' toxicity and bioactivity mechanisms. Bioluminescence inhibition assay, fluorescent two-component staining to evaluate cell membrane permeability, and atomic force microscopy data showed GO expressed bioactivity in aqueous suspension, whereas GS suspensions and the GO-P surface were assessed as nontoxic materials. The mechanism of toxicity of GO was shown not to be associated with oxidative stress in the targeted soxS::lux and katG::lux reporter cells; also, GO did not lead to significant mechanical disruption of treated bacteria with the release of intracellular DNA contents into the environment. The well-coordinated time- and dose-dependent surface charge neutralization and transport and energetic disorders in the Escherichia coli cells suggest direct membrane interaction, internalization, and perturbation (i.e., “membrane stress”) as a clue to graphene oxide's mechanism of toxicity. PMID:26221608

  14. Graphene-graphene oxide-graphene hybrid nanopapers with superior mechanical, gas barrier and electrical properties

    NASA Astrophysics Data System (ADS)

    Ouyang, Xilian; Huang, Wenyi; Cabrera, Eusebio; Castro, Jose; Lee, L. James

    2015-01-01

    Hybrid nanopaper-like thin films with a graphene oxide (GO) layer sandwiched by two functionalized graphene (GP-SO3H) layers were successfully prepared from oxidized graphene and benzene sulfonic modified graphene. The hybrid graphene-graphene oxide-graphene (GP-GO-GP) nanopapers showed combination of high mechanic strength and good electrical conductivity, leading to desirable electromagnetic interference shielding performance, from the GP-SO3H layers, and superior gas diffusion barrier provided by the GO layer. These GP-GO-GP nanopapers can be readily coated onto plastic and composite substrates by thermal lamination and injection molding for various industrial applications such as fuel cell and natural gas containers.

  15. Reducing agent free synthesis of graphene from graphene oxide

    NASA Astrophysics Data System (ADS)

    Kumar, R. Naresh; Shaikshavali, P.; Srikanth, Vadali V. S. S.; Sankara Rao, K. Bhanu

    2013-06-01

    Graphene is synthesized by microwave irradiation (MWI) of graphene oxide (GO) and subsequent sonication. MWI of GO is carried in a household microwave oven without using any reducing agents. Sonication of microwave irradiated GO is carried out in distilled water using a probe type sonicator. This method does not evolve any unsafe by-product gases which is otherwise the case when reducing agents are used in the reduction of GO to graphene. Moreover, due to its intrinsic nature, the method is scalable and cost effective. The synthesized product has been characterized as graphene using micro Raman scattering, x-ray diffraction and electron diffraction. Diffraction results show that the synthesized graphene is highly oriented.

  16. Towards graphene bromide: bromination of graphite oxide

    NASA Astrophysics Data System (ADS)

    Jankovský, O.; Šimek, P.; Klimová, K.; Sedmidubský, D.; Matějková, S.; Pumera, M.; Sofer, Z.

    2014-05-01

    Halogenated graphene derivatives are interesting for their outstanding physical and chemical properties. In this paper, we present various methods for the synthesis of brominated graphene derivatives by the bromination of graphite oxides. Graphite oxides, prepared according to either the Hummers or Hofmann method, were brominated using bromine or hydrobromic acid under reflux or in an autoclave at elevated temperatures and pressures. The influence of both graphite oxide precursors on the resulting brominated graphenes was investigated by characterization of the graphenes, which was carried out using various techniques, including SEM, SEM-EDS, high-resolution XPS, FTIR, STA and Raman spectroscopy. In addition, the resistivity of the brominated graphenes was measured and the electrochemical properties were investigated by cyclic voltammetry. Although the brominated graphenes were structurally similar, they had remarkably different bromine concentrations. The most highly brominated graphene (bromine concentration above 26 wt%) exhibited a C/O ratio above 44 and partial hydrogenation. Brominated graphenes with such properties could be used for reversible bromine storage or as a starting material for further chemical modifications.Halogenated graphene derivatives are interesting for their outstanding physical and chemical properties. In this paper, we present various methods for the synthesis of brominated graphene derivatives by the bromination of graphite oxides. Graphite oxides, prepared according to either the Hummers or Hofmann method, were brominated using bromine or hydrobromic acid under reflux or in an autoclave at elevated temperatures and pressures. The influence of both graphite oxide precursors on the resulting brominated graphenes was investigated by characterization of the graphenes, which was carried out using various techniques, including SEM, SEM-EDS, high-resolution XPS, FTIR, STA and Raman spectroscopy. In addition, the resistivity of the brominated

  17. Biomedical Uses for 2D Materials Beyond Graphene: Current Advances and Challenges Ahead.

    PubMed

    Kurapati, Rajendra; Kostarelos, Kostas; Prato, Maurizio; Bianco, Alberto

    2016-08-01

    Currently, a broad interdisciplinary research effort is pursued on biomedical applications of 2D materials (2DMs) beyond graphene, due to their unique physicochemical and electronic properties. The discovery of new 2DMs is driven by the diverse chemical compositions and tuneable characteristics offered. Researchers are increasingly attracted to exploit those as drug delivery systems, highly efficient photothermal modalities, multimodal therapeutics with non-invasive diagnostic capabilities, biosensing, and tissue engineering. A crucial limitation of some of the 2DMs is their moderate colloidal stability in aqueous media. In addition, the lack of suitable functionalisation strategies should encourage the exploration of novel chemical methodologies with that purpose. Moreover, the clinical translation of these emerging materials will require undertaking of fundamental research on biocompatibility, toxicology and biopersistence in the living body as well as in the environment. Here, a thorough account of the biomedical applications using 2DMs explored today is given. PMID:27105929

  18. Liquid Crystals: Graphene Oxide Liquid Crystals: Discovery, Evolution and Applications (Adv. Mater. 16/2016).

    PubMed

    Narayan, Rekha; Kim, Ji Eun; Kim, Ju Young; Lee, Kyung Eun; Kim, Sang Ouk

    2016-04-01

    Graphene-oxide liquid crystals (GOLCs) have recently been discovered as a novel 2D material with remarkable properties. On page 3045, S. O. Kim and co-workers review the discovery of different GOLC mesophases and recent progress on fundamental studies and applications. The image displays the nematic schlieren texture (in the background) formed by flowing domains of graphene-oxide liquid crystals and their potential applications in energy storage, optoelectronics and wet-spun fibers. PMID:27105812

  19. Star polymer unimicelles on graphene oxide flakes.

    PubMed

    Choi, Ikjun; Kulkarni, Dhaval D; Xu, Weinan; Tsitsilianis, Constantinos; Tsukruk, Vladimir V

    2013-08-01

    We report the interfacial assembly of amphiphilic heteroarm star copolymers (PSnP2VPn and PSn(P2VP-b-PtBA)n (n = 28 arms)) on graphene oxide flakes at the air-water interface. Adsorption, spreading, and ordering of star polymer micelles on the surface of the basal plane and edge of monolayer graphene oxide sheets were investigated on a Langmuir trough. This interface-mediated assembly resulted in micelle-decorated graphene oxide sheets with uniform spacing and organized morphology. We found that the surface activity of solvated graphene oxide sheets enables star polymer surfactants to subsequently adsorb on the presuspended graphene oxide sheets, thereby producing a bilayer complex. The positively charged heterocyclic pyridine-containing star polymers exhibited strong affinity onto the basal plane and edge of graphene oxide, leading to a well-organized and long-range ordered discrete micelle assembly. The preferred binding can be related to the increased conformational entropy due to the reduction of interarm repulsion. The extent of coverage was tuned by controlling assembly parameters such as concentration and solvent polarity. The polymer micelles on the basal plane remained incompressible under lateral compression in contrast to ones on the water surface due to strongly repulsive confined arms on the polar surface of graphene oxide and a preventive barrier in the form of the sheet edges. The densely packed biphasic tile-like morphology was evident, suggesting the high interfacial stability and mechanically stiff nature of graphene oxide sheets decorated with star polymer micelles. This noncovalent assembly represents a facile route for the control and fabrication of graphene oxide-inclusive ultrathin hybrid films applicable for layered nanocomposites. PMID:23883114

  20. Switchable polarization in an unzipped graphene oxide monolayer.

    PubMed

    Noor-A-Alam, Mohammad; Shin, Young-Han

    2016-08-14

    Ferroelectricity in low-dimensional oxide materials is generally suppressed at the scale of a few nanometers, and has attracted considerable attention from both fundamental and technological aspects. Graphene is one of the thinnest materials (one atom thick). Therefore, engineering switchable polarization in non-polar pristine graphene could potentially lead to two-dimensional (2D) ferroelectric materials. In the present study, based on density functional theory, we show that an unzipped graphene oxide (UGO) monolayer can exhibit switchable polarization due to its foldable bonds between the oxygen atom and two carbon atoms underneath the oxygen. We find that a free standing UGO monolayer exhibits antiferroelectric switchable polarization. A UGO monolayer can be obtained as an intermediate product during the chemical exfoliation process of graphene. Interestingly, despite its dimensionality, our estimated polarization in a UGO monolayer is comparable to that in bulk ferroelectric materials (e.g., ferroelectric polymers). Our calculations could help realize antiferroelectric switchable polarization in 2D materials, which could find various potential applications in nanoscale devices such as sensors, actuators, and capacitors with high energy-storage density. PMID:27401944

  1. Optimizing Spin Generation in 2D Materials: Topological Insulators and Graphene

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Tzu

    Novel two-dimensional electronic systems with Dirac-like dispersion present unique opportunities for spintronic applications. In this seminar I will discuss two specific examples. First we examine the potential of topological insulators as spin-source materials. Using a new spin-polarized tunneling method, giant charge-spin conversion efficiency in topological insulators is revealed, well exceeding that in conventional magnetic tunnel junctions. Through a comparative study between Bi2Se3 and (Bi,Sb)2Te3, we verify the topological-surface-state origin of the observed giant spin signals and further extract the energy dependence of the effective spin polarization in Bi2Se3. Next we explore the potential of interfacial exchange interaction in 2D materials for spin control and spin generation. Using graphene as a prototype, we demonstrate that its coupling to a model magnetic insulator (EuS) produces a substantial magnetic exchange field (>14 T), which yields orders-of-magnitude enhancement in the spin signal originated from the Zeeman spin-Hall effect. Furthermore, the strong exchange field lifts the spin degeneracy of graphene in the quantum Hall regime, which may lead to interesting spin-polarized edge transport and thus open up new application space for classical and quantum information processing.

  2. Energy transfer between quantum dots and 2D materials: graphene versus MoS2

    NASA Astrophysics Data System (ADS)

    Raja, Archana; Zultak, Johanna; Zhang, Xiaoxiao; Montoya-Castillo, Andres; Ye, Ziliang; Roquelet, Cyrielle; van der Zande, Arend; Chenet, Daniel; Brus, Louis; Heinz, Tony

    2015-03-01

    Understanding charge and energy transfer processes at the interface of nanostructures is an important area of research, both from the fundamental and application points of view. Interactions between 0D semiconductor quantum dots and 2D van der Waals materials have been a subject of recent investigations. Here, we report highly efficient near-field energy transfer from core-shell quantum dots to monolayer and few layer graphene, a semi-metal and MoS2, a semiconductor. We observe both quenching of single quantum dot photoluminescence (PL) and decreasing lifetime in time resolved PL. Our measurements show that increasing the number of layers in the acceptor van der Waals material results in contrasting trends in the rate of non-radiative energy transfer. The energy-transfer rate increases significantly with increasing layer thickness for graphene, but decreases with increasing thickness for MoS2 layers. Energy transfer rates on the order of 1-10ns-1 are determined. We interpret the results in terms of differences in the interplay between dielectric loss and screening.

  3. Tailored crumpling and unfolding of spray-dried pristine graphene and graphene oxide nanosheets

    NASA Astrophysics Data System (ADS)

    Parviz, Dorsa; Das, Sriya; Irin, Fahmida; Green, Micah

    2015-03-01

    3D Crumpled graphene was directly obtained from aqueous dispersions of pristine graphene using an industrially scalable spray drying technique. Capillary forces during the water evaporation induced the crumpling of nanosheets to multi-faced dimpled morphology. For the first time, the transition of 2D graphene nanosheets to a 3D crumpled morphology was directly observed inside the spray dryer. Graphene oxide (GO) was spray dried using the same procedure; however, their highly wrinkled final morphology was different than the crumpled pristine graphene nanosheets. The degree of crumpling of the nanosheets was controlled by changing the dimensionless ratio of evaporation rate to diffusion rate. Crumpled particles were redispersed into various solvents to evaluate their morphological changes as a response to rewetting. Crumpled GO nanosheets remained crumpled as a response to hydration, while the pristine graphene nanosheets unfolding behavior was solvent-dependent. This study holds significance for both fundamental understanding of the origins of nanosheets crumpling and also for the use of crumpled nanosheets for further material processing.

  4. Oxidative Unzipping and Transformation of High Aspect Ratio Boron Nitride Nanotubes into "White Graphene Oxide" Platelets.

    PubMed

    Nautiyal, Pranjal; Loganathan, Archana; Agrawal, Richa; Boesl, Benjamin; Wang, Chunlei; Agarwal, Arvind

    2016-01-01

    Morphological and chemical transformations in boron nitride nanotubes under high temperature atmospheric conditions is probed in this study. We report atmospheric oxygen induced cleavage of boron nitride nanotubes at temperatures exceeding 750 °C for the first time. Unzipping is then followed by coalescence of these densely clustered multiple uncurled ribbons to form stacks of 2D sheets. FTIR and EDS analysis suggest these 2D platelets to be Boron Nitride Oxide platelets, with analogous structure to Graphene Oxide, and therefore we term them as "White Graphene Oxide" (WGO). However, not all BNNTs deteriorate even at temperatures as high as 1000 °C. This leads to the formation of a hybrid nanomaterial system comprising of 1D BN nanotubes and 2D BN oxide platelets, potentially having advanced high temperature sensing, radiation shielding, mechanical strengthening, electron emission and thermal management applications due to synergistic improvement of multi-plane transport and mechanical properties. This is the first report on transformation of BNNT bundles to a continuous array of White Graphene Oxide nanoplatelet stacks. PMID:27388704

  5. Bioinspired reduced graphene oxide nanosheets using Terminalia chebula seeds extract

    NASA Astrophysics Data System (ADS)

    Maddinedi, Sireesh Babu; Mandal, Badal Kumar; Vankayala, Raviraj; Kalluru, Poliraju; Pamanji, Sreedhara Reddy

    2015-06-01

    A green one step facile synthesis of graphene nanosheets by Terminalia chebula (T. chebula) extract mediated reduction of graphite oxide (GO) is reported in this work. This method avoids the use of harmful toxic reducing agents. The comparative results of various characterizations of GO and T. chebula reduced graphene oxide (TCG) provide a strong indication of the exclusion of oxygen containing groups from graphene oxide and successive stabilization of the formed reduced graphene oxide (RGO). The functionalization of reduced graphene oxide with the oxidized polyphenols causes their stability by preventing the aggregation. We also have proposed how the oxidized polyphenols are accountable for the stabilization of the formed graphene sheets.

  6. Bioinspired reduced graphene oxide nanosheets using Terminalia chebula seeds extract.

    PubMed

    Maddinedi, Sireesh Babu; Mandal, Badal Kumar; Vankayala, Raviraj; Kalluru, Poliraju; Pamanji, Sreedhara Reddy

    2015-06-15

    A green one step facile synthesis of graphene nanosheets by Terminalia chebula (T. chebula) extract mediated reduction of graphite oxide (GO) is reported in this work. This method avoids the use of harmful toxic reducing agents. The comparative results of various characterizations of GO and T. chebula reduced graphene oxide (TCG) provide a strong indication of the exclusion of oxygen containing groups from graphene oxide and successive stabilization of the formed reduced graphene oxide (RGO). The functionalization of reduced graphene oxide with the oxidized polyphenols causes their stability by preventing the aggregation. We also have proposed how the oxidized polyphenols are accountable for the stabilization of the formed graphene sheets. PMID:25770934

  7. Towards graphene iodide: iodination of graphite oxide

    NASA Astrophysics Data System (ADS)

    Šimek, Petr; Klímová, Kateřina; Sedmidubský, David; Jankovský, Ondřej; Pumera, Martin; Sofer, Zdeněk

    2014-11-01

    Halogenated graphene derivatives are interesting owing to their outstanding physical and chemical properties. In this paper, we present various methods for the synthesis of iodinated graphene derivatives by the iodination of graphite oxides prepared according to either the Hummers or Hofmann method. Both graphite oxides were iodinated by iodine or hydroiodic acid under reflux or in an autoclave at elevated temperatures (240 °C) and pressures (over 100 bar). The influence of both graphite oxide precursors on the properties of resulting iodinated graphenes was investigated by various techniques, including SEM, SEM-EDS, high-resolution XPS, FTIR, STA, and Raman spectroscopy. Electrical resistivity was measured by a standard four point technique. In addition, the electrochemical properties were investigated by cyclic voltammetry. Although the iodinated graphenes were structurally similar, they had remarkably different concentrations of iodine. The most highly iodinated graphenes (iodine concentration above 30 wt%) exhibited relatively high C/O ratios, confirming high degrees of reduction. Iodine is incorporated in the form of covalent bonds to carbon atoms or as polyiodide anions non-covalently bonded through the charge transfer reaction with the graphene framework. Iodinated graphenes with such properties could be used as the starting material for further chemical modifications or as flame-retardant additives.Halogenated graphene derivatives are interesting owing to their outstanding physical and chemical properties. In this paper, we present various methods for the synthesis of iodinated graphene derivatives by the iodination of graphite oxides prepared according to either the Hummers or Hofmann method. Both graphite oxides were iodinated by iodine or hydroiodic acid under reflux or in an autoclave at elevated temperatures (240 °C) and pressures (over 100 bar). The influence of both graphite oxide precursors on the properties of resulting iodinated graphenes was

  8. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa

    PubMed Central

    Gurunathan, Sangiliyandi; Han, Jae Woong; Dayem, Ahmed Abdal; Eppakayala, Vasuki; Kim, Jin-Hoi

    2012-01-01

    Background Graphene holds great promise for potential use in next-generation electronic and photonic devices due to its unique high carrier mobility, good optical transparency, large surface area, and biocompatibility. The aim of this study was to investigate the antibacterial effects of graphene oxide (GO) and reduced graphene oxide (rGO) in Pseudomonas aeruginosa. In this work, we used a novel reducing agent, betamercaptoethanol (BME), for synthesis of graphene to avoid the use of toxic materials. To uncover the impacts of GO and rGO on human health, the antibacterial activity of two types of graphene-based material toward a bacterial model P. aeruginosa was studied and compared. Methods The synthesized GO and rGO was characterized by ultraviolet-visible absorption spectroscopy, particle-size analyzer, X-ray diffraction, scanning electron microscopy and Raman spectroscopy. Further, to explain the antimicrobial activity of graphene oxide and reduced graphene oxide, we employed various assays, such as cell growth, cell viability, reactive oxygen species generation, and DNA fragmentation. Results Ultraviolet-visible spectra of the samples confirmed the transition of GO into graphene. Dynamic light-scattering analyses showed the average size among the two types of graphene materials. X-ray diffraction data validated the structure of graphene sheets, and high-resolution scanning electron microscopy was employed to investigate the morphologies of prepared graphene. Raman spectroscopy data indicated the removal of oxygen-containing functional groups from the surface of GO and the formation of graphene. The exposure of cells to GO and rGO induced the production of superoxide radical anion and loss of cell viability. Results suggest that the antibacterial activities are contributed to by loss of cell viability, induced oxidative stress, and DNA fragmentation. Conclusion The antibacterial activities of GO and rGO against P. aeruginosa were compared. The loss of P

  9. Charge transport-driven selective oxidation of graphene.

    PubMed

    Lee, Young Keun; Choi, Hongkyw; Lee, Changhwan; Lee, Hyunsoo; Goddeti, Kalyan C; Moon, Song Yi; Doh, Won Hui; Baik, Jaeyoon; Kim, Jin-Soo; Choi, Jin Sik; Choi, Choon-Gi; Park, Jeong Young

    2016-06-01

    Due to the tunability of the physical, electrical, and optical characteristics of graphene, precisely controlling graphene oxidation is of great importance for potential applications of graphene-based electronics. Here, we demonstrate a facile and precise way for graphene oxidation controlled by photoexcited charge transfer depending on the substrate and bias voltage. It is observed that graphene on TiO2 is easily oxidized under UV-ozone treatment, while graphene on SiO2 remains unchanged. The mechanism for the selective oxidation of graphene on TiO2 is associated with charge transfer from the TiO2 to the graphene. Raman spectra were used to investigate the graphene following applied bias voltages on the graphene/TiO2 diode under UV-ozone exposure. We found that under a reverse bias of 0.6 V on the graphene/TiO2 diode, graphene oxidation was accelerated under UV-ozone exposure, thus confirming the role of charge transfer between the graphene and the TiO2 that results in the selective oxidation of the graphene. The selective oxidation of graphene can be utilized for the precise, nanoscale patterning of the graphene oxide and locally patterned chemical doping, finally leading to the feasibility and expansion of a variety of graphene-based applications. PMID:27199184

  10. Casein mediated green synthesis and decoration of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Maddinedi, Sireesh Babu; Mandal, Badal Kumar; Vankayala, Raviraj; Kalluru, Poliraju; Tammina, Sai Kumar; Kiran Kumar, H. A.

    This research is mainly focusing on one-step biosynthesis of graphene from graphene oxide and its stabilization using naturally occurring milk protein, casein. The synthesis of casein reduced graphene oxide (CRGO) was completed within 7 h under reflux at 90 °C with the formation of few layered fine graphene nanosheets. UV-Vis, XRD, XPS analysis data revealed the reduction process of the graphene oxide. Results of FT-IR, HPLC and TEM analysis have shown that the ensuing material consists of graphene decorated with casein molecules. Aspartic acid and glutamic acid residue present in casein molecules are responsible for the reduction of graphene oxide.

  11. Photochemical transformation of graphene oxide in sunlight (journal)

    EPA Science Inventory

    Graphene oxide (GO) is a graphene derivative that is more easily manufactured in large scale and used to synthesize reduced graphene oxide (rGO) with properties analogous to graphene. In this study, we investigate the photochemical fate of GO under sunlight conditions. The resu...

  12. Thermopower enhancement by fractional layer control in 2D oxide superlattices.

    PubMed

    Choi, Woo Seok; Ohta, Hiromichi; Lee, Ho Nyung

    2014-10-22

    Precise tuning of the 2D carrier density by using fractional δ-doping of d electrons improves the thermoelectric properties of oxide heterostructures. This promising result can be attributed to the anisotropic band structure in the 2D system, indicating that δ-doped oxide superlattices are good candidates for advanced thermoelectrics. PMID:25066105

  13. Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics

    NASA Astrophysics Data System (ADS)

    Wei, Zhongqing; Wang, Debin; Kim, Suenne; Kim, Soo-Young; Hu, Yike; Yakes, Michael K.; Laracuente, Arnaldo R.; Dai, Zhenting; Marder, Seth R.; Berger, Claire; King, William P.; de Heer, Walter A.; Sheehan, Paul E.; Riedo, Elisa

    2010-06-01

    The reduced form of graphene oxide (GO) is an attractive alternative to graphene for producing large-scale flexible conductors and for creating devices that require an electronic gap. We report on a means to tune the topographical and electrical properties of reduced GO (rGO) with nanoscopic resolution by local thermal reduction of GO with a heated atomic force microscope tip. The rGO regions are up to four orders of magnitude more conductive than pristine GO. No sign of tip wear or sample tearing was observed. Variably conductive nanoribbons with dimensions down to 12 nanometers could be produced in oxidized epitaxial graphene films in a single step that is clean, rapid, and reliable.

  14. Insights on the physics and application of off-plane quantum transport through graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Iannaccone, G.; Zhang, Q.; Bruzzone, S.; Fiori, G.

    2016-01-01

    Different proposals of graphene transistors based on off-plane (i.e., vertical) transport, have recently appeared in the literature, exhibiting experimental current modulation of a factor 104-105 at room temperature. These devices overcome the lack of bandgap that undermines the operation of graphene transistors, and positively exploit graphene's ultimate thinness, high conductivity, and low density of states. However, very little is known about vertical transport through graphene and two-dimensional materials, either in terms of experiments or theory. In this paper we will discuss the physics and the electronics of off-plane transport through hetero-structures of graphene and 2D materials. We investigate transport across vertical heterostructures of 2D materials with multi-scale simulations, including first-principle density functional theory and non-equilibrium Green's functions based on NanoTCAD ViDES. We show that unexpected behaviors emerge, which are not observed in the more familiar semiconductor heterostructures based on III-V and II-VI materials systems, and that are not predicted by simplistic physical models. Such properties have a significant impact on the design and performance of transistors for digital or high frequency operations.

  15. Dynamics of plasmon in graphene oxide

    NASA Astrophysics Data System (ADS)

    Javvaji, Brahmanandam; Mahapatra, D. R.; Raha, S.

    2015-04-01

    Dynamic effects of plasmon such as scattering with defect boundaries and oxygen impurities in the graphene oxide are investigated. Study of plasmon dynamics helps in understanding electronic, opto-electronic and biological applications of graphene based nanostructures. Tuning or control over such applications is made possible by graphene nanostructure engineering. We have modeled defects with increased smoothing of defect edge in graphene keeping area of the defect constant. Scattering of plasmons in graphene with defects is modeled using an electromagnetic field coupled inter-atomic potential approach with finite element discretization of the atomic vibrational and electromagnetic field degrees of freedom. Our calculations show π+σ plasmon red shifting under sharp defect edges whereas π plasmon show high extinction efficiency. Strong localization of electric fields near the sharp defect edges is observed. Observations on plasmons and its dynamics draws attention in designing novel optoelectronic devices and binders for bio-molecules.

  16. Graphene/carbon nanotube hybrid-based transparent 2D optical array.

    PubMed

    Kim, Un Jeong; Lee, Il Ha; Bae, Jung Jun; Lee, Sangjin; Han, Gang Hee; Chae, Seung Jin; Güneş, Fethullah; Choi, Jun Hee; Baik, Chan Wook; Kim, Sun Il; Kim, Jong Min; Lee, Young Hee

    2011-09-01

    Graphene/carbon nanotube (CNT) hybrid structures are fabricated for use as optical arrays. Vertically aligned CNTs are directly synthesized on a graphene/quartz substrate using plasma-enhanced chemical vapor deposition (PECVD). Graphene preserves the transparency and resistance during CNT growth. Highly aligned single-walled CNTs show a better performance for the diffraction intensity. PMID:21769950

  17. Synthesis and properties of graphene oxide/graphene nanostructures

    NASA Astrophysics Data System (ADS)

    Kapitanova, O. O.; Panin, G. N.; Baranov, A. N.; Kang, T. W.

    2012-05-01

    We report preparation of graphene oxide (GO)/graphene (G) nanostructures and their structural, optical and electrical properties. GO was synthesized through oxidation of graphite by using the modified Hummer's method, in which a long oxidation time was combined with a highly effective method for purifying the reaction products. The obtained GO was partially reduced (r-GO) by adding ascorbic acid and thermal annealing. An electrical reduction/oxidation process in r-GO under an electric field was used to form and control the GO/G nanostructures and the potential barrier at the interface. After the treatment, the ratio of the intensity of peak G (1578 cm-1) to that of peak D (1357 cm-1) in Raman spectra of the samples is increased, which is attributed to an increase in the ratio between the sp2 and sp3 regions. The electrical and the luminescence characteristics of the GO/G nanostructures were investigated.

  18. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications.

    PubMed

    Georgakilas, Vasilios; Tiwari, Jitendra N; Kemp, K Christian; Perman, Jason A; Bourlinos, Athanasios B; Kim, Kwang S; Zboril, Radek

    2016-05-11

    This Review focuses on noncovalent functionalization of graphene and graphene oxide with various species involving biomolecules, polymers, drugs, metals and metal oxide-based nanoparticles, quantum dots, magnetic nanostructures, other carbon allotropes (fullerenes, nanodiamonds, and carbon nanotubes), and graphene analogues (MoS2, WS2). A brief description of π-π interactions, van der Waals forces, ionic interactions, and hydrogen bonding allowing noncovalent modification of graphene and graphene oxide is first given. The main part of this Review is devoted to tailored functionalization for applications in drug delivery, energy materials, solar cells, water splitting, biosensing, bioimaging, environmental, catalytic, photocatalytic, and biomedical technologies. A significant part of this Review explores the possibilities of graphene/graphene oxide-based 3D superstructures and their use in lithium-ion batteries. This Review ends with a look at challenges and future prospects of noncovalently modified graphene and graphene oxide. PMID:27033639

  19. Two dimension (2-D) graphene-based nanomaterials as signal amplification elements in electrochemical microfluidic immune-devices: Recent advances.

    PubMed

    Hasanzadeh, Mohammad; Shadjou, Nasrin; Mokhtarzadeh, Ahad; Ramezani, Mohammad

    2016-11-01

    Graphene is a 2-D carbon nanomaterial with many distinctive properties that are electrochemically beneficial, such as large surface-to-volume ratio, lowered power usage, high conductivity and electron mobility. Graphene-based electrochemical immune-devices have recently gained much importance for detecting antigens and biomarkers responsible for cancer diagnosis. This review describes fabrication and chemical modification of the surfaces of graphene for immunesensing applications. We also present a comprehensive overview of current developments and key issues in the determination of some biological molecules with particular emphasis on evaluating the models. This review focuses mostly on new developments in the last 5years in development of chip architecture and integration, different sensing modes that can be used in conjunction with microfluidics, and new applications that have emerged or have been demonstrated; it also aims to point out where future research can be directed to in these areas. PMID:27524045

  20. Anomalous behaviour of magnetic coercivity in graphene oxide and reduced graphene oxide

    SciTech Connect

    Bagani, K.; Bhattacharya, A.; Kaur, J.; Rai Chowdhury, A.; Ghosh, B.; Banerjee, S.

    2014-01-14

    In this report, we present the temperature dependence of the magnetic coercivity of graphene oxide (GO) and reduced graphene oxide (RGO). We observe an anomalous decrease in coercivity of GO and RGO with decreasing temperature. The observation could be understood by invoking the inherent presence of wrinkles on graphene oxide due to presence of oxygen containing groups. Scanning electron microscopic image reveals high wrinkles in GO than RGO. We observe higher coercivity in RGO than in GO. At room temperature, we observe antiferromagnetic and ferromagnetic behaviours in GO and RGO, respectively. Whereas, at low temperatures (below T = 60–70 K), both materials show paramagnetic behaviour.

  1. Temperature-Dependent Photoluminescence of Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Jadhav, S. T.; Rajoba, S. J.; Patil, S. A.; Han, S. H.; Jadhav, L. D.

    2016-01-01

    Graphene oxide thin films have been deposited by spray pyrolysis using graphene oxide powder prepared by modified Hummers method. These thin films were characterized by different physico-chemical techniques. The x-ray diffraction studies revealed the structural properties of GO (graphene oxide) while the Raman spectrum showed the presence of D and G and two-dimensional bands. The D/G intensity ratio for spray-deposited GO film is 1.10. The x-ray photoelectron spectroscopy showed 67% and 33% atomic percentages of carbon and oxygen, respectively. The ratio of O1s/C1s was found to be 0.49. The temperature-dependent photoluminescence of GO thin film and GO solution showed a blue emission.

  2. Mechanical properties of monolayer graphene oxide.

    PubMed

    Suk, Ji Won; Piner, Richard D; An, Jinho; Ruoff, Rodney S

    2010-11-23

    Mechanical properties of ultrathin membranes consisting of one layer, two overlapped layers, and three overlapped layers of graphene oxide platelets were investigated by atomic force microscopy (AFM) imaging in contact mode. In order to evaluate both the elastic modulus and prestress of thin membranes, the AFM measurement was combined with the finite element method (FEM) in a new approach for evaluating the mechanics of ultrathin membranes. Monolayer graphene oxide was found to have a lower effective Young's modulus (207.6 ± 23.4 GPa when a thickness of 0.7 nm is used) as compared to the value reported for "pristine" graphene. The prestress (39.7-76.8 MPa) of the graphene oxide membranes obtained by solution-based deposition was found to be 1 order of magnitude lower than that obtained by others for mechanically cleaved graphene. The novel AFM imaging and FEM-based mapping methods presented here are of general utility for obtaining the elastic modulus and prestress of thin membranes. PMID:20942443

  3. Technical graphene (reduced graphene oxide) and its natural analog (shungite)

    NASA Astrophysics Data System (ADS)

    Sheka, E. F.; Golubev, E. A.

    2016-07-01

    The wide structure and chemical-composition spectrum of the main technological material of molecular graphenics—reduced graphene oxide (RGO)—is explained from a quantum-chemical standpoint. The proposed concept is used to consider the results of experimental investigations of a natural analog of RGO, namely, shungite carbon, by high-resolution electron microscopy and nanopoint energy dispersive spectral analysis. The results obtained are used to propose an atomic-microscopic model for the structure of shungite carbon.

  4. Charge transport-driven selective oxidation of graphene

    NASA Astrophysics Data System (ADS)

    Lee, Young Keun; Choi, Hongkyw; Lee, Changhwan; Lee, Hyunsoo; Goddeti, Kalyan C.; Moon, Song Yi; Doh, Won Hui; Baik, Jaeyoon; Kim, Jin-Soo; Choi, Jin Sik; Choi, Choon-Gi; Park, Jeong Young

    2016-06-01

    Due to the tunability of the physical, electrical, and optical characteristics of graphene, precisely controlling graphene oxidation is of great importance for potential applications of graphene-based electronics. Here, we demonstrate a facile and precise way for graphene oxidation controlled by photoexcited charge transfer depending on the substrate and bias voltage. It is observed that graphene on TiO2 is easily oxidized under UV-ozone treatment, while graphene on SiO2 remains unchanged. The mechanism for the selective oxidation of graphene on TiO2 is associated with charge transfer from the TiO2 to the graphene. Raman spectra were used to investigate the graphene following applied bias voltages on the graphene/TiO2 diode under UV-ozone exposure. We found that under a reverse bias of 0.6 V on the graphene/TiO2 diode, graphene oxidation was accelerated under UV-ozone exposure, thus confirming the role of charge transfer between the graphene and the TiO2 that results in the selective oxidation of the graphene. The selective oxidation of graphene can be utilized for the precise, nanoscale patterning of the graphene oxide and locally patterned chemical doping, finally leading to the feasibility and expansion of a variety of graphene-based applications.Due to the tunability of the physical, electrical, and optical characteristics of graphene, precisely controlling graphene oxidation is of great importance for potential applications of graphene-based electronics. Here, we demonstrate a facile and precise way for graphene oxidation controlled by photoexcited charge transfer depending on the substrate and bias voltage. It is observed that graphene on TiO2 is easily oxidized under UV-ozone treatment, while graphene on SiO2 remains unchanged. The mechanism for the selective oxidation of graphene on TiO2 is associated with charge transfer from the TiO2 to the graphene. Raman spectra were used to investigate the graphene following applied bias voltages on the graphene/TiO2

  5. Flexible Metal Oxide/Graphene Oxide Hybrid Neuromorphic Transistors on Flexible Conducting Graphene Substrates.

    PubMed

    Wan, Chang Jin; Liu, Yang Hui; Feng, Ping; Wang, Wei; Zhu, Li Qiang; Liu, Zhao Ping; Shi, Yi; Wan, Qing

    2016-07-01

    Flexible metal oxide/graphene oxide hybrid multi-gate neuromorphic transistors are fabricated on flexible conducting graphene substrates. Dendritic integrations in both spatial and temporal modes are emulated, and spatiotemporal correlated logics are obtained. A proof-of-principle visual system model for emulating Lobula Giant Motion Detector neuron is also investigated. The results are of great significance for flexible sensors and neuromorphic cognitive systems. PMID:27159546

  6. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration.

    PubMed

    Chang, Sung-Jin; Hyun, Moon Seop; Myung, Sung; Kang, Min-A; Yoo, Jung Ho; Lee, Kyoung G; Choi, Bong Gill; Cho, Youngji; Lee, Gaehang; Park, Tae Jung

    2016-01-01

    Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from RGO flakes on Cu foils up to a few hundred nanometres during CVD process, it shows appreciable improvement in structural quality. The monotonous enhancement of the structural quality of the graphene with increasing length of the graphene growth from RGO suggests that seeded CVD growth of graphene from RGO on Cu surface is accompanied by the restoration of graphitic structure. The finding provides insight into graphene growth and defect reconstruction useful for the production of tailored carbon nanostructures with required properties. PMID:26961409

  7. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration

    NASA Astrophysics Data System (ADS)

    Chang, Sung-Jin; Hyun, Moon Seop; Myung, Sung; Kang, Min-A.; Yoo, Jung Ho; Lee, Kyoung G.; Choi, Bong Gill; Cho, Youngji; Lee, Gaehang; Park, Tae Jung

    2016-03-01

    Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from RGO flakes on Cu foils up to a few hundred nanometres during CVD process, it shows appreciable improvement in structural quality. The monotonous enhancement of the structural quality of the graphene with increasing length of the graphene growth from RGO suggests that seeded CVD growth of graphene from RGO on Cu surface is accompanied by the restoration of graphitic structure. The finding provides insight into graphene growth and defect reconstruction useful for the production of tailored carbon nanostructures with required properties.

  8. Graphene growth from reduced graphene oxide by chemical vapour deposition: seeded growth accompanied by restoration

    PubMed Central

    Chang, Sung-Jin; Hyun, Moon Seop; Myung, Sung; Kang, Min-A; Yoo, Jung Ho; Lee, Kyoung G.; Choi, Bong Gill; Cho, Youngji; Lee, Gaehang; Park, Tae Jung

    2016-01-01

    Understanding the underlying mechanisms involved in graphene growth via chemical vapour deposition (CVD) is critical for precise control of the characteristics of graphene. Despite much effort, the actual processes behind graphene synthesis still remain to be elucidated in a large number of aspects. Herein, we report the evolution of graphene properties during in-plane growth of graphene from reduced graphene oxide (RGO) on copper (Cu) via methane CVD. While graphene is laterally grown from RGO flakes on Cu foils up to a few hundred nanometres during CVD process, it shows appreciable improvement in structural quality. The monotonous enhancement of the structural quality of the graphene with increasing length of the graphene growth from RGO suggests that seeded CVD growth of graphene from RGO on Cu surface is accompanied by the restoration of graphitic structure. The finding provides insight into graphene growth and defect reconstruction useful for the production of tailored carbon nanostructures with required properties. PMID:26961409

  9. Coherent anti-Stokes Raman scattering enhancement of thymine adsorbed on graphene oxide

    PubMed Central

    2014-01-01

    Coherent anti-Stokes Raman scattering (CARS) of carbon nanostructures, namely, highly oriented pyrolytic graphite, graphene nanoplatelets, graphene oxide, and multiwall carbon nanotubes as well CARS spectra of thymine (Thy) molecules adsorbed on graphene oxide were studied. The spectra of the samples were compared with spontaneous Raman scattering (RS) spectra. The CARS spectra of Thy adsorbed on graphene oxide are characterized by shifts of the main bands in comparison with RS. The CARS spectra of the initial nanocarbons are definitely different: for all investigated materials, there is a redistribution of D- and G-mode intensities, significant shift of their frequencies (more than 20 cm-1), and appearance of new modes about 1,400 and 1,500 cm-1. The D band in CARS spectra is less changed than the G band; there is an absence of 2D-mode at 2,600 cm-1 for graphene and appearance of intensive modes of the second order between 2,400 and 3,000 cm-1. Multiphonon processes in graphene under many photon excitations seem to be responsible for the features of the CARS spectra. We found an enhancement of the CARS signal from thymine adsorbed on graphene oxide with maximum enhancement factor about 105. The probable mechanism of CARS enhancement is discussed. PMID:24948887

  10. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts.

    PubMed

    Liao, Ken-Hsuan; Lin, Yu-Shen; Macosko, Christopher W; Haynes, Christy L

    2011-07-01

    Two-dimensional carbon-based nanomaterials, including graphene oxide and graphene, are potential candidates for biomedical applications such as sensors, cell labeling, bacterial inhibition, and drug delivery. Herein, we explore the biocompatibility of graphene-related materials with controlled physical and chemical properties. The size and extent of exfoliation of graphene oxide sheets was varied by sonication intensity and time. Graphene sheets were obtained from graphene oxide by a simple (hydrazine-free) hydrothermal route. The particle size, morphology, exfoliation extent, oxygen content, and surface charge of graphene oxide and graphene were characterized by wide-angle powder X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, dynamic light scattering, and zeta-potential. One method of toxicity assessment was based on measurement of the efflux of hemoglobin from suspended red blood cells. At the smallest size, graphene oxide showed the greatest hemolytic activity, whereas aggregated graphene sheets exhibited the lowest hemolytic activity. Coating graphene oxide with chitosan nearly eliminated hemolytic activity. Together, these results demonstrate that particle size, particulate state, and oxygen content/surface charge of graphene have a strong impact on biological/toxicological responses to red blood cells. In addition, the cytotoxicity of graphene oxide and graphene sheets was investigated by measuring mitochondrial activity in adherent human skin fibroblasts using two assays. The methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay, a typical nanotoxicity assay, fails to predict the toxicity of graphene oxide and graphene toxicity because of the spontaneous reduction of MTT by graphene and graphene oxide, resulting in a false positive signal. However, appropriate alternate assessments, using the water-soluble tetrazolium salt (WST-8), trypan blue exclusion, and reactive oxygen species assay reveal that the compacted graphene

  11. The role of defects and doping in 2D graphene sheets and 1D nanoribbons

    NASA Astrophysics Data System (ADS)

    Terrones, Humberto; Lv, Ruitao; Terrones, Mauricio; Dresselhaus, Mildred S.

    2012-06-01

    Defects are usually seen as imperfections in materials that could significantly degrade their performance. However, at the nanoscale, defects could be extremely useful since they could be exploited to generate novel, innovative and useful materials and devices. Graphene and graphene nanoribbons are no exception. This review therefore tries to categorize defects, emphasize their importance, introduce the common routes to study and identify them and to propose new ways to construct novel devices based on ‘defective’ graphene-like materials. In particular, we will discuss defects in graphene-like systems including (a) structural (sp2-like) defects, (b) topological (sp2-like) defects, (c) doping or functionalization (sp2- and sp3-like) defects and (d) vacancies/edge type defects (non-sp2-like). It will be demonstrated that defects play a key role in graphene physicochemical properties and could even be critical to generate biocompatible materials. There are numerous challenges in this emerging field, and we intend to provide a stimulating account which could trigger new science and technological developments based on defective graphene-like materials that could be introduced into other atomic layered materials, such as BN, MoS2 and WS2, not discussed in this review.

  12. Tuning the electronic band gap of graphene by oxidation

    SciTech Connect

    Dabhi, Shweta D.; Jha, Prafulla K.

    2015-06-24

    Using plane wave pseudo potential density functional theory, we studied the electronic properties of graphene with different C:O ratio. In this work, we discussed the changes that occur in electronic band structure of graphene functionalized with different amount of epoxy group. Electronic band gap depends on C:O ratio in graphene oxide containing epoxy group. The present work will have its implication for making devices with tunable electronic properties by oxidizing graphene.

  13. Macroscopic and spectroscopic investigations of the adsorption of nitroaromatic compounds on graphene oxide, reduced graphene oxide, and graphene nanosheets.

    PubMed

    Chen, Xiaoxiao; Chen, Baoliang

    2015-05-19

    The surface properties and adsorption mechanisms of graphene materials are important for potential environmental applications. The adsorption of m-dinitrobenzene, nitrobenzene, and p-nitrotoluene onto graphene oxide (GO), reduced graphene oxide (RGO), and graphene (G) nanosheets was investigated using IR spectroscopy to probe the molecular interactions of graphene materials with nitroaromatic compounds (NACs). The hydrophilic GO displayed the weakest adsorption capability. The adsorption of RGO and G was significantly increased due to the recovery of hydrophobic π-conjugation carbon atoms as active sites. RGO nanosheets, which had more defect sites than did GO or G nanosheets, resulted in the highest adsorption of NACs which was 10-50 times greater than the reported adsorption of carbon nanotubes. Superior adsorption was dominated by various interaction modes including π-π electron donor-acceptor interactions between the π-electron-deficient phenyls of the NACs and the π-electron-rich matrix of the graphene nanosheets, and the charge electrostatic and polar interactions between the defect sites of graphene nanosheets and the -NO2 of the NAC. The charge transfer was initially proved by FTIR that a blue shift of asymmetric -NO2 stretching was observed with a concomitant red shift of symmetric -NO2 stretching after m-dinitrobenzene was adsorbed. The multiple interaction mechanisms of the adsorption of NAC molecule onto flat graphene nanosheets favor the adsorption, detection, and transformation of explosives. PMID:25877513

  14. Photoluminescence study in diaminobenzene functionalized graphene oxide

    SciTech Connect

    Gupta, Abhisek E-mail: cnssks@iacs.res.in; Saha, Shyamal K. E-mail: cnssks@iacs.res.in

    2014-10-15

    Being an excellent electronic material graphene is a very poor candidate for optoelectronic applications. One of the major strategies to develop the optical property in GO is the functionalization of graphene oxide (GO). In the present work GO sheets are functionalized by o-phenylenediamine to achieve diaminobenzene functionalized GO composite (DAB-GO). Formation of DAB-GO composite is further characterized by FTIR, UV, Raman studies. Excellent photoluminescence is observed in DAB-GO composite via passivation of the surface reactive sites by ring-opening amination of epoxides of GO.

  15. Optical properties of porphyrin: graphene oxide composites

    NASA Astrophysics Data System (ADS)

    Harsha Vardhan Reddy, M.; Al-Shammari, Rusul M.; Al-Attar, Nebras; Lopez, Sergio; Keyes, Tia E.; Rice, James H.

    2014-08-01

    In this work we aim to (via a non-invasive functionalization approach) tune and alter the intrinsic features of optically "transparent" graphene, by integrating water-soluble porphyrin aggregates. We explore the potential to combine porphyrin aggregates and graphene oxide to assess the advantages of such as a composite compared to the individual systems. We apply a range of optical spectroscopy methods including photo-absorption, fluorescence assess ground-state and excited state interactions. Our studies show that comparing resonant Raman scattering with optical transmission and fluorescence microscopy that the presence of influences the microscopic structures of the resulting composites.

  16. Targeting multiple types of tumors using NKG2D-coated iron oxide nanoparticles

    PubMed Central

    Wu, Ming-Ru; Cook, W. James; Zhang, Tong; Sentman, Charles L.

    2015-01-01

    Iron oxide nanoparticles (IONPs) hold great potential for cancer therapy. Actively targeting IONPs to tumor cells can further increase therapeutic efficacy and decrease off-target side effects. To target tumor cells, a natural killer (NK) cell activating receptor, NKG2D, was utilized to develop pan-tumor targeting IONPs. NKG2D ligands are expressed on many tumor types and its ligands are not found on most normal tissues under steady state conditions. The data showed that mouse and human fragment crystallizable (Fc) -fusion NKG2D (Fc-NKG2D) coated IONPs (NKG2D/NPs) can target multiple NKG2D ligand positive tumor types in vitro in a dose dependent manner by magnetic cell sorting. Tumor targeting effect was robust even under a very low tumor cell to normal cell ratio and targeting efficiency correlated with NKG2D ligand expression level on tumor cells. Furthermore, the magnetic separation platform utilized to test NKG2D/NP specificity has the potential to be developed into high throughput screening strategies to identify ideal fusion proteins or antibodies for targeting IONPs. In conclusion, NKG2D/NPs can be used to target multiple tumor types and magnetic separation platform can facilitate the proof-of-concept phase of tumor targeting IONP development. PMID:25371538

  17. Targeting multiple types of tumors using NKG2D-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Ru; Cook, W. James; Zhang, Tong; Sentman, Charles L.

    2014-11-01

    Iron oxide nanoparticles (IONPs) hold great potential for cancer therapy. Actively targeting IONPs to tumor cells can further increase therapeutic efficacy and decrease off-target side effects. To target tumor cells, a natural killer (NK) cell activating receptor, NKG2D, was utilized to develop pan-tumor targeting IONPs. NKG2D ligands are expressed on many tumor types and its ligands are not found on most normal tissues under steady state conditions. The data showed that mouse and human fragment crystallizable (Fc)-fusion NKG2D (Fc-NKG2D) coated IONPs (NKG2D/NPs) can target multiple NKG2D ligand positive tumor types in vitro in a dose dependent manner by magnetic cell sorting. Tumor targeting effect was robust even under a very low tumor cell to normal cell ratio and targeting efficiency correlated with NKG2D ligand expression level on tumor cells. Furthermore, the magnetic separation platform utilized to test NKG2D/NP specificity has the potential to be developed into high throughput screening strategies to identify ideal fusion proteins or antibodies for targeting IONPs. In conclusion, NKG2D/NPs can be used to target multiple tumor types and magnetic separation platform can facilitate the proof-of-concept phase of tumor targeting IONP development.

  18. Structural changes in graphene oxide thin film by electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Tyagi, Chetna; Lakshmi, G. B. V. S.; Kumar, Sunil; Tripathi, Ambuj; Avasthi, D. K.

    2016-07-01

    Although we have a whole class of 2D materials, graphene has drawn much attention for its excellent electronic, optical, thermal and mechanical properties. Recent researches have shown its large scale production by the reduction of graphene oxide either thermally, chemically or electrochemically. Although the structure of graphene oxide is inhomogeneous and hence complicated due to the presence of organic moieties e.g. epoxy, carboxylic acid, hydroxyl groups etc., its properties can be tuned by reduction according to desired application. The aim of this work is to synthesize continuous thin film of graphene oxide using commercially available graphene oxide solution and to study its reduction by 25 keV electron beam irradiation at fluences varying from 2 × 1011 to 2 × 1013 e-/cm2. Our studies using X-ray diffraction, Raman microscopy and UV-Vis spectroscopy showed that electron-beam irradiation is an effective tool for reduction of graphene oxide and for tuning its band gap.

  19. A convergent 2D finite-difference scheme for the Dirac–Poisson system and the simulation of graphene

    SciTech Connect

    Brinkman, D.; Heitzinger, C.; Markowich, P.A.

    2014-01-15

    We present a convergent finite-difference scheme of second order in both space and time for the 2D electromagnetic Dirac equation. We apply this method in the self-consistent Dirac–Poisson system to the simulation of graphene. The model is justified for low energies, where the particles have wave vectors sufficiently close to the Dirac points. In particular, we demonstrate that our method can be used to calculate solutions of the Dirac–Poisson system where potentials act as beam splitters or Veselago lenses.

  20. Controlling the Properties of 2D Chiral Fermions and Local Moments in Graphene

    NASA Astrophysics Data System (ADS)

    Killi, Matthew P.

    The primary subject of this thesis is graphene and how the rudimentary attributes of its charge carriers, and local moments on its surface, can be directly manipulated and controlled with electrostatic potentials. We first consider bilayer graphene subject to a spatially varying electrostatic potential that forms two neighbouring regions with opposite interlayer bias. Along the boundary, 1D chiral 'kink' states emerge. We find that these 1D modes behave as a strongly interacting Tomonaga-Luttinger liquid whose properties can be tuned via an external gate. Next, we consider superlattices in bilayer graphene. Superlattices are seen to have a more dramatic effect on bilayer graphene than monolayer graphene because the quasi-particles are changed in a fundamental way; the dispersion goes from a quadratic band touching point to linearly dispersing Dirac cones. We illustrate that a 1D superlattice of either the chemical potential or an interlayer bias generates multiple anisotropic Dirac cones. General arguments delineate how certain symmetries protect the Dirac points. We then map the Hamiltonian of an interlayer bias superlattice onto a coupled chain model comprised of 'topological' edge modes. We then discuss the relevance of spatially varying potentials to recent transport measurements. This is followed by another study that considers the effect of a magnetic field on graphene superlattices. We show that magnetotransport measurements in a weak perpendicular (orbital) magnetic field probe the number of emergent Dirac points and reveal further details about the dispersion. In the case of bilayer graphene, we also discuss the properties of kink states in an applied magnetic field. We then consider the implications of these results with regards to scanning tunnelling spectroscopy, valley filtering, and impurity induced breakdown of the quantum Hall effect. Finally, we investigate local moment formation of adatoms on bilayer graphene using an Anderson impurity model. We

  1. Thermal conductivity reduction in analogous 2D nanomaterials with isotope substitution: Graphene and silicene

    NASA Astrophysics Data System (ADS)

    Srinivasan, Srilok; Ray, Upamanyu; Balasubramanian, Ganesh

    2016-04-01

    We employ molecular dynamics simulations to understand how the presence of isotopes influences thermal transport across silicene, and compare the findings with that in structurally analogous graphene. The simulated structures are about 140 nm long and around 4 nm wide. The phonon spectra along with the variation of thermal conductivity reveal that out-of-plane modes are delocalized relative to the in-plane counterparts. The absolute thermal conductivity reductions are more pronounced in graphene than in silicene. Our computational findings agree with results of an analytical model based on mean-field approximation with appropriate corrections for the lattice anharmonicity.

  2. Comparing Graphene Growth on Cu(111) versus Oxidized Cu(111)

    PubMed Central

    2015-01-01

    The epitaxial growth of graphene on catalytically active metallic surfaces via chemical vapor deposition (CVD) is known to be one of the most reliable routes toward high-quality large-area graphene. This CVD-grown graphene is generally coupled to its metallic support resulting in a modification of its intrinsic properties. Growth on oxides is a promising alternative that might lead to a decoupled graphene layer. Here, we compare graphene on a pure metallic to graphene on an oxidized copper surface in both cases grown by a single step CVD process under similar conditions. Remarkably, the growth on copper oxide, a high-k dielectric material, preserves the intrinsic properties of graphene; it is not doped and a linear dispersion is observed close to the Fermi energy. Density functional theory calculations give additional insight into the reaction processes and help explaining the catalytic activity of the copper oxide surface. PMID:25611528

  3. Comparing graphene growth on Cu(111) versus oxidized Cu(111).

    PubMed

    Gottardi, Stefano; Müller, Kathrin; Bignardi, Luca; Moreno-López, Juan Carlos; Pham, Tuan Anh; Ivashenko, Oleksii; Yablonskikh, Mikhail; Barinov, Alexei; Björk, Jonas; Rudolf, Petra; Stöhr, Meike

    2015-02-11

    The epitaxial growth of graphene on catalytically active metallic surfaces via chemical vapor deposition (CVD) is known to be one of the most reliable routes toward high-quality large-area graphene. This CVD-grown graphene is generally coupled to its metallic support resulting in a modification of its intrinsic properties. Growth on oxides is a promising alternative that might lead to a decoupled graphene layer. Here, we compare graphene on a pure metallic to graphene on an oxidized copper surface in both cases grown by a single step CVD process under similar conditions. Remarkably, the growth on copper oxide, a high-k dielectric material, preserves the intrinsic properties of graphene; it is not doped and a linear dispersion is observed close to the Fermi energy. Density functional theory calculations give additional insight into the reaction processes and help explaining the catalytic activity of the copper oxide surface. PMID:25611528

  4. Graphene oxide - Polyvinyl alcohol nanocomposite based electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Pawar, Pranav Bhagwan; Shukla, Shobha; Saxena, Sumit

    2016-07-01

    Supercapacitors are high capacitive energy storage devices and find applications where rapid bursts of power are required. Thus materials offering high specific capacitance are of fundamental interest in development of these electrochemical devices. Graphene oxide based nanocomposites are mechanically robust and have interesting electronic properties. These form potential electrode materials efficient for charge storage in supercapacitors. In this perspective, we investigate low cost graphene oxide based nanocomposites as electrode material for supercapacitor. Nanocomposites of graphene oxide and polyvinyl alcohol were synthesized in solution phase by integrating graphene oxide as filler in polyvinyl alcohol matrix. Structural and optical characterizations suggest the formation of graphene oxide and polyvinyl alcohol nanocomposites. These nanocomposites were found to have high specific capacitance, were cyclable, ecofriendly and economical. Our studies suggest that nanocomposites prepared by adding 0.5% wt/wt of graphene oxide in polyvinyl alcohol can be used an efficient electrode material for supercapacitors.

  5. Highly controllable and green reduction of graphene oxide to flexible graphene film with high strength

    SciTech Connect

    Wan, Wubo; Zhao, Zongbin; Hu, Han; Gogotsi, Yury; Qiu, Jieshan

    2013-11-15

    Graphical abstract: Highly controllable and green reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant. Self-assembly of the as-made CCG sheets results in a flexible CCG film, of which the tensile strength strongly depends on the deoxygenation degree of graphene sheets. - Highlights: • Graphene was synthesized by an effective and environmentally friendly approach. • We introduced a facile X-ray diffraction analysis method to investigate the reduction process from graphene oxide to graphene. • Flexible graphene films were prepared by self-assembly of the graphene sheets. • The strength of the graphene films depends on the reduction degree of graphene. - Abstract: Graphene film with high strength was fabricated by the assembly of graphene sheets derived from graphene oxide (GO) in an effective and environmentally friendly approach. Highly controllable reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant, in which the reduction process was monitored by XRD analysis and UV–vis absorption spectra. Self-assembly of the as-made CCG sheets results in a flexible CCG film. This method may open an avenue to the easy and scalable preparation of graphene film with high strength which has promising potentials in many fields where strong, flexible and electrically conductive films are highly demanded.

  6. Hybrid platforms of graphane-graphene 2D structures: prototypes for atomically precise nanoelectronics.

    PubMed

    Mota, F de B; Rivelino, R; Medeiros, P V C; Mascarenhas, A J S; de Castilho, C M C

    2014-11-21

    First-principles calculations demonstrate that line/ribbon defects, resulting from a controlled dehydrogenation in graphane, lead to the formation of low-dimensional electron-rich tracks in a monolayer. The present simulations point out that hybrid graphane-graphene nanostructures exhibit important elements, greatly required for the fabrication of efficient electronic circuits at the atomic level. PMID:25285905

  7. Increasing the lego of 2D electronics materials: silicene and germanene, graphene's new synthetic cousins

    NASA Astrophysics Data System (ADS)

    Le Lay, Guy; Salomon, Eric; Angot, Thierry; Eugenia Dávila, Maria

    2015-05-01

    The realization of the first Field Effect Transistors operating at room temperature, based on a single layer silicene channel, open up highly promising perspectives, e.g., typically, for applications in digital electronics. Here, we describe recent results on the growth, characterization and electronic properties of novel synthetic two-dimensional materials beyond graphene, namely silicene and germanene, its silicon and germanium counterparts.

  8. Preparation and Properties of Graphene Oxide Modified Nanocomposite Hydrogels

    NASA Astrophysics Data System (ADS)

    Liu, Sihang; Huang, Mei

    2014-08-01

    Nanocomposite hydrogels with graphene oxide as chemical cross-linker were synthesized after graphene oxide being pretreated by methacryloyl chloride. Moreover, the mechanical behavior of nanocomposite hydrogels based on acrylamide (AAm) and graphene oxide (GO) was studied with different compositions. Experimental results of the swollen state properties of the nanocomposite hydrogels indicated that the addition of GO could effectively enhance the strength but lowers the swelling degree of nanocomposite hydrogels.

  9. Graphene Oxide: Synthesis, Characterization, Electronic Structure, and Applications

    NASA Astrophysics Data System (ADS)

    Stewart, Derek A.; Mkhoyan, K. Andre

    While graphite oxide was first identified in 1855 [1, 2], the recent discovery of stable graphene sheets has led to renewed interest in the chemical structure and potential applications of graphene oxide sheets. These structures have several physical properties that could aid in the large scale development of a graphene electronics industry. Depending on the degree of oxidization, graphene oxide layers can be either semiconducting or insulating and provide an important complement to metallic graphene layers. In addition, the electronic and optical properties of these films can be controlled by the selective removal or addition of oxygen. For example, selective oxidationof graphene sheets could lead to electronic circuit fabrication on the scale of a single atomic layer. Graphene oxide is also dispersible in water and other solvents and this provides a facile route for graphene deposition on a wide range of substrates for macroelectronics applications. Although graphite oxide has been known for roughly 150 years, key questions remain in regards to its chemical structure, electronic properties, and fabrication. Answering these issues has taken on special urgency with the development of graphene electronics. In this chapter, we will provide an overview of the field with special focus on synthesis, characterization, and first principles analysis of bonding and electronic structures. Finally, we will also address some of the most promising applications for graphene oxide in electronics and other industries.

  10. Zinc oxide doped graphene oxide films for gas sensing applications

    NASA Astrophysics Data System (ADS)

    Chetna, Kumar, Shani; Garg, A.; Chowdhuri, A.; Dhingra, V.; Chaudhary, S.; Kapoor, A.

    2016-05-01

    Graphene Oxide (GO) is analogous to graphene, but presence of many functional groups makes its physical and chemical properties essentially different from those of graphene. GO is found to be a promising material for low cost fabrication of highly versatile and environment friendly gas sensors. Selectivity, reversibility and sensitivity of GO based gas sensor have been improved by hybridization with Zinc Oxide nanoparticles. The device is fabricated by spin coating of deionized water dispersed GO flakes (synthesized using traditional hummer's method) doped with Zinc Oxide on standard glass substrate. Since GO is an insulator and functional groups on GO nanosheets play vital role in adsorbing gas molecules, it is being used as an adsorber. Additionally, on being exposed to certain gases the electric and optical characteristics of GO material exhibit an alteration in behavior. For the conductivity, we use Zinc Oxide, as it displays a high sensitivity towards conduction. The effects of the compositions, structural defects and morphologies of graphene based sensing layers and the configurations of sensing devices on the performances of gas sensors were investigated by Raman Spectroscopy, X-ray diffraction(XRD) and Keithley Sourcemeter.

  11. Ultrathin reduced graphene oxide films for high performance optical data storage

    NASA Astrophysics Data System (ADS)

    Xing, Fei; Yang, Yong; Zhu, Siwei; Yuan, Xiaocong

    2015-10-01

    Optical data storage (ODS) represents revolutionary progress for the field of information storage capacity. When the thickness of data recording layer is similar to a few nanometer even atomic scale, the data point dimension can decrease to the minimum with stable mechanical property. Thus the new generation of ODS requires data recording layer in nanoscale to improve areal storage density, so that the more digital information can be stored in limited zone. Graphene, a novel two-dimensional (2D) material, is a type of monolayer laminated structure composed of carbon atoms and is currently the thinnest known material (the thickness of monolayer graphene is 3.35 Å). It is an ideal choice as a active layer for ODS media. Reduced graphene oxide, a graphene derivative, has outstanding polarization-dependent absorption characteristics under total internal reflection (TIR). The strong broadband absorption of reduced graphene oxide causes it to exhibit different reflectance for transverse electric (TE) and transverse magnetic (TM) modes under TIR, and the maximum reflectance ratio between TM and TE modes is close to 8 with 8 nm reduced graphene oxide films. It opens a door for a high signal to noise ratio (SNR) graphene-based optical data storage. Here, 8 nm high-temperature reduced graphene oxide (h-rGO) films was used for the ultrathin active layer of ODS. The data writing was performed on the h-rGO active layer based on photolithography technology. Under TIR, a balanced detection technology in the experiment converts the optical signals into electric signals and simultaneously amplifies them. The reading results show a stable SNR up to 500, and the graphene-based ODS medium has a high transparency performance.

  12. Preparation and Characterization of Graphene Oxide Paper

    SciTech Connect

    Dikin,D.; Stankovich, S.; Zimney, E.; Piner, R.; Dommett, G.; Evmenenko, G.; Nguyen, S.; Ruoff, R.

    2007-01-01

    Free-standing paper-like or foil-like materials are an integral part of our technological society. Their uses include protective layers, chemical filters, components of electrical batteries or supercapacitors, adhesive layers, electronic or optoelectronic components, and molecular storage. Inorganic 'paper-like' materials based on nanoscale components such as exfoliated vermiculite or mica platelets have been intensively studied and commercialized as protective coatings, high-temperature binders, dielectric barriers and gas-impermeable membranes. Carbon-based flexible graphite foils composed of stacked platelets of expanded graphite have long been used in packing and gasketing applications because of their chemical resistivity against most media, superior sealability over a wide temperature range, and impermeability to fluids. The discovery of carbon nanotubes brought about bucky paper, which displays excellent mechanical and electrical properties that make it potentially suitable for fuel cell and structural composite applications. Here we report the preparation and characterization of graphene oxide paper, a free-standing carbon-based membrane material made by flow-directed assembly of individual graphene oxide sheets. This new material outperforms many other paper-like materials in stiffness and strength. Its combination of macroscopic flexibility and stiffness is a result of a unique interlocking-tile arrangement of the nanoscale graphene oxide sheets.

  13. Polyacrylonitrile fibers containing graphene oxide nanoribbons.

    PubMed

    Chien, An-Ting; Liu, H Clive; Newcomb, Bradley A; Xiang, Changsheng; Tour, James M; Kumar, Satish

    2015-03-11

    Graphene oxide nanoribbon (GONR) made by the oxidative unzipping of multiwalled carbon nanotube was dispersed in dimethylformamide and mixed with polyacrylonitrile (PAN) to fabricate continuous PAN/GONR composite fibers by gel spinning. Subsequently, PAN/GONR composite fibers were stabilized and carbonized in a batch process to fabricate composite carbon fibers. Structure, processing, and properties of the composite precursor and carbon fibers have been studied. This study shows that GONR can be used to make porous precursor and carbon fibers. In addition, GONR also shows the potential to make higher mechanical property carbon fibers than that achieved from PAN precursor only. PMID:25671488

  14. Growth of Epitaxial Oxide Thin Films on Graphene.

    PubMed

    Zou, Bin; Walker, Clementine; Wang, Kai; Tileli, Vasiliki; Shaforost, Olena; Harrison, Nicholas M; Klein, Norbert; Alford, Neil M; Petrov, Peter K

    2016-01-01

    The transfer process of graphene onto the surface of oxide substrates is well known. However, for many devices, we require high quality oxide thin films on the surface of graphene. This step is not understood. It is not clear why the oxide should adopt the epitaxy of the underlying oxide layer when it is deposited on graphene where there is no lattice match. To date there has been no explanation or suggestion of mechanisms which clarify this step. Here we show a mechanism, supported by first principles simulation and structural characterisation results, for the growth of oxide thin films on graphene. We describe the growth of epitaxial SrTiO3 (STO) thin films on a graphene and show that local defects in the graphene layer (e.g. grain boundaries) act as bridge-pillar spots that enable the epitaxial growth of STO thin films on the surface of the graphene layer. This study, and in particular the suggestion of a mechanism for epitaxial growth of oxides on graphene, offers new directions to exploit the development of oxide/graphene multilayer structures and devices. PMID:27515496

  15. Growth of Epitaxial Oxide Thin Films on Graphene

    PubMed Central

    Zou, Bin; Walker, Clementine; Wang, Kai; Tileli, Vasiliki; Shaforost, Olena; Harrison, Nicholas M.; Klein, Norbert; Alford, Neil M.; Petrov, Peter K.

    2016-01-01

    The transfer process of graphene onto the surface of oxide substrates is well known. However, for many devices, we require high quality oxide thin films on the surface of graphene. This step is not understood. It is not clear why the oxide should adopt the epitaxy of the underlying oxide layer when it is deposited on graphene where there is no lattice match. To date there has been no explanation or suggestion of mechanisms which clarify this step. Here we show a mechanism, supported by first principles simulation and structural characterisation results, for the growth of oxide thin films on graphene. We describe the growth of epitaxial SrTiO3 (STO) thin films on a graphene and show that local defects in the graphene layer (e.g. grain boundaries) act as bridge-pillar spots that enable the epitaxial growth of STO thin films on the surface of the graphene layer. This study, and in particular the suggestion of a mechanism for epitaxial growth of oxides on graphene, offers new directions to exploit the development of oxide/graphene multilayer structures and devices. PMID:27515496

  16. Highly oxidized graphene nanosheets via the oxidization of detonation carbon

    NASA Astrophysics Data System (ADS)

    Nepal, A.; Chiu, G.; Xie, J.; Singh, G. P.; Ploscariu, N.; Klankowski, S.; Sung, T.; Li, J.; Flanders, B. N.; Hohn, K. L.; Sorensen, C. M.

    2015-08-01

    A unique approach was developed to produce highly oxygenated graphene nanosheets (OGNs) by solution-based oxidation of the pristine graphene nanosheets (GNs) prepared via a controlled detonation of acetylene with oxygen. The produced OGNs are about 250 nm in size and are hydrophilic in nature. The C/O ratio was dramatically reduced from 49:1 in the pristine GNs to about 1:1 in OGNs, as determined by X-ray photoelectron spectroscopy. This C/O in OGNs is the least ever found in all oxidized graphitic materials that have been reported. Thus, the OGNs produced from the detonated GNs with such high degree of oxidation herein yield a novel and promising material for future applications.

  17. Graphene oxide overprints for flexible and transparent electronics

    NASA Astrophysics Data System (ADS)

    Rogala, M.; Wlasny, I.; Dabrowski, P.; Kowalczyk, P. J.; Busiakiewicz, A.; Kozlowski, W.; Lipinska, L.; Jagiello, J.; Aksienionek, M.; Strupinski, W.; Krajewska, A.; Sieradzki, Z.; Krucinska, I.; Puchalski, M.; Skrzetuska, E.; Klusek, Z.

    2015-01-01

    The overprints produced in inkjet technology with graphene oxide dispersion are presented. The graphene oxide ink is developed to be fully compatible with standard industrial printers and polyester substrates. Post-printing chemical reduction procedure is proposed, which leads to the restoration of electrical conductivity without destroying the substrate. The presented results show the outstanding potential of graphene oxide for rapid and cost efficient commercial implementation to production of flexible electronics. Properties of graphene-based electrodes are characterized on the macro- and nano-scale. The observed nano-scale inhomogeneity of overprints' conductivity is found to be essential in the field of future industrial applications.

  18. Graphene oxide overprints for flexible and transparent electronics

    SciTech Connect

    Rogala, M. Wlasny, I.; Kowalczyk, P. J.; Busiakiewicz, A.; Kozlowski, W.; Klusek, Z.; Sieradzki, Z.; Krucinska, I.; Puchalski, M.; Skrzetuska, E.

    2015-01-26

    The overprints produced in inkjet technology with graphene oxide dispersion are presented. The graphene oxide ink is developed to be fully compatible with standard industrial printers and polyester substrates. Post-printing chemical reduction procedure is proposed, which leads to the restoration of electrical conductivity without destroying the substrate. The presented results show the outstanding potential of graphene oxide for rapid and cost efficient commercial implementation to production of flexible electronics. Properties of graphene-based electrodes are characterized on the macro- and nano-scale. The observed nano-scale inhomogeneity of overprints' conductivity is found to be essential in the field of future industrial applications.

  19. Experimental evaluation of the metabolic reversibility of ANME-2d between anaerobic methane oxidation and methanogenesis.

    PubMed

    Ding, Jing; Fu, Liang; Ding, Zhao-Wei; Lu, Yong-Ze; Cheng, Shuk H; Zeng, Raymond J

    2016-07-01

    The "reverse methanogenesis" hypothesis as the metabolic pathway of AOM has recently been supported in the novel ANME lineage ANME-2d in denitrifying anaerobic methane oxidation (DAMO). However, no previous studies have experimentally evaluated the reversal of methane oxidation and methane production in this archaea. In the present study, the metabolic reversibility of ANME-2d from AOM to methanogenesis was evaluated using H2/CO2 and acetate as substrates. The results showed that the system produced methane from H2/CO2 but not from acetate. However, the clone library and real-time PCR analysis of the culture showed that both the percentage and quantity of ANME-2d decreased significantly under this condition, while methanogen abundance increased. Further high-throughput sequencing results showed that the archaea community did not change at the fourth day after H2/CO2 was supplied, but changed profoundly after methanogenesis took place for 3 days. The percentage of DAMO archaea in the total archaea decreased obviously, while more methanogens grew up during this period. Comparatively, the bacteria community changed profoundly at the fourth day. These results indicated that ANME-2d might not reverse its metabolism to produce methane from H2/CO2 or acetate. After archaea were returned to DAMO conditions, DAMO activity decreased and the amount of ANME-2d continued to fall, implying that the lineage had suffered from severe injury and required a long recovery time. PMID:27026178

  20. Temperature dependent electrical transport of disordered reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Muchharla, Baleeswaraiah; Narayanan, T. N.; Balakrishnan, Kaushik; Ajayan, Pulickel M.; Talapatra, Saikat

    2014-06-01

    We report on the simple route for the synthesis of chemically reduced graphene oxide (rGO) using ascorbic acid (a green chemical) as a reducing agent. Temperature-dependent electrical transport properties of rGO thin films have been studied in a wide range (50 K T 400 K) of temperature. Electrical conduction in rGO thin films was displayed in two different temperature regimes. At higher temperatures, Arrhenius-like temperature dependence of resistance was observed indicating a band gap dominating transport behavior. At lower temperatures, the rGO sample showed a conduction mechanism consistent with Mott's two-dimensional variable range hopping (2D-VRH). An unsaturated negative magnetoresistance (MR) was observed up to 3 T field. A decrease in negative MR at high temperatures is attributed to the phonon scattering of charge carriers.

  1. Genetic polymorphisms of CYP2D6 oxidation in patients with autoimmune bullous diseases

    PubMed Central

    Rychlik-Sych, Mariola; Baranska, Małgorzata; Waszczykowska, Elzbieta; Torzecka, Jolanta Dorota; Skretkowicz, Jadwiga

    2013-01-01

    Introduction Bullous skin diseases, which include, among others pemphigoid, pemphigus, and dermatitis herpetiformis are classified as severe autoimmune dermatoses. It has been shown that a pattern of xenobiotic metabolism may play a role in the pathogenesis of autoimmune diseases. Aim To estimate whether the CYP2D6 genotype may be considered a predisposing factor in autoimmune bullous diseases induction. Material and methods The study included 72 patients with autoimmune bullous diseases: 37 with pemphigoid, 21 with pemphigus, and 14 with dermatitis herpetiformis (DH). The CYP2D6 genotypes were analyzed by the polymerase chain reaction fragment length polymorphism (PCR-RFLP) method. Results Relative risk of DH development for particular genotype carriers expressed by odds ratio (OR) was statistically significantly higher for subjects with CYP2D6*1/CYP2D6*4 (OR = 4.2; p = 0.0104) and 2-fold higher for subjects with CYP2D6*4 (OR = 2.3; p = 0.0351). Conclusions The results of the present study show that the CYP2D6 oxidation polymorphism cannot be considered a risk factor for development of pemphigoid and pemphigus, however it might have an impact on dermatitis herpetiformis. PMID:24278077

  2. Patterning graphene nanoribbons using copper oxide nanowires

    SciTech Connect

    Sinitskii, Alexander; Tour, James M.

    2012-03-05

    We present a fabrication technique for graphene nanoribbons (GNRs) that employs copper oxide nanowires as the etch masks. We demonstrate that these etch masks have numerous advantages: they can be synthesized simply by heating a copper foil in air, deposited on graphene from a solution, they are inert to oxygen plasma, and can be removed from the substrate by dissolution in mild acids. We fabricated GNRs in the device configuration and tested their electrical properties. Depending on the duration of the plasma etching, GNR devices exhibiting either standard ambipolar electric field effects or p-type transistor behaviors with ON-OFF ratios > 50 can be fabricated. The resulting devices based on narrow GNRs are demonstrated to exhibit promising electronic properties, which can be exploited in studies where GNR devices are required.

  3. Molecular Dynamics Simulations of Graphene Oxide Frameworks

    SciTech Connect

    Zhu, Pan; Sumpter, Bobby G; Meunier, V.; Nicolai, Adrien

    2013-01-01

    We use quantum mechanical calculations to develop a full set of force field parameters in order to perform molecular dynamics simulations to understand and optimize the molecular storage properties inside Graphene Oxide Frameworks (GOFs). A set of boron-related parameters for commonly used empirical force fields is determined to describe the non-bonded and bonded interactions between linear boronic acid linkers and graphene sheets of GOF materials. The transferability of the parameters is discussed and their validity is quantified by comparing quantum mechanical and molecular mechanical structural and vibrational properties. The application of the model to the dynamics of water inside the GOFs reveals significant variations in structural flexibility of GOF depending on the linker density, which is shown to be usable as a tuning parameter for desired diffusion properties.

  4. Quantum conductance of zigzag graphene oxide nanoribbons

    SciTech Connect

    Kan, Zhe; Nelson, Christopher; Khatun, Mahfuza

    2014-04-21

    The electronic properties of zigzag graphene oxide nanoribbons (ZGOR) are presented. The results show interesting behaviors which are considerably different from the properties of the perfect graphene nanoribbons (GNRs). The theoretical methods include a Huckel-tight binding approach, a Green's function methodology, and the Landauer formalism. The presence of oxygen on the edge results in band bending, a noticeable change in density of states and thus the conductance. Consequently, the occupation in the valence bands increase for the next neighboring carbon atom in the unit cell. Conductance drops in both the conduction and valence band regions are due to the reduction of allowed k modes resulting from band bending. The asymmetry of the energy band structure of the ZGOR is due to the energy differences of the atoms. The inclusion of a foreign atom's orbital energies changes the dispersion relation of the eigenvalues in energy space. These novel characteristics are important and valuable in the study of quantum transport of GNRs.

  5. Graphene oxide nanocomposites and their electrorheology

    SciTech Connect

    Zhang, Wen Ling; Liu, Ying Dan; Choi, Hyoung Jin

    2013-12-15

    Graphical abstract: - Highlights: • GO-based PANI, NCOPA and PS nanocomposites are prepared. • The nanocomposites are adopted as novel electrorheological (ER) candidates. • Their critical ER characteristics and dielectric performance are analyzed. • Typical ER behavior widens applications of GO-based nanocomposites. - Abstract: Graphene oxide (GO), a novel one-atom carbon system, has become one of the most interesting materials recently due to its unique physical and chemical properties in addition to graphene. This article briefly reviews a recent progress of the fabrication of GO-based polyaniline, ionic N-substituted copolyaniline and polystyrene nanocomposites. The critical electrorheological characteristics such as flow response and yield stress from rheological measurement, relaxation time and achievable polarizability from dielectric analysis are also analyzed.

  6. 2 D patterns of soil gas diffusivity , soil respiration, and methane oxidation in a soil profile

    NASA Astrophysics Data System (ADS)

    Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2015-04-01

    The apparent gas diffusion coefficient in soil (DS) is an important parameter describing soil aeration, which makes it a key parameter for root growth and gas production and consumption. Horizontal homogeneity in soil profiles is assumed in most studies for soil properties - including DS. This assumption, however, is not valid, even in apparently homogeneous soils, as we know from studies using destructive sampling methods. Using destructive methods may allow catching a glimpse, but a large uncertainty remains, since locations between the sampling positions cannot be analyzed, and measurements cannot be repeated. We developed a new method to determine in situ the apparent soil gas diffusion coefficient in order to examine 2 D pattern of DS and methane oxidation in a soil profile. Different tracer gases (SF6, CF4, C2H6) were injected continuously into the subsoil and measured at several locations in the soil profile. These data allow for modelling inversely the 2 D patterns of DS using Finite Element Modeling. The 2D DS patterns were then combined with naturally occurring CH4 and CO2 concentrations sampled at the same locations to derive the 2D pattern of soil respiration and methane oxidation in the soil profile. We show that methane oxidation and soil respiration zones shift within the soil profile while the gas fluxes at the surface remain rather stable during a the 3 week campaign.

  7. Graphene and Graphene Oxide: Biofunctionalization and Applications in Biotechnology

    SciTech Connect

    Wang, Ying; Li, Zhaohui; Wang, Jun; Li, Jinghong; Lin, Yuehe

    2011-05-01

    Graphene is the basic building block of zero-dimensional fullerene, 1D carbon nanotubes, and 3D graphite. Graphene has a unique planar structure as well as novel electronic properties, which have attracted great interest from scientists. This review selectively analyzes current advances in the field of graphene bioapplications. In particular, the functionalization of graphene for biological applications, FRET-based biosensor development by using graphene-based nanomaterials, and the investigation of graphene for living cell studies have been summarized in more details. Future perspectives and possible challenges in this rapidly developing area are also discussed.

  8. Highly specific SNP detection using 2D graphene electronics and DNA strand displacement

    PubMed Central

    Hwang, Michael T.; Landon, Preston B.; Lee, Joon; Choi, Duyoung; Mo, Alexander H.; Glinsky, Gennadi; Lal, Ratnesh

    2016-01-01

    Single-nucleotide polymorphisms (SNPs) in a gene sequence are markers for a variety of human diseases. Detection of SNPs with high specificity and sensitivity is essential for effective practical implementation of personalized medicine. Current DNA sequencing, including SNP detection, primarily uses enzyme-based methods or fluorophore-labeled assays that are time-consuming, need laboratory-scale settings, and are expensive. Previously reported electrical charge-based SNP detectors have insufficient specificity and accuracy, limiting their effectiveness. Here, we demonstrate the use of a DNA strand displacement-based probe on a graphene field effect transistor (FET) for high-specificity, single-nucleotide mismatch detection. The single mismatch was detected by measuring strand displacement-induced resistance (and hence current) change and Dirac point shift in a graphene FET. SNP detection in large double-helix DNA strands (e.g., 47 nt) minimize false-positive results. Our electrical sensor-based SNP detection technology, without labeling and without apparent cross-hybridization artifacts, would allow fast, sensitive, and portable SNP detection with single-nucleotide resolution. The technology will have a wide range of applications in digital and implantable biosensors and high-throughput DNA genotyping, with transformative implications for personalized medicine. PMID:27298347

  9. Highly specific SNP detection using 2D graphene electronics and DNA strand displacement.

    PubMed

    Hwang, Michael T; Landon, Preston B; Lee, Joon; Choi, Duyoung; Mo, Alexander H; Glinsky, Gennadi; Lal, Ratnesh

    2016-06-28

    Single-nucleotide polymorphisms (SNPs) in a gene sequence are markers for a variety of human diseases. Detection of SNPs with high specificity and sensitivity is essential for effective practical implementation of personalized medicine. Current DNA sequencing, including SNP detection, primarily uses enzyme-based methods or fluorophore-labeled assays that are time-consuming, need laboratory-scale settings, and are expensive. Previously reported electrical charge-based SNP detectors have insufficient specificity and accuracy, limiting their effectiveness. Here, we demonstrate the use of a DNA strand displacement-based probe on a graphene field effect transistor (FET) for high-specificity, single-nucleotide mismatch detection. The single mismatch was detected by measuring strand displacement-induced resistance (and hence current) change and Dirac point shift in a graphene FET. SNP detection in large double-helix DNA strands (e.g., 47 nt) minimize false-positive results. Our electrical sensor-based SNP detection technology, without labeling and without apparent cross-hybridization artifacts, would allow fast, sensitive, and portable SNP detection with single-nucleotide resolution. The technology will have a wide range of applications in digital and implantable biosensors and high-throughput DNA genotyping, with transformative implications for personalized medicine. PMID:27298347

  10. Reduction Kinetics of Graphene Oxide Determined by Temperature Programmed Desorption

    NASA Astrophysics Data System (ADS)

    Ventrice, Carl; Clark, Nicholas; Field, Daniel; Geisler, Heike; Jung, Inhwa; Yang, Dongxing; Piner, Richard; Ruoff, Rodney

    2009-10-01

    Graphene oxide, which is an electrical insulator, shows promise for use in several technological applications such as dielectric layers in nanoscale electronic devices or as the active region of chemical sensors. In principle, graphene oxide films could also be used as a precursor for the formation of large-scale graphene films by either thermal or chemical reduction of the graphene oxide. In order to determine the thermal stability and reduction kinetics of graphene oxide, temperature program desorption (TPD) measurements have been performed on multilayer films of graphene oxide deposited on SiO2/Si(100) substrates. The graphene oxide was exfoliated from the graphite oxide source material by slow-stirring in aqueous solution, which produces single-layer platelets with an average lateral size of ˜10 μm. From the TPD measurements, it was determined that the decomposition process begins at ˜80 ^oC. The primary desorption products of the graphene oxide films for temperatures up to 300 ^oC are H2O, CO2, and CO, with only trace amounts of O2 being detected. An activation energy of 1.4 eV/molecule was determined by assuming an Arrhenius dependence for the decomposition process.

  11. Graphene oxide and H2 production from bioelectrochemical graphite oxidation.

    PubMed

    Lu, Lu; Zeng, Cuiping; Wang, Luda; Yin, Xiaobo; Jin, Song; Lu, Anhuai; Jason Ren, Zhiyong

    2015-01-01

    Graphene oxide (GO) is an emerging material for energy and environmental applications, but it has been primarily produced using chemical processes involving high energy consumption and hazardous chemicals. In this study, we reported a new bioelectrochemical method to produce GO from graphite under ambient conditions without chemical amendments, value-added organic compounds and high rate H2 were also produced. Compared with abiotic electrochemical electrolysis control, the microbial assisted graphite oxidation produced high rate of graphite oxide and graphene oxide (BEGO) sheets, CO2, and current at lower applied voltage. The resultant electrons are transferred to a biocathode, where H2 and organic compounds are produced by microbial reduction of protons and CO2, respectively, a process known as microbial electrosynthesis (MES). Pseudomonas is the dominant population on the anode, while abundant anaerobic solvent-producing bacteria Clostridium carboxidivorans is likely responsible for electrosynthesis on the cathode. Oxygen production through water electrolysis was not detected on the anode due to the presence of facultative and aerobic bacteria as O2 sinkers. This new method provides a sustainable route for producing graphene materials and renewable H2 at low cost, and it may stimulate a new area of research in MES. PMID:26573014

  12. Graphene oxide and H2 production from bioelectrochemical graphite oxidation

    NASA Astrophysics Data System (ADS)

    Lu, Lu; Zeng, Cuiping; Wang, Luda; Yin, Xiaobo; Jin, Song; Lu, Anhuai; Jason Ren, Zhiyong

    2015-11-01

    Graphene oxide (GO) is an emerging material for energy and environmental applications, but it has been primarily produced using chemical processes involving high energy consumption and hazardous chemicals. In this study, we reported a new bioelectrochemical method to produce GO from graphite under ambient conditions without chemical amendments, value-added organic compounds and high rate H2 were also produced. Compared with abiotic electrochemical electrolysis control, the microbial assisted graphite oxidation produced high rate of graphite oxide and graphene oxide (BEGO) sheets, CO2, and current at lower applied voltage. The resultant electrons are transferred to a biocathode, where H2 and organic compounds are produced by microbial reduction of protons and CO2, respectively, a process known as microbial electrosynthesis (MES). Pseudomonas is the dominant population on the anode, while abundant anaerobic solvent-producing bacteria Clostridium carboxidivorans is likely responsible for electrosynthesis on the cathode. Oxygen production through water electrolysis was not detected on the anode due to the presence of facultative and aerobic bacteria as O2 sinkers. This new method provides a sustainable route for producing graphene materials and renewable H2 at low cost, and it may stimulate a new area of research in MES.

  13. Graphene oxide and H2 production from bioelectrochemical graphite oxidation

    PubMed Central

    Lu, Lu; Zeng, Cuiping; Wang, Luda; Yin, Xiaobo; Jin, Song; Lu, Anhuai; Jason Ren, Zhiyong

    2015-01-01

    Graphene oxide (GO) is an emerging material for energy and environmental applications, but it has been primarily produced using chemical processes involving high energy consumption and hazardous chemicals. In this study, we reported a new bioelectrochemical method to produce GO from graphite under ambient conditions without chemical amendments, value-added organic compounds and high rate H2 were also produced. Compared with abiotic electrochemical electrolysis control, the microbial assisted graphite oxidation produced high rate of graphite oxide and graphene oxide (BEGO) sheets, CO2, and current at lower applied voltage. The resultant electrons are transferred to a biocathode, where H2 and organic compounds are produced by microbial reduction of protons and CO2, respectively, a process known as microbial electrosynthesis (MES). Pseudomonas is the dominant population on the anode, while abundant anaerobic solvent-producing bacteria Clostridium carboxidivorans is likely responsible for electrosynthesis on the cathode. Oxygen production through water electrolysis was not detected on the anode due to the presence of facultative and aerobic bacteria as O2 sinkers. This new method provides a sustainable route for producing graphene materials and renewable H2 at low cost, and it may stimulate a new area of research in MES. PMID:26573014

  14. Mechanisms of polarization switching in graphene oxides and poly(vinylidene fluoride)-graphene oxide films

    NASA Astrophysics Data System (ADS)

    Jiang, Zhiyuan; Zheng, Guangping; Zhan, Ke; Han, Zhuo; Wang, Hao

    2016-04-01

    Polarization switching in graphene oxides (GOs) and poly(vinylidene fluoride) (PVDF)-GO nanocomposite is investigated by piezoelectric force microscopy (PFM). The dynamical switching results reveal that GO films exhibit ferroelectric and piezoelectric properties with two-dimensional characteristics. Abnormal polarization switching is observed in PVDF-GO films, which is promising for electronic applications.

  15. Effect of ammonia plasma treatment on graphene oxide LB monolayers

    SciTech Connect

    Singh, Gulbagh; Botcha, V. Divakar; Narayanam, Pavan K.; Sutar, D. S.; Talwar, S. S.; Major, S. S.; Srinivasa, R. S.

    2013-02-05

    Graphene oxide monolayer sheets were transferred on Si and SiO{sub 2}/Si substrates by Langmuir-Blodgett technique and were exposed to ammonia plasma at room temperature. The monolayer character of both graphene oxide and plasma treated graphene oxide sheets were ascertained by atomic force microscopy. X-ray photoelectron spectroscopy and Raman spectroscopy revealed that ammonia plasma treatment results in enhancement of graphitic carbon content along with the incorporation of nitrogen. The conductivity of graphene oxide monolayers, which was in the range of 10{sup -6}-10{sup -7} S/cm, increased to 10{sup -2}-10{sup -3} S/cm after the ammonia plasma treatment. These results indicate that the graphene oxide was simultaneously reduced and N-doped during ammonia plasma treatment, without affecting the morphological stability of sheets.

  16. Self-Assembly of Graphene Single Crystals with Uniform Size and Orientation: The First 2D Super-Ordered Structure.

    PubMed

    Zeng, Mengqi; Wang, Lingxiang; Liu, Jinxin; Zhang, Tao; Xue, Haifeng; Xiao, Yao; Qin, Zhihui; Fu, Lei

    2016-06-29

    The challenges facing the rapid developments of highly integrated electronics, photonics, and microelectromechanical systems suggest that effective fabrication technologies are urgently needed to produce ordered structures using components with high performance potential. Inspired by the spontaneous organization of molecular units into ordered structures by noncovalent interactions, we succeed for the first time in synthesizing a two-dimensional superordered structure (2DSOS). As demonstrated by graphene, the 2DSOS was prepared via self-assembly of high-quality graphene single crystals under mutual electrostatic force between the adjacent crystals assisted by airflow-induced hydrodynamic forces at the liquid metal surface. The as-obtained 2DSOS exhibits tunable periodicity in the crystal space and outstanding uniformity in size and orientation. Moreover, the intrinsic property of each building block is preserved. With simplicity, scalability, and continuously adjustable feature size, the presented approach may open new territory for the precise assembly of 2D atomic crystals and facilitate its application in structurally derived integrated systems. PMID:27313075

  17. In situ TEM tensile testing of carbon-linked graphene oxide nanosheets using a MEMS device

    NASA Astrophysics Data System (ADS)

    Cao, Changhong; Howe, Jane Y.; Perovic, Doug; Filleter, Tobin; Sun, Yu

    2016-07-01

    This paper reports in situ transmission electron microscopy (TEM) tensile testing of carbon-linked graphene oxide nanosheets using a monolithic TEM compatible microelectromechanical system device. The set-up allows direct on-chip nanosheet thickness mapping, high resolution electron beam linking of a pre-fractured nanosheet, and mechanical tensile testing of the nanosheet. This technique enables simultaneous mechanical and high energy electron beam characterization of 2D nanomaterials.

  18. In situ TEM tensile testing of carbon-linked graphene oxide nanosheets using a MEMS device.

    PubMed

    Cao, Changhong; Howe, Jane Y; Perovic, Doug; Filleter, Tobin; Sun, Yu

    2016-07-15

    This paper reports in situ transmission electron microscopy (TEM) tensile testing of carbon-linked graphene oxide nanosheets using a monolithic TEM compatible microelectromechanical system device. The set-up allows direct on-chip nanosheet thickness mapping, high resolution electron beam linking of a pre-fractured nanosheet, and mechanical tensile testing of the nanosheet. This technique enables simultaneous mechanical and high energy electron beam characterization of 2D nanomaterials. PMID:27256541

  19. X-ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites

    PubMed Central

    2015-01-01

    The surface properties of the electrode materials play a crucial role in determining the performance and efficiency of energy storage devices. Graphene oxide and nanostructures of 3d transition metal oxides were synthesized for construction of electrodes in supercapacitors, and the electronic structure and oxidation states were probed using near-edge X-ray absorption fine structure. Understanding the chemistry of graphene oxide would provide valuable insight into its reactivity and properties as the graphene oxide transformation to reduced-graphene oxide is a key step in the synthesis of the electrode materials. Polarized behavior of the synchrotron X-rays and the angular dependency of the near-edge X-ray absorption fine structures (NEXAFS) have been utilized to study the orientation of the σ and π bonds of the graphene oxide and graphene oxide–metal oxide nanocomposites. The core-level transitions of individual metal oxides and that of the graphene oxide nanocomposite showed that the interaction of graphene oxide with the metal oxide nanostructures has not altered the electronic structure of either of them. As the restoration of the π network is important for good electrical conductivity, the C K edge NEXAFS spectra of reduced graphene oxide nanocomposites confirms the same through increased intensity of the sp2-derived unoccupied states π* band. A pronounced angular dependency of the reduced sample and the formation of excitonic peaks confirmed the formation of extended conjugated network. PMID:25152800

  20. Graphene oxide as a photocatalytic material

    SciTech Connect

    Krishnamoorthy, Karthikeyan; Mohan, Rajneesh; Kim, S.-J.

    2011-06-13

    The photocatalytic characteristics of graphene oxide (GO) nanostructures synthesized by modified Hummer's method were investigated by measuring reduction rate of resazurin (RZ) into resorufin (RF) as a function of UV irradiation time. The progress of the photocatalytic reaction was monitored by change in color from blue (RZ) into pink (RF) followed by absorption spectra. It exhibited excellent photocatalytic activity, leading to the reduction of RZ in UV irradiation. The fitting of absorbance maximum versus time suggests that the reduction of RZ follow the pseudo first-order reaction kinetics. These results indicate that GO have great potential for use as a photocatalyst.

  1. Can graphene oxide cause damage to eyesight?

    PubMed

    Yan, Lu; Wang, Yaping; Xu, Xu; Zeng, Chao; Hou, Jiangping; Lin, Mimi; Xu, Jingzhou; Sun, Fei; Huang, Xiaojie; Dai, Liming; Lu, Fan; Liu, Yong

    2012-06-18

    As graphene becomes one of the most exciting candidates for multifunctional biomedical applications, contact between eyes and graphene-based materials is inevitable. On the other hand, eyes, as a special organ in the human body, have unique advantages to be used for testing new biomedical research and development, such as drug delivery. Intraocular biocompatible studies on graphene-related materials are thus essential. Here, we report our recent studies on intraocular biocompatibility and cytotoxicity of graphene oxide (GO) both in vitro and in vivo. The successful preparation of GO nanosheets was confirmed using atomic force microscopy, contact angle analyzer, Fourier transform infrared spectroscopy, and Raman spectroscopy. The influence of GO on human retinal pigment epithelium (RPE) cells in terms of the cell morphology, viability, membrane integrity, and apoptosis was investigated using various techniques, including optical micrography, cell counting kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) assay, and apoptosis assay. The addition of GO had little influence on cell morphology, but the change was visible after long-time culturing. RPE cells showed higher than 60% cell viability by CCK-8 assay in GO solutions and less than 8% LDH release, although a small amount of apoptosis (1.5%) was observed. In vitro results suggested good biocompatibility of GO to RPE cells with slight adverse influence, on the cell viability and morphology in long-time periods, along with aggregation of GO. Thus, some further studies are needed to clarify the cytotoxicity mechanism of GO. GO intravitreally injected eyes showed few changes in eyeball appearance, intraocular pressure (IOP), eyesight, and histological photos. Our results suggested that GO did not cause any significant toxicity to the cell growth and proliferation. Intravitreal injection of GO into rabbits' eyes did not lead to much change in the eyeball appearance, IOP, electroretinogram, and histological examination

  2. A journey from order to disorder — Atom by atom transformation from graphene to a 2D carbon glass

    NASA Astrophysics Data System (ADS)

    Eder, Franz R.; Kotakoski, Jani; Kaiser, Ute; Meyer, Jannik C.

    2014-02-01

    One of the most interesting questions in solid state theory is the structure of glass, which has eluded researchers since the early 1900's. Since then, two competing models, the random network theory and the crystallite theory, have both gathered experimental support. Here, we present a direct, atomic-level structural analysis during a crystal-to-glass transformation, including all intermediate stages. We introduce disorder on a 2D crystal, graphene, gradually, utilizing the electron beam of a transmission electron microscope, which allows us to capture the atomic structure at each step. The change from a crystal to a glass happens suddenly, and at a surprisingly early stage. Right after the transition, the disorder manifests as a vitreous network separating individual crystallites, similar to the modern version of the crystallite theory. However, upon increasing disorder, the vitreous areas grow on the expense of the crystallites and the structure turns into a random network. Thereby, our results show that, at least in the case of a 2D structure, both of the models can be correct, and can even describe the same material at different degrees of disorder.

  3. Fast and fully-scalable synthesis of reduced graphene oxide

    PubMed Central

    Abdolhosseinzadeh, Sina; Asgharzadeh, Hamed; Seop Kim, Hyoung

    2015-01-01

    Exfoliation of graphite is a promising approach for large-scale production of graphene. Oxidation of graphite effectively facilitates the exfoliation process, yet necessitates several lengthy washing and reduction processes to convert the exfoliated graphite oxide (graphene oxide, GO) to reduced graphene oxide (RGO). Although filtration, centrifugation and dialysis have been frequently used in the washing stage, none of them is favorable for large-scale production. Here, we report the synthesis of RGO by sonication-assisted oxidation of graphite in a solution of potassium permanganate and concentrated sulfuric acid followed by reduction with ascorbic acid prior to any washing processes. GO loses its hydrophilicity during the reduction stage which facilitates the washing step and reduces the time required for production of RGO. Furthermore, simultaneous oxidation and exfoliation significantly enhance the yield of few-layer GO. We hope this one-pot and fully-scalable protocol paves the road toward out of lab applications of graphene. PMID:25976732

  4. Fast and fully-scalable synthesis of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Abdolhosseinzadeh, Sina; Asgharzadeh, Hamed; Seop Kim, Hyoung

    2015-05-01

    Exfoliation of graphite is a promising approach for large-scale production of graphene. Oxidation of graphite effectively facilitates the exfoliation process, yet necessitates several lengthy washing and reduction processes to convert the exfoliated graphite oxide (graphene oxide, GO) to reduced graphene oxide (RGO). Although filtration, centrifugation and dialysis have been frequently used in the washing stage, none of them is favorable for large-scale production. Here, we report the synthesis of RGO by sonication-assisted oxidation of graphite in a solution of potassium permanganate and concentrated sulfuric acid followed by reduction with ascorbic acid prior to any washing processes. GO loses its hydrophilicity during the reduction stage which facilitates the washing step and reduces the time required for production of RGO. Furthermore, simultaneous oxidation and exfoliation significantly enhance the yield of few-layer GO. We hope this one-pot and fully-scalable protocol paves the road toward out of lab applications of graphene.

  5. Fast and fully-scalable synthesis of reduced graphene oxide.

    PubMed

    Abdolhosseinzadeh, Sina; Asgharzadeh, Hamed; Seop Kim, Hyoung

    2015-01-01

    Exfoliation of graphite is a promising approach for large-scale production of graphene. Oxidation of graphite effectively facilitates the exfoliation process, yet necessitates several lengthy washing and reduction processes to convert the exfoliated graphite oxide (graphene oxide, GO) to reduced graphene oxide (RGO). Although filtration, centrifugation and dialysis have been frequently used in the washing stage, none of them is favorable for large-scale production. Here, we report the synthesis of RGO by sonication-assisted oxidation of graphite in a solution of potassium permanganate and concentrated sulfuric acid followed by reduction with ascorbic acid prior to any washing processes. GO loses its hydrophilicity during the reduction stage which facilitates the washing step and reduces the time required for production of RGO. Furthermore, simultaneous oxidation and exfoliation significantly enhance the yield of few-layer GO. We hope this one-pot and fully-scalable protocol paves the road toward out of lab applications of graphene. PMID:25976732

  6. Enhanced Mechanical Properties of Graphene (Reduced Graphene Oxide)/Aluminum Composites with a Bioinspired Nanolaminated Structure.

    PubMed

    Li, Zan; Guo, Qiang; Li, Zhiqiang; Fan, Genlian; Xiong, Ding-Bang; Su, Yishi; Zhang, Jie; Zhang, Di

    2015-12-01

    Bulk graphene (reduced graphene oxide)-reinforced Al matrix composites with a bioinspired nanolaminated microstructure were fabricated via a composite powder assembly approach. Compared with the unreinforced Al matrix, these composites were shown to possess significantly improved stiffness and tensile strength, and a similar or even slightly higher total elongation. These observations were interpreted by the facilitated load transfer between graphene and the Al matrix, and the extrinsic toughening effect as a result of the nanolaminated microstructure. PMID:26574873

  7. Two-dimensional shape memory graphene oxide

    PubMed Central

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe

    2016-01-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices. PMID:27325441

  8. Two-dimensional shape memory graphene oxide

    NASA Astrophysics Data System (ADS)

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe

    2016-06-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.

  9. Sorption mechanisms of metals to graphene oxide

    NASA Astrophysics Data System (ADS)

    Showalter, Allison R.; Duster, Thomas A.; Szymanowski, Jennifer E. S.; Na, Chongzheng; Fein, Jeremy B.; Bunker, Bruce A.

    2016-05-01

    Environmental toxic metal contamination remediation and prevention is an ongoing issue. Graphene oxide is highly sorptive for many heavy metals over a wide pH range under different ionic strength conditions. We present x-ray absorption fine structure (XAFS) spectroscopy results investigating the binding environment of Pb(II), Cd(II) and U(VI) ions onto multi-layered graphene oxide (MLGO). Analysis indicates that the dominant sorption mechanism of Pb to MLGO changes as a function of pH, with increasing inner sphere contribution as pH increases. In contrast, the sorption mechanism of Cd to MLGO remains constant under the studied pH range. This adsorption mechanism is an electrostatic attraction between the hydrated Cd+2 ion and the MLGO surface. The U(VI), present as the uranyl ion, changes only subtly as a function of pH and is bound to the surface via an inner sphere bond. Knowledge of the binding mechanism for each metal is necessary to help in optimizing environmental remediation or prevention in filtration systems.

  10. Two-dimensional shape memory graphene oxide.

    PubMed

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G; Yan, Wenyi; Liu, Jefferson Zhe

    2016-01-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices. PMID:27325441

  11. Mechanical tearing of graphene on an oxidizing metal surface

    NASA Astrophysics Data System (ADS)

    George, Lijin; Gupta, Aparna; Shaina, P. R.; Das Gupta, Nandita; Jaiswal, Manu

    2015-12-01

    Graphene, the thinnest possible anticorrosion and gas-permeation barrier, is poised to transform the protective coatings industry for a variety of surface applications. In this work, we have studied the structural changes of graphene when the underlying copper surface undergoes oxidation upon heating. Single-layer graphene directly grown on a copper surface by chemical vapour deposition was annealed under ambient atmosphere conditions up to 400 °C. The onset temperature of the surface oxidation of copper is found to be higher for graphene-coated foils. Parallel arrays of graphene nanoripples are a ubiquitous feature of pristine graphene on copper, and we demonstrate that these form crucial sites for the onset of the oxidation of copper, particularly for ˜0.3-0.4 μm ripple widths. In these regions, the oxidation proceeds along the length of the nanoripples, resulting in the formation of parallel stripes of oxidized copper regions. We demonstrate from temperature-dependent Raman spectroscopy that the primary defect formation process in graphene involves boundary-type defects rather than vacancy or sp3-type defects. This observation is consistent with a mechanical tearing process that splits graphene into small polycrystalline domains. The size of these is estimated to be sub-50 nm.

  12. Graphene Oxide: A Fertile Nanosheet for Various Applications

    NASA Astrophysics Data System (ADS)

    Obata, Seiji; Saiki, Koichiro; Taniguchi, Takaaki; Ihara, Toshihiro; Kitamura, Yusuke; Matsumoto, Yasumichi

    2015-12-01

    Graphene oxide (GO) is chemically exfoliated graphene with various oxygen functional groups bound to its sp2 basal plane. GO is not only a precursor for graphene in large-scale production but provides a fertile platform for applications from electronics to biology owing to its outstanding characteristics. In this review, we introduce the preparation and reduction methods and discuss recent application examples on electrochemistry and biological sensors.

  13. Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors.

    PubMed

    Nolan, Hugo; Mendoza-Sanchez, Beatriz; Ashok Kumar, Nanjundan; McEvoy, Niall; O'Brien, Sean; Nicolosi, Valeria; Duesberg, Georg S

    2014-02-14

    Herein we use Nitrogen-doped reduced Graphene Oxide (N-rGO) as the active material in supercapacitor electrodes. Building on a previous work detailing the synthesis of this material, electrodes were fabricated via spray-deposition of aqueous dispersions and the electrochemical charge storage mechanism was investigated. Results indicate that the functionalised graphene displays improved performance compared to non-functionalised graphene. The simplicity of fabrication suggests ease of up-scaling of such electrodes for commercial applications. PMID:24418938

  14. Bulk preparation of holey graphene via controlled catalytic oxidation

    NASA Astrophysics Data System (ADS)

    Lin, Yi; Watson, Kent A.; Kim, Jae-Woo; Baggett, David W.; Working, Dennis C.; Connell, John W.

    2013-08-01

    Structural manipulation of the two dimensional graphene surface has been of significant interest as a means of tuning the properties of the nanosheets for enhanced performance in various applications. In this report, a straightforward and highly scalable method is presented to prepare bulk quantities of ``holey graphenes'', which are graphene sheets with holes ranging from a few to tens of nm in average diameter. The approach to their preparation takes advantage of the catalytic properties of silver (Ag) nanoparticles toward the air oxidation of graphitic carbon. In the procedure, Ag nanoparticles were first deposited onto the graphene sheet surface in a facile, controllable, and solvent-free process. The catalyst-loaded graphene samples were then subjected to thermal treatment in air. The graphitic carbons in contact with the Ag nanoparticles were selectively oxidized into gaseous byproducts, such as CO or CO2, leaving holes in the graphene surface. The Ag was then removed by refluxing in diluted nitric acid to obtain the final holey graphene products. The average size of the holes on the graphene was found to correlate with the size of the Ag nanoparticles, which could be controlled by adjusting the silver precursor concentration. In addition, the temperature and time of the air oxidation step, and the catalyst removal treatment conditions were found to strongly affect the morphology of the holes. Characterization results of the holey graphene products suggested that the hole generation might have started from defect-rich regions present on the starting graphene sheets. As a result, the remaining graphitic carbon structures on the holey graphene sheets were highly crystalline, with no significant increase of the overall defect density despite the presence of structural holes. Preliminary experiments are also presented on the use of holey graphene sheets as fillers for polymeric composites. The results indicated that these sheets might be better reinforcing

  15. Graphene oxide decorated electrospun gelatin nanofibers: Fabrication, properties and applications.

    PubMed

    Jalaja, K; Sreehari, V S; Kumar, P R Anil; Nirmala, R James

    2016-07-01

    Gelatin nanofiber fabricated by electrospinning process is found to mimic the complex structural and functional properties of natural extracellular matrix for tissue regeneration. In order to improve the physico-chemical and biological properties of the nanofibers, graphene oxide is incorporated in the gelatin to form graphene oxide decorated gelatin nanofibers. The current research effort is focussed on the fabrication and evaluation of physico-chemical and biological properties of graphene oxide-gelatin composite nanofibers. The presence of graphene oxide in the nanofibers was established by transmission electron microscopy (TEM). We report the effect of incorporation of graphene oxide on the mechanical, thermal and biological performance of the gelatin nanofibers. The tensile strength of gelatin nanofibers was increased from 8.29±0.53MPa to 21±2.03MPa after the incorporation of GO. In order to improve the water resistance of nanofibers, natural based cross-linking agent, namely, dextran aldehyde was employed. The cross-linked composite nanofibers showed further increase in the tensile strength up to 56.4±2.03MPa. Graphene oxide incorporated gelatin nanofibers are evaluated for bacterial activity against gram positive (Staphylococcus aureus) and gram negative (Escherichia coli) bacteria and cyto compatibility using mouse fibroblast cells (L-929 cells). The results indicate that the graphene oxide incorporated gelatin nanofibers do not prevent bacterial growth, nevertheless support the L-929 cell adhesion and proliferation. PMID:27127023

  16. Graphene versus oxides for transparent electrode applications

    NASA Astrophysics Data System (ADS)

    Sandana, V. E.; Rogers, D. J.; Teherani, F. Hosseini; Bove, P.; Razeghi, M.

    2013-03-01

    Due to their combination of good electrical conductivity and optical transparency, Transparent Conducting Oxides (TCOs) are the most common choice as transparent electrodes for optoelectronics applications. In particular, devices, such as LEDs, LCDs, touch screens and solar cells typically employ indium tin oxide. However, indium has some significant drawbacks, including toxicity issues (which are hampering manufacturing), an increasing rarefication (due to a combination of relative scarcity and increasing demand [1]) and resulting price increases. Moreover, there is no satisfactory option at the moment for use as a p-type transparent contact. Thus alternative materials solutions are actively being sought. This review will compare the performance and perspectives of graphene with respect to TCOs for use in transparent conductor applications.

  17. In vitro and in vivo effects of graphene oxide and reduced graphene oxide on glioblastoma

    PubMed Central

    Jaworski, Sławomir; Sawosz, Ewa; Kutwin, Marta; Wierzbicki, Mateusz; Hinzmann, Mateusz; Grodzik, Marta; Winnicka, Anna; Lipińska, Ludwika; Włodyga, Karolina; Chwalibog, Andrè

    2015-01-01

    Graphene and its related counterparts are considered the future of advanced nanomaterials owing to their exemplary properties. However, information about their toxicity and biocompatibility is limited. The objective of this study is to evaluate the toxicity of graphene oxide (GO) and reduced graphene oxide (rGO) platelets, using U87 and U118 glioma cell lines for an in vitro model and U87 tumors cultured on chicken embryo chorioallantoic membrane for an in vivo model. The in vitro investigation consisted of structural analysis of GO and rGO platelets using transmission elec tron microscopy, evaluation of cell morphology and ultrastructure, assessment of cell viability by XTT assay, and investigation of cell proliferation by BrdU assay. Toxicity in U87 glioma tumors was evaluated by calculation of weight and volume of tumors and analyses of ultrastructure, histology, and protein expression. The in vitro results indicate that GO and rGO enter glioma cells and have different cytotoxicity. Both types of platelets reduced cell viability and proliferation with increasing doses, but rGO was more toxic than GO. The mass and volume of tumors were reduced in vivo after injection of GO and rGO. Moreover, the level of apoptotic markers increased in rGO-treated tumors. We show that rGO induces cell death mostly through apoptosis, indicating the potential applicability of graphene in cancer therapy. PMID:25759581

  18. Graphene oxide aerogel-supported Pt electrocatalysts for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Duan, Jialin; Zhang, Xuelin; Yuan, Weijian; Chen, Hailong; Jiang, Shan; Liu, Xiaowei; Zhang, Yufeng; Chang, Limin; Sun, Zhiyuan; Du, Juan

    2015-07-01

    Graphene oxide aerogel (GOA) was prepared to serve as catalyst support for Pt nanoparticles for methanol electro-oxidation. Analyses by X-ray diffraction (XRD) and scanning electron microscopy (SEM) were conducted to physically characterize the Pt/GOA catalyst. The results show that Pt/GOA has a 3D macroporous structure, which can not only accelerate mass transfer but also provide a larger efficient surface area for methanol oxidation. The results of electrochemical tests reveal that Pt/GOA has an electrochemical surface area as large as 95.5 m2 g-1, and its peak current density toward methanol oxidation is as high as 876 mA mg-1Pt.

  19. Reduction study of oxidized two-dimensional graphene-based materials by chemical and thermal reduction methods

    NASA Astrophysics Data System (ADS)

    Douglas, Amber M.

    Graphene is a two-dimensional (2D) sp2-hybridized carbon-based material possessing properties which include high electrical conductivity, ballistic thermal conductivity, tensile strength exceeding that of steel, high flexural strength, optical transparency, and the ability to adsorb and desorb atoms and molecules. Due to the characteristics of said material, graphene is a candidate for applications in integrated circuits, electrochromic devices, transparent conducting electrodes, desalination, solar cells, thermal management materials, polymer nanocomposites, and biosensors. Despite the above mentioned properties and possible applications, very few technologies have been commercialized utilizing graphene due to the high cost associated with the production of graphene. Therefore, a great deal of effort and research has been performed to produce a material that provides similar properties, reduced graphene oxide due (RGO) to the ease of commercial scaling of the production processes. This material is typically prepared through the oxidation of graphite in an aqueous media to graphene oxide (GO) followed by reduction to yield RGO. Although this material has been extensively studied, there is a lack of consistency in the scientific community regarding the analysis of the resulting RGO material. In this dissertation, a study of the reduction methods for GO and an alternate 2D carbon-based material, humic acid (HA), followed by analysis of the materials using Raman spectroscopy and Energy Dispersive X-ray Spectroscopy (EDS). Means of reduction will include chemical and thermal methods. Characterization of the material has been carried out on both before and after reduction.

  20. Graphene oxide as an optimal candidate material for methane storage

    NASA Astrophysics Data System (ADS)

    Chouhan, Rajiv K.; Ulman, Kanchan; Narasimhan, Shobhana

    2015-07-01

    Methane, the primary constituent of natural gas, binds too weakly to nanostructured carbons to meet the targets set for on-board vehicular storage to be viable. We show, using density functional theory calculations, that replacing graphene by graphene oxide increases the adsorption energy of methane by 50%. This enhancement is sufficient to achieve the optimal binding strength. In order to gain insight into the sources of this increased binding, that could also be used to formulate design principles for novel storage materials, we consider a sequence of model systems that progressively take us from graphene to graphene oxide. A careful analysis of the various contributions to the weak binding between the methane molecule and the graphene oxide shows that the enhancement has important contributions from London dispersion interactions as well as electrostatic interactions such as Debye interactions, aided by geometric curvature induced primarily by the presence of epoxy groups.

  1. Magnetism in graphene oxide induced by epoxy groups

    SciTech Connect

    Lee, Dongwook; Seo, Jiwon; Zhu, Xi; Su, Haibin; Cole, Jacqueline M.

    2015-04-27

    We have engineered magnetism in graphene oxide. Our approach transforms graphene into a magnetic insulator while maintaining graphene's structure. Fourier transform infrared spectroscopy spectra reveal that graphene oxide has various chemical groups (including epoxy, ketone, hydroxyl, and C-O groups) on its surface. Destroying the epoxy group with heat treatment or chemical treatment diminishes magnetism in the material. Local density approximation calculation results well reproduce the magnetic moments obtained from experiments, and these results indicate that the unpaired spin induced by the presence of epoxy groups is the origin of the magnetism. The calculation results also explain the magnetic properties, which are generated by the interaction between separated magnetic regions and domains. Our results demonstrate tunable magnetism in graphene oxide based on controlling the epoxy group with heat or chemical treatment.

  2. Facile Access to Graphene Oxide from Ferro-Induced Oxidation

    PubMed Central

    Yu, Chao; Wang, Cai-Feng; Chen, Su

    2016-01-01

    Methods allowing the oxidation of graphite to graphene oxide (GO) are vital important for the production of graphene from GO. This oxidation reaction has mainly relied on strong acid strategy for 174 years, which circumvents issues associated with toxicity of reagent and product, complex post-treatment, high cost and waste generation. Here, we report a green route for performing this oxidization reaction via a ferro-induced strategy, with use of water, potassium ferrate (Fe(VI)) and hydrogen peroxide (H2O2) as reagents, to produce about 65% yield of GO (vs. 40% for Hummers’ method, the most commonly used concentrated acid strategy) and non-toxic by-products. Moreover, GO produced from this new method shows equivalent performance to those reported previously. This H2SO4-free strategy makes it possible to process graphite into GO in a safe, low-cost, time-saving, energy-efficient and eco-friendly pathway, opening a promising avenue for the large-scale production of GO and GO-based materials. PMID:26818784

  3. Facile Access to Graphene Oxide from Ferro-Induced Oxidation

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Wang, Cai-Feng; Chen, Su

    2016-01-01

    Methods allowing the oxidation of graphite to graphene oxide (GO) are vital important for the production of graphene from GO. This oxidation reaction has mainly relied on strong acid strategy for 174 years, which circumvents issues associated with toxicity of reagent and product, complex post-treatment, high cost and waste generation. Here, we report a green route for performing this oxidization reaction via a ferro-induced strategy, with use of water, potassium ferrate (Fe(VI)) and hydrogen peroxide (H2O2) as reagents, to produce about 65% yield of GO (vs. 40% for Hummers’ method, the most commonly used concentrated acid strategy) and non-toxic by-products. Moreover, GO produced from this new method shows equivalent performance to those reported previously. This H2SO4-free strategy makes it possible to process graphite into GO in a safe, low-cost, time-saving, energy-efficient and eco-friendly pathway, opening a promising avenue for the large-scale production of GO and GO-based materials.

  4. Local charge transport properties of hydrazine reduced monolayer graphene oxide sheets prepared under pressure condition

    SciTech Connect

    Ryuzaki, Sou Meyer, Jakob A. S.; Petersen, Søren; Nørgaard, Kasper; Hassenkam, Tue; Laursen, Bo W.

    2014-09-01

    Charge transport properties of chemically reduced graphene oxide (RGO) sheets prepared by treatment with hydrazine were examined using conductive atomic force microscopy. The current-voltage (I-V) characteristics of monolayer RGO sheets prepared under atmospheric pressure followed an exponentially increase due to 2D variable-range hopping conduction through small graphene domains in an RGO sheet containing defect regions of residual sp{sup 3} carbon clusters bonded to oxygen groups, whereas RGO sheets prepared in a closed container under moderate pressure showed linear I-V characteristics with a conductivity of 267.2−537.5 S/m. It was found that the chemical reduction under pressure results in larger graphene domains (sp{sup 2} networks) in the RGO sheets when compared to that prepared under atmospheric pressure, indicating that the present reduction of GO sheets under the pressure is one of the effective methods to make well-reduced GO sheets.

  5. Origin of the chemical and kinetic stability of graphene oxide.

    PubMed

    Zhou, Si; Bongiorno, Angelo

    2013-01-01

    At moderate temperatures (≤ 70°C), thermal reduction of graphene oxide is inefficient and after its synthesis the material enters in a metastable state. Here, first-principles and statistical calculations are used to investigate both the low-temperature processes leading to decomposition of graphene oxide and the role of ageing on the structure and stability of this material. Our study shows that the key factor underlying the stability of graphene oxide is the tendency of the oxygen functionalities to agglomerate and form highly oxidized domains surrounded by areas of pristine graphene. Within the agglomerates of functional groups, the primary decomposition reactions are hindered by both geometrical and energetic factors. The number of reacting sites is reduced by the occurrence of local order in the oxidized domains, and due to the close packing of the oxygen functionalities, the decomposition reactions become - on average - endothermic by more than 0.6 eV. PMID:23963517

  6. Magnetic resonance evidence of manganese-graphene complexes in reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Panich, Alexander M.; Shames, Alexander I.; Aleksenskii, Aleksandr E.; Dideikin, Artur

    2012-03-01

    We report on EPR and NMR study of reduced graphene oxide (RGO) produced by the Hummers method. We show that this RGO sample reveals isolated Mn2+ ions, which originate from potassium permanganate used in the process of the sample preparation. These ions form paramagnetic charge-transfer complexes with the graphene planes and contribute to the 13C spin-lattice relaxation.

  7. Approach to multifunctional device platform with epitaxial graphene on transition metal oxide

    PubMed Central

    Park, Jeongho; Back, Tyson; Mitchel, William C.; Kim, Steve S.; Elhamri, Said; Boeckl, John; Fairchild, Steven B.; Naik, Rajesh; Voevodin, Andrey A.

    2015-01-01

    Heterostructures consisting of two-dimensional materials have shown new physical phenomena, novel electronic and optical properties, and new device concepts not observed in bulk material systems or purely three dimensional heterostructures. These new effects originated mostly from the van der Waals interaction between the different layers. Here we report that a new optical and electronic device platform can be provided by heterostructures of 2D graphene with a metal oxide (TiO2). Our novel direct synthesis of graphene/TiO2 heterostructure is achieved by C60 deposition on transition Ti metal surface using a molecular beam epitaxy approach and O2 intercalation method, which is compatible with wafer scale growth of heterostructures. As-grown heterostructures exhibit inherent photosensitivity in the visible light spectrum with high photo responsivity. The photo sensitivity is 25 times higher than that of reported graphene photo detectors. The improved responsivity is attributed to optical transitions between O 2p orbitals in the valence band of TiO2 and C 2p orbitals in the conduction band of graphene enabled by Coulomb interactions at the interface. In addition, this heterostructure provides a platform for realization of bottom gated graphene field effect devices with graphene and TiO2 playing the roles of channel and gate dielectric layers, respectively. PMID:26395160

  8. Engineered crumpled graphene oxide nanocomposite membrane assemblies for advanced water treatment processes.

    PubMed

    Jiang, Yi; Wang, Wei-Ning; Liu, Di; Nie, Yao; Li, Wenlu; Wu, Jiewei; Zhang, Fuzhong; Biswas, Pratim; Fortner, John D

    2015-06-01

    In this work, we describe multifunctional, crumpled graphene oxide (CGO) porous nanocomposites that are assembled as advanced, reactive water treatment membranes. Crumpled 3D graphene oxide based materials fundamentally differ from 2D flat graphene oxide analogues in that they are highly aggregation and compression-resistant (i.e., π-π stacking resistant) and allow for the incorporation (wrapping) of other, multifunctional particles inside the 3D, composite structure. Here, assemblies of nanoscale, monomeric CGO with encapsulated (as a quasi core-shell structure) TiO2 (GOTI) and Ag (GOAg) nanoparticles, not only allow high water flux via vertically tortuous nanochannels (achieving water flux of 246 ± 11 L/(m(2)·h·bar) with 5.4 μm thick assembly, 7.4 g/m(2)), outperforming comparable commercial ultrafiltration membranes, but also demonstrate excellent separation efficiencies for model organic and biological foulants. Further, multifunctionality is demonstrated through the in situ photocatalytic degradation of methyl orange (MO), as a model organic, under fast flow conditions (tres < 0.1 s); while superior antimicrobial properties, evaluated with GOAg, are observed for both biofilm (contact) and suspended growth scenarios (>3 log effective removal, Escherichia coli). This is the first demonstration of 3D, crumpled graphene oxide based nanocomposite structures applied specifically as (re)active membrane assemblies and highlights the material's platform potential for a truly tailored approach for next generation water treatment and separation technologies. PMID:25942505

  9. The extended growth of graphene oxide flakes using ethanol CVD

    NASA Astrophysics Data System (ADS)

    Huang, Jingfeng; Larisika, Melanie; Fam, W. H. Derrick; He, Qiyuan; Nimmo, Myra A.; Nowak, Christoph; Tok, I. Y. Alfred

    2013-03-01

    We report the extended growth of Graphene Oxide (GO) flakes using atmospheric pressure ethanol Chemical Vapor Deposition (CVD). GO was used to catalyze the deposition of carbon on a substrate in the ethanol CVD with Ar and H2 as carrier gases. Raman, SEM, XPS and AFM characterized the growth to be a reduced GO (RGO) of <5 layers. This newly grown RGO possesses lower defect density with larger and increased distribution of sp2 domains than chemically reduced RGO. Furthermore this method without optimization reduces the relative standard deviation of electrical conductivity between chips, from 80.5% to 16.5%, enabling RGO to be used in practical electronic devices.We report the extended growth of Graphene Oxide (GO) flakes using atmospheric pressure ethanol Chemical Vapor Deposition (CVD). GO was used to catalyze the deposition of carbon on a substrate in the ethanol CVD with Ar and H2 as carrier gases. Raman, SEM, XPS and AFM characterized the growth to be a reduced GO (RGO) of <5 layers. This newly grown RGO possesses lower defect density with larger and increased distribution of sp2 domains than chemically reduced RGO. Furthermore this method without optimization reduces the relative standard deviation of electrical conductivity between chips, from 80.5% to 16.5%, enabling RGO to be used in practical electronic devices. Electronic supplementary information (ESI) available: The ethanol CVD setup, TEM of CVD treated RGO, graphite 2D Raman spectra, GO synthesis, transfer and reduction methods and details of characterization techniques are described in the document. See DOI: 10.1039/c3nr33704a

  10. Contrast in electron-transfer mediation between graphene oxide and reduced graphene oxide.

    PubMed

    Hongthani, Wiphada; Patil, Avinash J; Mann, Stephen; Fermín, David J

    2012-08-27

    The properties of graphene oxide (GO) and DNA-stabilised reduced graphene-oxide (rGO) sheets as electron-transfer mediators in partially blocked electrodes are evaluated employing electrochemical impedance spectroscopy. Evidences obtained from UV/Vis, Raman and FTIR spectroscopies, as well as atomic force microscopy, confirm that the reduction of exfoliated GO single sheets by hydrazine yields partially reduced graphene oxide featuring a high defect density. Two-dimensional assemblies of GO and rGO were formed through electrostatic adsorption at Au electrodes, sequentially modified with 11-mercaptoundecanoic acid (MUA) and poly-diallyldimethylammonium chloride (PDADMAC). The MUA:PDADMAC generates a strong blocking layer to the electron-transfer reaction involving the ferri/ferrocyanide redox couple. This blocking behaviour is not significantly affected upon adsorption of GO. However, adsorption of a sub-monolayer of rGO decreases the charge-transfer resistance by more than two orders of magnitude. Analysis of cyclic voltammograms and impedance spectra suggests that electron transfer in rGO assemblies is mediated by occupied states located just below the redox Fermi energy of the probe. These findings are discussed in the context of on-going controversies regarding the electrochemical reactivity of sp(2)-carbon basal planes. PMID:22865797

  11. An in situ oxidation route to fabricate graphene nanoplate-metal oxide composites

    SciTech Connect

    Chen Sheng; Zhu Junwu; Wang Xin

    2011-06-15

    We report our studies on an improved soft chemical route to directly fabricate graphene nanoplate-metal oxide (Ag{sub 2}O, Co{sub 3}O{sub 4}, Cu{sub 2}O and ZnO) composites from the in situ oxidation of graphene nanoplates. By virtue of H{sup +} from hydrolysis of the metal nitrate aqueous solution and NO{sub 3}{sup -}, only a small amount of functional groups were introduced, acting as anchor sites and consequently forming the graphene nanoplate-metal oxide composites. The main advantages of this approach are that it does not require cumbersome oxidation of graphite in advance and no need to reduce the composites due to the lower oxidation degree. The microstructures of as-obtained metal oxides on graphene nanoplates can be dramatically controlled by changing the reaction parameters, opening up the possibility for processing the optical and electrochemical properties of the graphene-based nanocomposites. - graphical abstract: An improved soft chemical route to directly fabricate graphene nanoplate-metal oxide composites is reported from the in situ oxidation of graphene nanoplates. Highlights: > An improved soft chemical route to directly fabricate graphene nanoplate-metal oxide composites. > The microstructures can be controlled by changing the reaction parameters. > It does not require oxidation of graphite in advance and no need to reduce the composites due to the lower oxidation degree.

  12. Graphene oxide as a radical initiator: Free radical and controlled radical polymerization of sodium 4-vinylbenzenesulfonate with graphene oxide

    DOE PAGESBeta

    Voylov, Dmitry N.; Saito, Tomonori; Lokitz, Bradley S.; Uhrig, David; Wang, Yangyang; Agapov, Alexander L.; Holt, Adam P.; Bocharova, Vera; Kisliuk, Alexander; Sokolov, Alexei P.

    2016-01-19

    The free radical and controlled radical polymerization of sodium 4-vinylbenzenesulfonate using graphene oxide as a radical initiator was studied. This work demonstrates that graphene oxide can initiate radical polymerization in an aqueous solution without any additional initiator. Poly(sodium 4-vinylbenzenesulfonate) obtained via reversible addition fragmentation chain transfer polymerization had a controlled molecular weight with a very narrow polydispersity ranging between 1.01 and 1.03. Furthermore, the reduction process of graphene oxide as well as the resulting composite material properties were analyzed in detail.

  13. Carbocatalysts: graphene oxide and its derivatives.

    PubMed

    Su, Chenliang; Loh, Kian Ping

    2013-10-15

    Graphene oxide (GO) sheets are emerging as a new class of carbocatalysts. Conventionally, researchers exfoliate graphite oxide into submicrometer-sized, water-dispersible flakes to produce these sheets. The presence of oxygen functional groups on the aromatic scaffold of GO allows these sheets to mediate ionic and nonionic interactions with a wide range of molecules. GO shows remarkable catalytic properties on its own and when hybridized with a second material. It is a perfect platform for molecular engineering. This Account examines the different classes of synthetic transformations catalyzed by GO and correlates its reactivity with chemical properties. First, we raise the question of whether GO behaves as a reactant or catalyst during oxidation. Due to its myriad oxygen atoms, GO can function as an oxidant during anaerobic oxidation and become reduced at the end of the first catalytic cycle. However, partially reduced GO can continue to activate molecular oxygen during aerobic oxidation. Most importantly, we can enhance the conversion and selectivity by engineering the morphology and functionalities on the G/GO scaffold. GO can also be hybridized with organic dyes or organocatalysts. The photosensitization by dyes and facile charge transfer across the graphene interface produce synergistic effects that enhance catalytic conversion. Using GO as a building block in supramolecular chemistry, we can extend the scope of functionalities in GO hybrids. The presence of epoxy and hydroxyl functional groups on either side of the GO sheet imparts bifunctional properties that allow it to act as a structural node within metal-organic frameworks (MOFs). For example, known homogeneous molecular catalysts can be anchored on the GO surface by employing them as scaffolds linking organometallic nodes. We have demonstrated that porphyrin building blocks with GO can lead to facile four-electron oxygen transfer reactions. We have also evaluated the advantages and disadvantages of GO

  14. Synthesis of high-performance graphene nanosheets by thermal reduction of graphene oxide

    SciTech Connect

    Wei, Ang; Wang, Jingxia; Long, Qing; Liu, Xiangmei; Li, Xingao; Dong, Xiaochen; Huang, Wei

    2011-11-15

    Graphical abstract: High-performance graphene nanosheets were synthesized by thermal reduction of graphene oxide under ethanol atmosphere. X-ray photoelectron spectroscopy, Raman spectroscopy and electrical transport measurements indicate that the resulting graphene nanosheets can effectively restore its graphic structure in GO and present high mobility. Highlights: {yields} Graphene nanosheets were synthesized by reduction of GO under ethanol atmosphere. {yields} Raman and XPS results indicate the reduced graphene sheets have high-performance. {yields} Graphene sheets field-effect transistors present high mobility. -- Abstract: High-performance graphene nanosheets have been synthesized by thermal reduction of graphene oxide (GO) under ethanol atmosphere. The reduced GO nanosheets were characterized by X-ray photoelectron spectroscopy, Raman spectroscopy and electrical transport measurements, respectively. The results indicated that the thermal reduction of GO under ethanol atmosphere can effectively remove the oxygen-containing functional groups and restore its graphic structure compared to the ones obtained using hydrazine or hydrogen. The electrical measurements indicated that the electrical mobility of single-layer graphene sheet reduced under ethanol atmosphere at 900 {sup o}C can reach 29.08 cm{sup 2} V{sup -1} S{sup -1}.

  15. Synthesis of reduced graphene oxide/ZnO nanorods composites on graphene coated PET flexible substrates

    SciTech Connect

    Huang, Lei Guo, Guilue; Liu, Yang; Chang, Quanhong; Shi, Wangzhou

    2013-10-15

    Graphical abstract: - Highlights: • ZnO nanorods synthesized on CVD-graphene and rGO surfaces, respectively. • ZnO/CVD-graphene and ZnO/rGO form a distinctive porous 3D structure. • rGO/ZnO nanostructures possibility in energy storage devices. - Abstract: In this work, reduced graphene oxide (rGO)/ZnO nanorods composites were synthesized on graphene coated PET flexible substrates. Both chemical vapor deposition (CVD) graphene and reduced graphene oxide (rGO) films were prepared following by hydrothermal growth of vertical aligned ZnO nanorods. Reduced graphene sheets were then spun coated on the ZnO materials to form a three dimensional (3D) porous nanostructure. The morphologies of the ZnO/CVD graphene and ZnO/rGO were investigated by SEM, which shows that the ZnO nanorods grown on rGO are larger in diameters and have lower density compared with those grown on CVD graphene substrate. As a result of fact, the rough surface of nano-scale ZnO on rGO film allows rGO droplets to seep into the large voids of ZnO nanorods, then to form the rGO/ZnO hierarchical structure. By comparison of the different results, we conclude that rGO/ZnO 3D nanostructure is more desirable for the application of energy storage devices.

  16. Supercapacitors with graphene oxide separators and reduced graphite oxide electrodes

    NASA Astrophysics Data System (ADS)

    Shulga, Y. M.; Baskakov, S. A.; Baskakova, Y. V.; Volfkovich, Y. M.; Shulga, N. Y.; Skryleva, E. A.; Parkhomenko, Y. N.; Belay, K. G.; Gutsev, G. L.; Rychagov, A. Y.; Sosenkin, V. E.; Kovalev, I. D.

    2015-04-01

    A supercapacitor (SC) with electrodes fabricated from graphite oxide reduced by a microwave exfoliation (MEGO) method and the separator made from the graphite oxide paper (GOP) formed after precipitation of water suspension of graphene oxide was designed for the first time. The specific capacitance of this SC exceeded 200 F/g. The specific area of our MEGO is 2400 m2/g when measured using the standard contact porosimetry method, whereas it is several times smaller (∼600 m2/g) when measured by using the Brunauer-Emmett-Teller method based on the low-temperature nitrogen adsorption. By using the angle resolved X-ray photoelectron spectroscopy we found that surface layers of the GOP separator contain smaller oxygen concentration than the bulk layers.

  17. Interfacial Assembly of Graphene Oxide Films

    NASA Astrophysics Data System (ADS)

    Valtierrez, Cain; Ismail, Issam; Macosko, Christopher; Stottrup, Benjamin

    Controlled assembly of monolayer graphene-oxide (GO) films at the air/water interface is of interest for the development of transparent conductive thin films of chemically-derived graphene. We present experimental results from investigations of the assembly of polydisperse GO sheets at the air-water interface. GO nanosheets with lateral dimensions of greater than 10 microns were created using a modified Tour synthesis (Dimiev and Tour, 2014). GO films were generated with conventional Langmuir trough techniques to control lateral packing density. Film morphology was characterized in situ with Brewster angle microscopy. Films were transferred unto a substrate via the Langmuir-Blodgett deposition technique and imaged with fluorescence quenching microscopy. Through pH modulation of the aqueous subphase, it was found that GO's intrinsic surface activity to the interface increased with increasing subphase acidity. Finally, we found a dominant elastic contribution during uniaxial film deformation as measured by anisotropic pressure measurements. A. M. Dimiev, and J. M. Tour, ``Mechanism of GO Formation,'' ACS Nano, 8, (2014)

  18. Electronic transport properties in graphene oxide frameworks

    NASA Astrophysics Data System (ADS)

    Zhu, P.; Cruz-Silva, E.; Meunier, V.

    2014-02-01

    The electronic transport properties in multiterminal graphene oxide framework (GOF) materials are investigated using a combination of theoretical and computational methods. GOFs make up four-terminal [origin=c]90H-shaped GNR-L-GNR junctions where sandwiched boronic acid molecules (L) are covalently linked to two graphene nanoribbons (GNRs) of different edge chiralities. The transport properties are governed by both tunneling and quasiresonant regimes. We determine how the presence of linker molecules affects the transport properties and establish that the through-molecule transport properties can be tuned by varying the chemical composition of the pillar molecules but are not significantly modified when changing the type of electrodes from zigzag GNRs to armchair GNRs. In addition, we find that in multilinker systems containing two parallel molecules in the device area, the coupling between the molecules can lead to both constructive and destructive quantum interferences. We also examine the inability of the classical Kirchhoff's superposition law to account for electron flow in multilinker GOF nanonetworks.

  19. Liquid crystallinity driven highly aligned large graphene oxide composites

    NASA Astrophysics Data System (ADS)

    Lee, Kyung Eun; Oh, Jung Jae; Yun, Taeyeong; Kim, Sang Ouk

    2015-04-01

    Graphene is an emerging graphitic carbon materials, consisting of sp2 hybridized two dimensinal honeycomb structure. It has been widely studied to incorporate graphene with polymer to utilize unique property of graphene and reinforce electrical, mechanical and thermal property of polymer. In composite materials, orientation control of graphene significantly influences the property of composite. Until now, a few method has been developed for orientation control of graphene within polymer matrix. Here, we demonstrate facile fabrication of high aligned large graphene oxide (LGO) composites in polydimethylsiloxane (PDMS) matrix exploiting liquid crystallinity. Liquid crystalline aqueous dispersion of LGO is parallel oriented within flat confinement geometry. Freeze-drying of the aligned LGO dispersion and subsequent infiltration with PDMS produce highly aligned LGO/PDMS composites. Owing to the large shape anisotropy of LGO, liquid crystalline alignment occurred at low concentration of 2 mg/ml in aqueous dispersion, which leads to the 0.2 wt% LGO loaded composites.

  20. Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes.

    PubMed

    Jia, S; Sun, H D; Du, J H; Zhang, Z K; Zhang, D D; Ma, L P; Chen, J S; Ma, D G; Cheng, H M; Ren, W C

    2016-05-19

    The relatively high sheet resistance, low work function and poor compatibility with hole injection layers (HILs) seriously limit the applications of graphene as transparent conductive electrodes (TCEs) for organic light emitting diodes (OLEDs). Here, a graphene oxide/graphene (GO/G) vertical heterostructure is developed as TCEs for high-performance OLEDs, by directly oxidizing the top layer of three-layer graphene films with ozone treatment. Such GO/G heterostructure electrodes show greatly improved optical transmittance, a large work function, high stability, and good compatibility with HIL materials (MoO3 in this work). Moreover, the conductivity of the heterostructure is not sacrificed compared to the pristine three-layer graphene electrodes, but is significantly higher than that of pristine two-layer graphene films. In addition to high flexibility, OLEDs with different emission colors based on the GO/G heterostructure TCEs show much better performance than those based on indium tin oxide (ITO) anodes. Green OLEDs with GO/G heterostructure electrodes have the maximum current efficiency and power efficiency, as high as 82.0 cd A(-1) and 98.2 lm W(-1), respectively, which are 36.7% (14.8%) and 59.2% (15.0%) higher than those with pristine graphene (ITO) anodes. These findings open up the possibility of using graphene for next generation high-performance flexible and wearable optoelectronics with high stability. PMID:27153523

  1. Reduced chemically modified graphene oxide for supercapacitor electrode

    PubMed Central

    2014-01-01

    An efficient active material for supercapacitor electrodes is prepared by reacting potassium hydroxide (KOH) with graphene oxide followed by chemical reduction with hydrazine. The electrochemical performance of KOH treated graphene oxide reduced for 24 h (reduced chemically modified graphene oxide, RCMGO-24) exhibits a specific capacitance of 253 F g-1 at 0.2 A g-1 in 2 M H2SO4 compared to a value of 141 F g-1 for graphene oxide reduced for 24 h (RGO-24), and good cyclic stability up to 3,000 cycles. Interestingly, RCMGO-24 demonstrated a higher specific capacitance and excellent cycle stability due to its residual oxygen functional groups that accelerate the faradaic reactions and aid in faster wetting. This non-annealed strategy offers the potential for simple and cost-effective preparation of an active material for a supercapacitor electrode. PMID:25298756

  2. Graphene oxide: from fundamentals to applications

    NASA Astrophysics Data System (ADS)

    Perrozzi, F.; Prezioso, S.; Ottaviano, L.

    2015-01-01

    In this review, we discuss the fundamental characterization of graphene oxide (GO) and its future application perspectives. Morphology is discussed through optical microscopy, fluorescence microscopy, scanning electron microscopy, and atomic force microscopy studies. Chemical, structural, and vibrational properties are discussed through x-ray photoemission spectroscopy and Raman spectroscopy studies. Two easy characterization strategies, based on the correlation between x-ray photoemission spectroscopy and contact angle/optical contrast measurements are reported. Sensing and nano-biotechnology applications are discussed with focus on practical gas sensing and optical sensing, on the one hand, and on the toxicity issue of GO, on the other hand. Synthesis and post-synthesis treatments are also discussed, these latter with emphasis on lithography.

  3. Hydrothermally reduced graphene oxide as a supercapacitor

    NASA Astrophysics Data System (ADS)

    Johra, Fatima Tuz; Jung, Woo-Gwang

    2015-12-01

    The supercapacitance behavior of hydrothermally reduced graphene oxide (RGO) was investigated for the first time. The capacitive behavior of RGO was characterized by using cyclic voltammetry and galvanostatic charge-discharge methods. The specific capacitance of hydrothermally reduced RGO at 1 A/g was 367 F/g in 1 M H2SO4 electrolyte, which was higher than that of RGO synthesized via the hydrazine reduction method. The RGO-modified glassy carbon electrode showed excellent stability. After 1000 cycles, the supercapacitance was 107.7% of that achieved in the 1st cycle, which suggests that RGO has excellent electrochemical stability as a supercapacitor electrode material. The energy density of hydrothermal RGO reached 44.4 W h/kg at a power density of 40 kW/kg.

  4. Graphene oxide film as solid lubricant.

    PubMed

    Liang, Hongyu; Bu, Yongfeng; Zhang, Junyan; Cao, Zhongyue; Liang, Aimin

    2013-07-10

    As a layered material, graphene oxide (GO) film is a good candidate for improving friction and antiwear performance of silicon-based MEMS devices. Via a green electrophoretic deposition (EPD) approach, GO films with tunable thickness in nanoscale are fabricated onto silicon wafer in a water solution. The morphology, microstructure, and mechanical properties as well as the friction coefficient and wear resistance of the films were investigated. The results indicated that the friction coefficient of silicon wafer was reduced to 1/6 its value, and the wear volume was reduced to 1/24 when using GO film as solid lubricant. These distinguished tribology performances suggest that GO films are expected to be good solid lubricants for silicon-based MEMS/NEMS devices. PMID:23786494

  5. All-Optical Graphene Oxide Humidity Sensors

    PubMed Central

    Lim, Weng Hong; Yap, Yuen Kiat; Chong, Wu Yi; Ahmad, Harith

    2014-01-01

    The optical characteristics of graphene oxide (GO) were explored to design and fabricate a GO-based optical humidity sensor. GO film was coated onto a SU8 polymer channel waveguide using the drop-casting technique. The proposed sensor shows a high TE-mode absorption at 1550 nm. Due to the dependence of the dielectric properties of the GO film on water content, this high TE-mode absorption decreases when the ambient relative humidity increases. The proposed sensor shows a rapid response (<1 s) to periodically interrupted humid air flow. The transmission of the proposed sensor shows a linear response of 0.553 dB/% RH in the range of 60% to 100% RH. PMID:25526358

  6. Ultrahigh humidity sensitivity of graphene oxide

    PubMed Central

    Bi, Hengchang; Yin, Kuibo; Xie, Xiao; Ji, Jing; Wan, Shu; Sun, Litao; Terrones, Mauricio; Dresselhaus, Mildred S.

    2013-01-01

    Humidity sensors have been extensively used in various fields, and numerous problems are encountered when using humidity sensors, including low sensitivity, long response and recovery times, and narrow humidity detection ranges. Using graphene oxide (G-O) films as humidity sensing materials, we fabricate here a microscale capacitive humidity sensor. Compared with conventional capacitive humidity sensors, the G-O based humidity sensor has a sensitivity of up to 37800% which is more than 10 times higher than that of the best one among conventional sensors at 15%–95% relative humidity. Moreover, our humidity sensor shows a fast response time (less than 1/4 of that of the conventional one) and recovery time (less than 1/2 of that of the conventional one). Therefore, G-O appears to be an ideal material for constructing humidity sensors with ultrahigh sensitivity for widespread applications. PMID:24048093

  7. Reduced graphene oxide nanoshells for flexible and stretchable conductors.

    PubMed

    Jiang, Wen-Shuai; Liu, Zhi-Bo; Xin, Wei; Chen, Xu-Dong; Tian, Jian-Guo

    2016-03-01

    Graphene has been extensively investigated for its use in flexible electronics, especially graphene synthesized by chemical vapor deposition (CVD). To enhance the flexibility of CVD graphene, wrinkles are often introduced. However, reports on the flexibility of reduced graphene oxide (RGO) films are few, because of their weak conductivity and, in particular, poor flexibility. To improve the flexibility of RGO, reduced graphene oxide nanoshells are fabricated, which combine self-assembled polystyrene nanosphere arrays and high-temperature thermal annealing processes. The resulting RGO films with nanoshells present a better resistance stabilization after stretching and bending the devices than RGO without nanoshells. The sustainability and performance advances demonstrated here are promising for the adoption of flexible electronics in a wide variety of future applications. PMID:26822121

  8. Reduced graphene oxide nanoshells for flexible and stretchable conductors

    NASA Astrophysics Data System (ADS)

    Jiang, Wen-Shuai; Liu, Zhi-Bo; Xin, Wei; Chen, Xu-Dong; Tian, Jian-Guo

    2016-03-01

    Graphene has been extensively investigated for its use in flexible electronics, especially graphene synthesized by chemical vapor deposition (CVD). To enhance the flexibility of CVD graphene, wrinkles are often introduced. However, reports on the flexibility of reduced graphene oxide (RGO) films are few, because of their weak conductivity and, in particular, poor flexibility. To improve the flexibility of RGO, reduced graphene oxide nanoshells are fabricated, which combine self-assembled polystyrene nanosphere arrays and high-temperature thermal annealing processes. The resulting RGO films with nanoshells present a better resistance stabilization after stretching and bending the devices than RGO without nanoshells. The sustainability and performance advances demonstrated here are promising for the adoption of flexible electronics in a wide variety of future applications.

  9. ANME-2D Archaea Catalyze Methane Oxidation in Deep Subsurface Sediments Independent of Nitrate Reduction

    NASA Astrophysics Data System (ADS)

    Hernsdorf, A. W.; Amano, Y.; Suzuki, Y.; Ise, K.; Thomas, B. C.; Banfield, J. F.

    2015-12-01

    Terrestrial sediments are an important global reservoir for methane. Microorganisms in the deep subsurface play a critical role in the methane cycle, yet much remains to be learned about their diversity and metabolisms. To provide more comprehensive insight into the microbiology of the methane cycle in the deep subsurface, we conducted a genome-resolved study of samples collected from the Horonobe Underground Research Laboratory (HURL), Japan. Groundwater samples were obtained from three boreholes from a depth range of between 140 m and 250 m in two consecutive years. Groundwater was filtered and metagenomic DNA extracted and sequenced, and the sequence data assembled. Based on the sequences of phylogenetically informative genes on the assembled fragments, we detected a high degree of overlap in community composition across a vertical transect within one borehole at the two sampling times. However, there was comparatively little similarity observed among communities across boreholes. Spatial and temporal abundance patterns were used in combination with tetranucleotide signatures of assembled genome fragments to bin the data and reconstruct over 200 unique draft genomes, of which 137 are considered to be of high quality (>90% complete). The deepest samples from one borehole were highly dominated by an archaeon identified as ANME-2D; this organism was also present at lower abundance in all other samples from that borehole. Also abundant in these microbial communities were novel members of the Gammaproteobacteria, Saccharibacteria (TM7) and Tenericute phyla. Notably, a ~2 Mbp draft genome for the ANME-2D archaeon was reconstructed. As expected, the genome encodes all of the genes predicted to be involved in the reverse methanogenesis pathway. In contrast with the previously reported ANME2-D genome, the HURL ANME-2D genome lacks the capacity to reduce nitrate. However, we identified many multiheme cytochromes with closest similarity to those of the known Fe-reducing/oxidizing

  10. Pd doped reduced graphene oxide for hydrogen storage

    SciTech Connect

    Das, Tapas; Banerjee, Seemita; Sudarsan, V.

    2015-06-24

    Pd nanoparticles dispersed reduced graphene oxide sample has been prepared by a simple chemical method using hydrazine as the reducing agent. Based on XRD and {sup 13}C MAS NMR studies it is confirmed that, Pd nanoparticles are effectively mixed with the reduced graphene oxide sample. Maximum hydrogen storage capacity has been estimated to be ∼1.36 wt % at 123K. Improved hydrogen storage capacity of Pd incorporated sample can be explained based on the phenomenon of spillover of atomic hydrogen.

  11. Production of graphene oxide from pitch-based carbon fiber

    NASA Astrophysics Data System (ADS)

    Lee, Miyeon; Lee, Jihoon; Park, Sung Young; Min, Byunggak; Kim, Bongsoo; in, Insik

    2015-07-01

    Pitch-based graphene oxide (p-GO) whose compositional/structural features are comparable to those of graphene oxide (GO) was firstly produced by chemical exfoliation of pitch-based carbon fiber rather than natural graphite. Incorporation of p-GO as nanofillers into poly(methyl methacrylate) (PMMA) as a matrix polymer resulted in excellent mechanical reinforcement. p-GO/PMMA nanocomposite (1 wt.-% p-GO) demonstrated 800% higher modulus of toughness of neat PMMA.

  12. Polyelectrolyte/Graphene Oxide Barrier Film for Flexible OLED.

    PubMed

    Yang, Seung-Yeol; Park, Jongwhan; Kim, Yong-Seog

    2015-10-01

    Ultra-thin flexible nano-composite barrier layer consists of graphene oxide and polyelectrolyte was prepared using the layer-by-layer processing method. Microstructures of the barrier layer was optimized via modifying coating conditions and inducing chemical reactions. Although the barrier layer consists of hydrophilic polyelectrolyte was not effective in blocking the water vapor permeation, the chemical reduction of graphene oxide as well as conversion of polyelectrolyte to hydrophobic nature were very effective in reducing the permeation. PMID:26726415

  13. Production of graphene oxide from pitch-based carbon fiber

    PubMed Central

    Lee, Miyeon; Lee, Jihoon; Park, Sung Young; Min, Byunggak; Kim, Bongsoo; In, Insik

    2015-01-01

    Pitch-based graphene oxide (p-GO) whose compositional/structural features are comparable to those of graphene oxide (GO) was firstly produced by chemical exfoliation of pitch-based carbon fiber rather than natural graphite. Incorporation of p-GO as nanofillers into poly(methyl methacrylate) (PMMA) as a matrix polymer resulted in excellent mechanical reinforcement. p-GO/PMMA nanocomposite (1 wt.-% p-GO) demonstrated 800% higher modulus of toughness of neat PMMA. PMID:26156067

  14. Structure of graphene oxide dispersed with ZnO nanoparticles

    SciTech Connect

    Yadav, Rishikesh Pandey, Devendra K.; Khare, P. S.

    2014-10-15

    Graphene has been proposed as a promising two-dimensional nanomaterial with outstanding electronic, optical, thermal and mechanical properties for many applications. In present work a process of dispersion of graphene oxide with ZnO nanoparticles in ethanol solution with different pH values, have been studied. Samples have been characterized by XRD, SEM, PL, UV-visible spectroscopy and particles size measurement. The results analysis indicates overall improved emission spectrum. It has been observed that the average diameter of RGO (Reduced Graphene Oxide) decreases in presence of ZnO nanoparticles from 3.8μm to 0.41μm.

  15. Chemical gating of epitaxial graphene through ultrathin oxide layers

    NASA Astrophysics Data System (ADS)

    Larciprete, Rosanna; Lacovig, Paolo; Orlando, Fabrizio; Dalmiglio, Matteo; Omiciuolo, Luca; Baraldi, Alessandro; Lizzit, Silvano

    2015-07-01

    We achieved a controllable chemical gating of epitaxial graphene grown on metal substrates by exploiting the electrostatic polarization of ultrathin SiO2 layers synthesized below it. Intercalated oxygen diffusing through the SiO2 layer modifies the metal-oxide work function and hole dopes graphene. The graphene/oxide/metal heterostructure behaves as a gated plane capacitor with the in situ grown SiO2 layer acting as a homogeneous dielectric spacer, whose high capacity allows the Fermi level of graphene to be shifted by a few hundreds of meV when the oxygen coverage at the metal substrate is of the order of 0.5 monolayers. The hole doping can be finely tuned by controlling the amount of interfacial oxygen, as well as by adjusting the thickness of the oxide layer. After complete thermal desorption of oxygen the intrinsic doping of SiO2 supported graphene is evaluated in the absence of contaminants and adventitious adsorbates. The demonstration that the charge state of graphene can be changed by chemically modifying the buried oxide/metal interface hints at the possibility of tuning the level and sign of doping by the use of other intercalants capable of diffusing through the ultrathin porous dielectric and reach the interface with the metal.We achieved a controllable chemical gating of epitaxial graphene grown on metal substrates by exploiting the electrostatic polarization of ultrathin SiO2 layers synthesized below it. Intercalated oxygen diffusing through the SiO2 layer modifies the metal-oxide work function and hole dopes graphene. The graphene/oxide/metal heterostructure behaves as a gated plane capacitor with the in situ grown SiO2 layer acting as a homogeneous dielectric spacer, whose high capacity allows the Fermi level of graphene to be shifted by a few hundreds of meV when the oxygen coverage at the metal substrate is of the order of 0.5 monolayers. The hole doping can be finely tuned by controlling the amount of interfacial oxygen, as well as by adjusting

  16. The role of water in resistive switching in graphene oxide

    SciTech Connect

    Rogala, M.; Kowalczyk, P. J.; Dabrowski, P.; Wlasny, I.; Kozlowski, W.; Busiakiewicz, A.; Pawlowski, S.; Dobinski, G.; Smolny, M.; Klusek, Z.; Lipinska, L.; Kozinski, R.; Librant, K.; Jagiello, J.; Grodecki, K.; Baranowski, J. M.; Szot, K.

    2015-06-29

    The resistive switching processes are investigated at the nano-scale in graphene oxide. The modification of the material resistivity is driven by the electrical stimulation with the tip of atomic force microscope. The presence of water in the atmosphere surrounding graphene oxide is found to be a necessary condition for the occurrence of the switching effect. In consequence, the switching is related to an electrochemical reduction. Presented results suggest that by changing the humidity level the in-plane resolution of data storage process can be controlled. These findings are essential when discussing the concept of graphene based resistive random access memories.

  17. Controllably Inducing and Modeling Optical Response from Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Lombardo, Nicholas; Naumov, Anton

    Graphene, a novel 2-dimensional sp2-hybridized allotrope of Carbon, has unique electrical and mechanical properties. While it is naturally a highly conductive zero band gap semiconductor, graphene does not exhibit optical emission. It has been shown that functionalization with oxygen-containing groups elicits an opening of band gap in graphene. In this work, we aim to induce an optical response in graphene via controlled oxidation, and then explore potential origins of its photoluminescence through mathematical modeling. We employ timed ozone treatment of initially non-fluorescent reduced graphene oxide (RGO) to produce graphene oxide (GO) with specific optical properties. Oxidized material exhibits substantial changes in the absorption spectra and a broad photoluminescence feature, centered at 532 nm, which suggests the appearance of a band gap. We then explore a number of possible mechanisms for the origin of GO photoluminescence via PM3 and ab initio calculations on a functionalized single sheet of graphene. By adjusting modeling parameters to fit experimentally obtained optical transition energies we estimate the size of the sp2 graphitic regions in GO and the arrangement of functional groups that could be responsible for the observed emission.

  18. Novel 2D RuPt core-edge nanocluster catalyst for CO electro-oxidation

    NASA Astrophysics Data System (ADS)

    Grabow, Lars C.; Yuan, Qiuyi; Doan, Hieu A.; Brankovic, Stanko R.

    2015-10-01

    A single layer, bi-metallic RuPt catalyst on Au(111) is synthesized using surface limited red-ox replacement of underpotentially deposited Cu and Pb monolayers though a two-step process. The resulting 2D RuPt monolayer nanoclusters have a unique core-edge structure with a Ru core and Pt at the edge along the perimeter. The activity of this catalyst is evaluated using CO monolayer oxidation as the probe reaction. Cyclic voltammetry demonstrates that the 2D RuPt core-edge catalyst morphology is significantly more active than either Pt or Ru monolayer catalysts. Density functional theory calculations in combination with infra-red spectroscopy data point towards oscillating variations (ripples) in the adsorption energy landscape along the radial direction of the Ru core as the origin of the observed behavior. Both, CO and OH experience a thermodynamic driving force for surface migration towards the Ru-Pt interface, where they adsorb most strongly and react rapidly. We propose that the complex interplay between epitaxial strain, ligand and finite size effects is responsible for the formation of the rippled RuPt monolayer cluster, which provides optimal conditions for a quasi-ideal bi-functional mechanism for CO oxidation, in which CO is adsorbed mainly on Pt, and Ru provides OH to the active Pt-Ru interface.

  19. Alkaline deoxygenated graphene oxide for supercapacitor applications: An effective green alternative for chemically reduced graphene

    NASA Astrophysics Data System (ADS)

    Perera, Sanjaya D.; Mariano, Ruperto G.; Nijem, Nour; Chabal, Yves; Ferraris, John P.; Balkus, Kenneth J.

    2012-10-01

    Graphene is a promising electrode material for energy storage applications. The most successful method for preparing graphene from graphite involves the oxidation of graphite to graphene oxide (GO) and reduction back to graphene. Even though different chemical and thermal methods have been developed to reduce GO to graphene, the use of less toxic materials to generate graphene still remains a challenge. In this study we developed a facile one-pot synthesis of deoxygenated graphene (hGO) via alkaline hydrothermal process, which exhibits similar properties to the graphene obtained via hydrazine reduction (i.e. the same degree of deoxygenation found in hydrazine reduced GO). Moreover, the hGO formed freestanding, binder-free paper electrodes for supercapacitors. Coin cell type (CR2032) symmetric supercapacitors were assembled using the hGO electrodes. Electrochemical characterization of hGO was carried out using lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and ethylmethylimidazolium bis-(trifluoromethanesulfonyl)imide (EMITFSI) electrolytes. The results for the hGO electrodes were compared with the hydrazine reduced GO (rGO) electrode. The hGO electrode exhibits a energy density of 20 W h kg-1 and 50 W h kg-1 in LiTFSI and EMITFSI respectively, while delivering a maximum power density of 11 kW kg-1 and 14.7 kW kg-1 in LiTFSI and EMITFSI, respectively.

  20. Facile Synthesis of Graphene Sponge from Graphene Oxide for Efficient Dye-Sensitized H2 Evolution.

    PubMed

    Zhang, Weiying; Li, Yuexiang; Peng, Shaoqin

    2016-06-22

    Graphene is an advanced carbon energy material due to its excellent properties. Reduction of graphene oxide (GO) is the most promising mass production route of graphene/reduced graphene oxide (rGO). To maintain graphene's properties and avoid restacking of rGO sheets in bulk, the preparation of 3-dimensional porous graphene sponge via 2-dimensional rGO sheets is considered as a good strategy. This article presents a facile route to synthesize graphene sponge by thermal treating GO powder at low temperature of 250 °C under N2 atmosphere. The sponge possesses macroporous structure (5-200 nm in size) with BET specific surface area of 404 m(2) g(-1) and high conductivity. The photocatalytic H2 production activity of the rGO sponge with a sensitizer Eosin Y (EY) and cocatalyst Pt was investigated. The rGO sponge shows highly efficient dye-sensitized photocatalytic H2 evolution compared to that obtained via a chemical reduction method. The maximum apparent quantum yield (AQY) reaches up to 75.0% at 420 nm. The possible mechanisms are discussed. The synthesis method can be expanded to prepare other graphene-based materials. PMID:27244655

  1. Low levels of graphene and graphene oxide inhibit cellular xenobiotic defense system mediated by efflux transporters.

    PubMed

    Liu, Su; Jiang, Wei; Wu, Bing; Yu, Jing; Yu, Haiyan; Zhang, Xu-Xiang; Torres-Duarte, Cristina; Cherr, Gary N

    2016-06-01

    Low levels of graphene and graphene oxide (GO) are considered to be environmentally safe. In this study, we analyzed the potential effects of graphene and GO at relatively low concentrations on cellular xenobiotic defense system mediated by efflux transporters. The results showed that graphene (<0.5 μg/mL) and GO (<20 μg/mL) did not decrease cell viability, generate reactive oxygen species, or disrupt mitochondrial function. However, graphene and GO at the nontoxic concentrations could increase calcein-AM (CAM, an indicator of membrane ATP-binding cassette (ABC) transporter) activity) accumulation, indicating inhibition of ABC transporters' efflux capabilities. This inhibition was observed even at 0.005 μg/mL graphene and 0.05 μg/mL GO, which are 100 times and 400 times lower than their lowest toxic concentration from cytotoxicity experiments, respectively. The inhibition of ABC transporters significantly increased the toxicity of paraquat and arsenic, known substrates of ABC transporters. The inhibition of ABC transporters was found to be based on graphene and GO damaging the plasma membrane structure and fluidity, thus altering functions of transmembrane ABC transporters. This study demonstrates that low levels of graphene and GO are not environmentally safe since they can significantly make cell more susceptible to other xenobiotics, and this chemosensitizing activity should be considered in the risk assessment of graphene and GO. PMID:26554512

  2. Graphene-oxide-semiconductor planar-type electron emission device

    NASA Astrophysics Data System (ADS)

    Murakami, Katsuhisa; Tanaka, Shunsuke; Miyashita, Akira; Nagao, Masayoshi; Nemoto, Yoshihiro; Takeguchi, Masaki; Fujita, Jun-ichi

    2016-02-01

    Graphene was used as the topmost electrode for a metal-oxide-semiconductor planar-type electron emission device. With several various layers, graphene as a gate electrode on the thin oxide layer was directly deposited by gallium vapor-assisted chemical vapor deposition. The maximum efficiency of the electron emission, defined as the ratio of anode current to cathode current, showed no dependency on electrode thickness in the range from 1.8 nm to 7.0 nm, indicating that electron scattering on the inside of the graphene electrode is practically suppressed. In addition, a high emission current density of 1-100 mA/cm2 was obtained while maintaining a relatively high electron emission efficiency of 0.1%-1.0%. The graphene-oxide-semiconductor planar-type electron emission device has great potential to achieve both high electron emission efficiency and high electron emission current density in practical applications.

  3. Plasma enhanced atomic layer deposition of ultrathin oxides on graphene

    NASA Astrophysics Data System (ADS)

    Trimble, Christie J.; Zaniewski, Anna M.; Kaur, Manpuneet; Nemanich, Robert J.

    2015-03-01

    Graphene, a single atomic layer of sp2 bonded carbon atoms, possesses extreme material properties that point toward a plethora of potential electronic applications. Many of these possibilities require the combination of graphene with dielectric materials such as metal oxides. Simultaneously, there is interest in new physical properties that emerge when traditionally three dimensional materials are constrained to ultrathin layers. For both of these objectives, we explore deposition of ultrathin oxide layers on graphene. In this project, we perform plasma enhanced atomic layer deposition (PEALD) of aluminum oxide on graphene that has been grown by chemical vapor deposition atop copper foil and achieve oxide layers that are <1.5 nm. Because exposure to oxygen plasma can cause the graphene to deteriorate, we explore techniques to mitigate this effect and optimize the PEALD process. Following deposition, the graphene and oxide films are transferred to arbitrary substrates for further analysis. We use x-ray photoelectron spectroscopy, Raman spectroscopy, and atomic force microscopy to assess the quality of the resulting films. This work is supported by the National Science Foundation under Grant # DMR-1206935.

  4. Metal Oxide/Graphene Composites for Supercapacitive Electrode Materials.

    PubMed

    Jeong, Gyoung Hwa; Baek, Seungmin; Lee, Seungyeol; Kim, Sang-Wook

    2016-04-01

    Graphene composites with metal or metal oxide nanoparticles have been extensively investigated owing to their potential applications in the fields of fuel cells, batteries, sensing, solar cells, and catalysis. Among them, much research has focused on supercapacitor applications and have come close to realization. Composites include monometal oxides of cobalt, nickel, manganese, and iron, as well as their binary and ternary oxides. In addition, their morphological control and hybrid systems of carbon nanotubes have also been investigated. This review presents the current trends in research on metal oxide/graphene composites for supercapacitors. Furthermore, methods are suggested to improve the properties of electrochemical capacitor electrodes. PMID:27061763

  5. Remarkable enhancement of upconversion luminescence on 2-D anodic aluminum oxide photonic crystals

    NASA Astrophysics Data System (ADS)

    Wang, He; Yin, Ze; Xu, Wen; Zhou, Donglei; Cui, Shaobo; Chen, Xu; Cui, Haining; Song, Hongwei

    2016-05-01

    Lanthanide-doped upconversion nanoparticles (UCNPs) are attracting extensive attention due to their unique physical properties and great application potential. However, the lower luminescence quantum yield/strength is still an obstacle for real application. Local field modulation is a promising method to highly enhance the upconversion luminescence (UCL) of the UCNPs. In this work, a novel kind of two-dimensional photonic crystal (2D-PC), anodic aluminum oxides (AAOs), was explored to improve the UCL of NaYF4:Yb3+,Er3+ nanoplates (NPs). An optimum enhancement factor (EF) of 65-fold was obtained for the overall intensity of Er3+ under 980 nm excitation, and 130-fold for the red emission. Systematic studies indicate that UCL enhancement mainly originates from the enlargement of the excitation field by scattering and reflection of AAO PCs. It should also be highlighted that the modulation of 2D-PC on the UCL of NaYF4:Yb3+,Er3+ NPs demonstrates weak size-dependent and thickness-dependent behavior, which is well consistent with the stimulated electromagnetic field distribution by the finite difference time domain (FDTD) method.Lanthanide-doped upconversion nanoparticles (UCNPs) are attracting extensive attention due to their unique physical properties and great application potential. However, the lower luminescence quantum yield/strength is still an obstacle for real application. Local field modulation is a promising method to highly enhance the upconversion luminescence (UCL) of the UCNPs. In this work, a novel kind of two-dimensional photonic crystal (2D-PC), anodic aluminum oxides (AAOs), was explored to improve the UCL of NaYF4:Yb3+,Er3+ nanoplates (NPs). An optimum enhancement factor (EF) of 65-fold was obtained for the overall intensity of Er3+ under 980 nm excitation, and 130-fold for the red emission. Systematic studies indicate that UCL enhancement mainly originates from the enlargement of the excitation field by scattering and reflection of AAO PCs. It should

  6. Two dimensional MoS2/graphene composites as promising supports for Pt electrocatalysts towards methanol oxidation

    NASA Astrophysics Data System (ADS)

    Zhai, Chunyang; Zhu, Mingshan; Bin, Duan; Ren, Fangfang; Wang, Caiqin; Yang, Ping; Du, Yukou

    2015-02-01

    Two dimensional (2D) molybdenum disulfide (MoS2)/reduced graphene oxide (RGO) nanocomposites are synthesized by a hydrothermal method and served as supports for Pt electrocatalysts towards electrocatalytic methanol oxidation. The Pt nanoclusters with uniform size of 3.41 nm are well-dispersed on the surface of MoS2/RGO sheets. Compare to commercial Pt/C and Pt-MoS2 electrodes, the as-prepared Pt-MoS2/RGO composites display 5.65 and 1.73 times higher electrocatalytic activity of methanol oxidation, respectively. This outstanding electrocatalytic performance evidences 2D MoS2/graphene nanocomposites as promising electrocatalyst supports for the commercialization of fuel cells.

  7. Introducing 2D Materials—a new multidisciplinary journal devoted to all aspects of graphene and related two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Fal'ko, Vladimir I.

    2014-06-01

    On behalf of the Editorial Board and IOP Publishing, I am pleased to announce the opening of 2D Materials. Research on two-dimensional materials, such as graphene, now involves thousands of researchers worldwide cutting across physics, chemistry, engineering and biology, and extending from fundamental science to novel applications. It is this situation which defines the scope and mission of 2D Materials, a new journal that will serve all sides of this multidisciplinary field by publishing urgent research of the highest quality and impact.

  8. Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Jia, S.; Sun, H. D.; Du, J. H.; Zhang, Z. K.; Zhang, D. D.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C.

    2016-05-01

    The relatively high sheet resistance, low work function and poor compatibility with hole injection layers (HILs) seriously limit the applications of graphene as transparent conductive electrodes (TCEs) for organic light emitting diodes (OLEDs). Here, a graphene oxide/graphene (GO/G) vertical heterostructure is developed as TCEs for high-performance OLEDs, by directly oxidizing the top layer of three-layer graphene films with ozone treatment. Such GO/G heterostructure electrodes show greatly improved optical transmittance, a large work function, high stability, and good compatibility with HIL materials (MoO3 in this work). Moreover, the conductivity of the heterostructure is not sacrificed compared to the pristine three-layer graphene electrodes, but is significantly higher than that of pristine two-layer graphene films. In addition to high flexibility, OLEDs with different emission colors based on the GO/G heterostructure TCEs show much better performance than those based on indium tin oxide (ITO) anodes. Green OLEDs with GO/G heterostructure electrodes have the maximum current efficiency and power efficiency, as high as 82.0 cd A-1 and 98.2 lm W-1, respectively, which are 36.7% (14.8%) and 59.2% (15.0%) higher than those with pristine graphene (ITO) anodes. These findings open up the possibility of using graphene for next generation high-performance flexible and wearable optoelectronics with high stability.The relatively high sheet resistance, low work function and poor compatibility with hole injection layers (HILs) seriously limit the applications of graphene as transparent conductive electrodes (TCEs) for organic light emitting diodes (OLEDs). Here, a graphene oxide/graphene (GO/G) vertical heterostructure is developed as TCEs for high-performance OLEDs, by directly oxidizing the top layer of three-layer graphene films with ozone treatment. Such GO/G heterostructure electrodes show greatly improved optical transmittance, a large work function, high stability

  9. Selective edge modification in graphene and graphite by chemical oxidation.

    PubMed

    Yang, Min; Moriyama, Satoshi; Higuchi, Masayoshi

    2014-04-01

    The effect of edge structures in graphene sheets has been well investigated theoretically but most experimental demonstrations of the functionalization have been for the bulk structures because of only a few reports on chemical methods to modify the edges selectively. We herein report a chemical method using the Lemieux-von Rudloff reagent that selectively oxidizes only the edges of graphene sheets. The selective oxidation at the edges of the graphene sheet was confirmed by thermogravimetric analysis (TGA), Raman mapping measurements, and X-ray photoelectron spectroscopy (XPS). The TGA result of the oxidized graphite with different particle sizes showed a slight weight loss at approximately 350 degrees C (2.29% for the middle particles (35 microm)), which indicates thermal decomposition of the oxidized edge part. The Raman mapping measurement in the inner part of graphene sheets didn't detect any defects or translational symmetry breaking after the oxidation. The XPS data clearly showed that the total carbon atom content present as C--O, C==O, and O--C==C increased from 4.65 to 6.18% by the oxidation. Using the obtained edge-oxidized graphene as a starting material, various functionalizations of the edge structure are expected in the future. PMID:24734719

  10. Graphene- and graphene oxide- based multisensor arrays for selective gas analysis

    NASA Astrophysics Data System (ADS)

    Lipatov, Alexey; Varezhnikov, Alexey; Sysoev, Victor; Kolmakov, Andrei; Sinitskii, Alexander

    2014-03-01

    Arrays of nearly identical graphene devices on Si/SiO2 exhibit a substantial device-to-device variation, even in case of a high-quality chemical vapor deposition (CVD) or mechanically exfoliated graphene. We propose that such device-to-device variation could provide a platform for highly selective multisensor electronic olfactory systems. We fabricated a multielectode array of CVD graphene devices on a Si/SiO2 substrate, and demonstrated that the diversity of these devices is sufficient to reliably discriminate different short-chain alcohols: methanol, ethanol and isopropanol. The diversity of graphene devices on Si/SiO2 could possibly be used to construct multisensor systems trained to recognize other analytes as well. Similar multisensory arrays based on graphene oxide (GO) devices are also capable of discriminating these short-chain alcohols. We will discuss the possibility of chemical modification of GO for further increase the selectivity of GO multisensory arrays.

  11. Remarkable enhancement of upconversion luminescence on 2-D anodic aluminum oxide photonic crystals.

    PubMed

    Wang, He; Yin, Ze; Xu, Wen; Zhou, Donglei; Cui, Shaobo; Chen, Xu; Cui, Haining; Song, Hongwei

    2016-05-21

    Lanthanide-doped upconversion nanoparticles (UCNPs) are attracting extensive attention due to their unique physical properties and great application potential. However, the lower luminescence quantum yield/strength is still an obstacle for real application. Local field modulation is a promising method to highly enhance the upconversion luminescence (UCL) of the UCNPs. In this work, a novel kind of two-dimensional photonic crystal (2D-PC), anodic aluminum oxides (AAOs), was explored to improve the UCL of NaYF4:Yb(3+),Er(3+) nanoplates (NPs). An optimum enhancement factor (EF) of 65-fold was obtained for the overall intensity of Er(3+) under 980 nm excitation, and 130-fold for the red emission. Systematic studies indicate that UCL enhancement mainly originates from the enlargement of the excitation field by scattering and reflection of AAO PCs. It should also be highlighted that the modulation of 2D-PC on the UCL of NaYF4:Yb(3+),Er(3+) NPs demonstrates weak size-dependent and thickness-dependent behavior, which is well consistent with the stimulated electromagnetic field distribution by the finite difference time domain (FDTD) method. PMID:27139324

  12. Selective enrichment and desalting of hydrophilic peptides using graphene oxide.

    PubMed

    Jiang, Miao; Qi, Linyu; Liu, Peiru; Wang, Zijun; Duan, Zhigui; Wang, Ying; Liu, Zhonghua; Chen, Ping

    2016-08-01

    The wide variety and low abundance of peptides in tissue brought great difficulties to the separation and identification of peptides, which is not in favor of the development of peptidomics. RP-HPLC, which could purify small molecules based on their hydrophobicity, has been widely used in the separation and enrichment of peptide due to its fast, good reproducibility and high resolution. However, RP-HPLC requires the instrument and expensive C18 column and its sample capacity is also limited. Recently, graphene oxide has been applied to the adsorption of amino acids. However, the enrichment efficiency and selectivity of graphene oxide for peptides remain unclear. In this study, the adsorption efficiency and selectivity of graphene oxide and RP-C18 matrix were compared on trypsinized α-actin and also on tissue extracts from pituitary gland and hippocampus. For α-actin, there exhibit similar elution peaks for total trypsinized products and those adsorpted by GO and C18 matrix. But peptides adsorbed by GO showed the higher hydrophilic peaks than which adsorbed by C18 matrix. The resulted RP-HPLC profile showed that most of peptides enriched by graphene oxide were eluted at low concentration of organic solvent, while peptides adsorbed by RP-C18 matrix were mostly eluted at relatively high concentration. Moreover, mass spectrometry analysis suggested that, in pituitary sample, there were 495 peptides enriched by graphene oxide, 447 peptides enriched by RP-C18 matrix while in hippocampus sample 333 and 243 peptides respectively. The GRAVY value analysis suggested that the graphene oxide has a stronger adsorption for highly hydrophilic peptides compared to the RP-C18 matrix. Furthermore, the combination of these two methods could notably increase the number of identification peptides but also the number of predicted protein precursors. Our study provided a new thought to the role of graphene oxide during the enrichment of peptides from tissue which should be useful for

  13. Chemical gating of epitaxial graphene through ultrathin oxide layers.

    PubMed

    Larciprete, Rosanna; Lacovig, Paolo; Orlando, Fabrizio; Dalmiglio, Matteo; Omiciuolo, Luca; Baraldi, Alessandro; Lizzit, Silvano

    2015-08-01

    We achieved a controllable chemical gating of epitaxial graphene grown on metal substrates by exploiting the electrostatic polarization of ultrathin SiO2 layers synthesized below it. Intercalated oxygen diffusing through the SiO2 layer modifies the metal-oxide work function and hole dopes graphene. The graphene/oxide/metal heterostructure behaves as a gated plane capacitor with the in situ grown SiO2 layer acting as a homogeneous dielectric spacer, whose high capacity allows the Fermi level of graphene to be shifted by a few hundreds of meV when the oxygen coverage at the metal substrate is of the order of 0.5 monolayers. The hole doping can be finely tuned by controlling the amount of interfacial oxygen, as well as by adjusting the thickness of the oxide layer. After complete thermal desorption of oxygen the intrinsic doping of SiO2 supported graphene is evaluated in the absence of contaminants and adventitious adsorbates. The demonstration that the charge state of graphene can be changed by chemically modifying the buried oxide/metal interface hints at the possibility of tuning the level and sign of doping by the use of other intercalants capable of diffusing through the ultrathin porous dielectric and reach the interface with the metal. PMID:26148485

  14. Graphene oxide and adsorption of chloroform: A density functional study

    NASA Astrophysics Data System (ADS)

    Kuisma, Elena; Hansson, C. Fredrik; Lindberg, Th. Benjamin; Gillberg, Christoffer A.; Idh, Sebastian; Schröder, Elsebeth

    2016-05-01

    Chlorinated hydrocarbon compounds are of environmental concerns, since they are toxic to humans and other mammals, and are widespread, and exposure is hard to avoid. Understanding and improving methods to reduce the amount of the substances are important. We present an atomic-scale calculational study of the adsorption of chlorine-based substance chloroform (CHCl3) on graphene oxide, as a step in estimating the capacity of graphene oxide for filtering out such substances, e.g., from drinking water. The calculations are based on density functional theory, and the recently developed consistent-exchange functional for the van der Waals density-functional method is employed. We obtain values of the chloroform adsorption energy varying from roughly 0.2 to 0.4 eV per molecule. This is comparable to previously found results for chloroform adsorbed directly on clean graphene, using similar calculations. In a wet environment, like filters for drinking water, the graphene will not stay clean and will likely oxidize, and thus adsorption onto graphene oxide, rather than clean graphene, is a more relevant process to study.

  15. Biological reduction of graphene oxide using plant leaf extracts.

    PubMed

    Lee, Geummi; Kim, Beom Soo

    2014-01-01

    Two-dimensional graphene has attracted significant attention due to its unique mechanical, electrical, thermal, and optical properties. Most commonly employed methods to chemically reduce graphene oxide to graphene use hydrazine or its derivatives as the reducing agent. However, they are highly hazardous and explosive. Various phytochemicals obtained from different natural sources such as leaves and peels of a plant are used as reducing agents in the preparation of different gold, silver, copper, and platinum nanoparticles. In this study, seven plant leaf extracts (Cherry, Magnolia, Platanus, Persimmon, Pine, Maple, and Ginkgo) were compared for their abilities to reduce graphene oxide. The optimized reaction conditions for the reduction of graphene oxide were determined as follows. Type of plant: Cherry (Prunus serrulata), reaction time: 12 h, composition of the reaction mixture: 16.7% v/v of plant leaf extract in total suspension, and temperature: 95°C. The degree of reduction caused by Cherry leaf extract was analyzed by elemental analysis and X-ray photoelectron spectroscopy. The reduction of graphene oxide was also confirmed by ultraviolet-visible spectroscopy, Fourier transform-infrared spectroscopy, Raman spectroscopy, X-ray diffraction, transmission electron microscopy, and thermogravimetric analysis. PMID:24375994

  16. Graphene oxide and adsorption of chloroform: A density functional study.

    PubMed

    Kuisma, Elena; Hansson, C Fredrik; Lindberg, Th Benjamin; Gillberg, Christoffer A; Idh, Sebastian; Schröder, Elsebeth

    2016-05-14

    Chlorinated hydrocarbon compounds are of environmental concerns, since they are toxic to humans and other mammals, and are widespread, and exposure is hard to avoid. Understanding and improving methods to reduce the amount of the substances are important. We present an atomic-scale calculational study of the adsorption of chlorine-based substance chloroform (CHCl3) on graphene oxide, as a step in estimating the capacity of graphene oxide for filtering out such substances, e.g., from drinking water. The calculations are based on density functional theory, and the recently developed consistent-exchange functional for the van der Waals density-functional method is employed. We obtain values of the chloroform adsorption energy varying from roughly 0.2 to 0.4 eV per molecule. This is comparable to previously found results for chloroform adsorbed directly on clean graphene, using similar calculations. In a wet environment, like filters for drinking water, the graphene will not stay clean and will likely oxidize, and thus adsorption onto graphene oxide, rather than clean graphene, is a more relevant process to study. PMID:27179497

  17. Oxidative stress and immunotoxicity induced by graphene oxide in zebrafish.

    PubMed

    Chen, Minjie; Yin, Junfa; Liang, Yong; Yuan, Shaopeng; Wang, Fengbang; Song, Maoyong; Wang, Hailin

    2016-05-01

    Graphene oxide (GO) has been extensively explored as a promising nanomaterial for applications in biology because of its unique properties. Therefore, systematic investigation of GO toxicity is essential to determine its fate in the environment and potential adverse effects. In this study, acute toxicity, oxidative stress and immunotoxicity of GO were investigated in zebrafish. No obvious acute toxicity was observed when zebrafish were exposed to 1, 5, 10 or 50mg/L GO for 14 days. However, a number of cellular alterations were detected by histological analysis of the liver and intestine, including vacuolation, loose arrangement of cells, histolysis and disintegration of cell boundaries. As evidence for oxidative stress, malondialdehyde levels and superoxide dismutase and catalase activities were increased and glutathione content was decreased in the liver after treatment with GO. GO treatment induced an immune response in zebrafish, as demonstrated by increased expression of tumor necrosis factor α, interleukin-1 β, and interleukin-6 in the spleen. Our findings demonstrated that GO administration in an aquatic system can cause oxidative stress and immune toxicity in adult zebrafish. To our knowledge, this is the first report of immune toxicity of GO in zebrafish. PMID:26921726

  18. Spacing-dependent dipolar interactions in dendronized magnetic iron oxide nanoparticle 2D arrays and powders.

    PubMed

    Fleutot, Solenne; Nealon, Gareth L; Pauly, Matthias; Pichon, Benoit P; Leuvrey, Cédric; Drillon, Marc; Gallani, Jean-Louis; Guillon, Daniel; Donnio, Bertrand; Begin-Colin, Sylvie

    2013-02-21

    Self-assembly of nanoparticles (NPs) into tailored structures is a promising strategy for the production and design of materials with new functions. In this work, 2D arrays of iron oxide NPs with interparticle distances tuned by grafting fatty acids and dendritic molecules at the NPs surface have been obtained over large areas with high density using the Langmuir-Blodgett technique. The anchoring agent of molecules and the Janus structure of NPs are shown to be key parameters driving the deposition. Finally the influence of interparticle distance on the collective magnetic properties in powders and in monolayers is clearly demonstrated by DC and AC SQUID measurements. The blocking temperature T(B) increases as the interparticle distance decreases, which is consistent with the fact that dipolar interactions are responsible for this increase. Dipolar interactions are found to be stronger for particles assembled in thin films compared to powdered samples and may be described by using the Vogel Fulcher model. PMID:23306456

  19. Interfacial Assembly of Graphene Oxide Sheets

    NASA Astrophysics Data System (ADS)

    Cote, Laura J.

    Scientific interest in graphene oxide (GO) sheets, the product of chemical oxidation and exfoliation of graphite powder, has resurged in recent years because GO is considered a promising precursor for the bulk production of graphene-based sheets for a variety of applications. In addition, GO can be viewed as an unconventional type of soft material as it is characterized by two abruptly different length scales. Its thickness is of typical molecular dimensions, measured to be about 1 nm by atomic force microscopy, but its lateral dimensions are that of common colloidal particles, ranging from nanometers to tens of microns. This high anisotropy leads to interesting fundamental colloidal interactions between the soft sheets which have practical implications in the solution processing and assembly of the material. This research therefore aims to use a variety of techniques to control these inter-sheet interactions to gain an understanding of the processing-structure relationships which ultimately determine the overall properties of the bulk GO assembly. GO is identified as a two-dimensional amphiphile with a unique edge-to-center arrangement of hydrophilic and hydrophobic groups, which has led to the demonstration of its pH- and size-dependent surface activity. The water surface is then utilized, as in the Langmuir-Blodgett technique, as an ideal substrate to tile up the GO sheets and study the interactions between them. Sheet-sheet interaction morphologies were successfully altered between wrinkled and overlapped states by pH tuning of sheet charge density, and the resulting structure-property relationships are explored. In addition, a novel flash-reduction and assembly process is described in which a simple photographic camera flash can rapidly and cleanly turn an insulating, well-stacked GO paper to a more open and fluffy conducting film. Lastly, the use of these research results as educational outreach platforms is highlighted. A variety of outlets, such as You

  20. Morphology-tunable ultrafine metal oxide nanostructures uniformly grown on graphene and their applications in the photo-Fenton system

    NASA Astrophysics Data System (ADS)

    Shao, Penghui; Tian, Jiayu; Liu, Borui; Shi, Wenxin; Gao, Shanshan; Song, Yali; Ling, Mei; Cui, Fuyi

    2015-08-01

    Hybrid nanostructures of low-dimensional metal oxide (MO) semiconductors based on two-dimensional (2D) graphene nanosheets have been considered as one of the most promising nanomaterials for an extensive variety of applications. Unfortunately, it is still challenging to rationally design and fabricate MO/graphene hybrids with highly controllable nanostructures and desirable properties, which are of paramount importance for practical applications. Here, we report a novel, facile and ``green'' glycerol-mediated self-assembly method, using α-Fe2O3 semiconductor as an illustrative example, for the controlled growth of MO with a well-defined nanostructure on 2D graphene nanosheets. Based on this new method, we first demonstrate the ability to exquisitely tune the α-Fe2O3 nanostructure from zero-dimensional quantum dots (~3.2 nm) to one-dimensional mesoporous nanorods, and eventually to 2D mesoporous nanosheets over the entire surface of graphene nanosheets. A possible formation mechanism has been proposed based on the systematic investigation of the morphological evolution and growth processes of α-Fe2O3 on graphene. The as-synthesized samples exhibit excellent performance for the photo-Fenton treatment of polluted water at neutral pH under visible light irradiation. Moreover, TiO2 and Fe3O4 quantum dots (~5.2 and 3.3 nm, respectively) ultradispersed on graphene are also successfully synthesized by this method, demonstrating its versatility for the rational fabrication of novel MO/graphene hybrids with huge potential applications.Hybrid nanostructures of low-dimensional metal oxide (MO) semiconductors based on two-dimensional (2D) graphene nanosheets have been considered as one of the most promising nanomaterials for an extensive variety of applications. Unfortunately, it is still challenging to rationally design and fabricate MO/graphene hybrids with highly controllable nanostructures and desirable properties, which are of paramount importance for practical

  1. Colloidal Stability of Graphene Oxide: Aggregation in Two Dimensions.

    PubMed

    Gudarzi, Mohsen Moazzami

    2016-05-24

    Colloidal stability of graphene oxide (GO) is studied in aqueous and organic media accompanied by an improved aggregation model based on Derjaguin-Landau-Verwey- Overbeek (DLVO) theory for ultrathin colloidal flakes. It is found that both magnitude and scaling laws for the van der Waals forces are affected significantly by the two-dimensional (2D) nature of GO. Experimental critical coagulation concentrations (CCC) of GO in monovalent salt solutions concur with DLVO theory prediction. The surface charge density of GO is largely affected by pH. However, theoretical calculations and experimental observations show that the colloidal stability of the 2D colloids is less sensitive to the changes in the surface charge density compared to the classical picture of 3D colloids. The DLVO theory also quantitatively predicts the colloidal stability of reduced GO (rGO). The origin of lower stability of rGO compared to GO is rooted in the higher van der Waals forces among rGO sheets, and particularly, in the removal of negatively charged groups, and possibly formation of some cationic groups during reduction. GO also exfoliates in the polar organic solvents and results in stable dispersions. However, addition of nonpolar solvents perturbs the colloidal stability at a critical volume fraction. Analyzing the aggregation of GO in mixtures of different nonpolar solvents and N-methyl-2-pyrrolidone proposed that the solvents with dielectric constants of less than 24 are not able to host stable colloids of GO. However, dispersions of GO in very polar solvents shows unexpected stability at high concentration (>1 M) of salts and acids. The origin of this stability is most probably solvation forces. A crucial parameter affecting the ability of polar solvents to impart high stability to GO is their molecular size: the bigger they are, the higher the chance for stabilization. PMID:27143102

  2. Vacuum-Ultraviolet Promoted Oxidative Micro Photoetching of Graphene Oxide.

    PubMed

    Tu, Yudi; Utsunomiya, Toru; Ichii, Takashi; Sugimura, Hiroyuki

    2016-04-27

    Microprocessing of graphene oxide (GO) films is of fundamental importance in fabricating graphene-based devices. We demonstrate the photoetching of GO sheets using vacuum-ultraviolet (VUV, λ = 172 nm) light under controlled atmospheric pressure. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and differential interference contrast microscopy (DIC) studies revealed that the photoetching of GO films successfully proceeded in the regions exposed to VUV irradiation in the oxygen-containing atmosphere. Precise photoetching of the GO sheets was achieved at a vacuum pressure of 5 × 10(3) Pa with VUV light irradiation for 20 min. This was followed by VUV irradiation in a high vacuum (<10(-3) Pa) and sonication in water. The photoetched GO sheets then transformed into reduced GO (rGO) patterns. The minimum feature fabricated by this method was 2 μm wide lines aligned at an interval of 4 μm. This method provides a cost-effective way to fabricate rGO patterns with fewer boundaries between rGO sheets and offers a better integrity of rGO, which can be promising for further applications in micro mechanics, micro electrochemistry, optoelectronics, etc. PMID:27046164

  3. Graphene Oxide Liquid Crystals: Discovery, Evolution and Applications.

    PubMed

    Narayan, Rekha; Kim, Ji Eun; Kim, Ju Young; Lee, Kyung Eun; Kim, Sang Ouk

    2016-04-01

    The discovery and relevant research progress in graphene oxide liquid crystals (GOLCs), the latest class of 2D nanomaterials exhibiting colloidal liquid crystallinity arising from the intrinsic disc-like shape anisotropy, is highlighted. GOLC has conferred a versatile platform for the development of novel properties and applications based on the facile controllability of molecular scale alignment. The first part of this review offers a brief introduction to LCs, including the theoretical background. Particular attention has been paid to the different types of LC phases that have been reported thus far, such as nematic, lamellar and chiral phases. Several key parameters governing the ultimate stability of GOLC behavior, including pH and ionic strength of aqueous dispersions are highlighted. In a relatively short span of time since its discovery, GOLCs have proved their remarkable potential in a broad spectrum of applications, including highly oriented wet-spun fibers, self-assembled nanocomposites, and architectures for energy storage devices. The second part of this review is devoted to an exclusive overview of the relevant applications. Finally, an outlook is provided into this newly emerging research field, where two well established scientific communities for carbon nanomaterials and liquid crystals are ideally merged. PMID:26928388

  4. Purity of graphene oxide determines its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Barbolina, I.; Woods, C. R.; Lozano, N.; Kostarelos, K.; Novoselov, K. S.; Roberts, I. S.

    2016-06-01

    Nanomaterials based on two-dimensional (2D) atomic crystals are considered to be very promising for various life-science and medical applications, from drug delivery to tissue modification. One of the most suitable materials for these purposes is graphene oxide (GO), thanks to a well-developed methods of production and water solubility. At the same time, its biological effect is still debated. Here we demonstrate that highly purified and thoroughly washed GO neither inhibited nor stimulated the growth of E.coli, ATCC25922; E.coli NCIMB11943 and S.aureus ATCC25923 at concentrations of up to 1 mg ml‑1. Moreover, transmission electron microscopy (TEM) of GO exposed bacteria did not reveal any differences between GO exposed and not exposed populations. In contrast, a suspension of insufficiently purified GO behaved as an antibacterial material due to the presence of soluble acidic impurities, that could be removed by extended purification or neutralisation by alkaline substrates. A standardised protocol is proposed for the generation of clean GO, so it becomes suitable for biological experiments. Our findings emphasise the importance of GO purification status when dealing with biological systems as the true effect of material can be masked by the impact of impurities.

  5. Bulk preparation of holey graphene via controlled catalytic oxidation.

    PubMed

    Lin, Yi; Watson, Kent A; Kim, Jae-Woo; Baggett, David W; Working, Dennis C; Connell, John W

    2013-09-01

    Structural manipulation of the two dimensional graphene surface has been of significant interest as a means of tuning the properties of the nanosheets for enhanced performance in various applications. In this report, a straightforward and highly scalable method is presented to prepare bulk quantities of "holey graphenes", which are graphene sheets with holes ranging from a few to tens of nm in average diameter. The approach to their preparation takes advantage of the catalytic properties of silver (Ag) nanoparticles toward the air oxidation of graphitic carbon. In the procedure, Ag nanoparticles were first deposited onto the graphene sheet surface in a facile, controllable, and solvent-free process. The catalyst-loaded graphene samples were then subjected to thermal treatment in air. The graphitic carbons in contact with the Ag nanoparticles were selectively oxidized into gaseous byproducts, such as CO or CO2, leaving holes in the graphene surface. The Ag was then removed by refluxing in diluted nitric acid to obtain the final holey graphene products. The average size of the holes on the graphene was found to correlate with the size of the Ag nanoparticles, which could be controlled by adjusting the silver precursor concentration. In addition, the temperature and time of the air oxidation step, and the catalyst removal treatment conditions were found to strongly affect the morphology of the holes. Characterization results of the holey graphene products suggested that the hole generation might have started from defect-rich regions present on the starting graphene sheets. As a result, the remaining graphitic carbon structures on the holey graphene sheets were highly crystalline, with no significant increase of the overall defect density despite the presence of structural holes. Preliminary experiments are also presented on the use of holey graphene sheets as fillers for polymeric composites. The results indicated that these sheets might be better reinforcing fillers

  6. Integrated ternary artificial nacre via synergistic toughening of reduced graphene oxide/double-walled carbon nanotubes/poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Gong, Shanshan; Wu, Mengxi; Jiang, Lei; Cheng, Qunfeng

    2016-07-01

    The synergistic toughening effect of building blocks and interface interaction exists in natural materials, such as nacre. Herein, inspired by one-dimensional (1D) nanofibrillar chitin and two-dimensional (2D) calcium carbonate platelets of natural nacre, we have fabricated integrated strong and tough ternary bio-inspired nanocomposites (artificial nacre) successfully via the synergistic effect of 2D reduced graphene oxide (rGO) nanosheets and 1D double-walled carbon nanotubes (DWNTs) and hydrogen bonding cross-linking with polyvinyl alcohol (PVA) matrix. Moreover, the crack mechanics model with crack deflection by 2D rGO nanosheets and crack bridging by 1D DWNTs and PVA chains induces resultant artificial nacre exhibiting excellent fatigue-resistance performance. These outstanding characteristics enable the ternary bioinspired nanocomposites have many promising potential applications, for instance, aerospace, flexible electronics devices and so forth. This synergistic toughening strategy also provides an effective way to assemble robust graphene-based nanocomposites.

  7. Tuning the grade of graphene: Gamma ray irradiation of free-standing graphene oxide films in gaseous phase

    NASA Astrophysics Data System (ADS)

    Dumée, Ludovic F.; Feng, Chunfang; He, Li; Allioux, Francois-Marie; Yi, Zhifeng; Gao, Weimin; Banos, Connie; Davies, Justin B.; Kong, Lingxue

    2014-12-01

    A direct approach to functionalize and reduce pre-shaped graphene oxide 3D architectures is demonstrated by gamma ray irradiation in gaseous phase under analytical grade air, N2 or H2. The formation of radicals upon gamma ray irradiation is shown to lead to surface functionalization of the graphene oxide sheets. The reduction degree of graphene oxide, which can be controlled through varying the γ-ray total dose irradiation, leads to the synthesis of highly crystalline and near defect-free graphene based materials. The crystalline structure of the graphene oxide and γ-ray reduced graphene oxide was investigated by x-ray diffraction and Raman spectroscopy. The results reveal no noticeable changes in the size of sp2 graphitic structures for the range of tested gases and total exposure doses suggesting that the irradiation in gaseous phase does not damage the graphene crystalline domains. As confirmed by X-ray photoemission spectroscopy, the C/O ratio of γ-ray reduced graphene oxide is increasing from 2.37 for graphene oxide to 6.25 upon irradiation in hydrogen gas. The removal of oxygen atoms with this reduction process in hydrogen results in a sharp 400 times increase of the electrical conductivity of γ-ray reduced graphene oxide from 0.05 S cm-1 to as high as 23 S cm-1. A significant increase of the contact angle of the γ-ray reduced graphene oxide bucky-papers and weakened oxygen rich groups characteristic peaks across the Fourier transform infrared spectra further illustrate the efficacy of the γ-ray reduction process. A mechanism correlating the interaction between hydrogen radicals formed upon γ-ray irradiation of hydrogen gas and the oxygen rich groups on the surface of the graphene oxide bucky-papers is proposed, in order to contribute to the synthesis of reduced graphene materials through solution-free chemistry routes.

  8. Study of Graphene-based 2D-Heterostructure Device Fabricated by All-Dry Transfer Process.

    PubMed

    Tien, Dung Hoang; Park, Jun-Young; Kim, Ki Buem; Lee, Naesung; Choi, Taekjib; Kim, Philip; Taniguchi, Takashi; Watanabe, Kenji; Seo, Yongho

    2016-02-10

    We developed a technique for transferring graphene and hexagonal boron nitride (hBN) in dry conditions for fabrication of van der Waals heterostructures. The graphene layer was encapsulated between two hBN layers so that it was kept intact during fabrication of the device. For comparison, we also fabricated the devices containing graphene on SiO2/Si wafer and graphene on hBN. Electrical properties of the devices were investigated at room temperature. The mobility of the graphene on SiO2 devices and graphene on hBN devices were 15,000 and 37,000 cm(2) V(-1) s(-1), respectively, while the mobility of the sandwich structure device reached the highest value of ∼100,000 cm(2) V(-1) s(-1), at room temperature. The electrical measurements of the samples were carried out in air and vacuum environments. We found that the electrical properties of the encapsulated graphene devices remained at a similar level both in a vacuum and in air, whereas the properties of the graphene without encapsulation were influenced by the external environment. PMID:26771834

  9. Red photoluminescence BCNO synthesized from graphene oxide nanosheets

    NASA Astrophysics Data System (ADS)

    Kang, Yue; Chu, Zeng-yong; Ma, Tian; Li, Wei-ping; Zhang, Dong-jiu; Tang, Xiao-yu

    2016-01-01

    In this paper, we demonstrate the conversion of graphene oxide (GO) into boron carbon oxynitride (BCNO) hybrid nanosheets via a reaction with boric acid and urea, during which the boron and nitrogen atoms are incorporated into graphene nanosheets. The experimental results reveal that GO is important for the photoluminescence (PL) BCNO phosphor particles. More importantly, in this system, the prepared BCNO phosphors can be used to prepare the materials needed for red light emitting diodes (LEDs).

  10. 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage.

    PubMed

    Bonaccorso, Francesco; Colombo, Luigi; Yu, Guihua; Stoller, Meryl; Tozzini, Valentina; Ferrari, Andrea C; Ruoff, Rodney S; Pellegrini, Vittorio

    2015-01-01

    Graphene and related two-dimensional crystals and hybrid systems showcase several key properties that can address emerging energy needs, in particular for the ever growing market of portable and wearable energy conversion and storage devices. Graphene's flexibility, large surface area, and chemical stability, combined with its excellent electrical and thermal conductivity, make it promising as a catalyst in fuel and dye-sensitized solar cells. Chemically functionalized graphene can also improve storage and diffusion of ionic species and electric charge in batteries and supercapacitors. Two-dimensional crystals provide optoelectronic and photocatalytic properties complementing those of graphene, enabling the realization of ultrathin-film photovoltaic devices or systems for hydrogen production. Here, we review the use of graphene and related materials for energy conversion and storage, outlining the roadmap for future applications. PMID:25554791

  11. High Performance Graphene Oxide Based Rubber Composites

    NASA Astrophysics Data System (ADS)

    Mao, Yingyan; Wen, Shipeng; Chen, Yulong; Zhang, Fazhong; Panine, Pierre; Chan, Tung W.; Zhang, Liqun; Liang, Yongri; Liu, Li

    2013-08-01

    In this paper, graphene oxide/styrene-butadiene rubber (GO/SBR) composites with complete exfoliation of GO sheets were prepared by aqueous-phase mixing of GO colloid with SBR latex and a small loading of butadiene-styrene-vinyl-pyridine rubber (VPR) latex, followed by their co-coagulation. During co-coagulation, VPR not only plays a key role in the prevention of aggregation of GO sheets but also acts as an interface-bridge between GO and SBR. The results demonstrated that the mechanical properties of the GO/SBR composite with 2.0 vol.% GO is comparable with those of the SBR composite reinforced with 13.1 vol.% of carbon black (CB), with a low mass density and a good gas barrier ability to boot. The present work also showed that GO-silica/SBR composite exhibited outstanding wear resistance and low-rolling resistance which make GO-silica/SBR very competitive for the green tire application, opening up enormous opportunities to prepare high performance rubber composites for future engineering applications.

  12. Towards the Knittability of Graphene Oxide Fibres.

    PubMed

    Seyedin, Shayan; Romano, Mark S; Minett, Andrew I; Razal, Joselito M

    2015-01-01

    Recent developments in graphene oxide fibre (GO) processing include exciting demonstrations of hand woven textile structures. However, it is uncertain whether the fibres produced can meet the processing requirements of conventional textile manufacturing. This work reports for the first time the production of highly flexible and tough GO fibres that can be knitted using textile machinery. The GO fibres are made by using a dry-jet wet-spinning method, which allows drawing of the spinning solution (the GO dispersion) in several stages of the fibre spinning process. The coagulation composition and spinning conditions are evaluated in detail, which led to the production of densely packed fibres with near-circular cross-sections and highly ordered GO domains. The results are knittable GO fibres with Young's modulus of ~7.9 GPa, tensile strength of ~135.8 MPa, breaking strain of ~5.9%, and toughness of ~5.7 MJ m(-3). The combination of suitable spinning method, coagulation composition, and spinning conditions led to GO fibres with remarkable toughness; the key factor in their successful knitting. This work highlights important progress in realising the full potential of GO fibres as a new class of textile. PMID:26459866

  13. Nonspecific cleavage of proteins using graphene oxide.

    PubMed

    Lee, Heeyoung; Tran, Minh-Hai; Jeong, Hae Kyung; Han, Jinwoo; Jang, Sei-Heon; Lee, ChangWoo

    2014-04-15

    In this article, we report the intrinsic catalytic activity of graphene oxide (GO) for the nonspecific cleavage of proteins. We used bovine serum albumin (BSA) and a recombinant esterase (rEstKp) from the cold-adapted bacterium Pseudomonas mandelii as test proteins. Cleavage of BSA and rEstKp was nonspecific regarding amino acid sequence, but it exhibited dependence on temperature, time, and the amount of GO. However, cleavage of the proteins did not result in complete hydrolysis into their constituent amino acids. GO also invoked hydrolysis of p-nitrophenyl esters at moderate temperatures lower than those required for peptide hydrolysis regardless of chain length of the fatty acyl esters. Based on the results, the functional groups of GO, including alcohols, phenols, and carboxylates, can be considered as crucial roles in the GO-mediated hydrolysis of peptides and esters via general acid-base catalysis. Our findings provide novel insights into the role of GO as a carbocatalyst with nonspecific endopeptidase activity in biochemical reactions. PMID:24508487

  14. Photochemical transformation of graphene oxide in sunlight.

    PubMed

    Hou, Wen-Che; Chowdhury, Indranil; Goodwin, David G; Henderson, W Matthew; Fairbrother, D Howard; Bouchard, Dermont; Zepp, Richard G

    2015-03-17

    Graphene oxide (GO) is promising in scalable production and has useful properties that include semiconducting behavior, catalytic reactivity, and aqueous dispersibility. In this study, we investigated the photochemical fate of GO under environmentally relevant sunlight conditions. The results indicate that GO readily photoreacts under simulated sunlight with the potential involvement of electron-hole pair creation. GO was shown to photodisproportionate to CO2, reduced materials similar to reduced GO (rGO) that are fragmented compared to the starting material, and low molecular-weight (LMW) species. Kinetic studies show that the rate of the initially rapid photoreaction of GO is insensitive to the dissolved oxygen content. In contrast, at longer time points (>10 h), the presence of dissolved oxygen led to a greater production of CO2 than the same GO material under N2-saturated conditions. Regardless, the rGO species themselves persist after extended irradiation equivalent to 2 months in natural sunlight, even in the presence of dissolved oxygen. Overall, our findings indicate that GO phototransforms rapidly under sunlight exposure, resulting in chemically reduced and persistent photoproducts that are likely to exhibit transport and toxic properties unique from parent GO. PMID:25671674

  15. Towards the Knittability of Graphene Oxide Fibres

    PubMed Central

    Seyedin, Shayan; Romano, Mark S.; Minett, Andrew I.; Razal, Joselito M.

    2015-01-01

    Recent developments in graphene oxide fibre (GO) processing include exciting demonstrations of hand woven textile structures. However, it is uncertain whether the fibres produced can meet the processing requirements of conventional textile manufacturing. This work reports for the first time the production of highly flexible and tough GO fibres that can be knitted using textile machinery. The GO fibres are made by using a dry-jet wet-spinning method, which allows drawing of the spinning solution (the GO dispersion) in several stages of the fibre spinning process. The coagulation composition and spinning conditions are evaluated in detail, which led to the production of densely packed fibres with near-circular cross-sections and highly ordered GO domains. The results are knittable GO fibres with Young’s modulus of ~7.9 GPa, tensile strength of ~135.8 MPa, breaking strain of ~5.9%, and toughness of ~5.7 MJ m−3. The combination of suitable spinning method, coagulation composition, and spinning conditions led to GO fibres with remarkable toughness; the key factor in their successful knitting. This work highlights important progress in realising the full potential of GO fibres as a new class of textile. PMID:26459866

  16. High Performance Graphene Oxide Based Rubber Composites

    PubMed Central

    Mao, Yingyan; Wen, Shipeng; Chen, Yulong; Zhang, Fazhong; Panine, Pierre; Chan, Tung W.; Zhang, Liqun; Liang, Yongri; Liu, Li

    2013-01-01

    In this paper, graphene oxide/styrene-butadiene rubber (GO/SBR) composites with complete exfoliation of GO sheets were prepared by aqueous-phase mixing of GO colloid with SBR latex and a small loading of butadiene-styrene-vinyl-pyridine rubber (VPR) latex, followed by their co-coagulation. During co-coagulation, VPR not only plays a key role in the prevention of aggregation of GO sheets but also acts as an interface-bridge between GO and SBR. The results demonstrated that the mechanical properties of the GO/SBR composite with 2.0 vol.% GO is comparable with those of the SBR composite reinforced with 13.1 vol.% of carbon black (CB), with a low mass density and a good gas barrier ability to boot. The present work also showed that GO-silica/SBR composite exhibited outstanding wear resistance and low-rolling resistance which make GO-silica/SBR very competitive for the green tire application, opening up enormous opportunities to prepare high performance rubber composites for future engineering applications. PMID:23974435

  17. Towards the Knittability of Graphene Oxide Fibres

    NASA Astrophysics Data System (ADS)

    Seyedin, Shayan; Romano, Mark S.; Minett, Andrew I.; Razal, Joselito M.

    2015-10-01

    Recent developments in graphene oxide fibre (GO) processing include exciting demonstrations of hand woven textile structures. However, it is uncertain whether the fibres produced can meet the processing requirements of conventional textile manufacturing. This work reports for the first time the production of highly flexible and tough GO fibres that can be knitted using textile machinery. The GO fibres are made by using a dry-jet wet-spinning method, which allows drawing of the spinning solution (the GO dispersion) in several stages of the fibre spinning process. The coagulation composition and spinning conditions are evaluated in detail, which led to the production of densely packed fibres with near-circular cross-sections and highly ordered GO domains. The results are knittable GO fibres with Young’s modulus of ~7.9 GPa, tensile strength of ~135.8 MPa, breaking strain of ~5.9%, and toughness of ~5.7 MJ m-3. The combination of suitable spinning method, coagulation composition, and spinning conditions led to GO fibres with remarkable toughness; the key factor in their successful knitting. This work highlights important progress in realising the full potential of GO fibres as a new class of textile.

  18. Oxidative Unzipping and Transformation of High Aspect Ratio Boron Nitride Nanotubes into “White Graphene Oxide” Platelets

    PubMed Central

    Nautiyal, Pranjal; Loganathan, Archana; Agrawal, Richa; Boesl, Benjamin; Wang, Chunlei; Agarwal, Arvind

    2016-01-01

    Morphological and chemical transformations in boron nitride nanotubes under high temperature atmospheric conditions is probed in this study. We report atmospheric oxygen induced cleavage of boron nitride nanotubes at temperatures exceeding 750 °C for the first time. Unzipping is then followed by coalescence of these densely clustered multiple uncurled ribbons to form stacks of 2D sheets. FTIR and EDS analysis suggest these 2D platelets to be Boron Nitride Oxide platelets, with analogous structure to Graphene Oxide, and therefore we term them as “White Graphene Oxide” (WGO). However, not all BNNTs deteriorate even at temperatures as high as 1000 °C. This leads to the formation of a hybrid nanomaterial system comprising of 1D BN nanotubes and 2D BN oxide platelets, potentially having advanced high temperature sensing, radiation shielding, mechanical strengthening, electron emission and thermal management applications due to synergistic improvement of multi-plane transport and mechanical properties. This is the first report on transformation of BNNT bundles to a continuous array of White Graphene Oxide nanoplatelet stacks. PMID:27388704

  19. Oxidative Unzipping and Transformation of High Aspect Ratio Boron Nitride Nanotubes into “White Graphene Oxide” Platelets

    NASA Astrophysics Data System (ADS)

    Nautiyal, Pranjal; Loganathan, Archana; Agrawal, Richa; Boesl, Benjamin; Wang, Chunlei; Agarwal, Arvind

    2016-07-01

    Morphological and chemical transformations in boron nitride nanotubes under high temperature atmospheric conditions is probed in this study. We report atmospheric oxygen induced cleavage of boron nitride nanotubes at temperatures exceeding 750 °C for the first time. Unzipping is then followed by coalescence of these densely clustered multiple uncurled ribbons to form stacks of 2D sheets. FTIR and EDS analysis suggest these 2D platelets to be Boron Nitride Oxide platelets, with analogous structure to Graphene Oxide, and therefore we term them as “White Graphene Oxide” (WGO). However, not all BNNTs deteriorate even at temperatures as high as 1000 °C. This leads to the formation of a hybrid nanomaterial system comprising of 1D BN nanotubes and 2D BN oxide platelets, potentially having advanced high temperature sensing, radiation shielding, mechanical strengthening, electron emission and thermal management applications due to synergistic improvement of multi-plane transport and mechanical properties. This is the first report on transformation of BNNT bundles to a continuous array of White Graphene Oxide nanoplatelet stacks.

  20. Sulfuric Acid Intercalated Graphite Oxide for Graphene Preparation

    NASA Astrophysics Data System (ADS)

    Hong, Yanzhong; Wang, Zhiyong; Jin, Xianbo

    2013-12-01

    Graphene has shown enormous potential for innovation in various research fields. The current chemical approaches based on exfoliation of graphite via graphite oxide (GO) are potential for large-scale synthesis of graphene but suffer from high cost, great operation difficulties, and serious waste discharge. We report a facile preparation of graphene by rapid reduction and expansion exfoliation of sulfuric acid intercalated graphite oxide (SIGO) at temperature just above 100°C in ambient atmosphere, noting that SIGO is easily available as the immediate oxidation descendent of graphite in sulfuric acid. The oxygenic and hydric groups in SIGO are mainly removed through dehydration as catalyzed by the intercalated sulfuric acid (ISA). The resultant consists of mostly single layer graphene sheets with a mean diameter of 1.07 μm after dispersion in DMF. This SIGO process is reductant free, easy operation, low-energy, environmental friendly and generates graphene with low oxygen content, less defect and high conductivity. The provided synthesis route from graphite to graphene via SIGO is compact and readily scalable.

  1. Sulfuric Acid Intercalated Graphite Oxide for Graphene Preparation

    PubMed Central

    Hong, Yanzhong; Wang, Zhiyong; Jin, Xianbo

    2013-01-01

    Graphene has shown enormous potential for innovation in various research fields. The current chemical approaches based on exfoliation of graphite via graphite oxide (GO) are potential for large-scale synthesis of graphene but suffer from high cost, great operation difficulties, and serious waste discharge. We report a facile preparation of graphene by rapid reduction and expansion exfoliation of sulfuric acid intercalated graphite oxide (SIGO) at temperature just above 100°C in ambient atmosphere, noting that SIGO is easily available as the immediate oxidation descendent of graphite in sulfuric acid. The oxygenic and hydric groups in SIGO are mainly removed through dehydration as catalyzed by the intercalated sulfuric acid (ISA). The resultant consists of mostly single layer graphene sheets with a mean diameter of 1.07 μm after dispersion in DMF. This SIGO process is reductant free, easy operation, low-energy, environmental friendly and generates graphene with low oxygen content, less defect and high conductivity. The provided synthesis route from graphite to graphene via SIGO is compact and readily scalable. PMID:24310650

  2. Spacing-dependent dipolar interactions in dendronized magnetic iron oxide nanoparticle 2D arrays and powders

    NASA Astrophysics Data System (ADS)

    Fleutot, Solenne; Nealon, Gareth L.; Pauly, Matthias; Pichon, Benoit P.; Leuvrey, Cédric; Drillon, Marc; Gallani, Jean-Louis; Guillon, Daniel; Donnio, Bertrand; Begin-Colin, Sylvie

    2013-01-01

    Self-assembly of nanoparticles (NPs) into tailored structures is a promising strategy for the production and design of materials with new functions. In this work, 2D arrays of iron oxide NPs with interparticle distances tuned by grafting fatty acids and dendritic molecules at the NPs surface have been obtained over large areas with high density using the Langmuir-Blodgett technique. The anchoring agent of molecules and the Janus structure of NPs are shown to be key parameters driving the deposition. Finally the influence of interparticle distance on the collective magnetic properties in powders and in monolayers is clearly demonstrated by DC and AC SQUID measurements. The blocking temperature TB increases as the interparticle distance decreases, which is consistent with the fact that dipolar interactions are responsible for this increase. Dipolar interactions are found to be stronger for particles assembled in thin films compared to powdered samples and may be described by using the Vogel Fulcher model.Self-assembly of nanoparticles (NPs) into tailored structures is a promising strategy for the production and design of materials with new functions. In this work, 2D arrays of iron oxide NPs with interparticle distances tuned by grafting fatty acids and dendritic molecules at the NPs surface have been obtained over large areas with high density using the Langmuir-Blodgett technique. The anchoring agent of molecules and the Janus structure of NPs are shown to be key parameters driving the deposition. Finally the influence of interparticle distance on the collective magnetic properties in powders and in monolayers is clearly demonstrated by DC and AC SQUID measurements. The blocking temperature TB increases as the interparticle distance decreases, which is consistent with the fact that dipolar interactions are responsible for this increase. Dipolar interactions are found to be stronger for particles assembled in thin films compared to powdered samples and may be

  3. Phyto-reduction of graphene oxide using the aqueous extract of Eichhornia crassipes (Mart.) Solms

    NASA Astrophysics Data System (ADS)

    Firdhouse, M. Jannathul; Lalitha, P.

    2014-10-01

    The aqueous extract of Eichhornia crassipes was used as reductant to produce graphene from graphene oxide by refluxing method. The complete reduction of graphene oxide was monitored using UV-Vis spectrophotometer. Characterization of graphene was made through FTIR, XRD, and Raman spectroscopy analysis. The stability of graphene was studied by thermal gravimetric analysis and zeta potential measurements. The nature and surface morphology of the synthesized graphene was analyzed by transmission electron microscopy. The production of graphene using phytoextract as reductant emphasizes on the facile method of synthesis and greener nanotechnology.

  4. Chemistry and Structure of Graphene Oxide via Direct Imaging.

    PubMed

    Dave, Shreya H; Gong, Chuncheng; Robertson, Alex W; Warner, Jamie H; Grossman, Jeffrey C

    2016-08-23

    Graphene oxide (GO) and reduced GO (rGO) are the only variants of graphene that can be manufactured at the kilogram scale, and yet the widely accepted model for their structure has largely relied on indirect evidence. Notably, existing high-resolution transmission electron microscopy (HRTEM) studies of graphene oxide report long-range order of sp(2) lattice with isolated defect clusters. Here, we present HRTEM evidence of a different structural form of GO, where nanocrystalline regions of sp(2) lattice are surrounded by regions of disorder. The presence of contaminants that adsorb to the surface of the material at room temperature normally prevents direct observation of the intrinsic atomic structure of this defective GO. To overcome this, we use an in situ heating holder within an aberration-corrected TEM (AC-TEM) to study the atomic structure of this nanocrystalline graphene oxide from room temperature to 700 °C. As the temperature increases to above 500 °C, the adsorbates detach from the GO and the underlying atomic structure is imaged to be small 2-4 nm crystalline domains within a polycrystalline GO film. By combining spectroscopic evidence with the AC-TEM data, we support the dynamic interpretation of the structural evolution of graphene oxide. PMID:27397115

  5. Athermally photoreduced graphene oxides for three-dimensional holographic images

    PubMed Central

    Li, Xiangping; Ren, Haoran; Chen, Xi; Liu, Juan; Li, Qin; Li, Chengmingyue; Xue, Gaolei; Jia, Jia; Cao, Liangcai; Sahu, Amit; Hu, Bin; Wang, Yongtian; Jin, Guofan; Gu, Min

    2015-01-01

    The emerging graphene-based material, an atomic layer of aromatic carbon atoms with exceptional electronic and optical properties, has offered unprecedented prospects for developing flat two-dimensional displaying systems. Here, we show that reduced graphene oxide enabled write-once holograms for wide-angle and full-colour three-dimensional images. This is achieved through the discovery of subwavelength-scale multilevel optical index modulation of athermally reduced graphene oxides by a single femtosecond pulsed beam. This new feature allows for static three-dimensional holographic images with a wide viewing angle up to 52 degrees. In addition, the spectrally flat optical index modulation in reduced graphene oxides enables wavelength-multiplexed holograms for full-colour images. The large and polarization-insensitive phase modulation over π in reduced graphene oxide composites enables to restore vectorial wavefronts of polarization discernible images through the vectorial diffraction of a reconstruction beam. Therefore, our technique can be leveraged to achieve compact and versatile holographic components for controlling light. PMID:25901676

  6. Self-assembly of 2D sandwich-structured MnFe{sub 2}O{sub 4}/graphene composites for high-performance lithium storage

    SciTech Connect

    Li, Songmei Wang, Bo; Li, Bin; Liu, Jianhua; Yu, Mei; Wu, Xiaoyu

    2015-01-15

    Highlights: • MFO/GN composites were synthesized by a facile in situ solvothermal approach. • The MFO microspheres are sandwiched between the graphene layers. • Each MFO microsphere is an interstitial cluster of nanoparticles. • The MFO/GN electrode exhibits an enhanced cyclability for Li-ion batteries anodes. - Abstract: In this study, two-dimensional (2D) sandwich-structured MnFe{sub 2}O{sub 4}/graphene (MFO/GN) composites are synthesized by a facile in situ solvothermal approach, using cetyltrimethylammonium bromide (CTAB) as cationic surfactant. As a consequence, the nanocomposites of MFO/GN self-assembled into a 2D sandwich structure, in which the interstitial cluster structure of microsphere-type MnFe{sub 2}O{sub 4} is sandwiched between the graphene layers. This special structure of the MFO/GN composites used as anodes for lithium-ion batteries will be favorable for the maximum accessible surface of electroactive materials, fast diffusion of lithium ions and migration of electron, and elastomeric space to accommodate volume changes during the discharge–charge processes. The as-synthesized MFO/GN composites deliver a high specific reversible capacity of 987.95 mA h g{sup −1} at a current density of 200 mA g{sup −1}, a good capacity retention of 69.27% after 80 cycles and excellent rate performance for lithium storage.

  7. Graphene Paper Decorated with a 2D Array of Dendritic Platinum Nanoparticles for Ultrasensitive Electrochemical Detection of Dopamine Secreted by Live Cells.

    PubMed

    Zan, Xiaoli; Bai, Hongwei; Wang, Chenxu; Zhao, Faqiong; Duan, Hongwei

    2016-04-01

    To circumvent the bottlenecks of non-flexibility, low sensitivity, and narrow workable detection range of conventional biosensors for biological molecule detection (e.g., dopamine (DA) secreted by living cells), a new hybrid flexible electrochemical biosensor has been created by decorating closely packed dendritic Pt nanoparticles (NPs) on freestanding graphene paper. This innovative structural integration of ultrathin graphene paper and uniform 2D arrays of dendritic NPs by tailored wet chemical synthesis has been achieved by a modular strategy through a facile and delicately controlled oil-water interfacial assembly method, whereby the uniform distribution of catalytic dendritic NPs on the graphene paper is maximized. In this way, the performance is improved by several orders of magnitude. The developed hybrid electrode shows a high sensitivity of 2 μA cm(-2) μM(-1), up to about 33 times higher than those of conventional sensors, a low detection limit of 5 nM, and a wide linear range of 87 nM to 100 μM. These combined features enable the ultrasensitive detection of DA released from pheochromocytoma (PC 12) cells. The unique features of this flexible sensor can be attributed to the well-tailored uniform 2D array of dendritic Pt NPs and the modular electrode assembly at the oil-water interface. Its excellent performance holds much promise for the future development of optimized flexible electrochemical sensors for a diverse range of electroactive molecules to better serve society. PMID:26918612

  8. Optical conductivity of partially oxidized graphene from first principles

    SciTech Connect

    Nasehnia, F. Seifi, M.

    2015-07-07

    We investigate the geometry, electronic structure, and optical properties of partially oxidized graphene using density functional theory. Our calculations show that oxygen atoms are chemisorbed on graphene plane and distort carbon atoms vertically, with almost no change in the in-plane structure. The ground state configurations for different oxygen coverages ranging from 2% to 50% (O/C ratio) are calculated and show the strong tendency of oxygen adatoms to aggregate and form discrete islands on graphene plane. It is found that the opened band gap due to oxygen functionalization depends on the oxygen density and the adsorption configuration. The gap is not significant for oxygen densities lower than 8%. The optical conductivities are calculated in the infrared, visible, and ultraviolet regions and show different characteristic features depending on the degree of oxidation. These results imply that optical measurement techniques can be employed to monitor oxidation (or reduction) process as contact-free methods.

  9. Graphene chiral liquid crystals and macroscopic assembled fibres

    PubMed Central

    Xu, Zhen; Gao, Chao

    2011-01-01

    Chirality and liquid crystals are both widely expressed in nature and biology. Helical assembly of mesophasic molecules and colloids may produce intriguing chiral liquid crystals. To date, chiral liquid crystals of 2D colloids have not been explored. As a typical 2D colloid, graphene is now receiving unprecedented attention. However, making macroscopic graphene fibres is hindered by the poor dispersibility of graphene and by the lack of an assembly method. Here we report that soluble, chemically oxidized graphene or graphene oxide sheets can form chiral liquid crystals in a twist-grain-boundary phase-like model with simultaneous lamellar ordering and long-range helical frustrations. Aqueous graphene oxide liquid crystals were continuously spun into metres of macroscopic graphene oxide fibres; subsequent chemical reduction gave the first macroscopic neat graphene fibres with high conductivity and good mechanical performance. The flexible, strong graphene fibres were knitted into designed patterns and into directionally conductive textiles. PMID:22146390

  10. Laccase-Functionalized Graphene Oxide Assemblies as Efficient Nanobiocatalysts for Oxidation Reactions

    PubMed Central

    Patila, Michaela; Kouloumpis, Antonios; Gournis, Dimitrios; Rudolf, Petra; Stamatis, Haralambos

    2016-01-01

    Multi-layer graphene oxide-enzyme nanoassemblies were prepared through the multi-point covalent immobilization of laccase from Trametes versicolor (TvL) on functionalized graphene oxide (fGO). The catalytic properties of the fGO-TvL nanoassemblies were found to depend on the number of the graphene oxide-enzyme layers present in the nanostructure. The fGO-TvL nanoassemblies exhibit an enhanced thermal stability at 60 °C, as demonstrated by a 4.7-fold higher activity as compared to the free enzyme. The multi-layer graphene oxide-enzyme nanoassemblies can efficiently catalyze the oxidation of anthracene, as well as the decolorization of an industrial dye, pinacyanol chloride. These materials retained almost completely their decolorization activity after five reaction cycles, proving their potential as efficient nano- biocatalysts for various applications. PMID:26927109

  11. Influence of graphene oxide on metal-insulator-semiconductor tunneling diodes

    PubMed Central

    2012-01-01

    In recent years, graphene studies have increased rapidly. Graphene oxide, which is an intermediate product to form graphene, is insulating, and it should be thermally reduced to be electrically conductive. We herein describe an attempt to make use of the insulating properties of graphene oxide. The graphene oxide layers are deposited onto Si substrates, and a metal-insulator-semiconductor tunneling structure is formed and its optoelectronic properties are studied. The accumulation dark current and inversion photocurrent of the graphene oxide device are superior to the control device. The introduction of graphene oxide improves the rectifying characteristic of the diode and enhances its responsivity as a photodetector. At 2 V, the photo-to-dark current ratio of the graphene oxide device is 24, larger than the value of 15 measured in the control device. PMID:22734469

  12. Remote catalyzation for direct formation of graphene layers on oxides.

    PubMed

    Teng, Po-Yuan; Lu, Chun-Chieh; Akiyama-Hasegawa, Kotone; Lin, Yung-Chang; Yeh, Chao-Hui; Suenaga, Kazu; Chiu, Po-Wen

    2012-03-14

    Direct deposition of high-quality graphene layers on insulating substrates such as SiO(2) paves the way toward the development of graphene-based high-speed electronics. Here, we describe a novel growth technique that enables the direct deposition of graphene layers on SiO(2) with crystalline quality potentially comparable to graphene grown on Cu foils using chemical vapor deposition (CVD). Rather than using Cu foils as substrates, our approach uses them to provide subliming Cu atoms in the CVD process. The prime feature of the proposed technique is remote catalyzation using floating Cu and H atoms for the decomposition of hydrocarbons. This allows for the direct graphitization of carbon radicals on oxide surfaces, forming isolated low-defect graphene layers without the need for postgrowth etching or evaporation of the metal catalyst. The defect density of the resulting graphene layers can be significantly reduced by tuning growth parameters such as the gas ratios, Cu surface areas, and substrate-to-Cu distance. Under optimized conditions, graphene layers with nondiscernible Raman D peaks can be obtained when predeposited graphite flakes are used as seeds for extended growth. PMID:22332771

  13. High quality reduced graphene oxide through repairing with multi-layered graphene ball nanostructures

    PubMed Central

    Kim, Kyoung Hwan; Yang, MinHo; Cho, Kyeong Min; Jun, Young-Si; Lee, Sang Bok; Jung, Hee-Tae

    2013-01-01

    We present a simple and up-scalable method to produce highly repaired graphene oxide with a large surface area, by introducing spherical multi-layered graphene balls with empty interiors. These graphene balls are prepared via chemical vapor deposition (CVD) of Ni particles on the surface of the graphene oxides (GO). Transmission electron microscopy and Raman spectroscopy results reveal that defects in the GO surfaces are well repaired during the CVD process, with the help of nickel nanoparticles attached to the functional groups of the GO surface, further resulting in a high electrical conductivity of 18,620 S/m. In addition, the graphene balls on the GO surface effectively prevent restacking of the GO layers, thus providing a large surface area of 527 m2/g. Two electrode supercapacitor cells using this highly conductive graphene material demonstrate ideal electrical double layer capacitive behavior, due to the effective use of the outstanding electric conductivity and the large surface area. PMID:24248235

  14. A high energy output nanogenerator based on reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Li, Weiping; Zhang, Yupeng; Liu, Liangliang; Li, Delong; Liao, Lei; Pan, Chunxu

    2015-10-01

    In this paper, we report a novel graphene-based nanogenerator for high energy harvesting. Experimental and theoretical results revealed that the energy output mechanism is the joint action of the strain effect (band engineering) and the triboelectric effect of reduced graphene oxide. It was found that the current could be adjusted by experimental parameters, such as the electrolyte concentration and rotation rate. Furthermore, the voltage output could be amplified by series connection of the system. Compared with other nanogenerators, the present graphene-based nanogenerator provides advantages, such as simple assembly, flexibility and high structural stability. It is expected that this nanogenerator will be of potential application in active sensors and sustainable power sources.In this paper, we report a novel graphene-based nanogenerator for high energy harvesting. Experimental and theoretical results revealed that the energy output mechanism is the joint action of the strain effect (band engineering) and the triboelectric effect of reduced graphene oxide. It was found that the current could be adjusted by experimental parameters, such as the electrolyte concentration and rotation rate. Furthermore, the voltage output could be amplified by series connection of the system. Compared with other nanogenerators, the present graphene-based nanogenerator provides advantages, such as simple assembly, flexibility and high structural stability. It is expected that this nanogenerator will be of potential application in active sensors and sustainable power sources. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04971g

  15. Charge inhomogeneity determines oxidative reactivity of graphene on substrates.

    PubMed

    Yamamoto, Mahito; Einstein, Theodore L; Fuhrer, Michael S; Cullen, William G

    2012-09-25

    Single-layer graphene (SLG) supported on SiO(2) shows anomalously large chemical reactivity compared to thicker graphene, with charge inhomogeneity-induced potential fluctuations or topographic corrugations proposed as the cause. Here we systematically probe the oxidative reactivity of graphene supported on substrates with different surface roughnesses and charged impurity densities: hexagonal boron nitride (hBN), mica, thermally grown SiO(2) on Si, and SiO(2) nanoparticle thin films. SLG on low charge trap density hBN is not etched and shows little doping after oxygen treatment at temperatures up to 550 °C, in sharp contrast with oxidative etching under similar conditions of graphene on high charge trap density SiO(2) and mica. Furthermore, bilayer graphene shows reduced reactivity compared to SLG regardless of its substrate-induced roughness. Together the observations indicate that graphene's reactivity is predominantly controlled by charge inhomogeneity-induced potential fluctuations rather than surface roughness. PMID:22917254

  16. Graphene Oxide/ Ruthenium Oxide Composites for Supercapacitors Electrodes

    NASA Astrophysics Data System (ADS)

    Amir, Fatima

    Supercapacitors are electrical energy storage devices with high power density, high rate capability, low maintenance cost, and long life cycle. They complement or replace batteries in harvesting applications when high power delivery is needed. An important improvement in performance of supercapacitors has been achieved through recent advances in the development of new nanostructured materials. Here we will discuss the fabrication of graphene oxide/ ruthenium oxide supercacitors electrodes including electrophoretic deposition. The morphology and structure of the fabricated electrodes were investigated and will be discussed. The electrochemical properties were determined using cyclic voltammetry and galvanostatic charge/discharge techniques and the experiments that demonstrate the excellent capacitive properties of the obtained supercapacitors will also be discussed. The fabrication and characterization of the samples were performed at the Center of Functional Nanomaterials at Brookhaven National Lab. The developed approaches in our study represent an exciting direction for designing the next generation of energy storage devices. This work was supported in part by the U.S. Department of Energy through the Visiting Faculty Program and the research used resources of the Center for Functional Nanomaterials at Brookhaven National Laboratory.

  17. Structural, optical investigations of graphene from graphene oxide using green method

    SciTech Connect

    Kumar, Dinesh; Shukla, Shobha; Saxena, Sumit

    2015-06-24

    Graphene nano sheets (GNS) are synthesized from Graphene Oxide (GO) using commercial sugar as a reducing agent. A green and facile approach is followed to synthesize chemically converted GNS using exfoliated GO as precursor. The merit of this method is that both the reducing agents themselves and the oxidized products are environmentally friendly. The prepared materials are characterized with X-ray diffraction (XRD), UV-Visible absorption spectroscopy, High resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). The results of XRD, UV-vis analysis provide a clear indication of removal of oxygen-containing groups from GO and the formation of GNS.

  18. Structural, optical investigations of graphene from graphene oxide using green method

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Shukla, Shobha; Saxena, Sumit

    2015-06-01

    Graphene nano sheets (GNS) are synthesized from Graphene Oxide (GO) using commercial sugar as a reducing agent. A green and facile approach is followed to synthesize chemically converted GNS using exfoliated GO as precursor. The merit of this method is that both the reducing agents themselves and the oxidized products are environmentally friendly. The prepared materials are characterized with X-ray diffraction (XRD), UV-Visible absorption spectroscopy, High resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). The results of XRD, UV-vis analysis provide a clear indication of removal of oxygen-containing groups from GO and the formation of GNS.

  19. Photochemical doping of graphene oxide with nitrogen for photoluminescence enhancement

    NASA Astrophysics Data System (ADS)

    Liu, Fuchi; Tang, Nujiang; Tang, Tao; Liu, Yuan; Feng, Qian; Zhong, Wei; Du, Youwei

    2013-09-01

    Nitrogen-doped graphene oxide (NGO) was synthesized by irradiation of graphene oxide (GO) in NH3 atmosphere. NGO obtained by irradiation of GO for 10 min has high N content of 13.62 at. %. The photoluminescence (PL) properties of NGO were investigated. The results showed that compared with GO, NGO exhibits significant PL enhancement with a high enhancement ratio of approximately 1501.57%. It may attribute to the high content of amino-like N, which can effectively enhance PL of GO because of the amino conjugation effect.

  20. Photochemical doping of graphene oxide with nitrogen for photoluminescence enhancement

    SciTech Connect

    Liu, Fuchi; Tang, Nujiang; Tang, Tao; Liu, Yuan; Feng, Qian; Zhong, Wei; Du, Youwei

    2013-09-16

    Nitrogen-doped graphene oxide (NGO) was synthesized by irradiation of graphene oxide (GO) in NH{sub 3} atmosphere. NGO obtained by irradiation of GO for 10 min has high N content of 13.62 at. %. The photoluminescence (PL) properties of NGO were investigated. The results showed that compared with GO, NGO exhibits significant PL enhancement with a high enhancement ratio of approximately 1501.57%. It may attribute to the high content of amino-like N, which can effectively enhance PL of GO because of the amino conjugation effect.

  1. Thiolated graphene oxide as promising mucoadhesive carrier for hydrophobic drugs.

    PubMed

    Pereira de Sousa, Irene; Buttenhauser, Katrin; Suchaoin, Wongsakorn; Partenhauser, Alexandra; Perrone, Mara; Matuszczak, Barbara; Bernkop-Schnürch, Andreas

    2016-07-25

    The aim of this study was to improve the mucoadhesive properties of graphene by conjugating thiol ligands, in order to formulate an oral delivery system for hydrophobic drugs showing long mucus residence time. Graphene oxide was obtained by oxidation of graphite and then was thiolated following two synthetic paths. On the one hand, the hydroxyl groups were conjugated with thiourea passing through the formation of a brominated intermediate. On the other hand, the carboxylic acid groups were conjugated with cysteamine via carbodiimide chemistry. The mucoadhesive properties of thiolated graphene were evaluated by rheological measurements and by residence time assay. Then, valsartan was loaded on thiolated graphene and the release profile was evaluated in simulated intestinal fluid. Following both synthetic paths it was possible to obtain thiolated graphene bearing 215-302μmol SH/g product. Both products induced after 1h incubation an increase of mucus viscosity of about 22-33-fold compared to unmodified graphite. The residence time assay confirmed that 60% of thiolated graphene could be retained on intestinal mucosa after 4h incubation, whereas just 20% of unmodified graphite could be retained. Valsartan could be loaded with a drug loading of about 31±0.3% and a sustained release profile was observed for both formulations. According to the presented data, the thiolation of graphene could improve its mucoadhesive properties. Therefore, thiolated graphene represents a promising platform for oral delivery of hydrophobic drugs, possessing a long residence time on intestinal mucosa which allows the release of the loaded drug close to the adsorptive epithelium. PMID:27246816

  2. Ab initio study on the noncovalent adsorption of camptothecin anticancer drug onto graphene, defect modified graphene and graphene oxide.

    PubMed

    Saikia, Nabanita; Deka, Ramesh C

    2013-09-01

    The application of graphene and related nanomaterials like boron nitride (BN) nanosheets, BN-graphene hybrid nanomaterials, and graphene oxide (GO) for adsorption of anticancer chemotherapeutic camptothecin (CPT) along with the effect on electronic properties prior to functionalization and after functionalization has been reported using density functional theory (DFT) calculations. The inclusion of dispersion correction to DFT is instrumental in accounting for van der Waals π-π stacking between CPT and the nanomaterial. The adsorption of CPT exhibits significant strain within the nanosheets and noncovalent adsorption of CPT is thermodynamically favoured onto the nanosheets. In case of GO, surface incorporation of functional groups result in significant crumpling along the basal plane and the interaction is basically mediated by H-bonding rather than π-π stacking. Docking studies predict the plausible binding of CPT, CPT functionalized graphene and GO with topoisomerase I (top 1) signifying that CPT interacts through π stacking with AT and GC base pairs of DNA and in presence of nano support, DNA bases preferentially gets bound to the basal plane of graphene and GO rather than the edges. At a theoretical level of understanding, our studies point out the noncovalent interaction of CPT with graphene based nanomaterials and GO for loading and delivery of anticancer chemotherapeutic along with active binding to Top1 protein. PMID:24132695

  3. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale.

    PubMed

    Wan, Xiangjian; Huang, Yi; Chen, Yongsheng

    2012-04-17

    Carbon is the only element that has stable allotropes in the 0th through the 3rd dimension, all of which have many outstanding properties. Graphene is the basic building block of other important carbon allotropes. Studies of graphene became much more active after the Geim group isolated "free" and "perfect" graphene sheets and demonstrated the unprecedented electronic properties of graphene in 2004. So far, no other individual material combines so many important properties, including high mobility, Hall effect, transparency, mechanical strength, and thermal conductivity. In this Account, we briefly review our studies of bulk scale graphene and graphene oxide (GO), including their synthesis and applications focused on energy and optoelectronics. Researchers use many methods to produce graphene materials: bottom-up and top-down methods and scalable methods such as chemical vapor deposition (CVD) and chemical exfoliation. Each fabrication method has both advantages and limitations. CVD could represent the most important production method for electronic applications. The chemical exfoliation method offers the advantages of easy scale up and easy solution processing but also produces graphene oxide (GO), which leads to defects and the introduction of heavy functional groups. However, most of these additional functional groups and defects can be removed by chemical reduction or thermal annealing. Because solution processing is required for many film and device applications, including transparent electrodes for touch screens, light-emitting devices (LED), field-effect transistors (FET), and photovoltaic devices (OPV), flexible electronics, and composite applications, the use of GO is important for the production of graphene. Because graphene has an intrinsic zero band gap, this issue needs to be tackled for its FET applications. The studies for transparent electrode related applications have made great progress, but researchers need to improve sheet resistance while

  4. Enhanced Reduction of Graphene Oxide on Recyclable Cu Foils to Fabricate Graphene Films with Superior Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Huang, Sheng-Yun; Zhao, Bo; Zhang, Kai; Yuen, Matthew M. F.; Xu, Jian-Bin; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping

    2015-09-01

    Large-area freestanding graphene films are facilely fabricated by reducing graphene oxide films on recyclable Cu foils in H2-containing atmosphere at high temperature. Cu might act as efficient catalysts for considerably improved reduction of graphene oxide according to the SEM, EDS, XRD, XPS, Raman and TGA results. Comparing to the graphene films with ~30 μm thickness reduced without Cu substrate at 900 °C, the thermal conductivity and electrical conductivity of graphene films reduced on Cu foils are enhanced about 140% to 902 Wm-1K-1 and 3.6 × 104 S/m, respectively. Moreover, the graphene films demonstrate superior thermal conductivity of ~1219 Wm-1K-1 as decreasing the thickness of films to ~10 μm. The graphene films also exhibit excellent mechanical properties and flexibility.

  5. Enhanced Reduction of Graphene Oxide on Recyclable Cu Foils to Fabricate Graphene Films with Superior Thermal Conductivity

    PubMed Central

    Huang, Sheng-Yun; Zhao, Bo; Zhang, Kai; Yuen, Matthew M. F.; Xu, Jian-Bin; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping

    2015-01-01

    Large-area freestanding graphene films are facilely fabricated by reducing graphene oxide films on recyclable Cu foils in H2-containing atmosphere at high temperature. Cu might act as efficient catalysts for considerably improved reduction of graphene oxide according to the SEM, EDS, XRD, XPS, Raman and TGA results. Comparing to the graphene films with ~30 μm thickness reduced without Cu substrate at 900 °C, the thermal conductivity and electrical conductivity of graphene films reduced on Cu foils are enhanced about 140% to 902 Wm−1K−1 and 3.6 × 104 S/m, respectively. Moreover, the graphene films demonstrate superior thermal conductivity of ~1219 Wm−1K−1 as decreasing the thickness of films to ~10 μm. The graphene films also exhibit excellent mechanical properties and flexibility. PMID:26404674

  6. Computer Simulation Study of Graphene Oxide Supercapacitors: Charge Screening Mechanism.

    PubMed

    Park, Sang-Won; DeYoung, Andrew D; Dhumal, Nilesh R; Shim, Youngseon; Kim, Hyung J; Jung, YounJoon

    2016-04-01

    Graphene oxide supercapacitors in the parallel plate configuration are studied via molecular dynamics (MD) simulations. The full range of electrode oxidation from 0 to 100% is examined by oxidizing the graphene surface with hydroxyl groups. Two different electrolytes, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI(+)BF4(-)) as an ionic liquid and its 1.3 M solution in acetonitrile as an organic electrolyte, are considered. While the area-specific capacitance tends to decrease with increasing electrode oxidation for both electrolytes, its details show interesting differences between the organic electrolyte and ionic liquid, including the extent of decrease. For detailed insight into these differences, the screening mechanisms of electrode charges by electrolytes and their variations with electrode oxidation are analyzed with special attention paid to the aspects shared by and the contrasts between the organic electrolyte and ionic liquid. PMID:26966918

  7. Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide

    PubMed Central

    Kanayama, Izumi; Miyaji, Hirofumi; Takita, Hiroko; Nishida, Erika; Tsuji, Maiko; Fugetsu, Bunshi; Sun, Ling; Inoue, Kana; Ibara, Asako; Akasaka, Tsukasa; Sugaya, Tsutomu; Kawanami, Masamitsu

    2014-01-01

    Background Graphene oxide (GO) is a single layer carbon sheet with a thickness of less than 1 nm. GO has good dispersibility due to surface modifications with numerous functional groups. Reduced graphene oxide (RGO) is produced via the reduction of GO, and has lower dispersibility. We examined the bioactivity of GO and RGO films, and collagen scaffolds coated with GO and RGO. Methods GO and RGO films were fabricated on a culture dish. Some GO films were chemically reduced using either ascorbic acid or sodium hydrosulfite solution, resulting in preparation of RGO films. The biological properties of each film were evaluated by scanning electron microscopy (SEM), atomic force microscopy, calcium adsorption tests, and MC3T3-E1 cell seeding. Subsequently, GO- and RGO-coated collagen scaffolds were prepared and characterized by SEM and compression tests. Each scaffold was implanted into subcutaneous tissue on the backs of rats. Measurements of DNA content and cell ingrowth areas of implanted scaffolds were performed 10 days post-surgery. Results The results show that GO and RGO possess different biological properties. Calcium adsorption and alkaline phosphatase activity were strongly enhanced by RGO, suggesting that RGO is effective for osteogenic differentiation. SEM showed that RGO-modified collagen scaffolds have rough, irregular surfaces. The compressive strengths of GO- and RGO-coated scaffolds were approximately 1.7-fold and 2.7-fold greater, respectively, when compared with the non-coated scaffold. Tissue ingrowth rate was 39% in RGO-coated scaffolds, as compared to 20% in the GO-coated scaffold and 16% in the non-coated scaffold. Conclusion In summary, these results suggest that GO and RGO coatings provide different biological properties to collagen scaffolds, and that RGO-coated scaffolds are more bioactive than GO-coated scaffolds. PMID:25050063

  8. Neutron Reflectivity Measurement for Polymer Dynamics near Graphene Oxide Monolayers

    NASA Astrophysics Data System (ADS)

    Koo, Jaseung

    We investigated the diffusion dynamics of polymer chains confined between graphene oxide layers using neutron reflectivity (NR). The bilayers of polymethylmetacrylate (PMMA)/ deuterated PMMA (d-PMMA) films and polystyrene (PS)/d-PS films with various film thickness sandwiched between Langmuir-Blodgett (LB) monolayers of graphene oxide (GO) were prepared. From the NR results, we found that PMMA diffusion dynamics was reduced near the GO surface while the PS diffusion was not significantly changed. This is due to the different strength of GO-polymer interaction. In this talk, these diffusion results will be compared with dewetting dynamics of polymer thin films on the GO monolayers. This has given us the basis for development of graphene-based nanoelectronics with high efficiency, such as heterojunction devices for polymer photovoltaic (OPV) applications.

  9. Subnanometer Two-Dimensional Graphene Oxide Channels for Ultrafast Gas Sieving.

    PubMed

    Shen, Jie; Liu, Gongping; Huang, Kang; Chu, Zhenyu; Jin, Wanqin; Xu, Nanping

    2016-03-22

    Two-dimensional (2D) materials with atomic thickness and extraordinary physicochemical properties exhibit unique mass transport behaviors, enabling them as emerging nanobuilding blocks for separation membranes. Engineering 2D materials into membrane with subnanometer apertures for precise molecular sieving remains a great challenge. Here, we report rational-designing external forces to precisely manipulate nanoarchitecture of graphene oxide (GO)-assembled 2D channels with interlayer height of ∼0.4 nm for fast transporting and selective sieving gases. The external forces are synergistic to direct the GO nanosheets stacking so as to realize delicate size-tailoring of in-plane slit-like pores and plane-to-plane interlayer-galleries. The 2D channels endow GO membrane with excellent molecular-sieving characteristics that offer 2-3 orders of magnitude higher H2 permeability and 3-fold enhancement in H2/CO2 selectivity compared with commercial membranes. Formation mechanism of 2D channels is proposed on the basis of the driving forces, nanostructures, and transport behaviors. PMID:26866661

  10. Graphite to Graphene via Graphene Oxide: An Overview on Synthesis, Properties, and Applications

    NASA Astrophysics Data System (ADS)

    Hansora, D. P.; Shimpi, N. G.; Mishra, S.

    2015-12-01

    This work represents a state-of-the-art technique developed for the preparation of graphene from graphite-metal electrodes by the arc-discharge method carried out in a continuous flow of water. Because of continuous arcing of graphite-metal electrodes, the graphene sheets were observed in water with uniformity and little damage. These nanosheets were subjected to various purification steps such as acid treatment, oxidation, water washing, centrifugation, and drying. The pure graphene sheets were analyzed using Raman spectrophotometry, x-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), and tunneling electron microscopy (TEM). Peaks of Raman spectra were recorded at (1300-1400 cm-1) and (1500-1600 cm-1) for weak D-band and strong G-band, respectively. The XRD pattern showed 85.6% crystallinity of pure graphite, whereas pure graphene was 66.4% crystalline. TEM and FE-SEM micrographs revealed that graphene sheets were overlapped to each other and layer-by-layer formation was also observed. Beside this research work, we also reviewed recent developments of graphene and related nanomaterials along with their preparations, properties, functionalizations, and potential applications.

  11. Nanoscale Mechanics of Graphene and Graphene Oxide in Composites: A Scientific and Technological Perspective.

    PubMed

    Palermo, Vincenzo; Kinloch, Ian A; Ligi, Simone; Pugno, Nicola M

    2016-08-01

    Graphene shows considerable promise in structural composite applications thanks to its unique combination of high tensile strength, Young's modulus and structural flexibility which arise due to its maximal chemical bond strength and minimal atomic thickness. However, the ultimate performance of graphene composites will depend, in addition to the properties of the matrix and interface, on the morphology of the graphene used, including the size and shape of the sheets and the number of chemical defects present. For example, whilst oxidized sp(3) carbon atoms and vacancies in a graphene sheet can degrade its mechanical strength, they can also increase its interaction with other materials such as the polymer matrix of a composite, thus maximizing stress transfer and leading to more efficient mechanical reinforcement. Herein, we present an overview of some recently published work on graphene mechanical properties and discuss a list of challenges that need to be overcome (notwithstanding the strong hype existing on this material) for the development of graphene-based materials into a successful technology. PMID:26960186

  12. Liquid crystallinity driven highly aligned large graphene oxide composites

    SciTech Connect

    Lee, Kyung Eun; Oh, Jung Jae; Yun, Taeyeong; Kim, Sang Ouk

    2015-04-15

    Graphene is an emerging graphitic carbon materials, consisting of sp{sup 2} hybridized two dimensinal honeycomb structure. It has been widely studied to incorporate graphene with polymer to utilize unique property of graphene and reinforce electrical, mechanical and thermal property of polymer. In composite materials, orientation control of graphene significantly influences the property of composite. Until now, a few method has been developed for orientation control of graphene within polymer matrix. Here, we demonstrate facile fabrication of high aligned large graphene oxide (LGO) composites in polydimethylsiloxane (PDMS) matrix exploiting liquid crystallinity. Liquid crystalline aqueous dispersion of LGO is parallel oriented within flat confinement geometry. Freeze-drying of the aligned LGO dispersion and subsequent infiltration with PDMS produce highly aligned LGO/PDMS composites. Owing to the large shape anisotropy of LGO, liquid crystalline alignment occurred at low concentration of 2 mg/ml in aqueous dispersion, which leads to the 0.2 wt% LGO loaded composites. - Graphical abstract: Liquid crystalline LGO aqueous dispersions are spontaneous parallel aligned between geometric confinement for highly aligned LGO/polymer composite fabrication. - Highlights: • A simple fabrication method for highly aligned LGO/PDMS composites is proposed. • LGO aqueous dispersion shows nematic liquid crystalline phase at 0.8 mg/ml. • In nematic phase, LGO flakes are highly aligned by geometric confinement. • Infiltration of PDMS into freeze-dried LGO allows highly aligned LGO/PDMS composites.

  13. 3D Oxidized Graphene Frameworks for Efficient Nano Sieving.

    PubMed

    Pawar, Pranav Bhagwan; Saxena, Sumit; Badhe, Dhanashree Kamlesh; Chaudhary, Raghvendra Pratap; Shukla, Shobha

    2016-01-01

    The small size of Na(+) and Cl(-) ions provides a bottleneck in desalination and is a challenge in providing alternatives for continuously depleting fresh water resources. Graphene by virtue of its structural properties has the potential to address this issue. Studies have indicated that use of monolayer graphene can be used to filter micro volumes of saline solution. Unfortunately it is extremely difficult, resource intensive and almost impractical with current technology to fabricate operational devices using mono-layered graphene. Nevertheless, graphene based devices still hold the key to solve this problem due to its nano-sieving ability. Here we report synthesis of oxidized graphene frameworks and demonstrate a functional device to desalinate and purify seawater from contaminants including Na(+) and Cl(-) ions, dyes and other microbial pollutants. Micro-channels in these frameworks help in immobilizing larger suspended solids including bacteria, while nano-sieving through graphene enables the removal of dissolved ions (e.g. Cl(-)). Nano-sieving incorporated with larger frameworks has been used in filtering Na(+) and Cl(-) ions in functional devices. PMID:26892277

  14. 3D Oxidized Graphene Frameworks for Efficient Nano Sieving

    PubMed Central

    Pawar, Pranav Bhagwan; Saxena, Sumit; Badhe, Dhanashree Kamlesh; Chaudhary, Raghvendra Pratap; Shukla, Shobha

    2016-01-01

    The small size of Na+ and Cl− ions provides a bottleneck in desalination and is a challenge in providing alternatives for continuously depleting fresh water resources. Graphene by virtue of its structural properties has the potential to address this issue. Studies have indicated that use of monolayer graphene can be used to filter micro volumes of saline solution. Unfortunately it is extremely difficult, resource intensive and almost impractical with current technology to fabricate operational devices using mono-layered graphene. Nevertheless, graphene based devices still hold the key to solve this problem due to its nano-sieving ability. Here we report synthesis of oxidized graphene frameworks and demonstrate a functional device to desalinate and purify seawater from contaminants including Na+ and Cl− ions, dyes and other microbial pollutants. Micro-channels in these frameworks help in immobilizing larger suspended solids including bacteria, while nano-sieving through graphene enables the removal of dissolved ions (e.g. Cl−). Nano-sieving incorporated with larger frameworks has been used in filtering Na+ and Cl− ions in functional devices. PMID:26892277

  15. Plasma enhanced vortex fluidic device manipulation of graphene oxide.

    PubMed

    Jones, Darryl B; Chen, Xianjue; Sibley, Alexander; Quinton, Jamie S; Shearer, Cameron J; Gibson, Christopher T; Raston, Colin L

    2016-08-25

    A vortex fluid device (VFD) with non-thermal plasma liquid processing within dynamic thin films has been developed. This plasma-liquid microfluidic platform facilitates chemical processing which is demonstrated through the manipulation of the morphology and chemical character of colloidal graphene oxide in water. PMID:27506139

  16. Graphene oxide nanocapsules within silanized hydrogels suitable for electrochemical pseudocapacitors.

    PubMed

    Kataky, R; Hadden, J H L; Coleman, K S; Ntola, C N M; Chowdhury, M; Duckworth, A R; Dobson, B P; Campos, R; Pyner, S; Shenton, F

    2015-06-28

    Soft biocompatible gels comprised of rolled up graphene oxide nanocapsules within the pores of silanized hydrogels may be used as electrochemical pseudocapacitors with physiological glucose or KOH as a reducing agent, affording a material suitable for devices requiring pulses with characteristic time less than a second. PMID:25977943

  17. Graphene oxide membranes with tunable semipermeability in organic solvents.

    PubMed

    Huang, Liang; Li, Yingru; Zhou, Qinqin; Yuan, Wenjing; Shi, Gaoquan

    2015-07-01

    Graphene oxide membranes (GOMs) are mechanically stable in various organic solvents, and their nanochannels can be narrowed by thermal annealing or widened by solvation. Therefore, the semipermeability of GOMs can be easily modulated, and they can be used as "multipurpose membranes" for molecular sieving in organic media. PMID:25994919

  18. Thermally-driven structural changes of graphene oxide multilayer films deposited on glass substrate

    NASA Astrophysics Data System (ADS)

    Lazauskas, A.; Baltrusaitis, J.; Grigaliūnas, V.; Guobienė, A.; Prosyčevas, I.; Narmontas, P.; Abakevičienė, B.; Tamulevičius, S.

    2014-11-01

    Graphene oxide (GO) has been recognized as an important intermediate compound for a potential low-cost large-scale graphene-like film fabrication. In this work, graphene oxide multilayer films deposited on glass substrate were reduced using different thermal reduction methods, including low-temperature annealing, flame-induced and laser reduction, and the corresponding surface morphology and structural properties were investigated. These graphene oxide thermal reduction methods strongly affected surface morphology and differently facilitated structural and chemical transformations of graphene oxide. As evidenced by Raman measurements, thermal annealing and laser reduction of graphene oxide produced more ordered graphene-like structure multilayer films. However, surface morphological differences were observed and attributed to the different de-oxidation mechanisms of GO. This Letter provides an important systematic comparison between the GO reduction methods and thermally-driven structural changes they provide to the reduced GO multilayer films obtained.

  19. The effects of graphene oxide on green algae Raphidocelis subcapitata.

    PubMed

    Nogueira, P F M; Nakabayashi, D; Zucolotto, V

    2015-09-01

    Graphene represents a new class of nanomaterials that has attracted great interest due to its unique electrical, thermal, and mechanical properties. Once disposed in the environment, graphene can interact with biological systems and is expected to exhibit toxicological effects. The ecotoxicity of graphene and its derivatives, viz.: graphene oxide (GO) depends on their physicochemical properties, including purity, diameter, length, surface charge, functionalization and aggregation state. In this study we evaluated the effects of graphene oxide (GO) on green algae Raphidocelis subcapitata. The algae were exposed to different concentrations of GO pre-equilibrated for 24h with oligotrophic freshwater medium (20ml) during incubation in a growth chamber under controlled conditions: 120μEm(-2)s(-1) illumination; 12:12h light dark cycle and constant temperature of 22±2°C. Algal growth was monitored daily for 96h by direct cell counting. Reactive oxygen species level (ROS), membrane damage (cell viability) and autofluorescence (chl-a fluorescence) were evaluated using fluorescent staining and further analyzed by flow cytometry. The toxic effects from GO, as observed in algal density and autofluorescence, started at concentrations from 20 and 10μgmL(-1), respectively. Such toxicity is probably the result of ROS generation and membrane damage (cell viability). The shading effect caused by GO agglomeration in culture medium may also contribute to reduce algal density. The results reported here provide knowledge regarding the GO toxicity on green algae, contributing to a better understanding of its environmental behavior and impacts. PMID:26204245

  20. Thermally reduced kaolin-graphene oxide nanocomposites for gas sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Renyun; Alecrim, Viviane; Hummelgård, Magnus; Andres, Britta; Forsberg, Sven; Andersson, Mattias; Olin, Håkan

    2015-01-01

    Highly sensitive graphene-based gas sensors can be made using large-area single layer graphene, but the cost of large-area pure graphene is high, making the simpler reduced graphene oxide (rGO) an attractive alternative. To use rGO for gas sensing, however, require a high active surface area and slightly different approach is needed. Here, we report on a simple method to produce kaolin-graphene oxide (GO) nanocomposites and an application of this nanocomposite as a gas sensor. The nanocomposite was made by binding the GO flakes to kaolin with the help of 3-Aminopropyltriethoxysilane (APTES). The GO flakes in the nanocomposite were contacting neighboring GO flakes as observed by electron microscopy. After thermal annealing, the nanocomposite become conductive as showed by sheet resistance measurements. Based on the conductance changes of the nanocomposite films, electrical gas sensing devices were made for detecting NH3 and HNO3. These devices had a higher sensitivity than thermally annealed multilayer GO films. This kaolin-GO nanocomposite might be useful in applications that require a low-cost material with large conductive surface area including the demonstrated gas sensors.

  1. Fibrous nanocomposites of carbon nanotubes and graphene-oxide with synergetic mechanical and actuative performance.

    PubMed

    Wang, Ranran; Sun, Jing; Gao, Lian; Xu, Chaohe; Zhang, Jing

    2011-08-14

    Fibrous nanocomposites of carbon nanotubes, graphene-oxide or graphene were prepared by a simple coagulation spinning technique exhibiting synergetic enhancement of mechanical strength, electronic conductivity and electrical actuation performance. PMID:21725531

  2. Assessing the exposure and toxicological implications of environmental transformations of graphene oxide using in vitro methods

    EPA Science Inventory

    Graphene oxide (GO) and graphene-based nanoparticles are increasingly being used in biomedical, environmental, and industrial applications due to their distinct chemical and physical properties. Their widespread use and application can potentially result in mass release of GO to...

  3. Graphene prepared by thermal reduction–exfoliation of graphite oxide: Effect of raw graphite particle size on the properties of graphite oxide and graphene

    SciTech Connect

    Dao, Trung Dung; Jeong, Han Mo

    2015-10-15

    Highlights: • Effect of raw graphite particle size on properties of GO and graphene is reported. • Size of raw graphite affects oxidation degree and chemical structure of GO. • Highly oxidized GO results in small-sized but well-exfoliated graphene. • GO properties affect reduction degree, structure, and conductivity of graphene. - Abstract: We report the effect of raw graphite size on the properties of graphite oxide and graphene prepared by thermal reduction–exfoliation of graphite oxide. Transmission electron microscope analysis shows that the lateral size of graphene becomes smaller when smaller size graphite is used. X-ray diffraction analysis confirms that graphite with smaller size is more effectively oxidized, resulting in a more effective subsequent exfoliation of the obtained graphite oxide toward graphene. X-ray photoelectron spectroscopy demonstrates that reduction of the graphite oxide derived from smaller size graphite into graphene is more efficient. However, Raman analysis suggests that the average size of the in-plane sp{sup 2}-carbon domains on graphene is smaller when smaller size graphite is used. The enhanced reduction degree and the reduced size of sp{sup 2}-carbon domains contribute contradictively to the electrical conductivity of graphene when the particle size of raw graphite reduces.

  4. Synthesis and characterization of nickel oxide/graphene sheet/graphene ribbon composite

    NASA Astrophysics Data System (ADS)

    Lavanya, J.; Gomathi, N.

    2016-04-01

    A novel and simple hydrothermal synthesis of nickel oxide (NiO)/graphene sheets (GNS)/graphene ribbon (GR) hybrid material is reported for the first time. The crystalline property and surface morphology of NiO/GNS/GR (NiO/HG) hybrid material is characterized by X-ray diffraction, Raman spectroscopy and Transmission electron spectroscopy. The fast electron transfer of GNS/GR along with NiO contributes an excellent electrochemical performance in the field of non-enzymatic glucose sensor.

  5. Breakdown of fast water transport in graphene oxides.

    PubMed

    Wei, Ning; Peng, Xinsheng; Xu, Zhiping

    2014-01-01

    Fast slip flow was identified for water inside the interlayer gallery between graphene layers or carbon nanotubes. We report here that this significant flow rate enhancement (over two orders) breaks down with the presence of chemical functionalization and relaxation of nanoconfinement in graphene oxides. Molecular dynamics simulation results show that hydrodynamics applies in this circumstance, even at length scales down to nanometers. However, corrections to the slip boundary condition and apparent viscosity of nanoconfined flow must be included to make quantitative predictions. These results were discussed with the structural characteristics of liquid water and hydrogen-bond networks. PMID:24580178

  6. Breakdown of fast water transport in graphene oxides

    NASA Astrophysics Data System (ADS)

    Wei, Ning; Peng, Xinsheng; Xu, Zhiping

    2014-01-01

    Fast slip flow was identified for water inside the interlayer gallery between graphene layers or carbon nanotubes. We report here that this significant flow rate enhancement (over two orders) breaks down with the presence of chemical functionalization and relaxation of nanoconfinement in graphene oxides. Molecular dynamics simulation results show that hydrodynamics applies in this circumstance, even at length scales down to nanometers. However, corrections to the slip boundary condition and apparent viscosity of nanoconfined flow must be included to make quantitative predictions. These results were discussed with the structural characteristics of liquid water and hydrogen-bond networks.

  7. Riboflavin enhanced fluorescence of highly reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Iliut, Maria; Gabudean, Ana-Maria; Leordean, Cosmin; Simon, Timea; Teodorescu, Cristian-Mihail; Astilean, Simion

    2013-10-01

    The improvement of graphene derivates' fluorescence properties is a challenging topic and very few ways were reported up to now. In this Letter we propose an easy method to enhance the fluorescence of highly reduced graphene oxide (rGO) through non-covalent binding to a molecular fluorophore, namely the riboflavin (Rb). While the fluorescence of Rb is quenched, the Rb - decorated rGO exhibits strong blue fluorescence and significantly increased fluorescence lifetime, as compared to its pristine form. The data reported here represent a promising start towards tailoring the optical properties of rGOs, having utmost importance in optical applications.

  8. Impact of Nanosize on Supercapacitance: Study of 1D Nanorods and 2D Thin-Films of Nickel Oxide.

    PubMed

    Patil, Ranjit A; Chang, Cheng-Ping; Devan, Rupesh S; Liou, Yung; Ma, Yuan-Ron

    2016-04-20

    We synthesized unique one-dimensional (1D) nanorods and two-dimensional (2D) thin-films of NiO on indium-tin-oxide thin-films using a hot-filament metal-oxide vapor deposition technique. The 1D nanorods have an average width and length of ∼100 and ∼500 nm, respectively, and the densely packed 2D thin-films have an average thickness of ∼500 nm. The 1D nanorods perform as parallel units for charge storing. However, the 2D thin-films act as one single unit for charge storing. The 2D thin-films possess a high specific capacitance of ∼746 F/g compared to 1D nanorods (∼230 F/g) using galvanostatic charge-discharge measurements at a current density of 3 A/g. Because the 1D NiO nanorods provide more plentiful surface areas than those of the 2D thin-films, they are fully active at the first few cycles. However, the capacitance retention of the 1D nanorods decays faster than that of the 2D thin-films. Also, the 1D NiO nanorods suffer from instability due to the fast electrochemical dissolution and high nanocontact resistance. Electrochemical impedance spectroscopy verifies that the low dimensionality of the 1D NiO nanorods induces the unavoidable effects that lead them to have poor supercapacitive performances. On the other hand, the slow electrochemical dissolution and small contact resistance in the 2D NiO thin-films favor to achieve high specific capacitance and great stability. PMID:27028491

  9. Preparation of N-doped graphene by reduction of graphene oxide with mixed microbial system and its haemocompatibility.

    PubMed

    Fan, Mengmeng; Zhu, Chunlin; Feng, Zhang-Qi; Yang, Jiazhi; Liu, Lin; Sun, Dongping

    2014-05-01

    A steady, effective and environment friendly method of introducing nitrogen into graphene is by microbial reduction of graphene oxide with mixed microorganisms from the anode chamber of microbial fuel cells (MFC). Using this method, N-doped graphene is easily obtained under mild conditions and by simple treatment processes, with the N/C ratio reaching 8.14%. Various characterizations demonstrate that the as-prepared N-doped graphene has excellent properties and is comparable with, and in some aspects, even better than, pristine graphene (containing only elemental C) prepared by chemical methods. The N-doped graphene (mainly substitution of C in the plane of the graphene sheet) with uniform distribution of N was haemocompatible, nontoxic, and water-dispersible, all of which are desirable properties for biomaterials and attributable to a synergetic metabolic effect of mixed microorganisms. PMID:24667844

  10. Microstructure fabrication process induced modulations in CVD graphene

    SciTech Connect

    Matsubayashi, Akitomo Zhang, Zhenjun; Lee, Ji Ung; LaBella, Vincent P.

    2014-12-15

    The systematic Raman spectroscopic study of a “mimicked” graphene device fabrication is presented. Upon photoresist baking, compressive stress is induced in the graphene which disappears after it is removed. The indirect irradiation from the electron beam (through the photoresist) does not significantly alter graphene characteristic Raman peaks indicating that graphene quality is preserved upon the exposure. The 2D peak shifts and the intensity ratio of 2D and G band, I(2D)/I(G), decreases upon direct metal deposition (Co and Py) suggesting that the electronic modulation occurs due to sp{sup 2} C-C bond weakening. In contrast, a thin metal oxide film deposited graphene does not show either the significant 2D and G peaks shift or I(2D)/I(G) decrease upon the metal deposition suggesting the oxide protect the graphene quality in the fabrication process.

  11. Fluorescence Intermittency and Nanodot Evolution in Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Ruth, Anthony; Michitoshi, Hayashi; McDonald, Matthew; Si, Jixin; Morozov, Yuri; Zapol, Peter; Kuno, Masaru; Janko, Boldizsar

    In recent experiments, micron-sized reduced graphene oxide (rGO) flakes were observed to exhibit strong photoluminescence intensity fluctuations, or blinking. Although blinking has been observed in a wide variety of nanoscale emitters, and striking universalities exist across these very different systems, rGO is the first quasi-two dimensional emitter that shows blinking. Despite the widespread presence of blinking at nanoscale, a microscopic mechanism behind this phenomenon remains elusive. Here we provide density functional theory results, analytical calculations, and Monte Carlo simulations to connect the fluorescence trajectories observed in the experiment to microscopic processes. Through Monte Carlo simulations of chemical processes occurring on the graphene oxide surface, we observe the formation and destruction of carbon nanodots. Finally, we use emission characteristics of carbon nanodots from Ab Initio methods to reconstruct the photoluminescence of the macroscopic flake. In particular, we are investigating whether fluorescence intermittency in reduced graphene oxide is an intrinsic optoelectronic property of the nanodot constituents or the result of reversible chemical processes capable of changing the size and number of graphene nanodots. This work was supported by a NASA Space Technology Research Fellowship.

  12. New insights into the opening band gap of graphene oxides

    NASA Astrophysics Data System (ADS)

    Tran, Ngoc Thanh Thuy; Lin, Shih-Yang; Lin, Ming-Fa

    Electronic properties of oxygen absorbed few-layer graphenes are investigated using first-principle calculations. They are very sensitive to the changes in the oxygen concentration, number of graphene layer, and stacking configuration. The feature-rich band structures exhibit the destruction or distortion of the Dirac cone, opening of band gap, anisotropic energy dispersions, O- and (C,O)-dominated energy dispersions, and extra critical points. The band decomposed charge distributions reveal the π-bonding dominated energy gap. The orbital-projected density of states (DOS) have many special structures mainly coming from a composite energy band, the parabolic and partially flat ones. The DOS and spatial charge distributions clearly indicate the critical orbital hybridizations in O-O, C-O and C-C bonds, being responsible for the diversified properties. All of the few-layer graphene oxides are semi-metals except for the semiconducting monolayer ones.

  13. Graphene oxide as a chemically tunable platform for optical applications

    NASA Astrophysics Data System (ADS)

    Loh, Kian Ping; Bao, Qiaoliang; Eda, Goki; Chhowalla, Manish

    2010-12-01

    Chemically derived graphene oxide (GO) is an atomically thin sheet of graphite that has traditionally served as a precursor for graphene, but is increasingly attracting chemists for its own characteristics. It is covalently decorated with oxygen-containing functional groups - either on the basal plane or at the edges - so that it contains a mixture of sp2- and sp3-hybridized carbon atoms. In particular, manipulation of the size, shape and relative fraction of the sp2-hybridized domains of GO by reduction chemistry provides opportunities for tailoring its optoelectronic properties. For example, as-synthesized GO is insulating but controlled deoxidation leads to an electrically and optically active material that is transparent and conducting. Furthermore, in contrast to pure graphene, GO is fluorescent over a broad range of wavelengths, owing to its heterogeneous electronic structure. In this Review, we highlight the recent advances in optical properties of chemically derived GO, as well as new physical and biological applications.

  14. Origin of hole and electron traps in graphene oxide

    NASA Astrophysics Data System (ADS)

    Kotin, I. A.; Antonova, I. V.; Orlov, O. M.; Smagulova, S. A.

    2016-06-01

    Charge-carrier capture/emission processes proceeding with the participation of localized states in graphene oxide (GO) in test structures of Au/SiO2/GO/SiO2/Si were examined by charge deep-level transient spectroscopy (Q-DLTS). Two groups of traps capable of capturing both electrons and holes in GO were detected. The energy levels of these groups with reference to the electronic band structure of Si were found to be at EV + 0.75 eV (EC ‑ 0.37 eV) and EV + 0.55 eV (EC ‑ 0.55 eV). Such levels are proposed to be inherent to graphene islands in which charge carriers are emitted from energy levels in the vicinity of the Dirac point. Two groups of levels are suggested to be attributed to graphene islands, with and without p-doping with oxygen.

  15. Effect of structure on the tribology of ultrathin graphene and graphene oxide films.

    PubMed

    Chen, Hang; Filleter, Tobin

    2015-03-27

    The friction and wear properties of graphene and graphene oxide (GO) with varying C/O ratio were investigated using friction force microscopy. When applied as solid lubricants between a sliding contact of a silicon (Si) tip and a SiO2/Si substrate, graphene and ultrathin GO films (as thin as 1-2 atomic layers) were found to reduce friction by ∼6 times and ∼2 times respectively as compared to the unlubricated contact. The differences in measured friction were attributed to different interfacial shear strengths. Ultrathin films of GO with a low C/O ratio of ∼2 were found to wear easily under small normal load. The onset of wear, and the location of wear initiation, is attributed to differences in the local shear strength of the sliding interface as a result of the non-homogeneous surface structure of GO. While the exhibited low friction of GO as compared to SiO2 makes it an economically viable coating for micro/nano-electro-mechanical systems with the potential to extend the lifetime of devices, its higher propensity for wear may limit its usefulness. To address this limitation, the wear resistance of GO samples with a higher C/O ratio (∼4) was also studied. The higher C/O ratio GO was found to exhibit much improved wear resistance which approached that of the graphene samples. This demonstrates the potential of tailoring the structure of GO to achieve graphene-like tribological properties. PMID:25751675

  16. Effect of structure on the tribology of ultrathin graphene and graphene oxide films

    NASA Astrophysics Data System (ADS)

    Chen, Hang; Filleter, Tobin

    2015-03-01

    The friction and wear properties of graphene and graphene oxide (GO) with varying C/O ratio were investigated using friction force microscopy. When applied as solid lubricants between a sliding contact of a silicon (Si) tip and a SiO2/Si substrate, graphene and ultrathin GO films (as thin as 1-2 atomic layers) were found to reduce friction by ˜6 times and ˜2 times respectively as compared to the unlubricated contact. The differences in measured friction were attributed to different interfacial shear strengths. Ultrathin films of GO with a low C/O ratio of ˜2 were found to wear easily under small normal load. The onset of wear, and the location of wear initiation, is attributed to differences in the local shear strength of the sliding interface as a result of the non-homogeneous surface structure of GO. While the exhibited low friction of GO as compared to SiO2 makes it an economically viable coating for micro/nano-electro-mechanical systems with the potential to extend the lifetime of devices, its higher propensity for wear may limit its usefulness. To address this limitation, the wear resistance of GO samples with a higher C/O ratio (˜4) was also studied. The higher C/O ratio GO was found to exhibit much improved wear resistance which approached that of the graphene samples. This demonstrates the potential of tailoring the structure of GO to achieve graphene-like tribological properties.

  17. Highly efficient supercapacitor electrode with two-dimensional tungsten disulfide and reduced graphene oxide hybrid nanosheets

    NASA Astrophysics Data System (ADS)

    Tu, Chao-Chi; Lin, Lu-Yin; Xiao, Bing-Chang; Chen, Yu-Shiang

    2016-07-01

    Two-dimensional (2D) nanostructures with their high surface area and large in-plane conductivity have been regarded as promising materials for supercapacitors (SCs). Tungsten disulfide (WS2) is highly suitable for charge accumulation with its abundant active sites in the interspacing between the 2D structures and the intraspacing of each atomic layer, as well as on the tungsten centers with the charges generated by the Faradaic reactions. This study proposes the preparation of well-constructed WS2/reduced graphene oxide (RGO) nanosheets using a simple molten salt process as the electroactive material for SCs, which presents a high specific capacitance (CF) of 2508.07 F g-1 at the scan rate of 1 mV s-1, because of the synergic effect of WS2 with its large charge-accumulating sites on the 2D planes and RGO with its highly enhanced conductivity and improved connections in the WS2 networks. The excellent cycling stability of 98.6% retention after 5000 cycles charge/discharge process and the Coulombic efficiency close to 100% for the entire measurement are also achieved for the WS2/RGO-based SC electrode. The results suggest the potential for the combination of the 2D metal sulfide and carbon materials as the charge storage material to solve the energy problems and attain a sustainable society.

  18. Effects of substrate on 2D materials, graphene, MoS2, WS2, and black phosphorus, investigated by high temperature and spatially resolved Raman scattering and photoluminescence

    NASA Astrophysics Data System (ADS)

    Su, Liqin

    The exploration of a group of new 2D materials, such as graphene and transition metal dichalcogenides, has become the hottest research of interest in recent years. With the dependable techniques of producing 2D materials, particularly mechanical exfoliation and chemical vapor deposition, we are able to study all kinds of their unique properties in mechanical, electrical and optical fields. In this dissertation, we examine the vibrational and thermal properties of four 2D materials---graphene, MoS2, WS2 and black phosphorus---as well as their interaction with the supporting substrates, by using temperature-dependent Raman spectroscopy. Regarding the increasing interests of studying on the fabrication and applications of 2D materials, the role of 2D-material/substrate interaction has seldom been taken into consideration which would significantly affects the quality of the grown films and the performance of the devices. To the best of our knowledge, we are the first to systematically investigate on this issue. At first, we performed temperature-dependent Raman spectroscopy on two graphene samples prepared by CVD and ME up to 400°C, as well as graphite as a reference. The temperature dependence of both graphene samples shows very non-linear behavior for G and 2D bands, but with the CVD-grown graphene more nonlinear. Comparing to the Raman spectra collected before the measurements, the spectra after the measurements exhibit not only a shift of peak position but also a huge broadening of linewidth, especially for CVD-grown graphene. This study implies that the polymeric residues from either scotch tape or PMMA during transfer process are converted to amorphous carbon after annealed at high temperature, which may significantly change the optical and electrical properties of graphene. With the same temperature-dependent Raman technique as graphene, we examine on monolayer MoS2 and WS2, and thin-film black phosphorus and demonstrate that the film morphology and the

  19. Bio-functionalized graphene-graphene oxide nanocomposite based electrochemical immunosensing.

    PubMed

    Sharma, Priyanka; Tuteja, Satish K; Bhalla, Vijayender; Shekhawat, G; Dravid, Vinayak P; Suri, C Raman

    2013-01-15

    We report a novel in-situ electrochemical synthesis approach for the formation of functionalized graphene-graphene oxide (fG-GO) nanocomposite on screen-printed electrodes (SPE). Electrochemically controlled nanocomposite film formation was studied by transmission electron microscopy (TEM) and Raman spectroscopy. Further insight into the nanocomposite has been accomplished by the Fourier transformed infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD) spectroscopy. Configured as a highly responsive screen-printed immunosensor, the fG-GO nanocomposite on SPE exhibits electrical and chemical synergies of the nano-hybrid functional construct by combining good electronic properties of functionalized graphene (fG) and the facile chemical functionality of graphene oxide (GO) for compatible bio-interface development using specific anti-diuron antibody. The enhanced electrical properties of nanocomposite biofilm demonstrated a significant increase in electrochemical signal response in a competitive inhibition immunoassay format for diuron detection, promising its potential applicability for ultra-sensitive detection of range of target analytes. PMID:22884654

  20. Thermoplastic polyurethane/graphene nanocomposites: The effect of graphene oxide on physical properties

    NASA Astrophysics Data System (ADS)

    Russo, P.; Acierno, D.; Capezzuto, F.; Buonocore, G. G.; Di Maio, L.; Lavorgna, M.

    2015-12-01

    Thermoplastic polyurethanes (TPUs) have been widely used for a variety of applications such as fibers, coating, adhesives, and biomedical items because of their melt processability and versatile properties essentially related to their intrinsic two-phase segmented structure. However, their low stiffness and tensile strength as well as their weak barrier properties still limit their use. Currently, improvements of functional properties of plastics are usually obtained by the inclusion of nanofillers which, in this case, should be able to modify the segregated hard/soft domains of TPU matrix. In this frame, noteworthy results have been already achieved by using carbon based fillers as carbon nanotubes, graphene, graphene oxide, carbon nanofibers and so on. In this frame, this research was focused on blown films based on TPU composites including 0.2%, 0.5% and 1% of a commercial graphene oxide (GO). These latter were obtained according to a two-step procedure: a co-solvent methodology to obtain a concentrated TPU/graphene master followed by a dilution with the neat TPU matrix by extrusion melt compounding. Film samples were analyzed in terms of thermal, structural and barrier properties. Preliminary results indicated structural modifications of the TPU matrix as a result of the GO included with consequent influences on the water vapor barrier properties.

  1. Metal-organic framework derived hollow polyhedron metal oxide posited graphene oxide for energy storage applications.

    PubMed

    Ramaraju, Bendi; Li, Cheng-Hung; Prakash, Sengodu; Chen, Chia-Chun

    2016-01-18

    A composite made from hollow polyhedron copper oxide and graphene oxide was synthesized by sintering a Cu-based metal-organic framework (Cu-MOF) embedded with exfoliated graphene oxide. As a proof-of-concept application, the obtained Cu(ox)-rGO materials were used in a lithium-ion battery and a sodium-ion battery as anode materials. Overall, the Cu(ox)-rGO composite delivers excellent electrochemical properties with stable cycling when compared to pure CuO-rGO and Cu-MOF. PMID:26587567

  2. Highly efficient electron field emission from graphene oxide sheets supported by nickel nanotip arrays.

    PubMed

    Ye, Dexian; Moussa, Sherif; Ferguson, Josephus D; Baski, Alison A; El-Shall, M Samy

    2012-03-14

    Electron field emission is a quantum tunneling phenomenon whereby electrons are emitted from a solid surface due to a strong electric field. Graphene and its derivatives are expected to be efficient field emitters due to their unique geometry and electrical properties. So far, electron field emission has only been achieved from the edges of graphene and graphene oxide sheets. We have supported graphene oxide sheets on nickel nanotip arrays to produce a high density of sharp protrusions within the sheets and then applied electric fields perpendicular to the sheets. Highly efficient and stable field emission with low turn-on fields was observed for these graphene oxide sheets, because the protrusions appear to locally enhance the electric field and dramatically increase field emission. Our simple and robust approach provides prospects for the development of practical electron sources and advanced devices based on graphene and graphene oxide field emitters. PMID:22288579

  3. Synthesis of Polydopamine Functionalized Reduced Graphene Oxide-Palladium Nanocomposite for Laccase Based Biosensor.

    PubMed

    Li, Da-Wei; Luo, Lei; Lv, Peng-Fei; Wang, Qing-Qing; Lu, Ke-Yu; Wei, An-Fang; Wei, Qu-Fu

    2016-01-01

    Graphene based 2D nanomaterials have attracted increasing attention in biosensing application due to the outstanding physicochemical properties of graphene. In this work, palladium nanoparticles (Pd) loaded reduced graphene oxide (rGO) hybrid (rGO-Pd) was synthesized through a facile method. Laccase (Lac) was immobilized on rGO-Pd by utilizing the self-polymerization of dopamine, which generated polydopamine (PDA). The PDA-Lac-rGO-Pd nanocomposites were further modified on electrode surface to construct novel biosensing platform. The obtained electrochemical biosensor was applied in the detection of catechol, achieving excellent analytic results. Under the optimum condition, this biosensor possessed a linear range from 0.1 µM to 263 µM for catechol detection, the sensitivity reached 18.4 µA mM(-1), and the detection limit was as low as 0.03 µM. In addition, the biosensor also showed good repeatability, reproducibility, anti-interference, and stability. Moreover, the novel Lac based biosensor was successfully used in the trace detection of catechol existing in real water environment. PMID:27478426

  4. Synthesis of Polydopamine Functionalized Reduced Graphene Oxide-Palladium Nanocomposite for Laccase Based Biosensor

    PubMed Central

    Luo, Lei; Lv, Peng-Fei; Wang, Qing-Qing; Wei, An-Fang

    2016-01-01

    Graphene based 2D nanomaterials have attracted increasing attention in biosensing application due to the outstanding physicochemical properties of graphene. In this work, palladium nanoparticles (Pd) loaded reduced graphene oxide (rGO) hybrid (rGO-Pd) was synthesized through a facile method. Laccase (Lac) was immobilized on rGO-Pd by utilizing the self-polymerization of dopamine, which generated polydopamine (PDA). The PDA-Lac-rGO-Pd nanocomposites were further modified on electrode surface to construct novel biosensing platform. The obtained electrochemical biosensor was applied in the detection of catechol, achieving excellent analytic results. Under the optimum condition, this biosensor possessed a linear range from 0.1 µM to 263 µM for catechol detection, the sensitivity reached 18.4 µA mM−1, and the detection limit was as low as 0.03 µM. In addition, the biosensor also showed good repeatability, reproducibility, anti-interference, and stability. Moreover, the novel Lac based biosensor was successfully used in the trace detection of catechol existing in real water environment. PMID:27478426

  5. Development of graphene oxide materials with controllably modified optical properties

    NASA Astrophysics Data System (ADS)

    Naumov, Anton; Galande, Charudatta; Mohite, Aditya; Ajayan, Pulickel; Weisman, R. Bruce

    2015-03-01

    One of the major current goals in graphene research is modifying its optical and electronic properties through controllable generation of band gaps. To achieve this, we have studied the changes in optical properties of reduced graphene oxide (RGO) in water suspension upon the exposure to ozone. Ozonation for the periods of 5 to 35 minutes has caused a dramatic bleaching of its absorption and the concurrent appearance of strong visible fluorescence in previously nonemissive samples. These observed spectral changes suggest a functionalization-induced band gap opening. The sample fluorescence induced by ozonation was found to be highly pH-dependent: sharp and structured emission features resembling the spectra of molecular fluorophores were present at basic pH values, but this emission reversibly broadened and red-shifted in acidic conditions. These findings are consistent with excited state protonation of the emitting species in acidic media. Oxygen-containing addends resulting from the ozonation were detected by XPS and FTIR spectroscopy and related to optical transitions in localized graphene oxide fluorophores by computational modeling. Further research will be directed toward producing graphene-based optoelectronic devices with tailored and controllable optical properties.

  6. Free-standing flexible graphene oxide paper electrode for rechargeable Li-O2 batteries

    NASA Astrophysics Data System (ADS)

    Cetinkaya, Tugrul; Ozcan, Seyma; Uysal, Mehmet; Guler, Mehmet O.; Akbulut, Hatem

    2014-12-01

    A smooth, free-standing and flexible graphene oxide paper was produced using a vacuum filtration technique. This graphene oxide paper was characterized by scanning electron microscopy, X-ray diffraction and Raman spectroscopy techniques. The charge-discharge characteristics of the graphene oxide paper have been investigated from 1 V to 4.5 V at a constant 0.01 mA cm-2 with an ECC-Air test cell. The electrochemical impedance of the graphene oxide paper has been measured to investigate the difference in the resistance of the cell before and after an electrochemical cycling test. The Li-air cell with a graphene oxide flexible paper cathode exhibited a 612 mAh g-1 discharge capacity and a 555 mAh g-1 charge capacity after 10 cycles. This study demonstrated that graphene oxide paper might be a good alternative cathode material for Li-O2 batteries in the future.

  7. Cytotoxicity of graphene oxide and graphene oxide loaded with doxorubicin on human multiple myeloma cells

    PubMed Central

    Wu, Shaoling; Zhao, Xindong; Cui, Zhongguang; Zhao, Chunting; Wang, Yuzhen; Du, Li; Li, Yanhui

    2014-01-01

    The purpose of this study was to evaluate the cytotoxicity of human multiple myeloma cells (RPMI-8226) treated with graphene oxide (GO), doxorubicin (DOX), and GO loaded with DOX (GO/DOX). Cell viability was determined using the Cell Counting Kit-8 assay and analyzing the cell cycle and cell apoptosis. Cells treated with GO, GO/DOX, and pure DOX for 24 hours showed a decrease in proliferation. GO/DOX significantly inhibited cell proliferation as compared with pure DOX (P<0.01). When the effects of GO were removed, there was no observed difference between GO/DOX and pure DOX (P>0.05). Flow cytometry analysis of untreated and GO-, DOX-, and GO/DOX-treated cells found no significant differences in the G0/G1 phase (P>0.05), while significant differences were observed in the total apoptotic rates (P<0.05). No significant differences existed in the total apoptotic rates of GO-treated and untreated cells (P>0.05). These findings suggest that GO caused low cytotoxicity and did not induce cell apoptosis or change the cell cycle in multiple myeloma cells. Moreover, GO did not affect the antitumor activity of DOX. In conclusion, GO would be suitable as an anticancer drug nanocarrier and used to treat hematological malignancies. PMID:24672235

  8. Ultrasmall gold nanoparticles anchored to graphene and enhanced photothermal effects by laser irradiation of gold nanostructures in graphene oxide solutions.

    PubMed

    Zedan, Abdallah F; Moussa, Sherif; Terner, James; Atkinson, Garrett; El-Shall, M Samy

    2013-01-22

    In this work we demonstrate the coupling of the photothermal effects of gold nanostructures of controlled size and shape with graphene oxide nanosheets dispersed in water. The enhanced photothermal effects can be tuned by controlling the shape and size of the gold nanostructures, which result in a remarkable increase in the heating efficiency of the laser-induced size reduction of gold nanostructures. The Raman spectra of the Au-graphene nanosheets provide direct evidence for the presence of more structural defects in the graphene lattice induced by laser irradiation of graphene oxide nanosheets in the presence of Au nanostructures. The large surface areas of the laser-reduced graphene oxide nanosheets with multiple defect sites and vacancies provide efficient nucleation sites for the ultrasmall gold nanoparticles with diameters of 2-4 nm to be anchored to the graphene surface. This defect filling mechanism decreases the mobility of the ultrasmall gold nanoparticles and, thus, stabilizes the particles against the Ostwald ripening process, which leads to a broad size distribution of the laser-size-reduced gold nanoparticles. The Au nanostructures/graphene oxide solutions and the ultrasmall gold-graphene nanocomposites are proposed as promising materials for photothermal therapy and for the efficient conversion of solar energy into usable heat for a variety of thermal, thermochemical, and thermomechanical applications. PMID:23194145

  9. All-graphene oxide device with tunable supercapacitor and battery behaviour by the working voltage.

    PubMed

    Ogata, Chikako; Kurogi, Ruriko; Hatakeyama, Kazuto; Taniguchi, Takaaki; Koinuma, Michio; Matsumoto, Yasumichi

    2016-03-11

    We propose a new type of all-graphene oxide device. Reduced graphene oxide (rGO)/graphene oxide (GO)/rGO functions as both a supercapacitor and a battery, depending on the working voltage. The rGO/GO/rGO operates as a supercapacitor until 1.2 V. At greater than 1.5 V, it behaves as a battery using redox reaction. PMID:26871961

  10. Complete coverage of reduced graphene oxide on silicon dioxide substrates

    NASA Astrophysics Data System (ADS)

    Huang, Jingfeng; Melanie, Larisika; Chen, Hu; Steve, Faulkner; Myra, A. Nimmo; Christoph, Nowak; Alfred Tok Iing, Yoong

    2014-08-01

    Reduced graphene oxide (RGO) has the advantage of an aqueous and industrial-scale production route. No other approaches can rival the RGO field effect transistor platform in terms of cost (graphene oxide with ethanol, carbon islets are deposited preferentially at the edges of existing flakes. With a 2-h treatment, the standard deviation in electrical resistance of the treated chips can be reduced by 99.95%. Thus this process could enable RGO to be used in practical electronic devices.

  11. Partially reduced graphene oxide as highly efficient DNA nanoprobe.

    PubMed

    Wang, Yan-Hong; Deng, Hao-Hua; Liu, Yin-Huan; Shi, Xiao-Qiong; Liu, Ai-Lin; Peng, Hua-Ping; Hong, Guo-Lin; Chen, Wei

    2016-06-15

    This work investigates the effect of reduction degree on graphene oxide (GO)-DNA interaction and the fluorescence quenching mechanism. Partial reduced graphene oxide (pRGO), which maintains well water-dispersibility, is synthesized using a mild reduction method by incubating GO suspension under alkaline condition at room temperature. The fluorescence quenching enhances with the restoration degree of sp(2) carbon bonds and follows the static quenching mechanism. The binding constant values imply that pRGO has much stronger affinity with ssDNA than GO. Utilizing this highly efficient nanoprobe, a universal sensing strategy is proposed for homogeneous detection of DNA. Compared with the reported GO-based DNA, this present strategy has obvious advantages such as requirement of low nanoprobe dosage, significantly reduced background, fast fluorescence quenching, and improved sensitivity. Even without any amplification process, the limit of detection can reach as low as 50 pM. PMID:26826548

  12. Competition between Kondo and indirect exchange at the edges and bulk of graphene, and 2D materials

    NASA Astrophysics Data System (ADS)

    Allerdt, Andrew; Martins, George; Feiguin, Adrian

    We study the problem of two magnetic impurities at the surface of graphene, BN, MoS2, phosphorene, silicene and germanene using exact numerical methods. We map the band structure of these materials onto one dimensional tight-binding chains in the same spirit as Wilson's numerical renormalization group. We use the density matrix renormalization group to solve the problem exactly, keeping all the information about the underlying lattice. Competition between Kondo and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions is non-trivial, due to strong non-perturbative effects. Depending on the presence of a pseudogap, or gap, we identify an important directionality and position dependence of the correlations. We present scenarios and regimes where impurities prefer to form their own Kondo clouds instead of an RKKY singlet state, or remain as uncoupled local moments. In the particular case of graphene, ferromagnetism is only stable at half-filling. In addition, we study the effects of spin-orbit coupling, and the presence of edge states.

  13. Synthesis, optical and electrochemical properties of ZnO nanowires/graphene oxide heterostructures

    PubMed Central

    2013-01-01

    Large-scale vertically aligned ZnO nanowires with high crystal qualities were fabricated on thin graphene oxide films via a low temperature hydrothermal method. Room temperature photoluminescence results show that the ultraviolet emission of nanowires grown on graphene oxide films was greatly enhanced and the defect-related visible emission was suppressed, which can be attributed to the improved crystal quality and possible electron transfer between ZnO and graphene oxide. Electrochemical property measurement results demonstrated that the ZnO nanowires/graphene oxide have large integral area of cyclic voltammetry loop, indicating that such heterostructure is promising for application in supercapacitors. PMID:23522184

  14. Synthesis, optical and electrochemical properties of ZnO nanowires/graphene oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Zeng, Huidan; Cao, Ying; Xie, Shufan; Yang, Junhe; Tang, Zhihong; Wang, Xianying; Sun, Luyi

    2013-03-01

    Large-scale vertically aligned ZnO nanowires with high crystal qualities were fabricated on thin graphene oxide films via a low temperature hydrothermal method. Room temperature photoluminescence results show that the ultraviolet emission of nanowires grown on graphene oxide films was greatly enhanced and the defect-related visible emission was suppressed, which can be attributed to the improved crystal quality and possible electron transfer between ZnO and graphene oxide. Electrochemical property measurement results demonstrated that the ZnO nanowires/graphene oxide have large integral area of cyclic voltammetry loop, indicating that such heterostructure is promising for application in supercapacitors.

  15. One-step transfer and integration of multifunctionality in CVD graphene by TiO₂/graphene oxide hybrid layer.

    PubMed

    Jeong, Hee Jin; Kim, Ho Young; Jeong, Hyun; Han, Joong Tark; Jeong, Seung Yol; Baeg, Kang-Jun; Jeong, Mun Seok; Lee, Geon-Woong

    2014-05-28

    We present a straightforward method for simultaneously enhancing the electrical conductivity, environmental stability, and photocatalytic properties of graphene films through one-step transfer of CVD graphene and integration by introducing TiO2/graphene oxide layer. A highly durable and flexible TiO2 layer is successfully used as a supporting layer for graphene transfer instead of the commonly used PMMA. Transferred graphene/TiO2 film is directly used for measuring the carrier transport and optoelectronic properties without an extra TiO2 removal and following deposition steps for multifunctional integration into devices because the thin TiO2 layer is optically transparent and electrically semiconducting. Moreover, the TiO2 layer induces charge screening by electrostatically interacting with the residual oxygen moieties on graphene, which are charge scattering centers, resulting in a reduced current hysteresis. Adsorption of water and other chemical molecules onto the graphene surface is also prevented by the passivating TiO2 layer, resulting in the long term environmental stability of the graphene under high temperature and humidity. In addition, the graphene/TiO2 film shows effectively enhanced photocatalytic properties because of the increase in the transport efficiency of the photogenerated electrons due to the decrease in the injection barrier formed at the interface between the F-doped tin oxide and TiO2 layers. PMID:24578338

  16. Playing peekaboo with graphene oxide: a scanning electrochemical microscopy investigation.

    PubMed

    Rapino, Stefania; Treossi, Emanuele; Palermo, Vincenzo; Marcaccio, Massimo; Paolucci, Francesco; Zerbetto, Francesco

    2014-11-01

    Scanning electrochemical microscopy (SECM) can image graphene oxide (GO) flakes on insulating and conducting substrates. The contrast between GO and the substrate is controlled by the electrostatic interactions that are established between the charges of the molecular redox mediator and the charges present in the sheet/substrate. SECM also allows quantitative measurement - at the nano/microscale - of the charge transfer kinetics between single monolayer sheets and agent molecules. PMID:25224581

  17. Nanoscale reduction of graphene oxide thin films and its characterization

    NASA Astrophysics Data System (ADS)

    Lorenzoni, M.; Giugni, A.; Di Fabrizio, E.; Pérez-Murano, Francesc; Mescola, A.; Torre, B.

    2015-07-01

    In this paper, we report on a method to reduce thin films of graphene oxide (GO) to a spatial resolution better than 100 nm over several tens of micrometers by means of an electrochemical scanning probe based lithography. In situ tip-current measurements show that an edged drop in electrical resistance characterizes the reduced areas, and that the reduction process is, to a good approximation, proportional to the applied bias between the onset voltage and the saturation thresholds. An atomic force microscope (AFM) quantifies the drop of the surface height for the reduced profile due to the loss of oxygen. Complementarily, lateral force microscopy reveals a homogeneous friction coefficient of the reduced regions that is remarkably lower than that of native graphene oxide, confirming a chemical change in the patterned region. Micro Raman spectroscopy, which provides access to insights into the chemical process, allows one to quantify the restoration and de-oxidation of the graphitic network driven by the electrochemical reduction and to determine characteristic length scales. It also confirms the homogeneity of the process over wide areas. The results shown were obtained from accurate analysis of the shift, intensity and width of Raman peaks for the main vibrational bands of GO and reduced graphene oxide (rGO) mapped over large areas. Concerning multilayered GO thin films obtained by drop-casting we have demonstrated an unprecedented lateral resolution in ambient conditions as well as an improved control, characterization and understanding of the reduction process occurring in GO randomly folded multilayers, useful for large-scale processing of graphene-based material.

  18. Conjugated polymer/graphene oxide nanocomposite as thermistor

    SciTech Connect

    Joshi, Girish M. Deshmukh, Kalim

    2015-06-24

    We demonstrated the synthesis and measurement of temperature dependent electrical resistivity of graphene oxide (GO) reinforced poly (3, 4 - ethylenedioxythiophene) - tetramethacrylate (PEDOTTMA)/Polymethylmethacrylate (PMMA) based nanocomposites. Negative temperature coefficient (NTC) was observed for 0.5, 1 % GO loading and the positive temperature coefficient (PTC) was observed for 1.5 and 2 % Go loading in the temperature (40 to 120 °C). The GO inducted nanocomposite perform as an excellent thermistor and suitable for electronic and sensor domain.

  19. Bismuth oxide nanotubes-graphene fiber-based flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Gopalsamy, Karthikeyan; Xu, Zhen; Zheng, Bingna; Huang, Tieqi; Kou, Liang; Zhao, Xiaoli; Gao, Chao

    2014-07-01

    Graphene-bismuth oxide nanotube fiber as electrode material for constituting flexible supercapacitors using a PVA/H3PO4 gel electrolyte is reported with a high specific capacitance (Ca) of 69.3 mF cm-2 (for a single electrode) and 17.3 mF cm-2 (for the whole device) at 0.1 mA cm-2, respectively. Our approach opens the door to metal oxide-graphene hybrid fibers and high-performance flexible electronics.Graphene-bismuth oxide nanotube fiber as electrode material for constituting flexible supercapacitors using a PVA/H3PO4 gel electrolyte is reported with a high specific capacitance (Ca) of 69.3 mF cm-2 (for a single electrode) and 17.3 mF cm-2 (for the whole device) at 0.1 mA cm-2, respectively. Our approach opens the door to metal oxide-graphene hybrid fibers and high-performance flexible electronics. Electronic supplementary information (ESI) available: Equations and characterization. SEM images of GGO, XRD and XPS of Bi2O3 NTs, HRTEM images and EDX Spectra of Bi2O3 NT5-GF, CV curves of Bi2O3NT5-GF, Bi2O3 NTs and bismuth nitrate in three-electrode system (vs. Ag/AgCl). CV and GCD curves of Bi2O3 NT1-GF and Bi2O3 NT3-GF. See DOI: 10.1039/c4nr02615b

  20. Conjugated polymer/graphene oxide nanocomposite as thermistor

    NASA Astrophysics Data System (ADS)

    Joshi, Girish M.; Deshmukh, Kalim

    2015-06-01

    We demonstrated the synthesis and measurement of temperature dependent electrical resistivity of graphene oxide (GO) reinforced poly (3, 4 - ethylenedioxythiophene) - tetramethacrylate (PEDOTTMA)/Polymethylmethacrylate (PMMA) based nanocomposites. Negative temperature coefficient (NTC) was observed for 0.5, 1 % GO loading and the positive temperature coefficient (PTC) was observed for 1.5 and 2 % Go loading in the temperature (40 to 120 °C). The GO inducted nanocomposite perform as an excellent thermistor and suitable for electronic and sensor domain.

  1. Formation of tunable graphene oxide coating with high adhesion.

    PubMed

    Lin, Liangxu; Wu, Huaping; Green, Stephen J; Crompton, Joanna; Zhang, Shaowei; Horsell, David W

    2016-02-10

    Graphene oxide (GO) can be applied as a coating on metals, but few of these coatings have an adhesion suitable for practical applications. We demonstrate here how to form a GO coating on metals with a high adhesion (∼10.6 MPa) and tuneable surface, which can be further applied using similar/modified techniques for special applications (e.g. anti-corrosion and anti-biofouling). PMID:26814138

  2. Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite

    PubMed Central

    Chang, Betty Yea Sze; Huang, Nay Ming; An’amt, Mohd Nor; Marlinda, Abdul Rahman; Norazriena, Yusoff; Muhamad, Muhamad Rasat; Harrison, Ian; Lim, Hong Ngee; Chia, Chin Hua

    2012-01-01

    A simple single-stage approach, based on the hydrothermal technique, has been introduced to synthesize reduced graphene oxide/titanium dioxide nanocomposites. The titanium dioxide nanoparticles are formed at the same time as the graphene oxide is reduced to graphene. The triethanolamine used in the process has two roles. It acts as a reducing agent for the graphene oxide as well as a capping agent, allowing the formation of titanium dioxide nanoparticles with a narrow size distribution (~20 nm). Transmission electron micrographs show that the nanoparticles are uniformly distributed on the reduced graphene oxide nanosheet. Thermogravimetric analysis shows the nanocomposites have an enhanced thermal stability over the original components. The potential applications for this technology were demonstrated by the use of a reduced graphene oxide/titanium dioxide nanocomposite-modified glassy carbon electrode, which enhanced the electrochemical performance compared to a conventional glassy carbon electrode when interacting with mercury(II) ions in potassium chloride electrolyte. PMID:22848166

  3. Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: A review

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Li, Xifei; Yan, Bo; Li, Dejun; Lawes, Stephen; Sun, Xueliang

    2015-01-01

    Sn-based materials have attracted much attention as anodes in lithium ion batteries (LIBs) due to their low cost, high theoretical capacities, and high energy density. However, their practical applications are limited by the poor cyclability originating from the huge volume changes. Graphene nanosheets (GNSs), a novel two-dimensional carbon sheet with one atom thickness and one of the thinnest materials, significantly address the challenges of Sn-based anodes as excellent buffering materials, showing great research interests in LIBs. In this review, various nanocomposites of GNSs/Sn-based anodes are summarized in detail, including binary and ternary composites. The significant impact of 2D GNSs on the volume change of Sn-based anodes during cycling is discussed, along with with their preparation methods, properties and enhanced LIB performance.

  4. Controlled synthesis and comparison of NiCo2S4/graphene/2D TMD ternary nanocomposites for high-performance supercapacitors.

    PubMed

    Shen, Jianfeng; Dong, Pei; Baines, Robert; Xu, Xiaowei; Zhang, Zhuqing; Ajayan, Pulickel M; Ye, Mingxin

    2016-07-28

    Novel ternary electrode materials based on graphene, NiCo2S4, and transition metal dichalcogenides (TMDs) were designed and fabricated with the intention of exploiting synergistic effects conducive to supercapacitive energy storage. Compared to NiCo2S4-g-MoSe2, the NiCo2S4-g-MoS2 electrode exhibited higher specific capacitance, enhanced rate capability (1002 F g(-1) even at 5 A g(-1), 6.01 F cm(-2) at a current density of 25 mA cm(-2)) and cycling stability (94.8% retention of its original capacity after cycling 4000 times). The mechanism was proposed and this pioneering work will be helpful in making judicious choices of which 2D materials to be selected for supercapacitor applications in the future. PMID:27353837

  5. From graphene oxide to pristine graphene: revealing the inner workings of the full structural restoration.

    PubMed

    Rozada, Rubén; Paredes, Juan I; López, María J; Villar-Rodil, Silvia; Cabria, Iván; Alonso, Julio A; Martínez-Alonso, Amelia; Tascón, Juan M D

    2015-02-14

    High temperature annealing is the only method known to date that allows the complete repair of a defective lattice of graphenes derived from graphite oxide, but most of the relevant aspects of such restoration processes are poorly understood. Here, we investigate both experimentally (scanning probe microscopy) and theoretically (molecular dynamics simulations) the thermal evolution of individual graphene oxide sheets, which is rationalized on the basis of the generation and the dynamics of atomic vacancies in the carbon lattice. For unreduced and mildly reduced graphene oxide sheets, the amount of generated vacancies was so large that they disintegrated at 1773-2073 K. By contrast, highly reduced sheets survived annealing and their structure could be completely restored at 2073 K. For the latter, a minor atomic-sized defect with six-fold symmetry was observed and ascribed to a stable cluster of nitrogen dopants. The thermal behavior of the sheets was significantly altered when they were supported on a vacancy-decorated graphite substrate, as well as for the overlapped/stacked sheets. In these cases, a net transfer of carbon atoms between neighboring sheets via atomic vacancies takes place, affording an additional healing process. Direct evidence of sheet coalescence with the step edge of the graphite substrate was also gathered from experiments and theory. PMID:25563664

  6. Evidence of nanocrystalline semiconducting graphene monoxide during thermal reduction of graphene oxide in vacuum.

    PubMed

    Mattson, Eric C; Pu, Haihui; Cui, Shumao; Schofield, Marvin A; Rhim, Sonny; Lu, Ganhua; Nasse, Michael J; Ruoff, Rodney S; Weinert, Michael; Gajdardziska-Josifovska, Marija; Chen, Junhong; Hirschmugl, Carol J

    2011-12-27

    As silicon-based electronics are reaching the nanosize limits of the semiconductor roadmap, carbon-based nanoelectronics has become a rapidly growing field, with great interest in tuning the properties of carbon-based materials. Chemical functionalization is a proposed route, but syntheses of graphene oxide (G-O) produce disordered, nonstoichiometric materials with poor electronic properties. We report synthesis of an ordered, stoichiometric, solid-state carbon oxide that has never been observed in nature and coexists with graphene. Formation of this material, graphene monoxide (GMO), is achieved by annealing multilayered G-O. Our results indicate that the resulting thermally reduced G-O (TRG-O) consists of a two-dimensional nanocrystalline phase segregation: unoxidized graphitic regions are separated from highly oxidized regions of GMO. GMO has a quasi-hexagonal unit cell, an unusually high 1:1 O:C ratio, and a calculated direct band gap of ∼0.9 eV. PMID:22098501

  7. From graphene oxide to pristine graphene: revealing the inner workings of the full structural restoration

    NASA Astrophysics Data System (ADS)

    Rozada, Rubén; Paredes, Juan I.; López, María J.; Villar-Rodil, Silvia; Cabria, Iván; Alonso, Julio A.; Martínez-Alonso, Amelia; Tascón, Juan M. D.

    2015-01-01

    High temperature annealing is the only method known to date that allows the complete repair of a defective lattice of graphenes derived from graphite oxide, but most of the relevant aspects of such restoration processes are poorly understood. Here, we investigate both experimentally (scanning probe microscopy) and theoretically (molecular dynamics simulations) the thermal evolution of individual graphene oxide sheets, which is rationalized on the basis of the generation and the dynamics of atomic vacancies in the carbon lattice. For unreduced and mildly reduced graphene oxide sheets, the amount of generated vacancies was so large that they disintegrated at 1773-2073 K. By contrast, highly reduced sheets survived annealing and their structure could be completely restored at 2073 K. For the latter, a minor atomic-sized defect with six-fold symmetry was observed and ascribed to a stable cluster of nitrogen dopants. The thermal behavior of the sheets was significantly altered when they were supported on a vacancy-decorated graphite substrate, as well as for the overlapped/stacked sheets. In these cases, a net transfer of carbon atoms between neighboring sheets via atomic vacancies takes place, affording an additional healing process. Direct evidence of sheet coalescence with the step edge of the graphite substrate was also gathered from experiments and theory.

  8. Magnetically controllable Pickering emulsion prepared by a reduced graphene oxide-iron oxide composite.

    PubMed

    Lin, Kun-Yi Andrew; Yang, Hongta; Petit, Camille; Lee, Wei-der

    2015-01-15

    Pickering emulsions stabilized by graphene oxide (GO) have attracted much attention owing to the unique 2-D structure and amphiphilic surface properties of GO. On the other hand, investigations on reduced GO (RGO) to prepare Pickering emulsions are still limited, especially for water-in-oil (W/O) emulsions. Considering growing interests for directing Pickering emulsions to a specific location, it is necessary to embed Pickering emulsions with responsiveness upon external driving forces such as magnetic fields. To that end, we developed magnetically responsive RGO (denoted as "MRGO") and used MRGO to prepare W/O Pickering emulsions. MRGO was synthesized by decorating iron oxide nanoparticles on the surface of RGO and characterized by SEM, EDS, TEM, FT-IR, Raman, XRD and SQUID. MRGO Pickering emulsion (MRGO-PE) was prepared by suspending MRGO sheets in dodecane and mixing with water vigorously. The amount of MRGO added to prepare MRGO-PE is related to the size distribution of the droplets of MRGO-PE and the relationship can be well-described using a mass balance model. The motion of droplets of MRGO-PE under an external magnetic field is demonstrated. We also investigated the adsorptive property of MRGO-PE by evaluating the removal of Nile Red dye from dodecane. The results shows that the dye removal by MRGO-PE is not just achieved by MRGO layer of MRGO-PE but also by water encapsulated by MRGO. Owing to their magnetic property, MRGO-PE can be utilized as a magnetically-controlled carrier which can preserve and transport to specific locations certain compounds. PMID:25454454

  9. Are vacuum-filtrated reduced graphene oxide membranes symmetric?

    NASA Astrophysics Data System (ADS)

    Tang, Bo; Zhang, Lianbin; Li, Renyuan; Wu, Jinbo; Hedhili, Mohamed Neijib; Wang, Peng

    2015-12-01

    Graphene or reduced graphene oxide (rGO) membrane-based materials are promising for many advanced applications due to their exceptional properties. One of the most widely used synthesis methods for rGO membranes is vacuum filtration of graphene oxide (GO) on a filter membrane, followed by reduction, which shows great advantages such as operational convenience and good controllability. Despite vacuum-filtrated rGO membranes being widely used in many applications, a fundamental question is overlooked: are the top and bottom surfaces of the membranes formed at the interfaces with air and with the filter membrane respectively symmetric or asymmetric? This work, for the first time, reports the asymmetry of the vacuum-filtrated rGO membranes and discloses the filter membranes' physical imprint on the bottom surface of the rGO membrane, which takes place when the filter membrane surface pores have similar dimension to GO sheets. This result points out that the asymmetric surface properties should be cautiously taken into consideration while designing the surface-related applications for GO and rGO membranes.Graphene or reduced graphene oxide (rGO) membrane-based materials are promising for many advanced applications due to their exceptional properties. One of the most widely used synthesis methods for rGO membranes is vacuum filtration of graphene oxide (GO) on a filter membrane, followed by reduction, which shows great advantages such as operational convenience and good controllability. Despite vacuum-filtrated rGO membranes being widely used in many applications, a fundamental question is overlooked: are the top and bottom surfaces of the membranes formed at the interfaces with air and with the filter membrane respectively symmetric or asymmetric? This work, for the first time, reports the asymmetry of the vacuum-filtrated rGO membranes and discloses the filter membranes' physical imprint on the bottom surface of the rGO membrane, which takes place when the filter

  10. A new method for manufacturing graphene and electrochemical characteristic of graphene-supported Pt nanoparticles in methanol oxidation

    NASA Astrophysics Data System (ADS)

    Kakaei, Karim; Zhiani, Mohammad

    2013-03-01

    We report a Pt/graphene catalyst for the methanol oxidation. Graphene is synthesized from graphite electrodes using ionic liquid-assisted electrochemical exfoliation. Graphene-supported Pt electrocatalyst is then reduced by sodium borohydride with ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) as a stabilizing agent to prepare highly dispersed Pt nanoparticles on carbon graphene to use as methanol oxidation in direct methanol fuel cell (DMFC) catalysts. X-ray diffractometer and scanning electron microscopy technique are used to investigate the crystallite size and the surface morphologies respectively. The electrochemical characteristics of the Pt/graphene and commercial Pt/C catalysts are investigated by cyclic voltammetry (CV) in nitrogen saturated sulfuric acid aqueous solutions and in mixed sulfuric acid and methanol aqueous solutions. The catalytic activities of the Pt/graphene and Pt/C electrodes for methanol oxidation is 1315 A g-1 Pt and 725 A g-1 Pt, which can be revealed the particular properties of the exfoliated graphene supports. Furthermore, Pt/graphene exhibited a better sensitivity, signal-to-noise ratio, and stability than commercial Pt/C.

  11. Chemical bonding and stability of multilayer graphene oxide layers

    NASA Astrophysics Data System (ADS)

    Gong, Cheng; Kim, Suenne; Zhou, Si; Hu, Yike; Acik, Muge; de Heer, Walt; Berger, Claire; Bongiorno, Angelo; Riedo, Eliso; Chabal, Yves

    2014-03-01

    The chemistry of graphene oxide (GO) and its response to external stimuli such as temperature and light are not well understood and only approximately controlled. This understanding is however crucial to enable future applications of the material that typically are subject to environmental conditions. The nature of the initial GO is also highly dependent on the preparation and the form of the initial carbon material. Here, we consider both standard GO made from oxidizing graphite and layered GO made from oxidizing epitaxial graphene on SiC, and examine their evolution under different stimuli. The effect of the solvent on the thermal evolution of standard GO in vacuum is first investigated. In situ infrared absorption measurements clearly show that the nature of the last solvent in contact with GO prior to deposition on a substrate for vacuum annealing studies substantially affect the chemical evolution of the material as GO is reduced. Second, the stability of GO derived from epitaxial graphene (on SiC) is examined as a function of time. We show that hydrogen, in the form of CH, is present after the Hummers process, and that hydrogen favors the reduction of epoxide groups and the formation of water molecules. Importantly, this transformation can take place at room temperature, albeit slowly (~ one month). Finally, the chemical interaction (e.g. bonding) between GO layers in multilayer samples is examined with diffraction (XRD) methods, spectroscopic (IR, XPS, Raman) techniques, imaging (APF) and first principles modeling.

  12. Single step radiolytic synthesis of iridium nanoparticles onto graphene oxide

    NASA Astrophysics Data System (ADS)

    Rojas, J. V.; Molina Higgins, M. C.; Toro Gonzalez, M.; Castano, C. E.

    2015-12-01

    In this work a new approach to synthesize iridium nanoparticles on reduced graphene oxide is presented. The nanoparticles were directly deposited and grown on the surface of the carbon-based support using a single step reduction method through gamma irradiation. In this process, an aqueous isopropanol solution containing the iridium precursor, graphene oxide, and sodium dodecyl sulfate was initially prepared and sonicated thoroughly to obtain a homogeneous dispersion. The samples were irradiated with gamma rays with energies of 1.17 and 1.33 MeV emitted from the spontaneous decay of the 60Co irradiator. The interaction of gamma rays with water in the presence of isopropanol generates highly reducing species homogeneously distributed in the solution that can reduce the Ir precursor down to a zero valence state. An absorbed dose of 60 kGy was used, which according to the yield of reducing species is sufficient to reduce the total amount of precursor present in the solution. This novel approach leads to the formation of 2.3 ± 0.5 nm Ir nanoparticles distributed along the surface of the support. The oxygenated functionalities of graphene oxide served as nucleation sites for the formation of Ir nuclei and their subsequent growth. XPS results revealed that the interaction of Ir with the support occurs through Irsbnd O bonds.

  13. Density functional theory modeling of multilayer "epitaxial" graphene oxide.

    PubMed

    Zhou, Si; Bongiorno, Angelo

    2014-11-18

    CONSPECTUS: Graphene oxide (GO) is a complex material of both fundamental and applied interest. Elucidating the structure of GO is crucial to achieve control over its properties and technological applications. GO is a nonstoichiometric and hygroscopic material with a lamellar structure, and its physical chemical properties depend critically on synthesis procedures and postsynthesis treatments. Numerous efforts are in place to both understand and exploit this versatile layered carbon material. This Account reports on recent density functional theory (DFT) studies of "epitaxial" graphene oxide (hereafter EGO), a type of GO obtained by oxidation of graphene films grown epitaxially on silicon carbide. Here, we rely on selected X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR), and X-ray diffraction (XRD) measurements of EGO, and we discuss in great detail how we utilized DFT-based techniques to project out from the experimental data basic atomistic information about the chemistry and structure of these films. This Account provides an example as to how DFT modeling can be used to elucidate complex materials such as GO from a limited set of experimental information. EGO exhibits a uniform layered structure, consisting of a stack of graphene planes hosting predominantly epoxide and hydroxyl groups, and water molecules intercalated between the oxidized carbon layers. Here, we first focus on XPS measurements of EGO, and we use DFT to generate realistic model structures, calculate core-level chemical shifts, and through the comparison with experiment, gain insight on the chemical composition and metastability characteristics of EGO. DFT calculations are then used to devise a simplistic but accurate simulation scheme to study thermodynamic and kinetic stability and to predict the intralayer structure of EGO films aged at room temperature. Our simulations show that aged EGO encompasses layers with nanosized oxidized domains presenting a high concentration of

  14. Multi-scale Model of Residual Strength of 2D Plain Weave C/SiC Composites in Oxidation Atmosphere

    NASA Astrophysics Data System (ADS)

    Chen, Xihui; Sun, Zhigang; Sun, Jianfen; Song, Yingdong

    2016-06-01

    Multi-scale models play an important role in capturing the nonlinear response of woven carbon fiber reinforced ceramic matrix composites. In plain weave carbon fiber/silicon carbon (C/SiC) composites, the carbon fibers and interphases will be oxidized at elevated temperature and the strength of the composite will be degraded when oxygen enters micro-cracks formed in the as-produced parts due to the mismatch in thermal properties between constituents. As a result of the oxidation on fiber surface, fiber shows a notch-like morphology. In this paper, the change rule of fiber notch depth is fitted by circular function. And a multi-scale model based upon the change rule of fiber notch depth is developed to simulate the residual strength and post-oxidation stress-strain curves of the composite. The multi-scale model is able to accurately predict the residual strength and post-oxidation stress-strain curves of the composite. Besides, the simulated residual strength and post-oxidation stress-strain curves of 2D plain weave C/SiC composites in oxidation atmosphere show good agreements with experimental results. Furthermore, the oxidation time and temperature of the composite are investigated to show their influences upon the residual strength and post-oxidation stress-strain curves of plain weave C/SiC composites.

  15. In situ X-ray powder diffraction studies of the synthesis of graphene oxide and formation of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Storm, Mie Møller; Johnsen, Rune E.; Norby, Poul

    2016-08-01

    Graphene oxide (GO) and reduced graphene oxide (rGO) are important materials in a wide range of fields. The modified Hummers methods, for synthesizing GO, and subsequent thermal reduction to rGO, are often employed for production of rGO. However, the mechanism behinds these syntheses methods are still unclear. We present an in situ X-ray diffraction study of the synthesis of GO and thermal reduction of GO. The X-ray diffraction revealed that the Hummers method includes an intercalation state and finally formation of additional crystalline material. The formation of GO is observed during both the intercalation and the crystallization stage. During thermal reduction of GO three stages were observed: GO, a disordered stage, and the rGO stage. The appearance of these stages depends on the heating ramp. The aim of this study is to provide deeper insight into the chemical and physical processes during the syntheses.

  16. Efficient Direct Reduction of Graphene Oxide by Silicon Substrate

    PubMed Central

    Chan Lee, Su; Some, Surajit; Wook Kim, Sung; Jun Kim, Sun; Seo, Jungmok; Lee, Jooho; Lee, Taeyoon; Ahn, Jong-Hyun; Choi, Heon-Jin; Chan Jun, Seong

    2015-01-01

    Graphene has been studied for various applications due to its excellent properties. Graphene film fabrication from solutions of graphene oxide (GO) have attracted considerable attention because these procedures are suitable for mass production. GO, however, is an insulator, and therefore a reduction process is required to make the GO film conductive. These reduction procedures require chemical reducing agents or high temperature annealing. Herein, we report a novel direct and simple reduction procedure of GO by silicon, which is the most widely used material in the electronics industry. In this study, we also used silicon nanosheets (SiNSs) as reducing agents for GO. The reducing effect of silicon was confirmed by various characterization methods. Furthermore, the silicon wafer was also used as a reducing template to create a reduced GO (rGO) film on a silicon substrate. By this process, a pure rGO film can be formed without the impurities that normally come from chemical reducing agents. This is an easy and environmentally friendly method to prepare large scale graphene films on Si substrates. PMID:26194107

  17. Efficient Direct Reduction of Graphene Oxide by Silicon Substrate.

    PubMed

    Lee, Su Chan; Some, Surajit; Kim, Sung Wook; Kim, Sun Jun; Seo, Jungmok; Lee, Jooho; Lee, Taeyoon; Ahn, Jong-Hyun; Choi, Heon-Jin; Jun, Seong Chan

    2015-01-01

    Graphene has been studied for various applications due to its excellent properties. Graphene film fabrication from solutions of graphene oxide (GO) have attracted considerable attention because these procedures are suitable for mass production. GO, however, is an insulator, and therefore a reduction process is required to make the GO film conductive. These reduction procedures require chemical reducing agents or high temperature annealing. Herein, we report a novel direct and simple reduction procedure of GO by silicon, which is the most widely used material in the electronics industry. In this study, we also used silicon nanosheets (SiNSs) as reducing agents for GO. The reducing effect of silicon was confirmed by various characterization methods. Furthermore, the silicon wafer was also used as a reducing template to create a reduced GO (rGO) film on a silicon substrate. By this process, a pure rGO film can be formed without the impurities that normally come from chemical reducing agents. This is an easy and environmentally friendly method to prepare large scale graphene films on Si substrates. PMID:26194107

  18. Enhanced Osteogenesis by Reduced Graphene Oxide/Hydroxyapatite Nanocomposites

    PubMed Central

    Lee, Jong Ho; Shin, Yong Cheol; Lee, Sang-Min; Jin, Oh Seong; Kang, Seok Hee; Hong, Suck Won; Jeong, Chang-Mo; Huh, Jung Bo; Han, Dong-Wook

    2015-01-01

    Recently, graphene-based nanomaterials, in the form of two dimensional substrates or three dimensional foams, have attracted considerable attention as bioactive scaffolds to promote the differentiation of various stem cells towards specific lineages. On the other hand, the potential advantages of using graphene-based hybrid composites directly as factors inducing cellular differentiation as well as tissue regeneration are unclear. This study examined whether nanocomposites of reduced graphene oxide (rGO) and hydroxyapatite (HAp) (rGO/HAp NCs) could enhance the osteogenesis of MC3T3-E1 preosteoblasts and promote new bone formation. When combined with HAp, rGO synergistically promoted the spontaneous osteodifferentiation of MC3T3-E1 cells without hindering their proliferation. This enhanced osteogenesis was corroborated from determination of alkaline phosphatase activity as early stage markers of osteodifferentiation and mineralization of calcium and phosphate as late stage markers. Immunoblot analysis showed that rGO/HAp NCs increase the expression levels of osteopontin and osteocalcin significantly. Furthermore, rGO/HAp grafts were found to significantly enhance new bone formation in full-thickness calvarial defects without inflammatory responses. These results suggest that rGO/HAp NCs can be exploited to craft a range of strategies for the development of novel dental and orthopedic bone grafts to accelerate bone regeneration because these graphene-based composite materials have potentials to stimulate osteogenesis. PMID:26685901

  19. Influence of pH condition on colloidal suspension of exfoliated graphene oxide by electrostatic repulsion

    SciTech Connect

    Meng, Long-Yue; Park, Soo-Jin

    2012-02-15

    A facile chemical process is described to produce graphene oxide utilizing a zwitterions amino acid intermediate from graphite oxide sheets. 11-aminoundecanoic acid molecules were protonated to intercalate molecules into the graphite oxide sheets to achieve ion exchange, and the carboxyl groups were then ionized in a NaOH solution to exfoliate the graphite oxide sheets. In this way, the produced graphene oxide nanosheets were stably dispersed in water. The delaminated graphene nanosheets were confirmed by XRD, AFM, and TEM. XRD patterns indicated the d{sub 002}-spacing of the graphite greatly increased from 0.380 nm and 0.870 nm. AFM and TEM images showed that the ordered graphite crystal structure of graphene nanosheets was effectively exfoliated by this method. The prepared graphene nanosheets films showed 87.1% transmittance and a sheet resistance of 2.1 Multiplication-Sign 10{sup 3} {Omega}/square. - Graphical abstract: A stable graphene oxide suspension could be quickly prepared by exfoliating a graphite oxide suspension by a host-guest electrostatic repulsion in aqueous solution. Highlights: Black-Right-Pointing-Pointer Graphene nanosheets were prepared by a zwitterions amino acid intermediate from graphite oxide. Black-Right-Pointing-Pointer 11-aminoundecanoic acid was protonated to intercalate molecules into the graphene oxide to achieve ion exchange. Black-Right-Pointing-Pointer The d{sub 002}-spacing of the graphite oxide greatly increased from 0.330 nm to 0.415 nm after 11-aminoundecanoic acid treatment.

  20. Manganese ion-assisted assembly of superparamagnetic graphene oxide microbowls

    SciTech Connect

    Tian, Zhengshan; Xu, Chunxiang Li, Jitao; Zhu, Gangyi; Xu, Xiaoyong; Dai, Jun; Shi, Zengliang; Lin, Yi

    2014-03-24

    A facile manganese ion Mn(II)-assisted assembly has been designed to fabricate microbowls by using graphene oxide nanosheets as basic building blocks, which were exfoliated ultrasonically from the oxidized soot powders in deionized water. From the morphology evolution observations of transmission electron microscope and scanning electron microscope, a coordinating-tiling-collapsing manner is proposed to interpret the assembly mechanism based on attractive Van der Waals forces, π-π stacking, and capillary action. It is interesting to note that the as-prepared microbowls present a room temperature superparamagnetic behavior.

  1. Oscillatory behavior of the surface reduction process of multilayer graphene oxide at room temperature

    NASA Astrophysics Data System (ADS)

    Voylov, Dmitry; Ivanov, Ilia; Bykov, Valerii; Tsybenova, Svetlana; Merkulov, Igor; Kurochkin, Sergei; Holt, Adam; Kisliuk, Alexandr

    The graphene oxide (GO) is one of 2D materials which continues to be studied intensively since it is thought can be used as a precursor of graphene. Recently, it was found that the chemical composition of multilayer GO is metastable on the time scale of one month even at room temperature. The observed changes in chemical composition were attributed to a reduction process controlled by the in-plane diffusion of functional groups which progresses through radical reactions. Here we report the observation of oscillatory oxidation-reduction (redox) reactions on the surface of multilayer GO films at room temperature. The redox reactions exhibited dampened oscillatory behavior with a period of about 5 days and found to be dependent on the time elapsed from GO deposition. The kinetic behavior of the processes and observed metastability of the surface functional groups are adequately described by two models involving reactions between functional groups of GO and reactant diffusion. US team acknowledges partial financial support from the Division of Materials Science and Engineering, U.S. Department of Energy, Office of Basic Energy Sciences.

  2. Investigation of humidity-dependent size control of local anodic oxidation on graphene by using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ko, Seoknam; Lee, Seong jun; Son, Maengho; Ahn, Doyeol; Lee, Seung-Woong

    2015-02-01

    We demonstrate nanoscale local anodic oxidation (LAO) patterning on few-layer graphene by using an atomic force microscope (AFM) at room temperature under a normal atmosphere. We focus on the humidity dependency of nanoscale oxidation of graphene. The relations between the oxidation size and the setting values of the AFM, such as the set point, tip speed, and the humidity, are observed. By changing these values, proper parameters were found to produce features with on-demand size. This technique provides an easy way for graphene oxide lithography without any chemical resists. We obtained oxidation sizes down to 50 nm with a 6-nm-high oxide barrier line by using a 0.1- μm/s tip scanning speed. We also obtained micrometer-sized symbols on a graphene flake. We attribute the bumps of oxidized graphene in the graphene layer to local anodic oxidation on graphenes surface and to an incorporation of oxygen ions into the graphene lattice.

  3. Direct growth of flower-like manganese oxide on reduced graphene oxide towards efficient oxygen reduction reaction.

    PubMed

    Zhang, Jintao; Guo, Chunxian; Zhang, Lianying; Li, Chang Ming

    2013-07-18

    Three-dimensional manganese oxide is directly grown on reduced graphene oxide (RGO) sheets, exhibiting comparable catalytic activity, higher selectivity and better stability towards oxygen reduction reaction than those of the commercial Pt/XC-72 catalyst. PMID:23745182

  4. Facile hydrothermal preparation of niobium pentaoxide decorated reduced graphene oxide nanocomposites for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Murugan, M.; Kumar, R. Mohan; Alsalme, Ali; Alghamdi, Abdulaziz; Jayavel, R.

    2016-04-01

    Facile synthesis of graphene-Nb2O5 composite has been reported. Graphene oxide was prepared by the modified Hummer's method. The metal oxide (Nb2O5) was introduced to the graphene to form the composite by the hydrothermal method. The prepared samples were characterized by X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, Fourier transform infrared (FTIR) and thermo gravimetric analysis (TGA). SEM and TEM results revealed that the metal oxide particles are uniformly dispersed on the surface of thin sheets of well-defined multilayered graphene structure. Thermal stability of the graphene metal oxide nanocomposites was also investigated. The CV measurements reveal a significant enhancement in the specific capacitance reaching 321 Fg-1 at a scan rate of 10 mV s-1. With promising electrochemical characteristics, Nb2O5 decorated graphene nanocomposite are explored as potential electrode material for supercapacitor applications.

  5. Observation of complete space-charge-limited transport in metal-oxide-graphene heterostructure

    SciTech Connect

    Chen, Wei; Wang, Fei; Fang, Jingyue; Wang, Guang; Qin, Shiqiao; Zhang, Xue-Ao E-mail: xazhang@nudt.edu.cn; Wang, Chaocheng; Wang, Li E-mail: xazhang@nudt.edu.cn

    2015-01-12

    The metal-oxide-graphene heterostructures have abundant physical connotations. As one of the most important physical properties, the electric transport property of the gold-chromium oxide-graphene heterostructure has been studied. The experimental measurement shows that the conductive mechanism is dominated by the space-charge-limited transport, a kind of bulk transport of an insulator with charge traps. Combining the theoretical analysis, some key parameters such as the carrier mobility and trap energy also are obtained. The study of the characteristics of the metal-oxide-graphene heterostructures is helpful to investigate the graphene-based electronic and photoelectric devices.

  6. Determination of the lateral dimension of graphene oxide nanosheets using analytical ultracentrifugation.

    PubMed

    Walter, Johannes; Nacken, Thomas J; Damm, Cornelia; Thajudeen, Thaseem; Eigler, Siegfried; Peukert, Wolfgang

    2015-02-18

    In this paper, a method to determine the lateral dimensions of 2D nanosheets directly in suspension by analytical ultracentrifugation (AUC) is shown. The basis for this study is a well-characterized and stable dispersion of graphene oxide (GO) monolayers in water. A methodology is developed to correlate the sedimentation coefficient distribution measured by AUC with the lateral size distribution of the 2D GO nanosheets obtained from atomic force microscopy (AFM). A very high accuracy can be obtained by virtue of counting several thousand sheets, thereby minimizing any coating effects or statistical uncertainties. The AFM statistics are further used to fit the lateral size distribution obtained from the AUC to determine the unknown hydrodynamic sheet thickness or density. It is found that AUC can derive nanosheet diameter distributions with a relative error of the mean sheet diameter of just 0.25% as compared to the AFM analysis for 90 mass% of the particles in the distribution. The standard deviation of the size-dependent error for the total distribution is found to be 3.25%. Based on these considerations, an expression is given to calculate the cut size of 2D nanosheets in preparative centrifugation experiments. PMID:25201557

  7. Nano-Graphene Oxide for Cellular Imaging and Drug Delivery

    PubMed Central

    Sun, Xiaoming; Liu, Zhuang; Welsher, Kevin; Robinson, Joshua Tucker; Goodwin, Andrew; Zaric, Sasa

    2010-01-01

    Two-dimensional graphene offers interesting electronic, thermal, and mechanical properties that are currently being explored for advanced electronics, membranes, and composites. Here we synthesize and explore the biological applications of nano-graphene oxide (NGO), i.e., single-layer graphene oxide sheets down to a few nanometers in lateral width. We develop functionalization chemistry in order to impart solubility and compatibility of NGO in biological environments. We obtain size separated pegylated NGO sheets that are soluble in buffers and serum without agglomeration. The NGO sheets are found to be photoluminescent in the visible and infrared regions. The intrinsic photoluminescence (PL) of NGO is used for live cell imaging in the near-infrared (NIR) with little background. We found that simple physisorption via π-stacking can be used for loading doxorubicin, a widely used cancer drug onto NGO functionalized with antibody for selective killing of cancer cells in vitro. Owing to its small size, intrinsic optical properties, large specific surface area, low cost, and useful non-covalent interactions with aromatic drug molecules, NGO is a promising new material for biological and medical applications. PMID:20216934

  8. Writable electrochemical energy source based on graphene oxide

    PubMed Central

    Wei, Di

    2015-01-01

    Graphene oxide (GO) was mainly used as raw material for various types of reduced graphene oxide (rGO) as a cost effective method to make graphene like materials. However, applications of its own unique properties such as extraordinary proton conductivity and super-permeability to water were overlooked. Here GO based battery-like planar energy source was demonstrated on arbitrary insulating substrate (e.g. polymer sheet/paper) by coating PEDOT, GO ink and rGO on Ag charge collectors. Energy from such GO battery depends on its length and one unit cell with length of 0.5 cm can generate energy capacity of 30 Ah/L with voltage up to 0.7 V when room temperature ionic liquid (RTIL) is added. With power density up to 0.4 W/cm3 and energy density of 4 Wh/L, GO battery was demonstrated to drive an electrochromic device. This work is the first attempt to generate decent energy using the fast transported water molecules inside GO. It provides very safe energy source that enables new applications otherwise traditional battery technology can not make including building a foldable energy source on paper and platform for futuristic wearable electronics. A disposable energy source made of GO was also written on a plastic glove to demonstrate wearability. PMID:26462557

  9. Writable electrochemical energy source based on graphene oxide.

    PubMed

    Wei, Di

    2015-01-01

    Graphene oxide (GO) was mainly used as raw material for various types of reduced graphene oxide (rGO) as a cost effective method to make graphene like materials. However, applications of its own unique properties such as extraordinary proton conductivity and super-permeability to water were overlooked. Here GO based battery-like planar energy source was demonstrated on arbitrary insulating substrate (e.g. polymer sheet/paper) by coating PEDOT, GO ink and rGO on Ag charge collectors. Energy from such GO battery depends on its length and one unit cell with length of 0.5 cm can generate energy capacity of 30 Ah/L with voltage up to 0.7 V when room temperature ionic liquid (RTIL) is added. With power density up to 0.4 W/cm(3) and energy density of 4 Wh/L, GO battery was demonstrated to drive an electrochromic device. This work is the first attempt to generate decent energy using the fast transported water molecules inside GO. It provides very safe energy source that enables new applications otherwise traditional battery technology can not make including building a foldable energy source on paper and platform for futuristic wearable electronics. A disposable energy source made of GO was also written on a plastic glove to demonstrate wearability. PMID:26462557

  10. Are vacuum-filtrated reduced graphene oxide membranes symmetric?

    PubMed

    Tang, Bo; Zhang, Lianbin; Li, Renyuan; Wu, Jinbo; Hedhili, Mohamed Neijib; Wang, Peng

    2016-01-14

    Graphene or reduced graphene oxide (rGO) membrane-based materials are promising for many advanced applications due to their exceptional properties. One of the most widely used synthesis methods for rGO membranes is vacuum filtration of graphene oxide (GO) on a filter membrane, followed by reduction, which shows great advantages such as operational convenience and good controllability. Despite vacuum-filtrated rGO membranes being widely used in many applications, a fundamental question is overlooked: are the top and bottom surfaces of the membranes formed at the interfaces with air and with the filter membrane respectively symmetric or asymmetric? This work, for the first time, reports the asymmetry of the vacuum-filtrated rGO membranes and discloses the filter membranes' physical imprint on the bottom surface of the rGO membrane, which takes place when the filter membrane surface pores have similar dimension to GO sheets. This result points out that the asymmetric surface properties should be cautiously taken into consideration while designing the surface-related applications for GO and rGO membranes. PMID:26667828

  11. Sorption Properties of Halogen Containing Graphene Oxide Frameworks

    NASA Astrophysics Data System (ADS)

    Burress, Jacob; Baker, Elizabeth; Bethea, Donald; Frangos, Katherine

    Physisorption of gases has applications in gas storage (e.g. methane, hydrogen for vehicles) and gas separation (carbon dioxide from flue gas). The van der Waals force in narrow pores is strong enough to condense even supercritical gases to much higher densities. Additionally, differences in the binding energy between different gases and the sorbent surface are sufficient to for gas separations. Beyond adsorption interactions, simple steric (size, shape) effects also play a role in gas separations. One class of materials currently being investigated for numerous gas storage/separation applications is graphene oxide frameworks (GOFs). GOFs consist of layers of graphene/graphene oxide separated by chemical linkers covalently bonded on both sides. This presentation will give results from boronic acid-based GOFs that contain halogen group elements. Effects of different linkers on pore shape will be presented. Physical behavior of the gases investigated (hydrogen, methane, carbon dioxide, nitrogen), including binding energies and steric effects for gas separation will also be presented. The physics mechanism behind pore breathing (expansion and contraction of pore volume) in these materials will be discussed.

  12. Potential disruption of protein-protein interactions by graphene oxide.

    PubMed

    Feng, Mei; Kang, Hongsuk; Yang, Zaixing; Luan, Binquan; Zhou, Ruhong

    2016-06-14

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications. PMID:27306022

  13. Writable electrochemical energy source based on graphene oxide

    NASA Astrophysics Data System (ADS)

    Wei, Di

    2015-10-01

    Graphene oxide (GO) was mainly used as raw material for various types of reduced graphene oxide (rGO) as a cost effective method to make graphene like materials. However, applications of its own unique properties such as extraordinary proton conductivity and super-permeability to water were overlooked. Here GO based battery-like planar energy source was demonstrated on arbitrary insulating substrate (e.g. polymer sheet/paper) by coating PEDOT, GO ink and rGO on Ag charge collectors. Energy from such GO battery depends on its length and one unit cell with length of 0.5 cm can generate energy capacity of 30 Ah/L with voltage up to 0.7 V when room temperature ionic liquid (RTIL) is added. With power density up to 0.4 W/cm3 and energy density of 4 Wh/L, GO battery was demonstrated to drive an electrochromic device. This work is the first attempt to generate decent energy using the fast transported water molecules inside GO. It provides very safe energy source that enables new applications otherwise traditional battery technology can not make including building a foldable energy source on paper and platform for futuristic wearable electronics. A disposable energy source made of GO was also written on a plastic glove to demonstrate wearability.

  14. Potential disruption of protein-protein interactions by graphene oxide

    NASA Astrophysics Data System (ADS)

    Feng, Mei; Kang, Hongsuk; Yang, Zaixing; Luan, Binquan; Zhou, Ruhong

    2016-06-01

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

  15. Composite System of Graphene Oxide and Polypeptide Thermogel As an Injectable 3D Scaffold for Adipogenic Differentiation of Tonsil-Derived Mesenchymal Stem Cells.

    PubMed

    Patel, Madhumita; Moon, Hyo Jung; Ko, Du Young; Jeong, Byeongmoon

    2016-03-01

    As two-dimensional (2D) nanomaterials, graphene (G) and graphene oxide (GO) have evolved into new platforms for biomedical research as biosensors, imaging agents, and drug delivery carriers. In particular, the unique surface properties of GO can be an important tool in modulating cellular behavior and various biological sequences. Here, we report that a composite system of graphene oxide/polypeptide thermogel (GO/P), prepared by temperature-sensitive sol-to-gel transition of a GO-suspended poly(ethylene glycol)-poly(l-alanine) (PEG-PA) aqueous solution significantly enhances the expression of adipogenic biomarkers, including PPAR-γ, CEBP-α, LPL, AP2, ELOVL3, and HSL, compared to both a pure hydrogel system and a composite system of G/P, graphene-incorporated hydrogel. We prove that insulin, an adipogenic differentiation factor, preferentially adhered to GO, is supplied to the incorporated stem cells in a sustained manner over the three-dimensional (3D) cell culture period. On the other hand, insulin is partially denatured in the presence of G and interferes with the adipogenic differentiation of the stem cells. The study suggests that a 2D/3D composite system is a promising platform as a 3D cell culture matrix, where the surface properties of 2D materials in modulating the fates of the stem cells are effectively transcribed in a 3D culture system. PMID:26844684

  16. Gold nanoparticle decorated graphene oxide/silica composite stationary phase for high-performance liquid chromatography.

    PubMed

    Liang, Xiaojing; Wang, Xusheng; Ren, Haixia; Jiang, Shengxiang; Wang, Licheng; Liu, Shujuan

    2014-06-01

    In the initial phase of this study, graphene oxide (GO)/silica was fabricated by assembling GO onto the silica particles, and then gold nanoparticles (GNPs) were used to modify the GO/silica to prepare a novel stationary phase for high-performance liquid chromatography. The new stationary phase could be used in both reversed-phase chromatography and hydrophilic interaction liquid chromatography modes. Good separations of alkylbenzenes, isomerides, amino acids, nucleosides, and nucleobases were achieved in both modes. Compared with the GO/silica phase and GNPs/silica phase, it is found that except for hydrophilicity, large π-electron systems, hydrophobicity, and coordination functions, this new stationary phase also exhibited special separation performance due to the combination of 2D GO with zero-dimensional GNPs. PMID:24723561

  17. Micrometer-Thick Graphene Oxide-Layered Double Hydroxide Nacre-Inspired Coatings and Their Properties.

    PubMed

    Yan, You-Xian; Yao, Hong-Bin; Mao, Li-Bo; Asiri, Abdullah M; Alamry, Khalid A; Marwani, Hadi M; Yu, Shu-Hong

    2016-02-10

    Robust, functional, and flame retardant coatings are attractive in various fields such as building construction, food packaging, electronics encapsulation, and so on. Here, strong, colorful, and fire-retardant micrometer-thick hybrid coatings are reported, which can be constructed via an enhanced layer-by-layer assembly of graphene oxide (GO) nanosheets and layered double hydroxide (LDH) nanoplatelets. The fabricated GO-LDH hybrid coatings show uniform nacre-like layered structures that endow them good mechanic properties with Young's modulus of ≈ 18 GPa and hardness of ≈ 0.68 GPa. In addition, the GO-LDH hybrid coatings exhibit nacre-like iridescence and attractive flame retardancy as well due to their well-defined 2D microstructures. This kind of nacre-inspired GO-LDH hybrid thick coatings will be applied in various fields in future due to their high strength and multifunctionalities. PMID:26682698

  18. Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors.

    PubMed

    Kumar, Nanjundan Ashok; Choi, Hyun-Jung; Shin, Yeon Ran; Chang, Dong Wook; Dai, Liming; Baek, Jong-Beom

    2012-02-28

    An alternative and effective route to prepare conducting polyaniline-grafted reduced graphene oxide (PANi-g-rGO) composite with highly enhanced properties is reported. In order to prepare PANi-g-rGO, amine-protected 4-aminophenol was initially grafted to graphite oxide (GO) via acyl chemistry where a concomitant partial reduction of GO occurred due to the refluxing and exposure of GO to thionyl chloride vapors and heating. Following the deprotection of amine groups, an in situ chemical oxidative grafting of aniline in the presence of an oxidizing agent was carried out to yield highly conducting PANi-g-rGO. Electron microscopic studies demonstrated that the resultant composite has fibrillar morphology with a room-temperature electrical conductivity as high as 8.66 S/cm and capacitance of 250 F/g with good cycling stability. PMID:22276770

  19. Fabrication and Characterization of Graphene/Graphene Oxide-Based Poly(vinyl alcohol) Nanocomposite Membranes

    NASA Astrophysics Data System (ADS)

    Hieu, Nguyen Huu; Long, Nguyen Huynh Bach Son; Kieu, Dang Thi Minh; Nhiem, Ly Tan

    2016-05-01

    Graphene (GE)- or graphene oxide (GO)-based poly(vinyl alcohol) (PVA) nanocomposite membranes have been prepared by the solution blending method. Raman spectra and atomic force microscopy images confirmed that GE and GO were synthesized with average thickness of 0.901 nm and 0.997 nm, respectively. X-ray diffraction patterns indicated good exfoliation of GE or GO in the PVA matrix. Fourier-transform infrared spectra revealed the chemical fractions of the nanocomposite membranes. Differential scanning calorimetry results proved that the thermal stability of the nanocomposite membranes was enhanced compared with neat PVA membrane. Transmission electron microscopy images revealed good dispersion of GE or GO sheets in the PVA matrix with thickness in the range of 19 nm to 39 nm. As a result, good compatibility between GE or GO and PVA was obtained at 0.5 wt.% filler content.

  20. Electrical and mechanical properties of graphene oxide on flexible substrate

    NASA Astrophysics Data System (ADS)

    Kang, Shao-Hui; Fang, Te-Hua; Hong, Zheng-Han

    2013-12-01

    Graphene oxide (GO) was deposited via the electrophoretic deposition (EPD) method to lower the oxygen concentration of graphene sheets for large-scale production. In addition, the direct synthesis of large-scale GO films using transfer processes on a polydimethylsiloxane (PDMS) substrate was conducted. The thickness of the GO films was controlled to adjust the optical, electrical, and mechanical properties. The Young's modulus values of films with thicknesses of 100-200 nm were 324-529 GPa. Moreover, the GO films exhibited excellent conductivity, with a sheet resistance of 276-2024 Ω/sq at 23-77% transparency. Experiments show that transfer processes for flexible substrates can produce high-quality cost-effective transparent conductive films.

  1. Synthesis and Electro-Catalytic Properties of Platinum Supported on Graphene for Methanol Oxidation.

    PubMed

    Karthika, P; Rajalakshmi, N; Dhathathreyan, K S; Arivuoli, D

    2015-12-01

    Graphene serves as excellent support material in the synthesis of metal nanoparticle-graphene electrocatalysts. Highly active and stable Pt/Graphene electrocatalysts for the application of direct methanol fuel cells were developed. The oxygen/carbon ratio of graphene supports were tuned by various chemical methods. Pt nanoparticles with a narrow distribution of particle sizes were well dispersed on graphene. An increased catalytic activity and stability were achieved due to an increased graphitization degree of graphene when the Pt/Graphene was deoxidized during Ar/H2 reduction. The activity of Pt/Graphene towards methanol oxidation reaction and its stability was higher compared to Pt/Carbon. This study suggests a bi-functional effect of both graphitization and the oxygenated groups on the catalytic activity. PMID:26682407

  2. Graphene oxide monolayers as atomically thin seeding layers for atomic layer deposition of metal oxides

    NASA Astrophysics Data System (ADS)

    Nourbakhsh, Amirhasan; Adelmann, Christoph; Song, Yi; Lee, Chang Seung; Asselberghs, Inge; Huyghebaert, Cedric; Brizzi, Simone; Tallarida, Massimo; Schmeißer, Dieter; van Elshocht, Sven; Heyns, Marc; Kong, Jing; Palacios, Tomás; de Gendt, Stefan

    2015-06-01

    Graphene oxide (GO) was explored as an atomically-thin transferable seed layer for the atomic layer deposition (ALD) of dielectric materials on any substrate of choice. This approach does not require specific chemical groups on the target surface to initiate ALD. This establishes GO as a unique interface which enables the growth of dielectric materials on a wide range of substrate materials and opens up numerous prospects for applications. In this work, a mild oxygen plasma treatment was used to oxidize graphene monolayers with well-controlled and tunable density of epoxide functional groups. This was confirmed by synchrotron-radiation photoelectron spectroscopy. In addition, density functional theory calculations were carried out on representative epoxidized graphene monolayer models to correlate the capacitive properties of GO with its electronic structure. Capacitance-voltage measurements showed that the capacitive behavior of Al2O3/GO depends on the oxidation level of GO. Finally, GO was successfully used as an ALD seed layer for the deposition of Al2O3 on chemically inert single layer graphene, resulting in high performance top-gated field-effect transistors.Graphene oxide (GO) was explored as an atomically-thin transferable seed layer for the atomic layer deposition (ALD) of dielectric materials on any substrate of choice. This approach does not require specific chemical groups on the target surface to initiate ALD. This establishes GO as a unique interface which enables the growth of dielectric materials on a wide range of substrate materials and opens up numerous prospects for applications. In this work, a mild oxygen plasma treatment was used to oxidize graphene monolayers with well-controlled and tunable density of epoxide functional groups. This was confirmed by synchrotron-radiation photoelectron spectroscopy. In addition, density functional theory calculations were carried out on representative epoxidized graphene monolayer models to correlate the

  3. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle

    2015-03-01

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4.7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures.

  4. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature

    PubMed Central

    Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle

    2015-01-01

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4·7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures. PMID:25788158

  5. Ultrasound assisted synthesis of Sn nanoparticles-stabilized reduced graphene oxide nanodiscs.

    PubMed

    Anandan, Sambandam; Asiri, Abdullah M; Ashokkumar, Muthupandian

    2014-05-01

    Sn nanoparticles-stabilized reduced graphene oxide (RGO) nanodiscs were synthesized by a sonochemical method using SnCl2 and graphene oxide (GO) nanosheets as precursors in a polyol medium. TEM and XPS were used to characterize the Sn-stabilized RGO nanodiscs. PMID:24262757

  6. A 3D scaffold for ultra-sensitive reduced graphene oxide gas sensors.

    PubMed

    Yun, Yong Ju; Hong, Won G; Choi, Nak-Jin; Park, Hyung Ju; Moon, Seung Eon; Kim, Byung Hoon; Song, Ki-Bong; Jun, Yongseok; Lee, Hyung-Kun

    2014-06-21

    An ultra-sensitive gas sensor based on a reduced graphene oxide nanofiber mat was successfully fabricated using a combination of an electrospinning method and graphene oxide wrapping through an electrostatic self-assembly, followed by a low-temperature chemical reduction. The sensor showed excellent sensitivity to NO2 gas. PMID:24839129

  7. Graphene oxide nanoribbon as hole extraction layer to enhance efficiency and stability of polymer solar cells.

    PubMed

    Liu, Jun; Kim, Gi-Hwan; Xue, Yuhua; Kim, Jin Young; Baek, Jong-Beom; Durstock, Michael; Dai, Liming

    2014-02-01

    Graphene oxide nanoribbons for efficient and stable polymer solar cells are discussed. With controllable bandgap, good solubility and film forming property, graphene oxide nanoribbons serve as a new class of excellent hole extraction materials for efficient and stable polymer solar cells outperforming their counterparts based on conventional hole extraction materials, including PEDOT:PSS. PMID:24167012

  8. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2015-04-28

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  9. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2014-09-16

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  10. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2013-10-22

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  11. Aligned poly(ε-caprolactone)/graphene oxide and reduced graphene oxide nanocomposite nanofibers: Morphological, mechanical and structural properties.

    PubMed

    Ramazani, Soghra; Karimi, Mohammad

    2015-11-01

    A number of studies have demonstrated that the mechanical properties of electrospun polymeric nanofibrous scaffolds are enhanced with the incorporation of graphene and its derivatives, thus developing their applications in hard tissue engineering. However, our understanding of the relationship between the microstructure and properties of these fibrous scaffolds and how they are influenced by graphene oxide (GO) and reduced graphene oxide (RGO) loading is much more limited. Thus, in this paper, poly(ε-caprolactone) (PCL)/GO and RGO nanocomposite nanofibers containing 0, 0.1, 0.5 and 1wt.% GO and RGO were prepared using an electrospinning technique. With the addition of 0.1wt.% of GO and RGO nanosheets in PCL, the tensile strength of PCL scaffolds increased over ~160 and 304% respectively and elastic modulus increased over 103 and 163% due to the good dispersion of the nanosheets and their interaction with the molecular chains of PCL. These were supported by the parallel increase in relaxation time and molecular orientation of PCL chains at the presence of nanosheets with a loading of 0.1wt.%. The enhancement effect of the nanosheets was weakened with an increase in GO and RGO loading up to 1wt.% in which it is connected to a partial exfoliation of the nanosheets. PMID:26249597

  12. Interactions of Graphene Oxide Nanomaterials with Natural Organic Matter and Metal Oxide Surfaces

    EPA Science Inventory

    Interactions of graphene oxide (GO) with silica surfaces were investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Both GO deposition and release were monitored on silica- and poly-l-lysine (PLL) coated surfaces as a function of GO concentration a...

  13. Scattering strength of the scatterer inducing variability in graphene on silicon oxide

    NASA Astrophysics Data System (ADS)

    Katoch, Jyoti; Le, Duy; Singh, Simranjeet; Rao, Rahul; Rahman, Talat S.; Ishigami, Masa

    2016-03-01

    Large variability of carrier mobility of graphene-based field effect transistors hampers graphene science and technology. We show that the number of the scatterer responsible for the observed variability on graphene devices on silicon oxide can be determined by finding the number of hydrogen that can be chemisorbed on graphene. We use the relationship between the number of the scatterer and the mobility of graphene devices to determine that the variability-inducing scatterer possesses scattering strength 10 times smaller than that of adsorbed potassium atoms and 50 times smaller than that of ion-beam induced vacancies. Our results provide an important, quantitative input towards determining the origin of the variability.

  14. Influence of pH condition on colloidal suspension of exfoliated graphene oxide by electrostatic repulsion

    NASA Astrophysics Data System (ADS)

    Meng, Long-Yue; Park, Soo-Jin

    2012-02-01

    A facile chemical process is described to produce graphene oxide utilizing a zwitterions amino acid intermediate from graphite oxide sheets. 11-aminoundecanoic acid molecules were protonated to intercalate molecules into the graphite oxide sheets to achieve ion exchange, and the carboxyl groups were then ionized in a NaOH solution to exfoliate the graphite oxide sheets. In this way, the produced graphene oxide nanosheets were stably dispersed in water. The delaminated graphene nanosheets were confirmed by XRD, AFM, and TEM. XRD patterns indicated the d002-spacing of the graphite greatly increased from 0.380 nm and 0.870 nm. AFM and TEM images showed that the ordered graphite crystal structure of graphene nanosheets was effectively exfoliated by this method. The prepared graphene nanosheets films showed 87.1% transmittance and a sheet resistance of 2.1×103 Ω/square.

  15. A facile approach to prepare graphene via solvothermal reduction of graphite oxide

    SciTech Connect

    Yuan, Bihe; Bao, Chenlu; Qian, Xiaodong; Wen, Panyue; Xing, Weiyi; Song, Lei; Hu, Yuan

    2014-07-01

    Highlights: • Graphene was prepared via a novel and facile solvothermal reduction method for graphite oxide. • Most of the oxygen functional groups of graphite oxide were removed. • The reduced graphene oxide obtained was featured with bilayer nanosheets. - Abstract: In this work, a facile reduction strategy is reported for the fabrication of graphene. Graphite oxide (GO) is reduced via a novel solvothermal reaction in a mixed solution of acetone and sodium hypochlorite (NaClO). The structure, surface chemistry, morphology and thermal stability of the as-prepared reduced graphene oxide (RGO) are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The results indicate that most of the oxygenated groups in GO are effectively removed in this solvothermal reaction. The novel reduction method provides a simple, cost-effective and efficient strategy for the fabrication of graphene.

  16. Metal Oxide Growth, Characterization and Spin Precession Measurements in CVD Graphene

    NASA Astrophysics Data System (ADS)

    Matsubayashi, Akitomo; Nolting, Westly; Sinha, Dhiraj Prasad; Jayanthinarasimham, Avyaya; Lee, Ji Ung; Labella, Vincent

    2014-03-01

    Thin metal oxide layers deposited on graphene can be utilized as dielectric barriers between metals and graphene to help isolate a metal contact from the graphene channel. This is important for graphene based spintronic devices as dielectric layers between the ferromagnetic electrode and graphene have been shown to increase the spin relaxation time measured utilizing non-local detection and spin precession measurements by avoiding the conductivity mismatch problem. However, simply depositing metal oxide layers such as aluminum oxide on graphene results in non-uniform film lowering the quality of the interface barrier. We will present a systematic study of aluminum oxide layers grown on CVD (chemical vapor deposition) graphene under ultra-high vacuum conditions with and without titanium seed layers. The aluminum oxide layers with the 0.2 nm titanium seed layers showed reduced surface roughness. The chemical and structural composition determined by XPS (X-ray photoelectron spectroscopy) will be also presented that shows full oxidation of the aluminum and partial oxidation of the titanium. The results on the I-V and spin precession measurements in CVD graphene will be also presented.

  17. New Insights into the Diels-Alder Reaction of Graphene Oxide.

    PubMed

    Brisebois, Patrick P; Kuss, Christian; Schougaard, Steen B; Izquierdo, Ricardo; Siaj, Mohamed

    2016-04-18

    Graphene oxide is regarded as a major precursor for graphene-based materials. The development of graphene oxide based derivatives with new functionalities requires a thorough understanding of its chemical reactivity, especially for canonical synthetic methods such as the Diels-Alder cycloaddition. The Diels-Alder reaction has been successfully extended with graphene oxide as a source of diene by using maleic anhydride as a dienophile, thereby outlining the presence of the cis diene present in the graphene oxide framework. This reaction provides fundamental information for understanding the exact structure and chemical nature of graphene oxide. On the basis of high-resolution (13) C-SS NMR spectra, we show evidence for the formation of new sp(3) carbon centers covalently bonded to graphene oxide following hydrolysis of the reaction product. DFT calculations are also used to show that the presence of a cis dihydroxyl and C vacancy on the surface of graphene oxide are promoting the reaction with significant negative reaction enthalpies. PMID:26953926

  18. Chitosan-Iron Oxide Coated Graphene Oxide Nanocomposite Hydrogel: A Robust and Soft Antimicrobial Biofilm.

    PubMed

    Konwar, Achyut; Kalita, Sanjeeb; Kotoky, Jibon; Chowdhury, Devasish

    2016-08-17

    We report a robust biofilm with antimicrobial properties fabricated from chitosan-iron oxide coated graphene oxide nanocomposite hydrogel. For the first time, the coprecipitation method was used for the successful synthesis of iron oxide coated graphene oxide (GIO) nanomaterial. After this, films were fabricated by the gel-casting technique aided by the self-healing ability of the chitosan hydrogel network system. Both the nanomaterial and the nanocomposite films were characterized by techniques such as scanning electron microscopy, FT-IR spectroscopy, X-ray diffraction, and vibrating sample magnetometry. Measurements of the thermodynamic stability and mechanical properties of the films indictaed a significant improvement in their thermal and mechanical properties. Moreover, the stress-strain profile indicated the tough nature of the nanocomposite hydrogel films. These improvements, therefore, indicated an effective interaction and good compatibility of the GIO nanomaterial with the chitosan hydrogel matrix. In addition, it was also possible to fabricate films with tunable surface properties such as hydrophobicity simply by varying the loading percentage of GIO nanomaterial in the hydrogel matrix. Fascinatingly, the chitosan-iron oxide coated graphene oxide nanocomposite hydrogel films displayed significant antimicrobial activities against both Gram-positive and Gram-negative bacterial strains, such as methicillin-resistant Staphylococcus aureus, Staphylococcus aureus, and Escherichia coli, and also against the opportunistic dermatophyte Candida albicans. The antimicrobial activities of the films were tested by agar diffusion assay and antimicrobial testing based on direct contact. A comparison of the antimicrobial activity of the chitosan-GIO nanocomposite hydrogel films with those of individual chitosan-graphene oxide and chitosan-iron oxide nanocomposite films demonstrated a higher antimicrobial activity for the former in both types of tests. In vitro hemolysis

  19. Oxide 2D electron gases as a route for high carrier densities on (001) Si

    SciTech Connect

    Kornblum, Lior; Jin, Eric N.; Kumah, Divine P.; Walker, Fred J.; Ernst, Alexis T.; Broadbridge, Christine C.; Ahn, Charles H.

    2015-05-18

    Two dimensional electron gases (2DEGs) formed at the interfaces of oxide heterostructures draw considerable interest owing to their unique physics and potential applications. Growing such heterostructures on conventional semiconductors has the potential to integrate their functionality with semiconductor device technology. We demonstrate 2DEGs on a conventional semiconductor by growing GdTiO{sub 3}-SrTiO{sub 3} on silicon. Structural analysis confirms the epitaxial growth of heterostructures with abrupt interfaces and a high degree of crystallinity. Transport measurements show the conduction to be an interface effect, ∼9 × 10{sup 13} cm{sup −2} electrons per interface. Good agreement is demonstrated between the electronic behavior of structures grown on Si and on an oxide substrate, validating the robustness of this approach to bridge between lab-scale samples to a scalable, technologically relevant materials system.

  20. Thermal Transport in Graphene Oxide – From Ballistic Extreme to Amorphous Limit

    PubMed Central

    Mu, Xin; Wu, Xufei; Zhang, Teng; Go, David B.; Luo, Tengfei

    2014-01-01

    Graphene oxide is being used in energy, optical, electronic and sensor devices due to its unique properties. However, unlike its counterpart – graphene – the thermal transport properties of graphene oxide remain unknown. In this work, we use large-scale molecular dynamics simulations with reactive potentials to systematically study the role of oxygen adatoms on the thermal transport in graphene oxide. For pristine graphene, highly ballistic thermal transport is observed. As the oxygen coverage increases, the thermal conductivity is significantly reduced. An oxygen coverage of 5% can reduce the graphene thermal conductivity by ~90% and a coverage of 20% lower it to ~8.8 W/mK. This value is even lower than the calculated amorphous limit (~11.6 W/mK for graphene), which is usually regarded as the minimal possible thermal conductivity of a solid. Analyses show that the large reduction in thermal conductivity is due to the significantly enhanced phonon scattering induced by the oxygen defects which introduce dramatic structural deformations. These results provide important insight to the thermal transport physics in graphene oxide and offer valuable information for the design of graphene oxide-based materials and devices. PMID:24468660

  1. Hierarchical networks of redox-active reduced crumpled graphene oxide and functionalized few-walled carbon nanotubes for rapid electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Lee, Byeongyong; Lee, Chongmin; Liu, Tianyuan; Eom, Kwangsup; Chen, Zhongming; Noda, Suguru; Fuller, Thomas F.; Jang, Hee Dong; Lee, Seung Woo

    2016-06-01

    Crumpled graphene is known to have a strong aggregation-resistive property due to its unique 3D morphology, providing a promising solution to prevent the restacking issue of graphene based electrode materials. Here, we demonstrate the utilization of redox-active oxygen functional groups on the partially reduced crumpled graphene oxide (r-CGO) for electrochemical energy storage applications. To effectively utilize the surface redox reactions of the functional groups, hierarchical networks of electrodes including r-CGO and functionalized few-walled carbon nanotubes (f-FWNTs) are assembled via a vacuum-filtration process, resulting in a 3D porous structure. These composite electrodes are employed as positive electrodes in Li-cells, delivering high gravimetric capacities of up to ~170 mA h g-1 with significantly enhanced rate-capability compared to the electrodes consisting of conventional 2D reduced graphene oxide and f-FWNTs. These results highlight the importance of microstructure design coupled with oxygen chemistry control, to maximize the surface redox reactions on functionalized graphene based electrodes.Crumpled graphene is known to have a strong aggregation-resistive property due to its unique 3D morphology, providing a promising solution to prevent the restacking issue of graphene based electrode materials. Here, we demonstrate the utilization of redox-active oxygen functional groups on the partially reduced crumpled graphene oxide (r-CGO) for electrochemical energy storage applications. To effectively utilize the surface redox reactions of the functional groups, hierarchical networks of electrodes including r-CGO and functionalized few-walled carbon nanotubes (f-FWNTs) are assembled via a vacuum-filtration process, resulting in a 3D porous structure. These composite electrodes are employed as positive electrodes in Li-cells, delivering high gravimetric capacities of up to ~170 mA h g-1 with significantly enhanced rate-capability compared to the electrodes

  2. Graphene Oxide-Assisted Liquid Phase Exfoliation of Graphite into Graphene for Highly Conductive Film and Electromechanical Sensors.

    PubMed

    Tung, Tran Thanh; Yoo, Jeongha; Alotaibi, Faisal K; Nine, Md J; Karunagaran, Ramesh; Krebsz, Melinda; Nguyen, Giang T; Tran, Diana N H; Feller, Jean-Francois; Losic, Dusan

    2016-06-29

    Here, we report a new method to prepare graphene from graphite by the liquid phase exfoliation process with sonication using graphene oxide (GO) as a dispersant. It was found that GO nanosheets act a as surfactant to the mediated exfoliation of graphite into a GO-adsorbed graphene complex in the aqueous solution, from which graphene was separated by an additional process. The preparation of isolated graphene from a single to a few layers is routinely achieved with an exfoliation yield of up to higher than 40% from the initial graphite material. The prepared graphene sheets showed a high quality (C/O ∼ 21.5), low defect (ID/IG ∼ 0.12), and high conductivity (6.2 × 10(4) S/m). Moreover, the large lateral size ranging from 5 to 10 μm of graphene, which is believed to be due to the shielding effect of GO avoiding damage under ultrasonic jets and cavitation formed by the sonication process. The thin graphene film prepared by the spray-coating technique showed a sheet resistance of 668 Ω/sq with a transmittance of 80% at 550 nm after annealing at 350 °C for 3 h. The transparent electrode was even greater with the resistance only 66.02 Ω when graphene is deposited on an interdigitated electrode (1 mm gap). Finally, a flexible sensor based on a graphene spray-coating polydimethylsiloxane (PDMS) is demonstrated showing excellent performance working under human touch pressure (<10 kPa). The graphene prepared by this method has some distinct properties showing it as a promising material for applications in electronics including thin film coatings, transparent electrodes, wearable electronics, human monitoring sensors, and RFID tags. PMID:27268515

  3. Endoperoxides Revealed as Origin of the Toxicity of Graphene Oxide.

    PubMed

    Pieper, Hanna; Chercheja, Serghei; Eigler, Siegfried; Halbig, Christian E; Filipovic, Milos R; Mokhir, Andriy

    2016-01-01

    Potential biomedicinal applications of graphene oxide (GO), for example, as a carrier of biomolecules or a reagent for photothermal therapy and biosensing, are limited by its cytotoxicity and mutagenicity. It is believed that these properties are at least partially caused by GO-induced oxidative stress in cells. However, it is not known which chemical fragments of GO are responsible for this unfavorable effect. We generated four GOs containing variable redox-active groups on the surface, including Mn(2+), C-centered radicals, and endoperoxides (EPs). A comparison of the abilities of these materials to generate reactive oxygen species in human cervical cancer cells revealed that EPs play a crucial role in GO-induced oxidative stress. These data could be applied to the rational design of biocompatible nontoxic GOs for biomedical applications. PMID:26549205

  4. Modified Graphene Oxide for Long Cycle Sodium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Shareef, Muhamed; Gunn, Harrison; Voigt, Victoria; Singh, Gurpreet

    Hummer's process was modified to produce gram levels of 2-dimensional nanosheets of graphene oxide (GO) with varying degree of exfoliation and chemical functionalization. This was achieved by varying the weight ratios and reaction times of oxidizing agents used in the process. Based on Raman and Fourier transform infra red spectroscopy we show that potassium permanganate (KMnO4) is the key oxidizing agent while sodium nitrate (NaNO3) and sulfuric acid (H2SO4) play minor role during the exfoliation of graphite. Tested as working electrode in sodium-ion half-cell, the GO nanosheets produced using this optimized approach showed high rate capability and exceptionally high energy density of ~500 mAh/g for up to at least 100 cycles, which is among the highest reported for sodium/graphite electrodes. The average Coulombic efficiency was approximately 99 %. NSF Grant No. 1454151.

  5. Capture of atmospheric CO2 into (BiO)2CO3/graphene or graphene oxide nanocomposites with enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Zhang, Wendong; Dong, Fan; Zhang, Wei

    2015-12-01

    Self-assembly of (BiO)2CO3 nanoflakes on graphene (Ge) and graphene oxide (GO) nanosheets, as an effective strategy to improve the photocatalytic performance of two-dimensional (2D) nanostructured materials, were realized by a one-pot efficient capture of atmospheric CO2 at room temperature. The as-synthesized samples were characterized by XRD, SEM, TEM, XPS, UV-vis DRS, Time-resolved ns-level PL and BET-BJH measurement. The photocatalytic activity of the obtained samples was evaluated by the removal of NO at the indoor air level under simulated solar-light irradiation. Compared with pure (BiO)2CO3, (BiO)2CO3/Ge and (BiO)2CO3/GO nanocomposites exhibited enhanced photocatalytic activity due to their large surface areas and pore volume, and efficient charge separation and transfer. The present work could provide a simple method to construct 2D nanocomposites by efficient utilization of CO2 in green synthetic strategy.

  6. Microbial reduction of graphene oxide by Escherichia coli: a green chemistry approach.

    PubMed

    Gurunathan, Sangiliyandi; Han, Jae Woong; Eppakayala, Vasuki; Kim, Jin-Hoi

    2013-02-01

    Graphene and graphene related materials are an important area of research in recent years due to their unique properties. The extensive industrial application of graphene and related compounds has led researchers to devise novel and simple methods for the synthesis of high quality graphene. In this paper, we developed an environment friendly, cost effective, simple method and green approaches for the reduction of graphene oxide (GO) using Escherichia coli biomass. In biological method, we can avoid use of toxic and environmentally harmful reducing agents commonly used in the chemical reduction of GO to obtain graphene. The biomass of E. coli reduces exfoliated GO to graphene at 37°C in an aqueous medium. The E. coli reduced graphene oxide (ERGO) was characterized with UV-visible absorption spectroscopy, particle analyzer, high resolution X-ray diffractometer, scanning electron microscopy and Raman spectroscopy. Besides the reduction potential, the biomass could also play an important role as stabilizing agent, in which synthesized graphene exhibited good stability in water. This method can open up the new avenue for preparing graphene in cost effective and large scale production. Our findings suggest that GO can be reduced by simple eco-friendly method by using E. coli biomass to produce water dispersible graphene. PMID:23107955

  7. Gas Sensitivity Study of Polypyrrole Decorated Graphene Oxide Thick Film

    NASA Astrophysics Data System (ADS)

    Patil, Pritam; Gaikwad, Ganesh; Patil, Devidas Ramrao; Naik, Jitendra

    2016-04-01

    Polypyrrole (PPy) and graphene oxide (GO) nanocomposites were prepared by in situ polymerization method. The synthesized nanocomposites were characterized for current-voltage characteristic, Fourier transform infrared spectroscopy, X-ray diffraction and field emission scanning electron microscopy, which gave the evidence of the strong interaction between PPy nanofibers and GO nanosheets. The PPy/GO nanocomposites were used for the sensing of H2S, LPG, CO2 and NH3 gases respectively at room temperature. It was observed that PPy/GO nanocomposites with different GO weight ratios (5, 10 and 20 %) had better selectivity and sensitivity towards NH3 at room temperature.

  8. Graphene oxide immobilized enzymes show high thermal and solvent stability

    NASA Astrophysics Data System (ADS)

    Hermanová, Soňa; Zarevúcká, Marie; Bouša, Daniel; Pumera, Martin; Sofer, Zdeněk

    2015-03-01

    The thermal and solvent tolerance of enzymes is highly important for their industrial use. We show here that the enzyme lipase from Rhizopus oryzae exhibits exceptionally high thermal stability and high solvent tolerance and even increased activity in acetone when immobilized onto a graphene oxide (GO) nanosupport prepared by Staudenmaier and Brodie methods. We studied various forms of immobilization of the enzyme: by physical adsorption, covalent attachment, and additional crosslinking. The activity recovery was shown to be dependent on the support type, enzyme loading and immobilization procedure. Covalently immobilized lipase showed significantly better resistance to heat inactivation (the activity recovery was 65% at 70 °C) in comparison with the soluble counterpart (the activity recovery was 65% at 40 °C). Physically adsorbed lipase achieved over 100% of the initial activity in a series of organic solvents. These findings, showing enhanced thermal stability and solvent tolerance of graphene oxide immobilized enzyme, will have a profound impact on practical industrial scale uses of enzymes for the conversion of lipids into fuels.The thermal and solvent tolerance of enzymes is highly important for their industrial use. We show here that the enzyme lipase from Rhizopus oryzae exhibits exceptionally high thermal stability and high solvent tolerance and even increased activity in acetone when immobilized onto a graphene oxide (GO) nanosupport prepared by Staudenmaier and Brodie methods. We studied various forms of immobilization of the enzyme: by physical adsorption, covalent attachment, and additional crosslinking. The activity recovery was shown to be dependent on the support type, enzyme loading and immobilization procedure. Covalently immobilized lipase showed significantly better resistance to heat inactivation (the activity recovery was 65% at 70 °C) in comparison with the soluble counterpart (the activity recovery was 65% at 40 °C). Physically adsorbed

  9. Metal oxide growth, spin precession measurements and Raman spectroscopy of CVD graphene

    NASA Astrophysics Data System (ADS)

    Matsubayashi, Akitomo

    The focus of this dissertation is to explore the possibility of wafer scale graphene-based spintronics. Graphene is a single atomic layer of sp 2 bonded carbon atoms that has attracted much attention as a new type of electronic material due to its high carrier mobilities, superior mechanical properties and extremely high thermal conductivity. In addition, it has become an attractive material for use in spintronic devices owing to its long electron spin relaxation time at room temperature. This arises in part from its low spin-orbit coupling and negligible nuclear hyperfine interaction. In order to realize wafer scale graphene spintronics, utilization of CVD grown graphene is crytical due to its scalability. In this thesis, a unique fabrication method of the metal oxide layers on CVD graphene is presented. This is motivated by theoretical work showing that an ultra thin metal oxide film used as a tunnel barrier improves the spin injection efficiency. Introducing a titanium seed layer prior to the aluminum oxide growth showed improved surface and film uniformity and resulted in a completely oxidized film. Utilizing this unique metal oxide film growth process, lateral spin valve devices using CVD graphene as a channel are successfully fabricated. Hanle spin precession measurements are demonstrated on these CVD graphene spin devices. A non-local Hanle voltage model based upon the diffusive spin transport in a solid is utilized to find the spin diffusion length and spin relaxation time of CVD graphene. The measured spin relaxation times in CVD graphene were compatible with the values found in the literature. However, they are an order of magnitude shorter than the theoretical values expected in graphene. To investigate possible origins of this order of magnitude shorter spin relaxation time in graphene, crystal and electrical modifications in CVD graphene are studied throughout the entire device fabrication process. Raman spectroscopy is utilized to track CVD graphene

  10. Structure of graphene oxide membranes in solvents and solutions

    NASA Astrophysics Data System (ADS)

    Klechikov, Alexey; Yu, Junchun; Thomas, Diana; Sharifi, Tiva; Talyzin, Alexandr V.

    2015-09-01

    The change of distance between individual graphene oxide sheets due to swelling is the key parameter to explain and predict permeation of multilayered graphene oxide (GO) membranes by various solvents and solutions. In situ synchrotron X-ray diffraction study shows that swelling properties of GO membranes are distinctly different compared to precursor graphite oxide powder samples. Intercalation of liquid dioxolane, acetonitrile, acetone, and chloroform into the GO membrane structure occurs with maximum one monolayer insertion (Type I), in contrast with insertion of 2-3 layers of these solvents into the graphite oxide structure. However, the structure of GO membranes expands in liquid DMSO and DMF solvents similarly to precursor graphite oxide (Type II). It can be expected that Type II solvents will permeate GO membranes significantly faster compared to Type I solvents. The membranes are found to be stable in aqueous solutions of acidic and neutral salts, but dissolve slowly in some basic solutions of certain concentrations, e.g. in NaOH, NaHCO3 and LiF. Some larger organic molecules, alkylamines and alkylammonium cations are found to intercalate and expand the lattice of GO membranes significantly, e.g. up to ~35 Å in octadecylamine/methanol solution. Intercalation of solutes into the GO structure is one of the limiting factors for nano-filtration of certain molecules but it also allows modification of the inter-layer distance of GO membranes and tuning of their permeation properties. For example, GO membranes functionalized with alkylammonium cations are hydrophobized and they swell in non-polar solvents.The change of distance between individual graphene oxide sheets due to swelling is the key parameter to explain and predict permeation of multilayered graphene oxide (GO) membranes by various solvents and solutions. In situ synchrotron X-ray diffraction study shows that swelling properties of GO membranes are distinctly different compared to precursor graphite

  11. Real-time monitoring of graphene oxide reduction in acrylic printable composite inks

    NASA Astrophysics Data System (ADS)

    Porro, S.; Giardi, R.; Chiolerio, A.

    2014-06-01

    This work reports the electrical characterization of a water-based graphene oxide/acrylic composite material, which was directly inkjet printed to fabricate dissipative patterns. The graphene oxide filler, which is strongly hydrophilic due to its heavily oxygenated surface and can be readily dispersed in water, was reduced by UV irradiation during photo-curing of the polymeric matrix. The concurrent polymerization of the acrylic matrix and reduction of graphene oxide filler was demonstrated by real-time resistance measurements during UV light irradiation. The presence of graphene filler allowed decreasing the resistance of the pure polymeric matrix by nearly five orders of magnitude. This was explained by the fact that clusters of reduced graphene oxide inside the polymer matrix act as preferential pathways for the mobility of charge carriers, thus leading to an overall decrease of the material's resistance.

  12. High throughput detection of tetracycline residues in milk using graphene or graphene oxide as MALDI-TOF MS matrix.

    PubMed

    Liu, Junyan; Liu, Yang; Gao, Mingxia; Zhang, Xiangmin

    2012-08-01

    In this work, a new pre-analysis method for tetracyclines (TCs) detection from the milk samples was established. As a good accomplishment for the existing accurate quantification strategies for TCs detection, the new pre-analysis method was demonstrated to be simple, sensitive, fast, cost effective, and high throughput, which would do a great favor to the routine quality pre-analysis of TCs from milk samples. Graphene or graphene oxide was utilized, for the first time, as a duel-platform to enrich and detect the TCs by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). All together, four TCs were chosen as models: tetracycline, oxytetracycline, demeclocycline, and chlortetracycline. Due to the excellent electronic, thermal, and mechanical properties, graphene and graphene oxide were successfully applied as matrices for MALDI-TOF MS with free background inference in low mass range. Meanwhile, graphene or graphene oxide has a large surface area and strong interaction force with the analytes. By taking the advantage of these features, TCs were effectively enriched with the limit of detection (LOD) as low as 2 nM. PMID:22644736

  13. High Throughput Detection of Tetracycline Residues in Milk Using Graphene or Graphene Oxide as MALDI-TOF MS Matrix

    NASA Astrophysics Data System (ADS)

    Liu, Junyan; Liu, Yang; Gao, Mingxia; Zhang, Xiangmin

    2012-08-01

    In this work, a new pre-analysis method for tetracyclines (TCs) detection from the milk samples was established. As a good accomplishment for the existing accurate quantification strategies for TCs detection, the new pre-analysis method was demonstrated to be simple, sensitive, fast, cost effective, and high throughput, which would do a great favor to the routine quality pre-analysis of TCs from milk samples. Graphene or graphene oxide was utilized, for the first time, as a duel-platform to enrich and detect the TCs by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). All together, four TCs were chosen as models: tetracycline, oxytetracycline, demeclocycline, and chlortetracycline. Due to the excellent electronic, thermal, and mechanical properties, graphene and graphene oxide were successfully applied as matrices for MALDI-TOF MS with free background inference in low mass range. Meanwhile, graphene or graphene oxide has a large surface area and strong interaction force with the analytes. By taking the advantage of these features, TCs were effectively enriched with the limit of detection (LOD) as low as 2 nM.

  14. Porous graphene-based material as an efficient metal free catalyst for the oxidative dehydrogenation of ethylbenzene to styrene.

    PubMed

    Diao, Jiangyong; Liu, Hongyang; Wang, Jia; Feng, Zhenbao; Chen, Tong; Miao, Changxi; Yang, Weimin; Su, Dang Sheng

    2015-02-25

    Reduced porous graphene oxide as a metal free catalyst was selected for the oxidative dehydrogenation of ethylbenzene to styrene. It showed the best catalytic performance compared with other carbon materials (routinely reduced graphene oxide, graphite powder and oxidized carbon nanotubes) and commercial iron oxide. PMID:25625943

  15. Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides.

    PubMed

    Wu, Marissa; Kempaiah, Ravindra; Huang, Po-Jung Jimmy; Maheshwari, Vivek; Liu, Juewen

    2011-03-15

    Being the newest member of the carbon materials family, graphene possesses many unique physical properties resulting is a wide range of applications. Recently, it was discovered that graphene oxide can effectively adsorb DNA, and at the same time, it can completely quench adsorbed fluorophores. These properties make it possible to prepare DNA-based optical sensors using graphene oxide. While practical analytical applications are being demonstrated, the fundamental understanding of binding between graphene oxide and DNA in solution received relatively less attention. In this work, we report that the adsorption of 12-, 18-, 24-, and 36-mer single-stranded DNA on graphene oxide is affected by several factors. For example, shorter DNAs are adsorbed more rapidly and bind more tightly to the surface of graphene. The adsorption is favored by a lower pH and a higher ionic strength. The presence of organic solvents such as ethanol can either increase or decrease adsorption depending on the ionic strength of the solution. By adding the cDNA, close to 100% desorption of the absorbed DNA on graphene can be achieved. On the other hand, if temperature is increased, only a small percentage of DNA is desorbed. Further, the adsorbed DNA can also be exchanged by free DNA in solution. These findings are important for further understanding of the interactions between DNA and graphene and for the optimization of DNA and graphene-based devices and sensors. PMID:21302946

  16. Pd-embedded graphene: An efficient and highly active catalyst for oxidation of CO

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Nematollahi, Parisa; Nurazar, Roghaye

    2016-04-01

    Despite numerous efforts performed on the elimination of toxic gases from the air, the oxidation of carbon monoxide (CO) with metal-embedded nanostructures still remains a challenge. The geometry, electronic structure and catalytic properties of Pd-doped graphene (Pd-graphene) are investigated by means of density functional theory (DFT) calculations. The large atomic radius of Pd dopant in graphene can induce the local surface curvature and modulate the electronic structure of the sheet through the charge redistribution effects. Also, Pd-graphene can facilitate the O2 adsorption. Therefore, the catalytic activity of the Pd-graphene for CO oxidation reaction is enhanced. Moreover, the complete CO oxidation reactions on the Pd-graphene include a two-step process of the Langmuir-Hinshelwood (LH) reaction, in which the first step is almost barrier-less (Eact = 0.002 eV) and the second step exhibits an energy barrier of 0.2 eV. The results indicate that the surface activity of graphene-based materials can be drastically improved by introducing the Pd dopants, so Pd-graphene can be a clue for fabricating graphene-based catalysts with high activity toward the oxidation of CO molecule.

  17. Graphene oxide supported copper oxide nanoneedles: An efficient hybrid material for removal of toxic azo dyes.

    PubMed

    Rajesh, Rajendiran; Iyer, Sahithya S; Ezhilan, Jayabal; Kumar, S Senthil; Venkatesan, Rengarajan

    2016-09-01

    Herein, we report a simple, one step synthesis of hybrid copper oxide nanoneedles on graphene oxide sheets (GO-CuONNs) through sonochemical method. The present method affords a facile mean for controlling effective concentration of the active CuO nanoneedles on the graphene oxide sheets, and also offers the necessary stability to the resulting GO-CuONNs structure for adsorption transformations.Furthermore, this hybrid GO-CuONNs is successfully employed in the removal of a series of hazardous ionic organic dyes namely coomassie brilliant blue, methylene blue, congo red and amidoblack 10B. Through careful investigation of the material, we found that the synergetic effect between CuONNs and GO play a significant role in the adsorption of all the dyes studied. The prepared hybrid material contains both hydrophobic and hydrophilic environment which is expected to enhance the electrostatic interaction between the adsorbent and the dye molecules, consequently favouring the adsorption process. PMID:27208759

  18. Graphene oxide supported copper oxide nanoneedles: An efficient hybrid material for removal of toxic azo dyes

    NASA Astrophysics Data System (ADS)

    Rajesh, Rajendiran; Iyer, Sahithya S.; Ezhilan, Jayabal; Kumar, S. Senthil; Venkatesan, Rengarajan

    2016-09-01

    Herein, we report a simple, one step synthesis of hybrid copper oxide nanoneedles on graphene oxide sheets (GO-CuONNs) through sonochemical method. The present method affords a facile mean for controlling effective concentration of the active CuO nanoneedles on the graphene oxide sheets, and also offers the necessary stability to the resulting GO-CuONNs structure for adsorption transformations.Furthermore, this hybrid GO-CuONNs is successfully employed in the removal of a series of hazardous ionic organic dyes namely coomassie brilliant blue, methylene blue, congo red and amidoblack 10B. Through careful investigation of the material, we found that the synergetic effect between CuONNs and GO play a significant role in the adsorption of all the dyes studied. The prepared hybrid material contains both hydrophobic and hydrophilic environment which is expected to enhance the electrostatic interaction between the adsorbent and the dye molecules, consequently favouring the adsorption process.

  19. Pd-nanoparticle-supported, PDDA-functionalized graphene as a promising catalyst for alcohol oxidation.

    PubMed

    Bin, Duan; Ren, Fangfang; Wang, Ying; Zhai, Chunyang; Wang, Caiqin; Guo, Jun; Yang, Ping; Du, Yukou

    2015-03-01

    Poly(diallyldimethylammonium chloride) (PDDA) has been employed as a modifying material for the development of new functional materials; then, the functionalized graphene was employed as a support for Pd nanoparticles through a facile method. The structures and morphologies of the as-synthesized Pd/PDDA-graphene composites were extensively characterized by Raman spectroscopy, XRD, XPS, and TEM. Morphological observation showed that Pd NPs with average diameters of 4.4 nm were evenly deposited over the functionalized graphene sheets. Moreover, the electrochemical experiments indicated that the Pd/PDDA-graphene catalyst showed improved electrocatalytic activity toward alcohol-oxidation reactions compared to the Pd/graphene and commercial Pd/C systems, as well as previously reported Pd-based catalysts. This study demonstrates the great potential of PDDA-functionalized graphene as a support for the development of metal-graphene nanocomposites for important applications in fuel cells. PMID:25601138

  20. Increasing the sensitivity and single-base mismatch selectivity of the molecular beacon using graphene oxide as the "nanoquencher".

    PubMed

    Lu, Chun-Hua; Li, Juan; Liu, Jing-Jing; Yang, Huang-Hao; Chen, Xi; Chen, Guo-Nan

    2010-04-26

    Here, we report a novel, highly sensitive, selective and economical molecular beacon using graphene oxide as the "nanoquencher". This novel molecular beacon system contains a hairpin-structured fluorophore-labeled oligonucleotide and a graphene oxide sheet. The strong interaction between hairpin-structured oligonucleotide and graphene oxide keep them in close proximity, facilitating the fluorescence quenching of the fluorophore by graphene oxide. In the presence of a complementary target DNA, the binding between hairpin-structured oligonucleotide and target DNA will disturb the interaction between hairpin-structured oligonucleotide and graphene oxide, and release the oligonucleotide from graphene oxide, resulting in restoration of fluorophore fluorescence. In the present study, we show that this novel graphene oxide quenched molecular beacon can be used to detect target DNA with higher sensitivity and single-base mismatch selectivity compared to the conventional molecular beacon. PMID:20301144

  1. Numerical Modeling of Oxidized 2D C/SiC Composites in Air Environments Below 900 °C: Microstructure and Elastic Properties

    NASA Astrophysics Data System (ADS)

    Sun, Zhigang; Chen, Xihui; Shao, Hongyan; Song, Yingdong

    2016-08-01

    A numerical model is presented for simulation of the oxidation-affected behaviors of two dimensional carbon fiber-reinforced silcon carbide matrix composite (2D C/SiC) exposed to air oxidizing environments below 900 °C, which incorporates the modeling of oxidized microstructure and computing of degraded elastic properties. This model is based upon the analysis of the representative volume cell (RVC) of the composite. The multi-scale model of 2D C/SiC composites is concerned in the present study. Analysis results of such a composite can provide a guideline for the real 2D C/SiC composite. The micro-structure during oxidation process is firstly modeled in the RVC. The elastic moduli of oxidized composite under non-stress oxidation environment is computed by finite element analysis. The elastic properties of 2D-C/SiC composites in air oxidizing environment are evaluated and validated in comparison to experimental data. The oxidation time, temperature and fiber volume fractions of C/SiC composite are investigated to show their influences upon the elastic properties of 2D C/SiC composites.

  2. Numerical Modeling of Oxidized 2D C/SiC Composites in Air Environments Below 900 °C: Microstructure and Elastic Properties

    NASA Astrophysics Data System (ADS)

    Sun, Zhigang; Chen, Xihui; Shao, Hongyan; Song, Yingdong

    2016-04-01

    A numerical model is presented for simulation of the oxidation-affected behaviors of two dimensional carbon fiber-reinforced silcon carbide matrix composite (2D C/SiC) exposed to air oxidizing environments below 900 °C, which incorporates the modeling of oxidized microstructure and computing of degraded elastic properties. This model is based upon the analysis of the representative volume cell (RVC) of the composite. The multi-scale model of 2D C/SiC composites is concerned in the present study. Analysis results of such a composite can provide a guideline for the real 2D C/SiC composite. The micro-structure during oxidation process is firstly modeled in the RVC. The elastic moduli of oxidized composite under non-stress oxidation environment is computed by finite element analysis. The elastic properties of 2D-C/SiC composites in air oxidizing environment are evaluated and validated in comparison to experimental data. The oxidation time, temperature and fiber volume fractions of C/SiC composite are investigated to show their influences upon the elastic properties of 2D C/SiC composites.

  3. Study the molecular structure of poly(ε-caprolactone)/graphene oxide and graphene nanocomposite nanofibers.

    PubMed

    Ramazani, Soghra; Karimi, Mohammad

    2016-08-01

    In this article, poly(ε-caprolactone) (PCL)/graphene oxide (GO) and reduced graphene oxide (RGO) nanocomposite nanofibrous mats were prepared using electrospinning technique. Dynamic mechanical analysis of mats electrospun from solution 16wt% PCL showed 22% and 133% increment in shrink force in the presence of 0.1wt% GO and RGO nanosheets respectively. The creep resistance was also increased 24% and 41%. The good enlargement of molecular chains of PCL at presence of nanosheets and strong chemical interaction within the molecular chains of PCL and nanosheets were caused the increment of shrink force and creep resistance of electrospun mats. However, less relaxation time and higher entanglement density of molecular chains in solution 14wt% and 18wt% PCL respectively limited the interaction within molecular chains of PCL and nanosheets in electrospinning process and thus showed less increment in creep resistance and shrink force of mats electrospun from them. Moreover, tensile stress test of mats electrospun from solution 16wt% PCL showed 53% and 189% increment in the tensile stress at presence of 0.1wt% GO and RGO respectively. PMID:27124805

  4. Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets as Seeds for the Growth of Ultrathin Molecular Sieving Membranes.

    PubMed

    Hu, Yaoxin; Wei, Jing; Liang, Yan; Zhang, Huacheng; Zhang, Xiwang; Shen, Wei; Wang, Huanting

    2016-02-01

    A defect-free zeolitic imidazolate framework-8 (ZIF-8)/graphene oxide (GO) membrane with a thickness of 100 nm was prepared using two-dimensional (2D) ZIF-8/GO hybrid nanosheets as seeds. Hybrid nanosheets with a suitable amount of ZIF-8 nanocrystals were essential for producing a uniform seeding layer that facilitates fast crystal intergrowth during membrane formation. Moreover, the seeding layer acts as a barrier between two different synthesis solutions, and self-limits crystal growth and effectively eliminates defects during the contra-diffusion process. The resulting ultrathin membranes show excellent molecular sieving gas separation properties, such as with a high CO2 /N2 selectivity of 7.0. This 2D nano-hybrid seeding strategy can be readily extended to the fabrication of other defect-free and ultrathin MOF or zeolite molecular sieving membranes for a wide range of separation applications. PMID:26710246

  5. Removal of zinc(II) ion by graphene oxide (GO) and functionalized graphene oxide-glycine (GO-G) as adsorbents from aqueous solution: kinetics studies

    NASA Astrophysics Data System (ADS)

    Najafi, F.

    2015-05-01

    The main purpose of this study is to explain the absorption of zinc from aqueous solution by grapheme oxide and functionalized grapheme oxide with glycine as the adsorbent surface. For confirmed functionalized graphene oxide, the glycine amino group was added to the surface of graphene oxide. The effects of the initial concentration of Zn(II) ions and contact time were studied. Results showed that with increasing initial concentration of Zn(II) ions, the adsorption capacity increased. The adsorption capacity did not show a large change after 50 min; therefore, for the study of kinetic parameters, the optimal time of 50 min was selected. The chemical structure of graphene oxide was confirmed by using FT-IR analysis. The adsorption process of Zn(II) ions graphene oxide and functionalized graphene oxide-glycine surfaces was fixed at 298 K and pH 6. The pseudo-first-order and the pseudo-second-order (types I, II, III and IV) kinetic models were tested for the adsorption process and the results showed that the kinetic parameters best fit type (I) of the pseudo-second-order model. A high R 2 was used to be the best match.

  6. Deciphering the Electron Transport Pathway for Graphene Oxide Reduction by Shewanella oneidensis MR-1 ▿†‡

    PubMed Central

    Jiao, Yongqin; Qian, Fang; Li, Yat; Wang, Gongming; Saltikov, Chad W.; Gralnick, Jeffrey A.

    2011-01-01

    We determined that graphene oxide reduction by Shewanella oneidensis MR-1 requires the Mtr respiratory pathway by analyzing a range of mutants lacking these proteins. Electron shuttling compounds increased the graphene oxide reduction rate 3- to 5-fold. These results may help facilitate the use of bacteria for large-scale graphene production. PMID:21602337

  7. Laser micromachining of oxygen reduced graphene-oxide films

    NASA Astrophysics Data System (ADS)

    Sinar, Dogan; Knopf, George K.; Nikumb, Suwas; Andrushchenko, Anatoly

    2014-03-01

    Non-conductive graphene-oxide (GO) inks can be synthesized from inexpensive graphite powders and deposited on functionalized flexible substrates using inkjet printing technology. Once deposited, the electrical conductivity of the GO film can be restored through laser assisted thermal reduction. Unfortunately, the inkjet nozzle diameter (~40μm) places a limit on the printed feature size. In contrast, a tightly focused femtosecond pulsed laser can create precise micro features with dimensions in the order of 2 to 3 μm. The smallest feature size produced by laser microfabrication is a function of the laser beam diameter, power level, feed rate, material characteristics and spatial resolution of the micropositioning system. Laser micromachining can also remove excess GO film material adjacent to the electrode traces and passive electronic components. Excess material removal is essential for creating stable oxygen-reduced graphene-oxide (rGO) printed circuits because electron buildup along the feature edges will alter the conductivity of the non-functional film. A study on the impact of laser ablation on the GO film and the substrate are performed using a 775nm, 120fs pulsed laser. The average laser power was 25mW at a spot size of ~ 5μm, and the feed rate was 1000-1500mm/min. Several simple microtraces were fabricated and characterized in terms of electrical resistance and surface topology.

  8. Single-Step Process toward Achieving Superhydrophobic Reduced Graphene Oxide.

    PubMed

    Li, Zhong; Tang, Xiu-Zhi; Zhu, Wenyu; Thompson, Brianna C; Huang, Mingyue; Yang, Jinglei; Hu, Xiao; Khor, Khiam Aik

    2016-05-01

    We report the first use of spark plasma sintering (SPS) as a single-step process to achieve superhydrophobic reduced graphene oxide (rGO). It was found that SPS was capable of converting smooth and electrically insulating graphene oxide (GO) sheets into highly electrically conductive rGO with minimum residual oxygen and hierarchical roughness which could be well retained after prolonged ultrasonication. At a temperature of 500 °C, which is lower than the conventional critical temperature for GO exfoliation, GO was successfully exfoliated, reduced, and hierarchically roughened. rGO fabricated by only 1 min of treatment at 1050 °C was superhydrophobic with a surface roughness (Ra) 10 times as large as that of GO as well as an extraordinarily high C:O ratio of 83.03 (atom %) and water contact angle of 153°. This demonstrates that SPS is a superior GO reduction technique, which enabled superhydrophobic rGO to be quickly and effectively achieved in one single step. Moreover, the superhydrophobic rGO fabricated by SPS showed an impressive bacterial antifouling and inactivation effect against Escherichia coli in both aqueous solution and the solid state. It is envisioned that the superhydrophobic rGO obtained in this study can be potentially used for a wide range of industrial and biomedical applications, such as the fabrication of self-cleaning and antibacterial surfaces. PMID:27064825

  9. Graphene Oxide Interlayers for Robust, High-Efficiency Organic Photovoltaics

    SciTech Connect

    Murray, Ian P.; Lou, Sylvia J.; Cote, Laura J.; Loser, Stephen; Kadleck, Cameron J.; Xu, Tao; Szarko, Jodi M.; Rolczynski, Brian S.; Johns, James E.; Huang, Jiaxing; Yu, Luping; Chen, Lin X.; Marks, Tobin J.; Hersam, Mark C.

    2012-02-07

    Organic photovoltaic (OPV) materials have recently garnered significant attention as enablers of high power conversion efficiency (PCE), low-cost, mechanically flexible solar cells. Nevertheless, further understanding-based materials developments will be required to achieve full commercial viability. In particular, the performance and durability of many current generation OPVs are limited by poorly understood interfacial phenomena. Careful analysis of typical OPV architectures reveals that the standard electron-blocking layer, poly-3,4-ethylenedioxy-thiophene:poly(styrene sulfonate) (PEDOT:PSS), is likely a major factor limiting the device durability and possibly performance. Here we report that a single layer of electronically tuned graphene oxide is an effective replacement for PEDOT:PSS and that it significantly enhances device durability while concurrently templating a performance-optimal active layer {pi}-stacked face-on microstructure. Such OPVs based on graphene oxide exhibit PCEs as high as 7.5% while providing a 5x enhancement in thermal aging lifetime and a 20x enhancement in humid ambient lifetime versus analogous PEDOT:PSS-based devices.

  10. Fabrication and morphology tuning of graphene oxide nanoscrolls.

    PubMed

    Amadei, Carlo A; Stein, Itai Y; Silverberg, Gregory J; Wardle, Brian L; Vecitis, Chad D

    2016-03-17

    Here we report the synthesis of graphene oxide nanoscrolls (GONS) with tunable dimensions via low and high frequency ultrasound solution processing techniques. GONS can be visualized as a graphene oxide (GO) sheet rolled into a spiral-wound structure and represent an alternative to traditional carbon nano-morphologies. The scrolling process is initiated by the ultrasound treatment which provides the scrolling activation energy for the formation of GONS. The GO and GONS dimensions are observed to be a function of ultrasound frequency, power density, and irradiation time. Ultrasonication increases GO and GONS C-C bonding likely due to in situ thermal reduction at the cavitating bubble-water interface. The GO area and GONS length are governed by two mechanisms; rapid oxygen defect site cleavage and slow cavitation mediated scission. Structural characterization indicates that GONS with tube and cone geometries can be formed with both narrow and wide dimensions in an industrial-scale time window. This work paves the way for GONS implementation for a variety of applications such as adsorptive and capacitive processes. PMID:26956067

  11. Simultaneous Electrochemical Reduction and Delamination of Graphene Oxide Films.

    PubMed

    Wang, Xiaohan; Kholmanov, Iskandar; Chou, Harry; Ruoff, Rodney S

    2015-09-22

    Here we report an electrochemical method to simultaneously reduce and delaminate graphene oxide (G-O) thin films deposited on metal (Al and Au) substrates. During the electrochemical reaction, interface charge transfer between the G-O thin film and the electrode surface was found to be important in eliminating oxygen-containing groups, yielding highly reduced graphene oxide (rG-O). In the meantime, hydrogen bubbles were electrochemically generated at the rG-O film/electrode interface, propagating the film delamination. Unlike other metal-based G-O reduction methods, the metal used here was either not etched at all (for Au) or etched a small amount (for Al), thus making it possible to reuse the substrate and lower production costs. The delaminated rG-O film exhibits a thickness-dependent degree of reduction: greater reduction is achieved in thinner films. The thin rG-O films having an optical transmittance of 90% (λ = 550 nm) had a sheet resistance of 6390 ± 447 Ω/□ (ohms per square). rG-O-based stretchable transparent conducting films were also demonstrated. PMID:26257072

  12. Copper substrate as a catalyst for the oxidation of chemical vapor deposition-grown graphene

    SciTech Connect

    Li, Zhiting; Zhou, Feng; Parobek, David; Shenoy, Ganesh J.; Muldoon, Patrick; Liu, Haitao

    2015-04-15

    We report the catalytic effect of copper substrate on graphene–oxygen reaction at high temperature. Previous studies showed that graphene grown on copper are mostly defect-free with strong oxidation resistance. We found that a freshly prepared copper-supported graphene sample can be completely oxidized in trace amount of oxygen (<3 ppm) at 600 °C within 2 h. Both X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) suggest that upon ambient air exposure, oxygen molecules diffuse into the space between graphene and copper, resulting in the formation of copper oxide which acts as catalytic sites for the graphene-oxygen reaction. This result has important implications for the characterization, processing, and storage of copper-supported graphene samples. - Graphical abstract: The copper substrate enhances the thermel oxidation of single-layer graphene. - Highlights: • A copper-supported graphene can be oxidized in Ar (O{sub 2}<3 ppm, 600 °C, 2 h). • O{sub 2} intercalates between graphene and copper upon exposure to air. • The copper foil should not be considered as an inert substrate.

  13. Palladium nanoparticles anchored on graphene nanosheets: Methanol, ethanol oxidation reactions and their kinetic studies

    SciTech Connect

    Nagaraju, D.H.; Devaraj, S.; Balaya, P.

    2014-12-15

    Highlights: • Palladium nanoparticles decorated graphene is synthesized in a single step. • Electro-catalytic activity of Gra/Pd toward alcohol oxidation is evaluated. • 1:1 Gra/Pd exhibits good electro-catalytic activity and efficient electron transfer. - Abstract: Palladium nanoparticles decorated graphene (Gra/Pd nanocomposite) was synthesized by simultaneous chemical reduction of graphene oxide and palladium salt in a single step. The negatively charged graphene oxide (GO) facilitates uniform distribution of Pd{sup 2+} ions onto its surface. The subsequent reduction by hydrazine hydrate provides well dispersed Pd nanoparticles decorated graphene. Different amount of Pd nanoparticles on graphene was synthesized by changing the volume to weight ratio of GO to PdCl{sub 2}. X-ray diffraction studies showed FCC lattice of Pd with predominant (1 1 1) plane. SEM and TEM studies revealed that thin graphene nanosheets are decorated by Pd nanoparticles. Raman spectroscopic studies revealed the presence of graphene nanosheets. The electro-catalytic activity of Gra/Pd nanocomposites toward methanol and ethanol oxidation in alkaline medium was evaluated by cyclic voltammetric studies. 1:1 Gra/Pd nanocomposite exhibited good electro-catalytic activity and efficient electron transfer. The kinetics of electron transfer was studied using chronoamperometry. Improved electro-catalytic activity of 1:1 Gra/Pd nanocomposite toward alcohol oxidation makes it as a potential anode for the alcohol fuel cells.

  14. Dynamic configuration of reduced graphene oxide in aqueous dispersion and its effect on thin film properties.

    PubMed

    Wang, Yufei; Zhang, Xuehua; Li, Dan

    2015-12-28

    The dynamic configuration of reduced graphene oxide (rGO) in an aqueous dispersion is revealed by several characterization methods, showing a spontaneous and seemingly irreversible configuration transition from flat to highly corrugated sheets over time. Such dynamic behaviour of rGO leads to a tailored porous structure of graphene-based thin films. This affects their permeation and electrochemical properties, as well as future industry adoption of graphene. PMID:26498678

  15. Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentration.

    PubMed

    Cheng, Fan; Liu, Yu-Feng; Lu, Guang-Yuan; Zhang, Xue-Kun; Xie, Ling-Li; Yuan, Cheng-Fei; Xu, Ben-Bo

    2016-04-01

    Researchers have proven that nanomaterials have a significant effect on plant growth and development. To better understand the effects of nanomaterials on plants, Zhongshuang 11 was treated with different concentrations of graphene oxide. The results indicated that 25-100mg/l graphene oxide treatment resulted in shorter seminal root length compared with the control samples. The fresh root weight decreased when treated with 50-100mg/l graphene oxide. The graphene oxide treatment had no significant effect on the Malondialdehyde (MDA) content. Treatment with 50mg/l graphene oxide increased the transcript abundance of genes involved in ABA biosynthesis (NCED, AAO, and ZEP) and some genes involved in IAA biosynthesis (ARF2, ARF8, IAA2, and IAA3), but inhibited the transcript levels of IAA4 and IAA7. The graphene oxide treatment also resulted in a higher ABA content, but a lower IAA content compared with the control samples. The results indicated that graphene oxide modulated the root growth of Brassica napus L. and affected ABA and IAA biosynthesis and concentration. PMID:26945480

  16. Combustion synthesis of CdS/reduced graphene oxide composites and their photocatalytic properties

    SciTech Connect

    Liu, Jianxiu; Pu, Xipeng; Zhang, Dafeng; Seo, Hyo Jin; Du, Kaiping; Cai, Peiqing

    2014-09-15

    Highlights: • CdS/reduced graphene oxide composites were prepared by a combustion method. • The phase changed from hexagonal to cubic phase by increasing the added amount of GO. • The composites showed excellent visible-light photocatalytic properties. • The plausible mechanism of photodegradation was discussed. - Abstract: CdS/reduced graphene oxide composites were synthesized by a simple one-pot combustion method using cadmium nitrate, thiourea and graphite as raw materials. The structure, morphologies, and photocatalytic properties of the as-prepared samples were studied by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, photoluminescence and ultraviolet–visible spectrophotometry. The results show that the structure of CdS in as-prepared samples changes from hexagonal to cubic phase by increasing the added amount of graphene oxide. During combustion reaction, graphene oxide was reduced to reduced graphene oxide. As-obtained CdS/reduced graphene oxide composites show high visible-light photoactivities, attributed to the minimized recombination of photoinduced electrons and holes and the high surface area of reduced graphene oxide sheets.

  17. Monothiolation and Reduction of Graphene Oxide via One-Pot Synthesis: Hybrid Catalyst for Oxygen Reduction.

    PubMed

    Chua, Chun Kiang; Pumera, Martin

    2015-04-28

    The functionalization of graphene provides diverse possibilities to improve the handling of graphene and enable further chemical transformation on graphene. Graphene functionalized with mainly heteroatom-based functional groups to enhance its chemical and physical properties is intensively pursued but often resulted in grafting of the heteroatoms as various functional groups. Here, we show that graphene oxide can be functionalized with predominantly a single type of sulfur moiety and reduced simultaneously to form monothiol-functionalized graphene. The thiol-functionalized graphene shows a high electrical conductivity and heterogeneous electron transfer rate. Graphene is also embedded with a trace amount of manganese impurities originating from a prior graphite oxidation process, which facilitates the thiol-functionalized graphene to function as a hybrid electrocatalyst for oxygen reduction reactions in alkaline medium with an onset potential lower than for Pt/C. Further characterizations of the graphene are performed with X-ray photoelectron spectroscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, Raman spectroscopy, and electrochemical impedance spectroscopy. This material contributes to the class of hybrids that are highly active electrocatalysts. PMID:25816194

  18. Enhanced photothermal effect of surface oxidized silicon nanocrystals anchored to reduced graphene oxide nanosheets

    NASA Astrophysics Data System (ADS)

    Afshani, Parichehr; Moussa, Sherif; Atkinson, Garrett; Kisurin, Vitaly Y.; Samy El-Shall, M.

    2016-04-01

    We demonstrate the coupling of the photothermal effects of silicon nanocrystals and graphene oxide (GO) dispersed in water. Using laser irradiation (532 nm or 355 nm) of suspended Si nanocrystals in an aqueous solution of GO, the synthesis of surface oxidized Si-reduced GO nanocomposites (SiOx/Si-RGO) is reported. The laser reduction of GO is accompanied by surface oxidation of the Si nanocrystals resulting in the formation of the SiOx/Si-RGO nanocomposites. The SiOx/Si-RGO nanocomposites are proposed as promising materials for photothermal therapy and for the efficient conversion of solar energy into usable heat for a variety of thermal and thermomechanical applications.

  19. Ceria–Zirconia Particles Wrapped in a 2D Carbon Envelope: Improved Low-Temperature Oxygen Transfer and Oxidation Activity

    PubMed Central

    Aneggi, Eleonora; Rico-Perez, Veronica; de Leitenburg, Carla; Maschio, Stefano; Soler, Lluís; Llorca, Jordi; Trovarelli, Alessandro

    2015-01-01

    Engineering the interface between different components of heterogeneous catalysts at nanometer level can radically alter their performances. This is particularly true for ceria-based catalysts where the interactions are critical for obtaining materials with enhanced properties. Here we show that mechanical contact achieved by high-energy milling of CeO2–ZrO2 powders and carbon soot results in the formation of a core of oxide particles wrapped in a thin carbon envelope. This 2D nanoscale carbon arrangement greatly increases the number and quality of contact points between the oxide and carbon. Consequently, the temperatures of activation and transfer of the oxygen in ceria are shifted to exceptionally low temperatures and the soot combustion rate is boosted. The study confirms the importance of the redox behavior of ceria-zirconia particles in the mechanism of soot oxidation and shows that the organization of contact points at the nanoscale can significantly modify the reactivity resulting in unexpected properties and functionalities. PMID:26448053

  20. Superparamagnetic iron oxide nanoparticles alter expression of obesity and T2D-associated risk genes in human adipocytes

    NASA Astrophysics Data System (ADS)

    Sharifi, S.; Daghighi, S.; Motazacker, M. M.; Badlou, B.; Sanjabi, B.; Akbarkhanzadeh, A.; Rowshani, A. T.; Laurent, S.; Peppelenbosch, M. P.; Rezaee, F.

    2013-07-01

    Adipocytes hypertrophy is the main cause of obesity and its affliction such as type 2 diabetes (T2D). Since superparamagnetic iron oxide nanoparticles (SPIONs) are used for a wide range of biomedical/medical applications, we aimed to study the effect of SPIONs on 22 and 29 risk genes (Based on gene wide association studies) for obesity and T2D in human adipocytes. The mRNA expression of lipid and glucose metabolism genes was changed upon the treatment of human primary adipocytes with SPIONs. mRNA of GULP1, SLC30A8, NEGR1, SEC16B, MTCH2, MAF, MC4R, and TMEM195 were severely induced, whereas INSIG2, NAMPT, MTMR9, PFKP, KCTD15, LPL and GNPDA2 were down-regulated upon SPIONs stimulation. Since SEC16B gene assist the phagocytosis of apoptotic cells and this gene were highly expressed upon SPIONs treatment in adipocytes, it is logic to assume that SPIONs may play a crucial role in this direction, which requires more consideration in the future.

  1. Catalyst-Free Growth of Three-Dimensional Graphene Flakes and Graphene/g-C₃N₄ Composite for Hydrocarbon Oxidation.

    PubMed

    Chen, Ke; Chai, Zhigang; Li, Cong; Shi, Liurong; Liu, Mengxi; Xie, Qin; Zhang, Yanfeng; Xu, Dongsheng; Manivannan, Ayyakkannu; Liu, Zhongfan

    2016-03-22

    Mass production of high-quality graphene flakes is important for commercial applications. Graphene microsheets have been produced on an industrial scale by chemical and liquid-phase exfoliation of graphite. However, strong-interaction-induced interlayer aggregation usually leads to the degradation of their intrinsic properties. Moreover, the crystallinity or layer-thickness controllability is not so perfect to fulfill the requirement for advanced technologies. Herein, we report a quartz-powder-derived chemical vapor deposition growth of three-dimensional (3D) high-quality graphene flakes and demonstrate the fabrication and application of graphene/g-C3N4 composites. The graphene flakes obtained after the removal of growth substrates exhibit the 3D curved microstructure, controllable layer thickness, good crystallinity, as well as weak interlayer interactions suitable for preventing the interlayer stacking. Benefiting from this, we achieved the direct synthesis of g-C3N4 on purified graphene flakes to form the uniform graphene/g-C3N4 composite, which provides efficient electron transfer interfaces to boost its catalytic oxidation activity of cycloalkane with relatively high yield, good selectivity, and reliable stability. PMID:26918323

  2. Palladium nanoparticles supported on vertically oriented reduced graphene oxide for methanol electro-oxidation.

    PubMed

    Yang, Liming; Tang, Yanhong; Luo, Shenglian; Liu, Chengbin; Song, Hejie; Yan, Dafeng

    2014-10-01

    Reduced graphene oxide (rGO) is a promising support material for nanosized electrocatalysts. However, the conventional stacking arrangement of rGO sheets confines the electrocatalysts between rGO layers, which decreases the number of catalytic sites substantially. We report here a facile synthesis of vertically oriented reduced graphene oxide (VrGO) through cyclic voltammetric electrolysis of graphene oxide (GO) in the presence of Na2 PdCl4 . Experiments without Pd nanoparticles or with a low loading amount of Pd nanoparticles results in the deposition of rGO parallel to the electrodes. The vertical orientation of Pd/rGO nanoflakes causes a remarkable enhancement of the catalytic activity toward methanol electro-oxidation. The mass activity (620.1 A gPd (-1) ) of Pd/VrGO is 1.9 and 6.2 times that of Pd/flat-lying rGO (331.8 A gPd (-1) ) and commercial Pd/C (100.5 A gPd (-1) ), respectively. Furthermore, the Pd/VrGO catalyst shows excellent resistance to CO poisoning. This work provides a simple wet-chemical method for VrGO preparation. PMID:25163894

  3. Synthesis of reduced graphene oxide (rGO) via chemical reduction

    SciTech Connect

    Thakur, Alpana Rangra, V. S.; Kumar, Sunil

    2015-05-15

    Natural flake Graphite was used as the starting material for the graphene synthesis. In the first step flake graphite was treated with oxidizing agents under vigorous conditions to obtain graphite oxide. Layered graphite oxide decorated with oxygen has large inter-layer distance leading easy exfoliation into single sheets by ultrasonication giving graphene oxide. In the last step exfoliated graphene oxide sheets were reduced slowly with the help of reducing agent to obtain fine powder which is labeled as reduced graphene oxide (rGO). This rGO was further characterized by X-Ray Diffraction (XRD), Scanning Tunneling Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy techniques. XRD pattern shows peaks corresponding to (002) graphitic lattice planes indicating the formation of network of sp{sup 2} like carbon structure. SEM images show the ultrathin, wrinkled, paper-like morphology of graphene sheets. IR study shows that the graphite has been oxidized to graphite oxide with the presence of various absorption bands confirming the presence of oxidizing groups. The FTIR spectrum of rGO shows no sharp peaks confirming the efficient reduction of rGO. The Raman spectrum shows disorder in the graphene sheets.

  4. Synthesis of reduced graphene oxide (rGO) via chemical reduction

    NASA Astrophysics Data System (ADS)

    Thakur, Alpana; Kumar, Sunil; Rangra, V. S.

    2015-05-01

    Natural flake Graphite was used as the starting material for the graphene synthesis. In the first step flake graphite was treated with oxidizing agents under vigorous conditions to obtain graphite oxide. Layered graphite oxide decorated with oxygen has large inter-layer distance leading easy exfoliation into single sheets by ultrasonication giving graphene oxide. In the last step exfoliated graphene oxide sheets were reduced slowly with the help of reducing agent to obtain fine powder which is labeled as reduced graphene oxide (rGO). This rGO was further characterized by X-Ray Diffraction (XRD), Scanning Tunneling Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy techniques. XRD pattern shows peaks corresponding to (002) graphitic lattice planes indicating the formation of network of sp2 like carbon structure. SEM images show the ultrathin, wrinkled, paper-like morphology of graphene sheets. IR study shows that the graphite has been oxidized to graphite oxide with the presence of various absorption bands confirming the presence of oxidizing groups. The FTIR spectrum of rGO shows no sharp peaks confirming the efficient reduction of rGO. The Raman spectrum shows disorder in the graphene sheets.

  5. Spontaneous Reduction and Assembly of Graphene oxide into Three-Dimensional Graphene Network on Arbitrary Conductive Substrates

    PubMed Central

    Hu, Chuangang; Zhai, Xiangquan; Liu, Lili; Zhao, Yang; Jiang, Lan; Qu, Liangti

    2013-01-01

    Chemical reduction of graphene oxide (GO) is the main route to produce the mass graphene-based materials with tailored surface chemistry and functions. However, the toxic reducing circumstances, multiple steps, and even incomplete removal of the oxygen-containing groups were involved, and the produced graphenes existed usually as the assembly-absent precipitates. Herein, a substrate-assisted reduction and assembly of GO (SARA-GO) method was developed for spontaneous formation of 3D graphene network on arbitrary conductive substrates including active and inert metals, semiconducting Si, nonmetallic carbon, and even indium-tin oxide glass without any additional reducing agents. The SARA-GO process offers a facile, efficient approach for constructing unique graphene assemblies such as microtubes, multi-channel networks, micropatterns, and allows the fabrication of high-performance binder-free rechargeable lithium-ion batteries. The versatile SARD-GO method significantly improves the processablity of graphenes, which could thus benefit many important applications in sensors and energy-related devices. PMID:23799368

  6. Covalent conjugation of graphene oxide with methotrexate and its antitumor activity

    NASA Astrophysics Data System (ADS)

    Wojtoniszak, M.; Urbas, K.; Perużyńska, M.; Kurzawski, M.; Droździk, M.; Mijowska, E.

    2013-05-01

    Here, we have functionalized graphene oxide with anticancer drug methotrexate through amide bonding. A kinetics of the drug release from graphene oxide in physiological solution - phosphate buffered saline (PBS) containing different biocompatible polymers have been investigated. Dispersion of MTX-GO in poly sodium-4-styrene sulfonate and poly ethylene glycol resulted in increase of the release time. The material was characterized with transmission electron microscopy, atomic force microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and UV-vis spectroscopy. Furthermore, antineoplastic action against human breast adenocarcinoma cell line MCF7 of MTX-GO and empty graphene oxide was explored.

  7. Direct synthesis of graphene nanosheets support Pd nanodendrites for electrocatalytic formic acid oxidation

    NASA Astrophysics Data System (ADS)

    Yang, Su-Dong; Chen, Lin

    2015-11-01

    We report a solvothermal method preparation of dendritic Pd nanoparticles (DPNs) and spherical Pd nanoparticles (SPNs) supported on reduced graphene oxide (RGO). Drastically different morphologies of Pd NPs with nanodendritic structures or spherical structures were observed on graphene by controlling the reduction degree of graphene oxide (GO) under mild conditions. In addition to being a commonplace substrate, GO plays a more important role that relies on its surface groups, which serves as a shape-directing agent to direct the dendritic growth. As a result, the obtained DPNs/RGO catalyst exhibits a significantly enhanced electro-catalytic behavior for the oxidation of formic acid compared to the SPNs/RGO catalyst.

  8. Building up graphene-based conductive polymer composite thin films using reduced graphene oxide prepared by γ-ray irradiation.

    PubMed

    Xie, Siyuan; Zhang, Bowu; Wang, Chunlei; Wang, Ziqiang; Li, Linfan; Li, Jingye

    2013-01-01

    In this paper, reduced graphene oxide (RGO) was prepared by means of γ -ray irradiation of graphene oxide (GO) in a water/ethanol mix solution, and we investigated the influence of reaction parameters, including ethanol concentration, absorbed dose, and dose rate during the irradiation. Due to the good dispersibility of the RGO in the mix solution, we built up flexible and conductive composite films based on the RGO and polymeric matrix through facile vacuum filtration and polymer coating. The electrical and optical properties of the obtained composite films were tested, showing good electrical conductivity with visible transmittance but strong ultraviolet absorbance. PMID:24170985

  9. Preparation of a Two-Dimensional Ion-Imprinted Polymer Based on a Graphene Oxide/SiO₂ Composite for the Selective Adsorption of Nickel Ions.

    PubMed

    Liu, Yan; Meng, Xiangguo; Liu, Zhanchao; Meng, Minjia; Jiang, Fangping; Luo, Min; Ni, Liang; Qiu, Jian; Liu, Fangfang; Zhong, Guoxing

    2015-08-18

    In the present work, a novel two-dimensional (2D) nickel ion-imprinted polymer (RAFT-IIP) has been successfully synthesized based on the graphene oxide/SiO2 composite by reversible addition-fragmentation chain-transfer (RAFT) polymerization. The imprinted materials obtained are characterized by Fourier transmission infrared spectrometry (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The results show that the thermal stability of the graphene oxide/SiO2 composite is obviously higher than that of graphene oxide. RAFT-IIP possesses an excellent 2D homogeneous imprinted polymer layer, which is a well-preserved unique structure of graphene oxide/SiO2. Owing to the intrinsic advantages of RAFT polymerization and 2D imprinted material, RAFT-IIP demonstrate a superior specific adsorption capacity (81.73 mg/g) and faster adsorption kinetics (30 min) for Ni(II) in comparison to the ion-imprinted polymer prepared by traditional radical polymerization and based on the common carbon material. Furthermore, the adsorption isotherm and selectivity toward Ni(II) onto RAFT-IIP and nonimprinted polymer (NIP) are investigated, indicating that RAFT-IIP has splendid recognizing ability and a nearly 3 times larger adsorption capacity than that of NIP (30.94 mg/g). Moreover, a three-level Box-Behnken experimental design with three factors combining the response surface method is utilized to optimize the desorption process. The optimal conditions for the desorption of Ni(II) from RAFT-IIP are as follows: an HCl-type eluent, an eluent concentration of 2.0 mol/L, and an eluent volume of 10 mL. PMID:26204060

  10. Reduced graphene oxide with ultrahigh conductivity as carbon coating layer for high performance sulfur@reduced graphene oxide cathode

    NASA Astrophysics Data System (ADS)

    Zhao, Hongbin; Peng, Zhenhuan; Wang, Wenjun; Chen, Xikun; Fang, Jianhui; Xu, Jiaqiang

    2014-01-01

    We developed hydrogen iodide (HI) reduction of rGO and surfactant-assisted chemical reaction- deposition method to form hybrid material of sulfur (S) encapsulated in reduced graphene oxide (rGO) sheets for rechargeable lithium batteries. The surfactant-assisted chemical reaction-deposition method strategy provides intimate contact between the S and graphene oxide. Chemical reduced rGO with high conductivity as carbon coating layer prevented the dissolution of polysulfide ions and improved the electron transfer. This novel core-shell structured S@rGO composites with high S content showed high reversible capacity, good discharge capacity retention and enhanced rate capability used as cathodes in rechargeable Li/S cells. We demonstrated here that an electrode prepared from a S@rGO with up to 85 wt% S maintains a stable discharge capacity of about 980 mAh g-1 at 0.05 C and 570 mAh g-1 at 1C after 200 cycles charge/discharge. These results emphasize the importance of rGO with high electrical conductivity after HI-reduced rGO homogeneously coating on the surface of S, therefore, effectively alleviating the shuttle phenomenon of polysulfides in organic electrolyte. Our surfactant-assisted chemical reaction-HI reduction approach should offer a new technique for the design and synthesis of battery electrodes based on highly conducting carbon materials.

  11. Nitric oxide-generating l-cysteine-grafted graphene film as a blood-contacting biomaterial.

    PubMed

    Du, Zhen; Dou, Ruixia; Zu, Mian; Liu, Xueying; Yin, Wenyan; Zhao, Yuliang; Chen, Jingbo; Yan, Liang; Gu, Zhanjun

    2016-06-24

    By using polyethylenimine molecules as the linker, l-cysteine was immobilized onto graphene nanosheets, endowing the biocompatible l-cysteine-functionalized graphene film with the ability for catalytic decomposition of exogenous or endogenous donors to generate nitric oxide, and thus inhibiting the platelet activation and aggregation and reducing platelet adhesion. PMID:27111404

  12. Colloidal Properties and Stability of Graphene Oxide Nanomaterials in the Aquatic Environment

    EPA Science Inventory

    While graphene oxide (GO) has been found to be the most toxic graphene-based nanomaterial, its environmental fate is still unexplored. In this study, the aggregation kinetics and stability of GO were investigated using time-resolved dynamic light scattering over a wide range of a...

  13. Polycondensation of boron- and nitrogen-codoped holey graphene monoliths from molecules: carbocatalysts for selective oxidation.

    PubMed

    Li, Xin-Hao; Antonietti, Markus

    2013-04-22

    A simple but powerful chemical process--the copolymerization of biomass (glucose) and boric acid as templated by dicyandiamide (see picture)--was used to fabricate high-quality doped graphene monoliths with through-plane nanopores. The holey graphene monoliths had a high surface area and showed excellent performance as metal-free carbocatalysts for selective oxidation. PMID:23526626

  14. High performance of graphene oxide-doped silicon oxide-based resistance random access memory

    PubMed Central

    2013-01-01

    In this letter, a double active layer (Zr:SiO x /C:SiO x ) resistive switching memory device with outstanding performance is presented. Through current fitting, hopping conduction mechanism is found in both high-resistance state (HRS) and low-resistance state (LRS) of double active layer RRAM devices. By analyzing Raman and FTIR spectra, we observed that graphene oxide exists in C:SiO x layer. Compared with single Zr:SiO x layer structure, Zr:SiO x /C:SiO x structure has superior performance, including low operating current, improved uniformity in both set and reset processes, and satisfactory endurance characteristics, all of which are attributed to the double-layer structure and the existence of graphene oxide flakes formed by the sputter process. PMID:24261454

  15. High performance of graphene oxide-doped silicon oxide-based resistance random access memory.

    PubMed

    Zhang, Rui; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Chen, Kai-Huang; Lou, Jen-Chung; Chen, Jung-Hui; Young, Tai-Fa; Shih, Chih-Cheng; Yang, Ya-Liang; Pan, Yin-Chih; Chu, Tian-Jian; Huang, Syuan-Yong; Pan, Chih-Hung; Su, Yu-Ting; Syu, Yong-En; Sze, Simon M

    2013-01-01

    In this letter, a double active layer (Zr:SiOx/C:SiOx) resistive switching memory device with outstanding performance is presented. Through current fitting, hopping conduction mechanism is found in both high-resistance state (HRS) and low-resistance state (LRS) of double active layer RRAM devices. By analyzing Raman and FTIR spectra, we observed that graphene oxide exists in C:SiOx layer. Compared with single Zr:SiOx layer structure, Zr:SiOx/C:SiOx structure has superior performance, including low operating current, improved uniformity in both set and reset processes, and satisfactory endurance characteristics, all of which are attributed to the double-layer structure and the existence of graphene oxide flakes formed by the sputter process. PMID:24261454

  16. Revealing oxidative damage to enzymes of carbohydrate metabolism in yeast: An integration of 2D DIGE, quantitative proteomics, and bioinformatics.

    PubMed

    Boone, Cory H T; Grove, Ryan A; Adamcova, Dana; Braga, Camila P; Adamec, Jiri

    2016-07-01

    Clinical usage of lidocaine, a pro-oxidant has been linked with severe, mostly neurological complications. The mechanism(s) causing these complications is independent of the blockade of voltage-gated sodium channels. The budding yeast Saccharomyces cerevisiae lacks voltage-gated sodium channels, thus provides an ideal system to investigate lidocaine-induced protein and pathway alterations. Whole-proteome alterations leading to these complications have not been identified. To address this, S. cerevisiae was grown to stationary phase and exposed to an LC50 dose of lidocaine. The differential proteomes of lidocaine treatment and control were resolved 6 h post exposure using 2D DIGE. Amine reactive dyes and carbonyl reactive dyes were used to assess protein abundance and protein oxidation, respectively. Quantitative analysis of these dyes (⩾ 1.5-fold alteration, p ⩽ 0.05) revealed a total of 33 proteoforms identified by MS differing in abundance and/or oxidation upon lidocaine exposure. Network analysis showed enrichment of apoptotic proteins and cell wall maintenance proteins, while the abundance of proteins central to carbohydrate metabolism, such as triosephosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase, and redox proteins superoxide dismutase and peroxiredoxin were significantly decreased. Enzymes of carbohydrate metabolism, such as phosphoglycerate kinase and enolase, the TCA cycle enzyme aconitase, and multiple ATP synthase subunits were found to be oxidatively modified. Also, the activity of aconitase was found to be decreased. Overall, these data suggest that toxic doses of lidocaine induce significant disruption of glycolytic pathways, energy production, and redox balance, potentially leading to cell malfunction and death. PMID:27193513

  17. Characteristics of electro-refractive modulating based on Graphene-Oxide-Silicon waveguide.

    PubMed

    Xu, Chao; Jin, Yichang; Yang, Longzhi; Yang, Jianyi; Jiang, Xiaoqing

    2012-09-24

    Graphene has attracted a high level of research interest because of its outstanding electronic transport properties and optical properties. Based on the Kubo formalism and the Maxwell equations, it's demonstrated that the optical conductivity of graphene can be controlled through the applied voltage. And we find that the graphene-oxide-silicon (GOS) based waveguide can be made into either the electro-absorptive or electron-refractive modulators. Using graphene as the active medium, we present a new electro-refractive Mach-Zender interferometer based on the GOS structure. This new GOS-based electron-refractive modulation mechanism can enable novel architectures for on-chip optical communications. PMID:23037388

  18. No cytotoxicity or genotoxicity of graphene and graphene oxide in murine lung epithelial FE1 cells in vitro.

    PubMed

    Bengtson, Stefan; Kling, Kirsten; Madsen, Anne Mette; Noergaard, Asger W; Jacobsen, Nicklas Raun; Clausen, Per Axel; Alonso, Beatriz; Pesquera, Amaia; Zurutuza, Amaia; Ramos, Raphael; Okuno, Hanako; Dijon, Jean; Wallin, Håkan; Vogel, Ulla

    2016-07-01

    Graphene and graphene oxide receive much attention these years, because they add attractive properties to a wide range of applications and products. Several studies have shown toxicological effects of other carbon-based nanomaterials such as carbon black nanoparticles and carbon nanotubes in vitro and in vivo. Here, we report in-depth physicochemical characterization of three commercial graphene materials, one graphene oxide (GO) and two reduced graphene oxides (rGO) and assess cytotoxicity and genotoxicity in the murine lung epithelial cell line FE1. The studied GO and rGO mainly consisted of 2-3 graphene layers with lateral sizes of 1-2 µm. GO had almost equimolar content of C, O, and H while the two rGO materials had lower contents of oxygen with C/O and C/H ratios of 8 and 12.8, respectively. All materials had low levels of endotoxin and low levels of inorganic impurities, which were mainly sulphur, manganese, and silicon. GO generated more ROS than the two rGO materials, but none of the graphene materials influenced cytotoxicity in terms of cell viability and cell proliferation after 24 hr. Furthermore, no genotoxicity was observed using the alkaline comet assay following 3 or 24 hr of exposure. We demonstrate that chemically pure, few-layered GO and rGO with comparable lateral size (> 1 µm) do not induce significant cytotoxicity or genotoxicity in FE1 cells at relatively high doses (5-200 µg/ml). Environ. Mol. Mutagen. 57:469-482, 2016. © 2016 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc. PMID:27189646

  19. Hierarchical networks of redox-active reduced crumpled graphene oxide and functionalized few-walled carbon nanotubes for rapid electrochemical energy storage.

    PubMed

    Lee, Byeongyong; Lee, Chongmin; Liu, Tianyuan; Eom, Kwangsup; Chen, Zhongming; Noda, Suguru; Fuller, Thomas F; Jang, Hee Dong; Lee, Seung Woo

    2016-06-16

    Crumpled graphene is known to have a strong aggregation-resistive property due to its unique 3D morphology, providing a promising solution to prevent the restacking issue of graphene based electrode materials. Here, we demonstrate the utilization of redox-active oxygen functional groups on the partially reduced crumpled graphene oxide (r-CGO) for electrochemical energy storage applications. To effectively utilize the surface redox reactions of the functional groups, hierarchical networks of electrodes including r-CGO and functionalized few-walled carbon nanotubes (f-FWNTs) are assembled via a vacuum-filtration process, resulting in a 3D porous structure. These composite electrodes are employed as positive electrodes in Li-cells, delivering high gravimetric capacities of up to ∼170 mA h g(-1) with significantly enhanced rate-capability compared to the electrodes consisting of conventional 2D reduced graphene oxide and f-FWNTs. These results highlight the importance of microstructure design coupled with oxygen chemistry control, to maximize the surface redox reactions on functionalized graphene based electrodes. PMID:27273722

  20. Separation of tritiated water using graphene oxide membrane

    SciTech Connect

    Sevigny, Gary J.; Motkuri, Radha K.; Gotthold, David W.; Fifield, Leonard S.; Frost, Anthony P.; Bratton, Wesley

    2015-06-28

    In future nuclear fuel reprocessing plants and possibly for nuclear power plants, the cleanup of tritiated water will be needed for hundreds of thousands of gallons of water with low activities of tritium. This cleanup concept utilizes graphene oxide laminar membranes (GOx) for the separation of low-concentration (10-3-10 µCi/g) tritiated water to create water that can be released to the environment and a much smaller waste stream with higher tritium concentrations. Graphene oxide membranes consist of hierarchically stacked, overlapping molecular layers and represent a new class of materials. A permeation rate test was performed with a 2-µm-thick cast Asbury membrane using mixed gas permeability testing with zero air (highly purified atmosphere) and with air humidified with either H2O or D2O to a nominal 50% relative humidity. The membrane permeability for both H2O and D2O was high with N2 and O2 at the system measurement limit. The membrane water permeation rate was compared to a Nafion® membrane and the GOx permeation was approximately twice as high at room temperature. The H2O vapor permeation rate was 5.9 × 102 cc/m2/min (1.2 × 10-6 g/min-cm2), which is typical for graphene oxide membranes. To demonstrate the feasibility of such isotopic water separation through GOX laminar membranes, an experimental setup was constructed to use pressure-driven separation by heating the isotopic water mixture at one side of the membrane to create steam while cooling the other side. Several membranes were tested and were prepared using different starting materials and by different pretreatment methods. The average separation result was 0.8 for deuterium and 0.6 for tritium. Higher or lower temperatures may also improve separation efficiency but neither has been tested yet. A rough estimate of cost compared to current technology was also included as an indication of potential viability of the process. The relative process costs were based on the rough size of facility to

  1. Single-step synthesis of graphene quantum dots by femtosecond laser ablation of graphene oxide dispersions.

    PubMed

    Russo, Paola; Liang, Robert; Jabari, Elahe; Marzbanrad, Ehsan; Toyserkani, Ehsan; Zhou, Y Norman

    2016-04-21

    In the last few years, graphene quantum dots (GQDs) have attracted the attention of many research groups for their outstanding properties, which include low toxicity, chemical stability and photoluminescence. One of the challenges of GQD synthesis is finding a single-step, cheap and sustainable approach for synthesizing these promising nanomaterials. In this study, we demonstrate that femtosecond laser ablation of graphene oxide (GO) dispersions could be employed as a facile and environmentally friendly synthesis method for GQDs. With the proper control of laser ablation parameters, such as ablation time and laser power, it is possible to produce GQDs with average sizes of 2-5 nm, emitting a blue luminescence at 410 nm. We tested the feasibility of the synthesized GQDs as materials for electronic devices by aerosol-jet printing of an ink that is a mixture of water dispersion of laser synthesized GQDs and silver nanoparticle dispersion, which resulted in lower resistivity of the final printed patterns. Preliminary results showed that femtosecond laser synthesized GQDs can be mixed with silver nanoparticle dispersion to fabricate a hybrid material, which can be employed in printing electronic devices by either printing patterns that are more conductive and/or reducing costs of the ink by decreasing the concentration of silver nanoparticles (AgNPs) in the ink. PMID:27071944

  2. Highly Tunable Aptasensing Microarrays with Graphene Oxide Multilayers

    PubMed Central

    Jung, Yun Kyung; Lee, Taemin; Shin, Eeseul; Kim, Byeong-Su

    2013-01-01

    A highly tunable layer-by-layer (LbL)-assembled graphene oxide (GO) array has been devised for high-throughput multiplex protein sensing. In this array, the fluorescence of different target-bound aptamers labeled with dye is efficiently quenched by GO through fluorescence resonance energy transfer (FRET), and simultaneous multiplex target detection is performed by recovering the quenched fluorescence caused by specific binding between an aptamer and a protein. Thin GO films consisting of 10 bilayers displayed a high quenching ability, yielding over 85% fluorescence quenching with the addition of a 2 μM dye-labeled aptamer. The limit for human thrombin detection in the 6- and 10-bilayered GO array is estimated to be 0.1 and 0.001 nM, respectively, indicating highly tunable nature of LbL assembled GO multilayers in controlling the sensitivity of graphene-based FRET aptasensor. Furthermore, the GO chip could be reused up to four times simply by cleaning it with distilled water. PMID:24284474

  3. Preparation and Mechanical Properties of Graphene Oxide: Cement Nanocomposites

    PubMed Central

    Babak, Fakhim; Abolfazl, Hassani; Alimorad, Rashidi; Parviz, Ghodousi

    2014-01-01

    We investigate the performance of graphene oxide (GO) in improving mechanical properties of cement composites. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1–2 wt% GO and 0.5 wt% superplasticizer was measured and compared with that of cement prepared without GO. We found that the tensile strength of the cement mortar increased with GO content, reaching 1.5%, a 48% increase in tensile strength. Ultra high-resolution field emission scanning electron microscopy (FE-SEM) used to observe the fracture surface of samples containing 1.5 wt% GO indicated that the nano-GO flakes were well dispersed in the matrix, and no aggregates were observed. FE-SEM observation also revealed good bonding between the GO surfaces and the surrounding cement matrix. In addition, XRD diffraction data showed growth of the calcium silicate hydrates (C-S-H) gels in GO cement mortar compared with the normal cement mortar. PMID:24574878

  4. Porous reduced graphene oxide membrane with enhanced gauge factor

    NASA Astrophysics Data System (ADS)

    Li, Jen-Chieh; Weng, Cheng-Hsi; Tsai, Fu-Cheng; Shih, Wen-Pin; Chang, Pei-Zen

    2016-01-01

    This paper shows that a porous structure for a reduced graphene oxide (rGO) membrane effectively enhances its gauge factor. A porous graphene-based membrane was synthesized in a liquid phase by combining a GO sheet with copper hydroxide nanostrands (CHNs). A chemical reduction treatment using L-ascorbic acid was utilized to simultaneously improve the conductivity of GO and remove the CHNs from each GO sheet. The intrinsic gauge factors of the porous rGO membrane with varying applied tensile strains were obtained and found to increase monotonically with the increased porosity of the rGO membrane. For a membrane porosity of 15.78%, the maximum gauge factor is 46.1 under an applied strain of less than 1%. The main mechanism behind the enhanced gauge factor is attributed to the structure of the porous rGO membrane. The relationships between the initial electrical resistance, tunneling distance, and gauge factor of the rGO membrane were found by adjusting the membrane porosity and the results completely confirmed the physical phenomena.

  5. Highly Tunable Aptasensing Microarrays with Graphene Oxide Multilayers

    NASA Astrophysics Data System (ADS)

    Jung, Yun Kyung; Lee, Taemin; Shin, Eeseul; Kim, Byeong-Su

    2013-11-01

    A highly tunable layer-by-layer (LbL)-assembled graphene oxide (GO) array has been devised for high-throughput multiplex protein sensing. In this array, the fluorescence of different target-bound aptamers labeled with dye is efficiently quenched by GO through fluorescence resonance energy transfer (FRET), and simultaneous multiplex target detection is performed by recovering the quenched fluorescence caused by specific binding between an aptamer and a protein. Thin GO films consisting of 10 bilayers displayed a high quenching ability, yielding over 85% fluorescence quenching with the addition of a 2 μM dye-labeled aptamer. The limit for human thrombin detection in the 6- and 10-bilayered GO array is estimated to be 0.1 and 0.001 nM, respectively, indicating highly tunable nature of LbL assembled GO multilayers in controlling the sensitivity of graphene-based FRET aptasensor. Furthermore, the GO chip could be reused up to four times simply by cleaning it with distilled water.

  6. Molecular interactions of graphene oxide with human blood plasma proteins

    NASA Astrophysics Data System (ADS)

    Kenry, Affa Affb Affc; Loh, Kian Ping; Lim, Chwee Teck

    2016-04-01

    We investigate the molecular interactions between graphene oxide (GO) and human blood plasma proteins. To gain an insight into the bio-physico-chemical activity of GO in biological and biomedical applications, we performed a series of biophysical assays to quantify the molecular interactions between GO with different lateral size distributions and the three essential human blood plasma proteins. We elucidate the various aspects of the GO-protein interactions, particularly, the adsorption, binding kinetics and equilibrium, and conformational stability, through determination of quantitative parameters, such as GO-protein association constants, binding cooperativity, and the binding-driven protein structural changes. We demonstrate that the molecular interactions between GO and plasma proteins are significantly dependent on the lateral size distribution and mean lateral sizes of the GO nanosheets and their subtle variations may markedly influence the GO-protein interactions. Consequently, we propose the existence of size-dependent molecular interactions between GO nanosheets and plasma proteins, and importantly, the presence of specific critical mean lateral sizes of GO nanosheets in achieving very high association and fluorescence quenching efficiency of the plasma proteins. We anticipate that this work will provide a basis for the design of graphene-based and other related nanomaterials for a plethora of biological and biomedical applications.

  7. Peroxide induced tin oxide coating of graphene oxide at room temperature and its application for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Sladkevich, S.; Gun, J.; Prikhodchenko, P. V.; Gutkin, V.; Mikhaylov, A. A.; Novotortsev, V. M.; Zhu, J. X.; Yang, D.; Hng, H. H.; Tay, Y. Y.; Tsakadze, Z.; Lev, O.

    2012-12-01

    We describe a new, simple and low-temperature method for ultra-thin coating of graphene oxide (GO) by peroxostannate, tin oxide or a mixture of tin and tin oxide crystallites by different treatments. The technique is environmentally friendly and does not require complicated infrastructure, an autoclave or a microwave. The supported peroxostannate phase is partially converted after drying to crystalline tin oxide with average, 2.5 nm cassiterite crystals. Mild heat treatment yielded full coverage of the reduced graphene oxide by crystalline tin oxide. Extensive heat treatment in vacuum at >500  °C yielded a mixture of elemental tin and cassiterite tin oxide nanoparticles supported on reduced graphene oxide (rGO). The usefulness of the new approach was demonstrated by the preparation of two types of lithium ion anodes: tin oxide-rGO and a mixture of tin oxide and tin coated rGO composites (SnO2-Sn-rGO). The electrodes exhibited stable charge/discharge cyclability and high charging capacity due to the intimate contact between the conductive graphene and the very small tin oxide crystallites. The charging/discharging capacity of the anodes exceeded the theoretical capacity predicted based on tin lithiation. The tin oxide coated rGO exhibited higher charging capacity but somewhat lower stability upon extended charge/discharge cycling compared to SnO2-Sn-rGO.

  8. High-κ oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors

    PubMed Central

    Liao, Lei; Bai, Jingwei; Qu, Yongquan; Lin, Yung-chen; Li, Yujing; Huang, Yu; Duan, Xiangfeng

    2010-01-01

    Deposition of high-κ dielectrics onto graphene is of significant challenge due to the difficulties of nucleating high quality oxide on pristine graphene without introducing defects into the monolayer of carbon lattice. Previous efforts to deposit high-κ dielectrics on graphene often resulted in significant degradation in carrier mobility. Here we report an entirely new strategy to integrate high quality high-κ dielectrics with graphene by first synthesizing freestanding high-κ oxide nanoribbons at high temperature and then transferring them onto graphene at room temperature. We show that single crystalline Al2O3 nanoribbons can be synthesized with excellent dielectric properties. Using such nanoribbons as the gate dielectrics, we have demonstrated top-gated graphene transistors with the highest carrier mobility (up to 23,600 cm2/V·s) reported to date, and a more than 10-fold increase in transconductance compared to the back-gated devices. This method opens a new avenue to integrate high-κ dielectrics on graphene with the preservation of the pristine nature of graphene and high carrier mobility, representing an important step forward to high-performance graphene electronics. PMID:20308584

  9. Functionalization of Titanium Alloy Surface by Graphene Nanoplatelets and Metal Oxides: Corrosion Inhibition.

    PubMed

    Mondal, Jayanta; Aarik, Lauri; Kozlova, Jekaterina; Niilisk, Ahti; Mändar, Hugo; Mäeorg, Uno; Simões, Alda; Sammelselg, Väino

    2015-09-01

    Corrosion inhibition of metallic substrates is an important and crucial step for great economical as well as environmental savings. In this paper, we introduce an extra thin effective corrosion inhibitive material having layered structure designed for protection and functionalization of Ti Grade 5 alloy substrates. The coating consists of a first layer made of thin graphene nanoplatelets, on top of which a multilayer Al2O3 and TiO2 films is applied by low-temperature atomic layer deposition. The amorphous structure of the metal oxide films was confirmed by micro-Raman and X-ray diffraction analysis. Corrosion inhibition ability of the prepared coatings was analyzed by open circuit potential, potentiodynamic plot and by voltammetric analysis, in aqueous potassium bromide solution. The open circuit potential of the graphene-metal oxide coated substrate showed much passive nature than bare substrate or graphene coated or only metal oxide coated substrates. The localized corrosion potential of the graphene-metal oxide coated, only metal oxide coated, and bare substrates were found 5.5, 3.0, and 1.1 V, respectively. In addition, corrosion current density values of the graphene-metal oxide and only metal oxide coated substrates showed much more passive nature than the bare and graphene coated substrates. Long immersion test in the salt solution further clarified the effective corrosion inhibition of the graphene-metal oxide coated substrate. The analyzed results reflect that the graphene-metal oxide films can be used to prepare better and effective corrosion inhibition coatings for the Ti Grade 5 alloy to increase their lifetime. PMID:26716209

  10. Studies of Reduced Graphene Oxide and Graphite Oxide in the Aspect of Their Possible Application in Gas Sensors

    PubMed Central

    Drewniak, Sabina; Muzyka, Roksana; Stolarczyk, Agnieszka; Pustelny, Tadeusz; Kotyczka-Morańska, Michalina; Setkiewicz, Maciej

    2016-01-01

    The paper presents the results of investigations on resistance structures based on graphite oxide (GRO) and graphene oxide (rGO). The subject matter of the investigations was thaw the sensitivity of the tested structures was affected by hydrogen, nitrogen dioxide and carbon dioxide. The experiments were performed at a temperature range from 30 °C to 150 °C in two carrier gases: nitrogen and synthetic air. The measurements were also aimed at characterization of the graphite oxide and graphene oxide. In our measurements we used (among others) techniques such as: Atomic Force Microscopy (AFM); Scanning Electron Microscopy (SEM); Raman Spectroscopy (RS); Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Photoelectron Microscopy (XPS). The data resulting from the characterizations of graphite oxide and graphene oxide have made it possible to interpret the obtained results from the point of view of physicochemical changes occurring in these structures. PMID:26784198

  11. Studies of Reduced Graphene Oxide and Graphite Oxide in the Aspect of Their Possible Application in Gas Sensors.

    PubMed

    Drewniak, Sabina; Muzyka, Roksana; Stolarczyk, Agnieszka; Pustelny, Tadeusz; Kotyczka-Morańska, Michalina; Setkiewicz, Maciej

    2015-01-01

    The paper presents the results of investigations on resistance structures based on graphite oxide (GRO) and graphene oxide (rGO). The subject matter of the investigations was thaw the sensitivity of the tested structures was affected by hydrogen, nitrogen dioxide and carbon dioxide. The experiments were performed at a temperature range from 30 °C to 150 °C in two carrier gases: nitrogen and synthetic air. The measurements were also aimed at characterization of the graphite oxide and graphene oxide. In our measurements we used (among others) techniques such as: Atomic Force Microscopy (AFM); Scanning Electron Microscopy (SEM); Raman Spectroscopy (RS); Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Photoelectron Microscopy (XPS). The data resulting from the characterizations of graphite oxide and graphene oxide have made it possible to interpret the obtained results from the point of view of physicochemical changes occurring in these structures. PMID:26784198

  12. Electrochemiluminescence resonance energy transfer between graphene quantum dots and graphene oxide for sensitive protein kinase activity and inhibitor sensing.

    PubMed

    Liang, Ru-Ping; Qiu, Wei-Bin; Zhao, Hui-Fang; Xiang, Cai-Yun; Qiu, Jian-Ding

    2016-01-21

    Herein, a novel electrochemiluminescence resonance energy transfer (ECL-RET) biosensor using graphene quantum dots (GQDs) as donor and graphene oxide (GO) as acceptor for monitoring the activity of protein kinase was presented for the first time. Anti-phosphoserine antibody conjugated graphene oxide (Ab-GO) nonocomposite could be captured onto the phosphorylated peptide/GQDs modified electrode surface through antibody-antigen interaction in the presence of casein kinase II (CK2) and adenosine 5'-triphosphate (ATP), resulting in ECL from the GQDs quenching by closely contacting GO. This ECL quenching degree was positively correlated with CK2 activity. Therefore, on the basis of ECL-RET between GQDs and GO, the activity of protein kinase can be detected sensitively. This biosensor can also be used for quantitative analysis CK2 activity in serum samples and qualitative screening kinase inhibition, indicating the potential application of the developed method in biochemical fundamental research and clinical diagnosis. PMID:26724763

  13. Functionalized graphene oxide for clinical glucose biosensing in urine and serum samples

    PubMed Central

    Veerapandian, Murugan; Seo, Yeong-Tai; Shin, Hyunkyung; Yun, Kyusik; Lee, Min-Ho

    2012-01-01

    A novel clinical glucose biosensor fabricated using functionalized metalloid-polymer (silver-silica coated with polyethylene glycol) hybrid nanoparticles on the surface of a graphene oxide nanosheet is reported. The cyclic voltammetric response of glucose oxidase modification on the surface of a functionalized graphene oxide electrode showed a surface-confined reaction and an effective redox potential near zero volts, with a wide linearity of 0.1–20 mM and a sensitivity of 7.66 μA mM−1 cm−2. The functionalized graphene oxide electrode showed a better electrocatalytic response toward oxidation of H2O2 and reduction of oxygen. The practical applicability of the functionalized graphene oxide electrode was demonstrated by measuring the peak current against multiple urine and serum samples from diabetic patients. This new hybrid nanoarchitecture combining a three-dimensional metalloid-polymer hybrid and two-dimensional graphene oxide provided a thin solid laminate on the electrode surface. The easy fabrication process and retention of bioactive immobilized enzymes on the functionalized graphene oxide electrode could potentially be extended to detection of other biomolecules, and have broad applications in electrochemical biosensing. PMID:23269871

  14. Functionalized graphene oxide for clinical glucose biosensing in urine and serum samples.

    PubMed

    Veerapandian, Murugan; Seo, Yeong-Tai; Shin, Hyunkyung; Yun, Kyusik; Lee, Min-Ho

    2012-01-01

    A novel clinical glucose biosensor fabricated using functionalized metalloid-polymer (silver-silica coated with polyethylene glycol) hybrid nanoparticles on the surface of a graphene oxide nanosheet is reported. The cyclic voltammetric response of glucose oxidase modification on the surface of a functionalized graphene oxide electrode showed a surface-confined reaction and an effective redox potential near zero volts, with a wide linearity of 0.1-20 mM and a sensitivity of 7.66 μA mM(-1) cm(-2). The functionalized graphene oxide electrode showed a better electrocatalytic response toward oxidation of H(2)O(2) and reduction of oxygen. The practical applicability of the functionalized graphene oxide electrode was demonstrated by measuring the peak current against multiple urine and serum samples from diabetic patients. This new hybrid nanoarchitecture combining a three-dimensional metalloid-polymer hybrid and two-dimensional graphene oxide provided a thin solid laminate on the electrode surface. The easy fabrication process and retention of bioactive immobilized enzymes on the functionalized graphene oxide electrode could potentially be extended to detection of other biomolecules, and have broad applications in electrochemical biosensing. PMID:23269871

  15. Nitrogen-doped and simultaneously reduced graphene oxide with superior dispersion as electrocatalysts for oxygen reduction reaction

    SciTech Connect

    Lee, Cheol-Ho; Yun, Jin-Mun; Lee, Sungho; Jo, Seong Mu; Yoo, Sung Jong; Cho, Eun Ae; Khil, Myung-Seob; Joh, Han-Ik

    2014-11-15

    Nitrogen doped graphene oxide (Nr-GO) with properties suitable for electrocatalysts is easily synthesized using phenylhydrazine as a reductant at relatively low temperature. The reducing agent removes various oxygen functional groups bonded to graphene oxide and simultaneously dope the nitrogen atoms bonded with phenyl group all over the basal planes and edge sites of the graphene. The Nr-GO exhibits remarkable electrocatalytic activities for oxygen reduction reaction compared to the commercial carbon black and graphene oxide due to the electronic modification of the graphene structure. In addition, Nr-GO shows excellent dispersibility in various solvent due to the dopant molecules.

  16. Cyano-bridged coordination polymer hydrogel-derived Sn-Fe binary oxide nanohybrids with structural diversity: from 3D, 2D, to 2D/1D and enhanced lithium-storage performance.

    PubMed

    Zhang, Weiyu; Zhu, Xiaoshu; Chen, Xuguang; Zhou, Yiming; Tang, Yawen; Ding, Liangxin; Wu, Ping

    2016-05-14

    Metal oxide nanohybrids with uniform dimensions and controlled architectures possess unique compositional and structural superiorities, and thus harbor promising potential for a series of applications in energy, catalysis, and sensing systems. Herein, we propose a facile, general, and scalable cyano-bridged coordination polymer hydrogel-derived thermal-oxidation route for the construction of main-group metal and transition-metal heterometallic oxide nanohybrids with controlled constituents and architectures. The formation of Sn-Fe binary oxide nanohybrids has been demonstrated as an example by using cyano-bridged Sn(iv)-Fe(ii) bimetallic coordination polymer hydrogels (i.e., SnCl4-K4Fe(CN)6 cyanogels, Sn-Fe cyanogels) as precursors. The physicochemical properties of Sn-Fe cyanogels with different Sn/Fe ratios have been systematically examined, and it is found that perfect Sn-Fe cyanogels without unbridged Sn(iv) or Fe(ii) can be formed with Sn/Fe ratios from 2 : 1 to 1 : 2. More importantly, the simple adjustment of Sn/Fe ratios in the Sn-Fe cyanogel precursors can realize flexible dimensional control of the Sn-Fe binary oxide nanohybrids, and 2D/1D SnO2-Fe2O3 hierarchitectures, 2D SnO2-Fe2O3 nanosheets, and 3D SnO2-Fe2O3 networks have been synthesized using the Sn-Fe 1 : 2, Sn-Fe 1 : 1, and Sn-Fe 2 : 1 cyanogels as precursors, respectively. To demonstrate their compositional/structural superiorities and potential applications, the lithium-storage utilization of the Sn-Fe binary oxide nanohybrids has been selected as an objective application, and the nanohybrids exhibit Sn/Fe ratio-dependent lithium-storage performance. As a representative example, the 2D/1D SnO2-Fe2O3 hierarchitectures manifest markedly enhanced Li-storage performance in terms of reversible capacities and cycling stability in comparison with their constituent units, i.e., bare SnO2 nanosheets and Fe2O3 nanorods. The proposed cyanogel-derived thermal-oxidation strategy could

  17. Plasticity and ductility in graphene oxide through a mechanochemically induced damage tolerance mechanism.

    PubMed

    Wei, Xiaoding; Mao, Lily; Soler-Crespo, Rafael A; Paci, Jeffrey T; Huang, Jiaxing; Nguyen, SonBinh T; Espinosa, Horacio D

    2015-01-01

    The ability to bias chemical reaction pathways is a fundamental goal for chemists and material scientists to produce innovative materials. Recently, two-dimensional materials have emerged as potential platforms for exploring novel mechanically activated chemical reactions. Here we report a mechanochemical phenomenon in graphene oxide membranes, covalent epoxide-to-ether functional group transformations that deviate from epoxide ring-opening reactions, discovered through nanomechanical experiments and density functional-based tight binding calculations. These mechanochemical transformations in a two-dimensional system are directionally dependent, and confer pronounced plasticity and damage tolerance to graphene oxide monolayers. Additional experiments on chemically modified graphene oxide membranes, with ring-opened epoxide groups, verify this unique deformation mechanism. These studies establish graphene oxide as a two-dimensional building block with highly tuneable mechanical properties for the design of high-performance nanocomposites, and stimulate the discovery of new bond-selective chemical transformations in two-dimensional materials. PMID:26289729

  18. Localized conductive patterning via focused electron beam reduction of graphene oxide

    NASA Astrophysics Data System (ADS)

    Kim, Songkil; Kulkarni, Dhaval D.; Henry, Mathias; Zackowski, Paul; Jang, Seung Soon; Tsukruk, Vladimir V.; Fedorov, Andrei G.

    2015-03-01

    We report on a method for "direct-write" conductive patterning via reduction of graphene oxide (GO) sheets using focused electron beam induced deposition (FEBID) of carbon. FEBID treatment of the intrinsically dielectric graphene oxide between two metal terminals opens up the conduction channel, thus enabling a unique capability for nanoscale conductive domain patterning in GO. An increase in FEBID electron dose results in a significant increase of the domain electrical conductivity with improving linearity of drain-source current vs. voltage dependence, indicative of a change of graphene oxide electronic properties from insulating to semiconducting. Density functional theory calculations suggest a possible mechanism underlying this experimentally observed phenomenon, as localized reduction of graphene oxide layers via interactions with highly reactive intermediates of electron-beam-assisted dissociation of surface-adsorbed hydrocarbon molecules. These findings establish an unusual route for using FEBID as nanoscale lithography and patterning technique for engineering carbon-based nanomaterials and devices with locally tailored electronic properties.

  19. Sunlight affects aggregation and deposition of graphene oxide in the aquatic environment.

    EPA Science Inventory

    In this study, we investigate the role of simulated sunlight on the physicochemical properties, aggregation, and deposition of graphene oxide (GO) in aquatic environments. Results show that light exposure under varied environmental conditions significantly impacts the physicochem...

  20. Barium hexaferrite/graphene oxide: controlled synthesis and characterization and investigation of its magnetic properties

    NASA Astrophysics Data System (ADS)

    Maddahfar, Mahnaz; Ramezani, Majid; Mostafa Hosseinpour-Mashkani, S.

    2016-08-01

    In the present study, barium hexaferrite nanocrystals (BaFe12O19) were successfully synthesized through the two-step sol-gel method in an aqueous solution in the presence of barium nitrate and iron (III) nitrate. Besides, the effect of the molar ratio of graphene oxide on the particle size and magnetic properties of final product was investigated. In this research, glucose plays a role as capping and chelating agent in the synthesis of BaFe12O19/graphene oxide. Moreover, it was found that the size, morphology, and magnetic properties of the final products could be greatly influenced by the molar ratio of graphene oxide. BaFe12O19/graphene oxide was characterized by using X-ray diffraction, scanning electron microscope, Fourier transform infrared spectroscopy, vibrating sample magnetometer, and energy-dispersive spectrometry.

  1. Localized conductive patterning via focused electron beam reduction of graphene oxide

    SciTech Connect

    Kim, Songkil; Henry, Mathias; Kulkarni, Dhaval D.; Zackowski, Paul; Jang, Seung Soon; Tsukruk, Vladimir V.; Fedorov, Andrei G.

    2015-03-30

    We report on a method for “direct-write” conductive patterning via reduction of graphene oxide (GO) sheets using focused electron beam induced deposition (FEBID) of carbon. FEBID treatment of the intrinsically dielectric graphene oxide between two metal terminals opens up the conduction channel, thus enabling a unique capability for nanoscale conductive domain patterning in GO. An increase in FEBID electron dose results in a significant increase of the domain electrical conductivity with improving linearity of drain-source current vs. voltage dependence, indicative of a change of graphene oxide electronic properties from insulating to semiconducting. Density functional theory calculations suggest a possible mechanism underlying this experimentally observed phenomenon, as localized reduction of graphene oxide layers via interactions with highly reactive intermediates of electron-beam-assisted dissociation of surface-adsorbed hydrocarbon molecules. These findings establish an unusual route for using FEBID as nanoscale lithography and patterning technique for engineering carbon-based nanomaterials and devices with locally tailored electronic properties.

  2. Transparent conductive reduced graphene oxide thin films produced by spray coating

    NASA Astrophysics Data System (ADS)

    Shi, HongFei; Wang, Can; Sun, ZhiPei; Zhou, YueLiang; Jin, KuiJuan; Yang, GuoZhen

    2015-01-01

    Reduced graphene oxide thin films were fabricated on quartz by spray coating method using a stable dispersion of reduced graphene oxide in N,N-Dimethylformamide. The dispersion was produced by chemical reduction of graphene oxide, and the film thickness was controlled with the amount of spray volume. AFM measurements revealed that the thin films have near-atomically flat surface. The chemical and structural parameters of the samples were analyzed by Raman and XPS studies. It was found that the thin films show electrical conductivity with good optical transparency in the visible to near infrared region. The sheet resistance of the films can be significantly reduced by annealing in vacuum and reach 58 kΩ with a light transmittance of 68.69% at 550 nm. The conductive transparent properties of the reduced graphene oxide thin films would be useful to develop flexible electronics.

  3. A 3D scaffold for ultra-sensitive reduced graphene oxide gas sensors

    NASA Astrophysics Data System (ADS)

    Yun, Yong Ju; Hong, Won G.; Choi, Nak-Jin; Park, Hyung Ju; Moon, Seung Eon; Kim, Byung Hoon; Song, Ki-Bong; Jun, Yongseok; Lee, Hyung-Kun

    2014-05-01

    An ultra-sensitive gas sensor based on a reduced graphene oxide nanofiber mat was successfully fabricated using a combination of an electrospinning method and graphene oxide wrapping through an electrostatic self-assembly, followed by a low-temperature chemical reduction. The sensor showed excellent sensitivity to NO2 gas.An ultra-sensitive gas sensor based on a reduced graphene oxide nanofiber mat was successfully fabricated using a combination of an electrospinning method and graphene oxide wrapping through an electrostatic self-assembly, followed by a low-temperature chemical reduction. The sensor showed excellent sensitivity to NO2 gas. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00332b

  4. Rhodium complex immobilized on graphene oxide as an efficient and recyclable catalyst for hydrogenation of cyclohexene.

    PubMed

    Zhao, Qingshan; Chen, Dafa; Li, Yang; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2013-02-01

    Rhodium complexes can be homogeneously immobilized on functionalized graphene oxide through coordination interaction. The obtained catalyst can be readily recycled and shows enhanced activity in the catalytic hydrogenation of cyclohexene. PMID:23238302

  5. Plasticity and ductility in graphene oxide through a mechanochemically induced damage tolerance mechanism

    PubMed Central

    Wei, Xiaoding; Mao, Lily; Soler-Crespo, Rafael A.; Paci, Jeffrey T.; Espinosa, Horacio D.

    2015-01-01

    The ability to bias chemical reaction pathways is a fundamental goal for chemists and material scientists to produce innovative materials. Recently, two-dimensional materials have emerged as potential platforms for exploring novel mechanically activated chemical reactions. Here we report a mechanochemical phenomenon in graphene oxide membranes, covalent epoxide-to-ether functional group transformations that deviate from epoxide ring-opening reactions, discovered through nanomechanical experiments and density functional-based tight binding calculations. These mechanochemical transformations in a two-dimensional system are directionally dependent, and confer pronounced plasticity and damage tolerance to graphene oxide monolayers. Additional experiments on chemically modified graphene oxide membranes, with ring-opened epoxide groups, verify this unique deformation mechanism. These studies establish graphene oxide as a two-dimensional building block with highly tuneable mechanical properties for the design of high-performance nanocomposites, and stimulate the discovery of new bond-selective chemical transformations in two-dimensional materials. PMID:26289729

  6. Selective oxidation of veratryl alcohol with composites of Au nanoparticles and graphene quantum dots as catalysts.

    PubMed

    Wu, Xiaochen; Guo, Shouwu; Zhang, Jingyan

    2015-04-14

    Veratryl alcohol can be oxidized to veratryl aldehyde or veratric acid with excellent selectivity and efficient conversion under acidic and alkaline conditions using Au nanoparticles and graphene quantum dot composites (Au/GQDs) as catalysts. PMID:25760658

  7. Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application.

    PubMed

    Singh, Avanish Pratap; Mishra, Monika; Chandra, Amita; Dhawan, S K

    2011-11-18

    This paper deals with the preparation of graphene oxide-ferrofluid-cement nanocomposites to evaluate the electromagnetic interference (EMI) shielding effectiveness (SE) in the 8.2-12.4 GHz frequency range. It has been observed that incorporation of graphene oxide (30 wt%) along with an appropriate amount of ferrofluid in the cement matrix leads to a shielding effectiveness of 46 dB (>99% attenuation).The presence of graphene oxide and ferrofluid in the cement leads to strong polarizations and magnetic losses that consequently result in higher shielding effectiveness compared to pristine cement. The resulting nanocomposites have shown Shore hardness of 54 and dc conductivity of 10.40 S cm( - 1). SEM reveals the homogeneous dispersion of graphene oxide and ferrofluid in the cement matrix. PMID:22024967

  8. Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application

    NASA Astrophysics Data System (ADS)

    Pratap Singh, Avanish; Mishra, Monika; Chandra, Amita; Dhawan, S. K.

    2011-11-01

    This paper deals with the preparation of graphene oxide-ferrofluid-cement nanocomposites to evaluate the electromagnetic interference (EMI) shielding effectiveness (SE) in the 8.2-12.4 GHz frequency range. It has been observed that incorporation of graphene oxide (30 wt%) along with an appropriate amount of ferrofluid in the cement matrix leads to a shielding effectiveness of 46 dB (>99% attenuation).The presence of graphene oxide and ferrofluid in the cement leads to strong polarizations and magnetic losses that consequently result in higher shielding effectiveness compared to pristine cement. The resulting nanocomposites have shown Shore hardness of 54 and dc conductivity of 10.40 S cm - 1. SEM reveals the homogeneous dispersion of graphene oxide and ferrofluid in the cement matrix.

  9. Fabrication of graphene oxide-modified chitosan for controlled release of dexamethasone phosphate

    NASA Astrophysics Data System (ADS)

    Sun, Huanghui; Zhang, Lingfan; Xia, Wei; Chen, Linxiao; Xu, Zhizhen; Zhang, Wenqing

    2016-07-01

    Functionalized graphene oxide with its unique physical and chemical properties is widely applied in biomaterials, especially in drug carrier materials. In the past few years, a number of different drugs have been loaded on functionalized graphene oxide via π-π stacking and hydrophobic interactions. The present report described a new approach, dexamethasone phosphate successfully loaded onto graphene oxide-chitosan nanocomposites as drug carrier materials by covalent bonding of phosphate ester linkage. Compared with the graphene oxide-chitosan nanocomposites that dexamethasone phosphate was loaded on via simple physical attachment, covalently linked composites as drug carrier materials were more biocompatible which effectively reduced the burst release of drug, and controlled the release of drug in different pH conditions.

  10. Plasticity and ductility in graphene oxide through a mechanochemically induced damage tolerance mechanism

    NASA Astrophysics Data System (ADS)

    Wei, Xiaoding; Mao, Lily; Soler-Crespo, Rafael A.; Paci, Jeffrey T.; Huang, Jiaxing; Nguyen, Sonbinh T.; Espinosa, Horacio D.

    2015-08-01

    The ability to bias chemical reaction pathways is a fundamental goal for chemists and material scientists to produce innovative materials. Recently, two-dimensional materials have emerged as potential platforms for exploring novel mechanically activated chemical reactions. Here we report a mechanochemical phenomenon in graphene oxide membranes, covalent epoxide-to-ether functional group transformations that deviate from epoxide ring-opening reactions, discovered through nanomechanical experiments and density functional-based tight binding calculations. These mechanochemical transformations in a two-dimensional system are directionally dependent, and confer pronounced plasticity and damage tolerance to graphene oxide monolayers. Additional experiments on chemically modified graphene oxide membranes, with ring-opened epoxide groups, verify this unique deformation mechanism. These studies establish graphene oxide as a two-dimensional building block with highly tuneable mechanical properties for the design of high-performance nanocomposites, and stimulate the discovery of new bond-selective chemical transformations in two-dimensional materials.

  11. Catalytic etching of monolayer graphene at low temperature via carbon oxidation.

    PubMed

    Jin, Jun Eon; Lee, Jae-Hyun; Choi, Jun Hee; Jang, Ho-Kyun; Na, Junhong; Whang, Dongmok; Kim, Do-Hyun; Kim, Gyu Tae

    2016-01-01

    In this work, an easy method to etch monolayer graphene is shown by catalytic oxidation in the presence of ZnO nanoparticles (NPs). The catalytic etching of monolayer graphene, which was transferred to the channel of field-effect transistors (FETs), was performed at low temperature by heating the FETs several times under an inert gas atmosphere (ZnO + C → Zn + CO or CO2). As the etching process proceeded, diverse etched structures in the shape of nano-channels and pits were observed under microscopic observation. To confirm the evolution of etching, current-voltage characteristics of monolayer graphene were measured after every step of etching by catalytic oxidation. As a result, the conductance of monolayer graphene decreased with the development of etched structures. This decrease in conductance was analyzed by percolation theory in a honeycomb structure. Finally, well-patterned graphene was obtained by oxidizing graphene under air in the presence of NPs, where Al was deposited on graphene as a mask for designed patterns. This method can substitute graphene etching via carbon hydrogenation using H2 at high temperature. PMID:26225821

  12. Reduced graphene oxide supported Au nanoparticles as an efficient catalyst for aerobic oxidation of benzyl alcohol

    NASA Astrophysics Data System (ADS)

    Yu, Xianqin; Huo, Yujia; Yang, Jing; Chang, Sujie; Ma, Yunsheng; Huang, Weixin

    2013-09-01

    Various Au/C catalysts were prepared by Au nanoparticels supported on different carbonaceous supports including reduced graphene oxide (RGO), activated carbon (AC) and graphite (GC) using sol-immobilization method. Au/RGO shows a much higher activity than Au/AC and Au/GC in the liquid phase aerobic oxidation of benzyl alcohol. The superior catalytic performance of Au/RGO may be related to the presence of surface O-containing functional groups and moderate graphite character of RGO supports.

  13. 3D stereolithography printing of graphene oxide reinforced complex architectures.

    PubMed

    Lin, Dong; Jin, Shengyu; Zhang, Feng; Wang, Chao; Wang, Yiqian; Zhou, Chi; Cheng, Gary J

    2015-10-30

    Properties of polymer based nanocomposites reply on distribution, concentration, geometry and property of nanofillers in polymer matrix. Increasing the concentration of carbon based nanomaterials, such as CNTs, in polymer matrix often results in stronger but more brittle material. Here, we demonstrated the first three-dimensional (3D) printed graphene oxide complex structures by stereolithography with good combination of strength and ductility. With only 0.2% GOs, the tensile strength is increased by 62.2% and elongation increased by 12.8%. Transmission electron microscope results show that the GOs were randomly aligned in the cross section of polymer. We investigated the strengthening mechanism of the 3D printed structure in terms of tensile strength and Young's modulus. It is found that an increase in ductility of the 3D printed nanocomposites is related to increase in crystallinity of GOs reinforced polymer. Compression test of 3D GOs structure reveals the metal-like failure model of GOs nanocomposites. PMID:26443263

  14. Large and pristine films of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Ahn, Sung Il; Kim, Kukjoo; Jung, Jura; Choi, Kyung Cheol

    2015-12-01

    A new self-assembly concept is introduced to form large and pristine films (15 cm in diameter) of reduced graphene oxide (RGO). The resulting film has different degrees of polarity on its two different sides due to the characteristic nature of the self-assembly process. The RGO film can be easily transferred from a glass substrate onto water and a polymer substrate after injection of water molecules between the RGO film and glass substrate using an electric steamer. The RGO film can also be easily patterned into various shapes with a resolution of around ±10 μm by a simple taping method, which is suitable for mass production of printed electronics at low cost.

  15. Optically triggered actuation in chitosan/reduced graphene oxide nanocomposites.

    PubMed

    M N, Muralidharan; K P, Shinu; A, Seema

    2016-06-25

    Bio-compatible actuators which can work under optical stimulus have great future in bio-medical applications. In this work, chitosan/reduced graphene oxide (RGO) nanocomposite optical actuators were developed through a simple solvent casting technique. The photomechanical actuation of the composites is demonstrated under IR illumination. All samples exhibited contraction in length when exposed to IR light. The photomechanical stress and strain were found to increase with increasing RGO concentration. Photomechanical stress as high as 695kPa was achieved with 4wt.% RGO loading. Contrary to some other reported systems, the photomechanical stress decreased with the applied pre-strain. The actuation behaviour can be tuned either by altering the RGO content or applied pre-strain. PMID:27083800

  16. Size Effect of Graphene Oxide on Modulating Amyloid Peptide Assembly.

    PubMed

    Wang, Jie; Cao, Yunpeng; Li, Qiang; Liu, Lei; Dong, Mingdong

    2015-06-26

    Protein misfolding and abnormal assembly could lead to aggregates such as oligomer, proto-fibril, mature fibril, and senior amyloid plaques, which are associated with the pathogenesis of many amyloid diseases. These irreversible amyloid aggregates typically form in vivo and researchers have been endeavoring to find new modulators to invert the aggregation propensity in vitro, which could increase understanding in the mechanism of the aggregation of amyloid protein and pave the way to potential clinical treatment. Graphene oxide (GO) was shown to be a good modulator, which could strongly control the amyloidosis of Aβ (33-42). In particular, quartz crystal microbalance (QCM), circular dichroism (CD) spectroscopy, and atomic force microscopy (AFM) measurements revealed the size-dependent manner of GO on modulating the assembly of amyloid peptides, which could be a possible way to regulate the self-assembled nanostructure of amyloid peptide in a predictable manner. PMID:26031933

  17. Fabrication and morphology tuning of graphene oxide nanoscrolls

    NASA Astrophysics Data System (ADS)

    Amadei, Carlo A.; Stein, Itai Y.; Silverberg, Gregory J.; Wardle, Brian L.; Vecitis, Chad D.

    2016-03-01

    Here we report the synthesis of graphene oxide nanoscrolls (GONS) with tunable dimensions via low and high frequency ultrasound solution processing techniques. GONS can be visualized as a graphene oxide (GO) sheet rolled into a spiral-wound structure and represent an alternative to traditional carbon nano-morphologies. The scrolling process is initiated by the ultrasound treatment which provides the scrolling activation energy for the formation of GONS. The GO and GONS dimensions are observed to be a function of ultrasound frequency, power density, and irradiation time. Ultrasonication increases GO and GONS C-C bonding likely due to in situ thermal reduction at the cavitating bubble-water interface. The GO area and GONS length are governed by two mechanisms; rapid oxygen defect site cleavage and slow cavitation mediated scission. Structural characterization indicates that GONS with tube and cone geometries can be formed with both narrow and wide dimensions in an industrial-scale time window. This work paves the way for GONS implementation for a variety of applications such as adsorptive and capacitive processes.Here we report the synthesis of graphene oxide nanoscrolls (GONS) with tunable dimensions via low and high frequency ultrasound solution processing techniques. GONS can be visualized as a graphene oxide (GO) sheet rolled into a spiral-wound structure and represent an alternative to traditional carbon nano-morphologies. The scrolling process is initiated by the ultrasound treatment which provides the scrolling activation energy for the formation of GONS. The GO and GONS dimensions are observed to be a function of ultrasound frequency, power density, and irradiation time. Ultrasonication increases GO and GONS C-C bonding likely due to in situ thermal reduction at the cavitating bubble-water interface. The GO area and GONS length are governed by two mechanisms; rapid oxygen defect site cleavage and slow cavitation mediated scission. Structural characterization

  18. Opto-electronic transport properties of graphene oxide based devices

    SciTech Connect

    Das, Poulomi; Ibrahim, Sk; Pal, Tanusri; Chakraborty, Koushik; Ghosh, Surajit

    2015-06-24

    Large area, solution-processed, graphene oxide (GO)nanocomposite based photo FET has been successfully fabricated. The device exhibits p-type charge transport characteristics in dark condition. Our measurements indicate that the transport characteristics are gate dependent and extremely sensitive to solar light. Photo current decay mechanism of GO is well explained and is associated with two phenomena: a) fast response process and b) slow response process. Slow response photo decay can be considered as the intrinsic phenomena which are present for both GO and reduced GO (r-GO), whereas the first response photo decay is controlled by the surface defect states. Demonstration of photo FET performance of GO thin film is a significant step forward in integrating these devices in various optoelectronic circuits.

  19. Direct laser printing of graphene oxide for resistive chemosensors

    NASA Astrophysics Data System (ADS)

    Papazoglou, S.; Tsouti, V.; Chatzandroulis, S.; Zergioti, I.

    2016-08-01

    This work presents the pulsed laser printing of graphene oxide, and a subsequent thermal reduction step, aiming towards the fabrication of a chemical sensor device that operates at room temperature. Laser printing was performed using the Laser Induced Forward Transfer technique, which enables for the rapid and highly resolved deposition of liquid and solid phase materials, while printing conditions were also studied, in terms of optimum laser fluence regime and donor-receiver substrates distance, so as to avoid undesirable satellite debris, which has detrimental effects on the sensor performance such as adjacent sensor cross-talk, etc. The evaluation of the reduction efficiency was made by Fourier Transform Reflectance spectroscopy and electrical characterization of the thermally reduced devices. Finally, the response of the sensor upon exposure to water vapors is evaluated, and sensitivities down to 0.22%/%RH were recorded.

  20. Electronic, Thermal and Structural Properties of Graphene Oxide Frameworks

    SciTech Connect

    Zhu, Pan; Sumpter, Bobby G; Meunier, V.

    2013-01-01

    We report a theoretical study of the electronic, thermal, and structural properties of a series of graphene oxide frameworks (GOFs) using first-principles calculations based on density functional theory. The molecular structure of GOFs is systematically studied by varying the nature and concentration of linear boronic acid pillars and the thermal stability is assessed using ab initio molecular dynamics. The results demonstrate that GOFs are thermally stable up to 550 K and that electronic properties, such as their band gap, can be modified controllably by an appropriate choice of pillaring unit and pillar concentration. The tunability of the electronic structure using non-chemical means, e.g., mechanical strain, is also quantified. Overall, this class of materials is predicted to offer highly tunable materials electronic properties ranging from metallic to semiconducting.