Science.gov

Sample records for 2d hydrodynamic models

  1. Gold-standard performance for 2D hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Pasternack, G. B.; MacVicar, B. J.

    2013-12-01

    Two-dimensional, depth-averaged hydrodynamic (2D) models are emerging as an increasingly useful tool for environmental water resources engineering. One of the remaining technical hurdles to the wider adoption and acceptance of 2D modeling is the lack of standards for 2D model performance evaluation when the riverbed undulates, causing lateral flow divergence and convergence. The goal of this study was to establish a gold-standard that quantifies the upper limit of model performance for 2D models of undulating riverbeds when topography is perfectly known and surface roughness is well constrained. A review was conducted of published model performance metrics and the value ranges exhibited by models thus far for each one. Typically predicted velocity differs from observed by 20 to 30 % and the coefficient of determination between the two ranges from 0.5 to 0.8, though there tends to be a bias toward overpredicting low velocity and underpredicting high velocity. To establish a gold standard as to the best performance possible for a 2D model of an undulating bed, two straight, rectangular-walled flume experiments were done with no bed slope and only different bed undulations and water surface slopes. One flume tested model performance in the presence of a porous, homogenous gravel bed with a long flat section, then a linear slope down to a flat pool bottom, and then the same linear slope back up to the flat bed. The other flume had a PVC plastic solid bed with a long flat section followed by a sequence of five identical riffle-pool pairs in close proximity, so it tested model performance given frequent undulations. Detailed water surface elevation and velocity measurements were made for both flumes. Comparing predicted versus observed velocity magnitude for 3 discharges with the gravel-bed flume and 1 discharge for the PVC-bed flume, the coefficient of determination ranged from 0.952 to 0.987 and the slope for the regression line was 0.957 to 1.02. Unsigned velocity

  2. Numerical modelling of spallation in 2D hydrodynamics codes

    NASA Astrophysics Data System (ADS)

    Maw, J. R.; Giles, A. R.

    1996-05-01

    A model for spallation based on the void growth model of Johnson has been implemented in 2D Lagrangian and Eulerian hydrocodes. The model has been extended to treat complete separation of material when voids coalesce and to describe the effects of elevated temperatures and melting. The capabilities of the model are illustrated by comparison with data from explosively generated spall experiments. Particular emphasis is placed on the prediction of multiple spall effects in weak, low melting point, materials such as lead. The correlation between the model predictions and observations on the strain rate dependence of spall strength is discussed.

  3. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  4. An efficient numerical model for hydrodynamic parameterization in 2D fractured dual-porosity media

    NASA Astrophysics Data System (ADS)

    Fahs, Hassane; Hayek, Mohamed; Fahs, Marwan; Younes, Anis

    2014-01-01

    This paper presents a robust and efficient numerical model for the parameterization of the hydrodynamic in fractured porous media. The developed model is based upon the refinement indicators algorithm for adaptive multi-scale parameterization. For each level of refinement, the Levenberg-Marquardt method is used to minimize the difference between the measured and predicted data that are obtained by solving the direct problem with the mixed finite element method. Sensitivities of state variables with respect to the parameters are calculated by the sensitivity method. The adjoint-state method is used to calculate the local gradients of the objective function necessary for the computation of the refinement indicators. Validity and efficiency of the proposed model are demonstrated by means of several numerical experiments. The developed numerical model provides encouraging results, even for noisy data and/or with a reduced number of measured heads.

  5. Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation

    DOE PAGES

    Chen, Zhangxin; Cockburn, Bernardo; Jerome, Joseph W.; ...

    1995-01-01

    In this paper we introduce a new method for numerically solving the equations of the hydrodynamic model for semiconductor devices in two space dimensions. The method combines a standard mixed finite element method, used to obtain directly an approximation to the electric field, with the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method, originally devised for numerically solving multi-dimensional hyperbolic systems of conservation laws, which is applied here to the convective part of the equations. Numerical simulations showing the performance of the new method are displayed, and the results compared with those obtained by using Essentially Nonoscillatory (ENO) finite difference schemes. Frommore » the perspective of device modeling, these methods are robust, since they are capable of encompassing broad parameter ranges, including those for which shock formation is possible. The simulations presented here are for Gallium Arsenide at room temperature, but we have tested them much more generally with considerable success.« less

  6. 2D Hydrodynamic Based Logic Modeling Tool for River Restoration Decision Analysis: A Quantitative Approach to Project Prioritization

    NASA Astrophysics Data System (ADS)

    Bandrowski, D.; Lai, Y.; Bradley, N.; Gaeuman, D. A.; Murauskas, J.; Som, N. A.; Martin, A.; Goodman, D.; Alvarez, J.

    2014-12-01

    In the field of river restoration sciences there is a growing need for analytical modeling tools and quantitative processes to help identify and prioritize project sites. 2D hydraulic models have become more common in recent years and with the availability of robust data sets and computing technology, it is now possible to evaluate large river systems at the reach scale. The Trinity River Restoration Program is now analyzing a 40 mile segment of the Trinity River to determine priority and implementation sequencing for its Phase II rehabilitation projects. A comprehensive approach and quantitative tool has recently been developed to analyze this complex river system referred to as: 2D-Hydrodynamic Based Logic Modeling (2D-HBLM). This tool utilizes various hydraulic output parameters combined with biological, ecological, and physical metrics at user-defined spatial scales. These metrics and their associated algorithms are the underpinnings of the 2D-HBLM habitat module used to evaluate geomorphic characteristics, riverine processes, and habitat complexity. The habitat metrics are further integrated into a comprehensive Logic Model framework to perform statistical analyses to assess project prioritization. The Logic Model will analyze various potential project sites by evaluating connectivity using principal component methods. The 2D-HBLM tool will help inform management and decision makers by using a quantitative process to optimize desired response variables with balancing important limiting factors in determining the highest priority locations within the river corridor to implement restoration projects. Effective river restoration prioritization starts with well-crafted goals that identify the biological objectives, address underlying causes of habitat change, and recognizes that social, economic, and land use limiting factors may constrain restoration options (Bechie et. al. 2008). Applying natural resources management actions, like restoration prioritization, is

  7. Method to Rapidly Collect Thousands of Velocity Observations to Validate Million-Element 2D Hydrodynamic Models

    NASA Astrophysics Data System (ADS)

    Barker, J. R.; Pasternack, G. B.; Bratovich, P.; Massa, D.; Reedy, G.; Johnson, T.

    2010-12-01

    Two-dimensional (depth-averaged) hydrodynamic models have existed for decades and are used to study a variety of hydrogeomorphic processes as well as to design river rehabilitation projects. Rapid computer and coding advances are revolutionizing the size and detail of 2D models. Meanwhile, advances in topo mapping and environmental informatics are providing the data inputs to drive large, detailed simulations. Million-element computational meshes are in hand. With simulations of this size and detail, the primary challenge has shifted to finding rapid and inexpensive means for testing model predictions against observations. Standard methods for collecting velocity data include boat-mounted ADCP and point-based sensors on boats or wading rods. These methods are labor intensive and often limited to a narrow flow range. Also, they generate small datasets at a few cross-sections, which is inadequate to characterize the statistical structure of the relation between predictions and observations. Drawing on the long-standing oceanographic method of using drogues to track water currents, previous studies have demonstrated the potential of small dGPS units to obtain surface velocity in rivers. However, dGPS is too inaccurate to test 2D models. Also, there is financial risk in losing drogues in rough currents. In this study, an RTK GPS unit was mounted onto a manned whitewater kayak. The boater positioned himself into the current and used floating debris to maintain a speed and heading consistent with the ambient surface flow field. RTK GPS measurements were taken ever 5 sec. From these positions, a 2D velocity vector was obtained. The method was tested over ~20 km of the lower Yuba River in California in flows ranging from 500-5000 cfs, yielding 5816 observations. To compare velocity magnitude against the 2D model-predicted depth-averaged value, kayak-based surface values were scaled down by an optimized constant (0.72), which had no negative effect on regression analysis

  8. Using 1D2D Hydrodynamic Modeling to Inform Restoration Planning in the Atchafalaya River Basin, Louisiana

    NASA Astrophysics Data System (ADS)

    Hayden-Lesmeister, A.; Remo, J. W.; Piazza, B.

    2015-12-01

    The Atchafalaya River (AR) in Louisiana is the principal distributary of the Mississippi River (MR), and its basin contains the largest contiguous area of baldcypress-water tupelo swamp forests in North America. After designation of the Atchafalaya River Basin (ARB) as a federal floodway following the destructive 1927 MR flood, it was extensively modified to accommodate a substantial portion of the MR flow (~25%) to mitigate flooding in southern Louisiana. These modifications and increased flows resulted in substantial incision along large portions of the AR, altering connectivity between the river and its associated waterbodies. As a result of incision, the hydroperiod has been substantially altered, which has contributed to a decline in ecological health of the ARB's baldcypress-water tupelo forests. While it is recognized that the altered hydroperiod has negatively affected natural baldcypress regeneration, it is unclear whether proposed projects designed to enhance flow connectivity will increase long-term survival of these forests. In this study, we have constructed a 1D2D hydrodynamic model using SOBEK 2.12 to realistically model key physical parameters such as residence times, inundation extent, water-surface elevations (WSELs), and flow velocities to increase our understanding of the ARB's altered hydroperiod and the consequences for baldcypress-water tupelo forests. While the model encompasses a majority of the ARB, our modeling effort is focused on the Flat Lake Water Management Unit located in the southern portion of the ARB, where it will also be used to evaluate flow connectivity enhancement projects within the management unit. We believe our 1D2D hybrid hydraulic modeling approach will provide the flexibility and accuracy needed to guide connectivity enhancement efforts in the ARB and may provide a model framework for guiding similar efforts along other highly-altered river systems.

  9. A hydrodynamically-consistent MRT lattice Boltzmann model on a 2D rectangular grid

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Min, Haoda; Guo, Zhaoli; Wang, Lian-Ping

    2016-12-01

    A multiple-relaxation time (MRT) lattice Boltzmann (LB) model on a D2Q9 rectangular grid is designed theoretically and validated numerically in the present work. By introducing stress components into the equilibrium moments, this MRT-LB model restores the isotropy of diffusive momentum transport at the macroscopic level (or in the continuum limit), leading to moment equations that are fully consistent with the Navier-Stokes equations. The model is derived by an inverse design process which is described in detail. Except one moment associated with the energy square, all other eight equilibrium moments can be theoretically and uniquely determined. The model is then carefully validated using both the two-dimensional decaying Taylor-Green vortex flow and lid-driven cavity flow, with different grid aspect ratios. The corresponding results from an earlier model (Bouzidi et al. (2001) [28]) are also presented for comparison. The results of Bouzidi et al.'s model show problems associated with anisotropy of viscosity coefficients, while the present model exhibits full isotropy and is accurate and stable.

  10. 2D Hydrodynamic Investigation of Olmsted Cofferdams

    DTIC Science & Technology

    2013-07-01

    USGS) used RMA-Z (Wagner 2004) to predict effects of the ITW phased construction and operation on mussel beds located downstream (RMA-Z 2004...Then in 2008, CHL used an Adaptive Hydraulics model (AdH) to further evaluate potential impacts on mussel beds. In 2012, LRL used a HEC-RAS model to...were created. This model extends from RM 974.5 to 962.6 allowing inclu- sion of downstream mussel beds. In the USGS study, hydrodynamics, sediment

  11. Improved Large-Scale Inundation Modelling by 1D-2D Coupling and Consideration of Hydrologic and Hydrodynamic Processes - a Case Study in the Amazon

    NASA Astrophysics Data System (ADS)

    Hoch, J. M.; Bierkens, M. F.; Van Beek, R.; Winsemius, H.; Haag, A.

    2015-12-01

    Understanding the dynamics of fluvial floods is paramount to accurate flood hazard and risk modeling. Currently, economic losses due to flooding constitute about one third of all damage resulting from natural hazards. Given future projections of climate change, the anticipated increase in the World's population and the associated implications, sound knowledge of flood hazard and related risk is crucial. Fluvial floods are cross-border phenomena that need to be addressed accordingly. Yet, only few studies model floods at the large-scale which is preferable to tiling the output of small-scale models. Most models cannot realistically model flood wave propagation due to a lack of either detailed channel and floodplain geometry or the absence of hydrologic processes. This study aims to develop a large-scale modeling tool that accounts for both hydrologic and hydrodynamic processes, to find and understand possible sources of errors and improvements and to assess how the added hydrodynamics affect flood wave propagation. Flood wave propagation is simulated by DELFT3D-FM (FM), a hydrodynamic model using a flexible mesh to schematize the study area. It is coupled to PCR-GLOBWB (PCR), a macro-scale hydrological model, that has its own simpler 1D routing scheme (DynRout) which has already been used for global inundation modeling and flood risk assessments (GLOFRIS; Winsemius et al., 2013). A number of model set-ups are compared and benchmarked for the simulation period 1986-1996: (0) PCR with DynRout; (1) using a FM 2D flexible mesh forced with PCR output and (2) as in (1) but discriminating between 1D channels and 2D floodplains, and, for comparison, (3) and (4) the same set-ups as (1) and (2) but forced with observed GRDC discharge values. Outputs are subsequently validated against observed GRDC data at Óbidos and flood extent maps from the Dartmouth Flood Observatory. The present research constitutes a first step into a globally applicable approach to fully couple

  12. Characterizing the danger of in-channel river hazards using LIDAR and a 2D hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Strom, M. A.; Pasternack, G. B.

    2014-12-01

    Despite many injuries and deaths each year worldwide, no analytically rigorous attempt exists to characterize and quantify the dangers to boaters, swimmers, fishermen, and other river enthusiasts. While designed by expert boaters, the International Scale of River Difficulty provides a whitewater classification that uses qualitative descriptions and subjective scoring. The purpose of this study was to develop an objective characterization of in-channel hazard dangers across spatial scales from a single boulder to an entire river segment for application over a wide range of discharges and use in natural hazard assessment and mitigation, recreational boating safety, and river science. A process-based conceptualization of river hazards was developed, and algorithms were programmed in R to quantify the associated dangers. Danger indicators included the passage proximity and reaction time posed to boats and swimmers in a river by three hazards: emergent rocks, submerged rocks, and hydraulic jumps or holes. The testbed river was a 12.2 km mixed bedrock-alluvial section of the upper South Yuba River between Lake Spaulding and Washington, CA in the Sierra Mountains. The segment has a mean slope of 1.63%, with 8 reaches varying from 1.07% to 3.30% slope and several waterfalls. Data inputs to the hazard analysis included sub-decimeter aerial color imagery, airborne LIDAR of the river corridor, bathymetric data, flow inputs, and a stage-discharge relation for the end of the river segment. A key derived data product was the location and configuration of boulders and boulder clusters as these were potential hazards. Two-dimensional hydrodynamic modeling was used to obtain the meter-scale spatial pattern of depth and velocity at discharges ranging from baseflow to modest flood stages. Results were produced for four discharges and included the meter-scale spatial pattern of the passage proximity and reaction time dangers for each of the three hazards investigated. These results

  13. Large-scale flooding analysis in the suburbs of Tokyo Metropolis caused by levee breach of the Tone River using a 2D hydrodynamic model.

    PubMed

    Hai, Pham T; Magome, J; Yorozuya, A; Inomata, H; Fukami, K; Takeuchi, K

    2010-01-01

    In order to assess the effects of climate change on flood disasters in urban areas, we applied a two dimensional finite element hydrodynamic model (2D-FEM) to simulate flood processes for the case analysis of levee breach caused by Kathleen Typhoon on 16 September 1947 in Kurihashi reach of Tone River, upstream of Tokyo area. The purpose is to use the model to simulate flood inundation processes under the present topography and land-use conditions with impending extreme flood scenarios due to climate change for mega-urban areas like Tokyo. Simulation used 100 m resolution topographic data (in PWRI), which was derived from original LiDAR (Light Detection and Ranging) data, and levee breach hydrographic data in 1947. In this paper, we will describe the application of the model with calibration approach and techniques when applying for such fine spatial resolution in urban environments. The fine unstructured triangular FEM mesh of the model appeared to be the most capable of introducing of constructions like roads/levees in simulations. Model results can be used to generate flood mapping, subsequently uploaded to Google Earth interface, making the modeling and presentation process much comprehensible to the general public.

  14. Using an extended 2D hydrodynamic model for evaluating damage risk caused by extreme rain events: Flash-Flood-Risk-Map (FFRM) Upper Austria

    NASA Astrophysics Data System (ADS)

    Humer, Günter; Reithofer, Andreas

    2016-04-01

    Using an extended 2D hydrodynamic model for evaluating damage risk caused by extreme rain events: Flash-Flood-Risk-Map (FFRM) Upper Austria Considering the increase in flash flood events causing massive damage during the last years in urban but also rural areas [1-4], the requirement for hydrodynamic calculation of flash flood prone areas and possible countermeasures has arisen to many municipalities and local governments. Besides the German based URBAS project [1], also the EU-funded FP7 research project "SWITCH-ON" [5] addresses the damage risk caused by flash floods in the sub-project "FFRM" (Flash Flood Risk Map Upper Austria) by calculating damage risk for buildings and vulnerable infrastructure like schools and hospitals caused by flash-flood driven inundation. While danger zones in riverine flooding are established as an integral part of spatial planning, flash floods caused by overland runoff from extreme rain events have been for long an underrated safety hazard not only for buildings and infrastructure, but man and animals as well. Based on the widespread 2D-model "hydro_as-2D", an extension was developed, which calculates the runoff formation from a spatially and temporally variable precipitation and determines two dimensionally the land surface area runoff and its concentration. The conception of the model is to preprocess the precipitation data and calculate the effective runoff-volume for a short time step of e.g. five minutes. This volume is applied to the nodes of the 2D-model and the calculation of the hydrodynamic model is started. At the end of each time step, the model run is stopped, the preprocessing step is repeated and the hydraulic model calculation is continued. In view of the later use for the whole of Upper Austria (12.000 km²) a model grid of 25x25 m² was established using digital elevation data. Model parameters could be estimated for the small catchment of river Ach, which was hit by an intense rain event with up to 109 mm per hour

  15. Compatible, energy and symmetry preserving 2D Lagrangian hydrodynamics in rz-cylindrical coordinates

    SciTech Connect

    Shashkov, Mikhail; Wendroff, Burton; Burton, Donald; Barlow, A; Hongbin, Guo

    2009-01-01

    We present a new discretization for 2D Lagrangian hydrodynamics in rz geometry (cylindrical coordinates) that is compatible, energy conserving and symmetry preserving. We describe discretization of the basic Lagrangian hydrodynamics equations.

  16. Lotic Water Hydrodynamic Model

    SciTech Connect

    Judi, David Ryan; Tasseff, Byron Alexander

    2015-01-23

    Water-related natural disasters, for example, floods and droughts, are among the most frequent and costly natural hazards, both socially and economically. Many of these floods are a result of excess rainfall collecting in streams and rivers, and subsequently overtopping banks and flowing overland into urban environments. Floods can cause physical damage to critical infrastructure and present health risks through the spread of waterborne diseases. Los Alamos National Laboratory (LANL) has developed Lotic, a state-of-the-art surface water hydrodynamic model, to simulate propagation of flood waves originating from a variety of events. Lotic is a two-dimensional (2D) flood model that has been used primarily for simulations in which overland water flows are characterized by movement in two dimensions, such as flood waves expected from rainfall-runoff events, storm surge, and tsunamis. In 2013, LANL developers enhanced Lotic through several development efforts. These developments included enhancements to the 2D simulation engine, including numerical formulation, computational efficiency developments, and visualization. Stakeholders can use simulation results to estimate infrastructure damage and cascading consequences within other sets of infrastructure, as well as to inform the development of flood mitigation strategies.

  17. Measurements of the Three Components of the Water Flow Around a Hydrodynamic Model in a Towing Tank with a 2D Laser Doppler Velocimeter System

    DTIC Science & Technology

    1992-07-23

    Velocimeter. This device is used to measure the velocity distribution and to study the boundary layer around the back half of a l/12th scale model of a 22.5...so as to have a good repeatability in the measurements. At 11 knots for a full scale model, about three velocity measurements can be done per hour...mm. MODEL EXPERIMENTAL SETUP The model hull is a 1/I2th scale of n mono propeller, 22.5 meter fishi.ig boat presenting a transom stern. Figure 2

  18. Megaflood analysis through channel networks of the Athabasca Valles, Mars based on multi-resolution stereo DTMs and 2D hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Rack; Schumann, Guy; Neal, Jeffrey C.; Lin, Shih-Yuan

    2014-09-01

    Stereo analysis of in-orbital imagery provides valuable topographic data for scientific research over planetary surfaces especially for the interpretation of potential fluvial activity. The focus of research into planetary fluvial activity has been shifting toward quantitative modeling with various spatial resolution DTMs from visual interpretation with ortho images. Thus in this study, we tested the application of hydraulic analysis with multi resolution Martian DTMs, which were constructed following the approaches of Kim and Muller (2009). Planet. Space Sci. 57 (14), 2095. Subsequently, a two-dimensional hydraulic model was introduced to conduct flow simulation using the extracted 1.2-150 m resolution DTMs. As a result, it was found that the simulated water flows coincided with what might be water eroded geomorphic features over target areas. Moreover, the information acquired from the modeling, such as water depth along the time line, flow direction and travel time, is proving of great value for the interpretation of surface characteristics. Results highlighted the importance of DTM quality for simulating fluvial channel hydraulics across planetary surfaces.

  19. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  20. Experimental and Computational Study of Multiphase Flow Hydrodynamics in 2D Trickle Bed Reactors

    NASA Astrophysics Data System (ADS)

    Nadeem, H.; Ben Salem, I.; Kurnia, J. C.; Rabbani, S.; Shamim, T.; Sassi, M.

    2014-12-01

    Trickle bed reactors are largely used in the refining processes. Co-current heavy oil and hydrogen gas flow downward on catalytic particle bed. Fine particles in the heavy oil and/or soot formed by the exothermic catalytic reactions deposit on the bed and clog the flow channels. This work is funded by the refining company of Abu Dhabi and aims at mitigating pressure buildup due to fine deposition in the TBR. In this work, we focus on meso-scale experimental and computational investigations of the interplay between flow regimes and the various parameters that affect them. A 2D experimental apparatus has been built to investigate the flow regimes with an average pore diameter close to the values encountered in trickle beds. A parametric study is done for the development of flow regimes and the transition between them when the geometry and arrangement of the particles within the porous medium are varied. Liquid and gas flow velocities have also been varied to capture the different flow regimes. Real time images of the multiphase flow are captured using a high speed camera, which were then used to characterize the transition between the different flow regimes. A diffused light source was used behind the 2D Trickle Bed Reactor to enhance visualizations. Experimental data shows very good agreement with the published literature. The computational study focuses on the hydrodynamics of multiphase flow and to identify the flow regime developed inside TBRs using the ANSYS Fluent Software package. Multiphase flow inside TBRs is investigated using the "discrete particle" approach together with Volume of Fluid (VoF) multiphase flow modeling. The effect of the bed particle diameter, spacing, and arrangement are presented that may be used to provide guidelines for designing trickle bed reactors.

  1. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  2. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  3. Self-Consistent, 2D Magneto-Hydrodynamic Simulations of Magnetically Driven Flyer Plates

    NASA Astrophysics Data System (ADS)

    Lemke, Raymond W.

    2002-11-01

    The intense magnetic field generated in the 20 MA Z-machine is used to accelerate flyer plates to high velocity for equation of state experiments. A peak magnetic drive pressure on the order of 2 Mbar can be generated, which accelerates an approximately 0.2 g aluminum disc to 21 km/s [1]. We have used 2D magneto-hydrodynamic (MHD) simulation to investigate the physics of accelerating flyer plates using multi-megabar magnetic drive pressures. A typical shock physics load is formed by a rectangular slab cathode enclosed by a hollow rectangular duct (the anode). The anode and cathode are connected (shorted) at one end. The electrodes are highly compressible at multi-megabar pressures. Electrode deformation that occurs during the rise time of the current pulse causes significant inductance increase, which reduces the peak current (drive pressure) relative to a static geometry. This important dynamic effect is modeled self-consistently by driving the MHD simulation with a circuit model of Z. Comparison of simulation results with highly accurate velocity interferometry measurements shows that the drive pressure waveform is affected by current losses and short circuiting in the machine, in conjunction with time varying load inductance. The understanding gained from these comparisons has allowed us to optimize shock physics loads using simulation. In this way a load was designed to produce a flyer velocity of 28 km/s, which was achieved experimentally on Z. We have identified paths to producing a flyer velocity of 40 km/s and peak isentropic pressure of 10 Mbar on the refurbished Z-machine [2]. Details of the modeling, the physics and comparisons with experiment are presented. [1] M. D. Knudson et al., Phys. Rev. Letters 87 (22), 22550-1 (2002). [2] R. W. Lemke et al., to be published in Proc. of the Int. Conf. on High Power Particle Beams and Dense Z-Pinches, Albuquerque, NM, June 23-28, 2002.

  4. Mid-Bay Islands Hydrodynamics and Sedimentation Modeling Study, Chesapeake Bay

    DTIC Science & Technology

    2006-08-01

    B3 Hydrodynamic and sediment transport modeling with M2D ................. B7 Hydrodynamics...maximum current field, normal tide ............................... B6 Figure B6. Alt JI-7 M2D model grid...B7 Figure B7. Alt JI-7 maximum current field, NE33 ........................................ B9 Figure B8. Alt JI-7 M2D

  5. Effect of cross-section interpolated bathymetry on 2D hydrodynamic results in a large river system

    NASA Astrophysics Data System (ADS)

    Conner, J.; Tonina, D.; Welcker, C.

    2011-12-01

    Two-dimensional (2D) hydrodynamic models have been used for many river research projects including flood analysis, aquatic habitat evaluation and sediment transport studies. River topography has a strong influence on flow patterns and a dominant effect on the resulting hydraulic conditions. Thus, it is important that adequate topographic data be collected so accurate DEMs can be developed in order to create 2D hydrodynamic models that correctly represent hydraulic conditions. Many techniques and methods have been used to acquire bathymetry data, from traditional survey methods, using sonar equipment combined with GPS and more recently the use of Experimental Advance Airborne Research LiDAR (EAARL). Multi-beam sonar and EAARL provide rapid collection of bathymetry data that can be used to create high resolution three dimensional surfaces. However, these systems do not work in all river conditions requiring other methods of data collection. One method that has been employed is to collect cross section data and interpolate a surface between the cross sections. This method is a valuable technique, because cross sections can be surveyed with traditional survey equipment for wadeable streams or with a variety of watercraft. In this study, we investigated the effect cross section spacing has on developing the streambed topography and flow properties for 2D modeling. To evaluate the resulting errors that can be expected, we compared 2D model results of two reaches of the Snake River (Idaho, USA) that had complete bathymetry, with 2D model results of the same river reaches, but were developed by interpolating bathymetry between transects. We chose reaches with simple and complex channel morphologies to test the variability of error that may be expected for natural channels that fall between these types. We evaluated the error created on sediment transport by size class and habitat quality for fish species. The preliminary results indicate that increasing the cross section

  6. Recent development of hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Hirano, Tetsufumi

    2014-09-01

    In this talk, I give an overview of recent development in hydrodynamic modeling of high-energy nuclear collisions. First, I briefly discuss about current situation of hydrodynamic modeling by showing results from the integrated dynamical approach in which Monte-Carlo calculation of initial conditions, quark-gluon fluid dynamics and hadronic cascading are combined. In particular, I focus on rescattering effects of strange hadrons on final observables. Next I highlight three topics in recent development in hydrodynamic modeling. These include (1) medium response to jet propagation in di-jet asymmetric events, (2) causal hydrodynamic fluctuation and its application to Bjorken expansion and (3) chiral magnetic wave from anomalous hydrodynamic simulations. (1) Recent CMS data suggest the existence of QGP response to propagation of jets. To investigate this phenomenon, we solve hydrodynamic equations with source term which exhibits deposition of energy and momentum from jets. We find a large number of low momentum particles are emitted at large angle from jet axis. This gives a novel interpretation of the CMS data. (2) It has been claimed that a matter created even in p-p/p-A collisions may behave like a fluid. However, fluctuation effects would be important in such a small system. We formulate relativistic fluctuating hydrodynamics and apply it to Bjorken expansion. We found the final multiplicity fluctuates around the mean value even if initial condition is fixed. This effect is relatively important in peripheral A-A collisions and p-p/p-A collisions. (3) Anomalous transport of the quark-gluon fluid is predicted when extremely high magnetic field is applied. We investigate this possibility by solving anomalous hydrodynamic equations. We found the difference of the elliptic flow parameter between positive and negative particles appears due to the chiral magnetic wave. Finally, I provide some personal perspective of hydrodynamic modeling of high energy nuclear collisions

  7. Dynamic coupling of three hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Hartnack, J. N.; Philip, G. T.; Rungoe, M.; Smith, G.; Johann, G.; Larsen, O.; Gregersen, J.; Butts, M. B.

    2008-12-01

    The need for integrated modelling is evidently present within the field of flood management and flood forecasting. Engineers, modellers and managers are faced with flood problems which transcend the classical hydrodynamic fields of urban, river and coastal flooding. Historically the modeller has been faced with having to select one hydrodynamic model to cover all the aspects of the potentially complex dynamics occurring in a flooding situation. Such a single hydrodynamic model does not cover all dynamics of flood modelling equally well. Thus the ideal choice may in fact be a combination of models. Models combining two numerical/hydrodynamic models are becoming more standard, typically these models combine a 1D river model with a 2D overland flow model or alternatively a 1D sewer/collection system model with a 2D overland solver. In complex coastal/urban areas the flood dynamics may include rivers/streams, collection/storm water systems along with the overland flow. The dynamics within all three areas is of the same time scale and there is feedback in the system across the couplings. These two aspects dictate a fully dynamic three way coupling as opposed to running the models sequentially. It will be shown that the main challenges of the three way coupling are time step issues related to the difference in numerical schemes used in the three model components and numerical instabilities caused by the linking of the model components. MIKE FLOOD combines the models MIKE 11, MIKE 21 and MOUSE into one modelling framework which makes it possible to couple any combination of river, urban and overland flow fully dynamically. The MIKE FLOOD framework will be presented with an overview of the coupling possibilities. The flood modelling concept will be illustrated through real life cases in Australia and in Germany. The real life cases reflect dynamics and interactions across all three model components which are not possible to reproduce using a two-way coupling alone. The

  8. Influence of Elevation Data Source on 2D Hydraulic Modelling

    NASA Astrophysics Data System (ADS)

    Bakuła, Krzysztof; StĘpnik, Mateusz; Kurczyński, Zdzisław

    2016-08-01

    The aim of this paper is to analyse the influence of the source of various elevation data on hydraulic modelling in open channels. In the research, digital terrain models from different datasets were evaluated and used in two-dimensional hydraulic models. The following aerial and satellite elevation data were used to create the representation of terrain-digital terrain model: airborne laser scanning, image matching, elevation data collected in the LPIS, EuroDEM, and ASTER GDEM. From the results of five 2D hydrodynamic models with different input elevation data, the maximum depth and flow velocity of water were derived and compared with the results of the most accurate ALS data. For such an analysis a statistical evaluation and differences between hydraulic modelling results were prepared. The presented research proved the importance of the quality of elevation data in hydraulic modelling and showed that only ALS and photogrammetric data can be the most reliable elevation data source in accurate 2D hydraulic modelling.

  9. Oxycline formation induced by Fe(II) oxidation in a water reservoir affected by acid mine drainage modeled using a 2D hydrodynamic and water quality model - CE-QUAL-W2.

    PubMed

    Torres, Ester; Galván, Laura; Cánovas, Carlos Ruiz; Soria-Píriz, Sara; Arbat-Bofill, Marina; Nardi, Albert; Papaspyrou, Sokratis; Ayora, Carlos

    2016-08-15

    The Sancho reservoir is an acid mine drainage (AMD)-contaminated reservoir located in the Huelva province (SW Spain) with a pH close to 3.5. The water is only used for a refrigeration system of a paper mill. The Sancho reservoir is holomictic with one mixing period per year in the winter. During this mixing period, oxygenated water reaches the sediment, while under stratified conditions (the rest of the year) hypoxic conditions develop at the hypolimnion. A CE-QUAL-W2 model was calibrated for the Sancho Reservoir to predict the thermocline and oxycline formation, as well as the salinity, ammonium, nitrate, phosphorous, algal, chlorophyll-a, and iron concentrations. The version 3.7 of the model does not allow simulating the oxidation of Fe(II) in the water column, which limits the oxygen consumption of the organic matter oxidation. However, to evaluate the impact of Fe(II) oxidation on the oxycline formation, Fe(II) has been introduced into the model based on its relationship with labile dissolved organic matter (LDOM). The results show that Fe oxidation is the main factor responsible for the oxygen depletion in the hypolimnion of the Sancho Reservoir. The limiting factors for green algal growth have also been studied. The model predicted that ammonium, nitrate, and phosphate were not limiting factors for green algal growth. Light appeared to be one of the limiting factors for algal growth, while chlorophyll-a and dissolved oxygen concentrations could not be fully described. We hypothesize that dissolved CO2 is one of the limiting nutrients due to losses by the high acidity of the water column. The sensitivity tests carried out support this hypothesis. Two different remediation scenarios have been tested with the calibrated model: 1) an AMD passive treatment plant installed at the river, which removes completely Fe, and 2) different depth water extractions. If no Fe was introduced into the reservoir, water quality would significantly improve in only two years

  10. Dynamics of bubble collapse under vessel confinement in 2D hydrodynamic experiments

    NASA Astrophysics Data System (ADS)

    Shpuntova, Galina; Austin, Joanna

    2013-11-01

    One trauma mechanism in biomedical treatment techniques based on the application of cumulative pressure pulses generated either externally (as in shock-wave lithotripsy) or internally (by laser-induced plasma) is the collapse of voids. However, prediction of void-collapse driven tissue damage is a challenging problem, involving complex and dynamic thermomechanical processes in a heterogeneous material. We carry out a series of model experiments to investigate the hydrodynamic processes of voids collapsing under dynamic loading in configurations designed to model cavitation with vessel confinement. The baseline case of void collapse near a single interface is also examined. Thin sheets of tissue-surrogate polymer materials with varying acoustic impedance are used to create one or two parallel material interfaces near the void. Shadowgraph photography and two-color, single-frame particle image velocimetry quantify bubble collapse dynamics including jetting, interface dynamics and penetration, and the response of the surrounding material. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading.''

  11. Hydrodynamic Synchronisation of Model Microswimmers

    NASA Astrophysics Data System (ADS)

    Putz, V. B.; Yeomans, J. M.

    2009-12-01

    We define a model microswimmer with a variable cycle time, thus allowing the possibility of phase locking driven by hydrodynamic interactions between swimmers. We find that, for extensile or contractile swimmers, phase locking does occur, with the relative phase of the two swimmers being, in general, close to 0 or π, depending on their relative position and orientation. We show that, as expected on grounds of symmetry, self T-dual swimmers, which are time-reversal covariant, do not phase-lock. We also discuss the phase behaviour of a line of tethered swimmers, or pumps. These show oscillations in their relative phases reminiscent of the metachronal waves of cilia.

  12. ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I - The hydrodynamic algorithms and tests.

    NASA Astrophysics Data System (ADS)

    Stone, James M.; Norman, Michael L.

    1992-06-01

    A detailed description of ZEUS-2D, a numerical code for the simulation of fluid dynamical flows including a self-consistent treatment of the effects of magnetic fields and radiation transfer is presented. Attention is given to the hydrodynamic (HD) algorithms which form the foundation for the more complex MHD and radiation HD algorithms. The effect of self-gravity on the flow dynamics is accounted for by an iterative solution of the sparse-banded matrix resulting from discretizing the Poisson equation in multidimensions. The results of an extensive series of HD test problems are presented. A detailed description of the MHD algorithms in ZEUS-2D is presented. A new method of computing the electromotive force is developed using the method of characteristics (MOC). It is demonstrated through the results of an extensive series of MHD test problems that the resulting hybrid MOC-constrained transport method provides for the accurate evolution of all modes of MHD wave families.

  13. Exact Solution of Ising Model in 2d Shortcut Network

    NASA Astrophysics Data System (ADS)

    Shanker, O.

    We give the exact solution to the Ising model in the shortcut network in the 2D limit. The solution is found by mapping the model to the square lattice model with Brascamp and Kunz boundary conditions.

  14. Hydrodynamic models of a Cepheid atmosphere

    NASA Technical Reports Server (NTRS)

    Karp, A. H.

    1975-01-01

    Instead of computing a large number of coarsely zoned hydrodynamic models covering the entire atmospheric instability strip, the author computed a single model as well as computer limitations allow. The implicit hydrodynamic code of Kutter and Sparks was modified to include radiative transfer effects in optically thin zones.

  15. Hall-Effect Thruster Simulations with 2-D Electron Transport and Hydrodynamic Ions

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard H.; Goebel, Dan M.

    2009-01-01

    A computational approach that has been used extensively in the last two decades for Hall thruster simulations is to solve a diffusion equation and energy conservation law for the electrons in a direction that is perpendicular to the magnetic field, and use discrete-particle methods for the heavy species. This "hybrid" approach has allowed for the capture of bulk plasma phenomena inside these thrusters within reasonable computational times. Regions of the thruster with complex magnetic field arrangements (such as those near eroded walls and magnets) and/or reduced Hall parameter (such as those near the anode and the cathode plume) challenge the validity of the quasi-one-dimensional assumption for the electrons. This paper reports on the development of a computer code that solves numerically the 2-D axisymmetric vector form of Ohm's law, with no assumptions regarding the rate of electron transport in the parallel and perpendicular directions. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations in a computational mesh that is aligned with the magnetic field. The fully-2D approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction, and encompasses the cathode boundary. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for charge-exchange and multiple-ionization collisions in the momentum equations. A first series of simulations of two Hall thrusters, namely the BPT-4000 and a 6-kW laboratory thruster, quantifies the significance of ion diffusion in the anode region and the importance of the extended physical domain on studies related to the impact of the transport coefficients on the electron flow field.

  16. Studying Zeolite Catalysts with a 2D Model System

    SciTech Connect

    Boscoboinik, Anibal

    2016-12-07

    Anibal Boscoboinik, a materials scientist at Brookhaven’s Center for Functional Nanomaterials, discusses the surface-science tools and 2D model system he uses to study catalysis in nanoporous zeolites, which catalyze reactions in many industrial processes.

  17. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  18. Numerical simulations of hydrodynamic instabilities: Perturbation codes PANSY, PERLE, and 2D code CHIC applied to a realistic LIL target

    NASA Astrophysics Data System (ADS)

    Hallo, L.; Olazabal-Loumé, M.; Maire, P. H.; Breil, J.; Morse, R.-L.; Schurtz, G.

    2006-06-01

    This paper deals with ablation front instabilities simulations in the context of direct drive ICF. A simplified DT target, representative of realistic target on LIL is considered. We describe here two numerical approaches: the linear perturbation method using the perturbation codes Perle (planar) and Pansy (spherical) and the direct simulation method using our Bi-dimensional hydrodynamic code Chic. Numerical solutions are shown to converge, in good agreement with analytical models.

  19. Molecular Dynamics implementation of BN2D or 'Mercedes Benz' water model

    NASA Astrophysics Data System (ADS)

    Scukins, Arturs; Bardik, Vitaliy; Pavlov, Evgen; Nerukh, Dmitry

    2015-05-01

    Two-dimensional 'Mercedes Benz' (MB) or BN2D water model (Naim, 1971) is implemented in Molecular Dynamics. It is known that the MB model can capture abnormal properties of real water (high heat capacity, minima of pressure and isothermal compressibility, negative thermal expansion coefficient) (Silverstein et al., 1998). In this work formulas for calculating the thermodynamic, structural and dynamic properties in microcanonical (NVE) and isothermal-isobaric (NPT) ensembles for the model from Molecular Dynamics simulation are derived and verified against known Monte Carlo results. The convergence of the thermodynamic properties and the system's numerical stability are investigated. The results qualitatively reproduce the peculiarities of real water making the model a visually convenient tool that also requires less computational resources, thus allowing simulations of large (hydrodynamic scale) molecular systems. We provide the open source code written in C/C++ for the BN2D water model implementation using Molecular Dynamics.

  20. 2D microscopic model of graphene fracture properties

    NASA Astrophysics Data System (ADS)

    Hess, Peter

    2015-05-01

    An analytical two-dimensional (2D) microscopic fracture model based on Morse-type interaction is derived containing no adjustable parameter. From the 2D Young’s moduli and 2D intrinsic strengths of graphene measured by nanoindentation based on biaxial tension and calculated by density functional theory for uniaxial tension the widely unknown breaking force, line or edge energy, surface energy, fracture toughness, and strain energy release rate were determined. The simulated line energy agrees well with ab initio calculations and the fracture toughness of perfect graphene sheets is in good agreement with molecular dynamics simulations and the fracture toughness evaluated for defective graphene using the Griffith relation. Similarly, the estimated critical strain energy release rate agrees well with result of various theoretical approaches based on the J-integral and surface energy. The 2D microscopic model, connecting 2D and three-dimensional mechanical properties in a consistent way, provides a versatile relationship to easily access all relevant fracture properties of pristine 2D solids.

  1. An Intercomparison of 2-D Models Within a Common Framework

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.; Scott, Courtney J.; Jackman, Charles H.; Fleming, Eric L.; Considine, David B.; Kinnison, Douglas E.; Connell, Peter S.; Rotman, Douglas A.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    A model intercomparison among the Atmospheric and Environmental Research (AER) 2-D model, the Goddard Space Flight Center (GSFC) 2-D model, and the Lawrence Livermore National Laboratory 2-D model allows us to separate differences due to model transport from those due to the model's chemical formulation. This is accomplished by constructing two hybrid models incorporating the transport parameters of the GSFC and LLNL models within the AER model framework. By comparing the results from the native models (AER and e.g. GSFC) with those from the hybrid model (e.g. AER chemistry with GSFC transport), differences due to chemistry and transport can be identified. For the analysis, we examined an inert tracer whose emission pattern is based on emission from a High Speed Civil Transport (HSCT) fleet; distributions of trace species in the 2015 atmosphere; and the response of stratospheric ozone to an HSCT fleet. Differences in NO(y) in the upper stratosphere are found between models with identical transport, implying different model representations of atmospheric chemical processes. The response of O3 concentration to HSCT aircraft emissions differs in the models from both transport-dominated differences in the HSCT-induced perturbations of H2O and NO(y) as well as from differences in the model represent at ions of O3 chemical processes. The model formulations of cold polar processes are found to be the most significant factor in creating large differences in the calculated ozone perturbations

  2. Studying Zeolite Catalysts with a 2D Model System

    ScienceCinema

    Boscoboinik, Anibal

    2016-12-14

    Anibal Boscoboinik, a materials scientist at Brookhaven’s Center for Functional Nanomaterials, discusses the surface-science tools and 2D model system he uses to study catalysis in nanoporous zeolites, which catalyze reactions in many industrial processes.

  3. Instantons in 2D U(1) Higgs model and 2D CP(N-1) sigma models

    NASA Astrophysics Data System (ADS)

    Lian, Yaogang

    2007-12-01

    In this thesis I present the results of a study of the topological structures of 2D U(1) Higgs model and 2D CP N-1 sigma models. Both models have been studied using the overlap Dirac operator construction of topological charge density. The overlap operator provides a more incisive probe into the local topological structure of gauge field configurations than the traditional plaquette-based operator. In the 2D U(1) Higgs model, we show that classical instantons with finite sizes violate the negativity of topological charge correlator by giving a positive contribution to the correlator at non-zero separation. We argue that instantons in 2D U(1) Higgs model must be accompanied by large quantum fluctuations in order to solve this contradiction. In 2D CPN-1 sigma models, we observe the anomalous scaling behavior of the topological susceptibility chi t for N ≤ 3. The divergence of chi t in these models is traced to the presence of small instantons with a radius of order a (= lattice spacing), which are directly observed on the lattice. The observation of these small instantons provides detailed confirmation of Luscher's argument that such short-distance excitations, with quantized topological charge, should be the dominant topological fluctuations in CP1 and CP 2, leading to a divergent topological susceptibility in the continuum limit. For the CPN-1 models with N > 3 the topological susceptibility is observed to scale properly with the mass gap. Another topic presented in this thesis is an implementation of the Zolotarev optimal rational approximation for the overlap Dirac operator. This new implementation has reduced the time complexity of the overlap routine from O(N3 ) to O(N), where N is the total number of sites on the lattice. This opens up a door to more accurate lattice measurements in the future.

  4. 2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  5. Flow transitions in a 2D directional solidification model

    NASA Technical Reports Server (NTRS)

    Larroude, Philippe; Ouazzani, Jalil; Alexander, J. Iwan D.

    1992-01-01

    Flow transitions in a Two Dimensional (2D) model of crystal growth were examined using the Bridgman-Stockbarger me thod. Using a pseudo-spectral Chebyshev collocation method, the governing equations yield solutions which exhibit a symmetry breaking flow tansition and oscillatory behavior indicative of a Hopf bifurcation at higher values of Ra. The results are discussed from fluid dynamic viewpoint, and broader implications for process models are also addressed.

  6. Hydrodynamic study of freely swimming shark fish propulsion for marine vehicles using 2D particle image velocimetry.

    PubMed

    Babu, Mannam Naga Praveen; Mallikarjuna, J M; Krishnankutty, P

    Two-dimensional velocity fields around a freely swimming freshwater black shark fish in longitudinal (XZ) plane and transverse (YZ) plane are measured using digital particle image velocimetry (DPIV). By transferring momentum to the fluid, fishes generate thrust. Thrust is generated not only by its caudal fin, but also using pectoral and anal fins, the contribution of which depends on the fish's morphology and swimming movements. These fins also act as roll and pitch stabilizers for the swimming fish. In this paper, studies are performed on the flow induced by fins of freely swimming undulatory carangiform swimming fish (freshwater black shark, L = 26 cm) by an experimental hydrodynamic approach based on quantitative flow visualization technique. We used 2D PIV to visualize water flow pattern in the wake of the caudal, pectoral and anal fins of swimming fish at a speed of 0.5-1.5 times of body length per second. The kinematic analysis and pressure distribution of carangiform fish are presented here. The fish body and fin undulations create circular flow patterns (vortices) that travel along with the body waves and change the flow around its tail to increase the swimming efficiency. The wake of different fins of the swimming fish consists of two counter-rotating vortices about the mean path of fish motion. These wakes resemble like reverse von Karman vortex street which is nothing but a thrust-producing wake. The velocity vectors around a C-start (a straight swimming fish bends into C-shape) maneuvering fish are also discussed in this paper. Studying flows around flapping fins will contribute to design of bioinspired propulsors for marine vehicles.

  7. NGMIX: Gaussian mixture models for 2D images

    NASA Astrophysics Data System (ADS)

    Sheldon, Erin

    2015-08-01

    NGMIX implements Gaussian mixture models for 2D images. Both the PSF profile and the galaxy are modeled using mixtures of Gaussians. Convolutions are thus performed analytically, resulting in fast model generation as compared to methods that perform the convolution in Fourier space. For the galaxy model, NGMIX supports exponential disks and de Vaucouleurs and Sérsic profiles; these are implemented approximately as a sum of Gaussians using the fits from Hogg & Lang (2013). Additionally, any number of Gaussians can be fit, either completely free or constrained to be cocentric and co-elliptical.

  8. Numerical 2D-modeling of multiroll leveling

    NASA Astrophysics Data System (ADS)

    Mathieu, N.; Potier-Ferry, M.; Zahrouni, H.

    2016-10-01

    Multiroll leveling is a forming process used in the metals industries (aluminum, steel, …) in order to correct flatness defects and minimize residual stresses in strips thanks to alternating bending. This work proposes a Finite Element 2D model to simulate the metal sheet conveying through the machine. Obtained results (plastic strain and residual stress distributions through thickness) are analysed. Strip deformation, after elastic springback and potential buckling, is also predicted (residual curvatures).

  9. Hydrodynamical comparison test of solar models

    NASA Astrophysics Data System (ADS)

    Bach, K.; Kim, Y.-C.

    2012-12-01

    We present three dimensional radiation-hydrodynamical (RHD) simulations for solar surface convection based on three most recent solar mixtures: Grevesse & Sauval (1998), Asplund, Grevesse & Sauval (2005), and Asplund, Grevesse, Sauval & Scott (2009). The outer convection zone of the Sun is an extremely turbulent region composed of partly ionized compressible gases at high temperature. The super-adiabatic layer (SAL) is the transition region where the transport of energy changes drastically from convection to radiation. In order to describe physical processes accurately, a realistic treatment of radiation should be considered as well as convection. However, newly updated solar mixtures that are established from radiation-hydrodynamics do not generate properly internal structures estimated by helioseismology. In order to address this fundamental problem, solar models are constructed consistently based on each mixture and used as initial configurations for radiation-hydrodynamical simulations. From our simulations, we find that the turbulent flows in each model are statistically similar in the SAL.

  10. Fracture surfaces of heterogeneous materials: A 2D solvable model

    NASA Astrophysics Data System (ADS)

    Katzav, E.; Adda-Bedia, M.; Derrida, B.

    2007-05-01

    Using an elastostatic description of crack growth based on the Griffith criterion and the principle of local symmetry, we present a stochastic model describing the propagation of a crack tip in a 2D heterogeneous brittle material. The model ensures the stability of straight cracks and allows for the study of the roughening of fracture surfaces. When neglecting the effect of the nonsingular stress, the problem becomes exactly solvable and yields analytic predictions for the power spectrum of the paths. This result suggests an alternative to the conventional power law analysis often used in the analysis of experimental data.

  11. USING TWO-DIMENSIONAL HYDRODYNAMIC MODELS AT SCALES OF ECOLOGICAL IMPORTANCE. (R825760)

    EPA Science Inventory

    Modeling of flow features that are important in assessing stream habitat conditions has been a long-standing interest of stream biologists. Recently, they have begun examining the usefulness of two-dimensional (2-D) hydrodynamic models in attaining this objective. Current modelin...

  12. Hydrodynamic characterization of Corpus Christi Bay through modeling and observation.

    PubMed

    Islam, Mohammad S; Bonner, James S; Edge, Billy L; Page, Cheryl A

    2014-11-01

    Christi Bay is a relatively flat, shallow, wind-driven system with an average depth of 3-4 m and a mean tidal range of 0.3 m. It is completely mixed most of the time, and as a result, depth-averaged models have, historically, been applied for hydrodynamic characterization supporting regulatory decisions on Texas coastal management. The bay is highly stratified during transitory periods of the summer with low wind conditions. This has important implications on sediment transport, nutrient cycling, and water quality-related issues, including hypoxia which is a key water quality concern for the bay. Detailed hydrodynamic characterization of the bay during the summer months included analysis of simulation results of 2-D hydrodynamic model and high-frequency (HF) in situ observations. The HF radar system resolved surface currents, whereas an acoustic Doppler current profiler (ADCP) measured current at different depths of the water column. The developed model successfully captured water surface elevation variation at the mouth of the bay (i.e., onshore boundary of the Gulf of Mexico) and at times within the bay. However, large discrepancies exist between model-computed depth-averaged water currents and observed surface currents. These discrepancies suggested the presence of a vertical gradient in the current structure which was further substantiated by the observed bi-directional current movement within the water column. In addition, observed vertical density gradients proved that the water column was stratified. Under this condition, the bottom layer became hypoxic due to inadequate mixing with the aerated surface water. Understanding the disparities between observations and model predictions provides critical insights about hydrodynamics and physical processes controlling water quality.

  13. 2D Quantum Transport Modeling in Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.

    2001-01-01

    We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on an equal footing. Electron bandstructure is treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are consistent with 1D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller leakage current than the longer gate length device without a significant trade-off in on-current.

  14. Model dielectric function for 2D semiconductors including substrate screening

    PubMed Central

    Trolle, Mads L.; Pedersen, Thomas G.; Véniard, Valerie

    2017-01-01

    Dielectric screening of excitons in 2D semiconductors is known to be a highly non-local effect, which in reciprocal space translates to a strong dependence on momentum transfer q. We present an analytical model dielectric function, including the full non-linear q-dependency, which may be used as an alternative to more numerically taxing ab initio screening functions. By verifying the good agreement between excitonic optical properties calculated using our model dielectric function, and those derived from ab initio methods, we demonstrate the versatility of this approach. Our test systems include: Monolayer hBN, monolayer MoS2, and the surface exciton of a 2 × 1 reconstructed Si(111) surface. Additionally, using our model, we easily take substrate screening effects into account. Hence, we include also a systematic study of the effects of substrate media on the excitonic optical properties of MoS2 and hBN. PMID:28117326

  15. 2D Numerical MHD Models of Solar Explosive Events

    NASA Astrophysics Data System (ADS)

    Roussev, I.

    2001-10-01

    Observations of the Sun reveal a great variety of dynamic phenomena interpretable as a manifestation of magnetic reconnection. These range from small-scale 'Explosive events' seen in the 'quiet' Sun, through violent flares observed in active regions. The high degree of complexity of the magnetic field inferred from observations may locally produce a fruitful environment for the process of magnetic reconnection to take place. Explosive events are associated with regions undergoing magnetic flux cancellation. This thesis presents a 2-dimensional (2D) numerical study devoted to explore the idea that the salient spectral signatures seen in explosive events are most probably caused by bi-directional outflow jets as a results of an ongoing magnetic reconnection. In order to provide qualitative results needed for the better physical interpretation of solar explosive events, several models intended to represent a 'quiet' Sun transition of solar explosive events, several models intended to represent a 'quiet' Sun transition region undergoing magnetic reconnection are examined, in both unstratified and gravitationally stratified atmospheres. The magnetic reconnection is initiated in an ad hoc manner, and the dynamic evolution is followed by numerically solving the equations of 2D dissipative magnetohydrodynamics (MHD), including the effects of field-aligned thermal conduction, radiative losses, volumetric heating, and anomalous resistivity.

  16. Modeling multiphase flow using fluctuating hydrodynamics.

    PubMed

    Chaudhri, Anuj; Bell, John B; Garcia, Alejandro L; Donev, Aleksandar

    2014-09-01

    Fluctuating hydrodynamics provides a model for fluids at mesoscopic scales where thermal fluctuations can have a significant impact on the behavior of the system. Here we investigate a model for fluctuating hydrodynamics of a single-component, multiphase flow in the neighborhood of the critical point. The system is modeled using a compressible flow formulation with a van der Waals equation of state, incorporating a Korteweg stress term to treat interfacial tension. We present a numerical algorithm for modeling this system based on an extension of algorithms developed for fluctuating hydrodynamics for ideal fluids. The scheme is validated by comparison of measured structure factors and capillary wave spectra with equilibrium theory. We also present several nonequilibrium examples to illustrate the capability of the algorithm to model multiphase fluid phenomena in a neighborhood of the critical point. These examples include a study of the impact of fluctuations on the spinodal decomposition following a rapid quench, as well as the piston effect in a cavity with supercooled walls. The conclusion in both cases is that thermal fluctuations affect the size and growth of the domains in off-critical quenches.

  17. Brownsville Ship Channel Hydrodynamic Modeling

    DTIC Science & Technology

    2012-01-01

    31  Figure 31. Laguna Madre analysis locations...wave resuspension and circulation of sediment in Laguna Madre .2 The navigation impacts are assessed by performing model simulations of the...to better resolve the shallow-water habitats, including South Bay, Bahia Grande, and South Laguna Madre . These habitats are discussed further

  18. 2D Quantum Transport Modeling in Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density- gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Quantum simulations are focused on MIT 25, 50 and 90 nm "well- tempered" MOSFETs and compared to classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are quantitatively consistent with I D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and sub-threshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  19. Mass loss in 2D rotating stellar models

    SciTech Connect

    Lovekin, Caterine; Deupree, Bob

    2010-10-05

    Radiatively driven mass loss is an important factor in the evolution of massive stars . The mass loss rates depend on a number of stellar parameters, including the effective temperature and luminosity. Massive stars are also often rapidly rotating, which affects their structure and evolution. In sufficiently rapidly rotating stars, both the effective temperature and radius vary significantly as a function of latitude, and hence mass loss rates can vary appreciably between the poles and the equator. In this work, we discuss the addition of mass loss to a 2D stellar evolution code (ROTORC) and compare evolution sequences with and without mass loss. Preliminary results indicate that a full 2D calculation of mass loss using the local effective temperature and luminosity can significantly affect the distribution of mass loss in rotating main sequence stars. More mass is lost from the pole than predicted by 1D models, while less mass is lost at the equator. This change in the distribution of mass loss will affect the angular momentum loss, the surface temperature and luminosity, and even the interior structure of the star. After a single mass loss event, these effects are small, but can be expected to accumulate over the course of the main sequence evolution.

  20. Nested 1D-2D approach for urban surface flood modeling

    NASA Astrophysics Data System (ADS)

    Murla, Damian; Willems, Patrick

    2015-04-01

    Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of

  1. A quasi-2D flood modeling approach to simulate substance transport in polder systems for environment flood risk assessment.

    PubMed

    Lindenschmidt, Karl-Erich; Huang, Shaochun; Baborowski, Martina

    2008-07-01

    In flood modeling, many one-dimensional (1D) hydrodynamic and water quality models are too restricted in capturing the spatial differentiation of processes within a polder or system of polders and two-dimensional (2D) models are too demanding in data requirements and computational resources, especially if Monte-Carlo techniques are to be used for model uncertainty analyses. The first goal of this paper is to show the successful development of a quasi-2D modeling approach which still calculates the dynamic wave in 1D but the discretisation of the computational units is in 2D, allowing a better spatial representation of the flow and substance transport processes in the polders without a large additional expenditure on data pre-processing and simulation processing. The models DYNHYD (1D hydrodynamics) and TOXI (sediment and micro-pollutant transport) were used as a basis for the hydrodynamic and water quality simulations. An extreme flood event on the Elbe River, Germany, with a proposed polder system variant was used as a test case. The results show a plausible differentiation of suspended sediment and zinc concentrations within the polders both spatially and temporally. This fulfills the second goal of this research. The third goal of this work is to provide an example methodology of carrying out an environmental risk assessment in inundated areas by flood waters, as required by the European Union floods directive. The deposition of zinc in polders was used for this example, due to its high contamination potential in the Elbe River. The extended quasi-2D modeling system incorporates a Monte-Carlo uncertainty analysis to assess the environmental impact of heavy metal deposition in the polders during extreme flooding. The environmental risk computed gives a 48% chance of exceeding the inspection value of 500 mg zinc/kg sediment for a flood such as the August 2002 event.

  2. Impact modeling with Smooth Particle Hydrodynamics

    SciTech Connect

    Stellingwerf, R.F.; Wingate, C.A.

    1993-07-01

    Smooth Particle Hydrodynamics (SPH) can be used to model hypervelocity impact phenomena via the addition of a strength of materials treatment. SPH is the only technique that can model such problems efficiently due to the combination of 3-dimensional geometry, large translations of material, large deformations, and large void fractions for most problems of interest. This makes SPH an ideal candidate for modeling of asteroid impact, spacecraft shield modeling, and planetary accretion. In this paper we describe the derivation of the strength equations in SPH, show several basic code tests, and present several impact test cases with experimental comparisons.

  3. Generalization Technique for 2D+SCALE Dhe Data Model

    NASA Astrophysics Data System (ADS)

    Karim, Hairi; Rahman, Alias Abdul; Boguslawski, Pawel

    2016-10-01

    Different users or applications need different scale model especially in computer application such as game visualization and GIS modelling. Some issues has been raised on fulfilling GIS requirement of retaining the details while minimizing the redundancy of the scale datasets. Previous researchers suggested and attempted to add another dimension such as scale or/and time into a 3D model, but the implementation of scale dimension faces some problems due to the limitations and availability of data structures and data models. Nowadays, various data structures and data models have been proposed to support variety of applications and dimensionality but lack research works has been conducted in terms of supporting scale dimension. Generally, the Dual Half Edge (DHE) data structure was designed to work with any perfect 3D spatial object such as buildings. In this paper, we attempt to expand the capability of the DHE data structure toward integration with scale dimension. The description of the concept and implementation of generating 3D-scale (2D spatial + scale dimension) for the DHE data structure forms the major discussion of this paper. We strongly believed some advantages such as local modification and topological element (navigation, query and semantic information) in scale dimension could be used for the future 3D-scale applications.

  4. Duality Between Spin Networks and the 2D Ising Model

    NASA Astrophysics Data System (ADS)

    Bonzom, Valentin; Costantino, Francesco; Livine, Etera R.

    2016-06-01

    The goal of this paper is to exhibit a deep relation between the partition function of the Ising model on a planar trivalent graph and the generating series of the spin network evaluations on the same graph. We provide respectively a fermionic and a bosonic Gaussian integral formulation for each of these functions and we show that they are the inverse of each other (up to some explicit constants) by exhibiting a supersymmetry relating the two formulations. We investigate three aspects and applications of this duality. First, we propose higher order supersymmetric theories that couple the geometry of the spin networks to the Ising model and for which supersymmetric localization still holds. Secondly, after interpreting the generating function of spin network evaluations as the projection of a coherent state of loop quantum gravity onto the flat connection state, we find the probability distribution induced by that coherent state on the edge spins and study its stationary phase approximation. It is found that the stationary points correspond to the critical values of the couplings of the 2D Ising model, at least for isoradial graphs. Third, we analyze the mapping of the correlations of the Ising model to spin network observables, and describe the phase transition on those observables on the hexagonal lattice. This opens the door to many new possibilities, especially for the study of the coarse-graining and continuum limit of spin networks in the context of quantum gravity.

  5. Towards modeling hydrodynamic stress limitations on transpiration

    NASA Astrophysics Data System (ADS)

    Matheny, A. M.; Bohrer, G.; Ivanov, V. Y.; Stoy, P. C.

    2011-12-01

    Evapotranspiration is one of the major forcing functions of Earth's climate, providing the link for the soil-plant-water continuum. Current models for transpiration assume a coupling between stomatal conductance and soil moisture through empirical relationships that do not resolve the hydrodynamic process of water movement from the soil to the leaves. This approach does not take advantage of recent advances in our understanding of water flow and storage in the trees, or of tree and canopy structure. It has been suggested that stomata respond to water potential in the leaf and branch, and that this hydrodynamic response is a mechanism for hydraulic limitation of stomatal conductance. Hydraulic limitations in forest ecosystems are common and are known to control transpiration when the soil is drying or when vapor pressure deficit (VPD) is very large. Hydraulic limitation can also impact stomatal apertures under conditions of adequate soil moisture and lower evaporative demand. Hydrodynamic stresses at the tree level act at several time scales, including the fast, minute-hour scale. These dynamics are faster than the time scales of hours to days at which drying soil will affect stomata conductance. The lack of representation of the tree-hydrodynamic process should therefore lead to atypical intra-daily patterns of error in results of current models. We use a large-scale comparison between observations and land-surface models to characterize the patterns of intra-daily error in simulated water flux. Through the use of the North American Carbon Program (NACP) dataset, more than 10 years of water flux data for 35 Fluxnet sites in the US and Canada have been analyzed. The diurnal error for each of the 24 models represented in this dataset allows the models to be categorized and evaluated on their ability to accurately predict the fast temporal dynamics of transpiration in different ecosystems and atmospheric forcing. Among well calibrated models, two general error

  6. Effects of Agent's Repulsion in 2d Flocking Models

    NASA Astrophysics Data System (ADS)

    Moussa, Najem; Tarras, Iliass; Mazroui, M'hammed; Boughaleb, Yahya

    In nature many animal groups, such as fish schools or bird flocks, clearly display structural order and appear to move as a single coherent entity. In order to understand the complex behavior of these systems, many models have been proposed and tested so far. This paper deals with an extension of the Vicsek model, by including a second zone of repulsion, where each agent attempts to maintain a minimum distance from the others. The consideration of this zone in our study seems to play an important role during the travel of agents in the two-dimensional (2D) flocking models. Our numerical investigations show that depending on the basic ingredients such as repulsion radius (R1), effect of density of agents (ρ) and noise (η), our nonequilibrium system can undergo a kinetic phase transition from no transport to finite net transport. For different values of ρ, kinetic phase diagrams in the plane (η ,R1) are found. Implications of these findings are discussed.

  7. 2-D Model for Normal and Sickle Cell Blood Microcirculation

    NASA Astrophysics Data System (ADS)

    Tekleab, Yonatan; Harris, Wesley

    2011-11-01

    Sickle cell disease (SCD) is a genetic disorder that alters the red blood cell (RBC) structure and function such that hemoglobin (Hb) cannot effectively bind and release oxygen. Previous computational models have been designed to study the microcirculation for insight into blood disorders such as SCD. Our novel 2-D computational model represents a fast, time efficient method developed to analyze flow dynamics, O2 diffusion, and cell deformation in the microcirculation. The model uses a finite difference, Crank-Nicholson scheme to compute the flow and O2 concentration, and the level set computational method to advect the RBC membrane on a staggered grid. Several sets of initial and boundary conditions were tested. Simulation data indicate a few parameters to be significant in the perturbation of the blood flow and O2 concentration profiles. Specifically, the Hill coefficient, arterial O2 partial pressure, O2 partial pressure at 50% Hb saturation, and cell membrane stiffness are significant factors. Results were found to be consistent with those of Le Floch [2010] and Secomb [2006].

  8. Ab initio modeling of 2D layered organohalide lead perovskites

    NASA Astrophysics Data System (ADS)

    Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele; Marchese, Leonardo; Cossi, Maurizio

    2016-04-01

    A number of 2D layered perovskites A2PbI4 and BPbI4, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps have been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another's place.

  9. Kinetic and hydrodynamic models of chemotactic aggregation

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri; Sire, Clément

    2007-10-01

    We derive general kinetic and hydrodynamic models of chemotactic aggregation that describe certain features of the morphogenesis of biological colonies (like bacteria, amoebae, endothelial cells or social insects). Starting from a stochastic model defined in terms of N coupled Langevin equations, we derive a nonlinear mean-field Fokker-Planck equation governing the evolution of the distribution function of the system in phase space. By taking the successive moments of this kinetic equation and using a local thermodynamic equilibrium condition, we derive a set of hydrodynamic equations involving a damping term. In the limit of small frictions, we obtain a hyperbolic model describing the formation of network patterns (filaments) and in the limit of strong frictions we obtain a parabolic model which is a generalization of the standard Keller-Segel model describing the formation of clusters (clumps). Our approach connects and generalizes several models introduced in the chemotactic literature. We discuss the analogy between bacterial colonies and self-gravitating systems and between the chemotactic collapse and the gravitational collapse (Jeans instability). We also show that the basic equations of chemotaxis are similar to nonlinear mean-field Fokker-Planck equations so that a notion of effective generalized thermodynamics can be developed.

  10. Mathematical model for silicon electrode - Part I. 2-d model

    NASA Astrophysics Data System (ADS)

    Sikha, Godfrey; De, Sumitava; Gordon, Joseph

    2014-09-01

    This paper presents a 2-dimensional transient numerical model to simulate the electrochemical lithium insertion in a silicon nanowire (Si NW) electrode. The model geometry is a cylindrical Si NW electrode anchored to a copper current collector (Cu CC) substrate. The model solves for diffusion of lithium in Si NW, stress generation in the Si NW due to chemical and elastic strains, stress generation in the Cu CC due to elastic strain, and volume expansion in the Si NW and Cu CC geometries. The evolution of stress components, i.e., radial, axial and tangential stresses in different regions in the Si NW are presented and discussed. The effect of radius of Si NW and lithiation rate, on the maximum stresses developed in the Si NW are also discussed.

  11. Detailed simulation of morphodynamics: 1. Hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Nabi, M.; de Vriend, H. J.; Mosselman, E.; Sloff, C. J.; Shimizu, Y.

    2012-12-01

    We present a three-dimensional high-resolution hydrodynamic model for unsteady incompressible flow over an evolving bed topography. This is achieved by using a multilevel Cartesian grid technique that allows the grid to be refined in high-gradient regions and in the vicinity of the river bed. The grid can be locally refined and adapted to the bed geometry, managing the Cartesian grid cells and faces using a hierarchical tree data approach. A ghost-cell immersed-boundary technique is applied to cells intersecting the bed topography. The governing equations have been discretized using a finite-volume method on a staggered grid, conserving second-order accuracy in time and space. The solution advances in time using the fractional step approach. Large-eddy simulation is used as turbulence closure. We validate the model against several experiments and other results from literature. Model results for Stokes flow around a cylinder in the vicinity of a moving wall agree well with Wannier's analytical solution. At higher Reynolds numbers, computed trailing bubble length, separation angle, and drag coefficient compare favorably with experimental and previous computational results. Results for the flow over two- and three-dimensional dunes agree well with published data, including a fair reproduction of recirculation zones, horse-shoe structures, and boiling effects. This shows that the model is suitable for being used as a hydrodynamic submodel in the high-resolution modeling of sediment transport and formation and evolution of subaqueous ripples and dunes.

  12. 2D modeling of electromagnetic waves in cold plasmas

    SciTech Connect

    Crombé, K.; Van Eester, D.; Koch, R.; Kyrytsya, V.

    2014-02-12

    The consequences of sheath (rectified) electric fields, resulting from the different mobility of electrons and ions as a response to radio frequency (RF) fields, are a concern for RF antenna design as it can cause damage to antenna parts, limiters and other in-vessel components. As a first step to a more complete description, the usual cold plasma dielectric description has been adopted, and the density profile was assumed to be known as input. Ultimately, the relevant equations describing the wave-particle interaction both on the fast and slow timescale will need to be tackled but prior to doing so was felt as a necessity to get a feeling of the wave dynamics involved. Maxwell's equations are solved for a cold plasma in a 2D antenna box with strongly varying density profiles crossing also lower hybrid and ion-ion hybrid resonance layers. Numerical modelling quickly becomes demanding on computer power, since a fine grid spacing is required to capture the small wavelengths effects of strongly evanescent modes.

  13. Hydrodynamic models for slurry bubble column reactors

    SciTech Connect

    Gidaspow, D.

    1995-12-31

    The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore, the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.

  14. Hydrodynamic properties of San Quintin Bay, Baja California: Merging models and observations.

    PubMed

    Melaku Canu, Donata; Aveytua-Alcázar, Leslie; Camacho-Ibar, Victor F; Querin, Stefano; Solidoro, Cosimo

    2016-07-15

    We investigated the physical dynamics of San Quintin Bay, a coastal lagoon located on the Pacific coast of northern Baja California, Mexico. We implemented, validated and used a finite element 2-D hydrodynamic model to characterize the spatial and temporal variability of the hydrodynamic of the bay in response to variability in the tidal regime and in meteorological forcing patterns. Our analysis of general circulation, residual currents, residence times, and tidal propagation delays allowed us to characterize spatial variability in the hydrodynamic basin features. The eulerian water residence time is -on average and under reference conditions- approximately 7days, although this can change significantly by region and season and under different tidal and meteorological conditions. Ocean upwelling events that bring colder waters into the bay mouth affect hydrodynamic properties in all areas of the lagoon and may affect ecological dynamics. A return to pre-upwelling conditions would take approximately 10days.

  15. 2D DEM model of sand transport with wind interaction

    NASA Astrophysics Data System (ADS)

    Oger, L.; Valance, A.

    2013-06-01

    The advance of the dunes in the desert is a threat to the life of the local people. The dunes invade houses, agricultural land and perturb the circulation on the roads. It is therefore very important to understand the mechanism of sand transport in order to fight against desertification. Saltation in which sand grains are propelled by the wind along the surface in short hops, is the primary mode of blown sand movement [1]. The saltating grains are very energetic and when impact a sand surface, they rebound and consequently eject other particles from the sand bed. The ejected grains, called reptating grains, contribute to the augmentation of the sand flux. Some of them can be promoted to the saltation motion. We use a mechanical model based on the Discrete Element Method to study successive collisions of incident energetic beads with granular packing in the context of Aeolian saltation transport. We investigate the collision process for the case where the incident bead and those from the packing have identical mechanical properties. We analyze the features of the consecutive collision processes made by the transport of the saltating disks by a wind in which its profile is obtained from the counter-interaction between air flow and grain flows. We used a molecular dynamics method known as DEM (soft Discrete Element Method) with a initial static packing of 20000 2D particles. The dilation of the upper surface due to the consecutive collisions is responsible for maintaining the flow at a given energy input due to the wind.

  16. Multithread Hydrodynamic Modeling of a Solar Flare

    NASA Astrophysics Data System (ADS)

    Warren, Harry P.

    2006-01-01

    Past hydrodynamic simulations have been able to reproduce the high temperatures and densities characteristic of solar flares. These simulations, however, have not been able to account for the slow decay of the observed flare emission or the absence of blueshifts in high spectral resolution line profiles. Recent work has suggested that modeling a flare as a sequence of independently heated threads instead of as a single loop may resolve the discrepancies between the simulations and observations. In this paper, we present a method for computing multithread, time-dependent hydrodynamic simulations of solar flares and apply it to observations of the Masuda flare of 1992 January 13. We show that it is possible to reproduce the temporal evolution of high temperature thermal flare plasma observed with the instruments on the GOES and Yohkoh satellites. The results from these simulations suggest that the heating timescale for a individual thread is on the order of 200 s. Significantly shorter heating timescales (20 s) lead to very high temperatures and are inconsistent with the emission observed by Yohkoh.

  17. RECENT ADVANCES IN MACROMOLECULAR HYDRODYNAMIC MODELING

    PubMed Central

    Aragon, Sergio R.

    2010-01-01

    The modern implementation of the boundary element method (S.R. Aragon, J. Comput. Chem. 25(2004)1191–12055) has ushered unprecedented accuracy and precision for the solution of the Stokes equations of hydrodynamics with stick boundary conditions. This article begins by reviewing computations with the program BEST of smooth surface objects such as ellipsoids, the dumbbell, and cylinders that demonstrate that the numerical solution of the integral equation formulation of hydrodynamics yields very high precision and accuracy. When BEST is used for macromolecular computations, the limiting factor becomes the definition of the molecular hydrodynamic surface and the implied effective solvation of the molecular surface. Studies on 49 different proteins, ranging in molecular weight from 9 to over 400 kDa, have shown that a model using a 1.1 A thick hydration layer describes all protein transport properties very well for the overwhelming majority of them. In addition, this data implies that the crystal structure is an excellent representation of the average solution structure for most of them. In order to investigate the origin of a handful of significant discrepancies in some multimeric proteins (over −20% observed in the intrinsic viscosity), the technique of Molecular Dynamics simulation (MD) has been incorporated into the research program. A preliminary study of dimeric α-chymotrypsin using approximate implicit water MD is presented. In addition I describe the successful validation of modern protein force fields, ff03 and ff99SB, for the accurate computation of solution structure in explicit water simulation by comparison of trajectory ensemble average computed transport properties with experimental measurements. This work includes small proteins such as lysozyme, ribonuclease and ubiquitin using trajectories around 10 ns duration. We have also studied a 150 kDa flexible monoclonal IgG antibody, trastuzumab, with multiple independent trajectories encompassing over

  18. A 2D simulation model for urban flood management

    NASA Astrophysics Data System (ADS)

    Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo

    2014-05-01

    The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and

  19. Hydrodynamic models for slurry bubble column reactors

    SciTech Connect

    Dimitri Gidaspow

    1996-10-01

    The objective of this investigation is to convert learning gas-solid-liquid fluidization model into a predictive design model. The IIT hydrodynamic model computers the phase velocities and the volume fi-actions of gas, liquid and particulate phases. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. As promised in the SIXTH TECHNICAL PROGRESS REPORT, January 1996, this report presents measurements of radial distribution function for 450 micron glass particles in liquid-solid fluidized bed. The report is in the form of a preliminary paper. The authors need the radial distribution function to compute the viscosity and the equation of state for particles. The principal results are as follows: (1) The measured radial distribution function, g{sub 0}, is a monotonic function of the solid volume fraction. The values of the radial distribution function g{sub 0} are in the range of the predictions from Bagnold equation and Carnahan and Starling equation. (2) The position of the first peak of the radial distribution function does not lie at r = d at contact (d is particle diameter). This differs from the predications from the hard sphere model and the measurements in the gas-solid system (Gidaspow and Huilin, 1996). This is due to a liquid film lubrication effect in the liquid-solid system.

  20. An analytical model of flagellate hydrodynamics

    NASA Astrophysics Data System (ADS)

    Dölger, Julia; Bohr, Tomas; Andersen, Anders

    2017-04-01

    Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. We consider a hydrodynamic model of flagellates and explore the effect of flagellar arrangement and beat pattern on swimming kinematics and near-cell flow. The model is based on the analytical solution by Oseen for the low Reynolds number flow due to a point force outside a no-slip sphere. The no-slip sphere represents the cell and the point force a single flagellum. By superposition we are able to model a freely swimming flagellate with several flagella. For biflagellates with left–right symmetric flagellar arrangements we determine the swimming velocity, and we show that transversal forces due to the periodic movements of the flagella can promote swimming. For a model flagellate with both a longitudinal and a transversal flagellum we determine radius and pitch of the helical swimming trajectory. We find that the longitudinal flagellum is responsible for the average translational motion whereas the transversal flagellum governs the rotational motion. Finally, we show that the transversal flagellum can lead to strong feeding currents to localized capture sites on the cell surface.

  1. Chemical and Hydrodynamical Models of Cometary Comae

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2012-01-01

    Multi-fluid modelling of the outflowing gases which sublimate from cometary nuclei as they approach the Sun is necessary for understanding the important physical and chemical processes occurring in this complex plasma. Coma chemistry models can be employed to interpret observational data and to ultimately determine chemical composition and structure of the nuclear ices and dust. We describe a combined chemical and hydrodynamical model [1] in which differential equations for the chemical abundances and the energy balance are solved as a function of distance from the cometary nucleus. The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of 1P/Halley. The anions O(-), OH(-), C(-), CH(-) and CN(-) have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu [2]. Organic molecular anions such as C4H(-) and C6H(-) are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been fully explored. We present details of new models for the chemistry of cometary comae that include atomic and molecular anions and calculate the impact of these anions on the coma physics and chemistry af the coma.

  2. The Implementation of C-ID, R2D2 Model on Learning Reading Comprehension

    ERIC Educational Resources Information Center

    Rayanto, Yudi Hari; Rusmawan, Putu Ngurah

    2016-01-01

    The purposes of this research are to find out, (1) whether C-ID, R2D2 model is effective to be implemented on learning Reading comprehension, (2) college students' activity during the implementation of C-ID, R2D2 model on learning Reading comprehension, and 3) college students' learning achievement during the implementation of C-ID, R2D2 model on…

  3. Modeling the hydrodynamics of Phloem sieve plates.

    PubMed

    Jensen, Kaare Hartvig; Mullendore, Daniel Leroy; Holbrook, Noel Michele; Bohr, Tomas; Knoblauch, Michael; Bruus, Henrik

    2012-01-01

    Sieve plates have an enormous impact on the efficiency of the phloem vascular system of plants, responsible for the distribution of photosynthetic products. These thin plates, which separate neighboring phloem cells, are perforated by a large number of tiny sieve pores and are believed to play a crucial role in protecting the phloem sap from intruding animals by blocking flow when the phloem cell is damaged. The resistance to the flow of viscous sap in the phloem vascular system is strongly affected by the presence of the sieve plates, but the hydrodynamics of the flow through them remains poorly understood. We propose a theoretical model for quantifying the effect of sieve plates on the phloem in the plant, thus unifying and improving previous work in the field. Numerical simulations of the flow in real and idealized phloem channels verify our model, and anatomical data from 19 plant species are investigated. We find that the sieve plate resistance is correlated to the cell lumen resistance, and that the sieve plate and the lumen contribute almost equally to the total hydraulic resistance of the phloem translocation pathway.

  4. Completeness of the classical 2D Ising model and universal quantum computation.

    PubMed

    Van den Nest, M; Dür, W; Briegel, H J

    2008-03-21

    We prove that the 2D Ising model is complete in the sense that the partition function of any classical q-state spin model (on an arbitrary graph) can be expressed as a special instance of the partition function of a 2D Ising model with complex inhomogeneous couplings and external fields. In the case where the original model is an Ising or Potts-type model, we find that the corresponding 2D square lattice requires only polynomially more spins with respect to the original one, and we give a constructive method to map such models to the 2D Ising model. For more general models the overhead in system size may be exponential. The results are established by connecting classical spin models with measurement-based quantum computation and invoking the universality of the 2D cluster states.

  5. Radiation Hydrodynamics Modeling of Hohlraum Energetics

    NASA Astrophysics Data System (ADS)

    Patel, Mehul V.; Mauche, Christopher W.; Jones, Ogden S.; Scott, Howard A.

    2015-11-01

    Attempts to model the energetics in NIF Hohlraums have been made with varying degrees of success, with discrepancies of 0-25% being reported for the X-ray flux (10-25% for the NIC ignition platform hohlraums). To better understand the cause(s) of these discrepancies, the effects of uncertainties in modeling thermal conduction, laser-plasma interactions, atomic mixing at interfaces, and NLTE kinetics of the high-Z wall plasma must be quantified. In this work we begin by focusing on the NLTE kinetics component. We detail a simulation framework for developing an integrated HYDRA hohlraum model with predefined tolerances for energetics errors due to numerical discretization errors or statistical fluctuations. Within this framework we obtain a model for a converged 1D spherical hohlraum which is then extended to 2D. The new model is used to reexamine physics sensitivities and improve estimates of the energetics discrepancy. Prepared by LLNL under Contract DE-AC52-07NA27344.

  6. Progress and Challenges in Coupled Hydrodynamic-Ecological Estuarine Modeling

    EPA Science Inventory

    Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational po...

  7. 2D MHD AND 1D HD MODELS OF A SOLAR FLARE—A COMPREHENSIVE COMPARISON OF THE RESULTS

    SciTech Connect

    Falewicz, R.; Rudawy, P.; Murawski, K.; Srivastava, A. K. E-mail: rudawy@astro.uni.wroc.pl E-mail: asrivastava.app@iitbhu.ac.in

    2015-11-01

    Without any doubt, solar flaring loops possess a multithread internal structure that is poorly resolved, and there are no means to observe heating episodes and thermodynamic evolution of the individual threads. These limitations cause fundamental problems in numerical modeling of flaring loops, such as selection of a structure and a number of threads, and an implementation of a proper model of the energy deposition process. A set of one-dimensional (1D) hydrodynamic and two-dimensional (2D) magnetohydrodynamic models of a flaring loop are developed to compare energy redistribution and plasma dynamics in the course of a prototypical solar flare. Basic parameters of the modeled loop are set according to the progenitor M1.8 flare recorded in AR 10126 on 2002 September 20 between 09:21 UT and 09:50 UT. The nonideal 1D models include thermal conduction and radiative losses of the optically thin plasma as energy-loss mechanisms, while the nonideal 2D models take into account viscosity and thermal conduction as energy-loss mechanisms only. The 2D models have a continuous distribution of the parameters of the plasma across the loop and are powered by varying in time and space along and across the loop heating flux. We show that such 2D models are an extreme borderline case of a multithread internal structure of the flaring loop, with a filling factor equal to 1. Nevertheless, these simple models ensure the general correctness of the obtained results and can be adopted as a correct approximation of the real flaring structures.

  8. Hydrodynamical Modeling of the Local Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Slavin, Jonathan David

    2017-01-01

    Studies of the Local Interstellar Medium (LISM) provide us with the opportunity to make progress in understanding a wide range of physical processes that operate in the diffuse insterstellar medium (ISM) of galaxies. The LISM includes a large bubble of hot, supernova created gas, known as the Local Bubble, and several low density, warm clouds close to the Sun, known as the Complex of Local Insterstellar Clouds (CLIC). The CLIC includes the Local Interstellar Cloud that surrounds and confines the heliosphere and is the source of neutral H and He that has been detected flowing into the Solar System. Several important questions remain unanswered about the LISM including how the Local Bubble formed, how the CLIC got to be inside the Local Bubble, and what are the ongoing interactions of the hot gas with the CLIC gas. We report on our progress in creating numerical hydrodynamical models of the LISM that aim to help us to understand the wide range of observations we have of the CLIC and the Local Bubble and the origins and evolution of the LISM.

  9. A first attempt to enhance the 2-D single-crystal growth of a protein at an air/water interface from hydrodynamics

    NASA Astrophysics Data System (ADS)

    Drazek, L.; Legrand, J.-F.; Davoust, L.

    2005-02-01

    An alternative technique to grow a 2-D crystal of protein at a functionalized air/water interface is proposed. The first part of this paper briefly reviews 2-D crystal growth at a fluid interface and deals with our first experiments on streptavidin whose 2-D (poly)crystallization ability is well known. In the experiments, the involved air/water interface is functionalized with a mixed lipidic monolayer made of DOPC and biotinylated lipids. The second part of the paper relates to an alternative strategy we propose in order to enhance the 2-D single-crystal growth of a protein at a liquid interface. The idea is to get benefit from an axisymmetric swirling flow driven in a water sub-phase confined within an annular channel. The swirl is expected to control the distribution of the proteins at the air/water interface and to promote the growth of a 2-D single crystal from the smallest to the largest radii (radial segregation). An analytical modelling based on a low Reynolds number asymptotic development demonstrates how two control parameters, the mean channel curvature and the Reynolds number of the shear flow, can be helpful in tuning the magnitude of the swirl and therefore the crystal growth.

  10. Advancing Nucleosynthesis in Core-Collapse Supernovae Models Using 2D CHIMERA Simulations

    NASA Astrophysics Data System (ADS)

    Harris, J. A.; Hix, W. R.; Chertkow, M. A.; Bruenn, S. W.; Lentz, E. J.; Messer, O. B.; Mezzacappa, A.; Blondin, J. M.; Marronetti, P.; Yakunin, K.

    2014-01-01

    The deaths of massive stars as core-collapse supernovae (CCSN) serve as a crucial link in understanding galactic chemical evolution since the birth of the universe via the Big Bang. We investigate CCSN in polar axisymmetric simulations using the multidimensional radiation hydrodynamics code CHIMERA. Computational costs have traditionally constrained the evolution of the nuclear composition in CCSN models to, at best, a 14-species α-network. However, the limited capacity of the α-network to accurately evolve detailed composition, the neutronization and the nuclear energy generation rate has fettered the ability of prior CCSN simulations to accurately reproduce the chemical abundances and energy distributions as known from observations. These deficits can be partially ameliorated by "post-processing" with a more realistic network. Lagrangian tracer particles placed throughout the star record the temporal evolution of the initial simulation and enable the extension of the nuclear network evolution by incorporating larger systems in post-processing nucleosynthesis calculations. We present post-processing results of the four ab initio axisymmetric CCSN 2D models of Bruenn et al. (2013) evolved with the smaller α-network, and initiated from stellar metallicity, non-rotating progenitors of mass 12, 15, 20, and 25 M⊙ from Woosley & Heger (2007). As a test of the limitations of post-processing, we provide preliminary results from an ongoing simulation of the 15 M⊙ model evolved with a realistic 150 species nuclear reaction network in situ. With more accurate energy generation rates and an improved determination of the thermodynamic trajectories of the tracer particles, we can better unravel the complicated multidimensional "mass-cut" in CCSN simulations and probe for less energetically significant nuclear processes like the νp-process and the r-process, which require still larger networks.

  11. Approaches to Modeling Coupled Flow and Reaction in a 2-D Cementation Experiment

    SciTech Connect

    Steefel, Carl; Cochepin, B.; Trotignon, L.; Bildstein, O.; Steefel, C.; Lagneau, V.; van der Lee, J.

    2008-04-01

    Porosity evolution at reactive interfaces is a key process that governs the evolution and performances of many engineered systems that have important applications in earth and environmental sciences. This is the case, for example, at the interface between cement structures and clays in deep geological nuclear waste disposals. Although in a different transport regime, similar questions arise for permeable reactive barriers used for biogeochemical remediation in surface environments. The COMEDIE project aims at investigating the coupling between transport, hydrodynamics and chemistry when significant variations of porosity occur. The present work focuses on a numerical benchmark used as a design exercise for the future COMEDIE-2D experiment. The use of reactive transport simulation tools like Hytec and Crunch provides predictions of the physico-chemical evolutions that are expected during the future experiments in laboratory. Focus is given in this paper on the evolution during the simulated experiment of precipitate, permeability and porosity fields. A first case is considered in which the porosity is constant. Results obtained with Crunch and Hytec are in relatively good agreement. Differences are attributable to the models of reactive surface area taken into account for dissolution/precipitation processes. Crunch and Hytec simulations taking into account porosity variations are then presented and compared. Results given by the two codes are in qualitative agreement, with differences attributable in part to the models of reactive surface area for dissolution/precipitation processes. As a consequence, the localization of secondary precipitates predicted by Crunch leads to lower local porosities than for predictions obtained by Hytec and thus to a stronger coupling between flow and chemistry. This benchmark highlights the importance of the surface area model employed to describe systems in which strong porosity variations occur as a result of dissolution

  12. An Implicit 2-D Shallow Water Flow Model on Unstructured Quadtree Rectangular Mesh

    DTIC Science & Technology

    2011-01-01

    Hanson, H.; Wamsley, T., and Zundel, A. K., 2006. Two-dimensional depth-averaged circulation model CMS- M2D : Version 3.0, Report 2: Sediment...Militello, A.; Reed, C.W.; Zundel, A.K. and Kraus, N.C., 2004. Two-dimensional depth-averaged circulation model M2D : Version 2.0, Report 1, Technical

  13. Improvement of a 2D numerical model of lava flows

    NASA Astrophysics Data System (ADS)

    Ishimine, Y.

    2013-12-01

    I propose an improved procedure that reduces an improper dependence of lava flow directions on the orientation of Digital Elevation Model (DEM) in two-dimensional simulations based on Ishihara et al. (in Lava Flows and Domes, Fink, JH eds., 1990). The numerical model for lava flow simulations proposed by Ishihara et al. (1990) is based on two-dimensional shallow water model combined with a constitutive equation for a Bingham fluid. It is simple but useful because it properly reproduces distributions of actual lava flows. Thus, it has been regarded as one of pioneer work of numerical simulations of lava flows and it is still now widely used in practical hazard prediction map for civil defense officials in Japan. However, the model include an improper dependence of lava flow directions on the orientation of DEM because the model separately assigns the condition for the lava flow to stop due to yield stress for each of two orthogonal axes of rectangular calculating grid based on DEM. This procedure brings a diamond-shaped distribution as shown in Fig. 1 when calculating a lava flow supplied from a point source on a virtual flat plane although the distribution should be circle-shaped. To improve the drawback, I proposed a modified procedure that uses the absolute value of yield stress derived from both components of two orthogonal directions of the slope steepness to assign the condition for lava flows to stop. This brings a better result as shown in Fig. 2. Fig. 1. (a) Contour plots calculated with the original model of Ishihara et al. (1990). (b) Contour plots calculated with a proposed model.

  14. Update on PHELIX Pulsed-Power Hydrodynamics Experiments and Modeling

    NASA Astrophysics Data System (ADS)

    Rousculp, Christopher; Reass, William; Oro, David; Griego, Jeffery; Turchi, Peter; Reinovsky, Robert; Devolder, Barbara

    2013-10-01

    The PHELIX pulsed-power driver is a 300 kJ, portable, transformer-coupled, capacitor bank capable of delivering 3-5 MA, 10 μs pulse into a low inductance load. Here we describe further testing and hydrodynamics experiments. First, a 4 nH static inductive load has been constructed. This allows for repetitive high-voltage, high-current testing of the system. Results are used in the calibration of simple circuit models and numerical simulations across a range of bank charges (+/-20 < V0 < +/-40 kV). Furthermore, a dynamic liner-on-target load experiment has been conducted to explore the shock-launched transport of particulates (diam. ~ 1 μm) from a surface. The trajectories of the particulates are diagnosed with radiography. Results are compared to 2D hydro-code simulations. Finally, initial studies are underway to assess the feasibility of using the PHELIX driver as an electromagnetic launcher for planer shock-physics experiments. Work supported by United States-DOE under contract DE-AC52-06NA25396.

  15. Anomalous invasion in a 2d model of chemotactic predation

    NASA Astrophysics Data System (ADS)

    Willemsen, Jorge F.

    2010-09-01

    It has been hypothesized that plankton predators sense the presence of their prey through detection of chemical signals exuded by the prey. This process is formulated using elements of existing models, tailored to correspond to the specific process under investigation. The motivation for the resulting model is discussed in detail. Numerical results are then presented. It is found that the front representing the advance of the predator into the prey is irregular in a novel way, and the reasons for this anomalous invasion are discussed. It is recognized that reaction-diffusion models, starting perhaps with Turing, can lead to what might have been thought of as anomalous patterns - yet the “flicker” front advance discovered here is indeed novel.

  16. Implementation of Minimal Representations in 2d Ising Model Calculations

    DTIC Science & Technology

    1992-05-01

    Re r’ u. 60:252-262.263-276. 1941. [Ons44] Lars Onsager . Crystal statistics I. A two-dimensional model with an order-disorder transition. Physical Re...ID lattices but the subject really came to life in 1944 when Onsager [Ons44] derived an exact closed form expression for the partition function (see

  17. Development of CCHE2D embankment break model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Earthen embankment breach often results in detrimental impact on downstream residents and infrastructure, especially those located in the flooding zone. Embankment failures are most commonly caused by overtopping or internal erosion. This study is to develop a practical numerical model for simulat...

  18. Impact modeling with Smooth Particle Hydrodynamics

    SciTech Connect

    Stellingwerf, R.F.; Wingate, C.A.

    1992-01-01

    Smooth Particle Hydrodynamics (SPH) is a new computational technique uniquely suited to computation of hypervelocity impact phenomena. This paper reviews the characteristics, philosophy, and a bit of the derivation of the method. As illustrations of the technique, several test case computations and several application computations are shown.

  19. Impact modeling with Smooth Particle Hydrodynamics

    SciTech Connect

    Stellingwerf, R.F.; Wingate, C.A.

    1992-09-01

    Smooth Particle Hydrodynamics (SPH) is a new computational technique uniquely suited to computation of hypervelocity impact phenomena. This paper reviews the characteristics, philosophy, and a bit of the derivation of the method. As illustrations of the technique, several test case computations and several application computations are shown.

  20. A mathematical model for foreign body reactions in 2D

    PubMed Central

    Su, Jianzhong; Gonzales, Humberto Perez; Todorov, Michail; Kojouharov, Hristo; Tang, Liping

    2010-01-01

    The foreign body reactions are commonly referred to the network of immune and inflammatory reactions of human or animals to foreign objects placed in tissues. They are basic biological processes, and are also highly relevant to bioengineering applications in implants, as fibrotic tissue formations surrounding medical implants have been found to substantially reduce the effectiveness of devices. Despite of intensive research on determining the mechanisms governing such complex responses, few mechanistic mathematical models have been developed to study such foreign body reactions. This study focuses on a kinetics-based predictive tool in order to analyze outcomes of multiple interactive complex reactions of various cells/proteins and biochemical processes and to understand transient behavior during the entire period (up to several months). A computational model in two spatial dimensions is constructed to investigate the time dynamics as well as spatial variation of foreign body reaction kinetics. The simulation results have been consistent with experimental data and the model can facilitate quantitative insights for study of foreign body reaction process in general. PMID:21532988

  1. Hydrodynamic and Salinity Intrusion Model in Selangor River Estuary

    NASA Astrophysics Data System (ADS)

    Haron, N. F.; Tahir, W.

    2016-07-01

    A multi-dimensional hydrodynamic and transport model has been used to develop the hydrodynamic and salinity intrusion model for Selangor River Estuary. Delft3D-FLOW was applied to the study area using a curvilinear, boundary fitted grid. External boundary forces included ocean water level, salinity, and stream flow. The hydrodynamic and salinity transport used for the simulation was calibrated and confirmed using data on November 2005 and from May to June 2014. A 13-day period for November 2005 data and a 6-day period of May to June 2014 data were chosen as the calibration and confirmation period because of the availability of data from the field-monitoring program conducted. From the calibration results, it shows that the model was well suited to predict the hydrodynamic and salinity intrusion characteristics of the study area.

  2. Conservation laws and LETKF with 2D Shallow Water Model

    NASA Astrophysics Data System (ADS)

    Zeng, Yuefei; Janjic, Tijana

    2016-04-01

    Numerous approaches have been proposed to maintain physical conservation laws in the numerical weather prediction models. However, to achieve a reliable prediction, adequate initial conditions are also necessary, which are produced by a data assimilation algorithm. If an ensemble Kalman filters (EnKF) is used for this purpose, it has been shown that it could yield unphysical analysis ensemble that for example violates principles of mass conservation and positivity preservation (e.g. Janjic et al 2014) . In this presentation, we discuss the selection of conservation criteria for the analysis step, and start with testing the conservation of mass, energy and enstrophy. The simple experiments deal with nonlinear shallow water equations and simulated observations that are assimilated with LETKF (Localized Ensemble Transform Kalman Filter, Hunt et al. 2007). The model is discretized in a specific way to conserve mass, angular momentum, energy and enstrophy. The effects of the data assimilation on the conserved quantities (of mass, energy and enstrophy) depend on observation covarage, localization radius, observed variable and observation operator. Having in mind that Arakawa (1966) and Arakawa and Lamb (1977) showed that the conservation of both kinetic energy and enstrophy by momentum advection schemes in the case of nondivergent flow prevents systematic and unrealistic energy cascade towards high wave numbers, a cause of excessive numerical noise and possible eventual nonlinear instability, we test the effects on prediction depending on the type of errors in the initial condition. The performance with respect to nonlinear energy cascade is assessed as well.

  3. Simulation of subgrid orographic precipitation with an embedded 2-D cloud-resolving model

    NASA Astrophysics Data System (ADS)

    Jung, Joon-Hee; Arakawa, Akio

    2016-03-01

    By explicitly resolving cloud-scale processes with embedded two-dimensional (2-D) cloud-resolving models (CRMs), superparameterized global atmospheric models have successfully simulated various atmospheric events over a wide range of time scales. Up to now, however, such models have not included the effects of topography on the CRM grid scale. We have used both 3-D and 2-D CRMs to simulate the effects of topography with prescribed "large-scale" winds. The 3-D CRM is used as a benchmark. The results show that the mean precipitation can be simulated reasonably well by using a 2-D representation of topography as long as the statistics of the topography such as the mean and standard deviation are closely represented. It is also shown that the use of a set of two perpendicular 2-D grids can significantly reduce the error due to a 2-D representation of topography.

  4. Approaches to numerical solution of 2D Ising model

    NASA Astrophysics Data System (ADS)

    Soldatov, K. S.; Nefedev, K. V.; Kapitan, V. Yu; Andriushchenko, P. D.

    2016-08-01

    Parallel algorithm of partition function calculation of two-dimensional Ising model for systems with a finite number of spins was developed. Within a method of complete enumeration by using MPI technology with subsequent optimization of a parallel code time of calculations was reduced considerably. Partition function was calculated for systems of 16, 25, 36 Ising spins. Based on the obtained results, main thermodynamic and magnetic values dependences (such as heat capacity, magnetic susceptibility, mean square magnetization) for ferromagnetic and antiferromagnetic interactions was investigated. The analysis of a different configurations contribution showed, that states with the minimum energy have essential influence on dependences of thermodynamic values. Comparison with the results obtained by the Wang Landau algorithm was performed.

  5. Bond Order Correlations in the 2D Hubbard Model

    NASA Astrophysics Data System (ADS)

    Moore, Conrad; Abu Asal, Sameer; Yang, Shuxiang; Moreno, Juana; Jarrell, Mark

    We use the dynamical cluster approximation to study the bond correlations in the Hubbard model with next nearest neighbor (nnn) hopping to explore the region of the phase diagram where the Fermi liquid phase is separated from the pseudogap phase by the Lifshitz line at zero temperature. We implement the Hirsch-Fye cluster solver that has the advantage of providing direct access to the computation of the bond operators via the decoupling field. In the pseudogap phase, the parallel bond order susceptibility is shown to persist at zero temperature while it vanishes for the Fermi liquid phase which allows the shape of the Lifshitz line to be mapped as a function of filling and nnn hopping. Our cluster solver implements NVIDIA's CUDA language to accelerate the linear algebra of the Quantum Monte Carlo to help alleviate the sign problem by allowing for more Monte Carlo updates to be performed in a reasonable amount of computation time. Work supported by the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.

  6. A 2D model to design MHD induction pumps

    NASA Astrophysics Data System (ADS)

    Stieglitz, R.; Zeininger, J.

    2006-09-01

    Technical liquid metal systems accompanied by a thermal transfer of energy such as reactor systems, metallurgical processes, metal refinement, casting, etc., require a forced convection of the fluid. The increased temperatures and more often the environmental conditions as, e.g., in a nuclear environment, pumping principles are required, in which rotating parts are absent. Additionally, in many applications a controlled atmosphere is indispensable, in order to ensure the structural integrity of the duct walls. An interesting option to overcome the sealing problem of a mechanical pump towards the surrounding is offered by induction systems. Although their efficiency compared to that of turbo machines is quite low, they have several advantages, which are attractive to the specific requirements in liquid metal applications such as: - low maintenance costs due to the absence of sealings, bearings and moving parts; - low degradation rate of the structural material; - simple replacement of the inductor without cut of the piping system; - fine regulation of flow rate by different inductor connections; - change of pump characteristics without change of the mechanical set-up. Within the article, general design requirements of electromagnetic pumps (EMP) are elaborated. The design of two annular linear induction pumps operating with sodium and lead-bismuth are presented and the calculated pump characteristics and experimentally obtained data are compared. In this context, physical effects leading to deviations between the model and the real data are addressed. Finally, the main results are summarized. Tables 4, Figs 4, Refs 12.

  7. Measurement and modelling of magnetic properties of soft magnetic composite material under 2D vector magnetisations

    NASA Astrophysics Data System (ADS)

    Guo, Y. G.; Zhu, J. G.; Zhong, J. J.

    2006-07-01

    This paper reports the measurement and modelling of magnetic properties of SOMALOY TM 500, a soft magnetic composite (SMC) material, under different 2D vector magnetisations, such as alternating along one direction, circularly and elliptically rotating in a 2D plane. By using a 2D magnetic property tester, the B- H curves and core losses of the SMC material have been measured with different flux density patterns on a single sheet square sample. The measurements can provide useful information for modelling of the magnetic properties, such as core losses. The core loss models have been successfully applied in the design of rotating electrical machines with SMC core.

  8. 3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK

    SciTech Connect

    Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D

    2006-08-24

    3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.

  9. Export of earthquake-triggered landslides in active mountain ranges: insights from 2D morphodynamic modelling.

    NASA Astrophysics Data System (ADS)

    Croissant, Thomas; Lague, Dimitri; Davy, Philippe; Steer, Philippe

    2016-04-01

    In active mountain ranges, large earthquakes (Mw > 5-6) trigger numerous landslides that impact river dynamics. These landslides bring local and sudden sediment piles that will be eroded and transported along the river network causing downstream changes in river geometry, transport capacity and erosion efficiency. The progressive removal of landslide materials has implications for downstream hazards management and also for understanding landscape dynamics at the timescale of the seismic cycle. The export time of landslide-derived sediments after large-magnitude earthquakes has been studied from suspended load measurements but a full understanding of the total process, including the coupling between sediment transfer and channel geometry change, still remains an issue. Note that the transport of small sediment pulses has been studied in the context of river restoration, but the magnitude of sediment pulses generated by landslides may make the problem different. Here, we study the export of large volumes (>106 m3) of sediments with the 2D hydro-morphodynamic model, Eros. This model uses a new hydrodynamic module that resolves a reduced form of the Saint-Venant equations with a particle method. It is coupled with a sediment transport and lateral and vertical erosion model. Eros accounts for the complex retroactions between sediment transport and fluvial geometry, with a stochastic description of the floods experienced by the river. Moreover, it is able to reproduce several features deemed necessary to study the evacuation of large sediment pulses, such as river regime modification (single-thread to multi-thread), river avulsion and aggradation, floods and bank erosion. Using a synthetic and simple topography we first present how granulometry, landslide volume and geometry, channel slope and flood frequency influence 1) the dominance of pulse advection vs. diffusion during its evacuation, 2) the pulse export time and 3) the remaining volume of sediment in the catchment

  10. Concurrent multiscale modelling of atomistic and hydrodynamic processes in liquids.

    PubMed

    Markesteijn, Anton; Karabasov, Sergey; Scukins, Arturs; Nerukh, Dmitry; Glotov, Vyacheslav; Goloviznin, Vasily

    2014-08-06

    Fluctuations of liquids at the scales where the hydrodynamic and atomistic descriptions overlap are considered. The importance of these fluctuations for atomistic motions is discussed and examples of their accurate modelling with a multi-space-time-scale fluctuating hydrodynamics scheme are provided. To resolve microscopic details of liquid systems, including biomolecular solutions, together with macroscopic fluctuations in space-time, a novel hybrid atomistic-fluctuating hydrodynamics approach is introduced. For a smooth transition between the atomistic and continuum representations, an analogy with two-phase hydrodynamics is used that leads to a strict preservation of macroscopic mass and momentum conservation laws. Examples of numerical implementation of the new hybrid approach for the multiscale simulation of liquid argon in equilibrium conditions are provided.

  11. Concurrent multiscale modelling of atomistic and hydrodynamic processes in liquids

    PubMed Central

    Markesteijn, Anton; Karabasov, Sergey; Scukins, Arturs; Nerukh, Dmitry; Glotov, Vyacheslav; Goloviznin, Vasily

    2014-01-01

    Fluctuations of liquids at the scales where the hydrodynamic and atomistic descriptions overlap are considered. The importance of these fluctuations for atomistic motions is discussed and examples of their accurate modelling with a multi-space–time-scale fluctuating hydrodynamics scheme are provided. To resolve microscopic details of liquid systems, including biomolecular solutions, together with macroscopic fluctuations in space–time, a novel hybrid atomistic–fluctuating hydrodynamics approach is introduced. For a smooth transition between the atomistic and continuum representations, an analogy with two-phase hydrodynamics is used that leads to a strict preservation of macroscopic mass and momentum conservation laws. Examples of numerical implementation of the new hybrid approach for the multiscale simulation of liquid argon in equilibrium conditions are provided. PMID:24982246

  12. Epitope spreading of the anti-CYP2D6 antibody response in patients with autoimmune hepatitis and in the CYP2D6 mouse model.

    PubMed

    Hintermann, Edith; Holdener, Martin; Bayer, Monika; Loges, Stephanie; Pfeilschifter, Josef M; Granier, Claude; Manns, Michael P; Christen, Urs

    2011-11-01

    Autoimmune hepatitis (AIH) is a serious chronic inflammatory disease of the liver with yet unknown etiology and largely uncertain immunopathology. The hallmark of type 2 AIH is the generation of liver kidney microsomal-1 (LKM-1) autoantibodies, which predominantly react to cytochrome P450 2D6 (CYP2D6). The identification of disease initiating factors has been hampered in the past, since antibody epitope mapping was mostly performed using serum samples collected late during disease resulting in the identification of immunodominant epitopes not necessarily representing those involved in disease initiation. In order to identify possible environmental triggers for AIH, we analyzed for the first time the spreading of the anti-CYP2D6 antibody response over a prolonged period of time in AIH patients and in the CYP2D6 mouse model, in which mice infected with Adenovirus-human CYP2D6 (Ad-h2D6) develop antibodies with a similar specificity than AIH patients. Epitope spreading was analyzed in six AIH-2-patients and in the CYP2D6 mouse model using SPOTs membranes containing peptides covering the entire CYP2D6 protein. Despite of a considerable variation, both mice and AIH patients largely focus their humoral immune response on an immunodominant epitope early after infection (mice) or diagnosis (patients). The CYP2D6 mouse model revealed that epitope spreading is initiated at the immunodominant epitope and later expands to neighboring and remote regions. Sequence homologies to human pathogens have been detected for all identified epitopes. Our study demonstrates that epitope spreading does indeed occur during the pathogenesis of AIH and supports the concept of molecular mimicry as a possible initiating mechanism for AIH.

  13. Probabilistic Cellular Automata for Low-Temperature 2-d Ising Model

    NASA Astrophysics Data System (ADS)

    Procacci, Aldo; Scoppola, Benedetto; Scoppola, Elisabetta

    2016-12-01

    We construct a parallel stochastic dynamics with invariant measure converging to the Gibbs measure of the 2-d low-temperature Ising model. The proof of such convergence requires a polymer expansion based on suitably defined Peierls-type contours.

  14. The immunoreceptor NKG2D promotes tumour growth in a model of hepatocellular carcinoma

    PubMed Central

    Sheppard, Sam; Guedes, Joana; Mroz, Anna; Zavitsanou, Anastasia-Maria; Kudo, Hiromi; Rothery, Stephen M.; Angelopoulos, Panagiotis; Goldin, Robert; Guerra, Nadia

    2017-01-01

    Inflammation is recognized as one of the drivers of cancer. Yet, the individual immune components that possess pro- and anti-tumorigenic functions in individual cancers remain largely unknown. NKG2D is a potent activating immunoreceptor that has emerged as an important player in inflammatory disorders besides its well-established function as tumour suppressor. Here, we provide genetic evidence of an unexpected tumour-promoting effect of NKG2D in a model of inflammation-driven liver cancer. Compared to NKG2D-deficient mice, NKG2D-sufficient mice display accelerated tumour growth associated with, an increased recruitment of memory CD8+T cells to the liver and exacerbated pro-inflammatory milieu. In addition, we show that NKG2D contributes to liver damage and consequent hepatocyte proliferation known to favour tumorigenesis. Thus, the NKG2D/NKG2D-ligand pathway provides an additional mechanism linking chronic inflammation to tumour development in hepatocellular carcinoma. Our findings expose the need to selectively target the types of cancer that could benefit from NKG2D-based immunotherapy. PMID:28128200

  15. GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System

    SciTech Connect

    James Menart

    2013-06-07

    This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..

  16. CAST2D: A finite element computer code for casting process modeling

    SciTech Connect

    Shapiro, A.B.; Hallquist, J.O.

    1991-10-01

    CAST2D is a coupled thermal-stress finite element computer code for casting process modeling. This code can be used to predict the final shape and stress state of cast parts. CAST2D couples the heat transfer code TOPAZ2D and solid mechanics code NIKE2D. CAST2D has the following features in addition to all the features contained in the TOPAZ2D and NIKE2D codes: (1) a general purpose thermal-mechanical interface algorithm (i.e., slide line) that calculates the thermal contact resistance across the part-mold interface as a function of interface pressure and gap opening; (2) a new phase change algorithm, the delta function method, that is a robust method for materials undergoing isothermal phase change; (3) a constitutive model that transitions between fluid behavior and solid behavior, and accounts for material volume change on phase change; and (4) a modified plot file data base that allows plotting of thermal variables (e.g., temperature, heat flux) on the deformed geometry. Although the code is specialized for casting modeling, it can be used for other thermal stress problems (e.g., metal forming).

  17. Constructing stable 3D hydrodynamical models of giant stars

    NASA Astrophysics Data System (ADS)

    Ohlmann, Sebastian T.; Röpke, Friedrich K.; Pakmor, Rüdiger; Springel, Volker

    2017-02-01

    Hydrodynamical simulations of stellar interactions require stable models of stars as initial conditions. Such initial models, however, are difficult to construct for giant stars because of the wide range in spatial scales of the hydrostatic equilibrium and in dynamical timescales between the core and the envelope of the giant. They are needed for, e.g., modeling the common envelope phase where a giant envelope encompasses both the giant core and a companion star. Here, we present a new method of approximating and reconstructing giant profiles from a stellar evolution code to produce stable models for multi-dimensional hydrodynamical simulations. We determine typical stellar stratification profiles with the one-dimensional stellar evolution code mesa. After an appropriate mapping, hydrodynamical simulations are conducted using the moving-mesh code arepo. The giant profiles are approximated by replacing the core of the giant with a point mass and by constructing a suitable continuation of the profile to the center. Different reconstruction methods are tested that can specifically control the convective behaviour of the model. After mapping to a grid, a relaxation procedure that includes damping of spurious velocities yields stable models in three-dimensional hydrodynamical simulations. Initially convectively stable configurations lead to stable hydrodynamical models while for stratifications that are convectively unstable in the stellar evolution code, simulations recover the convective behaviour of the initial model and show large convective plumes with Mach numbers up to 0.8. Examples are shown for a 2 M⊙ red giant and a 0.67 M⊙ asymptotic giant branch star. A detailed analysis shows that the improved method reliably provides stable models of giant envelopes that can be used as initial conditions for subsequent hydrodynamical simulations of stellar interactions involving giant stars.

  18. Representativeness of 2D models to simulate 3D unstable variable density flow in porous media

    NASA Astrophysics Data System (ADS)

    Knorr, Bastian; Xie, Yueqing; Stumpp, Christine; Maloszewski, Piotr; Simmons, Craig T.

    2016-11-01

    Variable density flow in porous media has been studied primarily using numerical models because it is a semi-chaotic and transient process. Most of these studies have been 2D, owing to the computational restrictions on 3D simulations, and the ability to observe variable density flow in 2D experimentation. However, it is recognised that variable density flow is a three-dimensional process. A 3D system may cause weaker variable density flow than a 2D system due to stronger dispersion, but may also result in bigger fingers and hence stronger variable density flow because of more space for fingers to coalesce. This study aimed to determine the representativeness of 2D modelling to simulate 3D variable density flow. 3D homogeneous sand column experiments were conducted at three different water flow velocities with three different bromide tracer solutions mixed with methanol resulting in different density ratios. Both 2D axisymmetric and 3D numerical simulations were performed to reproduce experimental data. Experimental results showed that the magnitude of variable density flow increases with decreasing flow rates and decreasing density ratios. The shapes of the observed breakthrough curves differed significantly from those produced by 2D axisymmetric and 3D simulations. Compared to 2D simulations, the onset of instabilities was delayed but the growth was more pronounced in 3D simulations. Despite this difference, both 2D axisymmetric and 3D models successfully simulated mass recovery with high efficiency (between 77% and 99%). This study indicates that 2D simulations are sufficient to understand integrated features of variable density flow in homogeneous sand column experiments.

  19. New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Song, Kaijun; Fan, Yong

    2017-02-01

    A two-dimensional (2D) diffraction model for the calculation of the diffraction field in 2D space and its applications to terahertz parallel-plate waveguide power splitters are proposed in this paper. Compared with the Huygens-Fresnel principle in three-dimensional (3D) space, the proposed model provides an approximate analytical expression to calculate the diffraction field in 2D space. The diffraction filed is regarded as the superposition integral in 2D space. The calculated results obtained from the proposed diffraction model agree well with the ones by software HFSS based on the element method (FEM). Based on the proposed 2D diffraction model, two parallel-plate waveguide power splitters are presented. The splitters consist of a transmitting horn antenna, reflectors, and a receiving antenna array. The reflector is cylindrical parabolic with superimposed surface relief to efficiently couple the transmitted wave into the receiving antenna array. The reflector is applied as computer-generated holograms to match the transformed field to the receiving antenna aperture field. The power splitters were optimized by a modified real-coded genetic algorithm. The computed results of the splitters agreed well with the ones obtained by software HFSS verify the novel design method for power splitter, which shows good applied prospects of the proposed 2D diffraction model.

  20. New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters

    PubMed Central

    Zhang, Fan; Song, Kaijun; Fan, Yong

    2017-01-01

    A two-dimensional (2D) diffraction model for the calculation of the diffraction field in 2D space and its applications to terahertz parallel-plate waveguide power splitters are proposed in this paper. Compared with the Huygens-Fresnel principle in three-dimensional (3D) space, the proposed model provides an approximate analytical expression to calculate the diffraction field in 2D space. The diffraction filed is regarded as the superposition integral in 2D space. The calculated results obtained from the proposed diffraction model agree well with the ones by software HFSS based on the element method (FEM). Based on the proposed 2D diffraction model, two parallel-plate waveguide power splitters are presented. The splitters consist of a transmitting horn antenna, reflectors, and a receiving antenna array. The reflector is cylindrical parabolic with superimposed surface relief to efficiently couple the transmitted wave into the receiving antenna array. The reflector is applied as computer-generated holograms to match the transformed field to the receiving antenna aperture field. The power splitters were optimized by a modified real-coded genetic algorithm. The computed results of the splitters agreed well with the ones obtained by software HFSS verify the novel design method for power splitter, which shows good applied prospects of the proposed 2D diffraction model. PMID:28181514

  1. New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters.

    PubMed

    Zhang, Fan; Song, Kaijun; Fan, Yong

    2017-02-09

    A two-dimensional (2D) diffraction model for the calculation of the diffraction field in 2D space and its applications to terahertz parallel-plate waveguide power splitters are proposed in this paper. Compared with the Huygens-Fresnel principle in three-dimensional (3D) space, the proposed model provides an approximate analytical expression to calculate the diffraction field in 2D space. The diffraction filed is regarded as the superposition integral in 2D space. The calculated results obtained from the proposed diffraction model agree well with the ones by software HFSS based on the element method (FEM). Based on the proposed 2D diffraction model, two parallel-plate waveguide power splitters are presented. The splitters consist of a transmitting horn antenna, reflectors, and a receiving antenna array. The reflector is cylindrical parabolic with superimposed surface relief to efficiently couple the transmitted wave into the receiving antenna array. The reflector is applied as computer-generated holograms to match the transformed field to the receiving antenna aperture field. The power splitters were optimized by a modified real-coded genetic algorithm. The computed results of the splitters agreed well with the ones obtained by software HFSS verify the novel design method for power splitter, which shows good applied prospects of the proposed 2D diffraction model.

  2. Progress and challenges in coupled hydrodynamic-ecological estuarine modeling

    PubMed Central

    Ganju, Neil K.; Brush, Mark J.; Rashleigh, Brenda; Aretxabaleta, Alfredo L.; del Barrio, Pilar; Grear, Jason S.; Harris, Lora A.; Lake, Samuel J.; McCardell, Grant; O’Donnell, James; Ralston, David K.; Signell, Richard P.; Testa, Jeremy M.; Vaudrey, Jamie M.P.

    2016-01-01

    Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear, because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a “theory of everything” for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy. PMID:27721675

  3. Dynamically Coupled Food-web and Hydrodynamic Modeling with ADH-CASM

    NASA Astrophysics Data System (ADS)

    Piercy, C.; Swannack, T. M.

    2012-12-01

    Oysters and freshwater mussels are "ecological engineers," modifying the local water quality by filtering zooplankton and other suspended particulate matter from the water column and flow hydraulics by impinging on the near-bed flow environment. The success of sessile, benthic invertebrates such as oysters depends on environmental factors including but not limited to temperature, salinity, and flow regime. Typically food-web and other types of ecological models use flow and water quality data as direct input without regard to the feedback between the ecosystem and the physical environment. The USACE-ERDC has developed a coupled hydrodynamic-ecological modeling approach that dynamically couples a 2-D hydrodynamic and constituent transport model, Adaptive Hydraulics (ADH), with a bioenergetics food-web model, the Comprehensive Aquatics Systems Model (CASM), which captures the dynamic feedback between aquatic ecological systems and the environment. We present modeling results from restored oyster reefs in the Great Wicomico River on the western shore of the Chesapeake Bay, which quantify ecosystem services such as the influence of the benthic ecosystem on water quality. Preliminary results indicate that while the influence of oyster reefs on bulk flow dynamics is limited due to the localized influence of oyster reefs, large reefs and the associated benthic ecosystem can create measurable changes in the concentrations of nitrogen, phosphorus, and carbon in the areas around reefs. We also present a sensitivity analysis to quantify the relative sensitivity of the coupled ADH-CASM model to both hydrodynamic and ecological parameter choice.

  4. A 2D spring model for the simulation of ultrasonic wave propagation in nonlinear hysteretic media.

    PubMed

    Delsanto, P P; Gliozzi, A S; Hirsekorn, M; Nobili, M

    2006-07-01

    A two-dimensional (2D) approach to the simulation of ultrasonic wave propagation in nonclassical nonlinear (NCNL) media is presented. The approach represents the extension to 2D of a previously proposed one dimensional (1D) Spring Model, with the inclusion of a PM space treatment of the intersticial regions between grains. The extension to 2D is of great practical relevance for its potential applications in the field of quantitative nondestructive evaluation and material characterization, but it is also useful, from a theoretical point of view, to gain a better insight of the interaction mechanisms involved. The model is tested by means of virtual 2D experiments. The expected NCNL behaviors are qualitatively well reproduced.

  5. Multi-Scale Modeling, Design Strategies and Physical Properties of 2D Composite Sheets

    DTIC Science & Technology

    2015-01-15

    of Pennsylvania. The breakthrough results obtained are 1) prediction and subsequent experimental observation of strain induced changes in electronic...structure of TMD materials 2) Prediction and experimental observation of using defects in 2D materials to enhance charge storage capacity and 3...221 Philadelphia , PA 19104 -6205 4-Mar-2014 ABSTRACT Final Report: 9.4: Multi-scale modeling, design strategies and physical properties of 2D

  6. Hydrodynamic models of a Cepheid atmosphere. I - Deep envelope models

    NASA Technical Reports Server (NTRS)

    Karp, A. H.

    1975-01-01

    The implicit hydrodynamic code of Kutter and Sparks has been modified to include radiative transfer effects. This modified code has been used to compute deep envelope models of a classical Cepheid with a period of 12 days. It is shown that in this particular model the hydrogen ionization region plays only a small role in producing the observed phase lag between the light and velocity curves. The cause of the bumps on the model's light curve is examined, and a mechanism is presented to explain those Cepheids with two secondary features on their light curves. This mechanism is shown to be consistent with the Hertzsprung sequence only if the evolutionary mass-luminosity law is used.

  7. Analysis of vegetation effect on waves using a vertical 2-D RANS model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A vertical two-dimensional (2-D) model has been applied in the simulation of wave propagation through vegetated water bodies. The model is based on an existing model SOLA-VOF which solves the Reynolds-Averaged Navier-Stokes (RANS) equations with the finite difference method on a staggered rectangula...

  8. Simulation of Cardiac Arrhythmias Using a 2D Heterogeneous Whole Heart Model

    PubMed Central

    Balakrishnan, Minimol; Chakravarthy, V. Srinivasa; Guhathakurta, Soma

    2015-01-01

    Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG) gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D) which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC), excitability, action potential duration (APD) and frequency of oscillations of the auto-rhythmic cell in WHM2D a large variety of cardiac arrhythmias can be generated including sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinus pause, junctional rhythm, Wolf Parkinson White syndrome and all types of AV conduction blocks. WHM2D includes key components of the electrical conduction system of the heart like the SA (Sino atrial) node cells, fast conducting intranodal pathways, slow conducting atriovenctricular (AV) node, bundle of His cells, Purkinje network, atrial, and ventricular myocardial cells. SA nodal cells, AV nodal cells, bundle of His cells, and Purkinje cells are represented by the Fitzhugh-Nagumo (FN) model which is a reduced model of the Hodgkin-Huxley neuron model. The atrial and ventricular myocardial cells are modeled by the Aliev-Panfilov (AP) two-variable model proposed for cardiac excitation. WHM2D can prove to be a valuable clinical tool for understanding cardiac arrhythmias. PMID:26733873

  9. Simulation of Cardiac Arrhythmias Using a 2D Heterogeneous Whole Heart Model.

    PubMed

    Balakrishnan, Minimol; Chakravarthy, V Srinivasa; Guhathakurta, Soma

    2015-01-01

    Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG) gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D) which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC), excitability, action potential duration (APD) and frequency of oscillations of the auto-rhythmic cell in WHM2D a large variety of cardiac arrhythmias can be generated including sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinus pause, junctional rhythm, Wolf Parkinson White syndrome and all types of AV conduction blocks. WHM2D includes key components of the electrical conduction system of the heart like the SA (Sino atrial) node cells, fast conducting intranodal pathways, slow conducting atriovenctricular (AV) node, bundle of His cells, Purkinje network, atrial, and ventricular myocardial cells. SA nodal cells, AV nodal cells, bundle of His cells, and Purkinje cells are represented by the Fitzhugh-Nagumo (FN) model which is a reduced model of the Hodgkin-Huxley neuron model. The atrial and ventricular myocardial cells are modeled by the Aliev-Panfilov (AP) two-variable model proposed for cardiac excitation. WHM2D can prove to be a valuable clinical tool for understanding cardiac arrhythmias.

  10. Influence of Tricuspid Bioprosthetic Mitral Valve Orientation Regarding the Flow Field Inside the Left Ventricle: In Vitro Hydrodynamic Characterization Based on 2D PIV Measurements.

    PubMed

    Bazan, Ovandir; Ortiz, Jayme P; Fukumasu, Newton K; Pacifico, Antonio L; Yanagihara, Jurandir I

    2016-02-01

    The flow patterns of a prosthetic heart valve in the aortic or mitral position can change according to its type and orientation. This work describes the use of 2D particle image velocimetry (PIV) applied to the in vitro flow fields characterization inside the upper part of a left ventricular model at various heart rates and as a function of two orientations of stented tricuspid mitral bioprostheses. In the ventricular model, each mitral bioprosthesis (27 and 31 mm diameter) was installed in two orientations, rotated by 180°, while the aortic bileaflet mechanical valve (27 mm diameter) remained in a fixed orientation. The results (N = 50) showed changes in the intraventricular flow fields according to the mitral bioprostheses positioning. Also, changes in the aortic upstream velocity profiles were noticed as a function of mitral orientations.

  11. MODELING THE TRANSVERSE THERMAL CONDUCTIVITY OF 2D-SICF/SIC COMPOSITES

    SciTech Connect

    Youngblood, Gerald E.; Senor, David J.; Jones, Russell H.

    2002-09-01

    A hierarchical model was developed to describe the effective transverse thermal conductivity, K effective, of a 2D-SiC/SiC composite made from stacked and infiltrated woven fabric layers in terms of constituent properties and microstructural and architectural variables. The model includes the expected effects of fiber-matrix interfacial conductance as well as the effects of high fiber packing fractions within individual tows and the non-uniform nature of 2D-fabric layers that include a significant amount of interlayer porosity. Model predictions were obtained for two versions of DuPont 2D-Hi Nicalon(Trademark)/PyC/ICVI-SiC composite, one with a thin (0.110 micron) and the other with a thick (1.040 micron) PyC fiber coating. The model predicts that the matrix porosity content and porosity shape factor have a major influence on K effective(T) for such a composite.

  12. Seepage and Piping through Levees and Dikes using 2D and 3D Modeling Codes

    DTIC Science & Technology

    2016-06-01

    Modeling Codes Co as ta l a nd H yd ra ul ic s La bo ra to ry Hwai-Ping Cheng, Stephen M. England, and Clarissa M. Murray June 2016...Flood & Coastal Storm Damage Reduction Program ERDC/CHL TR-16-6 June 2016 Seepage and Piping through Levees and Dikes Using 2D and 3D Modeling Codes ...TYPE Final Report 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Seepage and Piping through Levees and Dikes using 2D and 3D Modeling Codes

  13. Hydrodynamic model for picosecond propagation of laser-created nanoplasmas

    NASA Astrophysics Data System (ADS)

    Saxena, Vikrant; Jurek, Zoltan; Ziaja, Beata; Santra, Robin

    2015-06-01

    The interaction of a free-electron-laser pulse with a moderate or large size cluster is known to create a quasi-neutral nanoplasma, which then expands on hydrodynamic timescale, i.e., > 1 ps. To have a better understanding of ion and electron data from experiments derived from laser-irradiated clusters, one needs to simulate cluster dynamics on such long timescales for which the molecular dynamics approach becomes inefficient. We therefore propose a two-step Molecular Dynamics-Hydrodynamic scheme. In the first step we use molecular dynamics code to follow the dynamics of an irradiated cluster until all the photo-excitation and corresponding relaxation processes are finished and a nanoplasma, consisting of ground-state ions and thermalized electrons, is formed. In the second step we perform long-timescale propagation of this nanoplasma with a computationally efficient hydrodynamic approach. In the present paper we examine the feasibility of a hydrodynamic two-fluid approach to follow the expansion of spherically symmetric nanoplasma, without accounting for the impact ionization and three-body recombination processes at this stage. We compare our results with the corresponding molecular dynamics simulations. We show that all relevant information about the nanoplasma propagation can be extracted from hydrodynamic simulations at a significantly lower computational cost when compared to a molecular dynamics approach. Finally, we comment on the accuracy and limitations of our present model and discuss possible future developments of the two-step strategy.

  14. Effects of using two- versus three-dimensional computational modeling of fluidized beds Part I, hydrodynamics

    SciTech Connect

    Xie, Nan; Battaglia, Francine; Pannala, Sreekanth

    2008-01-01

    Simulations of fluidized beds are performed to study and determine the effect on the use of coordinate systems and geometrical configurations to model fluidized bed reactors. Computational fluid dynamics is employed for an Eulerian-Eulerian model, which represents each phase as an interspersed continuum. The transport equation for granular temperature is solved and a hyperbolic tangent function is used to provide a smooth transition between the plastic and viscous regimes for the solid phase. The aim of the present work is to show the range of validity for employing simulations based on a 2D Cartesian coordinate system to approximate both cylindrical and rectangular fluidized beds. Three different fluidization regimes, bubbling, slugging and turbulent regimes, are investigated and the results of 2D and 3D simulations are presented for both cylindrical and rectangular domains. The results demonstrate that a 2D Cartesian system can be used to successfully simulate and predict a bubbling regime. However, caution must be exercised when using 2D Cartesian coordinates for other fluidized regimes. A budget analysis that explains all the differences in detail is presented in Part II [N. Xie, F. Battaglia, S. Pannala, Effects of Using Two-Versus Three-Dimensional Computational Modeling of Fluidized Beds: Part II, budget analysis, 182 (1) (2007) 14] to complement the hydrodynamic theory of this paper.

  15. A simple 2-D inundation model for incorporating flood damage in urban drainage planning

    NASA Astrophysics Data System (ADS)

    Pathirana, A.; Tsegaye, S.; Gersonius, B.; Vairavamoorthy, K.

    2011-08-01

    An urban inundation model was developed and coupled with 1-D drainage network model (EPA-SWMM5). The objective was to achieve a 1-D/2-D coupled model that is simple and fast enough to be consistently used in planning stages of urban drainage projects. The 2-D inundation model is based on a non-standard simplification of the shallow water equation, lays between diffusion-wave and full dynamic models. Simplifications were made in the process representation and numerical solving mechanisms and a depth scaled Manning coefficient was introduced to achieve stability in the cell wetting-drying process. The 2-D model is coupled with SWMM for simulation of both network flow and surcharge induced inundation. The coupling is archived by mass transfer from the network system to the 2-D system. A damage calculation block is integrated within the model code for assessing flood damage costs in optimal planning of urban drainage networks. The model is stable in dealing with complex flow conditions, and cell wetting/drying processes, as demonstrated by a number of idealised experiments. The model application is demonstrated by applying to a case study in Brazil.

  16. Including Nearshore Processes in Phase-Averaged Hydrodynamics Models

    DTIC Science & Technology

    2006-08-01

    physical modeling of hydrodynamics to the use of numerical models. A suitable set of equations conserving mass, momen- tum, and energy do not suffer...the high cost and scale effects of physical models. Numerical models, however, rely on a set of discritized and sim- plified equations , and nonphysical...used in the interest of brevity. The solution of Equation 24 along with Equation 26 constitutes a solution for the depth-dependent cross-shore

  17. Modeling High Resolution Flare Spectra Using Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Warren, Harry; Doschek, G.

    2006-06-01

    Understanding the hydrodynamic response of the solar atmosphere to the release of energy during a flare has been a long standing problem in solar physics. Early time-dependent hydrodynamic simulations were able to reproduce the high temperatures and densities observed in solar flares, but were not able to model the observations in any detail. For example, these simulations could not account for the relatively slow decay of the observed emission or the absence of blueshifts in high spectral resolution line profiles at flare onset. We have found that by representing the flare as a succession of independently heated filaments it is possible to reproduce both the evolution of line intensity and the shape of the line profile using hydrodynamic simulations. Here we present detailed comparisons between our simulation results and several flares observed with the Yohkoh Bragg Crystal Spectrometer (BCS). Comparisons with 3D MHD simulations will also be discussed.

  18. 2-D magnetotelluric modeling using finite element method incorporating unstructured quadrilateral elements

    NASA Astrophysics Data System (ADS)

    Sarakorn, Weerachai

    2017-04-01

    In this research, the finite element (FE) method incorporating quadrilateral elements for solving 2-D MT modeling was presented. The finite element software was developed, employing a paving algorithm to generate the unstructured quadrilateral mesh. The accuracy, efficiency, reliability, and flexibility of our FE forward modeling are presented, compared and discussed. The numerical results indicate that our FE codes using an unstructured quadrilateral mesh provide good accuracy when the local mesh refinement is applied around sites and in the area of interest, with superior results when compared to other FE methods. The reliability of the developed codes was also confirmed when comparing both analytical solutions and COMMEMI2D model. Furthermore, our developed FE codes incorporating an unstructured quadrilateral mesh showed useful and powerful features such as handling irregular and complex subregions and providing local refinement of the mesh for a 2-D domain as closely as unstructured triangular mesh but it requires less number of elements in a mesh.

  19. On Limits of Embedding in 3D Images Based on 2D Watson's Model

    NASA Astrophysics Data System (ADS)

    Kavehvash, Zahra; Ghaemmaghami, Shahrokh

    We extend the Watson image quality metric to 3D images through the concept of integral imaging. In the Watson's model, perceptual thresholds for changes to the DCT coefficients of a 2D image are given for information hiding. These thresholds are estimated in a way that the resulting distortion in the 2D image remains undetectable by the human eyes. In this paper, the same perceptual thresholds are estimated for a 3D scene in the integral imaging method. These thresholds are obtained based on the Watson's model using the relation between 2D elemental images and resulting 3D image. The proposed model is evaluated through subjective tests in a typical image steganography scheme.

  20. Modeling Tear Film Dynamics on a 2-D Eye-shaped Domain

    NASA Astrophysics Data System (ADS)

    Li, Longfei; Braun, Richard; Maki, Kara; Henshaw, William

    2012-11-01

    We study tear film dynamics on a 2-D eye-shaped domain using a lubrication model. Time dependent flux boundary conditions that model the lacrimal gland tear supply and punctal drainage are imposed. We solved the model equations with Overture computational framework. Results reveals our model captures the hydraulic connectivity and other key physics of human tear film observed in vivo. Comparisons are made with existing models and experiments. Should time permit, osmolarity dynamics (salt ion concentration) will be included.

  1. Integrated Navigation, Guidance, and Control of Missile Systems: 2-D Dynamic Models

    DTIC Science & Technology

    2012-05-01

    Plane Simulation Model Block Diagram .......................................................... 21 Figure A.1. Aerodynamic variables for a missile ...Figure A.1. Aerodynamic variables for a missile Page classification: UNCLASSIFIED DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION DOCUMENT...UNCLASSIFIED Integrated Navigation, Guidance, and Control of Missile Systems: 2-D Dynamic Models Farhan A. Faruqi Weapons

  2. Evaluation of 2D shallow-water model for spillway flow with a complex geometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the two-dimensional (2D) shallow water model is formulated based on several assumptions such as hydrostatic pressure distribution and vertical velocity is negligible, as a simple alternative to the complex 3D model, it has been used to compute water flows in which these assumptions may be ...

  3. The Quantum Hydrodynamic Model for Semiconductor Devices: Theory and Computations

    DTIC Science & Technology

    2007-11-02

    Quantum transport effects including electron or hole tunneling through potential barriers and buildup in quantum wells are important in predicting...semiconductor device. A new extension of the classical hydrodynamic model to include quantum transport effects was derived. This "smooth" quantum

  4. HYDRODYNAMIC AND TRANSPORT MODELING STUDY IN A HIGHLY STRATIFIED ESTUARY

    EPA Science Inventory

    This paper presents the preliminary results of hydrodynamic and salinity predictions and the implications to an ongoing contaminated sediment transport and fate modeling effort in the Lower Duwamish Waterway (LDW), Seattle, Washington. The LDW is highly strati-fied when freshwate...

  5. Disorder and interaction in 2D: exact diagonalization study of the Anderson-Hubbard-Mott model.

    PubMed

    Kotlyar, R; Das Sarma, S

    2001-03-12

    We investigate, by numerically calculating the charge stiffness, the effects of random diagonal disorder and electron-electron interaction on the nature of the ground state in the 2D Hubbard model through the finite-size exact diagonalization technique. By comparing with the corresponding 1D Hubbard model results and by using heuristic arguments we conclude that it is unlikely that there is a 2D metal-insulator quantum phase transition, although the effect of interaction in some range of parameters is to substantially enhance the noninteracting charge stiffness.

  6. Non-trivial θ-vacuum effects in the 2-d O(3) model

    NASA Astrophysics Data System (ADS)

    Bögli, M.; Niedermayer, F.; Pepe, M.; Wiese, U.-J.

    2012-04-01

    We study θ-vacua in the 2-d lattice O(3) model using the standard action and an optimized constraint action with very small cut-off effects, combined with the geometric topological charge. Remarkably, dislocation lattice artifacts do not spoil the non-trivial continuum limit at θ ne 0 , and there are different continuum theories for each value 0 ≤ θ ≤ π. A very precise Monte Carlo study of the step scaling function indirectly confirms the exact S-matrix of the 2-d O(3) model at θ = π.

  7. Towards more realistic 2D & 3D numerical models of Earth's mantle

    NASA Astrophysics Data System (ADS)

    Ghias, Sanaz

    2011-12-01

    There are a number of simplifying assumptions in modeling Earth's deep interior. These are mostly simplifying assumptions that make the mathematics simpler either for less complicated modeling or for numerical efficiency purposes. The aim of this study is to investigate the effects of some of these simplifying assumptions on 2D and 3D mantle convection models. In particular, the cases with variable coefficients of thermal expansion, alpha, and the inclusion of mineral phase transitions and viscosity stratification have been studied. The coefficient of thermal expansion is temperature- and depth-dependent in Earth. But for simplicity, it has been considered as constant in most mantle convection models and only depth-dependent in others. 2D mantle convection models (2D Cartesian and 2D cylindrical) have been created based on an existing model from Jarvis [1992] to investigate the effects of temperature- and depth-dependent alpha on mantle convection compared with the simplified cases. Also an existing version of a 3D parallel mantle convection model, MC3D, from Lowman et al. [2001] have been modified to include the temperature- and depth-dependent alpha. In the 3D study it has also been investigated that how the effects of temperature- and depth-dependent alpha vary with or without lithospheric plates. There are at least two mineral phase transitions in Earth. There is an exothermic phase boundary at 410km below the surface and an endothermic phase boundary at 660km below the surface. For simplicity, most mantle convection models do not consider any of the phase boundaries. Some consider only the endothermic phase boundary. A 2D cylindrical model from Shahnas and Jarvas [2005] has been employed to investigate the effects of considering both phase boundaries compared to models with either no, or one, phase boundary. Different viscosity stratifications have been used in addition to the phase boundaries.

  8. The Effect of the AGN Feedback on the Interstellar Medium of Early-Type Galaxies:2D Hydrodynamical Simulations of the Low-Rotation Case.

    NASA Astrophysics Data System (ADS)

    Ciotti, Luca; Pellegrini, Silvia; Negri, Andrea; Ostriker, Jeremiah P.

    2017-01-01

    We present two-dimensional hydrodynamical simulations for the evolution of early-type galaxies containing central massive black holes (MBHs), starting at an age of ≃ 2 {Gyr}. The code contains accurate and physically consistent radiative and mechanical active galactic nucleus (AGN) wind feedback, with parsec-scale central resolution. Mass input comes from stellar evolution; energy input includes Type Ia (SNIa) and II supernovae and stellar heating; star formation (SF) is included. Realistic, axisymmetric dynamical galaxy models are built solving the Jeans’ equations. The lowest mass models ({M}\\star =8 {10}10 {M}ȯ ) develop global outflows sustained by SNIa heating, ending with a lower amount of hot gas and new stars. In more massive models, nuclear outbursts last to the present epoch, with large and frequent fluctuations in nuclear emission and from the gas ({L}{{X}}). Each burst lasts ∼ {10}7.5 years, during which cold, inflowing, and hot, outflowing gas phases coexist. The {L}{{X}}{--}{T}{{X}} relation for the gas matches that of local galaxies. AGN activity causes positive feedback for SF. Roughly half of the total mass loss is recycled into new stars ({{Δ }}{M}\\star ), just ≃3% of it is accreted on the MBH, the remainder being ejected from the galaxy. The ratio between the mass of gas expelled to that in new stars, the load factor, is ≃ 0.6. Rounder galaxy shapes lead to larger final MBH masses, {{Δ }}{M}\\star , and {L}{{X}}. Almost all of the time is spent at very low nuclear luminosities, yet one quarter of the total energy is emitted at an Eddington ratio > 0.1. The duty-cycle of AGN activity is approximately 4%.

  9. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van; Dance, David R.; Young, Kenneth C.

    2014-08-15

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  10. Application of 2D numerical model to unsteady performance evaluation of vertical-axis tidal current turbine

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Qu, Hengliang; Shi, Hongda; Hu, Gexing; Hyun, Beom-Soo

    2016-12-01

    Tidal current energy is renewable and sustainable, which is a promising alternative energy resource for the future electricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool to capture the tidal current energy especially under low-speed conditions. A 2D unsteady numerical model based on Ansys-Fluent 12.0 is established to conduct the numerical simulation, which is validated by the corresponding experimental data. For the unsteady calculations, the SST model, 2×105 and 0.01 s are selected as the proper turbulence model, mesh number, and time step, respectively. Detailed contours of the velocity distributions around the rotor blade foils have been provided for a flow field analysis. The tip speed ratio (TSR) determines the azimuth angle of the appearance of the torque peak, which occurs once for a blade in a single revolution. It is also found that simply increasing the incident flow velocity could not improve the turbine performance accordingly. The peaks of the averaged power and torque coefficients appear at TSRs of 2.1 and 1.8, respectively. Furthermore, several shapes of the duct augmentation are proposed to improve the turbine performance by contracting the flow path gradually from the open mouth of the duct to the rotor. The duct augmentation can significantly enhance the power and torque output. Furthermore, the elliptic shape enables the best performance of the turbine. The numerical results prove the capability of the present 2D model for the unsteady hydrodynamics and an operating performance analysis of the vertical tidal stream turbine.

  11. Multiphase Turbulence Modeling for Computational Ship Hydrodynamics

    DTIC Science & Technology

    2014-05-30

    to the SGS model as bubbles become under-resolved, passing through the numerical Hinze scale. 3 iii. URANS closure modeling by analysis of the...variable density turbulence) for URANS models have been developed and tested a priori for turbulent mass flux and kinetic energy. The iLES...well as established the importance of turbulent mass flux and anisotropy in the wake that has guided the development of URANS closure models. This

  12. Modeling tidal hydrodynamics of San Diego Bay, California

    USGS Publications Warehouse

    Wang, P.-F.; Cheng, R.T.; Richter, K.; Gross, E.S.; Sutton, D.; Gartner, J.W.

    1998-01-01

    In 1983, current data were collected by the National Oceanic and Atmospheric Administration using mechanical current meters. During 1992 through 1996, acoustic Doppler current profilers as well as mechanical current meters and tide gauges were used. These measurements not only document tides and tidal currents in San Diego Bay, but also provide independent data sets for model calibration and verification. A high resolution (100-m grid), depth-averaged, numerical hydrodynamic model has been implemented for San Diego Bay to describe essential tidal hydrodynamic processes in the bay. The model is calibrated using the 1983 data set and verified using the more recent 1992-1996 data. Discrepancies between model predictions and field data in beth model calibration and verification are on the order of the magnitude of uncertainties in the field data. The calibrated and verified numerical model has been used to quantify residence time and dilution and flushing of contaminant effluent into San Diego Bay. Furthermore, the numerical model has become an important research tool in ongoing hydrodynamic and water quality studies and in guiding future field data collection programs.

  13. 2D-Raman-THz spectroscopy: A sensitive test of polarizable water models

    NASA Astrophysics Data System (ADS)

    Hamm, Peter

    2014-11-01

    In a recent paper, the experimental 2D-Raman-THz response of liquid water at ambient conditions has been presented [J. Savolainen, S. Ahmed, and P. Hamm, Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)]. Here, all-atom molecular dynamics simulations are performed with the goal to reproduce the experimental results. To that end, the molecular response functions are calculated in a first step, and are then convoluted with the laser pulses in order to enable a direct comparison with the experimental results. The molecular dynamics simulation are performed with several different water models: TIP4P/2005, SWM4-NDP, and TL4P. As polarizability is essential to describe the 2D-Raman-THz response, the TIP4P/2005 water molecules are amended with either an isotropic or a anisotropic polarizability a posteriori after the molecular dynamics simulation. In contrast, SWM4-NDP and TL4P are intrinsically polarizable, and hence the 2D-Raman-THz response can be calculated in a self-consistent way, using the same force field as during the molecular dynamics simulation. It is found that the 2D-Raman-THz response depends extremely sensitively on details of the water model, and in particular on details of the description of polarizability. Despite the limited time resolution of the experiment, it could easily distinguish between various water models. Albeit not perfect, the overall best agreement with the experimental data is obtained for the TL4P water model.

  14. Analysis of Korean Students' International Mobility by 2-D Model: Driving Force Factor and Directional Factor

    ERIC Educational Resources Information Center

    Park, Elisa L.

    2009-01-01

    The purpose of this study is to understand the dynamics of Korean students' international mobility to study abroad by using the 2-D Model. The first D, "the driving force factor," explains how and what components of the dissatisfaction with domestic higher education perceived by Korean students drives students' outward mobility to seek…

  15. 2D-Raman-THz spectroscopy: A sensitive test of polarizable water models

    SciTech Connect

    Hamm, Peter

    2014-11-14

    In a recent paper, the experimental 2D-Raman-THz response of liquid water at ambient conditions has been presented [J. Savolainen, S. Ahmed, and P. Hamm, Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)]. Here, all-atom molecular dynamics simulations are performed with the goal to reproduce the experimental results. To that end, the molecular response functions are calculated in a first step, and are then convoluted with the laser pulses in order to enable a direct comparison with the experimental results. The molecular dynamics simulation are performed with several different water models: TIP4P/2005, SWM4-NDP, and TL4P. As polarizability is essential to describe the 2D-Raman-THz response, the TIP4P/2005 water molecules are amended with either an isotropic or a anisotropic polarizability a posteriori after the molecular dynamics simulation. In contrast, SWM4-NDP and TL4P are intrinsically polarizable, and hence the 2D-Raman-THz response can be calculated in a self-consistent way, using the same force field as during the molecular dynamics simulation. It is found that the 2D-Raman-THz response depends extremely sensitively on details of the water model, and in particular on details of the description of polarizability. Despite the limited time resolution of the experiment, it could easily distinguish between various water models. Albeit not perfect, the overall best agreement with the experimental data is obtained for the TL4P water model.

  16. New technologies of 2-D and 3-D modeling for analysis and management of natural resources

    NASA Astrophysics Data System (ADS)

    Cheremisina, E. N.; Lyubimova, A. V.; Kirpicheva, E. Yu.

    2016-09-01

    For ensuring technological support of research and administrative activity in the sphere of environmental management a specialized modular program complex was developed. The special attention in developing a program complex is focused to creation of convenient and effective tools for creation and visualization 2d and 3D models providing the solution of tasks of the analysis and management of natural resources.

  17. Breach modelling by overflow with TELEMAC 2D: Comparison with large-scale experiments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An erosion law has been implemented in TELEMAC 2D to represent the surface erosion process to model the breach formation of a levee. We focus on homogeneous and earth fill levee to simplify this first implementation. The first part of this study reveals the ability of this method to represent simu...

  18. Parallelized CCHE2D flow model with CUDA Fortran on Graphics Process Units

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presents the CCHE2D implicit flow model parallelized using CUDA Fortran programming technique on Graphics Processing Units (GPUs). A parallelized implicit Alternating Direction Implicit (ADI) solver using Parallel Cyclic Reduction (PCR) algorithm on GPU is developed and tested. This solve...

  19. Multiple Ising models coupled to 2-d gravity: a CSD analysis

    NASA Astrophysics Data System (ADS)

    Bowick, Mark; Falcioni, Marco; Harris, Geoffrey; Marinari, Enzo

    1994-04-01

    We simulate single and multiple Ising models coupled to 2-d gravity and we measure critical slowing down (CSD) with the standard methods. We find that the Swendsen-Wang and Wolff cluster algorithms do not eliminate CSD. We interpret the result as an effect of the mesh dynamics.

  20. Hydrodynamic Tests of Models of Seaplane Floats

    NASA Technical Reports Server (NTRS)

    Eula, Antonio

    1935-01-01

    This report contains the results of tank tests carried out at free trim on seventeen hulls and floats of various types. The data as to the weight on water, trim, and relative resistance for each model are plotted nondimensionally and are referenced both to the total weight and to the weight on water. Despite the fact that the experiments were not made systematically, a study of the models and of the test data permits nevertheless some general deductions regarding the forms of floats and their resistance. One specific conclusion is that the best models have a maximum relative resistance not exceeding 20 percent of the total weight.

  1. Hydrodynamic modeling for river delta salt marshes using lidar topography

    NASA Astrophysics Data System (ADS)

    Hodges, Ben R.

    2014-05-01

    Topographic data from lidar and multi-beam sonar create new challenges for hydrodynamic models of estuaries, tidelands, and river deltas. We now can readily obtain detailed elevation data on 1 m scales and finer, but solving hydrodynamics with model grid cells at these small scales remains computationally prohibitive (primarily because of the small time step required for small grid cells). Practical estuarine models for the next decade or so will likely have grid scales in the range of 5 to 15 m. So how should we handle known subgrid-scale features? Simply throwing out known data does not seem like a good idea, but there is no consensus on how best to incorporate knowledge of subgrid topography into either hydrodynamic or turbulence models. This presentation discusses both the theoretical foundations for modeling subgrid-scale features and the challenges in applying these ideas in the salt marshes of a river delta. The subgrid problem highlights some important areas for field and laboratory research to provide calibration parameters for new models that upscale the effects of known subgrid features.

  2. Modeling the Hydrodynamical Properties of the QGP at RHIC

    NASA Astrophysics Data System (ADS)

    Garishvili, Irakli; Soltz, Ron; Pratt, Scott; Cheng, Micael; Glenn, Andrew; Newby, Jason; Linden-Levy, Loren; Abelev, Betty

    2010-11-01

    Comparisons of the RHIC data to various theoretical models suggest that the evolution of the QGP, a state of matter believed to be created in early stages of heavy ion collisions at RHIC, is qualitatively well described by hydrodynamics. However, the key properties of the QGP, such as initial temperature, Tinit, and the ratio of shear viscosity to entropy density of matter, η/s, are not precisely known. To constrain these properties we have developed a multi-stage hydrodynamics/hadron cascade model of heavy ion collisions which incorporates Glauber initial state conditions, pre-equilibrium flow, the UVH2+1 viscous hydro model, Cooper-Frye freezeout, and the UrQMD hadronic cascade model. To test the sensitivity of the observables to the equation of state (EoS), we use several different EoS in the hydrodynamic evolution, including those derived from the hadron resonance gas model and lattice QCD. This framework has an ability to predict key QGP observables, such as, elliptic flow, spectra, and HBT radii for various particle species. For each set of model's input parameters (Tinit, η/s and initial flow) we perform a simultaneous comparison to spectra, elliptic flow, and HBT measured at RHIC. Based on this analysis the determinations of Tinit and η/s will be presented.

  3. A novel explicit 2D+t cyclic shape model applied to echocardiography.

    PubMed

    Casero, Ramón; Noble, J Alison

    2008-01-01

    In this paper, we propose a novel explicit 2D+t cyclic shape model that extends the Point Distribution Model (PDM) to shapes like myocardial contours with cyclic dynamics. We also propose an extension to Procrustes alignment that removes pose and subject size variability while maintaining dynamic effects. Our model draws on ideas from Principal Component Analysis (PCA), Multidimensional Scaling (MDS) and Kernel PCA (KPCA) and solves 3 shortcomings of previous implicit models: (1) cardiac cycles in the data set do not each need to have the same number of frames, (2) the required number of subjects for statistically significant results is substantially reduced and (3) the displacement of contour points incorporates time as an explicit variable. We illustrate our method by computing models of the myocardium in the 4 principal planes of 2D+t echocardiography data.

  4. MODELING THE TRANSVERSE THERMAL CONDUCTIVITY OF 2-D SICF/SIC COMPOSITES MADE WITH WOVEN FABRIC

    SciTech Connect

    Youngblood, Gerald E; Senor, David J; Jones, Russell H

    2004-06-01

    The hierarchical two-layer (H2L) model describes the effective transverse thermal conductivity (Keff) of a 2D-SiCf/SiC composite plate made from stacked and infiltrated woven fabric layers in terms of constituent properties and microstructural and architectural variables. The H2L model includes the effects of fiber-matrix interfacial conductance, high fiber packing fractions within individual tows and the non-uniform nature of 2D fabric/matrix layers that usually include a significant amount of interlayer porosity. Previously, H2L model Keff-predictions were compared to measured values for two versions of 2D Hi-Nicalon/PyC/ICVI-SiC composite, one with a “thin” (0.11m) and the other with a “thick” (1.04m) pyrocarbon (PyC) fiber coating, and for a 2D Tyranno SA/”thin” PyC/FCVI-SIC composite. In this study, H2L model Keff-predictions were compared to measured values for a 2D-SiCf/SiC composite made using the ICVI-process with Hi-Nicalon type S fabric and a “thin” PyC fiber coating. The values of Keff determined for the latter composite were significantly greater than the Keff-values determined for the composites made with either the Hi-Nicalon or the Tyranno SA fabrics. Differences in Keff-values were expected for the different fiber types, but major differences also were due to observed microstructural and architectural variations between the composite systems, and as predicted by the H2L model.

  5. A Deformed Shape Monitoring Model for Building Structures Based on a 2D Laser Scanner

    PubMed Central

    Choi, Se Woon; Kim, Bub Ryur; Lee, Hong Min; Kim, Yousok; Park, Hyo Seon

    2013-01-01

    High-rise buildings subjected to lateral loads such as wind and earthquake loads must be checked not to exceed the limits on the maximum lateral displacement or the maximum inter-story drift ratios. In this paper, a sensing model for deformed shapes of a building structure in motion is presented. The deformed shape sensing model based on a 2D scanner consists of five modules: (1) module for acquiring coordinate information of a point in a building; (2) module for coordinate transformation and data arrangement for generation of time history of the point; (3) module for smoothing by adjacent averaging technique; (4) module for generation of the displacement history for each story and deformed shape of a building, and (5) module for evaluation of the serviceability of a building. The feasibility of the sensing model based on a 2D laser scanner is tested through free vibration tests of a three-story steel frame structure with a relatively high slenderness ratio of 5.0. Free vibration responses measured from both laser displacement sensors and a 2D laser scanner are compared. In the experimentation, the deformed shapes were obtained from three different methods: the model based on the 2D laser scanner, the direct measurement based on laser displacement sensors, and the numerical method using acceleration data and the displacements from GPS. As a result, it is confirmed that the deformed shape measurement model based on a 2D laser scanner can be a promising alternative for high-rise buildings where installation of laser displacement sensors is impossible. PMID:23698269

  6. Numerical Simulation of Slinger Combustor Using 2-D Axisymmetric Computational Model

    NASA Astrophysics Data System (ADS)

    Lee, Semin; Park, Soo Hyung; Lee, Donghun

    2010-06-01

    Small-size turbojet engines have difficulties in maintaining the chemical reaction due to the limitation of chamber size. The combustion chamber is generally designed to improve the reaction efficiency by the generation of vortices in the chamber and to enhance air-fuel mixing characteristics. In the initial stage of designing the combustor, analysis of the 3-D full configuration is not practical due to the huge time consuming computation and grid generation followed by modifications of the geometry. In the present paper, an axisymmetric model maintaining geometric similarity and flow characteristic of 3-D configuration is developed. Based on numerical results from the full 3-D configuration, model reduction is achieved toward 2-D axisymmetric configuration. In the modeling process, the area and location of each hole in 3-D full configuration are considered reasonably and replaced to the 2-D axisymmetric model. By using the 2-D axisymmetric model, the factor that can affect the performance is investigated with the assumption that the flow is non-reacting and turbulent. Numerical results from the present model show a good agreement with numerical results from 3-D full configuration model such as existence of vortex pair in forward region and total pressure loss. By simplifying the complex 3-D model, computing time can be remarkably reduced and it makes easy to find effects of geometry modification.

  7. Assimilation of measurement data in hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Karamuz, Emilia; Romanowicz, Renata J.

    2016-04-01

    This study focuses on developing methods to combine ground-based data from operational monitoring with data from satellite imaging to obtain a more accurate evaluation of flood inundation extents. The distributed flow model MIKE 11 was used to determine the flooding areas for a flood event with available satellite data. Model conditioning was based on the integrated use of data from remote measurement techniques and traditional data from gauging stations. Such conditioning of the model improves the quality of fit of the model results. The use of high resolution satellite images (from IKONOS, QuickBird e.t.c) and LiDAR Digital Elevation Model (DEM) allows information on water levels to be extended to practically any chosen cross-section of the tested section of the river. This approach allows for a better assessment of inundation extent, particularly in areas with a scarce network of gauging stations. We apply approximate Bayesian analysis to integrate the information on flood extent originating from different sources. The approach described above was applied to the Middle River Vistula reach, from the Zawichost to Warsaw gauging stations. For this part of the river the detailed geometry of the river bed and floodplain data were available. Finally, three selected sub-sections were analyzed with the most suitable satellite images of inundation area. ACKNOWLEDGEMENTS This research was supported by the Institute of Geophysics Polish Academy of Sciences through the Young Scientist Grant no. 3b/IGF PAN/2015.

  8. Hydrodynamic Model for Conductivity in Graphene

    PubMed Central

    Mendoza, M.; Herrmann, H. J.; Succi, S.

    2013-01-01

    Based on the recently developed picture of an electronic ideal relativistic fluid at the Dirac point, we present an analytical model for the conductivity in graphene that is able to describe the linear dependence on the carrier density and the existence of a minimum conductivity. The model treats impurities as submerged rigid obstacles, forming a disordered medium through which graphene electrons flow, in close analogy with classical fluid dynamics. To describe the minimum conductivity, we take into account the additional carrier density induced by the impurities in the sample. The model, which predicts the conductivity as a function of the impurity fraction of the sample, is supported by extensive simulations for different values of ε, the dimensionless strength of the electric field, and provides excellent agreement with experimental data. PMID:23316277

  9. Comparison of 2D and 3D Numerical Models with Experiments of Tsunami Flow through a Built Environment

    NASA Astrophysics Data System (ADS)

    LeVeque, R. J.; Motley, M. R.

    2015-12-01

    A series of tsunami wave basin experiments of flow through a scale model of Seaside, Oregon have been used as validation data for a 2015 benchmarking workshop hosted by the National Tsunami Mitigation Program, which focused on better understanding the ability of tsunami models to predict flow velocities and inundation depths following a coastal inundation event. As researchers begin to assess the safety of coastal infrastructures, proper assessment of tsunami-induced forces on coastal structures is critical. Hydrodynamic forces on these structures are fundamentally proportional to the local momentum flux of the fluid, and experimental data included momentum flux measurements at many instrumented gauge locations. The GeoClaw tsunami model, which solves the two-dimensional shallow water equations, was compared against other codes during the benchmarking workshop, and more recently a three-dimensional computational fluid dynamics model using the open-source OpenFOAM software has been developed and results from this model are being compared with both the experimental data and the 2D GeoClaw results. In addition, the 3D model allows for computation of fluid forces on the faces of structures, permitting an investigation of the common use of momentum flux as a proxy for these forces. This work aims to assess the potential to apply these momentum flux predictions locally within the model to determine tsunami-induced forces on critical structures. Difficulties in working with these data sets and cross-model comparisons will be discussed. Ultimately, application of the more computationally efficient GeoClaw model, informed by the 3D OpenFOAM models, to predict forces on structures at the community scale can be expected to improve the safety and resilience of coastal communities.

  10. Current SPE Hydrodynamic Modeling and Path Forward

    SciTech Connect

    Knight, Earl E.; Rougier, Esteban

    2012-08-14

    Extensive work has been conducted on SPE analysis efforts: Fault effects Non-uniform weathered layer analysis MUNROU: material library incorporation, parallelization, and development of non-locking tets Development of a unique continuum-based-visco-plastic strain-rate-dependent material model With corrected SPE data path is now set for a multipronged approach to fully understand experimental series shot effects.

  11. Simplified 2D Bidomain Model of Whole Heart Electrical Activity and ECG Generation

    NASA Astrophysics Data System (ADS)

    Sovilj, Siniša; Magjarević, Ratko; Abed, Amr Al; Lovell, Nigel H.; Dokos, Socrates

    2014-06-01

    The aim of this study was the development of a geometrically simple and highly computationally-efficient two dimensional (2D) biophysical model of whole heart electrical activity, incorporating spontaneous activation of the sinoatrial node (SAN), the specialized conduction system, and realistic surface ECG morphology computed on the torso. The FitzHugh-Nagumo (FHN) equations were incorporated into a bidomain finite element model of cardiac electrical activity, which was comprised of a simplified geometry of the whole heart with the blood cavities, the lungs and the torso as an extracellular volume conductor. To model the ECG, we placed four electrodes on the surface of the torso to simulate three Einthoven leads VI, VII and VIII from the standard 12-lead system. The 2D model was able to reconstruct ECG morphology on the torso from action potentials generated at various regions of the heart, including the sinoatrial node, atria, atrioventricular node, His bundle, bundle branches, Purkinje fibers, and ventricles. Our 2D cardiac model offers a good compromise between computational load and model complexity, and can be used as a first step towards three dimensional (3D) ECG models with more complex, precise and accurate geometry of anatomical structures, to investigate the effect of various cardiac electrophysiological parameters on ECG morphology.

  12. Hydrodynamical Models of Gas Cloud - Galaxy Collisions

    NASA Astrophysics Data System (ADS)

    Franklin, M.; Dinge, D.; Jones, T.; Benjamin, B.

    1999-05-01

    Clouds of neutral hydrogen falling toward the Galactic plane with a speed of about 100 km/s or more are among those considered to be "high velocity clouds" (HVCs). As HVCs are often observed approaching the midplane, the collision of such clouds with the gaseous disk of the Galaxy has been proposed as a precursor event to the phenomena known as "supershells" and as a catalyst to star formation. While many previous analytic calculations have assumed that ram pressure of the resisting medium was negligible, and a ballistic approximation was valid, observations showing a correlation between speed and increased height above the plane, the opposite of what is expected for free fall, suggest otherwise. Benjamin & Danly suggested in 1997 that clouds falling at terminal velocity provide a simple explanation for the observed velocity distribution. In this work, numerical models are used to test the above hypotheses with clouds falling through a more modern model of the interstellar medium than that used in the seminal work by Tenorio-Tagle et al. (TT) in 1987. With the addition of more dense material to the model background, clouds were still able to form supershell-like remnants, though star formation does not appear to be triggered. Further, though agreement was not perfect, the terminal velocity model was found to be a better approximation for these clouds' fall than the ballistic case. Cooling was a physical process included in TT's work which was not included here, but was found to be non-negligible. Simulations which include a cooling algorithm must be done to confirm these results. This work was supported in part by NSF grant AST96-19438.

  13. Modeling Water Waves with Smoothed Particle Hydrodynamics

    DTIC Science & Technology

    2013-09-30

    criterion (Jeong & Hussain, 1995), which uses the symmetric and antisymmetric components of the velocity gradient tensor to identify regions of low...surf zone or as a first approximation to a tsunami . Wave data was obtain from the laboratory experiments of Ting (2006). In Figure 4, the measured...R., Hérault, A., & Bilotta, G. SPH modeling of mean velocity transmission in a rip current system, International Conference on Coastal Engineering

  14. Coupled BOUSS-2D and CMS-Wave Modeling Approach for Harbor Projects

    DTIC Science & Technology

    2012-08-01

    channels, erosion problems at coastal inlets, and aid in design and Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for...Harbor Projects by Lihwa Lin and Zeki Demirbilek PURPOSE: This Coastal and Hydraulics Engineering Technical Note (CHETN) describes the coupled...application of two advanced coastal wave models, BOUSS-2D and CMS-Wave, for harbor applications. The two models have different computational features and

  15. Modeling Spitsbergen fjords by hydrodynamic MIKE engine.

    NASA Astrophysics Data System (ADS)

    Kosecki, Szymon; Przyborska, Anna; Jakacki, Jaromir

    2013-04-01

    Two Svalbard's fjords - Hornsund (on the western side of the most southern part of Spitsbergen island) and Kongsfjorden (also on the western side of Spitsbergen island, but in the northern part) are quite different - the first one is "cold" and second one is "warm". It is obvious that both of them are under influence of West Spitsbergen Current (WSC), which curry out warm Atlantic water and cold East Spitsbergen Current detaches Hornsund. But there is also freshwater stored in Spitsbergen glaciers that have strong influence on local hydrology and physical fjord conditions. Both, local and shelf conditions have impact on state of the fjord and there is no answer which one is the most important in each fjord. Modeling could help to solve this problem - MIKE 3D model has been implemented for both fjords. Mesh-grid of the each fjord has been extended for covering shelf area. External forces like tides, velocities at the boundary and atmospheric forces together with sources of cold and dens fresh water in the fjords will give reliable representation of physical conditions in Hornsund and Kongsfjorden. Calculations of balances between cold fresh water and warm and salt will provide additional information that could help to answer the main question of the GAME (Growing of the Arctic Marine Ecosystem) project - what is the reaction of physically controlled Arctic marine ecosystem to temperature rise.

  16. In vitro systems to study nephropharmacology: 2D versus 3D models.

    PubMed

    Sánchez-Romero, Natalia; Schophuizen, Carolien M S; Giménez, Ignacio; Masereeuw, Rosalinde

    2016-11-05

    The conventional 2-dimensional (2D) cell culture is an invaluable tool in, amongst others, cell biology and experimental pharmacology. However, cells cultured in 2D, on the top of stiff plastic plates lose their phenotypical characteristics and fail in recreating the physiological environment found in vivo. This is a fundamental requirement when the goal of the study is to get a rigorous predictive response of human drug action and safety. Recent approaches in the field of renal cell biology are focused on the generation of 3D cell culture models due to the more bona fide features that they exhibit and the fact that they are more closely related to the observed physiological conditions, and better predict in vivo drug handling. In this review, we describe the currently available 3D in vitro models of the kidney, and some future directions for studying renal drug handling, disease modeling and kidney regeneration.

  17. An integrated coastal model for aeolian and hydrodynamic sediment transport

    NASA Astrophysics Data System (ADS)

    Baart, F.; den Bieman, J.; van Koningsveld, M.; Luijendijk, A. P.; Parteli, E. J. R.; Plant, N. G.; Roelvink, J. A.; Storms, J. E. A.; de Vries, S.; van Thiel de Vries, J. S. M.; Ye, Q.

    2012-04-01

    Dunes are formed by aeolian and hydrodynamic processes. Over the last decades numerical models were developed that capture our knowledge of the hydrodynamic transport of sediment near the coast. At the same time others have worked on creating numerical models for aeolian-based transport. Here we show a coastal model that integrates three existing numerical models into one online-coupled system. The XBeach model simulates storm-induced erosion (Roelvink et al., 2009). The Delft3D model (Lesser et al., 2004) is used for long term morphology and the Dune model (Durán et al., 2010) is used to simulate the aeolian transport. These three models were adapted to be able to exchange bed updates in real time. The updated models were integrated using the ESMF framework (Hill et al., 2004), a system for composing coupled modeling systems. The goal of this integrated model is to capture the relevant coastal processes at different time and spatial scales. Aeolian transport can be relevant during storms when the strong winds are generating new dunes, but also under relative mild conditions when the dunes are strengthened by transporting sand from the intertidal area to the dunes. Hydrodynamic transport is also relevant during storms, when high water in combination with waves can cause dunes to avalanche and erode. While under normal conditions the hydrodynamic transport can result in an onshore transport of sediment up to the intertidal area. The exchange of sediment in the intertidal area is a dynamic interaction between the hydrodynamic transport and the aeolian transport. This dynamic interaction is particularly important for simulating dune evolution at timescales longer than individual storm events. The main contribution of the integrated model is that it simulates the dynamic exchange of sediment between aeolian and hydrodynamic models in the intertidal area. By integrating the numerical models, we hope to develop a model that has a broader scope and applicability than

  18. A depth-averaged 2-D model of flow and sediment transport in coastal waters

    NASA Astrophysics Data System (ADS)

    Sanchez, Alejandro; Wu, Weiming; Beck, Tanya M.

    2016-11-01

    A depth-averaged 2-D model has been developed to simulate unsteady flow and nonuniform sediment transport in coastal waters. The current motion is computed by solving the phase-averaged 2-D shallow water flow equations reformulated in terms of total-flux velocity, accounting for the effects of wave radiation stresses and general diffusion or mixing induced by current, waves, and wave breaking. The cross-shore boundary conditions are specified by assuming fully developed longshore current and wave setup that are determined using the reduced 1-D momentum equations. A 2-D wave spectral transformation model is used to calculate the wave height, period, direction, and radiation stresses, and a surface wave roller model is adopted to consider the effects of surface roller on the nearshore currents. The nonequilibrium transport of nonuniform total-load sediment is simulated, considering sediment entrainment by current and waves, the lag of sediment transport relative to the flow, and the hiding and exposure effect of nonuniform bed material. The flow and sediment transport equations are solved using an implicit finite volume method on a variety of meshes including nonuniform rectangular, telescoping (quadtree) rectangular, and hybrid triangular/quadrilateral meshes. The flow and wave models are integrated through a carefully designed steering process. The model has been tested in three field cases, showing generally good performance.

  19. Self-Consistent Hydrodynamical Models For Stellar Winds

    NASA Astrophysics Data System (ADS)

    Boulangier, Jels; Homan, Ward; van Marle, Allard Jan; Decin, Leen; de Koter, Alex

    2016-07-01

    The physical and chemical conditions in the atmosphere of pulsating AGB stars are not well understood. In order to properly model this region, which is packed with shocks arisen from the pulsational behaviour of the star, we aim to understand the interplay between spatial and temporal changes in both the chemical composition and the hydro/thermodynamical behaviour inside these regions. Ideal models require the coupling of hydrodynamics, chemistry and radiative transfer, in three dimensions. As this is computationally not yet feasible, we aim to model this zone via a bottom-up approach. At first, we build correct 3D hydrodynamical set-up without any cooling or heating. Omitting cooling hampers the mass-loss of the AGB star within the reasonable confines of a realistic parameter space. Introducing cooling will decrease the temperature gradients in the atmosphere, counteracting the mass-loss even more. However, cooling also ensures the existence of regions where the temperature is low enough for the formation of dust to take place. This dust will absorb the momentum of the impacting photons from the AGB photosphere, accelerate outward and collide with the obstructing gas, dragging it along. Moreover, since chemistry, nucleation and dust formation depend critically on the temperature structure of the circumstellar environment, it is of utmost importance to include all relevant heating/cooling sources. Efforts to include cooling have been undertaken in the last decades, making use of different radiative cooling mechanisms for several chemical species, with some simplified radiative transfer. However, often the chemical composition of these 1D atmosphere models is fixed, implying the very strong assumption of chemical equilibrium, which is not at all true for a pulsating AGB atmosphere. We wish to model these atmospheres making as few assumptions as possible on equilibrium conditions. Therefore, as a first step, we introduce H2 dissociative cooling to the hydrodynamical

  20. TRENT2D WG: a smart web infrastructure for debris-flow modelling and hazard assessment

    NASA Astrophysics Data System (ADS)

    Zorzi, Nadia; Rosatti, Giorgio; Zugliani, Daniel; Rizzi, Alessandro; Piffer, Stefano

    2016-04-01

    Mountain regions are naturally exposed to geomorphic flows, which involve large amounts of sediments and induce significant morphological modifications. The physical complexity of this class of phenomena represents a challenging issue for modelling, leading to elaborate theoretical frameworks and sophisticated numerical techniques. In general, geomorphic-flows models proved to be valid tools in hazard assessment and management. However, model complexity seems to represent one of the main obstacles to the diffusion of advanced modelling tools between practitioners and stakeholders, although the UE Flood Directive (2007/60/EC) requires risk management and assessment to be based on "best practices and best available technologies". Furthermore, several cutting-edge models are not particularly user-friendly and multiple stand-alone software are needed to pre- and post-process modelling data. For all these reasons, users often resort to quicker and rougher approaches, leading possibly to unreliable results. Therefore, some effort seems to be necessary to overcome these drawbacks, with the purpose of supporting and encouraging a widespread diffusion of the most reliable, although sophisticated, modelling tools. With this aim, this work presents TRENT2D WG, a new smart modelling solution for the state-of-the-art model TRENT2D (Armanini et al., 2009, Rosatti and Begnudelli, 2013), which simulates debris flows and hyperconcentrated flows adopting a two-phase description over a mobile bed. TRENT2D WG is a web infrastructure joining advantages offered by the software-delivering model SaaS (Software as a Service) and by WebGIS technology and hosting a complete and user-friendly working environment for modelling. In order to develop TRENT2D WG, the model TRENT2D was converted into a service and exposed on a cloud server, transferring computational burdens from the user hardware to a high-performing server and reducing computational time. Then, the system was equipped with an

  1. A Convective Vorticity Vector Associated With Tropical Convection: A 2D Cloud-Resolving Modeling Study

    NASA Technical Reports Server (NTRS)

    Gao, Shou-Ting; Ping, Fan; Li, Xiao-Fan; Tao, Wei-Kuo

    2004-01-01

    Although dry/moist potential vorticity is a useful physical quantity for meteorological analysis, it cannot be applied to the analysis of 2D simulations. A convective vorticity vector (CVV) is introduced in this study to analyze 2D cloud-resolving simulation data associated with 2D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the TOGA COARE, and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2D x-z frame. Analysis of zonally-averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally-averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.

  2. 2D versus 3D cross-correlation-based radial and circumferential strain estimation using multiplane 2D ultrafast ultrasound in a 3D atherosclerotic carotid artery model.

    PubMed

    Fekkes, Stein; Swillens, Abigail E S; Hansen, Hendrik H G; Saris, Anne E C M; Nillesen, Maartje M; Iannaccone, Francesco; Segers, Patrick; de Korte, Chris L

    2016-08-25

    Three-dimensional strain estimation might improve the detection and localization of high strain regions in the carotid artery for identification of vulnerable plaques. This study compares 2D vs. 3D displacement estimation in terms of radial and circumferential strain using simulated ultrasound images of a patient specific 3D atherosclerotic carotid artery model at the bifurcation embedded in surrounding tissue generated with ABAQUS software. Global longitudinal motion was superimposed to the model based on literature data. A Philips L11-3 linear array transducer was simulated which transmitted plane waves at 3 alternating angles at a pulse repetition rate of 10 kHz. Inter-frame radiofrequency ultrasound data were simulated in Field II for 191 equally spaced longitudinal positions of the internal carotid artery. Accumulated radial and circumferential displacements were estimated using tracking of the inter-frame displacements estimated by a two-step normalized cross-correlation method and displacement compounding. Least squares strain estimation was performed to determine accumulated radial and circumferential strain. The performance of the 2D and 3D method was compared by calculating the root-mean-squared error of the estimated strains with respect to the reference strains obtained from the model. More accurate strain images were obtained using the 3D displacement estimation for the entire cardiac cycle. The 3D technique clearly outperformed the 2D technique in phases with high inter-frame longitudinal motion. In fact the large inter-frame longitudinal motion rendered it impossible to accurately track the tissue and cumulate strains over the entire cardiac cycle with the 2D technique.

  3. 2-D Versus 3-D Cross-Correlation-Based Radial and Circumferential Strain Estimation Using Multiplane 2-D Ultrafast Ultrasound in a 3-D Atherosclerotic Carotid Artery Model.

    PubMed

    Fekkes, Stein; Swillens, Abigail E S; Hansen, Hendrik H G; Saris, Anne E C M; Nillesen, Maartje M; Iannaccone, Francesco; Segers, Patrick; de Korte, Chris L

    2016-10-01

    Three-dimensional (3-D) strain estimation might improve the detection and localization of high strain regions in the carotid artery (CA) for identification of vulnerable plaques. This paper compares 2-D versus 3-D displacement estimation in terms of radial and circumferential strain using simulated ultrasound (US) images of a patient-specific 3-D atherosclerotic CA model at the bifurcation embedded in surrounding tissue generated with ABAQUS software. Global longitudinal motion was superimposed to the model based on the literature data. A Philips L11-3 linear array transducer was simulated, which transmitted plane waves at three alternating angles at a pulse repetition rate of 10 kHz. Interframe (IF) radio-frequency US data were simulated in Field II for 191 equally spaced longitudinal positions of the internal CA. Accumulated radial and circumferential displacements were estimated using tracking of the IF displacements estimated by a two-step normalized cross-correlation method and displacement compounding. Least-squares strain estimation was performed to determine accumulated radial and circumferential strain. The performance of the 2-D and 3-D methods was compared by calculating the root-mean-squared error of the estimated strains with respect to the reference strains obtained from the model. More accurate strain images were obtained using the 3-D displacement estimation for the entire cardiac cycle. The 3-D technique clearly outperformed the 2-D technique in phases with high IF longitudinal motion. In fact, the large IF longitudinal motion rendered it impossible to accurately track the tissue and cumulate strains over the entire cardiac cycle with the 2-D technique.

  4. A preliminary 3D model for cytochrome P450 2D6 constructed by homology model building.

    PubMed

    Koymans, L M; Vermeulen, N P; Baarslag, A; Donné-Op den Kelder, G M

    1993-06-01

    A homology model building study of cytochrome P450 2D6 has been carried out based on the crystal structure of cytochrome P450 101. The primary sequences of P450 101 and P450 2D6 were aligned by making use of an automated alignment procedure. This alignment was adjusted manually by matching alpha-helices (C, D, G, I, J, K and L) and beta-sheets (beta 3/beta 4) of P450 101 that are proposed to be conserved in membrane-bound P450s (Ouzounis and Melvin [Eur. J. Biochem., 198 (1991) 307]) to the corresponding regions in the primary amino acid sequence of P450 2D6. Furthermore, alpha-helices B, B' and F were found to be conserved in P450 2D6. No significant homology between the remaining regions of P450 101 and P450 2D6 could be found and these regions were therefore deleted. A 3D model of P450 2D6 was constructed by copying the coordinates of the residues from the crystal structure of P450 101 to the corresponding residues in P450 2D6. The regions without a significant homology with P450 101 were not incorporated into the model. After energy-minimization of the resulting 3D model of P450 2D6, possible active site residues were identified by fitting the substrates debrisoquine and dextrometorphan into the proposed active site. Both substrates could be positioned into a planar pocket near the heme region formed by residues Val370, Pro371, Leu372, Trp316, and part of the oxygen binding site of P450 2D6. Furthermore, the carboxylate group of either Asp100 or Asp301 was identified as a possible candidate for the proposed interaction with basic nitrogen atom(s) of the substrates.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. A Neural-FEM tool for the 2-D magnetic hysteresis modeling

    NASA Astrophysics Data System (ADS)

    Cardelli, E.; Faba, A.; Laudani, A.; Lozito, G. M.; Riganti Fulginei, F.; Salvini, A.

    2016-04-01

    The aim of this work is to present a new tool for the analysis of magnetic field problems considering 2-D magnetic hysteresis. In particular, this tool makes use of the Finite Element Method to solve the magnetic field problem in real device, and fruitfully exploits a neural network (NN) for the modeling of 2-D magnetic hysteresis of materials. The NS has as input the magnetic inductions components B at the k-th simulation step and returns as output the corresponding values of the magnetic field H corresponding to the input pattern. It is trained by vector measurements performed on the magnetic material to be modeled. This input/output scheme is directly implemented in a FEM code employing the magnetic potential vector A formulation. Validations through measurements on a real device have been performed.

  6. Laser irradiated fluorescent perfluorocarbon microparticles in 2-D and 3-D breast cancer cell models

    NASA Astrophysics Data System (ADS)

    Niu, Chengcheng; Wang, Long; Wang, Zhigang; Xu, Yan; Hu, Yihe; Peng, Qinghai

    2017-03-01

    Perfluorocarbon (PFC) droplets were studied as new generation ultrasound contrast agents via acoustic or optical droplet vaporization (ADV or ODV). Little is known about the ODV irradiated vaporization mechanisms of PFC-microparticle complexs and the stability of the new bubbles produced. In this study, fluorescent perfluorohexane (PFH) poly(lactic-co-glycolic acid) (PLGA) particles were used as a model to study the process of particle vaporization and bubble stability following excitation in two-dimensional (2-D) and three-dimensional (3-D) cell models. We observed localization of the fluorescent agent on the microparticle coating material initially and after vaporization under fluorescence microscopy. Furthermore, the stability and growth dynamics of the newly created bubbles were observed for 11 min following vaporization. The particles were co-cultured with 2-D cells to form 3-D spheroids and could be vaporized even when encapsulated within the spheroids via laser irradiation, which provides an effective basis for further work.

  7. Critical slowing down of cluster algorithms for Ising models coupled to 2-d gravity

    NASA Astrophysics Data System (ADS)

    Bowick, Mark; Falcioni, Marco; Harris, Geoffrey; Marinari, Enzo

    1994-02-01

    We simulate single and multiple Ising models coupled to 2-d gravity using both the Swendsen-Wang and Wolff algorithms to update the spins. We study the integrated autocorrelation time and find that there is considerable critical slowing down, particularly in the magnetization. We argue that this is primarily due to the local nature of the dynamical triangulation algorithm and to the generation of a distribution of baby universes which inhibits cluster growth.

  8. General relativistic hydrodynamics with Adaptive-Mesh Refinement (AMR) and modeling of accretion disks

    NASA Astrophysics Data System (ADS)

    Donmez, Orhan

    We present a general procedure to solve the General Relativistic Hydrodynamical (GRH) equations with Adaptive-Mesh Refinement (AMR) and model of an accretion disk around a black hole. To do this, the GRH equations are written in a conservative form to exploit their hyperbolic character. The numerical solutions of the general relativistic hydrodynamic equations is done by High Resolution Shock Capturing schemes (HRSC), specifically designed to solve non-linear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. We use Marquina fluxes with MUSCL left and right states to solve GRH equations. First, we carry out different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations to verify the second order convergence of the code in 1D, 2 D and 3D. Second, we solve the GRH equations and use the general relativistic test problems to compare the numerical solutions with analytic ones. In order to this, we couple the flux part of general relativistic hydrodynamic equation with a source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time. The test problems examined include shock tubes, geodesic flows, and circular motion of particle around the black hole. Finally, we apply this code to the accretion disk problems around the black hole using the Schwarzschild metric at the background of the computational domain. We find spiral shocks on the accretion disk. They are observationally expected results. We also examine the star-disk interaction near a massive black hole. We find that when stars are grounded down or a hole is punched on the accretion disk, they create shock waves which destroy the accretion disk.

  9. Modelling the mechanics and hydrodynamics of swimming E. coli.

    PubMed

    Hu, Jinglei; Yang, Mingcheng; Gompper, Gerhard; Winkler, Roland G

    2015-10-28

    The swimming properties of an E. coli-type model bacterium are investigated by mesoscale hydrodynamic simulations, combining molecular dynamics simulations of the bacterium with the multiparticle particle collision dynamics method for the embedding fluid. The bacterium is composed of a spherocylindrical body with attached helical flagella, built up from discrete particles for an efficient coupling with the fluid. We measure the hydrodynamic friction coefficients of the bacterium and find quantitative agreement with experimental results of swimming E. coli. The flow field of the bacterium shows a force-dipole-like pattern in the swimming plane and two vortices perpendicular to its swimming direction arising from counterrotation of the cell body and the flagella. By comparison with the flow field of a force dipole and rotlet dipole, we extract the force-dipole and rotlet-dipole strengths for the bacterium and find that counterrotation of the cell body and the flagella is essential for describing the near-field hydrodynamics of the bacterium.

  10. A simple 2-D inundation model for incorporating flood damage in urban drainage planning

    NASA Astrophysics Data System (ADS)

    Pathirana, A.; Tsegaye, S.; Gersonius, B.; Vairavamoorthy, K.

    2008-11-01

    In this paper a new inundation model code is developed and coupled with Storm Water Management Model, SWMM, to relate spatial information associated with urban drainage systems as criteria for planning of storm water drainage networks. The prime objective is to achive a model code that is simple and fast enough to be consistently be used in planning stages of urban drainage projects. The formulation for the two-dimensional (2-D) surface flow model algorithms is based on the Navier Stokes equation in two dimensions. An Alternating Direction Implicit (ADI) finite difference numerical scheme is applied to solve the governing equations. This numerical scheme is used to express the partial differential equations with time steps split into two halves. The model algorithm is written using C++ computer programming language. This 2-D surface flow model is then coupled with SWMM for simulation of both pipe flow component and surcharge induced inundation in urban areas. In addition, a damage calculation block is integrated within the inundation model code. The coupled model is shown to be capable of dealing with various flow conditions, as well as being able to simulate wetting and drying processes that will occur as the flood flows over an urban area. It has been applied under idealized and semi-hypothetical cases to determine detailed inundation zones, depths and velocities due to surcharged water on overland surface.

  11. Use of hydrologic and hydrodynamic modeling for ecosystem restoration

    USGS Publications Warehouse

    Obeysekera, J.; Kuebler, L.; Ahmed, S.; Chang, M.-L.; Engel, V.; Langevin, C.; Swain, E.; Wan, Y.

    2011-01-01

    Planning and implementation of unprecedented projects for restoring the greater Everglades ecosystem are underway and the hydrologic and hydrodynamic modeling of restoration alternatives has become essential for success of restoration efforts. In view of the complex nature of the South Florida water resources system, regional-scale (system-wide) hydrologic models have been developed and used extensively for the development of the Comprehensive Everglades Restoration Plan. In addition, numerous subregional-scale hydrologic and hydrodynamic models have been developed and are being used for evaluating project-scale water management plans associated with urban, agricultural, and inland costal ecosystems. The authors provide a comprehensive summary of models of all scales, as well as the next generation models under development to meet the future needs of ecosystem restoration efforts in South Florida. The multiagency efforts to develop and apply models have allowed the agencies to understand the complex hydrologic interactions, quantify appropriate performance measures, and use new technologies in simulation algorithms, software development, and GIS/database techniques to meet the future modeling needs of the ecosystem restoration programs. Copyright ?? 2011 Taylor & Francis Group, LLC.

  12. Model-based 3D/2D deformable registration of MR images.

    PubMed

    Marami, Bahram; Sirouspour, Shahin; Capson, David W

    2011-01-01

    A method is proposed for automatic registration of 3D preoperative magnetic resonance images of deformable tissue to a sequence of its 2D intraoperative images. The algorithm employs a dynamic continuum mechanics model of the deformation and similarity (distance) measures such as correlation ratio, mutual information or sum of squared differences for registration. The registration is solely based on information present in the 3D preoperative and 2D intraoperative images and does not require fiducial markers, feature extraction or image segmentation. Results of experiments with a biopsy training breast phantom show that the proposed method can perform well in the presence of large deformations. This is particularly useful for clinical applications such as MR-based breast biopsy where large tissue deformations occur.

  13. Hydrodynamic model for particle size segregation in granular media

    NASA Astrophysics Data System (ADS)

    Trujillo, Leonardo; Herrmann, Hans J.

    2003-12-01

    We present a hydrodynamic theoretical model for “Brazil nut” size segregation in granular materials. We give analytical solutions for the rise velocity of a large intruder particle immersed in a medium of monodisperse fluidized small particles. We propose a new mechanism for this particle size-segregation due to buoyant forces caused by density variations which come from differences in the local “granular temperature”. The mobility of the particles is modified by the energy dissipation due to inelastic collisions and this leads to a different behavior from what one would expect for an elastic system. Using our model we can explain the size ratio dependence of the upward velocity.

  14. Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro; Tartakovsky, Alexandre M.; Parks, Michael L.

    2017-04-01

    We present a consistent implicit incompressible smoothed particle hydrodynamics (I2SPH) discretization of Navier-Stokes, Poisson-Boltzmann, and advection-diffusion equations subject to Dirichlet or Robin boundary conditions. It is applied to model various two and three dimensional electrokinetic flows in simple or complex geometries. The accuracy and convergence of the consistent I2SPH are examined via comparison with analytical solutions, grid-based numerical solutions, or empirical models. The new method provides a framework to explore broader applications of SPH in microfluidics and complex fluids with charged objects, such as colloids and biomolecules, in arbitrary complex geometries.

  15. Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics

    DOE PAGES

    Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro; ...

    2017-01-03

    In this paper, we present a consistent implicit incompressible smoothed particle hydrodynamics (I2SPH) discretization of Navier–Stokes, Poisson–Boltzmann, and advection–diffusion equations subject to Dirichlet or Robin boundary conditions. It is applied to model various two and three dimensional electrokinetic flows in simple or complex geometries. The accuracy and convergence of the consistent I2SPH are examined via comparison with analytical solutions, grid-based numerical solutions, or empirical models. Lastly, the new method provides a framework to explore broader applications of SPH in microfluidics and complex fluids with charged objects, such as colloids and biomolecules, in arbitrary complex geometries.

  16. Models of Jupiter's Growth Incorporating Thermal and Hydrodynamics Constraints

    NASA Astrophysics Data System (ADS)

    D'Angelo, G.; Lissauer, J. J.; Hubickyj, O.; Bodenheimer, P.

    2008-12-01

    We have modeled the growth of Jupiter incorporating both thermal and hydrodynamical constraints on its accretion of gas from the circumsolar disk. We have used a planetary formation code, based on a Henyey- type stellar evolution code, to compute the planet's internal structure and a three-dimensional hydrodynamics code to calculate the planet's interactions with the protoplanetary disk. Our principal results are: (1) Three dimensional hydrodynamics calculations show that the flow of gas in the circumsolar disk limits the region occupied by the planet's tenuous gaseous envelope to within about 0.25 Rh (Hill sphere radii) of the planet's center, which is much smaller than the value of ~ 1 Rh that was assumed in previous studies. (2) This smaller size of the planet's envelope increases the planet's accretion time, but only by 5-- 10%. In general, in agreement with previous results of Hubickyj et al. [Hubickyj, O., Bodenheimer, P., Lissauer, J.J., 2005. Icarus, 179, 415-431], Jupiter formation times are in the range 2.5--3 Myr, assuming a protoplanetary disk with solid surface density of 10 g/cm2 and dust opacity in the protoplanet's envelope equal to 2% that of interstellar material. Thermal pressure limits the rate at which a planet less than a few dozen times as massive as Earth can accumulate gas from the protoplanetary disk, whereas hydrodynamics regulates the growth rate for more massive planets. (3) In a protoplanetary disk whose alpha-viscosity parameter is ~ 0.004, giant planets will grow to several times the mass of Jupiter unless the disk has a small local surface density when the planet begins to accrete gas hydrodynamically, or the disk is dispersed very soon thereafter. The large number of planets known with masses near Jupiter's compared with the smaller number of substantially more massive planets is more naturally explained by planetary growth within circumstellar disks whose alpha-viscosity parameter is ~ 0.0004. (4) Capture of Jupiter's irregular

  17. Anticipating the Role of SWOT in Hydrologic and Hydrodynamic Modeling

    NASA Astrophysics Data System (ADS)

    Pavelsky, T.; Biancamaria, S.; Andreadis, K.; Durand, M. T.; Schumann, G.

    2015-12-01

    The Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA and CNES, the French space agency. It aims to provide the first simultaneous, space-based measurements of inundation extent and water surface elevation in rivers, lakes, and wetlands around the world. Although the orbit repeat time is approximately 21 days, many areas of the earth will be viewed multiple times during this window. SWOT will observe rivers as narrow as 50-100 m and lakes as small as 0.01-0.06 km2, with height accuracies of ~10 cm for water bodies 1 km2 in area. Because SWOT will measure temporal variations in the height, width, and slope of rivers, several algorithms have been developed to estimate river discharge solely from SWOT measurements. Additionally, measurements of lake height and area will allow estimation of variability in lake water storage. These new hydrologic measurements will provide important sources of information both hydrologic and hydrodynamic models at regional to global scales. SWOT-derived estimates of water storage change and discharge will help to constrain simulation of the water budget in hydrologic models. Measurements of water surface elevation will provide similar constraints on hydrodynamic models of river flow. SWOT data will be useful for model calibration and validation, but perhaps the most exciting applications involve assimilation of SWOT data into models to enhance model robustness and provide denser temporal sampling than available from SWOT observations alone.

  18. ICF target 2D modeling using Monte Carlo SNB electron thermal transport in DRACO

    NASA Astrophysics Data System (ADS)

    Chenhall, Jeffrey; Cao, Duc; Moses, Gregory

    2016-10-01

    The iSNB (implicit Schurtz Nicolai Busquet multigroup diffusion electron thermal transport method is adapted into a Monte Carlo (MC) transport method to better model angular and long mean free path non-local effects. The MC model was first implemented in the 1D LILAC code to verify consistency with the iSNB model. Implementation of the MC SNB model in the 2D DRACO code enables higher fidelity non-local thermal transport modeling in 2D implosions such as polar drive experiments on NIF. The final step is to optimize the MC model by hybridizing it with a MC version of the iSNB diffusion method. The hybrid method will combine the efficiency of a diffusion method in intermediate mean free path regions with the accuracy of a transport method in long mean free path regions allowing for improved computational efficiency while maintaining accuracy. Work to date on the method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.

  19. 3D/2D Model-to-Image Registration for Quantitative Dietary Assessment.

    PubMed

    Chen, Hsin-Chen; Jia, Wenyan; Li, Zhaoxin; Sun, Yung-Nien; Sun, Mingui

    2012-12-31

    Image-based dietary assessment is important for health monitoring and management because it can provide quantitative and objective information, such as food volume, nutrition type, and calorie intake. In this paper, a new framework, 3D/2D model-to-image registration, is presented for estimating food volume from a single-view 2D image containing a reference object (i.e., a circular dining plate). First, the food is segmented from the background image based on Otsu's thresholding and morphological operations. Next, the food volume is obtained from a user-selected, 3D shape model. The position, orientation and scale of the model are optimized by a model-to-image registration process. Then, the circular plate in the image is fitted and its spatial information is used as constraints for solving the registration problem. Our method takes the global contour information of the shape model into account to obtain a reliable food volume estimate. Experimental results using regularly shaped test objects and realistically shaped food models with known volumes both demonstrate the effectiveness of our method.

  20. Uncertainties in modelling Mt. Pinatubo eruption with 2-D AER model and CCM SOCOL

    NASA Astrophysics Data System (ADS)

    Kenzelmann, P.; Weisenstein, D.; Peter, T.; Luo, B. P.; Rozanov, E.; Fueglistaler, S.; Thomason, L. W.

    2009-04-01

    Large volcanic eruptions may introduce a strong forcing on climate. They challenge the skills of climate models. In addition to the short time attenuation of solar light by ashes the formation of stratospheric sulphate aerosols, due to volcanic sulphur dioxide injection into the lower stratosphere, may lead to a significant enhancement of the global albedo. The sulphate aerosols have a residence time of about 2 years. As a consequence of the enhanced sulphate aerosol concentration both the stratospheric chemistry and dynamics are strongly affected. Due to absorption of longwave and near infrared radiation the temperature in the lower stratosphere increases. So far chemistry climate models overestimate this warming [Eyring et al. 2006]. We present an extensive validation of extinction measurements and model runs of the eruption of Mt. Pinatubo in 1991. Even if Mt. Pinatubo eruption has been the best quantified volcanic eruption of this magnitude, the measurements show considerable uncertainties. For instance the total amount of sulphur emitted to the stratosphere ranges from 5-12 Mt sulphur [e.g. Guo et al. 2004, McCormick, 1992]. The largest uncertainties are in the specification of the main aerosol cloud. SAGE II, for instance, could not measure the peak of the aerosol extinction for about 1.5 years, because optical termination was reached. The gap-filling of the SAGE II [Thomason and Peter, 2006] using lidar measurements underestimates the total extinctions in the tropics for the first half year after the eruption by 30% compared to AVHRR [Rusell et. al 1992]. The same applies to the optical dataset described by Stenchikov et al. [1998]. We compare these extinction data derived from measurements with extinctions derived from AER 2D aerosol model calculations [Weisenstein et al., 2007]. Full microphysical calculations with injections of 14, 17, 20 and 26 Mt SO2 in the lower stratosphere were performed. The optical aerosol properties derived from SAGE II

  1. Validation of a Global Hydrodynamic Flood Inundation Model

    NASA Astrophysics Data System (ADS)

    Bates, P. D.; Smith, A.; Sampson, C. C.; Alfieri, L.; Neal, J. C.

    2014-12-01

    In this work we present first validation results for a hyper-resolution global flood inundation model. We use a true hydrodynamic model (LISFLOOD-FP) to simulate flood inundation at 1km resolution globally and then use downscaling algorithms to determine flood extent and depth at 90m spatial resolution. Terrain data are taken from a custom version of the SRTM data set that has been processed specifically for hydrodynamic modelling. Return periods of flood flows along the entire global river network are determined using: (1) empirical relationships between catchment characteristics and index flood magnitude in different hydroclimatic zones derived from global runoff data; and (2) an index flood growth curve, also empirically derived. Bankful return period flow is then used to set channel width and depth, and flood defence impacts are modelled using empirical relationships between GDP, urbanization and defence standard of protection. The results of these simulations are global flood hazard maps for a number of different return period events from 1 in 5 to 1 in 1000 years. We compare these predictions to flood hazard maps developed by national government agencies in the UK and Germany using similar methods but employing detailed local data, and to observed flood extent at a number of sites including St. Louis, USA and Bangkok in Thailand. Results show that global flood hazard models can have considerable skill given careful treatment to overcome errors in the publicly available data that are used as their input.

  2. A New Approach to Calculate Indirect GWPs using the UIUC 2-D CRT and RTM Model

    NASA Astrophysics Data System (ADS)

    Li, Y.; Youn, D.; Patten, K.; Wuebbles, D.

    2006-12-01

    Global warming potentials (GWPs) are defined to be the total impact over time of adding a unit mass of a greenhouse gas to the atmosphere. Indirect GWPs are due to ozone depletion effects in the stratosphere for a certain compound and therefore stand for the long-term global cooling effects. Previously, indirect GWPs were calculated using a box model, which was not able to consider the complex processes in the atmosphere. As a step towards obtaining indirect GWPs through a more robust approach, the UIUC 2-D CRT model was used as the computational tool to derive ozone changes. The 2-D model has more realistic chemical, physical, and dynamical processes in the atmosphere and a relatively complete transport system, which makes it useful for a more accurate analysis. Furthermore, the University of Illinois at Urbana-Champaign (UIUC) radiative transfer model (RTM) is employed to derive the corresponding time-dependent radiative forcings from the 2-D CRT outputs. Two Halon compounds, Halon-1211 and Halon-1301, were selected to be studied for their indirect GWPs. The results showed that instantaneous and stratospheric adjusted indirect GWPs for a 100-year horizon are -10004.8 and -10237.1 for Halon-1211, while for Halon-1301 they are -19218.0 and -19627.6. The indirect GWPs for Halon-1211 and -1301 presented here are two to three times smaller compared to the results in WMO (2006) draft. Further analysis on indirect GWPs will be carried out using our 3-D MOZART-3 model.

  3. RVE Model with Porosity for 2D Woven CVI SiCf/SiC Composites

    NASA Astrophysics Data System (ADS)

    Shen, Xiuli; Gong, Longdong

    2016-12-01

    A representative volume element (RVE) model with porosity for 2D woven chemical vapor infiltration (CVI) SiCf/SiC composites is presented, and its mechanical properties are analyzed. Samples are divided after a tensile test, and their cross sections are scanned with a scanning electron microscope. The size of the feature structure of the RVE model is determined based on the measurement statistics of the feature structure parameters. In accordance with CVI technology, the deposition rates of the matrix in each direction along the surface of fiber bundles are assumed to be similar. The porosity structure is formed naturally when the RVE model is established. The RVE model conforms to the real structure and accurately shows the location and geometric shape of internal porosity. The relative error of the tensile modulus value estimated from the RVE model through the asymptotic expansion homogenization method and experimental data is 3.26%. Therefore, the RVE model is accurate and efficient.

  4. Quantitative Proteomic and Phosphoproteomic Comparison of 2D and 3D Colon Cancer Cell Culture Models.

    PubMed

    Yue, Xiaoshan; Lukowski, Jessica K; Weaver, Eric M; Skube, Susan B; Hummon, Amanda B

    2016-12-02

    Cell cultures are widely used model systems. Some immortalized cell lines can be grown in either two-dimensional (2D) adherent monolayers or in three-dimensional (3D) multicellular aggregates, or spheroids. Here, the quantitative proteome and phosphoproteome of colon carcinoma HT29 cells cultures in 2D monolayers and 3D spheroids were compared with a stable isotope labeling of amino acids (SILAC) labeling strategy. Two biological replicates from each sample were examined, and notable differences in both the proteome and the phosphoproteome were determined by nanoliquid chromatography tandem mass spectrometry (LC-MS/MS) to assess how growth configuration affects molecular expression. A total of 5867 protein groups, including 2523 phosphoprotein groups and 8733 phosphopeptides were identified in the samples. The Gene Ontology analysis revealed enriched GO terms in the 3D samples for RNA binding, nucleic acid binding, enzyme binding, cytoskeletal protein binding, and histone binding for their molecular functions (MF) and in the process of cell cycle, cytoskeleton organization, and DNA metabolic process for the biological process (BP). The KEGG pathway analysis indicated that 3D cultures are enriched for oxidative phosphorylation pathways, metabolic pathways, peroxisome pathways, and biosynthesis of amino acids. In contrast, analysis of the phosphoproteomes indicated that 3D cultures have decreased phosphorylation correlating with slower growth rates and lower cell-to-extracellular matrix interactions. In sum, these results provide quantitative assessments of the effects on the proteome and phosphoproteome of culturing cells in 2D versus 3D cell culture configurations.

  5. INTERACTIONS BETWEEN TOPOGRAPHY AND ROUGHNESS IN A 2D RASTER-BASED HYDRAULIC MODEL

    NASA Astrophysics Data System (ADS)

    Casas, M.; Yu, D.; Lane, S. N.; Benito-Ferrandez, G.

    2009-12-01

    Analysis of river flow using hydraulic modelling and its implications in derived environmental applications are inextricably connected with the way in which the river boundary shape is represented. This relationship is scale-dependent upon the modelling resolution which in turn determines the importance of a subscale performance of the model and the way subscale (surface and flow) processes are parameterised. This work aims to explore scaling effects associated with the parameterisation of topography and roughness (i.e. surface at different scales) and possible interactions between its components (mesh resolution, topographic content of the DEM and roughness parameterisation) within a 2D raster-based diffusion-wave model. A distributed roughness variable which is scale dependent on the mesh resolution and the surface roughness of the DEM is incorporated to the hydraulic model. The roughness parameterisation is carried out on the basis of a LiDAR-derived vegetation height model and applied in a raster based 2D diffusion wave model. Topographic models with different topographic contents and a constant mesh resolution are generated using LiDAR data and different vertical thresholds. Five DEMs are generated with different topographic contents (±Δz), (DEM±5cm, DEM±10cm, DEM±25cm, DEM±50cm) and four mesh resolutions (1, 2, 4 and 8m) are assessed. A sensitivity analysis on the model results to mesh resolution due to interpolation and resampling procedures of topographic data is performed. Interactions between topographic and roughness parameterisation are related to model results and finally, geostatistical methods are used to document scaling effects in hydraulic modelling results and model performance. This method explicitly recognises the three-way interaction between the discretised mesh resolution and the topographic content in the DEM with the roughness parameterisation. The work shows how the subscale behaviour of the 2D hydraulic model is not well

  6. Explicit 3D continuum fracture modeling with smooth particle hydrodynamics

    NASA Technical Reports Server (NTRS)

    Benz, W.; Asphaug, E.

    1993-01-01

    Impact phenomena shaped our solar system. As usual for most solar system processes, the scales are far different than we can address directly in the laboratory. Impact velocities are often much higher than we can achieve, sizes are often vastly larger, and most impacts take place in an environment where the only gravitational force is the mutual pull of the impactors. The Smooth Particle Hydrodynamics (SPH) technique has been applied in the past to the simulations of giant impacts. In these simulations, the colliding objects were so massive (at least a sizeable fraction of the Earth's mass) that material strength was negligible compared to gravity. This assumption can no longer be made when the bodies are much smaller. To this end, we have developed a 3D SPH code that includes a strength model to which we have added a von Mises yielding relation for stresses beyond the Hugoniot Elastic Limit. At the lower stresses associated with brittle failure, we use a rate-dependent strength based on the nucleation of incipient flaws whose number density is given by a Weibull distribution. Following Grady and Kipp and Melosh et al., we introduce a state variable D ('damage'), 0 less than D less than 1, which expresses the local reduction in strength due to crack growth under tensile loading. Unfortunately for the hydrodynamics, Grady and Kipp's model predicts which fragments are the most probable ones and not the ones that are really formed. This means, for example, that if a given laboratory experiment is modeled, the fragment distribution obtained from the Grady-Kipp theory would be equivalent to a ensemble average over many realizations of the experiment. On the other hand, the hydrodynamics itself is explicit and evolves not an ensemble average but very specific fragments. Hence, there is a clear incompatibility with the deterministic nature of the hydrodynamics equations and the statistical approach of the Grady-Kipp dynamical fracture model. We remedy these shortcomings

  7. Calibration of denitrifying activity of polyphosphate accumulating organisms in an extended ASM2d model.

    PubMed

    García-Usach, F; Ribes, J; Ferrer, J; Seco, A

    2010-10-01

    This paper presents the results of an experimental study for the modelling and calibration of denitrifying activity of polyphosphate accumulating organisms (PAOs) in full-scale WWTPs that incorporate simultaneous nitrogen and phosphorus removal. The convenience of using different yields under aerobic and anoxic conditions for modelling biological phosphorus removal processes with the ASM2d has been demonstrated. Thus, parameter η(PAO) in the model is given a physical meaning and represents the fraction of PAOs that are able to follow the DPAO metabolism. Using stoichiometric relationships, which are based on assumed biochemical pathways, the anoxic yields considered in the extended ASM2d can be obtained as a function of their respective aerobic yields. Thus, this modification does not mean an extra calibration effort to obtain the new parameters. In this work, an off-line calibration methodology has been applied to validate the model, where general relationships among stoichiometric parameters are proposed to avoid increasing the number of parameters to calibrate. The results have been validated through a UCT scheme pilot plant that is fed with municipal wastewater. The good concordance obtained between experimental and simulated values validates the use of anoxic yields as well as the calibration methodology. Deterministic modelling approaches, together with off-line calibration methodologies, are proposed to assist in decision-making about further process optimization in biological phosphate removal, since parameter values obtained by off-line calibration give valuable information about the activated sludge process such as the amount of DPAOs in the system.

  8. Hydrodynamic and Ecological Assessment of Nearshore Restoration: A Modeling Study

    SciTech Connect

    Yang, Zhaoqing; Sobocinski, Kathryn L.; Heatwole, Danelle W.; Khangaonkar, Tarang; Thom, Ronald M.; Fuller, Roger

    2010-04-10

    Along the Pacific Northwest coast, much of the estuarine habitat has been diked over the last century for agricultural land use, residential and commercial development, and transportation corridors. As a result, many of the ecological processes and functions have been disrupted. To protect coastal habitats that are vital to aquatic species, many restoration projects are currently underway to restore the estuarine and coastal ecosystems through dike breaches, setbacks, and removals. Information on physical processes and hydrodynamic conditions are critical for the assessment of the success of restoration actions. Restoration of a 160- acre property at the mouth of the Stillaguamish River in Puget Sound has been proposed. The goal is to restore native tidal habitats and estuary-scale ecological processes by removing the dike. In this study, a three-dimensional hydrodynamic model was developed for the Stillaguamish River estuary to simulate estuarine processes. The model was calibrated to observed tide, current, and salinity data for existing conditions and applied to simulate the hydrodynamic responses to two restoration alternatives. Responses were evaluated at the scale of the restoration footprint. Model data was combined with biophysical data to predict habitat responses at the site. Results showed that the proposed dike removal would result in desired tidal flushing and conditions that would support four habitat types on the restoration footprint. At the estuary scale, restoration would substantially increase the proportion of area flushed with freshwater (< 5 ppt) at flood tide. Potential implications of predicted changes in salinity and flow dynamics are discussed relative to the distribution of tidal marsh habitat.

  9. An Integrated Numerical Hydrodynamic Shallow Flow-Solute Transport Model for Urban Area

    NASA Astrophysics Data System (ADS)

    Alias, N. A.; Mohd Sidek, L.

    2016-03-01

    The rapidly changing on land profiles in the some urban areas in Malaysia led to the increasing of flood risk. Extensive developments on densely populated area and urbanization worsen the flood scenario. An early warning system is really important and the popular method is by numerically simulating the river and flood flows. There are lots of two-dimensional (2D) flood model predicting the flood level but in some circumstances, still it is difficult to resolve the river reach in a 2D manner. A systematic early warning system requires a precisely prediction of flow depth. Hence a reliable one-dimensional (1D) model that provides accurate description of the flow is essential. Research also aims to resolve some of raised issues such as the fate of pollutant in river reach by developing the integrated hydrodynamic shallow flow-solute transport model. Presented in this paper are results on flow prediction for Sungai Penchala and the convection-diffusion of solute transports simulated by the developed model.

  10. Modeling the Elastic Modulus of 2D Woven CVI SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2006-01-01

    The use of fiber, interphase, CVI SiC minicomposites as structural elements for 2D-woven SiC fiber reinforced chemically vapor infiltrated (CVI) SiC matrix composites is demonstrated to be a viable approach to model the elastic modulus of these composite systems when tensile loaded in an orthogonal direction. The 0deg (loading direction) and 90deg (perpendicular to loading direction) oriented minicomposites as well as the open porosity and excess SiC associated with CVI SiC composites were all modeled as parallel elements using simple Rule of Mixtures techniques. Excellent agreement for a variety of 2D woven Hi-Nicalon(TradeMark) fiber-reinforced and Sylramic-iBN reinforced CVI SiC matrix composites that differed in numbers of plies, constituent content, thickness, density, and number of woven tows in either direction (i.e, balanced weaves versus unbalanced weaves) was achieved. It was found that elastic modulus was not only dependent on constituent content, but also the degree to which 90deg minicomposites carried load. This depended on the degree of interaction between 90deg and 0deg minicomposites which was quantified to some extent by composite density. The relationships developed here for elastic modulus only necessitated the knowledge of the fractional contents of fiber, interphase and CVI SiC as well as the tow size and shape. It was concluded that such relationships are fairly robust for orthogonally loaded 2D woven CVI SiC composite system and can be implemented by ceramic matrix composite component modelers and designers for modeling the local stiffness in simple or complex parts fabricated with variable constituent contents.

  11. Using 2D and 3D Modeling to Infer the Depth of the Okavango Dyke Swarm

    NASA Astrophysics Data System (ADS)

    Dailey, M. K.; Mortimer, D.; Atekwana, E. A.

    2009-12-01

    The 179 Ma N110°-striking Okavango Dyke swarm (ODS) extends from southern Zimbabwe for approximately 1500 km northwest into Namibia. The emplacement of dyke swarms is typically associated with the initiation of continental breakup and has been suggested that ODS was emplaced during the breakup of Gondwana along an existing zone of weakness. However, the understanding of how these giant dyke swarms are emplaced over large distances for hundreds of kilometers is limited- do these giant dike swarms propagate from a single source for hundreds of kilometers or do they propagate from sub-crustal magma chambers along a zone of weakness? To address these questions we investigated the ODS in northern Botswana. The dyke swarm is exposed at the surface in the east close to its origin but is buried in the northwest within the Okavango Rift Zone. Using airborne magnetic and ground gravity survey data along with rock property data from the exposed sections, 2D and 3D models were created in order to determine the depth of the dyke swarm. Initially several 2D models were used to test hypothesis of varying depths and rock parameters. The 2D models were then used to ‘seed’ the 3D models with similar density, susceptibility, and depth parameters. The dykes appear to have relatively shallow and finite depths, in the range of 2 to 5 km deep. These results are consistent with a lateral emplacement stemming from the failed triple junction and thus ruling out an infinite depth extent which would have been the case if the dykes were propagated vertically from sub-crustal magma chambers.

  12. Hydrodynamic description of spin Calogero-Sutherland model

    NASA Astrophysics Data System (ADS)

    Abanov, Alexander; Kulkarni, Manas; Franchini, Fabio

    2009-03-01

    We study a non-linear collective field theory for an integrable spin-Calogero-Sutherland model. The hydrodynamic description of this SU(2) model in terms of charge density, charge velocity and spin currents is used to study non-perturbative solutions (solitons) and examine their correspondence with known quantum numbers of elementary excitations [1]. A conventional linear bosonization or harmonic approximation is not sufficient to describe, for example, the physics of spin-charge (non)separation. Therefore, we need this new collective bosonic field description that captures the effects of the band curvature. In the strong coupling limit [2] this model reduces to integrable SU(2) Haldane-Shastry model. We study a non-linear coupling of left and right spin currents which form a Kac-Moody algebra. Our quantum hydrodynamic description for the spin case is an extension for the one found in the spinless version in [3].[3pt] [1] Y. Kato,T. Yamamoto, and M. Arikawa, J. Phys. Soc. Jpn. 66, 1954-1961 (1997).[0pt] [2] A. Polychronakos, Phys Rev Lett. 70,2329-2331(1993).[0pt] [3] A.G.Abanov and P.B. Wiegmann, Phys Rev Lett 95, 076402(2005)

  13. Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics

    SciTech Connect

    Persson, Rasmus A. X.; Chu, Jhih-Wei; Voulgarakis, Nikolaos K.

    2014-11-07

    Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ϕ in coupling to the other equations of FHD. The resulting ϕ-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ϕ-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ϕ-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 Å, the ϕ-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.

  14. Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics.

    PubMed

    Persson, Rasmus A X; Voulgarakis, Nikolaos K; Chu, Jhih-Wei

    2014-11-07

    Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ϕ in coupling to the other equations of FHD. The resulting ϕ-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ϕ-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ϕ-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 Å, the ϕ-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.

  15. Study of hydrodynamic instabilities with a multiphase lattice Boltzmann model

    NASA Astrophysics Data System (ADS)

    Velasco, Ali Mauricio; Muñoz, José Daniel

    2015-10-01

    Rayleigh-Taylor and Kelvin-Helmholtz hydrodynamic instabilities are frequent in many natural and industrial processes, but their numerical simulation is not an easy challenge. This work simulates both instabilities by using a lattice Boltzmann model on multiphase fluids at a liquid-vapour interface, instead of multicomponent systems like the oil-water one. The model, proposed by He, Chen and Zhang (1999) [1] was modified to increase the precision by computing the pressure gradients with a higher order, as proposed by McCracken and Abraham (2005) [2]. The resulting model correctly simulates both instabilities by using almost the same parameter set. It also reproduces the relation γ ∝√{ A} between the growing rate γ of the Rayleigh-Taylor instability and the relative density difference between the fluids (known as the Atwood number A), but including also deviations observed in experiments at low density differences. The results show that the implemented model is a useful tool for the study of hydrodynamic instabilities, drawing a sharp interface and exhibiting numerical stability for moderately high Reynolds numbers.

  16. An Implicit 2-D Depth-Averaged Finite-Volume Model of Flow and Sediment Transport in Coastal Waters

    DTIC Science & Technology

    2010-01-01

    Two-dimensional depth-averaged circulation model CMS- M2D : Version 3.0, Report 2: Sediment transport and morphology change, Technical Report ERDC/CHL TR...dimensional depth-averaged circulation model M2D : Version 2.0, Report 1, Technical documentation and user’s guide. ERDC/CHL TR-04-2, Coastal and Hydraulics

  17. Mesoscale modeling of molecular machines: cyclic dynamics and hydrodynamical fluctuations.

    PubMed

    Cressman, Andrew; Togashi, Yuichi; Mikhailov, Alexander S; Kapral, Raymond

    2008-05-01

    Proteins acting as molecular machines can undergo cyclic internal conformational motions that are coupled to ligand binding and dissociation events. In contrast to their macroscopic counterparts, nanomachines operate in a highly fluctuating environment, which influences their operation. To bridge the gap between detailed microscopic and simple phenomenological descriptions, a mesoscale approach, which combines an elastic network model of a machine with a particle-based mesoscale description of the solvent, is employed. The time scale of the cyclic hinge motions of the machine prototype is strongly affected by hydrodynamical coupling to the solvent.

  18. Delayed-feedback control in a Lattice hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Redhu, Poonam; Gupta, Arvind Kumar

    2015-10-01

    The delayed-feedback control (DFC) method for lattice hydrodynamic traffic flow model is investigated on a unidirectional road. By using the Hurwitz criteria and the condition for transfer function in term of H∞ -norm, we designed the feedback gain and delay time to stabilize the traffic flow and suppress the traffic jam. The Bode-plot of transfer function have been plotted and discussed that the stability region enhances with delayed-feedback control. It is shown that the delayed-feedback control method stabilizes the traffic flow and suppresses the traffic jam efficiently. The simulation results are in good agreement with the theoretical analysis.

  19. A solidification constitutive model for NIKE2D and NIKE3D

    SciTech Connect

    Raboin, P.J.

    1994-03-17

    This memo updates the current status of a solidification material model development which has been underway for more than a year. Significant modeling goals such as predicting cut-off stresses, thermo-elasto-plasticity, strain rate dependent plasticity and dynamic recovery have been completed. The model is called SOLMAT for solidification material model, and while developed for NIKE2D, it has already been implemented in NIKE3D and NIT03D by B. Maker. This memo details the future development strategy of SOLMAT including liquid and solid constitutive improvements, coupling of deviatoric and dilatational deformation and a plan to switch between constitutive theories. It explains some of the difficulties associated solidification modeling and proposes two experiments to measure properties for using SOLMAT. Due to the sensitive nature of these plans in relation to programmatic and CRADA concerns, this memo should be treated as confidential document.

  20. An Integrative Model of Excitation Driven Fluid Flow in a 2D Uterine Channel

    NASA Astrophysics Data System (ADS)

    Maggio, Charles; Fauci, Lisa; Chrispell, John

    2009-11-01

    We present a model of intra-uterine fluid flow in a sagittal cross-section of the uterus by inducing peristalsis in a 2D channel. This is an integrative multiscale computational model that takes as input fluid viscosity, passive tissue properties of the uterine channel and a prescribed wave of membrane depolarization. This voltage pulse is coupled to a model of calcium dynamics inside a uterine smooth muscle cell, which in turn drives a kinetic model of myosin phosphorylation governing contractile muscle forces. Using the immersed boundary method, these muscle forces are communicated to a fluid domain to simulate the contractions which occur in a human uterus. An analysis of the effects of model parameters on the flow properties and emergent geometry of the peristaltic channel will be presented.

  1. Radiation Hydrodynamical Models for Type I Superluminous Supernovae

    NASA Astrophysics Data System (ADS)

    Nomoto, Ken'ichi; Sorokina, Elena; Blinnikov, Sergei; Tolstov, Alexey; Bersten, Melina; Quimby, Robert

    The physical origin of Type I superluminous supernovae (SLSNe-I), whose luminosities are 10 to 100 times brighter than normal core-collapse supernovae, remains still unknown. Radioactive-decays, magnetars, and circumstellar interactions have been proposed for the power source the light curves, although no definitive conclusions have been reached yet. Since most of light curve studies have been based on simplified semi-analytic models, we have constructed detailed light curve models for various mass of stars including very massive ones and large amount of mass loss with radiation hydrodynamical calculations. Here we focus on the magnetar and circumstellar interaction models and compare their rising time, peak luminosity, width, decline rate of the light curves with observations which show quite a large diversities. We then discuss how to discriminate these models, relevant models parameters, their evolutionary origins, possible roles of chemical enrichment of the early universe, and implications for the identifications of first stars.

  2. 2D lattice model of a lipid bilayer: Microscopic derivation and thermodynamic exploration

    NASA Astrophysics Data System (ADS)

    Hakobyan, Davit; Heuer, Andreas

    2017-02-01

    Based on all-atom Molecular Dynamics (MD) simulations of a lipid bilayer we present a systematic mapping on a 2D lattice model. Keeping the lipid type and the chain order parameter as key variables we derive a free energy functional, containing the enthalpic interaction of adjacent lipids as well as the tail entropy. The functional form of both functions is explicitly determined for saturated and polyunsaturated lipids. By studying the lattice model via Monte Carlo simulations it is possible to reproduce the temperature dependence of the distribution of order parameters of the pure lipids, including the prediction of the gel transition. Furthermore, application to a mixture of saturated and polyunsaturated lipids yields the correct phase separation behavior at lower temperatures with a simulation time reduced by approximately 7 orders of magnitude as compared to the corresponding MD simulations. Even the time-dependence of the de-mixing is reproduced on a semi-quantitative level. Due to the generality of the approach we envisage a large number of further applications, ranging from modeling larger sets of lipids, sterols, and solvent proteins to predicting nucleation barriers for the melting of lipids. Particularly, from the properties of the 2D lattice model one can directly read off the enthalpy and entropy change of the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine gel-to-liquid transition in excellent agreement with experimental and MD results.

  3. Evaluation of Hydrus-2D model for solute distribution in subsurface drip

    NASA Astrophysics Data System (ADS)

    Souza, Claudinei; Bizari, Douglas; Grecco, Katarina

    2015-04-01

    The competition for water use between agriculture, industry and population has become intense over the years, requiring a rational use of this resource for food production. The subsurface drip irrigation can help producers with the optimization of operating parameters such as frequency and duration of irrigation, flow, spacing and depth of the dripper installation. This information can be obtained by numerical simulations using mathematical models, thus the aim of this study was to evaluate the HYDRUS-2D model from experimental data to predict the size of the wet bulbs generated by emitters of different application rates (1.0 and 1.6 L h-1). The results showed that horizontal displacement (bulb diameter) remained the largest in all the bulbs, observed both in experimental trials and estimated by the model and the correlation between them was high, above 0.90 to below 16% error. We conclude that the HYDRUS-2D model can be used to estimate the dimensions of the wet bulb getting new information on the sizing of the irrigation system.

  4. Bernstein copula approach to model direction-length dependency for 2D discrete fracture network simulation

    NASA Astrophysics Data System (ADS)

    Mendoza-Torres, F.; Diaz-Viera, M. A.

    2015-12-01

    In many natural fractured porous media, such as aquifers, soils, oil and geothermal reservoirs, fractures play a crucial role in their flow and transport properties. An approach that has recently gained popularity for modeling fracture systems is the Discrete Fracture Network (DFN) model. This approach consists in applying a stochastic boolean simulation method, also known as object simulation method, where fractures are represented as simplified geometric objects (line segments in 2D and polygons in 3D). One of the shortcomings of this approach is that it usually does not consider the dependency relationships that may exist between the geometric properties of fractures (direction, length, aperture, etc), that is, each property is simulated independently. In this work a method for modeling such dependencies by copula theory is introduced. In particular, a nonparametric model using Bernstein copulas for direction-length fracture dependency in 2D is presented. The application of this method is illustrated in a case study for a fractured rock sample from a carbonate reservoir outcrop.

  5. Two dimensional hydrodynamic modeling of a high latitude braided river

    NASA Astrophysics Data System (ADS)

    Humphries, E.; Pavelsky, T.; Bates, P. D.

    2014-12-01

    Rivers are a fundamental resource to physical, ecologic and human systems, yet quantification of river flow in high-latitude environments remains limited due to the prevalence of complex morphologies, remote locations and sparse in situ monitoring equipment. Advances in hydrodynamic modeling and remote sensing technology allow us to address questions such as: How well can two-dimensional models simulate a flood wave in a highly 3-dimensional braided river environment, and how does the structure of such a flood wave differ from flow down a similar-sized single-channel river? Here, we use the raster-based hydrodynamic model LISFLOOD-FP to simulate flood waves, discharge, water surface height, and velocity measurements over a ~70 km reach of the Tanana River in Alaska. In order to use LISFLOOD-FP a digital elevation model (DEM) fused with detailed bathymetric data is required. During summer 2013, we surveyed 220,000 bathymetric points along the study reach using an echo sounder system connected to a high-precision GPS unit. The measurements are interpolated to a smooth bathymetric surface, using Topo to Raster interpolation, and combined with an existing five meter DEM (Alaska IfSAR) to create a seamless river terrain model. Flood waves are simulated using varying complexities in model solvers, then compared to gauge records and water logger data to assess major sources of model uncertainty. Velocity and flow direction maps are also assessed and quantified for detailed analysis of braided channel flow. The most accurate model output occurs with using the full two-dimensional model structure, and major inaccuracies appear to be related to DEM quality and roughness values. Future work will intercompare model outputs with extensive ground measurements and new data from AirSWOT, an airborne analog for the Surface Water and Ocean Topography (SWOT) mission, which aims to provide high-resolution measurements of terrestrial and ocean water surface elevations globally.

  6. Momentum Transport: 2D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2001-01-01

    The major objective of this study is to investigate the momentum budgets associated with several convective systems that developed during the TOGA COARE IOP (west Pacific warm pool region) and GATE (east Atlantic region). The tool for this study is the improved Goddard Cumulas Ensemble (GCE) model which includes a 3-class ice-phase microphysical scheme, explicit cloud radiative interactive processes and air-sea interactive surface processes. The model domain contains 256 x 256 grid points (with 2 km resolution) in the horizontal and 38 grid points (to a depth of 22 km) in the vertical. The 2D domain has 1024 grid points. The simulations were performed over a 7-day time period (December 19-26, 1992, for TOGA COARE and September 1-7, 1994 for GATE). Cyclic literal boundary conditions are required for this type of long-term integration. Two well organized squall systems (TOGA, COARE February 22, 1993, and GATE September 12, 1994) were also simulated using the 3D GCE model. Only 9 h simulations were required to cover the life time of the squall systems. the lateral boundary conditions were open for these two squall systems simulations. the following will be examined: (1) the momentum budgets in the convective and stratiform regions, (2) the relationship between momentum transport and cloud organization (i.e., well organized squall lines versus less organized convective), (3) the differences and similarities in momentum transport between 2D and 3D simulated convective systems, and (4) the differences and similarities in momentum budgets between cloud systems simulated with open and cyclic lateral boundary conditions. Preliminary results indicate that there are only small differences between 2D and 3D simulated momentum budgets. Major differences occur, however, between momentum budgets associated with squall systems simulated using different lateral boundary conditions.

  7. An interactive 2-D power-line modeling and simulation tool

    NASA Astrophysics Data System (ADS)

    Hull, David; Adelman, Ross

    2012-06-01

    The U.S. Army Research Laboratory's Power-Line unmanned aerial vehicle (UAV) Modeling and Simulation (ARL-PLUMS) is a tool for estimating and analyzing quasi-static electric and magnetic fields due to power lines. This tool consists of an interactive 2-D graphical user interface (GUI) and a compute engine that can be used to calculate and visualize the E-Field and H-Field due to as many as seven conductors (two 3-phase circuits and a ground wire). ARL-PLUMS allows the user to set the geometry of the lines and the load conditions on those lines, and then calculate Ey, Ez, Hy, or Hz along a linear path or cutting plane, or in the form of a movie. The path can be along the ground or in the air to simulate the fields that might be observed, for example, by a robotic vehicle or a UAV. ARL-PLUMS makes several simplifying assumptions in order to allow simulations to be completed on a laptop PC interactively. In most cases, the results are excellent, providing a "90% solution" in just a few minutes of total modeling and simulation time. This paper describes the physics used by ARL-PLUMS, including the simplifying assumptions and the 2-D Method of Moments solver. Examples of electric and magnetic fields for different wire configurations, including typical 3-phase distribution and transmissions lines, are provided. Comparisons to similar results using a full 3-D model are also shown, and a discussion of errors that may be expected from the 2-D simulations is provided.

  8. JetCurry: Modeling 3D geometry of AGN jets from 2D images

    NASA Astrophysics Data System (ADS)

    Kosak, Katie; Li, KunYang; Avachat, Sayali S.; Perlman, Eric S.

    2017-02-01

    Written in Python, JetCurry models the 3D geometry of jets from 2-D images. JetCurry requires NumPy and SciPy and incorporates emcee (ascl:1303.002) and AstroPy (ascl:1304.002), and optionally uses VPython. From a defined initial part of the jet that serves as a reference point, JetCurry finds the position of highest flux within a bin of data in the image matrix and fits along the x axis for the general location of the bends in the jet. A spline fitting is used to smooth out the resulted jet stream.

  9. JetCurry: Modeling 3D geometry of AGN jets from 2D images

    NASA Astrophysics Data System (ADS)

    Li, Kunyang; Kosak, Katie; Avachat, Sayali S.; Perlman, Eric S.

    2017-02-01

    Written in Python, JetCurry models the 3D geometry of AGN jets from 2-D images. JetCurry requires NumPy and SciPy and incorporates emcee (ascl:1303.002) and AstroPy (ascl:1304.002), and optionally uses VPython. From a defined initial part of the jet that serves as a reference point, JetCurry finds the position of highest flux within a bin of data in the image matrix and fits along the x axis for the general location of the bends in the jet. A spline fitting is used to smooth out the resulted jet stream.

  10. A 2D Axisymmetric Mixture Multiphase Model for Bottom Stirring in a BOF Converter

    NASA Astrophysics Data System (ADS)

    Kruskopf, Ari

    2017-02-01

    A process model for basic oxygen furnace (BOF) steel converter is in development. The model will take into account all the essential physical and chemical phenomena, while achieving real-time calculation of the process. The complete model will include a 2D axisymmetric turbulent multiphase flow model for iron melt and argon gas mixture, a steel scrap melting model, and a chemical reaction model. A novel liquid mass conserving mixture multiphase model for bubbling gas jet is introduced in this paper. In-house implementation of the model is tested and validated in this article independently from the other parts of the full process model. Validation data comprise three different water models with different volume flow rates of air blown through a regular nozzle and a porous plug. The water models cover a wide range of dimensionless number R_{{p}} , which include values that are similar for industrial-scale steel converter. The k- ɛ turbulence model is used with wall functions so that a coarse grid can be utilized. The model calculates a steady-state flow field for gas/liquid mixture using control volume method with staggered SIMPLE algorithm.

  11. Modeling of lamps through a diffuser with 2D and 3D picket-fence backlight models

    NASA Astrophysics Data System (ADS)

    Belshaw, Richard J.; Wilmott, Roger; Thomas, John T.

    2002-08-01

    Laboratory photometric measurements are taken of a display backlight one metre away from the emission surface (diffuser) with a whole acceptance angle on the photometer of about 0.125 degrees (2.182mm spot size at emission surface). A simulation method was sought to be able to obtain the brightness uniformity (luminance peak to trough ratio from above one lamp to the null between lamps in a picket-fence backlight). A 3D raytrace BackLight model in TracePro and a 2D Mathematical model in Matlab have been developed. With a specimen backlight in the laboratory, a smooth luminance profile was measured by the photometer on the diffuser surface. Ray Trace models in both 3D and 2D take too long to produce smooth 'continuous filled' distributions. The Mathematical 2D approach, although with limitations, yielded smooth solutions in a very reasonable time frame.

  12. Can hydrodynamic models be implemented and calibrated on the basis of remotely sensed data only?

    NASA Astrophysics Data System (ADS)

    Domeneghetti, Alessio

    2015-04-01

    The implementation and calibration of hydrodynamic models are often constrained by the amount of available data (such as topographic and hydraulic data) which may be absent (e.g. in remote areas) or not sufficient to build accurate and trustable models. Nevertheless, the greater availability of remote sensing data (e.g. altimetry data, radar imageries, etc.) stimulates the scientific community to resort to these new data sources for overcoming these limits. The present study analyzes the potential of remotely sensed data, i.e. (i) Shuttle Radar Topography Mission (SRTM; a freely available global Digital Elevation Model with a resolution of 90 m) and (ii) satellite altimetry data (i.e. ERS and ENVISAT data), for a complete implementation and calibration of a one-dimensional (1D) hydrodynamic model. The test site is represented by ~140 km stretch of the Po river (the longest Italian river) where both traditional and remotely sensed topographical and hydrometric data are available. Adopting the SRTM data for representing the riverbed and floodplain morphology, the study investigates the performances of different 1D models in which the geometry of the main channel, which is generally submerged and cannot be remotely surveyed, is reconstructed on the basis of different approaches. The model calibrations are performed referring to long satellite altimetry timeseries (~16 years of observations), while the simulation results are compared with those obtained by means of a quasi-2D model implemented with detailed topographical data (i.e. airborne LiDAR available on the study area). The results of the study are encouraging and show the possibility to implement and calibrate a reliable 1D model referring exclusively to low-resolution DEM (e.g. SRTM) and remotely sensed water surface data (i.e. ERS and ENVISAT). The 1D model is particularly accurate for describing high-flow and flood events (i.e. root mean square error equal to 0.11 m) and comparable with traditionally

  13. Implementation of a hydrodynamic model for the upper Potomac Estuary

    USGS Publications Warehouse

    Schaffranek, Raymond W.; Baltzer, Robert A.

    1989-01-01

    A vertically integrated, two-dimensional hydrodynamic/transport model has been implemented for the upper extent of the Potomac Estuary between Indian Head and Morgantown, Md. The model computes water-surface elevations, flow velocities, and time-varying constituent concentrations by numerically integrating finite-difference forms of the equations of mass and momentum conservation in conjunction with transport equations for heat, salt, and dissolved constituents. Previous, preliminary calibration efforts have been extended and validity of the model implementation improved. Field-measured and model-computed water levels compare within ?? 2 cm and maximum computed flood and ebb flow discharges are within 3% of measured values. Indications are that further improvements can be effected.

  14. A mathematical model incorporating the effects of detector width in 2D PET

    NASA Astrophysics Data System (ADS)

    Mair, B. A.

    2000-02-01

    For decades, the Radon transform has been used as an approximate model for two-dimensional (2D) positron emission tomography (PET). Since this model assumes that detector tubes are represented by lines (hence have no area), PET reconstruction algorithms need to be modified to account for the nonzero width of detectors. To date, these modifications have been obtained by computational methods, so fail to exhibit any inherent mathematical structure of the PET transform which takes emission intensity to detector tube means. This paper contains a precise mathematical representation of this PET transform and exploits this representation to propose a new method for reconstructing PET images. This representation is achieved by expressing the probability that an emission at a point is detected in a detector tube, in terms of the Green function and Poisson kernel for Laplace's equation on the unit disc. This new PET transform involves four weighted line integrals of the emission intensity function, instead of the single unweighted line integral defining the 2D Radon transform. Despite the complexity of this model, a reconstruction method is obtained by using classical orthogonal series representations of the emission intensity and detection means in terms of circular harmonics, Bessel functions and Chebyshev polynomials.

  15. Self-Organization in 2D Traffic Flow Model with Jam-Avoiding Drive

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    1995-04-01

    A stochastic cellular automaton (CA) model is presented to investigate the traffic jam by self-organization in the two-dimensional (2D) traffic flow. The CA model is the extended version of the 2D asymmetric exclusion model to take into account jam-avoiding drive. Each site contains either a car moving to the up, a car moving to the right, or is empty. A up car can shift right with probability p ja if it is blocked ahead by other cars. It is shown that the three phases (the low-density phase, the intermediate-density phase and the high-density phase) appear in the traffic flow. The intermediate-density phase is characterized by the right moving of up cars. The jamming transition to the high-density jamming phase occurs with higher density of cars than that without jam-avoiding drive. The jamming transition point p 2c increases with the shifting probability p ja. In the deterministic limit of p ja=1, it is found that a new jamming transition occurs from the low-density synchronized-shifting phase to the high-density moving phase with increasing density of cars. In the synchronized-shifting phase, all up cars do not move to the up but shift to the right by synchronizing with the move of right cars. We show that the jam-avoiding drive has an important effect on the dynamical jamming transition.

  16. A comparative 2D modeling of debris-flow propagation and outcomes for end-users

    NASA Astrophysics Data System (ADS)

    Bettella, F.; Bertoldi, G.; Pozza, E.; McArdell, B. W.; D'Agostino, V.

    2012-04-01

    In Alpine regions gravity-driven natural hazards, in particular debris flows, endanger settlements and human life. Mitigation strategies based on hazard maps are necessary tools for land planning. These maps can be made more precise by using numerical models to forecasting the inundated areas after a careful setting of those 'key parameters' (K-P) which directly affect the flow motion and its interaction with the ground surface. Several physically based 2D models are available for practitioners and governmental agencies, but the selection criteria of model type and of the related K-P remain flexible and partly subjective. This remark has driven us to investigate how different models simulate different types of debris flows (from granular to muddy debris flows, going through intermediate types), in particular when the flow is influenced by the presence of deposition basins. Two commercial 2D physical models (RAMMS and FLO-2D) have been tested for five well-documented debris flows events from five Italian catchments were different geology and flow dynamics are observed: 1) a viscous debris flow occurred in 2009 in a catchment with a metamorphic geology (Gadria torrent, Bolzano Province); 2) the 2009 granular debris flow in an granitic geological setting (Rio Dosson, Trento Province); 3-4) two events occurred in the 'rio Val del Lago' and 'rio Molinara' (Trento Province) in 2010 where porphyritic lithology prevails (intermediate granular debris flow); 5) the Rotolon torrent (Vicenza Province) 2009 debris flow containing sedimentary rocks enclosed in an abundant clay-rich matrix (intermediate viscous case). Event volumes range from 5.000 to 50.000 cubic meters. The Gadria, Rotolon and Val del Lago events are also influenced by artificial retention basins. Case study simulations allowed delineation of some practical end-user suggestions and good practices in order to guide the model choice and the K-P setting, particularly related to different flow dynamics. The

  17. Kinetic parameter estimation in N. europaea biofilms using a 2-D reactive transport model.

    PubMed

    Lauchnor, Ellen G; Semprini, Lewis; Wood, Brian D

    2015-06-01

    Biofilms of the ammonia oxidizing bacterium Nitrosomonas europaea were cultivated to study microbial processes associated with ammonia oxidation in pure culture. We explored the hypothesis that the kinetic parameters of ammonia oxidation in N. europaea biofilms were in the range of those determined with batch suspended cells. Oxygen and pH microelectrodes were used to measure dissolved oxygen (DO) concentrations and pH above and inside biofilms and reactive transport modeling was performed to simulate the measured DO and pH profiles. A two dimensional (2-D) model was used to simulate advection parallel to the biofilm surface and diffusion through the overlying fluid while reaction and diffusion were simulated in the biofilm. Three experimental studies of microsensor measurements were performed with biofilms: i) NH3 concentrations near the Ksn value of 40 μM determined in suspended cell tests ii) Limited buffering capacity which resulted in a pH gradient within the biofilms and iii) NH3 concentrations well below the Ksn value. Very good fits to the DO concentration profiles both in the fluid above and in the biofilms were achieved using the 2-D model. The modeling study revealed that the half-saturation coefficient for NH3 in N. europaea biofilms was close to the value measured in suspended cells. However, the third study of biofilms with low availability of NH3 deviated from the model prediction. The model also predicted shifts in the DO profiles and the gradient in pH that resulted for the case of limited buffering capacity. The results illustrate the importance of incorporating both key transport and chemical processes in a biofilm reactive transport model.

  18. Shaking Duration and Resonance Frequencies From 2d Hybrid Modelling For The Region of Cologne (germany)

    NASA Astrophysics Data System (ADS)

    Richwalski, S. M.; Parolai, S.; Wang, R.; Roth, F.

    The effect of sedimentary basins on the seismic wavefield is mainly twofold: The shaking at resonance frequencies is amplified and the shaking duration is increased. We study these effects for the area of Cologne (Germany), which is situated in the Lower Rhine Embayment. This is an active tectonic region with a horst/graben struc- ture where moderate sized earthquakes occur along the fault systems. The Erft fault system for example, with the closest surface exposure only 15 km West of the city of Cologne and its high concentration of industrial facilities, is the most important po- tential fault (Ahorner, 2001, DGG Mittlg., 2, p 3). This research is part of the German Research Network for Natural Disasters (DFNK) which aims at an integrated approach for assessing the seismic hazard in this region. Seismic modelling may aid the mitigation of earthquake risk by providing shaking sce- narios for possible source locations and parameters. For modelling, we use a hybrid technique, which combines an improved Thomson-Haskell algorithm (Wang, 1999, BSSA, p 733) with a 2D finite-difference algorithm (Zahradník and Moczo, 1996, PAGEOPH, p 21). This allows for including realistic sources, a regional background model, and a detailed near surface model for the basin. The increase in the shaking duration is already visible in the seismograms but bet- ter visualised by sonograms that show the distribution of the spectral energy in time. Resonance frequencies can be identified using the classical spectral ratio method. The necessary reference site can be created by repeating the modelling using only the re- gional background model but not the basin structure. We also compare the results of 1D and 2D modelling.

  19. A two-dimensional hydrodynamic model of a tidal estuary

    USGS Publications Warehouse

    Walters, Roy A.; Cheng, Ralph T.

    1979-01-01

    A finite element model is described which is used in the computation of tidal currents in an estuary. This numerical model is patterned after an existing algorithm and has been carefully tested in rectangular and curve-sided channels with constant and variable depth. One of the common uncertainties in this class of two-dimensional hydrodynamic models is the treatment of the lateral boundary conditions. Special attention is paid specifically to addressing this problem. To maintain continuity within the domain of interest, ‘smooth’ curve-sided elements must be used at all shoreline boundaries. The present model uses triangular, isoparametric elements with quadratic basis functions for the two velocity components and a linear basis function for water surface elevation. An implicit time integration is used and the model is unconditionally stable. The resultant governing equations are nonlinear owing to the advective and the bottom friction terms and are solved iteratively at each time step by the Newton-Raphson method. Model test runs have been made in the southern portion of San Francisco Bay, California (South Bay) as well as in the Bay west of Carquinez Strait. Owing to the complex bathymetry, the hydrodynamic characteristics of the Bay system are dictated by the generally shallow basins which contain deep, relict river channels. Great care must be exercised to ensure that the conservation equations remain locally as well as globally accurate. Simulations have been made over several representative tidal cycles using this finite element model, and the results compare favourably with existing data. In particular, the standing wave in South Bay and the progressive wave in the northern reach are well represented.

  20. Deschutes estuary feasibility study: hydrodynamics and sediment transport modeling

    USGS Publications Warehouse

    George, Douglas A.; Gelfenbaum, Guy; Lesser, Giles; Stevens, Andrew W.

    2006-01-01

    - Provide the completed study to the CLAMP Steering Committee so that a recommendation about a long-term aquatic environment of the basin can be made. The hydrodynamic and sediment transport modeling task developed a number of different model simulations using a process-based morphological model, Delft3D, to help address these goals. Modeling results provide a qualitative assessment of estuarine behavior both prior to dam construction and after various post-dam removal scenarios. Quantitative data from the model is used in the companion biological assessment and engineering design components of the overall study. Overall, the modeling study found that after dam removal, tidal and estuarine processes are immediately restored, with marine water from Budd Inlet carried into North and Middle Basin on each rising tide and mud flats being exposed with each falling tide. Within the first year after dam removal, tidal processes, along with the occasional river floods, act to modify the estuary bed by redistributing sediment through erosion and deposition. The morphological response of the bed is rapid during the first couple of years, then slows as a dynamic equilibrium is reached within three to five years. By ten years after dam removal, the overall hydrodynamic and morphologic behavior of the estuary is similar to the pre-dam estuary, with the exception of South Basin, which has been permanently modified by human activities. In addition to a qualitative assessment of estuarine behavior, process-based modeling provides the ability address specific questions to help to inform decision-making. Considering that predicting future conditions of a complex estuarine environment is wrought with uncertainties, quantitative results in this report are often expressed in terms of ranges of possible outcomes.

  1. HEC-RAS 5.0 Vs. TELEMAC-2D: a model comparison for flood-hazard and flood-risk estimation

    NASA Astrophysics Data System (ADS)

    Ezzahra Maatar, Fatma; Domeneghetti, Alessio; Brath, Armando

    2015-04-01

    River flooding is considered among the most frequent catastrophic events causing dramatic consequences in terms of loss of human life and economic damages. Therefore, the flood-hazard and flood-risk management appear nowadays the fundamental activities that public bodies and authorities in charge have to implement in order to reduce human and socio-economic losses. In this context, our study specifically refers to a flood event occurred on January 19, 2014, along the Secchia River (a tributary of the Po River; North Italy), with the aim of evaluating the suitability of different numerical tools for the reproduction of the flood dynamics. During this specific event a failure on the main embankment caused the overflowing of an overall volume of about 40•106 m3 within 48 hours inundating nearly 200 km² of the floodplain area. Thus, our study aims at reproducing the inundation dynamics using two different fully bi-dimensional (2D) hydrodynamic models, both based on Saint-Venant equations: Telemac-2D and HEC-RAS 5.0 (Beta version). The former (Telemac-2D) is a widely employed and well known 2D model adopting a finite-element scheme based on triangular elements, while the latter, HEC-RAS 5.0, is the first, recently released, version of a coupled 1D-2D model that enables one to simulate river and floodplains interactions through a finite-volume scheme. Taking advantage of the historical observations, we investigate the suitability of the new 1D-2D model in reproducing the flood patterns testing its performance in case of different mesh resolutions (i.e. cell dimension ranging from 50 m to 200 m) and Digital Elevation Model accuracy (i.e. DEM resolution varying from 1 m to 50 m). Models' performances are thus compared with real observations in terms of flood patterns (i.e. overall flood extent and flood dynamics) and flood-hazard indexes (such as water depth, flow velocity, impulse, etc.). Finally, we compare the accuracy of both models on the reconstruction of recorded

  2. Assessing soil fluxes using meteoric 10Be: development and application of the Be2D model

    NASA Astrophysics Data System (ADS)

    Campforts, Benjamin; Govers, Gerard; Vanacker, Veerle; Baken, Stijn; Smolders, Erik; Vanderborght, Jan

    2015-04-01

    Meteoric 10Be is a promising and increasingly popular tool to better understand soil fluxes at different timescales. Unlike other, more classical, methods such as the study of sedimentary archives it enables a direct coupling between eroding and deposition sites. However, meteoric 10Be can be mobilized within the soil. Therefore, spatial variations in meteoric 10Be inventories cannot directly be translated into spatial variations in erosion and sedimentation rates: a correct interpretation of measured 10Be inventories requires that both lateral and vertical movement of meteoric 10Be are accounted for. Here, we present a spatially explicit 2D model that allows to simulate the behaviour of meteoric 10Be in the soil system over timescales of up to 1 million year and use the model to investigate the impact of accelerated erosion on meteoric 10Be inventories. The model consists of two parts. A first component deals with advective and diffusive mobility within the soil profile, whereas a second component describes lateral soil (and meteoric 10Be) fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering and lateral soil fluxes. Different types of erosion such as creep, water and tillage erosion are supported. Model runs show that natural soil fluxes can be well reconstructed based on meteoric 10Be inventories, and this for a wide range of geomorphological and pedological conditions. However, extracting signals of human impact and distinguishing them from natural soil fluxes is only feasible when the soil has a rather high retention capacity so that meteoric 10Be is retained in the top soil layer. Application of the Be2D model to an existing data set in the Appalachian Mountains [West et al.,2013] using realistic parameter values for the soil retention capacity as well as for vertical advection resulted in a good agreement between simulated and observed 10Be inventories. This confirms the robustness of the model. We

  3. Well-posedness and generalized plane waves simulations of a 2D mode conversion model

    SciTech Connect

    Imbert-Gérard, Lise-Marie

    2015-12-15

    Certain types of electro-magnetic waves propagating in a plasma can undergo a mode conversion process. In magnetic confinement fusion, this phenomenon is very useful to heat the plasma, since it permits to transfer the heat at or near the plasma center. This work focuses on a mathematical model of wave propagation around the mode conversion region, from both theoretical and numerical points of view. It aims at developing, for a well-posed equation, specific basis functions to study a wave mode conversion process. These basis functions, called generalized plane waves, are intrinsically based on variable coefficients. As such, they are particularly adapted to the mode conversion problem. The design of generalized plane waves for the proposed model is described in detail. Their implementation within a discontinuous Galerkin method then provides numerical simulations of the process. These first 2D simulations for this model agree with qualitative aspects studied in previous works.

  4. The concept models and implementations of multiport neural net associative memory for 2D patterns

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Nikolskyy, Aleksandr I.; Yatskovskaya, Rimma A.; Yatskovsky, Victor I.

    2011-04-01

    The paper considers neural net models and training and recognizing algorithms with base neurobiologic operations: p-step autoequivalence and non-equivalenc The Modified equivalently models (MEMs) of multiport neural net associative memory (MNNAM) are offered with double adaptive - equivalently weighing (DAEW) for recognition of 2D-patterns (images). It is shown, the computing process in MNNAM under using the proposed MEMs, is reduced to two-step and multi-step algorithms and step-by-step matrix-matrix (tensor-tensor) procedures. The given results of computer simulations confirmed the perspective of such models. Besides the result was received when MNNAM capacity on base of MEMs exceeded the amount of neurons.

  5. Analysis of stochastic phenomena in 2D Hindmarsh-Rose neuron model

    NASA Astrophysics Data System (ADS)

    Bashkirtseva, I.; Ryashko, L.; Slepukhina, E.

    2016-10-01

    In mathematical research of neuronal activity, conceptual models play an important role. We consider 2D Hindmarsh-Rose model, which exhibits the fundamental property of neuron, the excitability. We study how random disturbances affect this property. The effects of noise are analysed in the parametric zone where the deterministic model is characterized by the coexistence of two stable equilibria. We show that under random disturbances, noise-induced transitions between the attractors occur, forming a new complex dynamic regime of stochastic bursting. It is confirmed by changes of distribution of random trajectories and interspike intervals. For the analysis of this noise-induced phenomenon, we apply the stochastic sensitivity technique and confidence domains method. We suggest a method for estimation of threshold noise intensity corresponding to the onset of noise-induced bursting. We show that the obtained values are in a good agreement with direct numerical simulations.

  6. Longtime Well-posedness for the 2D Groma-Balogh Model

    NASA Astrophysics Data System (ADS)

    Wan, Renhui; Chen, Jiecheng

    2016-12-01

    In this paper, we consider the cauchy problem for the 2D Groma-Balogh model (Acta Mater 47:3647-3654, 1999). From the works Cannone et al. (Arch Ration Mech Anal 196:71-96, 2010) and El Hajj (Ann Inst Henri Poincaré Anal Nonlinéaire 27:21-35, 2010), one can see global well-posedness for this model is an open question. However, we can prove longtime well-posedness. In particular, we show that this model admits a unique solution with the lifespan T^star satisfying T^star log ^2(1+T^star )≳ ɛ ^{-2} if the initial data is of size ɛ . To achieve this, we first establish some new decay estimates concerning the operator e^{-{R}_{12}^2t}. Then, we prove the longtime well-posedness by utilizing the weak dissipation to deal with the nonlinear terms.

  7. Partitioning of crustal shortening during continental collision: 2-D thermomechanical modeling

    NASA Astrophysics Data System (ADS)

    Liao, Jie; Gerya, Taras

    2017-01-01

    Partitioning of crustal shortening between the colliding continental plates is highly variable in nature. Physical controls of such variability remain largely enigmatic and require quantitative understanding. In this study, we employ 2-D thermomechanical numerical modeling to investigate the influence of the rheological properties of the continental crust on the dynamics and distribution of crustal shortening during continental collision. Three major physical parameters, (i) the mechanical strength of the upper crust, (ii) the Moho temperature, and (iii) the convergence rate, are investigated, and their influences on crustal shortening partitioning between the lower and upper plates are systematically documented. Numerical modeling results suggest that a strong upper crust of the lower plate, high Moho temperature, and slow convergence rate favor migration of crustal shortening from the lower to the upper plate. Our numerical modeling results compare well with natural observations from the Alpine orogenic system where variable partitioning of crustal deformation between the plates is documented.

  8. Hydrodynamic Model of Inundation Event at Confluence of Ohio and Mississippi Rivers

    NASA Astrophysics Data System (ADS)

    Kaplan, B. A.; Luke, A.; Alsdorf, D. E.

    2013-12-01

    The goal of this project is to produce an accurate 2-D hydrodynamic model of an inundation event that occurred at the confluence of the Ohio and Mississippi River. The inundation occurred in the months of April and May 2011, with the city of interest being Cairo, Illinois. In order to relieve flooding within Cairo, a Bird's Point Levee was detonated by the Army Corps of Engineers. Cairo is a small city of 2,800 people, and is prone to flooding due to its proximity to the confluence of the Ohio and Mississippi River. Cairo is also the only city in the U.S. completely surrounded by levees. The advantage of a 2-D modeling approach compared to a 1-D approach is that the floodplain geomorphological processes are more accurately represented. Understanding non-channelized flow that occurs during inundation events is a subject of growing interest, and is being addressed in other projects such as the NASA-SWOT mission scheduled for launch in 2019. The 2-D model utilized in this study is LISFLOOD-FP. LISFLOOD-FP is a 2-D finite-difference flood inundation model that has been proven to accurately simulate flood inundation for urban, coastal, and fluvial environments. LISFLOOD-FP operates using known hydraulic principles along with continuity and momentum equations to describe the flow of water through channels and floodplains. The digital elevation model used to represent the area's topography was obtained from the USGS National Elevation Data set, and our model uses input data from USGS stream gauges located upstream of the confluence of the Ohio and Mississippi River. The gauging station located in Cairo will be used for model validation. Currently, many flood simulations are being modeled with varying conditions and input files. In situ cross sectional data is being used to represent the channel. We have found that using averages of the cross sectional data do not accurately represent the river channels, so future model runs will incorporate interpolation between

  9. Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics

    SciTech Connect

    Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos

    2015-05-21

    Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we develop a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena of associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture of the void probability and solvation free energy of apolar particles of different sizes. The present fluid model is well suited for a understanding emergent phenomena in nano-scale fluid systems.

  10. Modelling pulsar glitches with realistic pinning forces: a hydrodynamical approach

    NASA Astrophysics Data System (ADS)

    Haskell, B.; Pizzochero, P. M.; Sidery, T.

    2012-02-01

    Although pulsars are some of the most stable clocks in the Universe, many of them are observed to 'glitch', i.e. to suddenly increase their spin frequency ? with fractional increases that range from ? to ?. In this paper, we focus on the 'giant' glitches, i.e. glitches with fractional increases in the spin rate of the order of ?, that are observed in a subclass of pulsars including the Vela. We show that giant glitches can be modelled with a two-fluid hydrodynamical approach. The model is based on the formalism for superfluid neutron stars of Andersson & Comer and on the realistic pinning forces of Grill & Pizzochero. We show that all stages of Vela glitches, from the rise to the post-glitch relaxation, can be reproduced with a set of physically reasonable parameters and that the sizes and waiting times between giant glitches in other pulsars are also consistent with our model.

  11. Efficient finite element modeling of scattering for 2D and 3D problems

    NASA Astrophysics Data System (ADS)

    Wilcox, Paul D.; Velichko, Alexander

    2010-03-01

    The scattering of waves by defects is central to ultrasonic NDE and SHM. In general, scattering problems must be modeled using direct numerical methods such as finite elements (FE), which is very computationally demanding. The most efficient way is to only model the scatterer itself and a minimal region of the surrounding host medium, and this was previously demonstrated for 2-dimensional (2D) bulk wave scattering problems in isotropic media. An encircling array of monopole and dipole sources is used to inject an arbitrary wavefront onto the scatterer and the scattered field is monitored by a second encircling array of monitoring points. From this data, the scattered field can be projected out to any point in space. If the incident wave is chosen to be a plane wave incident from a given angle and the scattered field is projected to distant points in the far-field of the scatterer, the far-field scattering or S-matrix may be obtained, which encodes all the available scattering information. In this paper, the technique is generalized to any elastic wave geometry in both 2D and 3D, where the latter can include guided wave scattering problems. A further refinement enables the technique to be employed with free FE meshes of triangular or tetrahedral elements.

  12. Laser irradiated fluorescent perfluorocarbon microparticles in 2-D and 3-D breast cancer cell models

    PubMed Central

    Niu, Chengcheng; Wang, Long; Wang, Zhigang; Xu, Yan; Hu, Yihe; Peng, Qinghai

    2017-01-01

    Perfluorocarbon (PFC) droplets were studied as new generation ultrasound contrast agents via acoustic or optical droplet vaporization (ADV or ODV). Little is known about the ODV irradiated vaporization mechanisms of PFC-microparticle complexs and the stability of the new bubbles produced. In this study, fluorescent perfluorohexane (PFH) poly(lactic-co-glycolic acid) (PLGA) particles were used as a model to study the process of particle vaporization and bubble stability following excitation in two-dimensional (2-D) and three-dimensional (3-D) cell models. We observed localization of the fluorescent agent on the microparticle coating material initially and after vaporization under fluorescence microscopy. Furthermore, the stability and growth dynamics of the newly created bubbles were observed for 11 min following vaporization. The particles were co-cultured with 2-D cells to form 3-D spheroids and could be vaporized even when encapsulated within the spheroids via laser irradiation, which provides an effective basis for further work. PMID:28262671

  13. Modeling and 2-D discrete simulation of dislocation dynamics for plastic deformation of metal

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Cui, Zhenshan; Ou, Hengan; Ruan, Liqun

    2013-05-01

    Two methods are employed in this paper to investigate the dislocation evolution during plastic deformation of metal. One method is dislocation dynamic simulation of two-dimensional discrete dislocation dynamics (2D-DDD), and the other is dislocation dynamics modeling by means of nonlinear analysis. As screw dislocation is prone to disappear by cross-slip, only edge dislocation is taken into account in simulation. First, an approach of 2D-DDD is used to graphically simulate and exhibit the collective motion of a large number of discrete dislocations. In the beginning, initial grains are generated in the simulation cells according to the mechanism of grain growth and the initial dislocation is randomly distributed in grains and relaxed under the internal stress. During the simulation process, the externally imposed stress, the long range stress contribution of all dislocations and the short range stress caused by the grain boundaries are calculated. Under the action of these forces, dislocations begin to glide, climb, multiply, annihilate and react with each other. Besides, thermal activation process is included. Through the simulation, the distribution of dislocation and the stress-strain curves can be obtained. On the other hand, based on the classic dislocation theory, the variation of the dislocation density with time is described by nonlinear differential equations. Finite difference method (FDM) is used to solve the built differential equations. The dislocation evolution at a constant strain rate is taken as an example to verify the rationality of the model.

  14. A 2D Electromechanical Model of Human Atrial Tissue Using the Discrete Element Method

    PubMed Central

    Brocklehurst, Paul; Adeniran, Ismail; Yang, Dongmin; Sheng, Yong; Zhang, Henggui; Ye, Jianqiao

    2015-01-01

    Cardiac tissue is a syncytium of coupled cells with pronounced intrinsic discrete nature. Previous models of cardiac electromechanics often ignore such discrete properties and treat cardiac tissue as a continuous medium, which has fundamental limitations. In the present study, we introduce a 2D electromechanical model for human atrial tissue based on the discrete element method (DEM). In the model, single-cell dynamics are governed by strongly coupling the electrophysiological model of Courtemanche et al. to the myofilament model of Rice et al. with two-way feedbacks. Each cell is treated as a viscoelastic body, which is physically represented by a clump of nine particles. Cell aggregations are arranged so that the anisotropic nature of cardiac tissue due to fibre orientations can be modelled. Each cell is electrically coupled to neighbouring cells, allowing excitation waves to propagate through the tissue. Cell-to-cell mechanical interactions are modelled using a linear contact bond model in DEM. By coupling cardiac electrophysiology with mechanics via the intracellular Ca2+ concentration, the DEM model successfully simulates the conduction of cardiac electrical waves and the tissue's corresponding mechanical contractions. The developed DEM model is numerically stable and provides a powerful method for studying the electromechanical coupling problem in the heart. PMID:26583141

  15. Hydrodynamic ram modeling with the immersed boundary method

    SciTech Connect

    Lewis, M.W.; Kashiwa, B.A.; Rauenzahn, R.M.

    1998-03-01

    The authors have modeled a hydrodynamic ram experiment conducted at Wright-Patterson Air Force Base. In the experiment, a projectile traveling at 200 ft/sec impacted and penetrated a simulated airplane wing containing water. The structure consisted of composite panels with stiffeners and rivets, and an aluminum panel. The test included instrumentation to measure strains, accelerations, and pressures. The technique used for modeling this experiment was a multifluid compressible finite volume approach. The solid fields, namely the projectile and the plates which comprised the structure, were represented by a set of discrete, Lagrangian-frame, mass points. These mass points were followed throughout the computation. The contribution of the stress state at each mass point was applied on the grid to determine the stress divergence contribution to the equations of motion and resulting grid based accelerations. This approach has been defined as the immersed boundary method. The immersed boundary method allows the modeling of fluid-structure interaction problems involving material failure. The authors implemented a plate theory to allow the representation of each plate by a surface of mass points. This theory includes bending terms and transverse shear. Arbitrary constitutive models may be used for each plate. Here they describe the immersed boundary method as they have implemented. They then describe the plate theory and its implementation. They discuss the hydrodynamic ram experiment and describe how they modeled it. They compare computed results with test data. They finally conclude with a discussion of benefits and difficulties associated with this modeling approach and possible improvement to it.

  16. Tropical Oceanic Precipitation Processes over Warm Pool: 2D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.- K.; Johnson, D.

    1998-01-01

    Rainfall is a key link in the hydrologic cycle as well as the primary heat source for the atmosphere, The vertical distribution of convective latent-heat release modulates the large-scale circulations of the tropics, Furthermore, changes in the moisture distribution at middle and upper levels of the troposphere can affect cloud distributions and cloud liquid water and ice contents. How the incoming solar and outgoing longwave radiation respond to these changes in clouds is a major factor in assessing climate change. Present large-scale weather and climate models simulate cloud processes only crudely, reducing confidence in their predictions on both global and regional scales. One of the most promising methods to test physical parameterizations used in General Circulation Models (GCMS) and climate models is to use field observations together with Cloud Resolving Models (CRMs). The CRMs use more sophisticated and physically realistic parameterizations of cloud microphysical processes, and allow for their complex interactions with solar and infrared radiative transfer processes. The CRMs can reasonably well resolve the evolution, structure, and life cycles of individual clouds and cloud systems, The major objective of this paper is to investigate the latent heating, moisture and momenti,im budgets associated with several convective systems developed during the TOGA COARE IFA - westerly wind burst event (late December, 1992). The tool for this study is the Goddard Cumulus Ensemble (CCE) model which includes a 3-class ice-phase microphysical scheme, The model domain contains 256 x 256 grid points (using 2 km resolution) in the horizontal and 38 grid points (to a depth of 22 km depth) in the vertical, The 2D domain has 1024 grid points. The simulations are performed over a 7 day time period. We will examine (1) the precipitation processes (i.e., condensation/evaporation) and their interaction with warm pool; (2) the heating and moisture budgets in the convective and

  17. Dynamical modeling of sub-grid scales in 2D turbulence

    NASA Astrophysics Data System (ADS)

    Laval, Jean-Philippe; Dubrulle, Bérengère; Nazarenko, Sergey

    2000-08-01

    We develop a new numerical method which treats resolved and sub-grid scales as two different fluid components evolving according to their own dynamical equations. These two fluids are nonlinearly interacting and can be transformed one into another when their scale becomes comparable to the grid size. Equations describing the two-fluid dynamics were rigorously derived from Euler equations [B. Dubrulle, S. Nazarenko, Physica D 110 (1997) 123-138] and they do not involve any adjustable parameters. The main assumption of such a derivation is that the large-scale vortices are so strong that they advect the sub-grid scales as a passive scalar, and the interactions of small scales with small and intermediate scales can be neglected. As a test for our numerical method, we performed numerical simulations of 2D turbulence with a spectral gap, and we found a good agreement with analytical results obtained for this case by Nazarenko and Laval [Non-local 2D turbulence and passive scalars in Batchelor’s regime, J. Fluid Mech., in press]. We used the two-fluid method to study three typical problems in 2D dynamics of incompressible fluids: decaying turbulence, vortex merger and forced turbulence. The two-fluid simulations performed on at 128 2 and 256 2 resolution were compared with pseudo-spectral simulations using hyperviscosity performed at the same and at much higher resolution. This comparison shows that performance of the two-fluid method is much better than one of the pseudo-spectral method at the same resolution and comparable computational cost. The most significant improvement is observed in modeling of the small-scale component, so that effective inertial interval increases by about two decades compared to the high-resolution pseudo-spectral method. Using the two-fluid method, we demonstrated that the k-3 tail always exists for the energy spectrum, although its amplitude is slowly decreasing in decaying turbulence.

  18. Locally adaptive 2D-3D registration using vascular structure model for liver catheterization.

    PubMed

    Kim, Jihye; Lee, Jeongjin; Chung, Jin Wook; Shin, Yeong-Gil

    2016-03-01

    Two-dimensional-three-dimensional (2D-3D) registration between intra-operative 2D digital subtraction angiography (DSA) and pre-operative 3D computed tomography angiography (CTA) can be used for roadmapping purposes. However, through the projection of 3D vessels, incorrect intersections and overlaps between vessels are produced because of the complex vascular structure, which makes it difficult to obtain the correct solution of 2D-3D registration. To overcome these problems, we propose a registration method that selects a suitable part of a 3D vascular structure for a given DSA image and finds the optimized solution to the partial 3D structure. The proposed algorithm can reduce the registration errors because it restricts the range of the 3D vascular structure for the registration by using only the relevant 3D vessels with the given DSA. To search for the appropriate 3D partial structure, we first construct a tree model of the 3D vascular structure and divide it into several subtrees in accordance with the connectivity. Then, the best matched subtree with the given DSA image is selected using the results from the coarse registration between each subtree and the vessels in the DSA image. Finally, a fine registration is conducted to minimize the difference between the selected subtree and the vessels of the DSA image. In experimental results obtained using 10 clinical datasets, the average distance errors in the case of the proposed method were 2.34±1.94mm. The proposed algorithm converges faster and produces more correct results than the conventional method in evaluations on patient datasets.

  19. 2-D Modeling of Nanoscale MOSFETs: Non-Equilibrium Green's Function Approach

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Electron-electron interaction is treated within Hartree approximation by solving NEGF and Poisson equations self-consistently. For the calculations presented here, parallelization is performed by distributing the solution of NEGF equations to various processors, energy wise. We present simulation of the "benchmark" MIT 25nm and 90nm MOSFETs and compare our results to those from the drift-diffusion simulator and the quantum-corrected results available. In the 25nm MOSFET, the channel length is less than ten times the electron wavelength, and the electron scattering time is comparable to its transit time. Our main results are: (1) Simulated drain subthreshold current characteristics are shown, where the potential profiles are calculated self-consistently by the corresponding simulation methods. The current predicted by our quantum simulation has smaller subthreshold slope of the Vg dependence which results in higher threshold voltage. (2) When gate oxide thickness is less than 2 nm, gate oxide leakage is a primary factor which determines off-current of a MOSFET (3) Using our 2-D NEGF simulator, we found several ways to drastically decrease oxide leakage current without compromising drive current. (4) Quantum mechanically calculated electron density is much smaller than the background doping density in the poly silicon gate region near oxide interface. This creates an additional effective gate voltage. Different ways to. include this effect approximately will be discussed.

  20. Be2D: A model to understand the distribution of meteoric 10Be in soilscapes

    NASA Astrophysics Data System (ADS)

    Campforts, Benjamin; Vanacker, Veerle; Vanderborght, Jan; Govers, Gerard

    2016-04-01

    Cosmogenic nuclides have revolutionised our understanding of earth surface process rates. They have become one of the standard tools to quantify soil production by weathering, soil redistribution and erosion. Especially Beryllium-10 has gained much attention due to its long half-live and propensity to be relatively conservative in the landscape. The latter makes 10Be an excellent tool to assess denudation rates over the last 1000 to 100 × 103 years, bridging the anthropogenic and geological time scale. Nevertheless, the mobility of meteoric 10Be in soil systems makes translation of meteoric 10Be inventories into erosion and deposition rates difficult. Here we present a coupled soil hillslope model, Be2D, that is applied to synthetic and real topography to address the following three research questions. (i) What is the influence of vertical meteoric Be10 mobility, caused by chemical mobility, clay translocation and bioturbation, on its lateral redistribution over the soilscape, (ii) How does vertical mobility influence erosion rates and soil residence times inferred from meteoric 10Be inventories and (iii) To what extent can a tracer with a half-life of 1.36 Myr be used to distinguish between natural and human-disturbed soil redistribution rates? The model architecture of Be2D is designed to answer these research questions. Be2D is a dynamic model including physical processes such as soil formation, physical weathering, clay migration, bioturbation, creep, overland flow and tillage erosion. Pathways of meteoric 10Be mobility are simulated using a two step approach which is updated each timestep. First, advective and diffusive mobility of meteoric 10Be is simulated within the soil profile and second, lateral redistribution because of lateral soil fluxes is calculated. The performance and functionality of the model is demonstrated through a number of synthetic and real model runs using existing datasets of meteoric 10Be from case-studies in southeastern US. Brute

  1. Estimating nitrogen losses in furrow irrigated soil amended by compost using HYDRUS-2D model

    NASA Astrophysics Data System (ADS)

    Iqbal, Shahid; Guber, Andrey; Zaman Khan, Haroon; ullah, Ehsan

    2014-05-01

    Furrow irrigation commonly results in high nitrogen (N) losses from soil profile via deep infiltration. Estimation of such losses and their reduction is not a trivial task because furrow irrigation creates highly nonuniform distribution of soil water that leads to preferential water and N fluxes in soil profile. Direct measurements of such fluxes are impractical. The objective of this study was to assess applicability of HYDRUS-2D model for estimating nitrogen balance in manure amended soil under furrow irrigation. Field experiments were conducted in a sandy loam soil amended by poultry manure compost (PMC) and pressmud compost (PrMC) fertilizers. The PMC and PrMC contained 2.5% and 0.9% N and were applied at 5 rates: 2, 4, 6, 8 and 10 ton/ha. Plots were irrigated starting from 26th day from planting using furrows with 1x1 ridge to furrow aspect ratio. Irrigation depths were 7.5 cm and time interval between irrigations varied from 8 to 15 days. Results of the field experiments showed that approximately the same corn yield was obtained with considerably higher N application rates using PMC than using PrMC as a fertilizer. HYDRUS-2D model was implemented to evaluate N fluxes in soil amended by PMC and PrMC fertilizers. Nitrogen exchange between two pools of organic N (compost and soil) and two pools of mineral N (soil NH4-N and soil NO3-N) was modeled using mineralization and nitrification reactions. Sources of mineral N losses from soil profile included denitrification, root N uptake and leaching with deep infiltration of water. HYDRUS-2D simulations showed that the observed increases in N root water uptake and corn yields associated with compost application could not be explained by the amount of N added to soil profile with the compost. Predicted N uptake by roots significantly underestimated the field data. Good agreement between simulated and field-estimated values of N root uptake was achieved when the rate of organic N mineralization was increased

  2. Destabilization of survival factor MEF2D mRNA by neurotoxin in models of Parkinson's disease.

    PubMed

    Wang, Bao; Cai, Zhibiao; Lu, Fangfang; Li, Chen; Zhu, Xiaofei; Su, Linna; Gao, Guodong; Yang, Qian

    2014-09-01

    Progressive loss of dopaminergic (DA) neurons in the substantial nigra pars compacta (SNc) is an important pathological feature in Parkinson's disease (PD). Loss of transcription factor myocyte enhancer factor 2D (MEF2D), a key neuronal survival factor, has been shown to underlie the loss of DA neurons in SNc and the pathogenic process of PD. It is known that PD-associated neurotoxins reduce the level of MEF2D protein to trigger neuronal death. Although neurotoxins clearly destabilize MEF2D by post-translational mechanisms, it is not known whether regulation of MEF2D mRNA contributes to neurotoxin-induced decrease in MEF2D protein. In this work, we showed that MPP(+), the toxic metabolite of MPTP, caused a significant decrease in the half-life and total level of MEF2D mRNA in a DA neuronal cell line, SN4741 cells. Quantitative PCR analysis of the SNc DA neurons captured by immune-laser capture microdissection showed that exposure to MPTP led to a marked reduction in the level of MEF2D mRNA in SNc DA neurons compared to controls. Down-regulation of MEF2D mRNA alone reduced the viability of SN4741 cells and sensitized the cells to MPP(+)-induced toxicity. These results suggest that destabilization and reduction in MEF2D mRNA is in part responsible for neurotoxin-induced decrease in MEF2D protein and neuronal viability. Myocyte enhancer factor 2D (MEF2D) plays an important role in neuronal survival. How MEF2D mRNA is deregulated under toxic stress is unclear. We found that PD-associated neurotoxins destabilize MEF2D mRNA and reduce its level in vitro and in vivo. Reduction in MEF2D mRNA is sufficient to sensitize model cells to neurotoxin-induced toxicity, suggesting that destabilization of MEF2D mRNA is part of the mechanism by which neurotoxins trigger deregulation of neuronal survival.

  3. Sharp Eccentric Rings in Planetless Hydrodynamical Models of Debris Disks

    NASA Technical Reports Server (NTRS)

    Lyra, W.; Kuchner, M. J.

    2013-01-01

    Exoplanets are often associated with disks of dust and debris, analogs of the Kuiper Belt in our solar system. These "debris disks" show a variety of non-trivial structures attributed to planetary perturbations and utilized to constrain the properties of the planets. However, analyses of these systems have largely ignored the fact that, increasingly, debris disks are found to contain small quantities of gas, a component all debris disks should contain at some level. Several debris disks have been measured with a dust-to-gas ratio around unity where the effect of hydrodynamics on the structure of the disk cannot be ignored. Here we report that dust-gas interactions can produce some of the key patterns seen in debris disks that were previously attributed to planets. Through linear and nonlinear modeling of the hydrodynamical problem, we find that a robust clumping instability exists in this configuration, organizing the dust into narrow, eccentric rings, similar to the Fomalhaut debris disk. The hypothesis that these disks might contain planets, though thrilling, is not necessarily required to explain these systems.

  4. A computationally efficient 2D hydraulic approach for global flood hazard modeling

    NASA Astrophysics Data System (ADS)

    Begnudelli, L.; Kaheil, Y.; Sanders, B. F.

    2014-12-01

    We present a physically-based flood hazard model that incorporates two main components: a hydrologic model and a hydraulic model. For hydrology we use TOPNET, a more comprehensive version of the original TOPMODEL. To simulate flood propagation, we use a 2D Godunov-type finite volume shallow water model. Physically-based global flood hazard simulation poses enormous computational challenges stemming from the increasingly fine resolution of available topographic data which represents the key input. Parallel computing helps to distribute the computational cost, but the computationally-intensive hydraulic model must be made far faster and agile for global-scale feasibility. Here we present a novel technique for hydraulic modeling whereby the computational grid is much coarser (e.g., 5-50 times) than the available topographic data, but the coarse grid retains the storage and conveyance (cross-sectional area) of the fine resolution data. This allows the 2D hydraulic model to be run on extremely large domains (e.g. thousands km2) with a single computational processor, and opens the door to global coverage with parallel computing. The model also downscales the coarse grid results onto the high-resolution topographic data to produce fine-scale predictions of flood depths and velocities. The model achieves computational speeds typical of very coarse grids while achieving an accuracy expected of a much finer resolution. In addition, the model has potential for assimilation of remotely sensed water elevations, to define boundary conditions based on water levels or river discharges and to improve model results. The model is applied to two river basins: the Susquehanna River in Pennsylvania, and the Ogeechee River in Florida. The two rivers represent different scales and span a wide range of topographic characteristics. Comparing spatial resolutions ranging between 30 m to 500 m in both river basins, the new technique was able to reduce simulation runtime by at least 25 fold

  5. Dynamics of a 2D Piecewise Linear Braess Paradox Model: Effect of the Third Partition

    NASA Astrophysics Data System (ADS)

    Avrutin, Viktor; Dibak, Christoph; Dal Forno, Arianna; Merlone, Ugo

    In this work, we investigate the dynamics of a piecewise linear 2D discontinuous map modeling a simple network showing the Braess paradox. This paradox represents an example in which adding a new route to a specific congested transportation network makes all the travelers worse off in terms of their individual travel time. In the particular case in which the modeled network corresponds to a binary choice situation, the map is defined on two partitions and its dynamics has already been described. In the general case corresponding to a ternary choice, a third partition appears leading to significantly more complex bifurcation structures formed by border collision bifurcations of stable cycles with points located in all three partitions. Considering a map taking a constant value on one of the partitions, we provide a first systematic description of possible dynamics for this case.

  6. An investigation of DTNS2D for use as an incompressible turbulence modelling test-bed

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.

    1992-01-01

    This paper documents an investigation of a two dimensional, incompressible Navier-Stokes solver for use as a test-bed for turbulence modelling. DTNS2D is the code under consideration for use at the Center for Modelling of Turbulence and Transition (CMOTT). This code was created by Gorski at the David Taylor Research Center and incorporates the pseudo compressibility method. Two laminar benchmark flows are used to measure the performance and implementation of the method. The classical solution of the Blasius boundary layer is used for validating the flat plate flow, while experimental data is incorporated in the validation of backward facing step flow. Velocity profiles, convergence histories, and reattachment lengths are used to quantify these calculations. The organization and adaptability of the code are also examined in light of the role as a numerical test-bed.

  7. Comparative modeling of vertical and planar organic phototransistors with 2D drift-diffusion simulations

    NASA Astrophysics Data System (ADS)

    Bezzeccheri, E.; Colasanti, S.; Falco, A.; Liguori, R.; Rubino, A.; Lugli, P.

    2016-05-01

    Vertical Organic Transistors and Phototransistors have been proven to be promising technologies due to the advantages of reduced channel length and larger sensitive area with respect to planar devices. Nevertheless, a real improvement of their performance is subordinate to the quantitative description of their operation mechanisms. In this work, we present a comparative study on the modeling of vertical and planar Organic Phototransistor (OPT) structures. Computer-based simulations of the devices have been carried out with Synopsys Sentaurus TCAD in a 2D Drift-Diffusion framework. The photoactive semiconductor material has been modeled using the virtual semiconductor approach as the archetypal P3HT:PC61BM bulk heterojunction. It has been found that both simulated devices have comparable electrical and optical characteristics, accordingly to recent experimental reports on the subject.

  8. Brief Communication: 2-D numerical modeling of the transformation mechanism of a braided channel

    NASA Astrophysics Data System (ADS)

    Xiao, Y.; Yang, S. F.; Shao, X.; Chen, W. X.; Xu, X. M.

    2014-05-01

    This paper investigates the controls on the transformation mechanism among different channel patterns. A 2-D depth-averaged numerical model is applied to produce the evolution of channel patterns with complex interactions among water flow, sediment transport, and bank erosion. Changes of the variables as discharge, sediment supply, and vegetation are considered in the numerical experiments, leading to the transformation from a braided pattern into a meandering one. What controls the transformation is discussed with the numerical results: vegetation helps stabilize the cut bank and bar surface, but is not a key in the transition; a decrease in discharge and sediment supply could lead a braided pattern to a meandering one. The conclusion is in agreement with various previous field work, confirming the two dimensional model's potential in predicting the transition between different rivers and improving understanding of patterning processes.

  9. Study of hydrodynamic model in sluice controlled river networks

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zeng, Fantang

    2010-05-01

    Shiqi river network ,is situated in the Zhongshan city of Guangdong province in the P.R.China. The river network covers approximately 702.55km2 ,with a total river length of over 500km and extending over 34km from north to south and over 46km from east to west. The river network overlaps with the most densely populated and economically developed region in the Pear River Delta Economic Zone. In 2008 the region had a population of 1 846.9 thousands And a GDP of more than 8 2500 million RMB. All branches of the river network are encircled by the main rivers of Pear River Delta(PRD) network. With the economic and social development, all natural connections with the external rivers are controlled by the sluices, water body exchanges between the Shiqi river network and external rivers are significantly changed by human activities. The overall objective the research is to develop a tool for the local Environmental Protection Bureau to Understand and quantify the impact of the artificial construction on the hydrological cycle. The developed model can accurate representation of the water levels and flows in the study area, to allow accurate representation of the transport of pollutants. The river network topography is derived directly from the available database. Only the "major" rivers were included in the model, because cross-section data for the "minor" rivers are currently not available. In general, the 1D hydrodynamic model is provided with flow boundary conditions ("Q") at its upstream boundaries and with water level boundary conditions ("z") at its downstream boundaries. For all boundaries of Shiqi river network, there are no flow records available, all records are water level. To reflect the hydrodynamic process accurately, the author developed a new methods to set the hydrodynamic model's boundary. For each boundary, the boundary condition is "Z" when the sluice is open, and the boundary condition is "Q" while it is closed. The open or close condition is identified

  10. Multi-phase SPH modelling of violent hydrodynamics on GPUs

    NASA Astrophysics Data System (ADS)

    Mokos, Athanasios; Rogers, Benedict D.; Stansby, Peter K.; Domínguez, José M.

    2015-11-01

    This paper presents the acceleration of multi-phase smoothed particle hydrodynamics (SPH) using a graphics processing unit (GPU) enabling large numbers of particles (10-20 million) to be simulated on just a single GPU card. With novel hardware architectures such as a GPU, the optimum approach to implement a multi-phase scheme presents some new challenges. Many more particles must be included in the calculation and there are very different speeds of sound in each phase with the largest speed of sound determining the time step. This requires efficient computation. To take full advantage of the hardware acceleration provided by a single GPU for a multi-phase simulation, four different algorithms are investigated: conditional statements, binary operators, separate particle lists and an intermediate global function. Runtime results show that the optimum approach needs to employ separate cell and neighbour lists for each phase. The profiler shows that this approach leads to a reduction in both memory transactions and arithmetic operations giving significant runtime gains. The four different algorithms are compared to the efficiency of the optimised single-phase GPU code, DualSPHysics, for 2-D and 3-D simulations which indicate that the multi-phase functionality has a significant computational overhead. A comparison with an optimised CPU code shows a speed up of an order of magnitude over an OpenMP simulation with 8 threads and two orders of magnitude over a single thread simulation. A demonstration of the multi-phase SPH GPU code is provided by a 3-D dam break case impacting an obstacle. This shows better agreement with experimental results than an equivalent single-phase code. The multi-phase GPU code enables a convergence study to be undertaken on a single GPU with a large number of particles that otherwise would have required large high performance computing resources.

  11. Optimizing QSAR models for predicting ligand binding to the drug-metabolizing cytochrome P450 isoenzyme CYP2D6.

    PubMed

    Saraceno, Marilena; Massarelli, Ilaria; Imbriani, Marcello; James, Thomas L; Bianucci, Anna M

    2011-08-01

    The cytochrome P450 isozyme CYP2D6 binds a large variety of drugs, oxidizing many of them, and plays a crucial role in establishing in vivo drug levels, especially in multidrug regimens. The current study aimed to develop reliable predictive models for estimating the CYP2D6 inhibition properties of drug candidates. Quantitative structure-activity relationship (QSAR) studies utilizing 51 known CYP2D6 inhibitors were carried out. Performance achieved using models based on two-dimensional (2D) molecular descriptors was compared with performance using models entailing additional molecular descriptors that depend upon the three-dimensional (3D) structure of ligands. To properly compute the descriptors, all the 3D inhibitor structures were optimized such that induced-fit binding of the ligand to the active site was accommodated. CODESSA software was used to obtain equations for correlating the structural features of the ligands to their pharmacological effects on CYP2D6 (inhibition). The predictive power of all the QSAR models obtained was estimated by applying rigorous statistical criteria. To assess the robustness and predictability of the models, predictions were carried out on an additional set of known molecules (prediction set). The results showed that only models incorporating 3D descriptors in addition to 2D molecular descriptors possessed the requisite high predictive power for CYP2D6 inhibition.

  12. Preliminary results for model identification in characterizing 2-D topographic road profiles

    NASA Astrophysics Data System (ADS)

    Kern, Joshua V.; Ferris, John B.

    2006-05-01

    Load data representing severe customer usage is needed throughout a chassis development program; the majority of these chassis loads originate with the excitation from the road. These chassis loads are increasingly derived from vehicle simulations. Simulating a vehicle traversing long roads is simply impractical, however, and a greatly reduced set of characteristic roads must be found. In order to characterize a road, certain modeling assumptions must be made. Several models have been proposed making various assumptions about the properties that road profiles possess. The literature in this field is reviewed before focusing on two modeling assumptions of particular interest: the stationarity of the signal (homogeneity of the road) and the corresponding interval over which previous data points are correlated to the current data point. In this work, 2-D topographic road profiles are considered to be signals that are realizations of a stochastic process. The objective of this work is to investigate the stationarity assumption and the interval of influence for several carefully controlled sections of highway pavement in the United States. Two statistical techniques are used in analyzing these data: the autocorrelation and the partial autocorrelation. It is shown that the road profile signals in their original form are not stationary and have an extremely long interval of influence on the order of 25m. By differencing the data, however, it is often possible to generate stationary residuals and a very short interval of influence on the order of 250mm. By examining the autocorrelation and the partial autocorrelation, various versions of ARIMA models appear to be appropriate for further modeling. Implications to modeling the signals as Markov Chains are also discussed. In this way, roads can be characterized by the model architecture and the particular parameterization of the model. Any synthetic road realized from a particular model represents all profiles in this set

  13. The development and testing of a 2D laboratory seismic modelling system for heterogeneous structure investigations

    NASA Astrophysics Data System (ADS)

    Mo, Yike; Greenhalgh, Stewart A.; Robertsson, Johan O. A.; Karaman, Hakki

    2015-05-01

    Lateral velocity variations and low velocity near-surface layers can produce strong scattered and guided waves which interfere with reflections and lead to severe imaging problems in seismic exploration. In order to investigate these specific problems by laboratory seismic modelling, a simple 2D ultrasonic model facility has been recently assembled within the Wave Propagation Lab at ETH Zurich. The simulated geological structures are constructed from 2 mm thick metal and plastic sheets, cut and bonded together. The experiments entail the use of a piezoelectric source driven by a pulse amplifier at ultrasonic frequencies to generate Lamb waves in the plate, which are detected by piezoelectric receivers and recorded digitally on a National Instruments recording system, under LabVIEW software control. The 2D models employed were constructed in-house in full recognition of the similitude relations. The first heterogeneous model features a flat uniform low velocity near-surface layer and deeper dipping and flat interfaces separating different materials. The second model is comparable but also incorporates two rectangular shaped inserts, one of low velocity, the other of high velocity. The third model is identical to the second other than it has an irregular low velocity surface layer of variable thickness. Reflection as well as transmission experiments (crosshole & vertical seismic profiling) were performed on each model. The two dominant Lamb waves recorded are the fundamental symmetric mode (non-dispersive) and the fundamental antisymmetric (flexural) dispersive mode, the latter normally being absent when the source transducer is located on a model edge but dominant when it is on the flat planar surface of the plate. Experimental group and phase velocity dispersion curves were determined and plotted for both modes in a uniform aluminium plate. For the reflection seismic data, various processing techniques were applied, as far as pre-stack Kirchhoff migration. The

  14. Turbulence modeling for subsonic separated flows over 2-D airfoils and 3-D wings

    NASA Astrophysics Data System (ADS)

    Rosen, Aaron M.

    Accurate predictions of turbulent boundary layers and flow separation through computational fluid dynamics (CFD) are becoming more and more essential for the prediction of loads in the design of aerodynamic flight components. Standard eddy viscosity models used in many commercial codes today do not capture the nonequilibrium effects seen in a separated flow and thus do not generally make accurate separation predictions. Part of the reason for this is that under nonequilibrium conditions such as a strong adverse pressure gradient, the history effects of the flow play an important role in the growth and decay of turbulence. More recent turbulence models such as Olsen and Coakley's Lag model and Lillard's lagRST model seek to simulate these effects by lagging the turbulent variables when nonequilibrium effects become important. The purpose of the current research is to assess how these nonequilibrium turbulence models capture the separated regions on various 2-D airfoils and 3-D wings. Nonequilibrium models including the Lag model and the lagRST model are evaluated in comparison with three baseline models (Spalart-Allmaras, Wilcox's k-omega, and Menter's SST) using a modified version of the OVERFLOW code. Tuning the model coefficients of the Lag and lagRST models is also explored. Results show that the various lagRST formulations display an improvement in velocity profile predictions over the standard RANS models, but have trouble capturing the edge of the boundary layer. Experimental separation location measurements were not available, but several trends are noted which may be useful to tuning the model coefficients in the future.

  15. 2D-photochemical modeling of Saturn’s stratosphere: hydrocarbon and water distributions

    NASA Astrophysics Data System (ADS)

    Hue, Vincent; Cavalié, Thibault; Hersant, Franck; Dobrijevic, Michel; Greathouse, Thomas; Lellouch, Emmanuel; Hartogh, Paul; Cassidy, Timothy; Spiga, Aymeric; Guerlet, Sandrine; Sylvestre, Melody

    2014-11-01

    Saturn’s axial tilt of 27° produces seasons in a similar way as on Earth. The seasonal forcing over Saturn’s 30 years period influences the production/loss of the major atmospheric absorbers and coolants through photochemistry, and influences therefore Saturn’s stratospheric temperatures. We have developed a 2D time-dependent photochemical model of Saturn’s atmosphere [Hue et al., in prep.], coupled to a radiative-climate model [Greathouse et al., 2008] to study seasonal effects on its atmospheric composition. Cassini spacecraft has revealed that the distribution of hydrocarbons in Saturn’s stratosphere [Guerlet et al., 2009] differs from pure photochemical predictions, i.e. without meridional transport [Moses et al., 2005]. Differences between the observed distribution of hydrocarbons and 2D-photochemical predictions are likely to be an indicator of dynamical forcing.Disentangling the origin of water in the stratosphere of this planet has been a long-term issue. Due to Saturn’s cold tropopause trap, which acts as a transport barrier, the water vapor observed by the Infrared Space Observatory (ISO) [Feuchtgruber et al., 1997] has an external origin. Three external sources have been identified: (i) permanent flux from interplanetary dust particles, (ii) local sources form planetary environments (rings, satellites), (iii) large cometary impacts, similar to Shoemaker-Levy 9 on Jupiter. Previous observations of Saturn with Herschel’s Hsso program [Hartogh et al., 2009] led to the detection of a water torus around Saturn [Hartogh et al., 2011], fed by Enceladus’ geysers. A substantial fraction of this torus is predicted to be a local source of water for Saturn’s and its satellites, as it will spread in this system [Cassidy et al., 2010]. Using the new 2D-photochemical model, we test here the validity of Enceladus’ torus as the source of Saturn’s stratospheric water.References : Hue et al., in prep. Greathouse et al., 2008. AGU Fall Meeting

  16. Self-consistent Modeling of Reionization in Cosmological Hydrodynamical Simulations

    NASA Astrophysics Data System (ADS)

    Oñorbe, Jose; Hennawi, Joseph F.; Lukić, Zarija

    2017-03-01

    The ultraviolet background (UVB) emitted by quasars and galaxies governs the ionization and thermal state of the intergalactic medium (IGM), regulates the formation of high-redshift galaxies, and is thus a key quantity for modeling cosmic reionization. The vast majority of cosmological hydrodynamical simulations implement the UVB via a set of spatially uniform photoionization and photoheating rates derived from UVB synthesis models. We show that simulations using canonical UVB rates reionize and, perhaps more importantly, spuriously heat the IGM, much earlier (z∼ 15) than they should. This problem arises because at z> 6, where observational constraints are nonexistent, the UVB amplitude is far too high. We introduce a new methodology to remedy this issue, and we generate self-consistent photoionization and photoheating rates to model any chosen reionization history. Following this approach, we run a suite of hydrodynamical simulations of different reionization scenarios and explore the impact of the timing of reionization and its concomitant heat injection on the thermal state of the IGM. We present a comprehensive study of the pressure smoothing scale of IGM gas, illustrating its dependence on the details of both hydrogen and helium reionization, and argue that it plays a fundamental role in interpreting Lyα forest statistics and the thermal evolution of the IGM. The premature IGM heating we have uncovered implies that previous work has likely dramatically overestimated the impact of photoionization feedback on galaxy formation, which sets the minimum halo mass able to form stars at high redshifts. We make our new UVB photoionization and photoheating rates publicly available for use in future simulations.

  17. The combined effect of attraction and orientation zones in 2D flocking models

    NASA Astrophysics Data System (ADS)

    Iliass, Tarras; Cambui, Dorilson

    2016-01-01

    In nature, many animal groups, such as fish schools or bird flocks, clearly display structural order and appear to move as a single coherent entity. In order to understand the complex motion of these systems, we study the Vicsek model of self-propelled particles (SPP) which is an important tool to investigate the behavior of collective motion of live organisms. This model reproduces the biological behavior patterns in the two-dimensional (2D) space. Within the framework of this model, the particles move with the same absolute velocity and interact locally in the zone of orientation by trying to align their direction with that of the neighbors. In this paper, we model the collective movement of SPP using an agent-based model which follows biologically motivated behavioral rules, by adding a second region called the attraction zone, where each particles move towards each other avoiding being isolated. Our main goal is to present a detailed numerical study on the effect of the zone of attraction on the kinetic phase transition of our system. In our study, the consideration of this zone seems to play an important role in the cohesion. Consequently, in the directional orientation, the zone that we added forms the compact particle group. In our simulation, we show clearly that the model proposed here can produce two collective behavior patterns: torus and dynamic parallel group. Implications of these findings are discussed.

  18. Coronary arteries motion modeling on 2D x-ray images

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Sundar, Hari

    2012-02-01

    During interventional procedures, 3D imaging modalities like CT and MRI are not commonly used due to interference with the surgery and radiation exposure concerns. Therefore, real-time information is usually limited and building models of cardiac motion are difficult. In such case, vessel motion modeling based on 2-D angiography images become indispensable. Due to issues with existing vessel segmentation algorithms and the lack of contrast in occluded vessels, manual segmentation of certain branches is usually necessary. In addition, such occluded branches are the most important vessels during coronary interventions and obtaining motion models for these can greatly help in reducing the procedure time and radiation exposure. Segmenting different cardiac phases independently does not guarantee temporal consistency and is not efficient for occluded branches required manual segmentation. In this paper, we propose a coronary motion modeling system which extracts the coronary tree for every cardiac phase, maintaining the segmentation by tracking the coronary tree during the cardiac cycle. It is able to map every frame to the specific cardiac phase, thereby inferring the shape information of the coronary arteries using the model corresponding to its phase. Our experiments show that our motion modeling system can achieve promising results with real-time performance.

  19. Frustrating a correlated superconductor: the 2D Attractive Hubbard Model in an external magnetic field

    NASA Astrophysics Data System (ADS)

    Zhao, Hongbo; Engelbrecht, Jan R.

    2000-03-01

    At the Mean Field level (G. Murthy and R. Shankar, J. Phys. Condens. Matter, 7) (1995), the frustration due to an external field first makes the uniform BCS ground state unstable to an incommensurate (qne0) superconducting state and then to a spin-polarized Fermi Liquid state. Our interest is how fluctuations modify this picture, as well as the normal state of this system which has a quantum critical point. We use the Fluctuation-Exchange Approximation for the 2D Attractive Hubbard Model, to study this system beyond the Mean-Field level. Earlier work in zero field has shown that this numerical method successfully captures the critical scaling of the KT superconducting transition upon cooling in the normal state. Here we investigate how the pair-breaking external field modifies this picture, and the development of incommensurate pairing.

  20. Calibration Of 2D Hydraulic Inundation Models In The Floodplain Region Of The Lower Tagus River

    NASA Astrophysics Data System (ADS)

    Pestanana, R.; Matias, M.; Canelas, R.; Araujo, A.; Roque, D.; Van Zeller, E.; Trigo-Teixeira, A.; Ferreira, R.; Oliveira, R.; Heleno, S.

    2013-12-01

    In terms of inundated area, the largest floods in Portugal occur in the Lower Tagus River. On average, the river overflows every 2.5 years, at times blocking roads and causing important agricultural damages. This paper focus on the calibration of 2D-horizontal flood simulation models for the floods of 2001 and 2006 on a 70-km stretch of the Lower Tagus River. Flood extent maps, derived from ERS SAR and ENVISAT ASAR imagery were compared with the flood extent maps obtained for each simulation, to calibrate roughness coefficients. The combination of the calibration results from the 2001 and 2006 floods provided a preliminary Manning coefficient map of the study area.

  1. 2D double interaction method for modeling small particles contaminating microstructures located on substrates

    NASA Astrophysics Data System (ADS)

    Albella, P.; Moreno, F.; Saiz, J. M.; González, F.

    2007-07-01

    An interaction model developed in previous research [de la Peña JL, González F, Saiz JM, Moreno F, Valle PJ. Sizing particles on substrates. A general method for oblique incidence. J Appl Phys 1999; 85:432] is extended to the study of two-scaled systems consisting of particles located on larger structures. Far-field scattering patterns produced by these systems can be obtained by coherent addition of different electromagnetic contributions, each one obtained from an independent isolated particle calculation. Results are performed on a 2D scheme, where they can be easily compared with those given by an exact method. This analysis shows some features of the scattering patterns that can be obtained with high reliability. Research on this kind of systems can be applied to 3D situations like particle substrate contamination and particle particle contamination.

  2. Robust autonomous model learning from 2D and 3D data sets.

    PubMed

    Langs, Georg; Donner, René; Peloschek, Philipp; Bischof, Horst

    2007-01-01

    In this paper we propose a weakly supervised learning algorithm for appearance models based on the minimum description length (MDL) principle. From a set of training images or volumes depicting examples of an anatomical structure, correspondences for a set of landmarks are established by group-wise registration. The approach does not require any annotation. In contrast to existing methods no assumptions about the topology of the data are made, and the topology can change throughout the data set. Instead of a continuous representation of the volumes or images, only sparse finite sets of interest points are used to represent the examples during optimization. This enables the algorithm to efficiently use distinctive points, and to handle texture variations robustly. In contrast to standard elasticity based deformation constraints the MDL criterion accounts for systematic deformations typical for training sets stemming from medical image data. Experimental results are reported for five different 2D and 3D data sets.

  3. A future Outlook: Web based Simulation of Hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Islam, A. S.; Piasecki, M.

    2003-12-01

    Despite recent advances to present simulation results as 3D graphs or animation contours, the modeling user community still faces some shortcomings when trying to move around and analyze data. Typical problems include the lack of common platforms with standard vocabulary to exchange simulation results from different numerical models, insufficient descriptions about data (metadata), lack of robust search and retrieval tools for data, and difficulties to reuse simulation domain knowledge. This research demonstrates how to create a shared simulation domain in the WWW and run a number of models through multi-user interfaces. Firstly, meta-datasets have been developed to describe hydrodynamic model data based on geographic metadata standard (ISO 19115) that has been extended to satisfy the need of the hydrodynamic modeling community. The Extended Markup Language (XML) is used to publish this metadata by the Resource Description Framework (RDF). Specific domain ontology for Web Based Simulation (WBS) has been developed to explicitly define vocabulary for the knowledge based simulation system. Subsequently, this knowledge based system is converted into an object model using Meta Object Family (MOF). The knowledge based system acts as a Meta model for the object oriented system, which aids in reusing the domain knowledge. Specific simulation software has been developed based on the object oriented model. Finally, all model data is stored in an object relational database. Database back-ends help store, retrieve and query information efficiently. This research uses open source software and technology such as Java Servlet and JSP, Apache web server, Tomcat Servlet Engine, PostgresSQL databases, Protégé ontology editor, RDQL and RQL for querying RDF in semantic level, Jena Java API for RDF. Also, we use international standards such as the ISO 19115 metadata standard, and specifications such as XML, RDF, OWL, XMI, and UML. The final web based simulation product is deployed as

  4. An application of the distributed hydrologic model CASC2D to a tropical montane watershed

    NASA Astrophysics Data System (ADS)

    Marsik, Matt; Waylen, Peter

    2006-11-01

    SummaryIncreased stormflow in the Quebrada Estero watershed (2.5 km 2), in the northwestern Central Valley tectonic depression of Costa Rica, reportedly has caused flooding of the city of San Ramón in recent decades. Although scientifically untested, urban expansion was deemed the cause and remedial measures were recommended by the Programa de Investigación en Desarrollo Humano Sostenible (ProDUS). CASC2D, a physically-based, spatially explicit hydrologic model, was constructed and calibrated to a June 10th 2002 storm that delivered 110.5 mm of precipitation in 4.5 h visibly exceeded the bankfull stage (0.9 m) of the Quebrada flooding portions of San Ramón. The calibrated hydrograph showed a peak discharge 16.68% (2.5 m 3 s -1) higher, an above flood stage duration 20% shorter, and time to peak discharge 11 min later than the same observed discharge hydrograph characteristics. Simulations of changing land cover conditions from 1979 to 1999 showed an increase also in the peak discharge, above flood stage duration, and time to peak discharge. Analysis using a modified location quotient identified increased urbanization in lower portions of the watershed over the time period studied. These results suggest that increased urbanization in the Quebrada Estero watershed have increased flooding peaks, and durations above threshold, confirming the ProDUS report. These results and the CASC2D model offer an easy-to-use, pragmatic planning tool for policymakers in San Ramón to assess future development scenarios and their potential flooding impacts to San Ramón.

  5. Field Evaluation of a Novel 2D Preferential Flow Snowpack Hydrology Model

    NASA Astrophysics Data System (ADS)

    Leroux, N.; Pomeroy, J. W.; Kinar, N. J.

    2015-12-01

    Accurate estimation of snowmelt flux is of primary importance for runoff hydrograph prediction, which is used for water management and flood forecasting. Lateral flows and preferential flow pathways in porous media flow have proven critical for improving soil and groundwater flow models, but though many physically-based layered snowmelt models have been developed, only 1D matrix flow is accounted for in these models. Therefore, there is a need for snowmelt models that include these processes so as to examine the potential to improve snowmelt hydrological modelling. A 2D model is proposed that enables an improved understanding of energy and water flows within deep heterogeneous snowpacks, including those on slopes. A dual pathway theory is presented that simulates the formation of preferential flow paths, vertical and lateral water flows through the snow matrix and flow fingers, internal energy fluxes, melt, wet snow metamorphism, and internal refreezing. The dual pathway model utilizes an explicit finite volume method to solve for the energy and water flux equations over a non-orthogonal grid. It was run and evaluated using in-situ data collected from snowpit - accessed gravimetric, thermometric, photographic, and dielectric observations and novel non-invasive acoustic observations of layering, temperature, flowpath geometry, density and wetness at the Fortress Mountain Snow Laboratory, Alberta, Canada. The melt of a natural snowpack was artificially generated after detailed observation of snowpack initial conditions such as snow layer properties, temperature, and liquid water content. Snowpack ablation and liquid water content distribution over time were then measured and used for model parameterization and validation. Energy available at the snow surface and soil slope angle were set as mondel inputs. Model verification was based on snowpack property evolution. The heterogeneous flow model can be an important tool to help understand snowmelt flow processes, how

  6. Thermochemical Nonequilibrium 2D Modeling of Nitrogen Inductively Coupled Plasma Flow

    NASA Astrophysics Data System (ADS)

    Yu, Minghao; Yusuke, Takahashi; Hisashi, Kihara; Ken-ichi, Abe; Kazuhiko, Yamada; Takashi, Abe; Satoshi, Miyatani

    2015-09-01

    Two-dimensional (2D) numerical simulations of thermochemical nonequilibrium inductively coupled plasma (ICP) flows inside a 10-kW inductively coupled plasma wind tunnel (ICPWT) were carried out with nitrogen as the working gas. Compressible axisymmetric Navier-Stokes (N-S) equations coupled with magnetic vector potential equations were solved. A four-temperature model including an improved electron-vibration relaxation time was used to model the internal energy exchange between electron and heavy particles. The third-order accuracy electron transport properties (3rd AETP) were applied to the simulations. A hybrid chemical kinetic model was adopted to model the chemical nonequilibrium process. The flow characteristics such as thermal nonequilibrium, inductive discharge, effects of Lorentz force were made clear through the present study. It was clarified that the thermal nonequilibrium model played an important role in properly predicting the temperature field. The prediction accuracy can be improved by applying the 3rd AETP to the simulation for this ICPWT. supported by Grant-in-Aid for Scientific Research (No. 23560954), sponsored by the Japan Society for the Promotion of Science

  7. Spin Circuit Model for 2D Channels with Spin-Orbit Coupling.

    PubMed

    Hong, Seokmin; Sayed, Shehrin; Datta, Supriyo

    2016-03-02

    In this paper we present a general theory for an arbitrary 2D channel with "spin momentum locking" due to spin-orbit coupling. It is based on a semiclassical model that classifies all the channel electronic states into four groups based on the sign of the z-component of the spin (up (U), down (D)) and the sign of the x-component of the velocity (+, -). This could be viewed as an extension of the standard spin diffusion model which uses two separate electrochemical potentials for U and D states. Our model uses four: U+, D+, U-, and D-. We use this formulation to develop an equivalent spin circuit that is also benchmarked against a full non-equilibrium Green's function (NEGF) model. The circuit representation can be used to interpret experiments and estimate important quantities of interest like the charge to spin conversion ratio or the maximum spin current that can be extracted. The model should be applicable to topological insulator surface states with parallel channels as well as to other layered structures with interfacial spin-orbit coupling.

  8. Radiation-hydrodynamical modelling of underluminous Type II plateau supernovae

    NASA Astrophysics Data System (ADS)

    Pumo, M. L.; Zampieri, L.; Spiro, S.; Pastorello, A.; Benetti, S.; Cappellaro, E.; Manicò, G.; Turatto, M.

    2017-01-01

    With the aim of improving our knowledge about the nature of the progenitors of low-luminosity Type II plateau supernovae (LL SNe IIP), we made radiation-hydrodynamical models of the well-sampled LL SNe IIP 2003Z, 2008bk and 2009md. For these three SNe, we infer explosion energies of 0.16-0.18 foe, radii at explosion of 1.8-3.5 × 1013 cm and ejected masses of 10-11.3 M⊙. The estimated progenitor mass on the main sequence is in the range ˜13.2-15.1 M⊙ for SN 2003Z and ˜11.4-12.9 M⊙ for SNe 2008bk and 2009md, in agreement with estimates from observations of the progenitors. These results together with those for other LL SNe IIP modelled in the same way enable us also to conduct a comparative study on this SN sub-group. The results suggest that (a) the progenitors of faint SNe IIP are slightly less massive and have less energetic explosions than those of intermediate-luminosity SNe IIP; (b) both faint and intermediate-luminosity SNe IIP originate from low-energy explosions of red (or yellow) supergiant stars of low to intermediate mass; (c) some faint objects may also be explained as electron-capture SNe from massive super-asymptotic giant branch stars; and (d) LL SNe IIP form the underluminous tail of the SNe IIP family, where the main parameter `guiding' the distribution seems to be the ratio of the total explosion energy to the ejected mass. Further hydrodynamical studies should be performed and compared to a more extended sample of LL SNe IIP before drawing any conclusion on the relevance of fall-back to this class of events.

  9. Model-based segmentation and quantification of subcellular structures in 2D and 3D fluorescent microscopy images

    NASA Astrophysics Data System (ADS)

    Wörz, Stefan; Heinzer, Stephan; Weiss, Matthias; Rohr, Karl

    2008-03-01

    We introduce a model-based approach for segmenting and quantifying GFP-tagged subcellular structures of the Golgi apparatus in 2D and 3D microscopy images. The approach is based on 2D and 3D intensity models, which are directly fitted to an image within 2D circular or 3D spherical regions-of-interest (ROIs). We also propose automatic approaches for the detection of candidates, for the initialization of the model parameters, and for adapting the size of the ROI used for model fitting. Based on the fitting results, we determine statistical information about the spatial distribution and the total amount of intensity (fluorescence) of the subcellular structures. We demonstrate the applicability of our new approach based on 2D and 3D microscopy images.

  10. A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds

    SciTech Connect

    Li, Tingwen; Zhang, Yongmin

    2013-10-11

    Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.

  11. Radiation Hydrodynamical Models of the Inner Rim in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Flock, Mario

    2016-06-01

    Many stars host planets orbiting within one astronomical unit (AU). These close planets’ origins are a mystery that motivates investigating protoplanetary disks’ central regions. A key factor governing the conditions near the star is the silicate sublimation front, which largely determines where the starlight is absorbed, and which is often called the inner rim. We present the first radiation hydrodynamical modeling of the sublimation front in the disks around the young intermediate-mass stars called Herbig Ae stars. The models are axisymmetric, and include starlight heating, silicate grains sublimating and condensing to equilibrium at the local, timedependent temperature and density, and accretion stresses parametrizing the results of MHD magneto-rotational turbulence models. The results compare well with radiation hydrostatic solutions, and prove to be dynamically stable. Passing the model disks into Monte Carlo radiative transfer calculations, we show that the models satisfy observational constraints on the inner rims’s location. A small optically-thin halo of hot dust naturally arises between the inner rim and the star. The inner rim has a substantial radial extent, corresponding to several disk scale heights. While the front’s overall position varies with the stellar luminosity, its radial extent depends on the mass accretion rate. A pressure maximum develops at the position of thermal ionization at temperatures about 1000 K. The pressure maximum is capable of halting solid pebbles’ radial drift and concentrating them in a zone where temperatures are su ciently high for annealing to form crystalline silicates.

  12. Predictive Models for Hydrodynamic Coupling Coefficients in Clay Media.

    NASA Astrophysics Data System (ADS)

    Gueutin, P.; Gonçalvès, J.; Violette, S.

    2007-12-01

    In charged and low permeability media (e.g. clay media) the classical Darcy's law does not describe accurately the water movement. A generalized Darcy's law, one of the coupled fluxes equations, has to be used. The identification of the coupling parameters, in clay-rocks, is crucial in order to estimate the water flow. Here, we will only focus on the electrochemical-hydraulic coupling coefficients : the intrinsic permeability k and the osmotic permeability kc. These hydrodynamic coupling coefficients can be estimated using two approaches: (i) theoretical models : • porosity/intrinsic permeability relationships, defined for a clay medium, are used to estimate the intrinsic permeability. • an electrochemical model is used to estimate the osmotic coupling coefficient. The electrical model, a triple layer model, is implemented to simulate the interactions between the charged surfaces of the clay minerals and the pore solution. (ii) experiments : • at the sample scale. • at the field scale. The measurement of these parameters is generally challenging either at the sample or at the field scale. For this reason, predictive models can be useful. The purpose of this study is to give reference values for the two coupling parameters under consideration here, using to the petrophysical properties of the medium. Different models to estimate these coupling coefficients are tested : (i) the intrinsic permeability is estimated with a pretrophysical model. In this model, the intrinsic permeability depends on the effective pore radius and the electrical formation factor. (ii) the osmotic coupling coefficient is estimated with the model developed by Revil and Leroy (2004). The comparison between three different models with the available data shows that these data are more closely reproduced using this model. Some reference values are provided for several type of clays as a fonction of some readily measurable or estimable parameters or variables, such as the porosity, the

  13. Hydrodynamic Models for Multicomponent Plasmas with Collisional-Radiative Kinetics

    DTIC Science & Technology

    2014-12-01

    is lovingly dedicated to my mother, Mai Hoang, for everything she has given to me and her unconditional love. v Table of Contents 1 Introduction ...15 2 Hydrodynamic Equations . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 Introduction ...reactive hydrodynamics . . . . 29 3 Numerical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1 Introduction

  14. Transectional heat transfer in thermoregulating bigeye tuna (Thunnus obesus) - a 2D heat flux model.

    PubMed

    Boye, Jess; Musyl, Michael; Brill, Richard; Malte, Hans

    2009-11-01

    We developed a 2D heat flux model to elucidate routes and rates of heat transfer within bigeye tuna Thunnus obesus Lowe 1839 in both steady-state and time-dependent settings. In modeling the former situation, we adjusted the efficiencies of heat conservation in the red and the white muscle so as to make the output of the model agree as closely as possible with observed cross-sectional isotherms. In modeling the latter situation, we applied the heat exchanger efficiencies from the steady-state model to predict the distribution of temperature and heat fluxes in bigeye tuna during their extensive daily vertical excursions. The simulations yielded a close match to the data recorded in free-swimming fish and strongly point to the importance of the heat-producing and heat-conserving properties of the white muscle. The best correspondence between model output and observed data was obtained when the countercurrent heat exchangers in the blood flow pathways to the red and white muscle retained 99% and 96% (respectively) of the heat produced in these tissues. Our model confirms that the ability of bigeye tuna to maintain elevated muscle temperatures during their extensive daily vertical movements depends on their ability to rapidly modulate heating and cooling rates. This study shows that the differential cooling and heating rates could be fully accounted for by a mechanism where blood flow to the swimming muscles is either exclusively through the heat exchangers or completely shunted around them, depending on the ambient temperature relative to the body temperature. Our results therefore strongly suggest that such a mechanism is involved in the extensive physiological thermoregulatory abilities of endothermic bigeye tuna.

  15. Initial results with the LLNL 2-D chemical-radiative-transport model of the troposphere and stratosphere

    SciTech Connect

    Wuebbles, D.J.; Connell, P.S.; Grant, K.E.; Tarp, R.; Taylor, K.E.

    1987-09-01

    Significant progress has been made at LLNL in the development of a zonally averaged (two-dimensional) chemical-radiative-transport model of the troposphere and stratosphere. Although further model development and refinement is being planned the LLNL 2-D model is currently ready to be applied to appropriately designed research studies of stratospheric chemical processes and interactions. Several such studies are now underway. This paper provides a description of the existing 2-D model and discusses some of the pertinent results for evaluating the capabilities of the model. Special attempts at improving the timing of the model are also discussed. 6 figs.

  16. Simulation of abrasive flow machining process for 2D and 3D mixture models

    NASA Astrophysics Data System (ADS)

    Dash, Rupalika; Maity, Kalipada

    2015-12-01

    Improvement of surface finish and material removal has been quite a challenge in a finishing operation such as abrasive flow machining (AFM). Factors that affect the surface finish and material removal are media viscosity, extrusion pressure, piston velocity, and particle size in abrasive flow machining process. Performing experiments for all the parameters and accurately obtaining an optimized parameter in a short time are difficult to accomplish because the operation requires a precise finish. Computational fluid dynamics (CFD) simulation was employed to accurately determine optimum parameters. In the current work, a 2D model was designed, and the flow analysis, force calculation, and material removal prediction were performed and compared with the available experimental data. Another 3D model for a swaging die finishing using AFM was simulated at different viscosities of the media to study the effects on the controlling parameters. A CFD simulation was performed by using commercially available ANSYS FLUENT. Two phases were considered for the flow analysis, and multiphase mixture model was taken into account. The fluid was considered to be a

  17. Model-guided respiratory organ motion prediction of the liver from 2D ultrasound.

    PubMed

    Preiswerk, Frank; De Luca, Valeria; Arnold, Patrik; Celicanin, Zarko; Petrusca, Lorena; Tanner, Christine; Bieri, Oliver; Salomir, Rares; Cattin, Philippe C

    2014-07-01

    With the availability of new and more accurate tumour treatment modalities such as high-intensity focused ultrasound or proton therapy, accurate target location prediction has become a key issue. Various approaches for diverse application scenarios have been proposed over the last decade. Whereas external surrogate markers such as a breathing belt work to some extent, knowledge about the internal motion of the organs inherently provides more accurate results. In this paper, we combine a population-based statistical motion model and information from 2d ultrasound sequences in order to predict the respiratory motion of the right liver lobe. For this, the motion model is fitted to a 3d exhalation breath-hold scan of the liver acquired before prediction. Anatomical landmarks tracked in the ultrasound images together with the model are then used to reconstruct the complete organ position over time. The prediction is both spatial and temporal, can be computed in real-time and is evaluated on ground truth over long time scales (5.5 min). The method is quantitatively validated on eight volunteers where the ultrasound images are synchronously acquired with 4D-MRI, which provides ground-truth motion. With an average spatial prediction accuracy of 2.4 mm, we can predict tumour locations within clinically acceptable margins.

  18. Field-induced magnetization jumps and quantum criticality in the 2D J-Q model

    NASA Astrophysics Data System (ADS)

    Iaizzi, Adam; Sandvik, Anders

    The J-Q model is a `designer hamiltonian' formed by adding a four spin `Q' term to the standard antiferromagnetic S = 1 / 2 Heisenberg model. The Q term drives a quantum phase transition to a valence-bond solid (VBS) state: a non-magnetic state with a pattern of local singlets which breaks lattice symmetries. The elementary excitations of the VBS are triplons, i.e. gapped S=1 quasiparticles. There is considerable interest in the quantum phase transition between the Néel and VBS states as an example of deconfined quantum criticality. Near the phase boundary, triplons deconfine into pairs of bosonic spin-1/2 excitations known as spinons. Using exact diagonalization and the stochastic series expansion quantum monte carlo method, we study the 2D J-Q model in the presence of an external magnetic field. We use the field to force a nonzero density of magnetic excitations at T=0 and look for signatures of Bose-Einstein condensation of spinons. At higher magnetic fields, there is a jump in the induced magnetization caused by the onset of an effective attractive interaction between magnons on a ferromagnetic background. We characterize the first order quantum phase transition and determine the minimum value of the coupling ratio q ≡ Q / J required to produce this jump. Funded by NSF DMR-1410126.

  19. 2d Affine XY-Spin Model/4d Gauge Theory Duality and Deconfinement

    SciTech Connect

    Anber, Mohamed M.; Poppitz, Erich; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept. /San Francisco State U.

    2012-08-16

    We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2) = Z{sub 2} gauge theories, compactified on a small spatial circle R{sup 1,2} x S{sup 1}, and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on R{sup 2} x T{sup 2}. Similarly, thermal gauge theories of higher rank are dual to new families of 'affine' XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU(N{sub c}) gauge theories with n{sub f} {ge} 1 adjoint Weyl fermions.

  20. A Nanoscale Hydrodynamical Model for Transport of Water

    NASA Astrophysics Data System (ADS)

    Bhadauria, Ravi; Sanghi, Tarun; Aluru, N. R.

    2015-11-01

    We present here a one-dimensional isothermal hydrodynamic transport model for SPC/E water. Two separate mechanisms of flow, viz. viscous and slip are incorporated in the present formulation. Spatially varying viscosity is modeled using the local average density method. Slip velocity is provided as a form of the boundary condition which in turn depends upon the macroscopic interfacial friction coefficient. The friction coefficient bridges the atomistic and continuum descriptions of the problem. The value of this friction coefficient is computed using particle-based wall-fluid force autocorrelations and wall-fluid force-velocity cross correlations, where the particle trajectory is generated using a Generalized Langevin Equation formulation. To test the accuracy of the model, gravity driven flow of SPC/E water confined between graphene and silicon slit shaped nanochannels are considered as examples for low and high friction cases. The proposed model yields good quantitative agreement with the velocity profiles obtained from non-equilibrium molecular dynamics simulations. Furthermore, we demonstrate that the slip length is constant for different channel widths for a fixed thermodynamic state under the linear response regime.

  1. Hydrodynamic modeling of petroleum reservoirs using simulator MUFITS

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey

    2015-04-01

    MUFITS is new noncommercial software for numerical modeling of subsurface processes in various applications (www.mufits.imec.msu.ru). To this point, the simulator was used for modeling nonisothermal flows in geothermal reservoirs and for modeling underground carbon dioxide storage. In this work, we present recent extension of the code to petroleum reservoirs. The simulator can be applied in conventional black oil modeling, but it also utilizes a more complicated models for volatile oil and gas condensate reservoirs as well as for oil rim fields. We give a brief overview of the code by providing the description of internal representation of reservoir models, which are constructed of grid blocks, interfaces, stock tanks as well as of pipe segments and pipe junctions for modeling wells and surface networks. For conventional black oil approach, we present the simulation results for SPE comparative tests. We propose an accelerated compositional modeling method for sub- and supercritical flows subjected to various phase equilibria, particularly to three-phase equilibria of vapour-liquid-liquid type. The method is based on the calculation of the thermodynamic potential of reservoir fluid as a function of pressure, total enthalpy and total composition and storing its values as a spline table, which is used in hydrodynamic simulation for accelerated PVT properties prediction. We provide the description of both the spline calculation procedure and the flashing algorithm. We evaluate the thermodynamic potential for a mixture of two pseudo-components modeling the heavy and light hydrocarbon fractions. We develop a technique for converting black oil PVT tables to the potential, which can be used for in-situ hydrocarbons multiphase equilibria prediction under sub- and supercritical conditions, particularly, in gas condensate and volatile oil reservoirs. We simulate recovery from a reservoir subject to near-critical initial conditions for hydrocarbon mixture. We acknowledge

  2. 2D dynamical magma propagation modeling: application to the 2001 Mount Etna eruption

    NASA Astrophysics Data System (ADS)

    Pinel, Virginie; Carrara, Alexandre; Maccaferri, Francesco; Rivalta, Eleonora; Corbi, Fabio

    2016-04-01

    Numerical and analog studies of dike propagation in a stress field induced by volcanic edifice construction have shown that surface loading tends both to attract the magma and to reduce its velocity. Available numerical models can either calculate the trajectory or the velocity of the ascending dikes, but not both of them simultaneously. We developed a hybrid model of dyke propagation in two dimensions solving both for the magma trajectory and velocity as a function of the source overpressure, the magma physical properties (density and viscosity) as well as the crustal density and stress field. We first calculate a dyke trajectory in 2D and secondly run a 1D dynamical model of dyke propagation along this trajectory taken into account the influence of the stress field seen by the magma along this path. This model is used to characterize the influence of surface load on magma migration towards the surface and compared to previous results obtained by analog modeling.We find that the amplitude of dyke deflection and magma velocity variation depend on the ratio between the dyke driving pressure (source overpressure as well buoyancy) and the stress field perturbation. Our model is then applied to the July 2001 eruption of Etna, where the final dyke deflection had been previously interpreted as due to the topographic load by Bonaccorso et al. [2010]. We show that the velocity decrease observed during the last stage of the propagation can also be attributed to the local stress field. We use the dyke propagation duration to estimate the magma overpressure at the dyke bottom to be less than 4 MPa.

  3. Generalized Mechanistic Model for the Chemical Vapor Deposition of 2D Transition Metal Dichalcogenide Monolayers.

    PubMed

    Govind Rajan, Ananth; Warner, Jamie H; Blankschtein, Daniel; Strano, Michael S

    2016-04-26

    Transition metal dichalcogenides (TMDs) like molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are layered materials capable of growth to one monolayer thickness via chemical vapor deposition (CVD). Such CVD methods, while powerful, are notoriously difficult to extend across different reactor types and conditions, with subtle variations often confounding reproducibility, particularly for 2D TMD growth. In this work, we formulate the first generalized TMD synthetic theory by constructing a thermodynamic and kinetic growth mechanism linked to CVD reactor parameters that is predictive of specific geometric shape, size, and aspect ratio from triangular to hexagonal growth, depending on specific CVD reactor conditions. We validate our model using experimental data from Wang et al. (Chem. Mater. 2014, 26, 6371-6379) that demonstrate the systemic evolution of MoS2 morphology down the length of a flow CVD reactor where variations in gas phase concentrations can be accurately estimated using a transport model (CSulfur = 9-965 μmol/m(3); CMoO3 = 15-16 mmol/m(3)) under otherwise isothermal conditions (700 °C). A stochastic model which utilizes a site-dependent activation energy barrier based on the intrinsic TMD bond energies and a series of Evans-Polanyi relations leads to remarkable, quantitative agreement with both shape and size evolution along the reactor. The model is shown to extend to the growth of WS2 at 800 °C and MoS2 under varied process conditions. Finally, a simplified theory is developed to translate the model into a "kinetic phase diagram" of the growth process. The predictive capability of this model and its extension to other TMD systems promise to significantly increase the controlled synthesis of such materials.

  4. 2D application of a friction-limited model for debris flow propagation

    NASA Astrophysics Data System (ADS)

    Jaboyedoff, M.; Demierre, J.; Rudaz, B.

    2012-04-01

    Debris flows are each year responsible of severe infrastructure damages and human losses. Accurate simulation of this phenomenon allows for prevention of risks related to such events and can help for a sustainable territorial planning. A simple and intuitive 2-D debris flow model is developed using MatLab. It is based on the coupling of a mass point motion along the slope and the flattening of a volume linked to this mass point. Three main parameters have to be tuned in order to obtain a realistic prediction: the basal friction angle, the flattening coefficient and the debris flow maximum velocity. The model enables to simulate the location of the debris as a function of time and thus predict an important parameter of debris flow events, the runout distance. This tool allows for rapid calculations and has the advantage to use parameters that are easily assessable, such as the thickness of the debris flow deposit. The model is applied and compared to a debris flow event that occurred in Switzerland (Fully, VS) in October 2000. Following heavy rainfall and a hydroelectric pipe failure, a morainic deposit failed and propagated as a debris flow, reaching human-occupied areas (vineyards and roads). The event is well documented, with the initiation point, the flow velocity and runout distance known. A good agreement is found between the model prediction and the data from the debris flow event described above. This shows that the developed simple model can be an efficient tool to predict important debris flow characteristics, such as the runout distance. A further development would be to implement a 3-D model based on this approach

  5. On the assimilation of SWOT type data into 2D shallow-water models

    NASA Astrophysics Data System (ADS)

    Frédéric, Couderc; Denis, Dartus; Pierre-André, Garambois; Ronan, Madec; Jérôme, Monnier; Jean-Paul, Villa

    2013-04-01

    In river hydraulics, assimilation of water level measurements at gauging stations is well controlled, while assimilation of images is still delicate. In the present talk, we address the richness of satellite mapped information to constrain a 2D shallow-water model, but also related difficulties. 2D shallow models may be necessary for small scale modelling in particular for low-water and flood plain flows. Since in both cases, the dynamics of the wet-dry front is essential, one has to elaborate robust and accurate solvers. In this contribution we introduce robust second order, stable finite volume scheme [CoMaMoViDaLa]. Comparisons of real like tests cases with more classical solvers highlight the importance of an accurate flood plain modelling. A preliminary inverse study is presented in a flood plain flow case, [LaMo] [HoLaMoPu]. As a first step, a 0th order data processing model improves observation operator and produces more reliable water level derived from rough measurements [PuRa]. Then, both model and flow behaviours can be better understood thanks to variational sensitivities based on a gradient computation and adjoint equations. It can reveal several difficulties that a model designer has to tackle. Next, a 4D-Var data assimilation algorithm used with spatialized data leads to improved model calibration and potentially leads to identify river discharges. All the algorithms are implemented into DassFlow software (Fortran, MPI, adjoint) [Da]. All these results and experiments (accurate wet-dry front dynamics, sensitivities analysis, identification of discharges and calibration of model) are currently performed in view to use data from the future SWOT mission. [CoMaMoViDaLa] F. Couderc, R. Madec, J. Monnier, J.-P. Vila, D. Dartus, K. Larnier. "Sensitivity analysis and variational data assimilation for geophysical shallow water flows". Submitted. [Da] DassFlow - Data Assimilation for Free Surface Flows. Computational software http

  6. Hydrodynamic modeling of tsunamis from the Currituck landslide

    USGS Publications Warehouse

    Geist, E.L.; Lynett, P.J.; Chaytor, J.D.

    2009-01-01

    Tsunami generation from the Currituck landslide offshore North Carolina and propagation of waves toward the U.S. coastline are modeled based on recent geotechnical analysis of slide movement. A long and intermediate wave modeling package (COULWAVE) based on the non-linear Boussinesq equations are used to simulate the tsunami. This model includes procedures to incorporate bottom friction, wave breaking, and overland flow during runup. Potential tsunamis generated from the Currituck landslide are analyzed using four approaches: (1) tsunami wave history is calculated from several different scenarios indicated by geotechnical stability and mobility analyses; (2) a sensitivity analysis is conducted to determine the effects of both landslide failure duration during generation and bottom friction along the continental shelf during propagation; (3) wave history is calculated over a regional area to determine the propagation of energy oblique to the slide axis; and (4) a high-resolution 1D model is developed to accurately model wave breaking and the combined influence of nonlinearity and dispersion during nearshore propagation and runup. The primary source parameter that affects tsunami severity for this case study is landslide volume, with failure duration having a secondary influence. Bottom friction during propagation across the continental shelf has a strong influence on the attenuation of the tsunami during propagation. The high-resolution 1D model also indicates that the tsunami undergoes nonlinear fission prior to wave breaking, generating independent, short-period waves. Wave breaking occurs approximately 40-50??km offshore where a tsunami bore is formed that persists during runup. These analyses illustrate the complex nature of landslide tsunamis, necessitating the use of detailed landslide stability/mobility models and higher-order hydrodynamic models to determine their hazard.

  7. Accuracy of an estuarine hydrodynamic model using smooth elements

    USGS Publications Warehouse

    Walters, Roy A.; Cheng, Ralph T.

    1980-01-01

    A finite element model which uses triangular, isoparametric elements with quadratic basis functions for the two velocity components and linear basis functions for water surface elevation is used in the computation of shallow water wave motions. Specifically addressed are two common uncertainties in this class of two-dimensional hydrodynamic models: the treatment of the boundary conditions at open boundaries and the treatment of lateral boundary conditions. The accuracy of the models is tested with a set of numerical experiments in rectangular and curvilinear channels with constant and variable depth. The results indicate that errors in velocity at the open boundary can be significant when boundary conditions for water surface elevation are specified. Methods are suggested for minimizing these errors. The results also show that continuity is better maintained within the spatial domain of interest when ‘smooth’ curve-sided elements are used at shoreline boundaries than when piecewise linear boundaries are used. Finally, a method for network development is described which is based upon a continuity criterion to gauge accuracy. A finite element network for San Francisco Bay, California, is used as an example.

  8. Hydrodynamic model of advanced pressurized fluidized bed combustion

    SciTech Connect

    Horio, Masayuki; Lei, H.W.

    1997-12-31

    A hydrodynamic model was developed for the advanced pressurized fluidized bed combustion (A-PFBC) process. The particular system investigated here is composed of a pressurized circulating fluidized bed (PCFB) for coal gasification/desulfurization and a PCFB for combustion with the gas-solid counter-current flow through the two PCFBs. One of the most important parameters may be the material seal height (MSH) in the downcomer connecting the gasifier/desulfurizer and the combustor, which is thought to strongly influence the safe and stable operation of the process. In this mode, MSH was determined according to the pressure balance between the gasifier/desulfurizer and the combustor. The solid flux in the lower dense region of the two PCFBs was estimated by considering the clustering suspension and core-annulus flow. The mean cluster size and voidage in the cluster phase were predicted by the cluster size model of Horio-Ito (1996). Solid flux of the gasifier and combustor was calculated based on mass balances of limestone, char and ash in the system. Based on this model, the whole pressure profile loop in the system was predicted, and the effects of operating conditions on MSH between the gasifier and the combustor were investigated. The feasibility of the A-PCFB system with PCFBs both for the gasifier/desulfurizer and for the combustor was successfully confirmed.

  9. MAST-2D diffusive model for flood prediction on domains with triangular Delaunay unstructured meshes

    NASA Astrophysics Data System (ADS)

    Aricò, C.; Sinagra, M.; Begnudelli, L.; Tucciarelli, T.

    2011-11-01

    A new methodology for the solution of the 2D diffusive shallow water equations over Delaunay unstructured triangular meshes is presented. Before developing the new algorithm, the following question is addressed: it is worth developing and using a simplified shallow water model, when well established algorithms for the solution of the complete one do exist? The governing Partial Differential Equations are discretized using a procedure similar to the linear conforming Finite Element Galerkin scheme, with a different flux formulation and a special flux treatment that requires Delaunay triangulation but entire solution monotonicity. A simple mesh adjustment is suggested, that attains the Delaunay condition for all the triangle sides without changing the original nodes location and also maintains the internal boundaries. The original governing system is solved applying a fractional time step procedure, that solves consecutively a convective prediction system and a diffusive correction system. The non linear components of the problem are concentrated in the prediction step, while the correction step leads to the solution of a linear system of the order of the number of computational cells. A semi-analytical procedure is applied for the solution of the prediction step. The discretized formulation of the governing equations allows to handle also wetting and drying processes without any additional specific treatment. Local energy dissipations, mainly the effect of vertical walls and hydraulic jumps, can be easily included in the model. Several numerical experiments have been carried out in order to test (1) the stability of the proposed model with regard to the size of the Courant number and to the mesh irregularity, (2) its computational performance, (3) the convergence order by means of mesh refinement. The model results are also compared with the results obtained by a fully dynamic model. Finally, the application to a real field case with a Venturi channel is presented.

  10. 2D spectral element modeling of GPR wave propagation in inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Zarei, Sajad; Oskooi, Behrooz; Amini, Navid; Dalkhani, Amin Rahimi

    2016-10-01

    We present a spectral element method, for simulation of ground-penetrating radar (GPR) in two dimensions. The technique is based upon a weak formulation of the equations of Maxwell and combines the flexibility of the elemental-based methods with the accuracy of the spectral based methods. The wave field on the elements is discretized using high-degree Lagrange interpolation and integration over an element is accomplished based upon the Gauss-Lobatto-Legendre integration rule. As a result, the mass matrix and the damping matrix are always diagonal, which drastically reduces the computational cost. We first develop the formulation of 2D spectral element method (SEM) in the time-domain based on Maxwell's equations. The presented formulation is with matrix notation that simplifies the implementation of the relations in computer programs, especially in MATLAB application. We discuss the differences between spectral element method and finite-element method in the time-domain. Also, we show that the SEM numerical dispersion is much lower than FEM. To absorb waves at the edges of the modeling domain, we implement first order Clayton and Engquist absorbing boundary conditions (CE-ABC) introduced in numerical finite-difference modeling of seismic wave propagation. We used the SEM to simulate a complex model to show its abilities and limitations. As well as, one distinct advantage of SEM is that we can easily define our model features in nodal points, because the integration points and the interpolation points are similar that makes it very flexible in simulation of complex models.

  11. A friction to flow constitutive law and its application to a 2-D modeling of earthquakes

    NASA Astrophysics Data System (ADS)

    Shimamoto, Toshihiko; Noda, Hiroyuki

    2014-11-01

    Establishment of a constitutive law from friction to high-temperature plastic flow has long been a challenging task for solving problems such as modeling earthquakes and plate interactions. Here we propose an empirical constitutive law that describes this transitional behavior using only friction and flow parameters, with good agreements with experimental data on halite shear zones. The law predicts steady state and transient behaviors, including the dependence of the shear resistance of fault on slip rate, effective normal stress, and temperature. It also predicts a change in velocity weakening to velocity strengthening with increasing temperature, similar to the changes recognized for quartz and granite gouge under hydrothermal conditions. A slight deviation from the steady state friction law due to the involvement of plastic deformation can cause a large change in the velocity dependence. We solved seismic cycles of a fault across the lithosphere with the law using a 2-D spectral boundary integral equation method, revealing dynamic rupture extending into the aseismic zone and rich evolution of interseismic creep including slow slip prior to earthquakes. Seismic slip followed by creep is consistent with natural pseudotachylytes overprinted with mylonitic deformation. Overall fault behaviors during earthquake cycles are insensitive to transient flow parameters. The friction-to-flow law merges "Christmas tree" strength profiles of the lithosphere and rate dependency fault models used for earthquake modeling on a unified basis. Strength profiles were drawn assuming a strain rate for the flow regime, but we emphasize that stress distribution evolves reflecting the fault behavior. A fault zone model was updated based on the earthquake modeling.

  12. 2D positive streamer modelling in NTP air under extreme pulse fronts. What about runaway electrons?

    NASA Astrophysics Data System (ADS)

    Marode, E.; Dessante, Ph; Tardiveau, P.

    2016-12-01

    Using a 2D model, an attempt is made to understand the properties and aspects of a diffuse discharge, appearing in a positive point-to-plane gap submitted to very high voltage pulses. After presenting the model, comparisons between the computed low and high pulse heights of 10 kV and 50 kV, respectively, will be shown and analysed. A streamer ionising wave is still formed, but its role in ionising a region of low field is replaced by the role of providing a plasma within which the electrons will benefit from the presence of a high electrical field meant to induce strong electron collision activities. A comparison between the aspect of the computed and experimental discharge carried out in the same conditions at 50 kV will be presented, which seems to be in agreement with the diffuse aspect. Although the difference in order of magnitude of the speed of development and the height of the current must be underlined, similarities between the structures of both situations will, however, be recognised. A high probability of obtaining highly energetic electrons and runaways (RAEs) will also be derived following a simple approach.

  13. Optimal implicit 2-D finite differences to model wave propagation in poroelastic media

    NASA Astrophysics Data System (ADS)

    Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.

    2016-08-01

    Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10 kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P and slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High-order explicit FD can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here, we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.

  14. Beyond Flood Hazard Maps: Detailed Flood Characterization with Remote Sensing, GIS and 2d Modelling

    NASA Astrophysics Data System (ADS)

    Santillan, J. R.; Marqueso, J. T.; Makinano-Santillan, M.; Serviano, J. L.

    2016-09-01

    Flooding is considered to be one of the most destructive among many natural disasters such that understanding floods and assessing the risks associated to it are becoming more important nowadays. In the Philippines, Remote Sensing (RS) and Geographic Information System (GIS) are two main technologies used in the nationwide modelling and mapping of flood hazards. Although the currently available high resolution flood hazard maps have become very valuable, their use for flood preparedness and mitigation can be maximized by enhancing the layers of information these maps portrays. In this paper, we present an approach based on RS, GIS and two-dimensional (2D) flood modelling to generate new flood layers (in addition to the usual flood depths and hazard layers) that are also very useful in flood disaster management such as flood arrival times, flood velocities, flood duration, flood recession times, and the percentage within a given flood event period a particular location is inundated. The availability of these new layers of flood information are crucial for better decision making before, during, and after occurrence of a flood disaster. The generation of these new flood characteristic layers is illustrated using the Cabadbaran River Basin in Mindanao, Philippines as case study area. It is envisioned that these detailed maps can be considered as additional inputs in flood disaster risk reduction and management in the Philippines.

  15. A 2D mechanical-magneto-thermal model for direction-dependent magnetoelectric effect in laminates

    NASA Astrophysics Data System (ADS)

    Zhang, Shunzu; Yao, Hong; Gao, Yuanwen

    2017-04-01

    A two dimensional (2D) mechanical-magneto-thermal model of direction-dependent magnetoelectric (ME) effect in Terfenol-D/PZT/Terfenol-D laminated composites is established. The expressions of ME coefficient at low and resonance frequencies are derived by the average field method, respectively. The prediction of theoretical model presents a good agreement with the experimental data. The combined effect of orientation-dependent stress and magnetic fields, as well as operating temperature on ME coefficient is discussed. It is shown that ME effect presents a significantly nonlinear change with the increasing pre-stress under different loading angles. There exists an optimal angle and value of pre-stress corresponding to the best ME effect, improving the angle of pre-stress can get more prominent ME coupling than in x axis state. Note that an optimal angle of magnetic field gradually increases with the rise of pre-stress, which can further lead to the enhancement of ME coefficient. Meanwhile, reducing the operating temperature can enhance ME coefficient. Furthermore, resonance frequency, affected by pre-stress, magnetic field and temperature via ; ΔE effect;, can enhance ME coefficient about 100 times than that at low frequency.

  16. The success of Fermi gas model for overall scaling of 2D metal-to-insulator transition data

    NASA Astrophysics Data System (ADS)

    Cheremisin, M. V.

    2017-03-01

    The melting condition for two-dimensional Wigner solid (Platzman and Fukuyama, 1974) [14] is shown to contain an error of a factor of π. The analysis of experimental data for apparent 2D metal-to-insulator transition shows that the Wigner solidification (Tanatar and Ceperley, 1989) [16] has been never achieved. Within routine Fermi gas model both the metallic and insulating behavior of different 2D system for actual range of carrier densities and temperatures is explained.

  17. Robust initialization for 2D/3D registration of knee implant models to single-plane fluoroscopy

    NASA Astrophysics Data System (ADS)

    Hermans, J.; Claes, P.; Bellemans, J.; Vandermeulen, D.; Suetens, P.

    2007-03-01

    A fully automated initialization method is proposed for the 2D/3D registration of 3D CAD models of knee implant components to a single-plane calibrated fluoroscopy. The algorithm matches edge segments, detected in the fluoroscopy image, with pre-computed libraries of expected 2D silhouettes of the implant components. Each library entry represents a different combination of out-of-plane registration transformation parameters. Library matching is performed by computing point-based 2D/2D registrations in between each library entry and each detected edge segment in the fluoroscopy image, resulting in an estimate of the in-plane registration transformation parameters. Point correspondences for registration are established by template matching of the bending patterns on the contours. A matching score for each individual 2D/2D registration is computed by evaluating the transformed library entry in an edge-encoded (characteristic) image, which is derived from the original fluoroscopy image. A matching scores accumulator is introduced to select and suggest one or more initial pose estimates. The proposed method is robust against occlusions and partial segmentations. Validation results are shown on simulated fluoroscopy images. In all cases a library match is found for each implant component which is very similar to the shape information in the fluoroscopy. The feasibility of the proposed method is demonstrated by initializing an intensity-based 2D/3D registration method with the automatically obtained estimation of the registration transformation parameters.

  18. Hydraulic Modeling of Alluvial Fans along the Truckee Canal using the 2-Dimensional Model SRH2D

    NASA Astrophysics Data System (ADS)

    Wright, J.; Kallio, R.; Sankovich, V.

    2013-12-01

    Alluvial fans are gently sloping, fan-shaped landforms created by sediment deposition at the ends of mountain valleys. Their gentle slopes and scenic vistas are attractive to developers. Unfortunately, alluvial fans are highly flood-prone, and the flow paths of flood events are highly variable, thereby placing human developments at risk. Many studies have been performed on alluvial fans in the arid west because of the uncertainty of their flow paths and flood extents. Most of these studies have been focused on flood elevations and mitigation. This study is not focused on the flood elevations. Rather, it is focused on the attenuation effects of alluvial fans on floods entering and potentially failing a Reclamation canal. The Truckee Canal diverts water from the Truckee River to Lahontan Reservoir. The drainage areas along the canal are alluvial fans with complex distributary channel networks . Ideally, in nature, the sediment grain-size distribution along the alluvial fan flow paths would provide enough infiltration and subsurface storage to attenuate floods entering the canal and reduce risk to low levels. Human development, however, can prevent the natural losses from occurring due to concentrated flows within the alluvial fan. While the concentrated flows might mitigate flood risk inside the fan, they do not lower the flood risk of the canal. A 2-dimensional hydraulic model, SRH-2D, was coupled to a 1-dimensional rainfall-runoff model to estimate the flood attenuation effects of the alluvial fan network surrounding an 11 mile stretch of the Truckee Canal near Fernley, Nevada. Floods having annual exceedance probabilities ranging from 1/10 to 1/100 were computed and analyzed. SRH-2D uses a zonal approach for modeling river systems, allowing areas to be divided into separate zones based on physical parameters such as surface roughness and infiltration. One of the major features of SRH-2D is the adoption of an unstructured hybrid mixed element mesh, which is based

  19. Lithospheric architecture of the Levant Basin (Eastern Mediterranean region): A 2D modeling approach

    NASA Astrophysics Data System (ADS)

    Inati, Lama; Zeyen, Hermann; Nader, Fadi Henri; Adelinet, Mathilde; Sursock, Alexandre; Rahhal, Muhsin Elie; Roure, François

    2016-12-01

    This paper discusses the deep structure of the lithosphere underlying the easternmost Mediterranean region, in particular the Levant Basin and its margins, where the nature of the crust, continental versus oceanic, remains debated. Crustal thickness and the depth of the lithosphere-asthenosphere boundary (LAB) as well as the crustal density distribution were calculated by integrating surface heat flow data, free-air gravity anomaly, geoid and topography. Accordingly, two-dimensional, lithospheric models of the study area are discussed, demonstrating the presence of a progressively attenuated crystalline crust from E to W (average thickness from 35 to 8 km). The crystalline crust is best interpreted as a strongly thinned continental crust under the Levant Basin, represented by two distinct components, an upper and a lower crust. Further to the west, the Herodotus Basin is believed to be underlain by an oceanic crust, with a thickness between 6 and 10 km. The Moho under the Arabian Plate is 35-40 km deep and becomes shallower towards the Mediterranean coast. It appears to be situated at depths ranging between 20 and 23 km below the Levant Basin and 26 km beneath the Herodotus Basin, based on our proposed models. At the Levantine margin, the thinning of the crust in the transitional domain between the onshore and the offshore is gradual, indicating successive extensional regimes that did not reach the beak up stage. In addition, the depth to LAB is around 120 km under the Arabian and the Eurasian Plates, 150 km under the Levant Basin, and it plunges to 180 km under the Herodotus Basin. This study shows that detailed 2D lithosphere modeling using integrated geophysical data can help understand the mechanisms responsible for the modelled lithospheric architecture when constrained with geological findings.

  20. Adaptation of a 2-D Photochemical Model to Improve Our Understanding of Saturn's Atmosphere

    NASA Astrophysics Data System (ADS)

    Edgington, Scott G.; Simon-Miller, A. A.; Achterberg, R.; Bjoraker, G.; Romani, P.; Flasar, F. M.; Colwell, J.

    2006-09-01

    We report progress in adapting a two dimensional photochemical model to Saturn. Previously, this model was applied to Jupiter (Edgington, et al., 2001) to track tracers such as ammonia in the Jovian troposphere. The chemistry portion of this model has the ability to model ammonia, phosphine, and hydrocarbon photochemical families (Edgington, et al., 1999). The transport portion is based on the transport model used to model the evolution of materials deposited by Comet Shoemaker-Levy 9 (Friedson, et al., 1999). The model is used to look at the variation of several molecules in Saturn's atmosphere accounting for the filtering of ultraviolet photons by Saturn's rings as measured by Cassini/UVIS and the thermal structure observed by Cassini/CIRS. We compare results from this model to the abundances of several molecules, e.g. propane (Simon-Miller, et al., 2005) and phosphine, derived from Cassini/CIRS, HST/FOS, and ISO data sets. Composition differences between the northern ring-shadowed atmophere and the nominal sunlit atmosphere will be examined. More research into Saturn's zonal averaged meridional circulation is needed. Edgington, S.G., et al., 1999. Ammonia and eddy mixing variations in the southern hemisphere of Jupiter from HST Faint Object Spectrograph Observations. Icarus, 142, 342-357. Edgington, S.G., West, R.A., Friedson, A.J., and Atreya, S.K., 2001. A 2-D photochemical model with meridional circulation and microphysics. Jupiter: Planet, Satellites, and Magnetosphere - Boulder, CO, June 25-30. Friedson, A.J.; West, R.A.; Hronek, A.K.; Larsen, N.A.; and Dalal, N., 1999. Transport and Mixing in Jupiter's Stratosphere Inferred from Comet S-L9 Dust Migration. Icarus, 138, 141-156. Simon-Miller, A.A., et al., 2005. Cassini CIRS Measurements of Benzene, Propane and Carbon Dioxide on Saturn. B.A.A.S. 37, 682. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the

  1. An Evaluation of Boundary Condition Specification for a Littoral Hydrodynamic Model

    DTIC Science & Technology

    2011-09-01

    from NCOM (blue) for 3 locations in the M2D model case. II. APPROACH Several comparisons of Delft3D model results were completed for a number...boundary conditions from OSU Tides (red) and time series boundary conditions from NCOM (blue) for 3 locations in the M2D model case. /; M2D and M3D...The M2D and M3D Delft3D applications cover approximately 33 square kilometers at a resolution of approximately 500 meters. The M2D model case is depth

  2. A hydrodynamic model of an outer hair cell

    NASA Technical Reports Server (NTRS)

    Jacobson, B. O.

    1982-01-01

    On the model it is possible to measure the force and the force direction for each individual hair as a function of the flow direction and velocity. Measurements were made at the man flow velocity .01 m/s, which is equivalent to a flow velocity in the real ear of about 1 micrometer/s. The kinematic viscosity of the liquid used in the model was 10,000 times higher than the viscosity of perilymph to attain hydrodynamic equality. Two different geometries for the sterocilia pattern were tested. First the force distribution for a W-shaped sterocilia pattern was recorded. This is the sterocilia pattern found in all real ears. It is found that the forces acting on the hairs are very regular and perpendicular to the legs of the W when the flow is directed from the outside of the W. When the flow is reversed, the forces are not reversed, but are much more irregular. This can eventually explain the half wave rectification of the nerve signals. As a second experiment, the force distribution for a V-shaped sterocilia pattern was recorded. Here the forces were irregular both when the flow was directed into the V and when it was directed against the edge of the V.

  3. Hydrodynamic Modeling of Oxidizer-Rich Staged Combustion Injector Flow

    NASA Technical Reports Server (NTRS)

    Harper, Brent (Technical Monitor); Canino, J. V.; Heister, S. D.; Garrison, L. A.

    2004-01-01

    The main objective of this work is to determine the unsteady hydrodynamic characteristics of coaxial swirl atomizers of interest in oxidizer-rich staged combustion (ORSC) liquid rocket engines. To this end, the pseudo-density (homogeneous flow) treatment combined with the Marker-and-Cell (MAC) numerical algorithm has been used to develop an axisymmetric with swirl, two-phase, unsteady model. The numerical model is capable of assessing the time-dependent orifice exit conditions and internal mixing for arbitrary fuel and oxidizer gas injection conditions. Parametric studies have been conducted to determine the effect of geometry, gas properties, and liquid properties on the exit massflow rate and velocity. It has been found that the frequency at which the liquid film oscillates increases as the density ratio and thickness increase, decreases as film thickness and liquid swirl velocity increase, and is unaffected by the mixing length. Additionally, it has been determined that the variation in the massflow rate increases as the liquid swirl velocity and liquid film thickness increase, and decreases as the density ratio, collar thickness, and mixing length increase.

  4. 2D Biotope Mapping Using Combined LIDAR, Topographic Survey And Segmented 1D Flow Modelling

    NASA Astrophysics Data System (ADS)

    Entwistle, N. S.; Heritage, G. L.; Milan, D. J.

    2009-12-01

    Reach averaged habitat availability models such as PHABSIM are limited due principally to their failure to adequately map hydraulic habitat distribution at a representative scale. A lack of morphologic data, represented in the form of sparse geometric cross-sections fails to generate the necessary detail. Advances in data collection, improved spatial modelling algorithms and the advent of cross-section based segmentation routines in 1D hydraulic models provides the opportunity to revisit the issue of hydraulic habitat mapping and modelling. This paper presents a combined technique for habitat characterisation at the sub-bar scale is presented for the River Rede, Northumberland, UK. Terrestrial LIDAR data of floodplain, banks and exposed bar surfaces at an average 0.05 m spacing are combined with sparser total station survey data of submerged morphologic features. These data are interpolated to create a uniform DEM grid at 0.2 m spacing (adequate to detect the smallest variation in hydraulic habitat in this system). The data grid were then imported into the HECRAS 1D hydraulic model to generate a 2 m spaced series of cross-sections along a 220 m sinuous single thread reach exhibiting pool - riffle point-bar morphology. The hydraulic segmentation routine then generated estimates of depth averaged flow velocity, flow depth and sub unit discharge for 40 sub-divisions of the flow width for a series of flows from 0.5 m3s-1 up to bankfull flow of approximately 9 m3s-1. The resultant hydraulic data were exported in the project coordinate system and plotted to reveal the 2D pattern of hydraulic biotopes present across the range of flows modelled. The results reveal broadly realistic patterns consistent with previous empirical studies and compare well with LIDAR based biotope maps. Analysis of the temporal pattern of biotope change indicates that biotope diversity and complexity is at a maximum at lower flows and across shallower area (riffles) and that these dominate the

  5. Numerical solution of polarization saturation/dielectric breakdown model in 2D finite piezoelectric media

    NASA Astrophysics Data System (ADS)

    Fan, Cui-Ying; Zhao, Ming-Hao; Zhou, You-He

    2009-09-01

    The polarization saturation (PS) model [Gao, H., Barnett, D.M., 1996. An invariance property of local energy release rates in a strip saturation model of piezoelectric fracture. Int. J. Fract. 79, R25-R29; Gao, H., Zhang, T.Y., Tong, P., 1997. Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45, 491-510], and the dielectric breakdown (DB) model [Zhang, T.Y., Zhao, M.H., Cao, C.F., 2005. The strip dielectric breakdown model. Int. J. Fract. 132, 311-327] explain very well some experimental observations of fracture of piezoelectric ceramics. In this paper, the nonlinear hybrid extended displacement discontinuity-fundamental solution method (NLHEDD-FSM) is presented for numerical analysis of both the PS and DB models of two-dimensional (2D) finite piezoelectric media under impermeable and semi-permeable electric boundary conditions. In this NLHEDD-FSM, the solution is expressed approximately by a linear combination of fundamental solutions of the governing equations, which includes the extended point force fundamental solutions with sources placed at chosen points outside the domain of the problem under consideration, and the extended Crouch fundamental solutions with extended displacement discontinuities placed on the crack and the electric yielding zone. The coefficients of the fundamental solutions are determined by letting the approximated solution satisfy certain conditions on the boundary of the domain, on the crack face and the electric yielding zone. The zero electric displacement intensity factor in the PS model or the zero electric field strength intensity factor in the DB model at the outer tips of the electric yielding zone is used as a supplementary condition to determine the size of the electric yielding zone. Iteration approaches are adopted in the NLHEDD-FSM. The electric yielding zone is determined, and the extended intensity factors and the local J-integral are calculated for

  6. Combining multitracing and 2D-modelling to identify the dynamic of heavy metals during flooding.

    NASA Astrophysics Data System (ADS)

    Hissler, C.; Hostache, R.; Matgen, P.; Tosheva, Z.; David, E.; Bates, P.; Stille, P.

    2012-04-01

    to assess the risk of floodplain contamination in heavy metal due to river sediment deposition and to heavy metal partitioning between particulate and dissolved phases. We focus on a multidisciplinary approach combining environmental geochemistry (multitracing) and hydraulic modelling (using TELEMAC-2D). One important single flood event was selected to illustrate this innovative approach. During the entire flood, the river water was sampled every hour in order to collect the particulate and the dissolved fractions. All the tracers were analyzed in both fractions. An important set of hydrological and sedimentological data are used to reach a more efficient calibration of the TELEMAC modelling system. In addition to standard techniques of hydrochemistry, new approaches of in situ suspended sediment transport monitoring will help getting new insights on the hydraulic system behaviour.

  7. Electrical resistivity tomography applied to a complex lava dome: 2D and 3D models comparison

    NASA Astrophysics Data System (ADS)

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2015-04-01

    The study of volcanic domes growth (e.g. St. Helens, Unzen, Montserrat) shows that it is often characterized by a succession of extrusion phases, dome explosions and collapse events. Lava dome eruptive activity may last from days to decades. Therefore, their internal structure, at the end of the eruption, is complex and includes massive extrusions and lava lobes, talus and pyroclastic deposits as well as hydrothermal alteration. The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for volcano structure imaging. Because a large range of resistivity values is often observed in volcanic environments, the method is well suited to study the internal structure of volcanic edifices. We performed an ERT survey on an 11ka years old trachytic lava dome, the Puy de Dôme volcano (French Massif Central). The analysis of a recent high resolution DEM (LiDAR 0.5 m), as well as other geophysical data, strongly suggest that the Puy de Dôme is a composite dome. 11 ERT profiles have been carried out, both at the scale of the entire dome (base diameter of ~2 km and height of 400 m) on the one hand, and at a smaller scale on the summit part on the other hand. Each profile is composed of 64 electrodes. Three different electrode spacing have been used depending on the study area (35 m for the entire dome, 10 m and 5 m for its summit part). Some profiles were performed with half-length roll-along acquisitions, in order to keep a good trade-off between depth of investigation and resolution. Both Wenner-alpha and Wenner-Schlumberger protocols were used. 2-D models of the electrical resistivity distribution were computed using RES2DINV software. In order to constrain inversion models interpretation, the depth of investigation (DOI) method was applied to those results. It aims to compute a sensitivity index on inversion results, illustrating how the data influence the model and constraining models

  8. Analytical models for hydrodynamics of the steam superheating surfaces of a TGMP-344A boiler

    NASA Astrophysics Data System (ADS)

    Pikina, G. A.; Remeeva, A. R.

    2009-10-01

    A model with distributed parameters for describing the hydrodynamic processes in the convective steam superheater of a TGMP-344A boiler, which reflects the possibility that hydraulic pulsations will occur, is considered. A computer program is proposed that allows the frequency characteristics of hydrodynamic processes in complex systems to be estimated using recurrence relations.

  9. Modelling 2001 lahars at Popocatépetl volcano using FLO2D numerical code

    NASA Astrophysics Data System (ADS)

    Caballero, L.; Capra, L.

    2013-12-01

    Popocatépetl volcano is located on the central part of the Transmexican Volcanic Belt. It is one of the most active volcanoes in Mexico and endanger more than 25 million people that lives in its surroundings. In the last months, the renewal of its volcanic activity put into alert scientific community. One of the possible scenarios is the 2001 explosive activity, which was characterized by a 8 km eruptive column and the subsequent formation of pumice flows up to 4 km from the crater. Lahars were generated few hours after, remobilizing the new deposits towards NE flank of the volcano, along Huiloac Gorge, almost reaching Santiago Xalitzintla town (Capra et al., 2004). The occurrence of a similar scenario makes very important to reproduce this event to delimitate accurately lahar hazard zones. In this work, 2001 lahar deposit is modeled using FLO2D numerical code. Geophone data is used to reconstruct initial hydrograph and sediment concentration. Sensitivity study of most important parameters used by this code like Manning, and α and β coefficients was conducted in order to achieve a good simulation. Results obtained were compared with field data and demonstrated a good agreement in thickness and flow distribution. A comparison with previously published data with laharZ program (Muñoz-Salinas, 2009) is also made. Additionally, lahars with fluctuating sediment concentrations but with similar volume are simulated to observe the influence of the rheological behavior on lahar distribution.

  10. Optimization of hybrid organic-inorganic interdigitated photovoltaic device structure using a 2D diffusion model.

    PubMed

    Krali, Emiljana; Curry, Richard J

    2011-04-26

    To improve the efficiency of organic photovoltaic devices the inclusion of semiconducting nanoparticles such as PbS has been used to enhance near-infrared absorption. Additionally the use of interdigitated heterojunctions has been explored as a means of improving charge extraction. In this paper we provide a two-dimensional model taking into account these approaches with the aim of predicting an optimized device geometry to maximize the efficiency. The steady-state exciton population has been calculated in each of the active regions taking into account the full optical response based on using a finite difference approach to obtain approximate numerical solutions to the 2D exciton diffusion equation. On the basis of this we calculate the contribution of each active material to the device short circuit current and power conversion efficiency. We show that optimized structures can lead to power conversions efficiencies of ∼50% compared to a maximum of ∼17% for planar heterojunction devices. To achieve this the interdigitated region thickness should be ∼800 nm with PbS and C(60) widths of ∼60 and 20 nm, respectively. Even modest nanopatterning using much thinner active regions provides improvements in efficiency and may be approached using a variety of methods including nanoimprinting lithography, nanotemplating, or the incorporation of presynthesized nanorod structures.

  11. Spot size variation FCS in simulations of the 2D Ising model.

    PubMed

    Burns, Margaret C; Nouri, Mariam; Veatch, Sarah L

    2016-06-02

    Spot variation fluorescence correlation spectroscopy (svFCS) was developed to study the movement and organization of single molecules in plasma membranes. This experimental technique varies the size of an illumination area while measuring correlations in time using standard fluorescence correlation methods. Frequently, this data is interpreted using the assumption that correlation measurements reflect the dynamics of single molecule motions, and not motions of the average composition. Here, we explore how svFCS measurements report on the dynamics of components diffusing within simulations of a 2D Ising model with a conserved order parameter. Simulated correlation functions report on both the fast dynamics of single component mobility and the slower dynamics of the average composition. Over a range of simulation conditions, a conventional svFCS analysis suggests the presence of anomalous diffusion even though single molecule motions are nearly Brownian in these simulations. This misinterpretation is most significant when the surface density of the fluorescent label is elevated, therefore we suggest future measurements be made over a range of tracer densities. Some simulation conditions reproduce qualitative features of published svFCS experimental data. Overall, this work emphasizes the need to probe membranes using multiple complimentary experimental methodologies in order to draw conclusions regarding the nature of spatial and dynamical heterogeneity in these systems.

  12. Stability of superfluid phases in the 2D spin-polarized attractive Hubbard model

    NASA Astrophysics Data System (ADS)

    Kujawa-Cichy, A.; Micnas, R.

    2011-08-01

    We study the evolution from the weak coupling (BCS-like limit) to the strong coupling limit of tightly bound local pairs (LPs) with increasing attraction, in the presence of the Zeeman magnetic field (h) for d=2, within the spin-polarized attractive Hubbard model. The broken symmetry Hartree approximation as well as the strong coupling expansion are used. We also apply the Kosterlitz-Thouless (KT) scenario to determine the phase coherence temperatures. For spin-independent hopping integrals (t↑=t↓), we find no stable homogeneous polarized superfluid (SCM) state in the ground state for the strong attraction and obtain that for a two-component Fermi system on a 2D lattice with population imbalance, phase separation (PS) is favoured for a fixed particle concentration, even on the LP (BEC) side. We also examine the influence of spin-dependent hopping integrals (mass imbalance) on the stability of the SCM phase. We find a topological quantum phase transition (Lifshitz type) from the unpolarized superfluid phase (SC0) to SCM and tricritical points in the h-|U| and t↑/t↓-|U| ground-state phase diagrams. We also construct the finite temperature phase diagrams for both t↑=t↓ and t↑≠t↓ and analyze the possibility of occurrence of a spin-polarized KT superfluid.

  13. Modeling of two-storey precast school building using Ruaumoko 2D program

    SciTech Connect

    Hamid, N. H.; Tarmizi, L. H.; Ghani, K. D.

    2015-05-15

    The long-distant earthquake loading from Sumatra and Java Island had caused some slight damages to precast and reinforced concrete buildings in West Malaysia such as cracks on wall panels, columns and beams. Subsequently, the safety of existing precast concrete building is needed to be analyzed because these buildings were designed using BS 8110 which did not include the seismic loading in the design. Thus, this paper emphasizes on the seismic performance and dynamic behavior of precast school building constructed in Malaysia under three selected past earthquakes excitations ; El Centro 1940 North-South, El Centro East-West components and San Fernando 1971 using RUAUMOKO 2D program. This program is fully utilized by using prototype precast school model and dynamic non-linear time history analysis. From the results, it can be concluded that two-storey precast school building has experienced severe damage and partial collapse especially at beam-column joint under San Fernando and El Centro North-South Earthquake as its exceeds the allowable inter-storey drift and displacement as specified in Eurocode 8. The San Fernando earthquake has produced a massive destruction to the precast building under viscous damping, ξ = 5% and this building has generated maximum building displacement of 435mm, maximum building drift of 0.68% and maximum bending moment at 8458kNm.

  14. Modeling of two-storey precast school building using Ruaumoko 2D program

    NASA Astrophysics Data System (ADS)

    Hamid, N. H.; Tarmizi, L. H.; Ghani, K. D.

    2015-05-01

    The long-distant earthquake loading from Sumatra and Java Island had caused some slight damages to precast and reinforced concrete buildings in West Malaysia such as cracks on wall panels, columns and beams. Subsequently, the safety of existing precast concrete building is needed to be analyzed because these buildings were designed using BS 8110 which did not include the seismic loading in the design. Thus, this paper emphasizes on the seismic performance and dynamic behavior of precast school building constructed in Malaysia under three selected past earthquakes excitations ; El Centro 1940 North-South, El Centro East-West components and San Fernando 1971 using RUAUMOKO 2D program. This program is fully utilized by using prototype precast school model and dynamic non-linear time history analysis. From the results, it can be concluded that two-storey precast school building has experienced severe damage and partial collapse especially at beam-column joint under San Fernando and El Centro North-South Earthquake as its exceeds the allowable inter-storey drift and displacement as specified in Eurocode 8. The San Fernando earthquake has produced a massive destruction to the precast building under viscous damping, ξ = 5% and this building has generated maximum building displacement of 435mm, maximum building drift of 0.68% and maximum bending moment at 8458kNm.

  15. The specific edge effects of 2D core/shell model for spin-crossover nanoparticles

    NASA Astrophysics Data System (ADS)

    Muraoka, Azusa; Boukheddaden, Kamel; Linarès, Jorge; Varret, Francois

    2012-02-01

    We analyzed the size effect of spin-crossover nanoparticles at the edges of the 2D square lattices core/shell model, where the edge atoms are constrained to the high spin (HS) state. We performed MC simulations using the Ising-like Hamiltonian, [ H=-J∑(i,j)∑l i'=±1; j'=±1 S( i,j )S( i+i',j+j' ) +( δ2-kBT2g )∑(i,j)S( i,j ) ] The molar entropy change is δS 50J/K/mol, lng=δS/R 6 (R is the perfect gas constant), energy gap is δ=1300K. The HS fixed edges were based on the observation of an increasing residual HS fraction at low temperature upon particle size reduction. This specific boundary condition acts as a negative pressure which shifts downwards the equilibrium temperature. The interplay between the equilibrium temperature (=δ/kBlng) variation and the expected variation of the effective interactions in the system leads to a non-monotonous dependence of the hysteresis loop width upon the particle size. We described how the occurrence condition of the first-order transition has to be adapted to the nanoscale.

  16. Radiation Hydrodynamics Models of the Inner Rim in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Flock, M.; Fromang, S.; Turner, N. J.; Benisty, M.

    2016-08-01

    Many stars host planets orbiting within a few astronomical units (AU). The occurrence rate and distributions of masses and orbits vary greatly with the host star’s mass. These close planets’ origins are a mystery that motivates investigating protoplanetary disks’ central regions. A key factor governing the conditions near the star is the silicate sublimation front, which largely determines where the starlight is absorbed, and which is often called the inner rim. We present the first radiation hydrodynamical modeling of the sublimation front in the disks around the young intermediate-mass stars called Herbig Ae stars. The models are axisymmetric and include starlight heating silicate grains sublimating and condensing to equilibrium at the local, time-dependent temperature and density and accretion stresses parameterizing the results of MHD magnetorotational turbulence models. The results compare well with radiation hydrostatic solutions and prove to be dynamically stable. Passing the model disks into Monte Carlo radiative transfer calculations, we show that the models satisfy observational constraints on the inner rim’s location. A small optically thin halo of hot dust naturally arises between the inner rim and the star. The inner rim has a substantial radial extent, corresponding to several disk scale heights. While the front’s overall position varies with the stellar luminosity, its radial extent depends on the mass accretion rate. A pressure maximum develops near the location of thermal ionization at temperatures of about 1000 K. The pressure maximum is capable of halting solid pebbles’ radial drift and concentrating them in a zone where temperatures are sufficiently high for annealing to form crystalline silicates.

  17. 1D and 2D urban dam-break flood modelling in Istanbul, Turkey

    NASA Astrophysics Data System (ADS)

    Ozdemir, Hasan; Neal, Jeffrey; Bates, Paul; Döker, Fatih

    2014-05-01

    Urban flood events are increasing in frequency and severity as a consequence of several factors such as reduced infiltration capacities due to continued watershed development, increased construction in flood prone areas due to population growth, the possible amplification of rainfall intensity due to climate change, sea level rise which threatens coastal development, and poorly engineered flood control infrastructure (Gallegos et al., 2009). These factors will contribute to increased urban flood risk in the future, and as a result improved modelling of urban flooding according to different causative factor has been identified as a research priority (Gallegos et al., 2009; Ozdemir et al. 2013). The flooding disaster caused by dam failures is always a threat against lives and properties especially in urban environments. Therefore, the prediction of dynamics of dam-break flows plays a vital role in the forecast and evaluation of flooding disasters, and is of long-standing interest for researchers. Flooding occurred on the Ayamama River (Istanbul-Turkey) due to high intensity rainfall and dam-breaching of Ata Pond in 9th September 2009. The settlements, industrial areas and transportation system on the floodplain of the Ayamama River were inundated. Therefore, 32 people were dead and millions of Euros economic loses were occurred. The aim of this study is 1 and 2-Dimensional flood modelling of the Ata Pond breaching using HEC-RAS and LISFLOOD-Roe models and comparison of the model results using the real flood extent. The HEC-RAS model solves the full 1-D Saint Venant equations for unsteady open channel flow whereas LISFLOOD-Roe is the 2-D shallow water model which calculates the flow according to the complete Saint Venant formulation (Villanueva and Wright, 2006; Neal et al., 2011). The model consists a shock capturing Godunov-type scheme based on the Roe Riemann solver (Roe, 1981). 3 m high resolution Digital Surface Model (DSM), natural characteristics of the pond

  18. D Recording for 2d Delivering - the Employment of 3d Models for Studies and Analyses -

    NASA Astrophysics Data System (ADS)

    Rizzi, A.; Baratti, G.; Jiménez, B.; Girardi, S.; Remondino, F.

    2011-09-01

    In the last years, thanks to the advances of surveying sensors and techniques, many heritage sites could be accurately replicated in digital form with very detailed and impressive results. The actual limits are mainly related to hardware capabilities, computation time and low performance of personal computer. Often, the produced models are not visible on a normal computer and the only solution to easily visualized them is offline using rendered videos. This kind of 3D representations is useful for digital conservation, divulgation purposes or virtual tourism where people can visit places otherwise closed for preservation or security reasons. But many more potentialities and possible applications are available using a 3D model. The problem is the ability to handle 3D data as without adequate knowledge this information is reduced to standard 2D data. This article presents some surveying and 3D modeling experiences within the APSAT project ("Ambiente e Paesaggi dei Siti d'Altura Trentini", i.e. Environment and Landscapes of Upland Sites in Trentino). APSAT is a multidisciplinary project funded by the Autonomous Province of Trento (Italy) with the aim documenting, surveying, studying, analysing and preserving mountainous and hill-top heritage sites located in the region. The project focuses on theoretical, methodological and technological aspects of the archaeological investigation of mountain landscape, considered as the product of sequences of settlements, parcelling-outs, communication networks, resources, and symbolic places. The mountain environment preserves better than others the traces of hunting and gathering, breeding, agricultural, metallurgical, symbolic activities characterised by different lengths and environmental impacts, from Prehistory to the Modern Period. Therefore the correct surveying and documentation of this heritage sites and material is very important. Within the project, the 3DOM unit of FBK is delivering all the surveying and 3D material to

  19. Modeling rainfall-runoff processes using smoothed particle hydrodynamics with mass-varied particles

    NASA Astrophysics Data System (ADS)

    Chang, Tsang-Jung; Chang, Yu-Sheng; Chang, Kao-Hua

    2016-12-01

    In this study, a novel treatment of adopting mass-varied particles in smoothed particle hydrodynamics (SPH) is proposed to solve the shallow water equations (SWEs) and model the rainfall-runoff process. Since SWEs have depth-averaged or cross-section-averaged features, there is no sufficient dimension to add rainfall particles. Thus, SPH-SWE methods have focused on modeling discharge flows in open channels or floodplains without rainfall. With the proposed treatment, the application of SPH-SWEs can be extended to rainfall-runoff processes in watersheds. First, the numerical procedures associated with using mass-varied particles in SPH-SWEs are introduced and derived. Then, numerical validations are conducted for three benchmark problems, including uniform rainfall over a 1D flat sloping channel, nonuniform rain falling over a 1D three-slope channel with different rainfall durations, and uniform rainfall over a 2D plot with complex topography. The simulated results indicate that the proposed treatment can avoid the necessity of a source term function of mass variation, and no additional particles are needed for the increase of mass. Rainfall-runoff processes can be well captured in the presence of hydraulic jumps, dry/wet bed flows, and supercritical/subcritical/transcritical flows. The proposed treatment using mass-varied particles was proven robust and reliable for modeling rainfall-runoff processes. It can provide a new alternative for investigating practical hydrological problems.

  20. Simulation of Subgrid Orographic Convection and Precipitation with 2-D Cloud-Resolving Models Embedded in a GCM Grid

    NASA Astrophysics Data System (ADS)

    Jung, J.; Arakawa, A.

    2015-12-01

    Through explicitly resolved cloud-scale processes by embedded 2-D cloud-resolving models (CRMs), the Multiscale Modeling Framework (MMF) known as the superparameterization has been reasonably successful to simulate various atmospheric events over a wide range of time scales. One thing to be justified is, however, if the influence of complex 3-D topography can be adequately represented by the embedded 2-D CRMs. In this study, simulations are performed in the presence of a variety of topography with embedded 3-D and 2-D CRMs in a single-column inactive GCM. Through the comparison between these simulations, it is demonstrated that the 2-D representation of topography is able to simulate the statistics of precipitation due to 3-D topography reasonably well as long as the topographic characteristics, such as the mean and standard deviation, are closely recognized. It is also shown that the use of two perpendicular sets of 2-D representations tends to reduce the error due to a 2-D representation.

  1. Lattice hydrodynamic model based traffic control: A transportation cyber-physical system approach

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Sun, Dihua; Liu, Weining

    2016-11-01

    Lattice hydrodynamic model is a typical continuum traffic flow model, which describes the jamming transition of traffic flow properly. Previous studies in lattice hydrodynamic model have shown that the use of control method has the potential to improve traffic conditions. In this paper, a new control method is applied in lattice hydrodynamic model from a transportation cyber-physical system approach, in which only one lattice site needs to be controlled in this control scheme. The simulation verifies the feasibility and validity of this method, which can ensure the efficient and smooth operation of the traffic flow.

  2. Activating receptor NKG2D targets RAE-1-expressing allogeneic neural precursor cells in a viral model of multiple sclerosis.

    PubMed

    Weinger, Jason G; Plaisted, Warren C; Maciejewski, Sonia M; Lanier, Lewis L; Walsh, Craig M; Lane, Thomas E

    2014-10-01

    Transplantation of major histocompatibility complex-mismatched mouse neural precursor cells (NPCs) into mice persistently infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV) results in rapid rejection that is mediated, in part, by T cells. However, the contribution of the innate immune response to allograft rejection in a model of viral-induced neurological disease has not been well defined. Herein, we demonstrate that the natural killer (NK) cell-expressing-activating receptor NKG2D participates in transplanted allogeneic NPC rejection in mice persistently infected with JHMV. Cultured NPCs derived from C57BL/6 (H-2(b) ) mice express the NKG2D ligand retinoic acid early precursor transcript (RAE)-1 but expression was dramatically reduced upon differentiation into either glia or neurons. RAE-1(+) NPCs were susceptible to NK cell-mediated killing whereas RAE-1(-) cells were resistant to lysis. Transplantation of C57BL/6-derived NPCs into JHMV-infected BALB/c (H-2(d) ) mice resulted in infiltration of NKG2D(+) CD49b(+) NK cells and treatment with blocking antibody specific for NKG2D increased survival of allogeneic NPCs. Furthermore, transplantation of differentiated RAE-1(-) allogeneic NPCs into JHMV-infected BALB/c mice resulted in enhanced survival, highlighting a role for the NKG2D/RAE-1 signaling axis in allograft rejection. We also demonstrate that transplantation of allogeneic NPCs into JHMV-infected mice resulted in infection of the transplanted cells suggesting that these cells may be targets for infection. Viral infection of cultured cells increased RAE-1 expression, resulting in enhanced NK cell-mediated killing through NKG2D recognition. Collectively, these results show that in a viral-induced demyelination model, NK cells contribute to rejection of allogeneic NPCs through an NKG2D signaling pathway.

  3. Pool Formation in Boulder-Bed Streams: Implications From 1-D and 2-D Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Harrison, L. R.; Keller, E. A.

    2003-12-01

    In mountain rivers of Southern California, boulder-large roughness elements strongly influence flow hydraulics and pool formation and maintenance. In these systems, boulders appear to control the stream morphology by converging flow and producing deep pools during channel forming discharges. Our research goal is to develop quantitative relationships between boulder roughness elements, temporal patterns of scour and fill, and geomorphic processes that are important in producing pool habitat. The longitudinal distribution of shear stress, unit stream power and velocity were estimated along a 48 m reach on Rattlesnake Creek, using the HEC-RAS v 3.0 and River 2-D numerical models. The reach has an average slope of 0.02 and consists of a pool-riffle sequence with a large boulder constriction directly above the pool. Model runs were performed for a range of stream discharges to test if scour and fill thresholds for pool and riffle environments could be identified. Results from the HEC-RAS simulations identified that thresholds in shear stress, unit stream power and mean velocity occur above a discharge of 5.0 cms. Results from the one-dimensional analysis suggest that the reversal in competency is likely due to changes in cross-sectional width at varying flows. River 2-D predictions indicated that strong transverse velocity gradients were present through the pool at higher modeled discharges. At a flow of 0.5 cms (roughly 1/10th bankfull discharge), velocities are estimated at 0.6 m/s and 1.3 m/s for the pool and riffle, respectively. During discharges of 5.15 cms (approximate bankfull discharge), the maximum velocity in the pool center increased to nearly 3.0 m/s, while the maximum velocity over the riffle is estimated at approximately 2.5 cms. These results are consistent with those predicted by HEC-RAS, though the reversal appears to be limited to a narrow jet that occurs through the pool head and pool center. Model predictions suggest that the velocity reversal is

  4. On craton thinning/destruction: Insight from 2D thermal-mechanical numerical modeling

    NASA Astrophysics Data System (ADS)

    Liao, J.

    2014-12-01

    Although most cratons maintain stable, some exceptions are present, such as the North China craton, North Atlantic craton, and Wyoming craton, which have experienced dramatic lithospheric deformation/thinning. Mechanisms triggering cratonic thinning remains enigmatic [Lee et al., 2011]. Using a 2D thermo-mechanical coupled numerical model [Gerya and Yuen, 2007], we investigate two possible mechanisms: (1) stratification of cratonic lithospheric mantle, and (2) rheological weakening due to hydration.Lithospheric mantle stratification is a common feature in cratonic areas which has been demonstrated by geophysical and geochemical studies [Thybo and Perchuc, 1997; Griffin et al., 2004; Romanowicz, 2009; Rychert and Shearer, 2009; Yuan and Romanowicz, 2010]. The influence of lithospheric mantle stratification during craton evolution remains poorly understood. A rheologically weak layer representing hydrated and/or metasomatized composition is implemented in the lithospheric mantle. Our results show that the weak mantle layer changes the dynamics of lithospheric extension by enhancing the deformation of the overlying mantle and crust and inhibiting deformation of the underlying mantle [Liao et al., 2013; Liao and Gerya, 2014]. Modeling results are compared with North China and North Atlantic cratons. Our work indicates that although the presence of a weak layer may not be sufficient to initiate craton deformation, it enhances deformation by lowering the required extensional plate boundary force. Rheological weakening due to hydration is a possible mechanism triggering/enhancing craton deformation, especially for cratons jaxtaposing with a subduction, since water can release from a subducting slab. We investigate the influence of wet mantle flow laws [Hirth and Kohlstedt, 2003], in which a water parameter (i.e. constant water content) is involved. Our results show that wet dislocation alone does not accelerate cratonic deformation significantly. However, if wet diffusion

  5. Dynamical Models of SAURON and CALIFA Galaxies: 1D and 2D Rotational Curves

    NASA Astrophysics Data System (ADS)

    Kalinova, Veselina; van de Ven, G.; Lyubenova, M.; Falcon-Barroso, J.; van den Bosch, R.

    2013-01-01

    The mass of a galaxy is the most important parameter to understand its structure and evolution. The total mass we can infer by constructing dynamical models that fit the motion of the stars and gas in the galaxy. The dark matter content then follows after subtracting the luminous matter inferred from colors and/or spectra. Here, we present the mass distribution of a sample of 18 late-type spiral (Sb-Sd) galaxies, using two-dimensional stellar kinematics obtained with the integral-field spectrograph SAURON. The observed second order velocity moments of these galaxies are fitted with solutions of the Axisymmetric Jeans equations and give us an accurate estimation of the mass-to-light ratio profiles and rotational curves. The rotation curves of the galaxies are obtained by the Asymmetric Drift Correction (ADC) and Multi-Gaussian Expansion (MGE) methods, corresponding to one- and two-dimensional mass distribution. Their comparison shows that the mass distribution based on the 2D stellar kinematics is much more reliable than 1D one. SAURON integral field of view looks at the inner parts of the galaxies in contrast with CALIFA survey. CALIFA survey provides PMAS/PPAK integral-field spectroscopic data of ~ 600 nearby galaxies as part of the Calar Alto Legacy Integral Field Area. We show the first CALIFA dynamical models of different morphological type of galaxies, giving the clue about the mass distribution of galaxies through the whole Hubble sequence and their evolution from the blue cloud to the red sequence.

  6. Facial Sketch Synthesis Using 2D Direct Combined Model-Based Face-Specific Markov Network.

    PubMed

    Tu, Ching-Ting; Chan, Yu-Hsien; Chen, Yi-Chung

    2016-08-01

    A facial sketch synthesis system is proposed, featuring a 2D direct combined model (2DDCM)-based face-specific Markov network. In contrast to the existing facial sketch synthesis systems, the proposed scheme aims to synthesize sketches, which reproduce the unique drawing style of a particular artist, where this drawing style is learned from a data set consisting of a large number of image/sketch pairwise training samples. The synthesis system comprises three modules, namely, a global module, a local module, and an enhancement module. The global module applies a 2DDCM approach to synthesize the global facial geometry and texture of the input image. The detailed texture is then added to the synthesized sketch in a local patch-based manner using a parametric 2DDCM model and a non-parametric Markov random field (MRF) network. Notably, the MRF approach gives the synthesized results an appearance more consistent with the drawing style of the training samples, while the 2DDCM approach enables the synthesis of outcomes with a more derivative style. As a result, the similarity between the synthesized sketches and the input images is greatly improved. Finally, a post-processing operation is performed to enhance the shadowed regions of the synthesized image by adding strong lines or curves to emphasize the lighting conditions. The experimental results confirm that the synthesized facial images are in good qualitative and quantitative agreement with the input images as well as the ground-truth sketches provided by the same artist. The representing power of the proposed framework is demonstrated by synthesizing facial sketches from input images with a wide variety of facial poses, lighting conditions, and races even when such images are not included in the training data set. Moreover, the practical applicability of the proposed framework is demonstrated by means of automatic facial recognition tests.

  7. Lattice Models for Granular-Like Velocity Fields: Hydrodynamic Description

    NASA Astrophysics Data System (ADS)

    Manacorda, Alessandro; Plata, Carlos A.; Lasanta, Antonio; Puglisi, Andrea; Prados, Antonio

    2016-08-01

    A recently introduced model describing—on a 1d lattice—the velocity field of a granular fluid is discussed in detail. The dynamics of the velocity field occurs through next-neighbours inelastic collisions which conserve momentum but dissipate energy. The dynamics is described through the corresponding Master Equation for the time evolution of the probability distribution. In the continuum limit, equations for the average velocity and temperature fields with fluctuating currents are derived, which are analogous to hydrodynamic equations of granular fluids when restricted to the shear modes. Therefore, the homogeneous cooling state, with its linear instability, and other relevant regimes such as the uniform shear flow and the Couette flow states are described. The evolution in time and space of the single particle probability distribution, in all those regimes, is also discussed, showing that the local equilibrium is not valid in general. The noise for the momentum and energy currents, which are correlated, are white and Gaussian. The same is true for the noise of the energy sink, which is usually negligible.

  8. MAG2D: Interactive 2-1/2-dimensional magnetic modeling program (User's Guide and Documentation for Rev. 1)

    SciTech Connect

    Nutter, C.

    1981-04-01

    MAG2D is an interactive computer program used for modeling 2-1/2-dimensional magnetic data. A forward algorithm is used to give the theoretical attraction of magnetic intensity at a station due to a perturbing body given by the initial model. The resultant model can then be adjusted for a better fit by a combination of manual adjustment, one-dimensional automatic search, and Marquardt inversion. MAG2D has an interactive data management system for data manipulation and display built around subroutines to do a forward problem, a one-dimensional direct search and an inversion. These subroutines were originally separate batch-mode programs.

  9. Building a 2.5D Digital Elevation Model from 2D Imagery

    NASA Technical Reports Server (NTRS)

    Padgett, Curtis W.; Ansar, Adnan I.; Brennan, Shane; Cheng, Yang; Clouse, Daniel S.; Almeida, Eduardo

    2013-01-01

    When projecting imagery into a georeferenced coordinate frame, one needs to have some model of the geographical region that is being projected to. This model can sometimes be a simple geometrical curve, such as an ellipse or even a plane. However, to obtain accurate projections, one needs to have a more sophisticated model that encodes the undulations in the terrain including things like mountains, valleys, and even manmade structures. The product that is often used for this purpose is a Digital Elevation Model (DEM). The technology presented here generates a high-quality DEM from a collection of 2D images taken from multiple viewpoints, plus pose data for each of the images and a camera model for the sensor. The technology assumes that the images are all of the same region of the environment. The pose data for each image is used as an initial estimate of the geometric relationship between the images, but the pose data is often noisy and not of sufficient quality to build a high-quality DEM. Therefore, the source imagery is passed through a feature-tracking algorithm and multi-plane-homography algorithm, which refine the geometric transforms between images. The images and their refined poses are then passed to a stereo algorithm, which generates dense 3D data for each image in the sequence. The 3D data from each image is then placed into a consistent coordinate frame and passed to a routine that divides the coordinate frame into a number of cells. The 3D points that fall into each cell are collected, and basic statistics are applied to determine the elevation of that cell. The result of this step is a DEM that is in an arbitrary coordinate frame. This DEM is then filtered and smoothed in order to remove small artifacts. The final step in the algorithm is to take the initial DEM and rotate and translate it to be in the world coordinate frame [such as UTM (Universal Transverse Mercator), MGRS (Military Grid Reference System), or geodetic] such that it can be saved in

  10. A hydrodynamics-reaction kinetics coupled model for evaluating bioreactors derived from CFD simulation.

    PubMed

    Wang, Xu; Ding, Jie; Guo, Wan-Qian; Ren, Nan-Qi

    2010-12-01

    Investigating how a bioreactor functions is a necessary precursor for successful reactor design and operation. Traditional methods used to investigate flow-field cannot meet this challenge accurately and economically. Hydrodynamics model can solve this problem, but to understand a bioreactor in sufficient depth, it is often insufficient. In this paper, a coupled hydrodynamics-reaction kinetics model was formulated from computational fluid dynamics (CFD) code to simulate a gas-liquid-solid three-phase biotreatment system for the first time. The hydrodynamics model is used to formulate prediction of the flow field and the reaction kinetics model then portrays the reaction conversion process. The coupled model is verified and used to simulate the behavior of an expanded granular sludge bed (EGSB) reactor for biohydrogen production. The flow patterns were visualized and analyzed. The coupled model also demonstrates a qualitative relationship between hydrodynamics and biohydrogen production. The advantages and limitations of applying this coupled model are discussed.

  11. A 2-D process-based model for suspended sediment dynamics: A first step towards ecological modeling

    USGS Publications Warehouse

    Achete, F. M.; van der Wegen, M.; Roelvink, D.; Jaffe, B.

    2015-01-01

    In estuaries suspended sediment concentration (SSC) is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. Sediment dynamics differs depending on sediment supply and hydrodynamic forcing conditions that vary over space and over time. A robust sediment transport model is a first step in developing a chain of models enabling simulations of contaminants, phytoplankton and habitat conditions. This works aims to determine turbidity levels in the complex-geometry delta of the San Francisco estuary using a process-based approach (Delft3D Flexible Mesh software). Our approach includes a detailed calibration against measured SSC levels, a sensitivity analysis on model parameters and the determination of a yearly sediment budget as well as an assessment of model results in terms of turbidity levels for a single year, water year (WY) 2011. Model results show that our process-based approach is a valuable tool in assessing sediment dynamics and their related ecological parameters over a range of spatial and temporal scales. The model may act as the base model for a chain of ecological models assessing the impact of climate change and management scenarios. Here we present a modeling approach that, with limited data, produces reliable predictions and can be useful for estuaries without a large amount of processes data.

  12. A 2-D process-based model for suspended sediment dynamics: a first step towards ecological modeling

    NASA Astrophysics Data System (ADS)

    Achete, F. M.; van der Wegen, M.; Roelvink, D.; Jaffe, B.

    2015-06-01

    In estuaries suspended sediment concentration (SSC) is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. Sediment dynamics differs depending on sediment supply and hydrodynamic forcing conditions that vary over space and over time. A robust sediment transport model is a first step in developing a chain of models enabling simulations of contaminants, phytoplankton and habitat conditions. This works aims to determine turbidity levels in the complex-geometry delta of the San Francisco estuary using a process-based approach (Delft3D Flexible Mesh software). Our approach includes a detailed calibration against measured SSC levels, a sensitivity analysis on model parameters and the determination of a yearly sediment budget as well as an assessment of model results in terms of turbidity levels for a single year, water year (WY) 2011. Model results show that our process-based approach is a valuable tool in assessing sediment dynamics and their related ecological parameters over a range of spatial and temporal scales. The model may act as the base model for a chain of ecological models assessing the impact of climate change and management scenarios. Here we present a modeling approach that, with limited data, produces reliable predictions and can be useful for estuaries without a large amount of processes data.

  13. Hydrodynamic modeling of Singapore's coastal waters: Nesting and model accuracy

    NASA Astrophysics Data System (ADS)

    Hasan, G. M. Jahid; van Maren, Dirk Sebastiaan; Ooi, Seng Keat

    2016-01-01

    The tidal variation in Singapore's coastal waters is influenced by large-scale, complex tidal dynamics (by interaction of the Indian Ocean and the South China Sea) as well as monsoon-driven low frequency variations, requiring a model with large spatial coverage. Close to the shores, the complex topography, influenced by headlands and small islands, requires a high resolution model to simulate tidal dynamics. This can be achieved through direct nesting or multi-scale nesting, involving multiple model grids. In this paper, we investigate the effect of grid resolution and multi-scale nesting on the tidal dynamics in Singapore's coastal waters, by comparing model results with observations using different statistical techniques. The results reveal that the intermediate-scale model is generally sufficiently accurate (equal to or better than the most refined model), but also that the most refined model is only more accurate when nested in the intermediate scale model (requiring multi-scale nesting). This latter is the result of the complex tidal dynamics around Singapore, where the dominantly diurnal tidal currents are decoupled from the semi-diurnal water level variations. Furthermore, different techniques to quantify model accuracy (harmonic analysis, basic statistics and more complex statistics) are inconsistent in determining which model is more accurate.

  14. Two-Dimensional Depth-Averaged Hydrodynamic Model for Meandering Channels

    NASA Astrophysics Data System (ADS)

    Yu, C.; Duan, J. G.

    2013-12-01

    This research is to simulate meandering channel processes using a two-dimensional depth-averaged hydrodynamic model. The complex interactions among unsteady flow, turbulence, secondary flow, sediment transport and bank erosion are simulated in the model. The governing equations are the two-dimensional depth-averaged Reynolds-averaged Navier-Stokes (2D-RANS) equations and the Exner equation for bed elevation changes. The k-ɛ turbulence model is coupled into the governing equations to calculate the Reynolds stresses in terms of the eddy viscosity concept. The effect of secondary flow, which represents the discrepancy between depth-averaged velocity and actual velocity, is expressed as the dispersion terms in momentum equations. Non-equilibrium sediment transport algorithm is adapted which accounts for the spatial lag between the instantaneous flow properties and the rate of sediment transport. During the process of adaptation, the sediment transport rate gradually develops into the transport capacity of a given flow condition. The model adopts the nonequilibrium total load sediment transport equation that uses the adaptation length to calculate the actual rate of sediment transport. The evolution of channel bed and bank is modeled by the general Exner equation which accounts for both vertical deformation of bed elevation as well as lateral migration of bank. The system of governing equations is solved by the Godunov-type finite volume method on a rectangular grid. The Harten-Lax-van Leer-Contact (HLLC) approximate Riemann solver is adapted to this system of seven equations and the advective fluxes across each cell interface are simultaneously calculated by the extended HLLC solver. At each time step, the diffusion terms in the governing equations are solved by the implicit Euler scheme which is more stable than explicit scheme for the diffusion terms. The source terms are discretized in a well-balanced way to retain the C-property of the proposed hydrodynamic model

  15. 2D condensation model for the inner Solar Nebula: an enstatite-rich environment

    NASA Astrophysics Data System (ADS)

    Pignatale, F. C.; Liffman, Kurt; Maddison, Sarah T.; Brooks, Geoffrey

    2016-04-01

    Infrared observations provide the dust composition in the protoplanetary discs surface layers, but cannot probe the dust chemistry in the mid-plane, where planet formation occurs. Meteorites show that dynamics was important in determining the dust distribution in the Solar Nebula and needs to be considered if we are to understand the global chemistry in discs. 1D radial condensation sequences can only simulate one disc layer at a time and cannot describe the global chemistry or the complexity of meteorites. To address these limitations, we compute for the first time the 2D distribution of condensates in the inner Solar Nebula using a thermodynamic equilibrium model, and derive time-scales for vertical settling and radial migration of dust. We find two enstatite-rich zones within 1 AU from the young Sun: a band ˜0.1 AU thick in the upper optically-thin layer of the disc interior to 0.8 AU, and in the optically-thick disc mid-plane out to ˜0.4 AU. The two enstatite-rich zones support recent evidence that Mercury and enstatite chondrites (ECs) shared a bulk material with similar composition. Our results are also consistent with infrared observation of protoplanetary disc which show emission of enstatite-rich dust in the inner surface of discs. The resulting chemistry and dynamics suggests that the formation of the bulk material of ECs occurred in the inner surface layer of the disc, within 0.4 AU. We also propose a simple alternative scenario in which gas fractionation and vertical settling of the condensates lead to an enstatite-chondritic bulk material.

  16. Monitoring Mediterranean marine pollution using remote sensing and hydrodynamic modelling

    NASA Astrophysics Data System (ADS)

    La Loggia, Goffredo; Capodici, Fulvio; Ciraolo, Giuseppe; Drago, Aldo; Maltese, Antonino

    2011-11-01

    Human activities contaminate both coastal areas and open seas, even though impacts are different in terms of pollutants, ecosystems and recovery time. In particular, Mediterranean offshore pollution is mainly related to maritime transport of oil, accounting for 25% of the global maritime traffic and, during the last 25 years, for nearly 7% of the world oil accidents, thus causing serious biological impacts on both open sea and coastal zone habitats. This paper provides a general review of maritime pollution monitoring using integrated approaches of remote sensing and hydrodynamic modeling; focusing on the main results of the MAPRES (Marine pollution monitoring and detection by aerial surveillance and satellite images) research project on the synergistic use of remote sensing, forecasting, cleanup measures and environmental consequences. The paper also investigates techniques of oil spill detection using SAR images, presenting the first results of "Monitoring of marine pollution due to oil slick", a COSMO-SkyMed funded research project where X-band SAR constellation images provided by the Italian Space Agency are used. Finally, the prospect of using real time observations of marine surface conditions is presented through CALYPSO project (CALYPSO-HF Radar Monitoring System and Response against Marine Oil Spills in the Malta Channel), partly financed by the EU under the Operational Programme Italia-Malta 2007-2013. The project concerns the setting up of a permanent and fully operational HF radar observing system, capable of recording surface currents (in real-time with hourly updates) in the stretch of sea between Malta and Sicily. A combined use of collected data and numerical models, aims to optimize intervention and response in the case of marine oil spills.

  17. Understanding how hydrodynamics affects particle transport in saturated fractures using modelling and experimental results

    NASA Astrophysics Data System (ADS)

    Cianflone, S.; Lakhian, V.; Dickson, S. E.

    2013-12-01

    Approximately 35% of Canadians and Americans utilize groundwater for drinking water and as such, it is essential to understand the mechanisms which may jeopardize this resource. Porous media aquifers typically provide significant removal of particulate contaminants (eg. viruses, bacteria); however, fractures in fractured rock aquifers and aquitards often provide pathways for particles to move in greater numbers and speed than in porous media. Thus, understanding flow and transport in fractures is important for the preservation and use of groundwater sources. Models based on coupling flow and transport equations can be used in understanding transport in fractures. Both experiments and simulations have shown that there are inconsistencies in current transport, attachment and detachment theory, particularly when particle size is varied. The assumption that hydrodynamic effects do not significantly affect transport of particles is likely untrue. As well, it has been shown that preferential flow paths occur in fractures, but the effects of path specific properties such as fracture geometry have yet to be thoroughly explored. It has been observed that eddies caused by local changes in geometry exist in fractures in the environment and models have demonstrated that such eddies will retard the flow of particles. In this work, two 2D fractures were randomly generated with a mean aperture of approximately 2mm. Finite element software, COMSOL Multiphysics, generated flow fields through the fractures by numerically solving the steady-state Navier-Stokes equation for varied flow rates. Eddies were observed in one of the fractures at both low (~1 m/day) and high (>100 m/day) velocities. A program was written using random walk particle tracking to simulate transport. Theories of attachment, detachment and matrix flow are not included in this model in order to isolate hydrodynamic forces. In combination with the modelling procedure, the two fractures were inscribed into pieces of

  18. Large-scale hydrodynamic modeling of the middle Yangtze River Basin with complex river-lake interactions

    NASA Astrophysics Data System (ADS)

    Lai, Xijun; Jiang, Jiahu; Liang, Qiuhua; Huang, Qun

    2013-06-01

    The flow regime in the middle Yangtze River Basin is experiencing rapid changes due to intensive human activities and ongoing climate change. The middle reach of Yangtze River and the associated water system are extremely difficult to be reliably modeled due to highly complex interactions between the main stream and many tributaries and lakes. This paper presents a new Coupled Hydrodynamic Analysis Model (CHAM) designed for simulating the large-scale water system in the middle Yangtze River Basin, featured with complex river-lake interactions. CHAM dynamically couples a one-dimensional (1-D) unsteady flow model and a two-dimensional (2-D) hydrodynamic model using a new coupling algorithm that is particularly suitable for large-scale water systems. Numerical simulations are carried out to reproduce the flow regime in the region in 1998 when a severe flood event occurred and in 2006 when it experienced an extremely dry year. The model is able to reproduce satisfactorily the major physical processes featured with seasonal wetting and drying controlled by strong river-lake interactions. This indicates that the present model provides a promising tool for predicting complex flow regimes with remarkable seasonal changes and strong river-lake interactions.

  19. A coupled wave-hydrodynamic model of an atoll with high friction: Mechanisms for flow, connectivity, and ecological implications

    NASA Astrophysics Data System (ADS)

    Rogers, Justin S.; Monismith, Stephen G.; Fringer, Oliver B.; Koweek, David A.; Dunbar, Robert B.

    2017-02-01

    We present a hydrodynamic analysis of an atoll system from modeling simulations using a coupled wave and three-dimensional hydrodynamic model (COAWST) applied to Palmyra Atoll in the Central Pacific. This is the first time the vortex force formalism has been applied in a highly frictional reef environment. The model results agree well with field observations considering the model complexity in terms of bathymetry, bottom roughness, and forcing (waves, wind, metrological, tides, regional boundary conditions), and open boundary conditions. At the atoll scale, strong regional flows create flow separation and a well-defined wake, similar to 2D flow past a cylinder. Circulation within the atoll is typically forced by waves and tides, with strong waves from the north driving flow from north to south across the atoll, and from east to west through the lagoon system. Bottom stress is significant for depths less than about 60 m, and in addition to the model bathymetry, is important for correct representation of flow in the model. Connectivity within the atoll system shows that the general trends follow the mean flow paths. However, some connectivity exists between all regions of the atoll system due to nonlinear processes such as eddies and tidal phasing. Moderate wave stress, short travel time (days since entering the reef system), and low temperature appear to be the most ideal conditions for high coral cover at this site.

  20. Ejecting basaltic achondrites from Vesta: Hydrodynamical impact models

    NASA Technical Reports Server (NTRS)

    Asphaug, E.; Melosh, H. J.; Ryan, E.

    1993-01-01

    Vesta is a large asteroid whose crust is mostly basaltic. Spectral heterogeneity suggests a sizable olivine feature which may be explained as impact excavation. The spectral data probably show a localized feature approximately 200 km in diameter or a diffuse feature approximately 400 km in diameter. Lightcurve irregularities suggest heterogeneity on a similar scale. This heterogeneity may represent the crater bowl, the extent of its ejecta deposit, or indeed something unrelated to cratering. In any case, drawing direct inferences about the state of Vesta's surface on the basis of these observations involves substantial speculation. We are still far from understanding the boundary between cratering and catastrophic disruption, particularly on targets for which strength and self-gravity both matter. But we are now able to model the underlying physical process -- dynamic fragmentation -- accurately with fragmentation hydrocodes such as SALE 2D and SPH3D. We present several impact scenarios for Vesta; our study is similar to a previous impact model for the formation of Stickney crater on Phobos. We illustrate the effects of impactors of different sizes and velocities, and the effect of gravity and structural inhomogeneity.

  1. A MODIFIED LIGHT TRANSMISSION VISUALIZATION METHOD FOR DNAPL SATURATION MEASUREMENTS IN 2-D MODELS

    EPA Science Inventory

    In this research, a light transmission visualization (LTV) method was used to quantify dense non-aqueous phase liquids (DNAPL) saturation in two-dimensional (2-D), two fluid phase systems. The method is an expansion of earlier LTV methods and takes into account both absorption an...

  2. Verification of the two-dimensional hydrodynamic model based on remote sensing

    NASA Astrophysics Data System (ADS)

    Sazonov, Alexey; Mikhailukova, Polina; Krylenko, Inna; Frolova, Natalya; Kireeva, Mariya

    2016-04-01

    Mathematical modeling methods are used more and more actively to evaluate possible damage, identify potential flood zone and the influence of individual factors affecting the river during the passage of the flood. Calculations were performed by means of domestic software complex «STREAM-2D» which is based on the numerical solution of two-dimensional St. Venant equations. One of the major challenges in mathematical modeling is the verification of the model. This is usually made using data on water levels from hydrological stations: the smaller the difference of the actual level and the simulated one, the better the quality of the model used. Data from hydrological stations are not always available, so alternative sources of verification, such as remote sensing, are increasingly used. The aim of this work is to develop a method of verification of hydrodynamic model based on a comparison of actual flood zone area, which in turn is determined on the basis of the automated satellite image interpretation methods for different imaging systems and flooded area obtained in the course of the model. The study areas are Lena River, The North Dvina River, Amur River near Blagoveshchensk. We used satellite images made by optical and radar sensors: SPOT-5/HRG, Resurs-F, Radarsat-2. Flooded area were calculated using unsupervised classification (ISODATA and K-mean) for optical images and segmentation for Radarsat-2. Knowing the flow rate and the water level at a given date for the upper and lower limits of the model, respectively, it is possible to calculate flooded area by means of program STREAM-2D and GIS technology. All the existing vector layers with the boundaries of flooding are included in a GIS project for flood area calculation. This study was supported by the Russian Science Foundation, project no. 14-17-00155.

  3. Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate-Scale Hydrodynamic Model

    SciTech Connect

    Yang, Zhaoqing; Khangaonkar, Tarang; Labiosa, Rochelle G.; Kim, Taeyun

    2010-11-30

    The Washington State Department of Ecology contracted with Pacific Northwest National Laboratory to develop an intermediate-scale hydrodynamic and water quality model to study dissolved oxygen and nutrient dynamics in Puget Sound and to help define potential Puget Sound-wide nutrient management strategies and decisions. Specifically, the project is expected to help determine 1) if current and potential future nitrogen loadings from point and non-point sources are significantly impairing water quality at a large scale and 2) what level of nutrient reductions are necessary to reduce or dominate human impacts to dissolved oxygen levels in the sensitive areas. In this study, an intermediate-scale hydrodynamic model of Puget Sound was developed to simulate the hydrodynamics of Puget Sound and the Northwest Straits for the year 2006. The model was constructed using the unstructured Finite Volume Coastal Ocean Model. The overall model grid resolution within Puget Sound in its present configuration is about 880 m. The model was driven by tides, river inflows, and meteorological forcing (wind and net heat flux) and simulated tidal circulations, temperature, and salinity distributions in Puget Sound. The model was validated against observed data of water surface elevation, velocity, temperature, and salinity at various stations within the study domain. Model validation indicated that the model simulates tidal elevations and currents in Puget Sound well and reproduces the general patterns of the temperature and salinity distributions.

  4. MODELING HOW A HURRICANE BARRIER IN NEW BEDFORD HARBOR, MASSACHUSETTS, AFFECTS THE HYDRODYNAMICS AND RESIDENCE TIMES

    EPA Science Inventory

    Two-dimensional hydrodynamic and transport models were used to simulate tidal and subtidal circulation, residence times, and the longitudinal distributions of conservative constituents in New Bedford Harbor, Massachusetts, before and after a hurricane barrier was constructed. The...

  5. The 2005 Vazcun Valley Lahar: Evaluation of the TITAN2D Two-Phase Flow Model Using an Actual Event.

    NASA Astrophysics Data System (ADS)

    Williams, R.; Stinton, A. J.; Sheridan, M. F.

    2005-12-01

    TITAN2D is a depth-averaged, thin-layer computational fluid dynamics (CFD) code, suitable for simulating a variety of geophysical mass flows. TITAN2D output data include pile thickness and flow momentum at each time step for all cells traversed by the flow during the simulation. From this the flow limit, run-out path, pile velocity, deposit thickness, and travel time can be calculated. Results can be visualized in the open source GRASS GIS software or with the built-in TITAN2D viewer. A new two-phase TITAN2D version allows simulation of flows containing various mixtures of water and solids. The purpose of this study is to compare simulations by the two-phase flow version of TITAN2D with an actual event. The chosen natural flow is a small ash-rich lahar (volume approximately 60,000 m3) that occurred on 12 February 2005 in the Vazcún Valley, located on the north-east flank of Volcán Tungurahua, Ecuador. Lahars and pyroclastic flows along this valley could potentially threaten the 20,000 inhabitants living in and near the city of Baños. A variety of data sources exist for this lahar, including: pre- and post-event meter-scale topography, and photographic, video, seismic and acoustic flow monitoring (AFM) records from during the event. These data permit detailed comparisons between the dynamics of the actual lahar and those of the TITAN2D simulated flow. In particular, detailed comparisons are made between run-up heights, flow velocity, inundation area, and deposit area and thickness. Simulations utilize a variety of data derived from field observations such as lahar volume, solid to pore-fluid ratio and pre-event topography. TITAN2D is important in modeling lahars because it allows assessment of the impact of the flows on buildings and infrastructure lifelines located near drainages that descend from volcanoes.

  6. Comparison of 2D and 3D modeled tumor motion estimation/prediction for dynamic tumor tracking during arc radiotherapy.

    PubMed

    Liu, Wu; Ma, Xiangyu; Yan, Huagang; Chen, Zhe; Nath, Ravinder; Li, Haiyun

    2017-03-06

    Many real-time imaging techniques have been developed to localize the target in 3D space or in 2D beam's eye view (BEV) plane for intrafraction motion tracking in radiation therapy. With tracking system latency, 3D-modeled method is expected to be more accurate even in terms of 2D BEV tracking error. No quantitative analysis, however, has been reported. In this study, we simulated co-planar arc deliveries using respiratory motion data acquired from 42 patients to quantitatively compare the accuracy between 2D BEV and 3D-modeled tracking in arc therapy and determine whether 3D information is needed for motion tracking. We used our previously developed low kV dose adaptive MV-kV imaging and motion compensation framework as a representative of 3D-modeled methods. It optimizes the balance between additional kV imaging dose and 3D tracking accuracy and solves the MLC blockage issue. With simulated Gaussian marker detection errors (zero mean and 0.39 mm standard deviation) and ~155/310/460 ms tracking system latencies, the mean percentage of time that the target moved >2 mm from the predicted 2D BEV position are 1.1%/4.0%/7.8% and 1.3%/5.8%/11.6% for 3D-modeled and 2D-only tracking, respectively. The corresponding average BEV RMS errors are 0.67/0.90/1.13 mm and 0.79/1.10/1.37 mm. Compared to the 2D method, the 3D method reduced the average RMS unresolved motion along the beam direction from ~3 mm to ~1 mm, resulting on average only <1% dosimetric advantage in the depth direction. Only for a small fraction of the patients, when tracking latency is long, the 3D-modeled method showed significant improvement of BEV tracking accuracy, indicating potential dosimetric advantage. However, if the tracking latency is short (~150 ms or less), those improvements are limited. Therefore, 2D BEV tracking has sufficient targeting accuracy for most clinical cases. The 3D technique is, however, still important in solving the MLC blockage problem during 2D BEV tracking.

  7. Modeling of Waves, Hydrodynamics and Sediment Transport for Protection of Wetlands at Braddock Bay, New York

    DTIC Science & Technology

    2015-03-01

    Support Program Modeling of Waves, Hydrodynamics and Sediment Transport for Protection of Wetlands at Braddock Bay, New York En gi ne er R es ea...Operations Technical Support Program ERDC TR-14-8 March 2015 Modeling of Waves, Hydrodynamics and Sediment Transport for Protection of Wetlands...Corps of Engineers (USACE), Buffalo Dis- trict, is conducting a study to evaluate shoreline protection measures for coastal wetlands at Braddock Bay

  8. Using a homology model of cytochrome P450 2D6 to predict substrate site of metabolism

    NASA Astrophysics Data System (ADS)

    Unwalla, Rayomand J.; Cross, Jason B.; Salaniwal, Sumeet; Shilling, Adam D.; Leung, Louis; Kao, John; Humblet, Christine

    2010-03-01

    CYP2D6 is an important enzyme that is involved in first pass metabolism and is responsible for metabolizing 25% of currently marketed drugs. A homology model of CYP2D6 was built using X-ray structures of ligand-bound CYP2C5 complexes as templates. This homology model was used in docking studies to rationalize and predict the site of metabolism of known CYP2D6 substrates. While the homology model was generally found to be in good agreement with the recently solved apo (ligand-free) X-ray structure of CYP2D6, significant differences between the structures were observed in the B' and F-G helical region. These structural differences are similar to those observed between ligand-free and ligand-bound structures of other CYPs and suggest that these conformational changes result from induced-fit adaptations upon ligand binding. By docking to the homology model using Glide, it was possible to identify the correct site of metabolism for a set of 16 CYP2D6 substrates 85% of the time when the 5 top scoring poses were examined. On the other hand, docking to the apo CYP2D6 X-ray structure led to a loss in accuracy in predicting the sites of metabolism for many of the CYP2D6 substrates considered in this study. These results demonstrate the importance of describing substrate-induced conformational changes that occur upon binding. The best results were obtained using Glide SP with van der Waals scaling set to 0.8 for both the receptor and ligand atoms. A discussion of putative binding modes that explain the distribution of metabolic sites for substrates, as well as a relationship between the number of metabolic sites and substrate size, are also presented. In addition, analysis of these binding modes enabled us to rationalize the typical hydroxylation and O-demethylation reactions catalyzed by CYP2D6 as well as the less common N-dealkylation.

  9. An influence of solar activity on latitudinal distribution of atmospheric ozone and temperature in 2-D radiative-photochemical model

    NASA Technical Reports Server (NTRS)

    Dyominov, I. G.

    1989-01-01

    On the basis of the 2-D radiative-photochemical model of the ozone layer at heights 0 to 60 km in the Northern Hemisphere there are revealed and analyzed in detail the characteristic features of the season-altitude-latitude variations of ozone and temperature due to changes of the solar flux during the 11 year cycle, electron and proton precipitations.

  10. Coupling hydrodynamic and wave propagation modeling for waveform modeling of SPE.

    NASA Astrophysics Data System (ADS)

    Larmat, C. S.; Steedman, D. W.; Rougier, E.; Delorey, A.; Bradley, C. R.

    2015-12-01

    The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. This paper presents effort to improve knowledge of the processes that affect seismic wave propagation from the hydrodynamic/plastic source region to the elastic/anelastic far field thanks to numerical modeling. The challenge is to couple the prompt processes that take place in the near source region to the ones taking place later in time due to wave propagation in complex 3D geologic environments. In this paper, we report on results of first-principles simulations coupling hydrodynamic simulation codes (Abaqus and CASH), with a 3D full waveform propagation code, SPECFEM3D. Abaqus and CASH model the shocked, hydrodynamic region via equations of state for the explosive, borehole stemming and jointed/weathered granite. LANL has been recently employing a Coupled Euler-Lagrange (CEL) modeling capability. This has allowed the testing of a new phenomenological model for modeling stored shear energy in jointed material. This unique modeling capability has enabled highfidelity modeling of the explosive, the weak grout-filled borehole, as well as the surrounding jointed rock. SPECFEM3D is based on the Spectral Element Method, a direct numerical method for full waveform modeling with mathematical accuracy (e.g. Komatitsch, 1998, 2002) thanks to its use of the weak formulation of the wave equation and of high-order polynomial functions. The coupling interface is a series of grid points of the SEM mesh situated at the edge of the hydrodynamic code domain. Displacement time series at these points are computed from output of CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests and waveforms modeled for several SPE tests conducted so far, with a special focus on effect of the local topography.

  11. Modeling and simulation of ultrasound fields generated by 2D phased array transducers for medical applications.

    PubMed

    Matrone, G; Quaglia, F; Magenes, G

    2010-01-01

    Modern ultrasound imaging instrumentation for clinical applications allows real-time volumetric scanning of the patients' body. 4D imaging has been made possible thanks to the development of new echographic probes which consist in 2D phased arrays of piezoelectric transducers. In these new devices it is the system electronics which properly drives the matrix elements and focuses the beam in order to obtain a sequence of volumetric images. This paper introduces an ultrasound field simulator based on the Spatial Impulse Response method which is being properly developed to analyze the characteristics of the ultrasound field generated by a 2D phased array of transducers. Thanks to its high configurability by the user, it will represent a very useful tool for electronics designers in developing 4D ultrasound imaging systems components.

  12. Driven microswimmers on a 2D substrate: A stochastic towed sled model

    SciTech Connect

    Marchegiani, Giampiero; Marchesoni, Fabio

    2015-11-14

    We investigate, both numerically and analytically, the diffusion properties of a stochastic sled sliding on a substrate, subject to a constant towing force. The problem is motivated by the growing interest in controlling transport of artificial microswimmers in 2D geometries at low Reynolds numbers. We simulated both symmetric and asymmetric towed sleds. Remarkable properties of their mobilities and diffusion constants include sidewise drifts and excess diffusion peaks. We interpret our numerical findings by making use of stochastic approximation techniques.

  13. 2-D Reflectometer Modeling for Optimizing the ITER Low-field Side Reflectometer System

    SciTech Connect

    Kramer, G.J.; Nazikian, R.; Valeo, E.J.; Budny, R.V.; Kessel, C.; Johnson, D.

    2005-09-02

    The response of a low-field side reflectometer system for ITER is simulated with a 2?D reflectometer code using a realistic plasma equilibrium. It is found that the reflected beam will often miss its launch point by as much as 40 cm and that a vertical array of receiving antennas is essential in order to observe a reflection on the low-field side of ITER.

  14. Reference measurements on a Francis model turbine with 2D Laser-Doppler-Anemometry

    NASA Astrophysics Data System (ADS)

    Frey, A.; Kirschner, O.; Riedelbauch, S.; Jester-Zuerker, R.; Jung, A.

    2016-11-01

    To validate the investigations of a high-resolution CFD simulation of a Francis turbine, measurements with 2D Laser-Doppler-Anemometry are carried out. The turbine is operated in part load, where a rotating vortex rope occurs. To validate both, mean velocities and velocity fluctuations, the measurements are classified relative to the vortex rope position. Several acrylic glass windows are installed in the turbine walls such as upstream of the spiral case inlet, in the vaneless space and in the draft tube. The current investigation is focused on a measurement plane below the runner. 2D velocity components are measured on this whole plane by measuring several narrow spaced radial lines. To avoid optical refraction of the laser beam a plan parallel window is inserted in the cone wall. The laser probe is positioned with a 2D traverse system consisting of a circumferential rail and a radial aligned linear traverse. The velocity data are synchronized with the rotational frequency of the rotating vortex rope. The results of one measurement line show the dependency of the axial and circumferential velocities on the vortex rope position.

  15. Synaptic Deficits at Neuromuscular Junctions in Two Mouse Models of Charcot–Marie–Tooth Type 2d

    PubMed Central

    Spaulding, Emily L.; Sleigh, James N.; Morelli, Kathryn H.; Pinter, Martin J.; Burgess, Robert W.

    2016-01-01

    Patients with Charcot–Marie–Tooth Type 2D (CMT2D), caused by dominant mutations in Glycl tRNA synthetase (GARS), present with progressive weakness, consistently in the hands, but often in the feet also. Electromyography shows denervation, and patients often report that early symptoms include cramps brought on by cold or exertion. Based on reported clinical observations, and studies of mouse models of CMT2D, we sought to determine whether weakened synaptic transmission at the neuromuscular junction (NMJ) is an aspect of CMT2D. Quantal analysis of NMJs in two different mouse models of CMT2D (GarsP278KY, GarsC201R), found synaptic deficits that correlated with disease severity and progressed with age. Results of voltage-clamp studies revealed presynaptic defects characterized by: (1) decreased frequency of spontaneous release without any change in quantal amplitude (miniature endplate current), (2) reduced amplitude of evoked release (endplate current) and quantal content, (3) age-dependent changes in the extent of depression in response to repetitive stimulation, and (4) release failures at some NMJs with high-frequency, long-duration stimulation. Drugs that modify synaptic efficacy were tested to see whether neuromuscular performance improved. The presynaptic action of 3,4 diaminopyridine was not beneficial, whereas postsynaptic-acting physostigmine did improve performance. Smaller mutant NMJs with correspondingly fewer vesicles and partial denervation that eliminates some release sites also contribute to the reduction of release at a proportion of mutant NMJs. Together, these voltage-clamp data suggest that a number of release processes, while essentially intact, likely operate suboptimally at most NMJs of CMT2D mice. SIGNIFICANCE STATEMENT We have uncovered a previously unrecognized aspect of axonal Charcot–Marie–Tooth disease in mouse models of CMT2D. Synaptic dysfunction contributes to impaired neuromuscular performance and disease progression. This

  16. Numerical Simulations of High-Frequency Respiratory Flows in 2D and 3D Lung Bifurcation Models

    NASA Astrophysics Data System (ADS)

    Chen, Zixi; Parameswaran, Shamini; Hu, Yingying; He, Zhaoming; Raj, Rishi; Parameswaran, Siva

    2014-07-01

    To better understand the human pulmonary system and optimize the high-frequency oscillatory ventilation (HFOV) design, numerical simulations were conducted under normal breathing frequency and HFOV condition using a CFD code Ansys Fluent and its user-defined C programs. 2D and 3D double bifurcating lung models were created, and the geometry corresponds to fifth to seventh generations of airways with the dimensions based on the Weibel's pulmonary model. Computations were carried out for different Reynolds numbers (Re = 400 and 1000) and Womersley numbers (α = 4 and 16) to study the air flow fields, gas transportation, and wall shear stresses in the lung airways. Flow structure was compared with experimental results. Both 2D and 3D numerical models successfully reproduced many results observed in the experiment. The oxygen concentration distribution in the lung model was investigated to analyze the influence of flow oscillation on gas transport inside the lung model.

  17. Modeling the Transverse Thermal Conductivity of 2-D SiCf/SiC Composites Made with Woven Fabric

    SciTech Connect

    Youngblood, Gerald E.; Senor, David J.; Jones, Russell H.

    2004-06-30

    The hierarchical two-layer (H2L) model was developed to describe the effective transverse thermal conductivity, Keff, of a 2D-SiCf/SiC composite made from stacked and infiltrated woven fabric layers in terms of constituent properties and microstructural and architectural variables. The H2L model includes the expected effects of fiber-matrix interfacial conductance as well as the effects of high fiber packing fractions within individual tows and the non-uniform nature of 2D-fabric layers that usually include a significant amount of interlayer porosity. Previously, H2L model predictions were compared to measured values of Keff for two versions of DuPont 2D-Hi NicalonÔ/PyC/ICVI-SiC composite, one with a “thin” (0.110 μm) and the other with a “thick” (1.040 μm) pyrocarbon (PyC) fiber coating, and for a 2D-TyrannoÔ SA/”thin” PyC/FCVI-SIC composite made by ORNL. In this study, H2L model predictions are compared to measured Keff-values for a 2D-SiCf/SiC composite made by GE Power Systems (formerly DuPont Lanxide) using the ICVI-process with Hi-NicalonÔ type S fabric. The values of Keff determined for the composite made with the Hi-NicalonÔ type S fabric were significantly greater than Keff-values determined for the composites made with either the Hi-NicalonÔor the TyrannoÔ SA fabrics. Differences in Keff-values were expected for using different fiber types, but major differences also were due to observed microstructural variations between the systems, and as predicted by the H2L model.

  18. Reduced order modelling of an unstructured mesh air pollution model and application in 2D/3D urban street canyons

    NASA Astrophysics Data System (ADS)

    Fang, F.; Zhang, T.; Pavlidis, D.; Pain, C. C.; Buchan, A. G.; Navon, I. M.

    2014-10-01

    A novel reduced order model (ROM) based on proper orthogonal decomposition (POD) has been developed for a finite-element (FE) adaptive mesh air pollution model. A quadratic expansion of the non-linear terms is employed to ensure the method remained efficient. This is the first time such an approach has been applied to air pollution LES turbulent simulation through three dimensional landscapes. The novelty of this work also includes POD's application within a FE-LES turbulence model that uses adaptive resolution. The accuracy of the reduced order model is assessed and validated for a range of 2D and 3D urban street canyon flow problems. By comparing the POD solutions against the fine detail solutions obtained from the full FE model it is shown that the accuracy is maintained, where fine details of the air flows are captured, whilst the computational requirements are reduced. In the examples presented below the size of the reduced order models is reduced by factors up to 2400 in comparison to the full FE model while the CPU time is reduced by up to 98% of that required by the full model.

  19. A lattice Boltzmann study of non-hydrodynamic effects in shell models of turbulence

    NASA Astrophysics Data System (ADS)

    Benzi, R.; Biferale, L.; Sbragaglia, M.; Succi, S.; Toschi, F.

    2004-10-01

    A lattice Boltzmann scheme simulating the dynamics of shell models of turbulence is developed. The influence of high-order kinetic modes (ghosts) on the dissipative properties of turbulence dynamics is studied. It is analytically found that when ghost fields relax on the same timescale as the hydrodynamic ones, their major effect is a net enhancement of the fluid viscosity. The bare fluid viscosity is recovered by letting ghost fields evolve on a much longer timescale. Analytical results are borne out by high-resolution numerical simulations. These simulations indicate that the hydrodynamic manifold is very robust towards large fluctuations of non-hydrodynamic fields.

  20. Migration model establishment over Greenland Russell glacier with Remote Sensing observations and hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Yun, H.; Kim, J.; Lin, S. Y.; Tsai, Y.; Choi, Y.

    2015-12-01

    The mechanism of arctic ice sheet migration is not yet fully identified. Glacial movement, specifically that involving supra/under glacial hydrological channel activities, may hold the key for understanding the acceleration of Greenland's ice sheet change and needs to be investigated in depth and established as an integrated model. The test area on which the above studies were conducted was in the Russell glacier in western Greenland, where glacial change has been obvious for the last century and significant fluvial flows occur in meltwater outflow channels, such as the Akuliarusiarsuup Kuua and Qinnguata Kuussua rivers. All tasks in the study were conducted in three stages: 1) collecting 3D migration vectors combining C and L band differential interferometric SAR (D-InSAR) analysis, together with the in-house pixel tracking method employing optical flow and sub-pixel refinement; 2) a 2D hydrodynamic simulation based on the channel bathymetry, which was driven from calibrated LANDSAT images together with along-track stereo DTM; and 3) the model inversion to extract the bedrock height and the physical processes under the glaciers. Throughout those approaches, the researchers intended to identify firstly the interconnected processes between subglacier melt water flow and glacial migration, and also the model establishments of the involved processes. Consequently, the study revealed highly important clues about glacial migration. First of all, the importance of hydrological channel morphology as a governing factor over glaciers' outflowed total melt water was identified. Also, it became clear that the reconstruction of sub glacial processes and morphology are feasible by employing remote sensing observations and model inversions. Those experiences will naturally lead to a more comprehensive understanding of the processes on the terminus of glacier. The overall results from these approaches were compared and validated against published bedrock heights and ice

  1. Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models

    SciTech Connect

    Cook, Christopher B.; Richmond, Marshall C.

    2001-05-01

    This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields.

  2. 2D Computational Fluid Dynamic Modeling of Human Ventricle System Based on Fluid-Solid Interaction and Pulsatile Flow.

    PubMed

    Masoumi, Nafiseh; Framanzad, F; Zamanian, Behnam; Seddighi, A S; Moosavi, M H; Najarian, S; Bastani, Dariush

    2013-01-01

    Many diseases are related to cerebrospinal fluid (CSF) hydrodynamics. Therefore, understanding the hydrodynamics of CSF flow and intracranial pressure is helpful for obtaining deeper knowledge of pathological processes and providing better treatments. Furthermore, engineering a reliable computational method is promising approach for fabricating in vitro models which is essential for inventing generic medicines. A Fluid-Solid Interaction (FSI)model was constructed to simulate CSF flow. An important problem in modeling the CSF flow is the diastolic back flow. In this article, using both rigid and flexible conditions for ventricular system allowed us to evaluate the effect of surrounding brain tissue. Our model assumed an elastic wall for the ventricles and a pulsatile CSF input as its boundary conditions. A comparison of the results and the experimental data was done. The flexible model gave better results because it could reproduce the diastolic back flow mentioned in clinical research studies. The previous rigid models have ignored the brain parenchyma interaction with CSF and so had not reported the back flow during the diastolic time. In this computational fluid dynamic (CFD) analysis, the CSF pressure and flow velocity in different areas were concordant with the experimental data.

  3. 2D Computational Fluid Dynamic Modeling of Human Ventricle System Based on Fluid-Solid Interaction and Pulsatile Flow

    PubMed Central

    Masoumi, Nafiseh; Framanzad, F.; Zamanian, Behnam; Seddighi, A.S.; Moosavi, M.H.; Najarian, S.; Bastani, Dariush

    2013-01-01

    Many diseases are related to cerebrospinal fluid (CSF) hydrodynamics. Therefore, understanding the hydrodynamics of CSF flow and intracranial pressure is helpful for obtaining deeper knowledge of pathological processes and providing better treatments. Furthermore, engineering a reliable computational method is promising approach for fabricating in vitro models which is essential for inventing generic medicines. A Fluid-Solid Interaction (FSI)model was constructed to simulate CSF flow. An important problem in modeling the CSF flow is the diastolic back flow. In this article, using both rigid and flexible conditions for ventricular system allowed us to evaluate the effect of surrounding brain tissue. Our model assumed an elastic wall for the ventricles and a pulsatile CSF input as its boundary conditions. A comparison of the results and the experimental data was done. The flexible model gave better results because it could reproduce the diastolic back flow mentioned in clinical research studies. The previous rigid models have ignored the brain parenchyma interaction with CSF and so had not reported the back flow during the diastolic time. In this computational fluid dynamic (CFD) analysis, the CSF pressure and flow velocity in different areas were concordant with the experimental data. PMID:25337330

  4. Theory of bi-molecular association dynamics in 2D for accurate model and experimental parameterization of binding rates

    PubMed Central

    Yogurtcu, Osman N.; Johnson, Margaret E.

    2015-01-01

    The dynamics of association between diffusing and reacting molecular species are routinely quantified using simple rate-equation kinetics that assume both well-mixed concentrations of species and a single rate constant for parameterizing the binding rate. In two-dimensions (2D), however, even when systems are well-mixed, the assumption of a single characteristic rate constant for describing association is not generally accurate, due to the properties of diffusional searching in dimensions d ≤ 2. Establishing rigorous bounds for discriminating between 2D reactive systems that will be accurately described by rate equations with a single rate constant, and those that will not, is critical for both modeling and experimentally parameterizing binding reactions restricted to surfaces such as cellular membranes. We show here that in regimes of intrinsic reaction rate (ka) and diffusion (D) parameters ka/D > 0.05, a single rate constant cannot be fit to the dynamics of concentrations of associating species independently of the initial conditions. Instead, a more sophisticated multi-parametric description than rate-equations is necessary to robustly characterize bimolecular reactions from experiment. Our quantitative bounds derive from our new analysis of 2D rate-behavior predicted from Smoluchowski theory. Using a recently developed single particle reaction-diffusion algorithm we extend here to 2D, we are able to test and validate the predictions of Smoluchowski theory and several other theories of reversible reaction dynamics in 2D for the first time. Finally, our results also mean that simulations of reactive systems in 2D using rate equations must be undertaken with caution when reactions have ka/D > 0.05, regardless of the simulation volume. We introduce here a simple formula for an adaptive concentration dependent rate constant for these chemical kinetics simulations which improves on existing formulas to better capture non-equilibrium reaction dynamics from dilute

  5. Simulated KWAJEX Convective Systems Using a 2D and 3D Cloud Resolving Model and Their Comparisons with Radar Observations

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Tao, Wei-Kuo; Simpson, Joanne

    2003-01-01

    The 1999 Kwajalein Atoll field experiment (KWAJEX), one of several major TRMM (Tropical Rainfall Measuring Mission) field experiments, has successfully obtained a wealth of information and observation data on tropical convective systems over the western Central Pacific region. In this paper, clouds and convective systems that developed during three active periods (Aug 7-12, Aug 17-21, and Aug 29-Sep 13) around Kwajalein Atoll site are simulated using both 2D and 3D Goddard Cumulus Ensemble (GCE) models. Based on numerical results, the clouds and cloud systems are generally unorganized and short lived. These features are validated by radar observations that support the model results. Both the 2D and 3D simulated rainfall amounts and their stratiform contribution as well as the heat, water vapor, and moist static energy budgets are examined for the three convective episodes. Rainfall amounts are quantitatively similar between the two simulations, but the stratiform contribution is considerably larger in the 2D simulation. Regardless of dimension, fo all three cases, the large-scale forcing and net condensation are the two major physical processes that account for the evolution of the budgets with surface latent heat flux and net radiation solar and long-wave radiation)being secondary processes. Quantitative budget differences between 2D and 3D as well as between various episodes will be detailed.Morover, simulated radar signatures and Q1/Q2 fields from the three simulations are compared to each other and with radar and sounding observations.

  6. On the uniqueness of quantitative DNA difference descriptors in 2D graphical representation models

    NASA Astrophysics Data System (ADS)

    Nandy, A.; Nandy, P.

    2003-01-01

    The rapid growth in additions to databases of DNA primary sequence data have led to searches for methods to numerically characterize these data and help in fast identification and retrieval of relevant sequences. The DNA descriptors derived from the 2D graphical representation technique have already been proposed to index chemical toxicity and single nucleotide polymorphic (SNP) genes but the inherent degeneracies in this representation have given rise to doubts about their suitability. We prove in this paper that such degeneracies will exist only in very restricted cases and that the method can be relied upon to provide unique descriptors for, in particular, the SNP genes and several other classes of DNA sequences.

  7. Atmospheric Nitrogen Trifluoride: Optimized emission estimates using 2-D and 3-D Chemical Transport Models from 1973-2008

    NASA Astrophysics Data System (ADS)

    Ivy, D. J.; Rigby, M. L.; Prinn, R. G.; Muhle, J.; Weiss, R. F.

    2009-12-01

    We present optimized annual global emissions from 1973-2008 of nitrogen trifluoride (NF3), a powerful greenhouse gas which is not currently regulated by the Kyoto Protocol. In the past few decades, NF3 production has dramatically increased due to its usage in the semiconductor industry. Emissions were estimated through the 'pulse-method' discrete Kalman filter using both a simple, flexible 2-D 12-box model used in the Advanced Global Atmospheric Gases Experiment (AGAGE) network and the Model for Ozone and Related Tracers (MOZART v4.5), a full 3-D atmospheric chemistry model. No official audited reports of industrial NF3 emissions are available, and with limited information on production, a priori emissions were estimated using both a bottom-up and top-down approach with two different spatial patterns based on semiconductor perfluorocarbon (PFC) emissions from the Emission Database for Global Atmospheric Research (EDGAR v3.2) and Semiconductor Industry Association sales information. Both spatial patterns used in the models gave consistent results, showing the robustness of the estimated global emissions. Differences between estimates using the 2-D and 3-D models can be attributed to transport rates and resolution differences. Additionally, new NF3 industry production and market information is presented. Emission estimates from both the 2-D and 3-D models suggest that either the assumed industry release rate of NF3 or industry production information is still underestimated.

  8. Modeling the seismic response of 2D models of asteroid 433 Eros, based on the spectral-element method.

    NASA Astrophysics Data System (ADS)

    Blitz, Celine; Komatitsch, Dimitri; Lognonné, Philippe; Martin, Roland; Le Goff, Nicolas

    The understanding of the interior structure of Near Earth Objects (NEOs) is a fundamental issue to determine their evolution and origin, and also, to design possible mitigation techniques (Walker and Huebner, 2004). Indeed, if an oncoming Potentially Hazardous Object (PHO) were to threaten the Earth, numerous methods are suggested to prevent it from colliding our planet. Such mitigation techniques may involve nuclear explosives on or below the object surface, impact by a projectile, or concentration of solar energy using giant mirrors (Holsapple, 2004). The energy needed in such mitigation techniques highly depends on the porosity of the hazardous threatening object (asteroid or comet), as suggested by Holsapple, 2004. Thus, for a given source, the seismic response of a coherent homogeneous asteroid should be very different from the seismic response of a fractured or rubble-pile asteroid. To assess this hypothesis, we performed numerical simulations of wave propagation in different interior models of the Near Earth Asteroid 433 Eros. The simulations of wave propagation required a shape model of asteroid Eros, kindly provided by A. Cheng and O. Barnouin-Jha (personal communication). A cross-section along the longest axis has been chosen to define our 2D geometrical model, and we study two models of the interior: a homogeneous one, and a complex one characterized by fault networks below the main crosscut craters, and covered by a regolith layer of thickness ranging from 50 m to 150 m. To perform the numerical simulations we use the spectral-element method, which solves the variational weak form of the seismic wave equation (Komatitsch and Tromp, 1999) on the meshes of the 2D models of asteroid Eros. The homogeneous model is composed of an elastic material characterized by a pressure wave velocity Vp = 3000 m.s-1 , a shear wave velocity Vs = 1700 m.s-1 and a density of 2700 kg.m-3 . The fractured model possesses the same characteristics except for the presence of

  9. 3D/2D registration and segmentation of scoliotic vertebrae using statistical models.

    PubMed

    Benameur, Said; Mignotte, Max; Parent, Stefan; Labelle, Hubert; Skalli, Wafa; de Guise, Jacques

    2003-01-01

    We propose a new 3D/2D registration method for vertebrae of the scoliotic spine, using two conventional radiographic views (postero-anterior and lateral), and a priori global knowledge of the geometric structure of each vertebra. This geometric knowledge is efficiently captured by a statistical deformable template integrating a set of admissible deformations, expressed by the first modes of variation in Karhunen-Loeve expansion, of the pathological deformations observed on a representative scoliotic vertebra population. The proposed registration method consists of fitting the projections of this deformable template with the preliminary segmented contours of the corresponding vertebra on the two radiographic views. The 3D/2D registration problem is stated as the minimization of a cost function for each vertebra and solved with a gradient descent technique. Registration of the spine is then done vertebra by vertebra. The proposed method efficiently provides accurate 3D reconstruction of each scoliotic vertebra and, consequently, it also provides accurate knowledge of the 3D structure of the whole scoliotic spine. This registration method has been successfully tested on several biplanar radiographic images and validated on 57 scoliotic vertebrae. The validation results reported in this paper demonstrate that the proposed statistical scheme performs better than other conventional 3D reconstruction methods.

  10. Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery

    PubMed Central

    Stock, Kristin; Estrada, Marta F.; Vidic, Suzana; Gjerde, Kjersti; Rudisch, Albin; Santo, Vítor E.; Barbier, Michaël; Blom, Sami; Arundkar, Sharath C.; Selvam, Irwin; Osswald, Annika; Stein, Yan; Gruenewald, Sylvia; Brito, Catarina; van Weerden, Wytske; Rotter, Varda; Boghaert, Erwin; Oren, Moshe; Sommergruber, Wolfgang; Chong, Yolanda; de Hoogt, Ronald; Graeser, Ralph

    2016-01-01

    Two-dimensional (2D) cell cultures growing on plastic do not recapitulate the three dimensional (3D) architecture and complexity of human tumors. More representative models are required for drug discovery and validation. Here, 2D culture and 3D mono- and stromal co-culture models of increasing complexity have been established and cross-comparisons made using three standard cell carcinoma lines: MCF7, LNCaP, NCI-H1437. Fluorescence-based growth curves, 3D image analysis, immunohistochemistry and treatment responses showed that end points differed according to cell type, stromal co-culture and culture format. The adaptable methodologies described here should guide the choice of appropriate simple and complex in vitro models. PMID:27364600

  11. Hydrodynamic models for slurry bubble column reactors. Fifth technical progress report

    SciTech Connect

    Gidaspow, D.

    1995-10-01

    The objective of this work is to convert our `learning gas-solid-liquid` fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid, and particulate phases. Model verification involves a comparison of these computed velocities and volume fractions to experimental values.

  12. Molecular analysis and modeling of inactivation of human CYP2D6 by four mechanism based inactivators.

    PubMed

    Livezey, Mara; Nagy, Leslie D; Diffenderfer, Laura E; Arthur, Evan J; Hsi, David J; Holton, Jeffrey M; Furge, Laura Lowe

    2012-03-01

    Human cytochrome P450 2D6 (CYP2D6) is involved in metabolism of approximately 25% of pharmaceutical drugs. Inactivation of CYP2D6 can lead to adverse drug interactions. Four inactivators of CYP2D6 have previously been identified: 5-Fluoro-2-[4-[(2-phenyl-1H-imidazol-5-yl)methyl]-1-piperazinyl]pyrimidine(SCH66712), (1-[(2-ethyl- 4-methyl-1H-imidazol-5-yl)-methyl]-4-[4-(trifluoromethyl)-2-pyridinyl]piperazine(EMTPP), paroxetine, and 3,4- methylenedioxymethamphetamine (MDMA). All four contain planar, aromatic groups as well as basic nitrogens common to CYP2D6 substrates. SCH66712 and EMTPP also contain piperazine groups and substituted imidazole rings that are common in pharmaceutical agents, though neither of these compounds is clinically relevant. Paroxetine and MDMA contain methylenedioxyphenyls. SCH66712 and EMTPP are both known protein adductors while paroxetine and MDMA are probable heme modifiers. The current study shows that each inactivator displays Type I binding with Ks values that vary by 2-orders of magnitude with lower Ks values associated with greater inactivation. Comparison of KI, kinact, and partition ratio values shows SCH66712 is the most potent inactivator. Molecular modeling experiments using AutoDock identify Phe120 as a key interaction for all four inactivators with face-to-face and edge-to-face pi interactions apparent. Distance between the ligand and heme iron correlates with potency of inhibition. Ligand conformations were scored according to their binding energies as calculated by AutoDock and correlation was observed between molecular models and Ks values.

  13. MOLECULAR ANALYSIS AND MODELING OF INACTIVATION OF HUMAN CYP2D6 BY FOUR MECHANISM BASED INACTIVATORS

    PubMed Central

    Livezey, Mara; Nagy, Leslie D.; Diffenderfer, Laura E.; Arthur, Evan J.; Hsi, David J.; Holton, Jeffrey M.; Furge, Laura Lowe

    2014-01-01

    Human cytochrome P450 2D6 (CYP2D6) is involved in metabolism of approximately 25% of pharmaceutical drugs. Inactivation of CYP2D6 can lead to adverse drug interactions. Four inactivators of CYP2D6 have previously been identified: 5-Fluoro-2-[4-[(2-phenyl-1H-imidazol-5-yl)methyl]-1-piperazinyl]pyrimidine (SCH66712), (1-[(2-ethyl-4-methyl-1H(-EMTPP-imidazol-5-yl)-methyl]-4-[4-(trifluoromethyl)-2-pyridinyl]piperazine (EMTPP), paroxetine, and 3,4-methylenedioxymethamphetamine (MDMA). All four contain planar, aromatic groups as well as basic nitrogens common to CYP2D6 substrates. SCH66712 and EMTPP also contain piperazine groups and substituted imidazole rings that are common in pharmaceutical agents, though neither of these compounds is clinically relevant. Paroxetine and MDMA contain methylenedioxyphenyls. SCH66712 and EMTPP are both known protein adductors while paroxetine and MDMA are probable heme modifiers. The current study shows that each inactivator displays Type I binding with Ks values that vary by 2-orders of magnitude with lower Ks values associated with greater inactivation. Comparison of KI, kinact, and partition ratio values shows SCH66712 is the most potent inactivator. Molecular modeling experiments using AutoDock identify Phe120 as a key interaction for all four inactivators with face-to-face and edge-to-face pi interactions apparent. Distance between the ligand and heme iron correlates with potency of inhibition. Ligand conformations were scored according to their binding energies as calculated by AutoDock and correlation was observed between molecular models and Ks values. PMID:22372551

  14. Non-alcoholic fatty liver disease (NAFLD) potentiates autoimmune hepatitis in the CYP2D6 mouse model.

    PubMed

    Müller, Peter; Messmer, Marie; Bayer, Monika; Pfeilschifter, Josef M; Hintermann, Edith; Christen, Urs

    2016-05-01

    Non-alcoholic fatty liver disease (NAFLD) and its more severe development non-alcoholic steatohepatitis (NASH) are increasing worldwide. In particular NASH, which is characterized by an active hepatic inflammation, has often severe consequences including progressive fibrosis, cirrhosis, and eventually hepatocellular carcinoma (HCC). Here we investigated how metabolic liver injury is influencing the pathogenesis of autoimmune hepatitis (AIH). We used the CYP2D6 mouse model in which wild type C57BL/6 mice are infected with an Adenovirus expressing the major liver autoantigen cytochrome P450 2D6 (CYP2D6). Such mice display several features of human AIH, including interface hepatitis, formation of LKM-1 antibodies and CYP2D6-specific T cells, as well as hepatic fibrosis. NAFLD was induced with a high-fat diet (HFD). We found that pre-existing NAFLD potentiates the severity of AIH. Mice fed for 12 weeks with a HFD displayed increased cellular infiltration of the liver, enhanced hepatic fibrosis and elevated numbers of liver autoantigen-specific T cells. Our data suggest that a pre-existing metabolic liver injury constitutes an additional risk for the severity of an autoimmune condition of the liver, such as AIH.

  15. Advancement of Global-scale River Hydrodynamics Modelling and Its Potential Applications to Earth System Models

    NASA Astrophysics Data System (ADS)

    Yamazaki, D.

    2015-12-01

    Global river routine models have been developed for representing freshwater discharge from land to ocean in Earth System Models. At the beginning, global river models had simulated river discharge along a prescribed river network map by using a linear-reservoir assumption. Recently, in parallel with advancement of remote sensing and computational powers, many advanced global river models have started to represent floodplain inundation assuming sub-grid floodplain topography. Some of them further pursue physically-appropriate representation of river and floodplain dynamics, and succeeded to utilize "hydrodynamic flow equations" to realistically simulate channel/floodplain and upstream/downstream interactions. State-of-the-art global river hydrodynamic models can well reproduce flood stage (e.g. inundated areas and water levels) in addition to river discharge. Flood stage simulation by global river models can be potentially coupled with land surface processes in Earth System Models. For example, evaporation from inundated water area is not negligible for land-atmosphere interactions in arid areas (such as the Niger River). Surface water level and ground water level are correlated each other in flat topography, and this interaction could dominate wetting and drying of many small lakes in flatland and could also affect biogeochemical processes in these lakes. These land/surface water interactions had not been implemented in Earth System Models but they have potential impact on the global climate and carbon cycle. In the AGU presentation, recent advancements of global river hydrodynamic modelling, including super-high resolution river topography datasets, will be introduces. The potential applications of river and surface water modules within Earth System Models will be also discussed.

  16. 2D full wave modeling for a synthetic Doppler backscattering diagnostic

    SciTech Connect

    Hillesheim, J. C.; Schmitz, L.; Kubota, S.; Rhodes, T. L.; Carter, T. A.; Holland, C.

    2012-10-15

    Doppler backscattering (DBS) is a plasma diagnostic used in tokamaks and other magnetic confinement devices to measure the fluctuation level of intermediate wavenumber (k{sub {theta}}{rho}{sub s}{approx} 1) density fluctuations and the lab frame propagation velocity of turbulence. Here, a synthetic DBS diagnostic is described, which has been used for comparisons between measurements in the DIII-D tokamak and predictions from nonlinear gyrokinetic simulations. To estimate the wavenumber range to which a Gaussian beam would be sensitive, a ray tracing code and a 2D finite difference, time domain full wave code are used. Experimental density profiles and magnetic geometry are used along with the experimental antenna and beam characteristics. An example of the effect of the synthetic diagnostic on the output of a nonlinear gyrokinetic simulation is presented.

  17. A 2-D Self-Consistent DSMC Model for Chemically Reacting Low Pressure Plasma Reactors

    SciTech Connect

    Bartel, Timothy J.; Economou, Demetre; Johannes, Justine E.

    1999-06-17

    This paper will focus on the methodology of using a 2D plasma Direct Simulation Monte Carlo technique to simulate the species transport in an inductively coupled, low pressure, chemically reacting plasma system. The pressure in these systems is typically less than 20 mtorr with plasma densities of approximately 10{sup 17} {number_sign}/m{sup 3} and an ionization level of only 0.1%. This low ionization level tightly couples the neutral, ion, and electron chemistries and interactions in a system where the flow is subsonic. We present our strategy and compare simulation results to experimental data for Cl{sub 2} in a Gaseous Electronics Conference (GEC) reference cell modified with an inductive coil.

  18. 2-D Modeling of the Variability of the Solar Interior for Climate Studies

    NASA Astrophysics Data System (ADS)

    Sofia, S.; Li, L. H.; Spada, F.; Ventura, P.

    2012-07-01

    To establish the possible influence of solar variability on climate, it is necessary to understand the luminosity changes induced by a variable dynamo magnetic field. To accomplish this, we have developed a 2D code of the structure and evolution of the solar interior (based on the 1D YREC code), that includes rotation, magnetic fields of arbitrary configuration, and turbulence, that can be run on very short time scales (down to 1 year), and that represents all global parameters (R, L, Teff) with a relative accuracy of 1 part per million, or better. This paper discusses the motivation for this work, the structure and the physical components of the code, and its application to interpret the results of the SODISM experiment on the PICARD satellite, and of the balloon-borne Solar Disk Sextant (SDS) experiment.

  19. New York Bight Study. Report 1. Hydrodynamic Modeling

    DTIC Science & Technology

    1994-08-01

    Study. Report 1, Hydrodynamic mdeling / by Norman W. Scheff ner... Cet alo ] ; prepared for U.S. Army Engineer District, New York. 228 p. iV. ; 28 cm. -H...specify the river boundary condi- tion in this manner, because the head of tide is generally tens of miles up- stream of the river mouth and therefore...including the time for 0MB Nintrcto.s 0704-0188t.r] at .¢rc• .= IR buideriorlh te to verae I our r repons.ewingd instructions, searching existing data

  20. SU-E-T-05: A 2D EPID Transit Dosimetry Model Based On An Empirical Quadratic Formalism

    SciTech Connect

    Tan, Y; Metwaly, M; Glegg, M; Baggarley, S; Elliott, A

    2014-06-01

    Purpose: To describe a 2D electronic portal imaging device (EPID) transit dosimetry model, based on an empirical quadratic formalism, that can predict either EPID or in-phantom dose distribution for comparisons with EPID captured image or treatment planning system (TPS) dose respectively. Methods: A quadratic equation can be used to relate the reduction in intensity of an exit beam to the equivalent path length of the attenuator. The calibration involved deriving coefficients from a set of dose planes measured for homogeneous phantoms with known thicknesses under reference conditions. In this study, calibration dose planes were measured with EPID and ionisation chamber (IC) in water for the same reference beam (6MV, 100mu, 20×20cm{sup 2}) and set of thicknesses (0–30cm). Since the same calibration conditions were used, the EPID and IC measurements can be related through the quadratic equation. Consequently, EPID transit dose can be predicted from TPS exported dose planes and in-phantom dose can be predicted using EPID distribution captured during treatment as an input. The model was tested with 4 open fields, 6 wedge fields, and 7 IMRT fields on homogeneous and heterogeneous phantoms. Comparisons were done using 2D absolute gamma (3%/3mm) and results were validated against measurements with a commercial 2D array device. Results: The gamma pass rates for comparisons between EPID measured and predicted ranged from 93.6% to 100.0% for all fields and phantoms tested. Results from this study agreed with 2D array measurements to within 3.1%. Meanwhile, comparisons in-phantom between TPS computed and predicted ranged from 91.6% to 100.0%. Validation with 2D array device was not possible for inphantom comparisons. Conclusion: A 2D EPID transit dosimetry model for treatment verification was described and proven to be accurate. The model has the advantage of being generic and allows comparisons at the EPID plane as well as multiple planes in-phantom.

  1. A Model of the Effect of Uncertainty on the C elegans L2/L2d Decision

    PubMed Central

    Avery, Leon

    2014-01-01

    At the end of the first larval stage, the C elegans larva chooses between two developmental pathways, an L2 committed to reproductive development and an L2d, which has the option of undergoing reproductive development or entering the dauer diapause. I develop a quantitative model of this choice using mathematical tools developed for pricing financial options. The model predicts that the optimal decision must take into account not only the expected potential for reproductive growth, but also the uncertainty in that expected potential. Because the L2d has more flexibility than the L2, it is favored in unpredictable environments. I estimate that the ability to take uncertainty into account may increase reproductive value by as much as 5%, and discuss possible experimental tests for this ability. PMID:25029446

  2. 2D Radiation MHD K-shell Modeling of Single Wire Array Stainless Steel Experiments on the Z Machine

    SciTech Connect

    Thornhill, J. W.; Giuliani, J. L.; Apruzese, J. P.; Chong, Y. K.; Davis, J.; Dasgupta, A.; Whitney, K. G.; Clark, R. W.; Jones, B.; Coverdale, C. A.; Ampleford, D. J.; Cuneo, M. E.; Deeney, C.

    2009-01-21

    Many physical effects can produce unstable plasma behavior that affect K-shell emission from arrays. Such effects include: asymmetry in the initial density profile, asymmetry in power flow, thermal conduction at the boundaries, and non-uniform wire ablation. Here we consider how asymmetry in the radiation field also contributes to the generation of multidimensional plasma behavior that affects K-shell power and yield. To model this radiation asymmetry, we have incorporated into the MACH2 r-z MHD code a self-consistent calculation of the non-LTE population kinetics based on radiation transport using multi-dimensional ray tracing. Such methodology is necessary for modeling the enhanced radiative cooling that occurs at the anode and cathode ends of the pinch during the run-in phase of the implosion. This enhanced radiative cooling is due to reduced optical depth at these locations producing an asymmetric flow of radiative energy that leads to substantial disruption of large initial diameter (>5 cm) pinches and drives 1D into 2D fluid (i.e., Rayleigh-Taylor like) flows. The impact of this 2D behavior on K-shell power and yield is investigated by comparing 1D and 2D model results with data obtained from a series of single wire array stainless steel experiments performed on the Z generator.

  3. Hydrodynamical Simulations of Colliding Jets: Modeling 3C 75

    NASA Astrophysics Data System (ADS)

    Molnar, S. M.; Schive, H.-Y.; Birkinshaw, M.; Chiueh, T.; Musoke, G.; Young, A. J.

    2017-01-01

    Radio observations suggest that 3C 75, located in the dumbbell shaped galaxy NGC 1128 at the center of Abell 400, hosts two colliding jets. Motivated by this source, we perform three-dimensional hydrodynamical simulations using a modified version of the GPU-accelerated Adaptive-MEsh-Refinement hydrodynamical parallel code (GAMER) to study colliding extragalactic jets. We find that colliding jets can be cast into two categories: (1) bouncing jets, in which case the jets bounce off each other keeping their identities, and (2) merging jets, when only one jet emerges from the collision. Under some conditions the interaction causes the jets to break up into oscillating filaments of opposite helicity, with consequences for their downstream stability. When one jet is significantly faster than the other and the impact parameter is small, the jets merge; the faster jet takes over the slower one. In the case of merging jets, the oscillations of the filaments, in projection, may show a feature that resembles a double helix, similar to the radio image of 3C 75. Thus we interpret the morphology of 3C 75 as a consequence of the collision of two jets with distinctly different speeds at a small impact parameter, with the faster jet breaking up into two oscillating filaments.

  4. Interface-tracking electro-hydrodynamic model for droplet coalescence

    NASA Astrophysics Data System (ADS)

    Crowl Erickson, Lindsay; Noble, David

    2012-11-01

    Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. micro-fluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. We present a conformal decomposition finite element (CDFEM) interface-tracking method for two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface. The electro-hydrodynamic equations solved allow for convection of charge and charge accumulation at the interface, both of which may be important factors for the pinch-off dynamics in this parameter regime.

  5. Comparison of 2-D model simulations of ozone and nitrous oxide at high latitudes with stratospheric measurements

    NASA Technical Reports Server (NTRS)

    Proffitt, M. H.; Solomon, S.; Loewenstein, M.

    1992-01-01

    A linear reference relationship between O3 and N2O has been used to estimate polar winter O3 loss from aircraft data taken in the lower stratosphere. Here, this relationship is evaluated at high latitudes by comparing it with a 2D model simulation and with NIMBUS 7 satellite measurements. Although comparisons with satellite measurements are limited to January through May, the model simulations are compared during other seasons. The model simulations and the satellite data are found to be consistent with the winter O3 loss analysis. It is shown that such analyses are likely to be inappropriate during other seasons.

  6. Toward IMRT 2D dose modeling using artificial neural networks: A feasibility study

    SciTech Connect

    Kalantzis, Georgios; Vasquez-Quino, Luis A.; Zalman, Travis; Pratx, Guillem; Lei, Yu

    2011-10-15

    Purpose: To investigate the feasibility of artificial neural networks (ANN) to reconstruct dose maps for intensity modulated radiation treatment (IMRT) fields compared with those of the treatment planning system (TPS). Methods: An artificial feed forward neural network and the back-propagation learning algorithm have been used to replicate dose calculations of IMRT fields obtained from PINNACLE{sup 3} v9.0. The ANN was trained with fluence and dose maps of IMRT fields for 6 MV x-rays, which were obtained from the amorphous silicon (a-Si) electronic portal imaging device of Novalis TX. Those fluence distributions were imported to the TPS and the dose maps were calculated on the horizontal midpoint plane of a water equivalent homogeneous cylindrical virtual phantom. Each exported 2D dose distribution from the TPS was classified into two clusters of high and low dose regions, respectively, based on the K-means algorithm and the Euclidian metric in the fluence-dose domain. The data of each cluster were divided into two sets for the training and validation phase of the ANN, respectively. After the completion of the ANN training phase, 2D dose maps were reconstructed by the ANN and isodose distributions were created. The dose maps reconstructed by ANN were evaluated and compared with the TPS, where the mean absolute deviation of the dose and the {gamma}-index were used. Results: A good agreement between the doses calculated from the TPS and the trained ANN was achieved. In particular, an average relative dosimetric difference of 4.6% and an average {gamma}-index passing rate of 93% were obtained for low dose regions, and a dosimetric difference of 2.3% and an average {gamma}-index passing rate of 97% for high dose region. Conclusions: An artificial neural network has been developed to convert fluence maps to corresponding dose maps. The feasibility and potential of an artificial neural network to replicate complex convolution kernels in the TPS for IMRT dose calculations

  7. A novel simple procedure to consider seismic soil structure interaction effects in 2D models

    NASA Astrophysics Data System (ADS)

    Jaramillo, Juan Diego; Gómez, Juan David; Restrepo, Doriam; Rivera, Santiago

    2014-09-01

    A method is proposed to estimate the seismic soil-structure-interaction (SSI) effects for use in engineering practice. It is applicable to 2D structures subjected to vertically incident shear waves supported by homogenous half-spaces. The method is attractive since it keeps the simplicity of the spectral approach, overcomes some of the difficulties and inaccuracies of existing classical techniques and yet it considers a physically consistent excitation. This level of simplicity is achieved through a response spectra modification factor that can be applied to the free-field 5%-damped response spectra to yield design spectral ordinates that take into account the scattered motions introduced by the interaction effects. The modification factor is representative of the Transfer Function (TF) between the structural relative displacements and the free-field motion, which is described in terms of its maximum amplitude and associated frequency. Expressions to compute the modification factor by practicing engineers are proposed based upon a parametric study using 576 cases representative of actual structures. The method is tested in 10 cases spanning a wide range of common fundamental vibration periods.

  8. Concurrent Modeling of Hydrodynamics and Interaction Forces Improves Particle Deposition Predictions.

    PubMed

    Jin, Chao; Ren, Carolyn L; Emelko, Monica B

    2016-04-19

    It is widely believed that media surface roughness enhances particle deposition-numerous, but inconsistent, examples of this effect have been reported. Here, a new mathematical framework describing the effects of hydrodynamics and interaction forces on particle deposition on rough spherical collectors in absence of an energy barrier was developed and validated. In addition to quantifying DLVO force, the model includes improved descriptions of flow field profiles and hydrodynamic retardation functions. This work demonstrates that hydrodynamic effects can significantly alter particle deposition relative to expectations when only the DLVO force is considered. Moreover, the combined effects of hydrodynamics and interaction forces on particle deposition on rough, spherical media are not additive, but synergistic. Notably, the developed model's particle deposition predictions are in closer agreement with experimental observations than those from current models, demonstrating the importance of inclusion of roughness impacts in particle deposition description/simulation. Consideration of hydrodynamic contributions to particle deposition may help to explain discrepancies between model-based expectations and experimental outcomes and improve descriptions of particle deposition during physicochemical filtration in systems with nonsmooth collector surfaces.

  9. Status of hydrodynamic technology as related to model tests of high speed marine vehicles

    NASA Astrophysics Data System (ADS)

    Wilson, R. A.; Savitsky, D.; Stevens, M. J.; Balquet, R. J.; Muller-Graf, B.; Murakami, T.; Prokohorov, S. D.; Vanoossanen, P.

    1981-07-01

    The High Speed Marine Vehicle Panel of the 16th International Towing Tank Conference prepared hydrodynamic technology status reports related to model tank tests of SWATH, semidisplacement round bilge hulls, planing hulls, semisubmerged hydrofoils, surface effect ships, and air cushion vehicles. Each status report, plus the results of an initial survey of worldwide towing tanks conducting model experiments of high speed vessels, are contained herein. Hydrodynamic problems related to model testing and the full-scale extrapolation of the data for these vehicle types are also presented.

  10. Numerical modeling of ocean hydrodynamics with variational assimilation of observational data

    NASA Astrophysics Data System (ADS)

    Zalesny, V. B.; Agoshkov, V. I.; Shutyaev, V. P.; Le Dimet, F.; Ivchenko, B. O.

    2016-07-01

    Models and methods of the numerical modeling of ocean hydrodynamics dating back to the pioneering works of A.S. Sarkisyan are considered, with emphasis on the formulation of problems and algorithms of mathematical modeling and the four-dimensional variational assimilation of observational data. An algorithm is proposed for studying the sensitivity of the optimal solution to observational data errors in a seasurface temperature assimilation problem in order to retrieve heat fluxes on the surface. An example of a solution of the optimal problem of the World Ocean hydrodynamics with the assimilation of climatic temperature and salinity observations is offered.

  11. Analytical modeling of seismic wave scattered from a 2D fracture simulated by a low-aspect ratio elliptical cylinder

    NASA Astrophysics Data System (ADS)

    Chen, T.; Wang, P.; Fehler, M.; Zhang, Y.; Burns, D.

    2009-12-01

    Localizing subsurface fractures and estimating their mechanical parameters and geometric properties are very important in oil and gas industry as well as geothermal energy research. It is essential to quantitatively understand how the elastic wave propagation is affected by these fractures. In this paper, an analytical expression for the scattered P- and SV waves from a 2D fracture is formulated based on a normal mode method, where the 2D fracture is modeled by a low-aspect ratio elliptical cylinder. The scatter function of this 2D fracture are expressed in terms of the incident angle, the orientation and aspect ratio of the fracture as well as the elastic impedance contrast between the surrounding medium and the inhomogeneity inside the fracture. Results from this analytical solution match well with those from a finite-difference approach. Solutions of this analytical model at two limiting cases (a circular cylinder with aspect ratio equal to one and a strip with aspect ratio equal to zero) are also compared to analytical solutions directly derived for the circular cylinder and strip by other studies.

  12. Understanding the colloidal dispersion stability of 1D and 2D materials: Perspectives from molecular simulations and theoretical modeling.

    PubMed

    Lin, Shangchao; Shih, Chih-Jen; Sresht, Vishnu; Govind Rajan, Ananth; Strano, Michael S; Blankschtein, Daniel

    2016-08-03

    The colloidal dispersion stability of 1D and 2D materials in the liquid phase is critical for scalable nano-manufacturing, chemical modification, composites production, and deployment as conductive inks or nanofluids. Here, we review recent computational and theoretical studies carried out by our group to model the dispersion stability of 1D and 2D materials, including single-walled carbon nanotubes, graphene, and graphene oxide in aqueous surfactant solutions or organic solvents. All-atomistic (AA) molecular dynamics (MD) simulations can probe the molecular level details of the adsorption morphology of surfactants and solvents around these materials, as well as quantify the interaction energy between the nanomaterials mediated by surfactants or solvents. Utilizing concepts from reaction kinetics and diffusion, one can directly predict the rate constants for the aggregation kinetics and dispersion life times using MD outputs. Furthermore, the use of coarse-grained (CG) MD simulations allows quantitative prediction of surfactant adsorption isotherms. Combined with the Poisson-Boltzmann equation, the Langmuir isotherm, and the DLVO theory, one can directly use CGMD outputs to: (i) predict electrostatic potentials around the nanomaterial, (ii) correlate surfactant surface coverages with surfactant concentrations in the bulk dispersion medium, and (iii) determine energy barriers against coagulation. Finally, we discuss challenges associated with studying emerging 2D materials, such as, hexagonal boron nitride (h-BN), phosphorene, and transition metal dichalcogenides (TMDCs), including molybdenum disulfide (MoS2). An outlook is provided to address these challenges with plans to develop force-field parameters for MD simulations to enable predictive modeling of emerging 2D materials in the liquid phase.

  13. On the Possibility of a Hydrodynamic Model of the Electron

    PubMed Central

    Pekeris, C. L.

    1975-01-01

    We explore the possibility that the mutual repulsive forces of a uniformly charged sphere could be kept in balance dynamically by a steady circulation of the material, which is assumed to be a nonconducting perfect fluid of uniform density. An exact solution is obtained of Maxwell's equations and of the hydrodynamic equations in the nonrelativistic approximation, which satisfies the boundary conditions on the surface of the sphere. In this solution all the components of the velocity and of the magnetic field are found to vanish on the surface, but not the electric field. The pressure can also be made to vanish on the surface, but in the interior it turns out to be negative, which makes the present solution unacceptable. PMID:16592245

  14. Hydrodynamics of giant planet formation. II - Model equations and critical mass. III - Jupiter's nucleated instability

    SciTech Connect

    Wuchterl, G. )

    1991-05-01

    A spherically symmetric protoplanetary model with a growing rigid core and a gaseous envelope of solar composition is used to investigate the character and evolution of the nucleated instability; the model equations formulated are used to follow the static evolution of a protogiant planet in the 'Kyoto' solar nebula, lying at Jupiter's solar distance, to its critical core mass. Convective energy transfer has been formulated for inclusion in implicit radiation hydrodynamical computations. It is established that collapse need not occur at the critical mass, which in agreement with earlier investigations is found to be of the order of 13.1 earth masses. This model is then used as an initial condition for a radiation hydrodynamical calculation of the nucleated instability. It is found that nonlinear hydrodynamic waves are excited by a kappa mechanism, and that an outflow is driven. 56 refs.

  15. Survey of Multi-Material Closure Models in 1D Lagrangian Hydrodynamics

    SciTech Connect

    Maeng, Jungyeoul Brad; Hyde, David Andrew Bulloch

    2015-07-28

    Accurately treating the coupled sub-cell thermodynamics of computational cells containing multiple materials is an inevitable problem in hydrodynamics simulations, whether due to initial configurations or evolutions of the materials and computational mesh. When solving the hydrodynamics equations within a multi-material cell, we make the assumption of a single velocity field for the entire computational domain, which necessitates the addition of a closure model to attempt to resolve the behavior of the multi-material cells’ constituents. In conjunction with a 1D Lagrangian hydrodynamics code, we present a variety of both the popular as well as more recently proposed multi-material closure models and survey their performances across a spectrum of examples. We consider standard verification tests as well as practical examples using combinations of fluid, solid, and composite constituents within multi-material mixtures. Our survey provides insights into the advantages and disadvantages of various multi-material closure models in different problem configurations.

  16. 2D soil and engineering-seismic bedrock modeling of eastern part of Izmir inner bay/Turkey

    NASA Astrophysics Data System (ADS)

    Pamuk, Eren; Akgün, Mustafa; Özdağ, Özkan Cevdet; Gönenç, Tolga

    2017-02-01

    Soil-bedrock models are used as a base when the earthquake-soil common behaviour is defined. Moreover, the medium which is defined as bedrock is classified as engineering and seismic bedrock in itself. In these descriptions, S-wave velocity is (Vs) used as a base. The mediums are called soil where the Vs is < 760 m/s, the bigger ones are called bedrock as well. Additionally, the parts are called engineering bedrock where the Vs is between 3000 m/s and 760 m/s, the parts where are bigger than 3000 m/s called seismic bedrock. The interfacial's horizontal topography where is between engineering and seismic bedrock is effective on earthquake's effect changing on the soil surface. That's why, 2D soil-bedrock models must be used to estimate the earthquake effect that could occur on the soil surface. In this research, surface wave methods and microgravity method were used for occuring the 2D soil-bedrock models in the east of İzmir bay. In the first stage, velocity values were obtained by the studies using surface wave methods. Then, density values were calculated from these velocity values by the help of the empiric relations. 2D soil-bedrock models were occurred based upon both Vs and changing of density by using these density values in microgravity model. When evaluating the models, it was determined that the soil is 300-400 m thickness and composed of more than one layers in parts where are especially closer to the bay. Moreover, it was observed that the soil thickness changes in the direction of N-S. In the study area, geologically, it should be thought the engineering bedrock is composed of Bornova melange and seismic bedrock unit is composed of Menderes massif. Also, according to the geophysical results, Neogene limestone and andesite units at between 200 and 400 m depth show that engineering bedrock characteristic.

  17. Sparsity and level set regularization for diffuse optical tomography using a transport model in 2D

    NASA Astrophysics Data System (ADS)

    Prieto, Kernel; Dorn, Oliver

    2017-01-01

    In this paper we address an inverse problem for the time-dependent linear transport equation (or radiative transfer equation) in 2D having in mind applications in diffuse optical tomography (DOT). We propose two new reconstruction algorithms which so far have not been applied to such a situation and compare their performances in certain practically relevant situations. The first of these reconstruction algorithms uses a sparsity promoting regularization scheme, whereas the second one uses a simultaneous level set reconstruction scheme for two parameters of the linear transport equation. We will also compare the results of both schemes with a third scheme which is a more traditional L 2-based Landweber-Kaczmarz scheme. We focus our attention on the DOT application of imaging the human head of a neonate where the simpler diffusion approximation is not well-suited for the inversion due to the presence of a clear layer beneath the skull which is filled with ‘low-scattering’ cerebrospinal fluid. This layer, even if its location and characteristics are known a priori, poses significant difficulties for most reconstruction schemes due to its ‘wave-guiding’ property which reduces sensitivity of the data to the interior regions. A further complication arises due to the necessity to reconstruct simultaneously two different parameters of the linear transport equation, the scattering and the absorption cross-section, from the same data set. A significant ‘cross-talk’ between these two parameters is usually expected. Our numerical experiments indicate that each of the three considered reconstruction schemes do have their merits and perform differently but reasonably well when the clear layer is a priori known. We also demonstrate the behavior of the three algorithms in the particular situation where the clear layer is unknown during the reconstruction.

  18. Transport Equations Resolution By N-BEE Anti-Dissipative Scheme In 2D Model Of Low Pressure Glow Discharge

    SciTech Connect

    Kraloua, B.; Hennad, A.

    2008-09-23

    The aim of this paper is to determine electric and physical properties by 2D modelling of glow discharge low pressure in continuous regime maintained by term constant source. This electric discharge is confined in reactor plan-parallel geometry. This reactor is filled by Argon monatomic gas. Our continuum model the order two is composed the first three moments the Boltzmann's equations coupled with Poisson's equation by self consistent method. These transport equations are discretized by the finite volumes method. The equations system is resolved by a new technique, it is about the N-BEE explicit scheme using the time splitting method.

  19. Assessing HYDRUS-2D model to estimate soil water contents and olive tree transpiration fluxes under different water distribution systems

    NASA Astrophysics Data System (ADS)

    Autovino, Dario; Negm, Amro; Rallo, Giovanni; Provenzano, Giuseppe

    2016-04-01

    In Mediterranean countries characterized by limited water resources for agricultural and societal sectors, irrigation management plays a major role to improve water use efficiency at farm scale, mainly where irrigation systems are correctly designed to guarantee a suitable application efficiency and the uniform water distribution throughout the field. In the last two decades, physically-based agro-hydrological models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere (SPA) system. Mechanistic models like HYDRUS 2D/3D (Šimunek et al., 2011) have been proposed to simulate all the components of water balance, including actual crop transpiration fluxes estimated according to a soil potential-dependent sink term. Even though the suitability of these models to simulate the temporal dynamics of soil and crop water status has been reported in the literature for different horticultural crops, a few researches have been considering arboreal crops where the higher gradients of root water uptake are the combination between the localized irrigation supply and the three dimensional root system distribution. The main objective of the paper was to assess the performance of HYDRUS-2D model to evaluate soil water contents and transpiration fluxes of an olive orchard irrigated with two different water distribution systems. Experiments were carried out in Castelvetrano (Sicily) during irrigation seasons 2011 and 2012, in a commercial farm specialized in the production of table olives (Olea europaea L., var. Nocellara del Belice), representing the typical variety of the surrounding area. During the first season, irrigation water was provided by a single lateral placed along the plant row with four emitters per plant (ordinary irrigation), whereas during the second season a grid of emitters laid on the soil was installed in order to irrigate the whole soil surface around the selected trees. The model performance was assessed based on the

  20. Monte Carlo simulations of intragrain spin effects in a quasi-2D Heisenberg model with uniaxial anisotropy.

    PubMed

    Leblanc, M D; Whitehead, J P; Plumer, M L

    2013-05-15

    A combination of Metropolis and modified Wolff cluster algorithms is used to examine the impact of uniaxial single-ion anisotropy on the phase transition to ferromagnetic order of Heisenberg macrospins on a 2D square lattice. This forms the basis of a model for granular perpendicular recording media where macrospins represent the magnetic moment of grains. The focus of this work is on the interplay between anisotropy D, intragrain exchange J' and intergrain exchange J on the ordering temperature T(C) and extends our previous reported analysis of the granular Ising model. The role of intragrain degrees of freedom in heat assisted magnetic recording is discussed.

  1. Monte Carlo simulations of intragrain spin effects in a quasi-2D Heisenberg model with uniaxial anisotropy

    NASA Astrophysics Data System (ADS)

    Leblanc, M. D.; Whitehead, J. P.; Plumer, M. L.

    2013-05-01

    A combination of Metropolis and modified Wolff cluster algorithms is used to examine the impact of uniaxial single-ion anisotropy on the phase transition to ferromagnetic order of Heisenberg macrospins on a 2D square lattice. This forms the basis of a model for granular perpendicular recording media where macrospins represent the magnetic moment of grains. The focus of this work is on the interplay between anisotropy D, intragrain exchange J‧ and intergrain exchange J on the ordering temperature TC and extends our previous reported analysis of the granular Ising model. The role of intragrain degrees of freedom in heat assisted magnetic recording is discussed.

  2. A New Cluster Updating for 2-D SU(2) × SU(2) Chiral Model

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbo; Ji, Daren

    1993-09-01

    We propose a variant version of Wolff's cluster algorithm, which may be extended to SU(N) × SU(N) chiral model, and test it in 2-dimensional SU(2) × SU(2) chiral model. The results show that the new method can efficiently reduce the critical slowing down in SU(2) × SU(2) chiral model.

  3. A Cluster Algorithm for the 2-D SU(3) × SU(3) Chiral Model

    NASA Astrophysics Data System (ADS)

    Ji, Da-ren; Zhang, Jian-bo

    1996-07-01

    To extend the cluster algorithm to SU(N) × SU(N) chiral models, a variant version of Wolff's cluster algorithm is proposed and tested for the 2-dimensional SU(3) × SU(3) chiral model. The results show that the new method can reduce the critical slowing down in SU(3) × SU(3) chiral model.

  4. Hydrodynamic Modeling Analysis of Union Slough Restoration Project in Snohomish River, Washington

    SciTech Connect

    Yang, Zhaoqing; Wang, Taiping

    2010-12-20

    A modeling study was conducted to evaluate additional project design scenarios at the Union Slough restoration/mitigation site during low tide and to provide recommendations for finish-grade elevations to achieve desired drainage. This was accomplished using the Snohomish River hydrodynamic model developed previously by PNNL.

  5. 2-1/2-D electromagnetic modeling of nodular defects in high-power multilayer optical coatings

    SciTech Connect

    Molau, N.E.; Brand, H.R.; Kozlowski, M.R.; Shang, C.C.

    1996-07-01

    Advances in the design and production of high damage threshold optical coatings for use in mirrors and polarizers have been driven by the design requirements of high-power laser systems such as the proposed 1.8-MJ National Ignition Facility (NIF) and the prototype 12- kJ Beamlet laser system. The present design of the NIF will include 192 polarizers and more than 1100 mirrors. Currently, the material system of choice for high-power multilayer optical coatings with high damage threshold applications near 1.06 {mu}m are e-beam deposited HfO{sub 2}/Si0{sub 2} coatings. However, the optical performance and laser damage thresholds of these coatings are limited by micron-scale defects and insufficient control over layer thickness. In this report, we will discuss the results of our 2-1/2-D finite-element time- domain (FDTD) EM modeling effort for rotationally-symmetric nodular defects in multilayer dielectric HR coatings. We have added a new diagnostic to the 2-1/2-D FDTD EM code, AMOS, that enables us to calculate the peak steady-state electric fields throughout a 2-D planar region containing a 2-D r-z cross-section of the axisymmetric nodular defect and surrounding multilayer dielectric stack. We have also generated a series of design curves to identify the range of loss tangents for Si0{sub 2} and HfO{sub 2} consistent with the experimentally determined power loss of the HR coatings. In addition, we have developed several methods to provide coupling between the EM results and the thermal-mechanical simulation effort.

  6. A Quasi-Dynamic Approach to modelling Hydrodynamic Focusing

    NASA Astrophysics Data System (ADS)

    Kommajosula, Aditya; Xu, Songzhe; Wu, Chueh-Yu; di Carlo, Dino; Ganapathysubramanian, Baskar; ComPM Lab Team; Di Carlo Lab Collaboration

    2016-11-01

    We examine a particle's tendency at different spatial locations to shift/rotate towards the equilibrium location, by constrained simulation. Although studies in the past have used this procedure in conjunction with FSI methods to great effect, the current work in 2D explores an alternative approach by utilizing a modified trust-region-based root-finding algorithm to solve for particle position and velocities at equilibrium, using "snapshots" of finite-element solutions to the steady-state Navier-Stokes equations iteratively over a computational domain attached to the particle reference frame. Through an assortment of test cases comprising circular and non-circular particle geometries, an incorporation of stability theory as applicable to dynamical systems is demonstrated, to locate the final focusing location and velocities. The results are compared with previous experimental/numerical reports, and found to be in close agreement. A thousand-fold increase is observed in computational time for the current workflow from its transient counterpart, for an illustrative case. The current framework is formulated in 2D for 3 Degrees-of-Freedom, and will be extended to 3D. This framework potentially allows for quick, high-throughput parametric space studies of equilibrium scaling laws.

  7. WASP4, a hydrodynamic and water-quality model - model theory, user's manual, and programmer's guide

    SciTech Connect

    Ambrose, R.B.; Wool, T.A.; Connolly, J.P.; Schanz, R.W.

    1988-01-01

    The Water Quality Analysis Simulation Program Version 4 (WASP4) is a dynamic compartment-modeling system that can be used to analyze a variety of water-quality problems in a diverse set of water bodies. WASP4 simulates the transport and transformation of conventional and toxic pollutants in the water column and benthos of ponds, streams, lakes, reservoirs, rivers, estuaries, and coastal waters. The WASP4 modeling system covers four major subjects--hydrodynamics, conservative mass transport, eutrophication-dissolved oxygen kinetics, and toxic chemical-sediment dynamics. The WASP4 modeling system consists of two stand-alone computer programs, DYNHYD4 and WASP4, that can be run in conjunction or separately. The hydrodynamic program, DYNHYD4, simulates the movement of water and the water quality program, WASP4, simulates the movement and interaction of pollutants within the water. The latter program is supplied with two kinetic submodels to simulate two of the major classes of water-quality problems--conventional pollution (dissolved oxygen, biochemical oxygen demand, nutrients, and eutrophication) and toxic pollution (organic chemicals, heavy metals, and sediment). The substitution of either sub-model constitutes the models EUTRO4 and TOXI4, respectively.

  8. Calibration of a 1D/1D urban flood model using 1D/2D model results in the absence of field data.

    PubMed

    Leandro, J; Djordjević, S; Chen, A S; Savić, D A; Stanić, M

    2011-01-01

    Recently increased flood events have been prompting researchers to improve existing coupled flood-models such as one-dimensional (1D)/1D and 1D/two-dimensional (2D) models. While 1D/1D models simulate sewer and surface networks using a one-dimensional approach, 1D/2D models represent the surface network by a two-dimensional surface grid. However their application raises two issues to urban flood modellers: (1) stormwater systems planning/emergency or risk analysis demands for fast models, and the 1D/2D computational time is prohibitive, (2) and the recognized lack of field data (e.g. Hunter et al. (2008)) causes difficulties for the calibration/validation of 1D/1D models. In this paper we propose to overcome these issues by calibrating a 1D/1D model with the results of a 1D/2D model. The flood-inundation results show that: (1) 1D/2D results can be used to calibrate faster 1D/1D models, (2) the 1D/1D model is able to map the 1D/2D flood maximum extent well, and the flooding limits satisfactorily in each time-step, (3) the 1D/1D model major differences are the instantaneous flow propagation and overestimation of the flood-depths within surface-ponds, (4) the agreement in the volume surcharged by both models is a necessary condition for the 1D surface-network validation and (5) the agreement of the manholes discharge shapes measures the fitness of the calibrated 1D surface-network.

  9. Ultrasonic field profile evaluation in acoustically inhomogeneous anisotropic materials using 2D ray tracing model: Numerical and experimental comparison.

    PubMed

    Kolkoori, S R; Rahman, M-U; Chinta, P K; Ktreutzbruck, M; Rethmeier, M; Prager, J

    2013-02-01

    Ultrasound propagation in inhomogeneous anisotropic materials is difficult to examine because of the directional dependency of elastic properties. Simulation tools play an important role in developing advanced reliable ultrasonic non destructive testing techniques for the inspection of anisotropic materials particularly austenitic cladded materials, austenitic welds and dissimilar welds. In this contribution we present an adapted 2D ray tracing model for evaluating ultrasonic wave fields quantitatively in inhomogeneous anisotropic materials. Inhomogeneity in the anisotropic material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The presented algorithm evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase relations as well as transmission coefficients. The ray tracing model is able to calculate the ultrasonic wave fields generated by a point source as well as a finite dimension transducer. The ray tracing model results are validated quantitatively with the results obtained from 2D Elastodynamic Finite Integration Technique (EFIT) on several configurations generally occurring in the ultrasonic non destructive testing of anisotropic materials. Finally, the quantitative comparison of ray tracing model results with experiments on 32mm thick austenitic weld material and 62mm thick austenitic cladded material is discussed.

  10. Development of 2D dynamic model for hydrogen-fed and methane-fed solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Luo, X. J.; Fong, K. F.

    2016-10-01

    A new two-dimensional (2D) dynamic model is developed in Fortran to study the mass and energy transport, the velocity field and the electrochemical phenomena of high-temperature solid oxide fuel cell (SOFC). The key feature of this model is that gas properties, reaction heat, open circuit voltage, ohmic voltage and exchange current density are temperature-dependent. Based on this, the change of gas temperature and related characteristics can be evaluated in this study. The transient performances of SOFC, like heat-up and start-up processes, are therefore assessed accordingly. In this 2D dynamic SOFC model, chemical and electrochemical reaction, flow field, mass and energy transfer models are coupled in order to determine the current density, the mass fraction and the temperature of gas species. Mass, momentum and energy balance equations are discretized by finite difference method. Performance evaluation in current density, electrical efficiency and overall efficiency is conducted for the effects of different operating parameters in SOFC. The present model can serve as a valuable tool for in-depth performance evaluation of other design and operating parameters of SOFC unit, as well as further dynamic simulation and optimization of SOFC as a prime mover in cogeneration or trigeneration system.

  11. Dynamic implicit-solvent coarse-grained models of lipid bilayer membranes: fluctuating hydrodynamics thermostat.

    PubMed

    Wang, Yaohong; Sigurdsson, Jon Karl; Brandt, Erik; Atzberger, Paul J

    2013-08-01

    We introduce a thermostat based on fluctuating hydrodynamics for dynamic simulations of implicit-solvent coarse-grained models of lipid bilayer membranes. We show our fluctuating hydrodynamics approach captures interesting correlations in the dynamics of lipid bilayer membranes that are missing in simulations performed using standard Langevin dynamics. Our momentum conserving thermostat accounts for solvent-mediated momentum transfer by coupling coarse-grained degrees of freedom to stochastic continuum fields that account for both the solvent hydrodynamics and thermal fluctuations. We present both a general framework and specific methods to couple the particle and continuum degrees of freedom in a manner consistent with statistical mechanics and amenable to efficient computational simulation. For self-assembled vesicles, we study the diffusivity of lipids and their spatial correlations. We find the hydrodynamic coupling yields within the bilayer interesting correlations between diffusing lipids that manifest as a vortex-like structure similar to those observed in explicit-solvent simulations. We expect the introduced fluctuating hydrodynamics methods to provide a way to extend implicit-solvent models for use in a wide variety of dynamic studies.

  12. Influence of Transport on Two-Dimensional Model Simulation. Tracer Sensitivity to 2-D Model Transport. 1; Long Lived Tracers

    NASA Technical Reports Server (NTRS)

    Fleming, Eric L.; Jackman, Charles H.; Considine, David B.; Stolarski, Richard S.

    1999-01-01

    In this study, we examine the sensitivity of long lived tracers to changes in the base transport components in our 2-D model. Changes to the strength of the residual circulation in the upper troposphere and stratosphere and changes to the lower stratospheric K(sub zz) had similar effects in that increasing the transport rates decreased the overall stratospheric mean age, and increased the rate of removal of material from the stratosphere. Increasing the stratospheric K(sub yy) increased the mean age due to the greater recycling of air parcels through the middle atmosphere, via the residual circulation, before returning to the troposphere. However, increasing K(sub yy) along with self-consistent increases in the corresponding planetary wave drive, which leads to a stronger residual circulation, more than compensates for the K(sub yy)-effect, and produces significantly younger ages throughout the stratosphere. Simulations with very small tropical stratospheric K(sub yy) decreased the globally averaged age of air by as much as 25% in the middle and upper stratosphere, and resulted in substantially weaker vertical age gradients above 20 km in the extratropics. We found only very small stratospheric tracer sensitivity to the magnitude of the horizontal mixing across the tropopause, and to the strength of the mesospheric gravity wave drag and diffusion used in the model. We also investigated the transport influence on chemically active tracers and found a strong age-tracer correlation, both in concentration and calculated lifetimes. The base model transport gives the most favorable overall comparison with a variety of inert tracer observations, and provides a significant improvement over our previous 1995 model transport. Moderate changes to the base transport were found to provide modest agreement with some of the measurements. Transport scenarios with residence times ranging from moderately shorter to slightly longer relative to the base case simulated N2O lifetimes

  13. 3D/2D model-to-image registration applied to TIPS surgery.

    PubMed

    Jomier, Julien; Bullitt, Elizabeth; Van Horn, Mark; Pathak, Chetna; Aylward, Stephen R

    2006-01-01

    We have developed a novel model-to-image registration technique which aligns a 3-dimensional model of vasculature with two semiorthogonal fluoroscopic projections. Our vascular registration method is used to intra-operatively initialize the alignment of a catheter and a preoperative vascular model in the context of image-guided TIPS (Transjugular, Intrahepatic, Portosystemic Shunt formation) surgery. Registration optimization is driven by the intensity information from the projection pairs at sample points along the centerlines of the model. Our algorithm shows speed, accuracy and consistency given clinical data.

  14. A program for 2D modeling (cross) correlogram tables using fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Ma, Xianlin; Yao, Tingting

    2001-08-01

    An alternative to the traditional fitting of analytical correlogram models or of a linear model of coregionalization has been recently proposed, whereby the conditions for permissibility of a set of (cross) correlogram tables are imposed on their Fourier transforms, that is on the corresponding set of (cross) spectrum tables. The resulting model is entirely non-parametric and consists of a set of permissible (cross) correlogram tables from which gridded correlogram values can be read directly. This paper gives the suite of GSLIB-type programs to implement this correlogram modeling approach. Presentation of the program is backed by a case study using actual petroleum reservoir data (porosity and seismic reflection energy).

  15. 5D Data Modelling: Full Integration of 2D/3D Space, Time and Scale Dimensions

    NASA Astrophysics Data System (ADS)

    van Oosterom, Peter; Stoter, Jantien

    This paper proposes an approach for data modelling in five dimensions. Apart from three dimensions for geometrical representation and a fourth dimension for time, we identify scale as fifth dimensional characteristic. Considering scale as an extra dimension of geographic information, fully integrated with the other dimensions, is new. Through a formal definition of geographic data in a conceptual 5D continuum, the data can be handled by one integrated approach assuring consistency across scale and time dimensions. Because the approach is new and challenging, we choose to step-wise studying several combinations of the five dimensions, ultimately resulting in the optimal 5D model. We also propose to apply mathematical theories on multidimensional modelling to well established principles of multidimensional modelling in the geo-information domain. The result is a conceptual full partition of the 3Dspace+time+scale space (i.e. no overlaps, no gaps) realised in a 5D data model implemented in a Database Management System.

  16. Collective Flocking Dynamics: Long Rang Order in a Non-Equilibrium 2D XY Model

    NASA Astrophysics Data System (ADS)

    Tu, Yuhai

    1996-03-01

    We propose and study a non-equilibrium continuum dynamical model for the collective motion of large groups of biological organisms (e.g., flocks of birds, slime molds, schools of fishs, etc.) (J. Toner and Y. Tu, Phys. Rev. Lett.), 75(23), 4326(1995) Our model becomes highly non-trivial, and different from the equilibrium model, for dmodel exhibits a broken continuous symmetry even in d=2. Our model describes a large universality class of microscopic rules, including those recently simulated by Vicsek et. al.( T. Vicsek et. al. , Phys. Rev. Lett.) 75, 1226(95).

  17. Modeling water flow and nitrate dynamics in a plastic mulch vegetable cultivation system using HYDRUS-2D

    NASA Astrophysics Data System (ADS)

    Filipović, Vilim; Romić, Davor; Romić, Marija; Matijević, Lana; Mallmann, Fábio J. K.; Robinson, David A.

    2016-04-01

    Growing vegetables commercially requires intensive management and involves high irrigation demands and input of agrochemicals. Plastic mulch application in combination with drip irrigation is a common agricultural management technique practiced due to variety of benefits to the crop, mostly vegetable biomass production. However, the use of these techniques can result in various impacts on water and nutrient distribution in underlying soil and consequently affect nutrient leaching towards groundwater resources. The aim of this work is to estimate the effect of plastic mulch cover in combination with drip irrigation on water and nitrate dynamics in soil using HYDRUS-2D model. The field site was located in Croatian costal karst area on a Gleysol (WRB). The experiment was designed according to the split-plot design in three repetitions and was divided into plots with plastic mulch cover (MULCH) and control plots with bare soil (CONT). Each of these plots received applications of three levels of nitrogen fertilizer: 70, 140, and 210 kg per ha. All plots were equipped with drip irrigation and cropped with bell pepper (Capsicum annuum L. cv. Bianca F1). Lysimeters were installed at 90 cm depth in all plots and were used for monitoring the water and nitrate outflow. HYDRUS-2D was used for modeling the water and nitrogen outflow in the MULCH and CONT plots, implementing the proper boundary conditions. HYDRUS-2D simulated results showed good fitting to the field site observed data in both cumulative water and nitrate outflow, with high level of agreement. Water flow simulations produced model efficiency of 0.84 for CONT and 0.56 for MULCH plots, while nitrate simulations showed model efficiency ranging from 0.67 to 0.83 and from 0.70 to 0.93, respectively. Additional simulations were performed with the absence of the lysimeter, revealing faster transport of nitrates below drip line in the CONT plots, mostly because of the increased surface area subjected to precipitation

  18. Unstructured mesh generation and landcover-based resistance for hydrodynamic modeling of urban flooding

    NASA Astrophysics Data System (ADS)

    Schubert, Jochen E.; Sanders, Brett F.; Smith, Martin J.; Wright, Nigel G.

    2008-12-01

    Urban flood inundation modeling with a hydrodynamic flow solver is addressed in this paper, focusing on strategies to effectively integrate geospatial data for unstructured mesh generation, building representation and flow resistance parameterization. Data considered include Light Detection and Ranging (LiDAR) terrain height surveys, aerial imagery and vector datasets such as building footprint polygons. First, a unstructured mesh-generation technique we term the building-hole method (BH) is developed whereby building footprint data define interior domain boundaries or mesh holes. A wall boundary condition depicts the impact of buildings on flood hydrodynamics. BH provides an alternative to the more commonly used method of raising terrain heights where buildings coincide with the mesh. We term this the building-block method (BB). Application of BH and BB to a flooding site in Glasgow, Scotland identifies a number of tradeoffs to consider at resolutions ranging from 1 to 5 m. At fine resolution, BH is shown to be similarly accurate but execute faster than BB. And at coarse resolution, BH is shown to preserve the geometry of buildings and maintain better accuracy than BB, but requires a longer run time. Meshes that ignore buildings completely ( no-building method or NB) also support surprisingly good flood inundation predictions at coarse resolution compared to BH and BB. NB also supports faster execution times than BH at coarse resolution because the latter uses localized refinements that mandate a greater number of computational cells. However, with mesh refinement, NB converges to a different (and presumably less-accurate) solution compared to BH and BB. Using the same test conditions, Hunter et al. [Hunter NM, Bates PD, Neelz S, Pender G, Villanueva I, Wright NG, Liang D, et al. Benchmarking 2D hydraulic models for urban flood simulations. ICE J Water Manage 2008;161(1):13-30] compared the performance of dynamic-wave and diffusive-wave models and reported that

  19. A validated 2-D diffusion-advection model for prediction of drift from ground boom sprayers

    NASA Astrophysics Data System (ADS)

    Baetens, K.; Ho, Q. T.; Nuyttens, D.; De Schampheleire, M.; Melese Endalew, A.; Hertog, M. L. A. T. M.; Nicolaï, B.; Ramon, H.; Verboven, P.

    Correct field drift prediction is a key element in environmental risk assessment of spraying applications. A reduced order drift prediction model based on the diffusion-advection equation is presented. It allows fast assessment of the drift potential of specific ground boom applications under specific environmental wind conditions that obey the logarithmic wind profile. The model was calibrated based on simulations with a validated Computational Fluid Dynamics (CFD) model. Validation of both models against 38 carefully conducted field experiments is successfully performed for distances up to 20 m from the field edge, for spraying on flat pasture land. The reduced order model succeeded in correct drift predictions for different nozzle types, wind velocities, boom heights and spray pressures. It used 4 parameters representing the physical aspects of the drift cloud; the height of the cloud at the field edge, the mass flux crossing the field edge, the settling velocity of the droplets and the turbulence. For the parameter set and range considered, it is demonstrated for the first time that the effect of the droplet diameter distribution of the different nozzle types on the amount of deposition spray drift can be evaluated by a single parameter, i.e., the volume fraction of droplets with a diameter smaller than 191 μm. The reduced order model can be solved more than 4 orders of magnitude faster than the comprehensive CFD model.

  20. FireStem2D--a two-dimensional heat transfer model for simulating tree stem injury in fires.

    PubMed

    Chatziefstratiou, Efthalia K; Bohrer, Gil; Bova, Anthony S; Subramanian, Ravishankar; Frasson, Renato P M; Scherzer, Amy; Butler, Bret W; Dickinson, Matthew B

    2013-01-01

    FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by resolving stem moisture loss, temperatures through the stem, degree of bark charring, and necrotic depth around the stem. We present the results of numerical parameterization and model evaluation experiments for FireStem2D that simulate laboratory stem-heating experiments of 52 tree sections from 25 trees. We also conducted a set of virtual sensitivity analysis experiments to test the effects of unevenness of heating around the stem and with aboveground height using data from two studies: a low-intensity surface fire and a more intense crown fire. The model allows for improved understanding and prediction of the effects of wildland fire on injury and mortality of trees of different species and sizes.

  1. FireStem2D – A Two-Dimensional Heat Transfer Model for Simulating Tree Stem Injury in Fires

    PubMed Central

    Chatziefstratiou, Efthalia K.; Bohrer, Gil; Bova, Anthony S.; Subramanian, Ravishankar; Frasson, Renato P. M.; Scherzer, Amy; Butler, Bret W.; Dickinson, Matthew B.

    2013-01-01

    FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by resolving stem moisture loss, temperatures through the stem, degree of bark charring, and necrotic depth around the stem. We present the results of numerical parameterization and model evaluation experiments for FireStem2D that simulate laboratory stem-heating experiments of 52 tree sections from 25 trees. We also conducted a set of virtual sensitivity analysis experiments to test the effects of unevenness of heating around the stem and with aboveground height using data from two studies: a low-intensity surface fire and a more intense crown fire. The model allows for improved understanding and prediction of the effects of wildland fire on injury and mortality of trees of different species and sizes. PMID:23894599

  2. Evaluating TITAN2D mass-flow model using the 1963 Little Tahoma Peak avalanches, Mount Rainier, Washington.

    NASA Astrophysics Data System (ADS)

    Sheridan, M. F.; Stinton, A. J.; Patra, A.; Pitman, B.; Bauer, A.; Nichita, C.

    2003-04-01

    The TITAN2D geophysical mass-flow model that is currently under development is evaluated by comparing simulation results with those obtained from another flow model, FLOW3D, and the published data on the 1963 Little Tahoma Peak avalanches on Mount Rainier, Washington. The avalanches, totaling approximately 10 x 106 m3 of brecciated lava flows and other debris, traveled 6.8 km horizontally and fell 1.8 km vertically (H/L = 0.246). Velocities calculated from run up range from 24-42 m/sec and may have been as high as 130 m/sec as the avalanches moved over Emmons Glacier. The avalanches formed a deposit up to 30 m thick. The FLOW3D model uses a sliding block principle to simulate flow movement over a TIN. Results from this model show similarities in terms of velocity history, location of run up areas, run out length and aerial distribution of deposit, although post-avalanche topography in the TIN affects the latter. The TITAN2D model is appropriate for fluid flow in open channels. It is a 2-D, depth-averaged model that uses a raster grid instead of a TIN for the topography. The model flow initiates as a pile defined as an ellipsoid by a height (z) and a radius in the x and y planes. Flow parameters are the internal friction and bed friction angles. Results from this model are promising. Good comparisons can be drawn early during the simulations when the model results fit closely with the mapped extent of the avalanches. However, as the simulated flows move downstream they deviate more from the mapped extent. An area that needs to be addressed is the incorporation of variable bed friction in the model. Simulations done using a low bed friction angle appropriate for movement on the glacier traveled far beyond the limits of the actual deposits, while a high angle suitable for flow over a gravely surface caused the avalanches to stop well short of the mapped limits, never leaving Emmons Glacier. Incorporation of variable bed friction angles into the model using GIS will

  3. Simulation of Ultra-Small MOSFETs Using a 2-D Quantum-Corrected Drift-Diffusion Model

    NASA Technical Reports Server (NTRS)

    Biegal, Bryan A.; Rafferty, Connor S.; Yu, Zhiping; Ancona, Mario G.; Dutton, Robert W.; Saini, Subhash (Technical Monitor)

    1998-01-01

    The continued down-scaling of electronic devices, in particular the commercially dominant MOSFET, will force a fundamental change in the process of new electronics technology development in the next five to ten years. The cost of developing new technology generations is soaring along with the price of new fabrication facilities, even as competitive pressure intensifies to bring this new technology to market faster than ever before. To reduce cost and time to market, device simulation must become a more fundamental, indeed dominant, part of the technology development cycle. In order to produce these benefits, simulation accuracy must improve markedly. At the same time, device physics will become more complex, with the rapid increase in various small-geometry and quantum effects. This work describes both an approach to device simulator development and a physical model which advance the effort to meet the tremendous electronic device simulation challenge described above. The device simulation approach is to specify the physical model at a high level to a general-purpose (but highly efficient) partial differential equation solver (in this case PROPHET, developed by Lucent Technologies), which then simulates the model in 1-D, 2-D, or 3-D for a specified device and test regime. This approach allows for the rapid investigation of a wide range of device models and effects, which is certainly essential for device simulation to catch up with, and then stay ahead of, electronic device technology of the present and future. The physical device model used in this work is the density-gradient (DG) quantum correction to the drift-diffusion model [Ancona, Phys. Rev. B 35(5), 7959 (1987)]. This model adds tunneling and quantum smoothing of carrier density profiles to the drift-diffusion model. We used the DG model in 1-D and 2-D (for the first time) to simulate both bipolar and unipolar devices. Simulations of heavily-doped, short-base diodes indicated that the DG quantum

  4. Hydrodynamic interaction between two trapped swimming model micro-organisms.

    PubMed

    Matas Navarro, R; Pagonabarraga, I

    2010-09-01

    We present a theoretical study of the behaviour of two active particles under the action of harmonic traps kept at a fixed distance away from each other. We classify the steady configurations the squirmers develop as a function of their self-propelling velocity and the active stresses the swimmers induce around them. We have further analyzed the stability of such configurations, and have found that the ratio between their self-propelling velocity and the apolar flow generated through active stresses determines whether collinear parallel squirmers or perpendicularly swimming particles moving away from each other are stable. Therefore, there is a close connection between the stable configurations and the active mechanisms leading to the particle self-propulsion. The trap potential does not affect the stability of the configurations; it only modifies some of their relevant time scales. We have also observed the development of characteristic frequencies which should be observable. Finally, we show that the development of the hydrodynamic flows induced by the active particles may be relevant even when its time scale orders of magnitude smaller than the other present characteristic time scales and may destabilize the stable configurations.

  5. Estimating 3D movements from 2D observations using a continuous model of helical swimming.

    PubMed

    Gurarie, Eliezer; Grünbaum, Daniel; Nishizaki, Michael T

    2011-06-01

    Helical swimming is among the most common movement behaviors in a wide range of microorganisms, and these movements have direct impacts on distributions, aggregations, encounter rates with prey, and many other fundamental ecological processes. Microscopy and video technology enable the automated acquisition of large amounts of tracking data; however, these data are typically two-dimensional. The difficulty of quantifying the third movement component complicates understanding of the biomechanical causes and ecological consequences of helical swimming. We present a versatile continuous stochastic model-the correlated velocity helical movement (CVHM) model-that characterizes helical swimming with intrinsic randomness and autocorrelation. The model separates an organism's instantaneous velocity into a slowly varying advective component and a perpendicularly oriented rotation, with velocities, magnitude of stochasticity, and autocorrelation scales defined for both components. All but one of the parameters of the 3D model can be estimated directly from a two-dimensional projection of helical movement with no numerical fitting, making it computationally very efficient. As a case study, we estimate swimming parameters from videotaped trajectories of a toxic unicellular alga, Heterosigma akashiwo (Raphidophyceae). The algae were reared from five strains originally collected from locations in the Atlantic and Pacific Oceans, where they have caused Harmful Algal Blooms (HABs). We use the CVHM model to quantify cell-level and strain-level differences in all movement parameters, demonstrating the utility of the model for identifying strains that are difficult to distinguish by other means.

  6. Towards a predictive vortex model for 2D non-linear aerodynamics

    NASA Astrophysics Data System (ADS)

    Darakananda, Darwin; Eldredge, Jeff D.

    2014-11-01

    In previous work (Hemati et al 2014), we presented a framework in which a low-order point vortex model can be optimized to capture the non-linear aerodynamics of a wing undergoing arbitrary rigid body motion. Rather than determine the time-varying vortex strengths with the Kutta condition, these strengths were chosen to minimize the difference between the force predicted by the model and pre-existing empirical data. Here, we present ongoing extensions of this model. With the help of tools from dynamical systems theory, we develop a means to incrementally optimize the model against new data. This opens the possibility for using the model in a dynamic estimator context. Self-sustained vortex shedding from wings is achieved using a criterion based on the leading edge suction parameter. We demonstrate the model on a variety of canonical problems, including pitch-up, oscillatory heaving and pitching, and impulsive translation of a plate at various angles of attack. This work has been supported by AFOSR, under Award FA9550-11-1-0098.

  7. Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory

    SciTech Connect

    Taruya, Atsushi; Nishimichi, Takahiro; Saito, Shun

    2010-09-15

    We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2%, and the growth-rate parameter by {approx}5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.

  8. Enhanced Kalman Filtering for a 2D CFD NS Wind Farm Flow Model

    NASA Astrophysics Data System (ADS)

    Doekemeijer, B. M.; van Wingerden, J. W.; Boersma, S.; Pao, L. Y.

    2016-09-01

    Wind turbines are often grouped together for financial reasons, but due to wake development this usually results in decreased turbine lifetimes and power capture, and thereby an increased levelized cost of energy (LCOE). Wind farm control aims to minimize this cost by operating turbines at their optimal control settings. Most state-of-the-art control algorithms are open-loop and rely on low fidelity, static flow models. Closed-loop control relying on a dynamic model and state observer has real potential to further decrease wind's LCOE, but is often too computationally expensive for practical use. In this paper two time-efficient Kalman filter (KF) variants are outlined incorporating the medium fidelity, dynamic flow model “WindFarmSimulator” (WFSim). This model relies on a discretized set of Navier-Stokes equations in two dimensions to predict the flow in wind farms at low computational cost. The filters implemented are an Ensemble KF and an Approximate KF. Simulations in which a high fidelity simulation model represents the true wind farm show that these filters are 101 —102 times faster than a regular KF with comparable or better performance, correcting for wake dynamics that are not modeled in WFSim (noticeably, wake meandering and turbine hub effects). This is a first big step towards real-time closed-loop control for wind farms.

  9. Multi-level model for 2D human motion analysis and description

    NASA Astrophysics Data System (ADS)

    Foures, Thomas; Joly, Philippe

    2003-01-01

    This paper deals with the proposition of a model for human motion analysis in a video. Its main caracteristic is to adapt itself automatically to the current resolution, the actual quality of the picture, or the level of precision required by a given application, due to its possible decomposition into several hierarchical levels. The model is region-based to address some analysis processing needs. The top level of the model is only defined with 5 ribbons, which can be cut into sub-ribbons regarding to a given (or an expected) level of details. Matching process between model and current picture consists in the comparison of extracted subject shape with a graphical rendering of the model built on the base of some computed parameters. The comparison is processed by using a chamfer matching algorithm. In our developments, we intend to realize a platform of interaction between a dancer and tools synthetizing abstract motion pictures and music in the conditions of a real-time dialogue between a human and a computer. In consequence, we use this model in a perspective of motion description instead of motion recognition: no a priori gestures are supposed to be recognized as far as no a priori application is specially targeted. The resulting description will be made following a Description Scheme compliant with the movement notation called "Labanotation".

  10. Modeling of 2D diffusion processes based on microscopy data: parameter estimation and practical identifiability analysis

    PubMed Central

    2013-01-01

    Background Diffusion is a key component of many biological processes such as chemotaxis, developmental differentiation and tissue morphogenesis. Since recently, the spatial gradients caused by diffusion can be assessed in-vitro and in-vivo using microscopy based imaging techniques. The resulting time-series of two dimensional, high-resolutions images in combination with mechanistic models enable the quantitative analysis of the underlying mechanisms. However, such a model-based analysis is still challenging due to measurement noise and sparse observations, which result in uncertainties of the model parameters. Methods We introduce a likelihood function for image-based measurements with log-normal distributed noise. Based upon this likelihood function we formulate the maximum likelihood estimation problem, which is solved using PDE-constrained optimization methods. To assess the uncertainty and practical identifiability of the parameters we introduce profile likelihoods for diffusion processes. Results and conclusion As proof of concept, we model certain aspects of the guidance of dendritic cells towards lymphatic vessels, an example for haptotaxis. Using a realistic set of artificial measurement data, we estimate the five kinetic parameters of this model and compute profile likelihoods. Our novel approach for the estimation of model parameters from image data as well as the proposed identifiability analysis approach is widely applicable to diffusion processes. The profile likelihood based method provides more rigorous uncertainty bounds in contrast to local approximation methods. PMID:24267545

  11. Progress on the development of a 2-D PIC/Monte Carlo model of glow discharges

    NASA Astrophysics Data System (ADS)

    Greene, A. E.; Faehl, R. J.; Keinigs, R. K.; Oliphant, T. A., Jr.; Shanahan, W. R.

    There are several computational approaches that have been and are being implemented for the investigation of plasma processing discharges. One-dimensional electrostatic PIC calculations have proven useful in modeling the bulk properties of discharges far from the edges and have yielded good agreement with experiment for ion distributions in the sheath region. The value of PIC methods is that they follow the evolution of an N-body system unconstrained by equilibrium requirements. Gaseous discharges are in general far from equilibrium. Electrons in the bulk region and ions in the sheath can have energies greatly exceeding the neutral gas temperature and can be distributed in a highly non-Maxwellian fashion. One dimensional models are incapable of treating flow and transport of reactants in reactors properly. Geometrical features are also neglected. Modeling the more recently developed high density reactors, such as the Hitachi ECRH source, requires at least two-dimensional and possibly three-dimensional electromagnetic models. Therefore, at Los Alamos we have chosen to address these problems with the MERLIN code. In this paper we will discuss our progress toward developing this code. We will describe, briefly the physics that we are including in this model. We will discuss a test problem that is being used to exercise most of the new features that have recently been added to MERLIN. Finally, we will discuss our future efforts.

  12. Tropical Oceanic Precipitation Processes Over Warm Pool: 2D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Johnson, D.; Simpson, J.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Rainfall is a key link in the hydrologic cycle as well as the primary heat source for the atmosphere. The vertical distribution of convective latent-heat release modulates the large-scale circulations of the topics. Furthermore, changes in the moisture distribution at middle and upper levels of the troposphere can affect cloud distributions and cloud liquid water and ice contents. How the incoming solar and outgoing longwave radiation respond to these changes in clouds is a major factor in assessing climate change. Present large-scale weather and climate model simulate processes only crudely, reducing confidence in their predictions on both global and regional scales. One of the most promising methods to test physical parameterizations used in General Circulation Models (GCMs) and climate models is to use field observations together with Cloud Resolving Models (CRMs). The CRMs use more sophisticated and physically realistic parameterizations of cloud microphysical processes, and allow for their complex interactions with solar and infrared radiative transfer processes. The CRMs can reasonably well resolve the evolution, structure, and life cycles of individual clouds and clouds systems. The major objective of this paper is to investigate the latent heating, moisture and momentum budgets associated with several convective systems developed during the TOGA COARE IFA - westerly wind burst event (late December, 1992). The tool for this study is the Goddard Cumulus Ensemble (GCE) model which includes a 3-class ice-phase microphysics scheme.

  13. Application of a 2D air flow model to soil vapor extraction and bioventing case studies

    SciTech Connect

    Mohr, D.H.; Merz, P.H.

    1995-05-01

    Soil vapor extraction (SVE) is frequently the technology of choice to clean up hydrocarbon contamination in unsaturated soil. A two-dimensional air flow model provides a practical tool to evaluate pilot test data and estimate remediation rates for soil vapor extraction systems. The model predictions of soil vacuum versus distance are statistically compared to pilot test data for 65 SVE wells at 44 sites. For 17 of 21 sites where there was asphalt paving, the best agreement was obtained for boundary conditions with no barrier to air flow at the surface. The model predictions of air flow rates and stream lines around the well allow an estimate of the gasoline removal rates by both evaporation and bioremediation. The model can be used to quickly estimate the effective radius of influence, defined here as the maximum distance from the well where there is enough air flow to remove the contaminant present within the allowable time. The effective radius of influence is smaller than a radius of influence defined by soil vacuum only. For a case study, in situ bioremediation rates were estimated using the air flow model and compared to independent estimates based on changes in soil temperature. These estimate bioremediation rates for heavy fuel oil ranged from 2.5 to 11 mg oil degraded per kg soil per day, in agreement with values in the literature.

  14. Calibrating OPC model with full CD profile data for 2D and 3D patterns using scatterometry

    NASA Astrophysics Data System (ADS)

    Dave, Aasutosh D.; Kritsun, Oleg; Deng, Yunfei; Yoshimoto, Kenji; Li, Jie; Hu, Jiangtao

    2009-03-01

    The ability to manage critical dimensions (CDs) of structures on IC devices is vital to improving product yield and performance. It is challenging to achieve accurate metrology data as the geometries shrink beyond 40 nm features. At this technology node CDSEM noise and resist LER are of significant concerns1. This paper examines the extendibility of scatterometry techniques to characterize structures that are close to limits of lithographic printing and to extract full profile information for 2D and 3D features for OPC model calibration2. The resist LER concerns are diminished because of the automatic averaging that scatterometry provides over the measurement pad; this represents a significant added value for proper OPC model calibration and verification. This work develops a comparison matrix to determine the impact of scatterometry data on OPC model calibration with conventional CDSEM measurements. The paper will report test results for the OPC model through process data for accuracy and predictability.

  15. A numerical model of 2-D sloshing of pseudo-viscous liquids in horizontally accelerated rectangular containers

    SciTech Connect

    Romero, V.J.; Ingber, M.S.

    1995-07-01

    A numerical model for simulating the transient nonlinear behavior of 2-D viscous sloshing flows in rectangular containers subjected to arbitrary horizontal accelerations is presented. The potential-flow formulation uses Rayleigh damping to approximate the effects of viscosity, and Lagrangian node movement is used to accommodate violent sloshing motions. A boundary element approach is used to efficiently handle the time-changing fluid geometry. Additionally, a corrected equation is presented for the constraint condition relating normal and tangential derivatives of the velocity potential where the fluid free surface meets the rigid container wall. The numerical model appears to be more accurate than previous sloshing models, as determined by comparison against exact analytic solutions and results of previously published models.

  16. Pangolin v1.0, a conservative 2-D transport model for large scale parallel calculation

    NASA Astrophysics Data System (ADS)

    Praga, A.; Cariolle, D.; Giraud, L.

    2014-07-01

    To exploit the possibilities of parallel computers, we designed a large-scale bidimensional atmospheric transport model named Pangolin. As the basis for a future chemistry-transport model, a finite-volume approach was chosen both for mass preservation and to ease parallelization. To overcome the pole restriction on time-steps for a regular latitude-longitude grid, Pangolin uses a quasi-area-preserving reduced latitude-longitude grid. The features of the regular grid are exploited to improve parallel performances and a custom domain decomposition algorithm is presented. To assess the validity of the transport scheme, its results are compared with state-of-the-art models on analytical test cases. Finally, parallel performances are shown in terms of strong scaling and confirm the efficient scalability up to a few hundred of cores.

  17. An inexpensive 2-D and 3-D model of the sarcomere as a teaching aid.

    PubMed

    Rios, Vitor Passos; Bonfim, Vanessa Maria Gomes

    2013-12-01

    To address a common problem of teaching the sliding filament theory (that is, students have difficulty in visualizing how the component proteins of the sarcomere differ, how they organize themselves into a single working unit, and how they function in relation to each other), we have devised a simple model, with inexpensive materials, to be built by students in the fourth year of an undergraduate biology course. This model can be quickly built by the students themselves and is functional enough to allow visualization of the filaments and their properties. The model uses cheap, simple materials, mostly party and craft supplies, to simulate the component proteins of the sarcomere, and the proposed materials can be readily replaced by more available ones.

  18. 2D modeling of silicon based thin film dual and triple junction solar cells

    NASA Astrophysics Data System (ADS)

    Xiao, Y. G.; Uehara, K.; Lestrade, M.; Li, Z. Q.; Li, Z. M. S.

    2009-08-01

    Based on Crosslight APSYS, thin film amorphous Si (a-Si:H)/microcrystalline (μc-Si) dual-junction (DJ) and a- Si:H/amorphous SiGe:H (a-SiGe:H)/μc-Si triple-junction (TJ) solar cells are modeled. Basic physical quantities like band diagrams, optical absorption and generation are obtained. Quantum efficiency and I-V curves for individual junctions are presented for current matching analyses. The whole DJ and TJ cell I-V curves are also presented and the results are discussed with respect to the top surface ZnO:Al TCO layer affinity. The interface texture effect is modeled with FDTD (finite difference time domain) module and results for top junction are presented. The modeling results give possible clues to achieve high efficiency for DJ and TJ thin film solar cells.

  19. Unsteady separation experiments on 2-D airfoils, 3-D wings, and model helicopter rotors

    NASA Technical Reports Server (NTRS)

    Lorber, Peter F.; Carta, Franklin O.

    1992-01-01

    Information on unsteady separation and dynamic stall is being obtained from two experimental programs that have been underway at United Technologies Research Center since 1984. The first program is designed to obtain detailed surface pressure and boundary layer condition information during high amplitude pitching oscillations of a large (17.3 in. chord) model wing in a wind tunnel. The second program involves the construction and testing of a pressure-instrumented model helicopter rotor. This presentation describes some of the results of these experiments, and in particular compares the detailed dynamic stall inception information obtained from the oscillating wing with the unsteady separation and reverse flow results measured on the retreating blade side of the model rotor during wind tunnel testing.

  20. Simulating HFIR Core Thermal Hydraulics Using 3D-2D Model Coupling

    SciTech Connect

    Travis, Adam R; Freels, James D; Ekici, Kivanc

    2013-01-01

    A model utilizing interdimensional variable coupling is presented for simulating the thermal hydraulic interactions of the High Flux Isotope Reactor (HFIR) core at Oak Ridge National Laboratory (ORNL). The model s domain consists of a single, explicitly represented three-dimensional fuel plate and a simplified two-dimensional coolant channel slice. In simplifying the coolant channel, and thus the number of mesh points in which the Navier-Stokes equations must be solved, the computational cost and solution time are both greatly reduced. In order for the reduced-dimension coolant channel to interact with the explicitly represented fuel plate, however, interdimensional variable coupling must be enacted along all shared boundaries. The primary focus of this paper is in detailing the collection, storage, passage, and application of variables across this interdimensional interface. Comparisons are made showing the general speed-up associated with this simplified coupled model.

  1. A simple 2-D model for the evolution of an island-arc system

    NASA Astrophysics Data System (ADS)

    Zharinov, S. E.; Demin, S. S.

    1990-07-01

    Slow seismotectonic movements along inclined deep fault planes under compressive horizontal stresses are supposed to be the principal mechanism controlling the structure and processes in island-arc systems. In order to treat the stress variations caused by this mechanism, a simple geomechanical model is investigated. We consider a shearing surface crack embedded in a homogeneous elastic half-space. The key element of the model is viscous interaction between the sides of the crack, the viscosity varying with depth. The model differs from the classical steady-state mode of subduction by nonstationary creep processes on deep faults and possibly by cyclical evolution of island-arc systems. The results of our numerical analysis are in good agreement with geological, geophysical and seismological data. (i) Vertical displacements of the free surface in the model fit well with the typical topography of a trench—arc-basement rise—back-arc basin system. (ii) The Benioff seismic zone is supposed to be formed due to the concentration of shear stresses near the fault plane. The characteristic patterns of seismicity, the fine geometry of Benioff zones, and their double-planed structure can be explained in terms of our model. (iii) A zone of considerable heat generation caused by viscous dissipation along the fault plane is found within a narrow area in the depth range 100-200 km. Moreover, the island-arc basement rise is characterized in the model by a relative tension of a few tens or even hundreds of bars, while at depths of 100-150 km below the surface, additional compression of the same order of magnitude acts. The magmatic plumbing system may be visualised as a "toothpaste tube" or a sponge filled with magma which is squeezed from the depths to the surface due to the redistribution of the tectonic stresses only. This can explain the physical origin of island-arc magmatism and the typical position of volcanic belts.

  2. 2-D Fused Image Reconstruction approach for Microwave Tomography: a theoretical assessment using FDTD Model.

    PubMed

    Bindu, G; Semenov, S

    2013-01-01

    This paper describes an efficient two-dimensional fused image reconstruction approach for Microwave Tomography (MWT). Finite Difference Time Domain (FDTD) models were created for a viable MWT experimental system having the transceivers modelled using thin wire approximation with resistive voltage sources. Born Iterative and Distorted Born Iterative methods have been employed for image reconstruction with the extremity imaging being done using a differential imaging technique. The forward solver in the imaging algorithm employs the FDTD method of solving the time domain Maxwell's equations with the regularisation parameter computed using a stochastic approach. The algorithm is tested with 10% noise inclusion and successful image reconstruction has been shown implying its robustness.

  3. Modeling the kinematics of multi-axial composite laminates as a stacking of 2D TIF plies

    NASA Astrophysics Data System (ADS)

    Ibañez, Ruben; Abisset-Chavanne, Emmanuelle; Chinesta, Francisco; Huerta, Antonio

    2016-10-01

    Thermoplastic composites are widely considered in structural parts. In this paper attention is paid to sheet forming of continuous fiber laminates. In the case of unidirectional prepregs, the ply constitutive equation is modeled as a transversally isotropic fluid, that must satisfy both the fiber inextensibility as well as the fluid incompressibility. When the stacking sequence involves plies with different orientations the kinematics of each ply during the laminate deformation varies significantly through the composite thickness. In our former works we considered two different approaches when simulating the squeeze flow induced by the laminate compression, the first based on a penalty formulation and the second one based on the use of Lagrange multipliers. In the present work we propose an alternative approach that consists in modeling each ply involved in the laminate as a transversally isotropic fluid - TIF - that becomes 2D as soon as incompressibility constraint and plane stress assumption are taken into account. Thus, composites laminates can be analyzed as a stacking of 2D TIF models that could eventually interact by using adequate friction laws at the inter-ply interfaces.