Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method
NASA Astrophysics Data System (ADS)
Zhang, Mingyu
2010-09-01
The methods for simulating surface tension with smoothed particle hydrodynamics (SPH) method in two dimensions and three dimensions are developed. In 2D surface tension model, the SPH particle on the boundary in 2D is detected dynamically according to the algorithm developed by Dilts [G.A. Dilts, Moving least-squares particle hydrodynamics II: conservation and boundaries, International Journal for Numerical Methods in Engineering 48 (2000) 1503-1524]. The boundary curve in 2D is reconstructed locally with Lagrangian interpolation polynomial. In 3D surface tension model, the SPH particle on the boundary in 3D is detected dynamically according to the algorithm developed by Haque and Dilts [A. Haque, G.A. Dilts, Three-dimensional boundary detection for particle methods, Journal of Computational Physics 226 (2007) 1710-1730]. The boundary surface in 3D is reconstructed locally with moving least squares (MLS) method. By transforming the coordinate system, it is guaranteed that the interface function is one-valued in the local coordinate system. The normal vector and curvature of the boundary surface are calculated according to the reconstructed boundary surface and then surface tension force can be calculated. Surface tension force acts only on the boundary particle. Density correction is applied to the boundary particle in order to remove the boundary inconsistency. The surface tension models in 2D and 3D have been applied to benchmark tests for surface tension. The ability of the current method applying to the simulation of surface tension in 2D and 3D is proved.
Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation
Chen, Zhangxin; Cockburn, Bernardo; Jerome, Joseph W.; Shu, Chi-Wang
1995-01-01
In this paper we introduce a new method for numerically solving the equations of the hydrodynamic model for semiconductor devices in two space dimensions. The method combines a standard mixed finite element method, used to obtain directly an approximation to the electric field, with the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method, originally devised for numerically solving multi-dimensional hyperbolic systems of conservation laws, which is applied here to the convective part of the equations. Numerical simulations showing the performance of the new method are displayed, and the results compared with those obtained by using Essentially Nonoscillatory (ENO) finite difference schemes. Frommore » the perspective of device modeling, these methods are robust, since they are capable of encompassing broad parameter ranges, including those for which shock formation is possible. The simulations presented here are for Gallium Arsenide at room temperature, but we have tested them much more generally with considerable success.« less
Hall-Effect Thruster Simulations with 2-D Electron Transport and Hydrodynamic Ions
NASA Technical Reports Server (NTRS)
Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard H.; Goebel, Dan M.
2009-01-01
A computational approach that has been used extensively in the last two decades for Hall thruster simulations is to solve a diffusion equation and energy conservation law for the electrons in a direction that is perpendicular to the magnetic field, and use discrete-particle methods for the heavy species. This "hybrid" approach has allowed for the capture of bulk plasma phenomena inside these thrusters within reasonable computational times. Regions of the thruster with complex magnetic field arrangements (such as those near eroded walls and magnets) and/or reduced Hall parameter (such as those near the anode and the cathode plume) challenge the validity of the quasi-one-dimensional assumption for the electrons. This paper reports on the development of a computer code that solves numerically the 2-D axisymmetric vector form of Ohm's law, with no assumptions regarding the rate of electron transport in the parallel and perpendicular directions. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations in a computational mesh that is aligned with the magnetic field. The fully-2D approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction, and encompasses the cathode boundary. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for charge-exchange and multiple-ionization collisions in the momentum equations. A first series of simulations of two Hall thrusters, namely the BPT-4000 and a 6-kW laboratory thruster, quantifies the significance of ion diffusion in the anode region and the importance of the extended physical domain on studies related to the impact of the transport coefficients on the electron flow field.
NASA Astrophysics Data System (ADS)
Suzuki, Akihiro; Maeda, Keiichi; Shigeyama, Toshikazu
2016-07-01
A two-dimensional special relativistic radiation-hydrodynamics code is developed and applied to numerical simulations of supernova shock breakout in bipolar explosions of a blue supergiant. Our calculations successfully simulate the dynamical evolution of a blast wave in the star and its emergence from the surface. Results of the model with spherical energy deposition show a good agreement with previous simulations. Furthermore, we calculate several models with bipolar energy deposition and compare their results with the spherically symmetric model. The bolometric light curves of the shock breakout emission are calculated by a ray-tracing method. Our radiation-hydrodynamic models indicate that the early part of the shock breakout emission can be used to probe the geometry of the blast wave produced as a result of the gravitational collapse of the iron core.
Explicit 2-D Hydrodynamic FEM Program
1996-08-07
DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less
NASA Astrophysics Data System (ADS)
Kononenko, O.; Lopes, N. C.; Cole, J. M.; Kamperidis, C.; Mangles, S. P. D.; Najmudin, Z.; Osterhoff, J.; Poder, K.; Rusby, D.; Symes, D. R.; Warwick, J.; Wood, J. C.; Palmer, C. A. J.
2016-09-01
In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.
3D hydrodynamic interactions lead to divergences in 2D diffusion.
Bleibel, Johannes; Domínguez, Alvaro; Oettel, Martin
2015-05-20
We investigate the influence of 3D hydrodynamic interactions on confined colloidal suspensions, where only the colloids are restricted to one or two dimensions. In the absence of static interactions among the colloids, i.e., an ideal gas of colloidal particles with a finite hydrodynamic radius, we find a divergent collective diffusion coefficient. The origin of the divergence is traced back to the dimensional mismatch of 3D hydrodynamic interactions and the colloidal particles moving only in 1D or 2D. Our results from theory are confirmed by Stokesian dynamics simulations and supported by light scattering observational data for particles at a fluid interface. PMID:25923320
3D hydrodynamic interactions lead to divergences in 2D diffusion
NASA Astrophysics Data System (ADS)
Bleibel, Johannes; Domínguez, Alvaro; Oettel, Martin
2015-05-01
We investigate the influence of 3D hydrodynamic interactions on confined colloidal suspensions, where only the colloids are restricted to one or two dimensions. In the absence of static interactions among the colloids, i.e., an ideal gas of colloidal particles with a finite hydrodynamic radius, we find a divergent collective diffusion coefficient. The origin of the divergence is traced back to the dimensional mismatch of 3D hydrodynamic interactions and the colloidal particles moving only in 1D or 2D. Our results from theory are confirmed by Stokesian dynamics simulations and supported by light scattering observational data for particles at a fluid interface.
Google Earth as a tool in 2-D hydrodynamic modeling
NASA Astrophysics Data System (ADS)
Chien, Nguyen Quang; Keat Tan, Soon
2011-01-01
A method for coupling virtual globes with geophysical hydrodynamic models is presented. Virtual globes such as Google TM Earth can be used as a visualization tool to help users create and enter input data. The authors discuss techniques for representing linear and areal geographical objects with KML (Keyhole Markup Language) files generated using computer codes (scripts). Although virtual globes offer very limited tools for data input, some data of categorical or vector type can be entered by users, and then transformed into inputs for the hydrodynamic program by using appropriate scripts. An application with the AnuGA hydrodynamic model was used as an illustration of the method. Firstly, users draw polygons on the Google Earth screen. These features are then saved in a KML file which is read using a script file written in the Lua programming language. After the hydrodynamic simulation has been performed, another script file is used to convert the resulting output text file to a KML file for visualization, where the depths of inundation are represented by the color of discrete point icons. The visualization of a wind speed vector field was also included as a supplementary example.
Realistic and efficient 2D crack simulation
NASA Astrophysics Data System (ADS)
Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek
2010-04-01
Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.
NASA Astrophysics Data System (ADS)
Straatsma, Menno; Huthoff, Fredrik
2011-01-01
In The Netherlands, 2D-hydrodynamic simulations are used to evaluate the effect of potential safety measures against river floods. In the investigated scenarios, the floodplains are completely inundated, thus requiring realistic representations of hydraulic roughness of floodplain vegetation. The current study aims at providing better insight into the uncertainty of flood water levels due to uncertain floodplain roughness parameterization. The study focuses on three key elements in the uncertainty of floodplain roughness: (1) classification error of the landcover map, (2), within class variation of vegetation structural characteristics, and (3) mapping scale. To assess the effect of the first error source, new realizations of ecotope maps were made based on the current floodplain ecotope map and an error matrix of the classification. For the second error source, field measurements of vegetation structure were used to obtain uncertainty ranges for each vegetation structural type. The scale error was investigated by reassigning roughness codes on a smaller spatial scale. It is shown that classification accuracy of 69% leads to an uncertainty range of predicted water levels in the order of decimeters. The other error sources are less relevant. The quantification of the uncertainty in water levels can help to make better decisions on suitable flood protection measures. Moreover, the relation between uncertain floodplain roughness and the error bands in water levels may serve as a guideline for the desired accuracy of floodplain characteristics in hydrodynamic models.
Hydrodynamics of embedded planets' first atmospheres - I. A centrifugal growth barrier for 2D flows
NASA Astrophysics Data System (ADS)
Ormel, Chris W.; Kuiper, Rolf; Shi, Ji-Ming
2015-01-01
In the core accretion paradigm of planet formation, gas giants only form a massive atmosphere after their progenitors exceeded a threshold mass: the critical core mass. Most (exo)planets, being smaller and rock/ice-dominated, never crossed this line. Nevertheless, they were massive enough to attract substantial amounts of gas from the disc, while their atmospheres remained in pressure-equilibrium with the disc. Our goal is to characterize the hydrodynamical properties of the atmospheres of such embedded planets and the implications for their (long-term) evolution. In this paper - the first in series - we start to investigate the properties of an isothermal and inviscid flow past a small, embedded planet by conducting local, 2D hydrodynamical simulations. Using the PLUTO code, we confirm that the flow is steady and bound. This steady outcome is most apparent for the log-polar grid (with the grid spacing proportional to the distance from the planet). For low-mass planets, Cartesian grids are somewhat less efficient as they have difficulty to follow the circular, large speeds in the deep atmosphere. Relating the amount of rotation to the gas fraction of the atmosphere, we find that more massive atmospheres rotate faster - a finding consistent with Kelvin's circulation theorem. Rotation therefore limits the amount of gas that planets can acquire from the nebula. Dependent on the Toomre-Q parameter of the circumstellar disc, the planet's atmosphere will reach Keplerian rotation before self-gravity starts to become important.
Simulation of Yeast Cooperation in 2D.
Wang, M; Huang, Y; Wu, Z
2016-03-01
Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse. PMID:26988702
Degenerate first-order Hamiltonian operators of hydrodynamic type in 2D
NASA Astrophysics Data System (ADS)
Savoldi, Andrea
2015-07-01
First-order Hamiltonian operators of hydrodynamic type were introduced by Drubrovin and Novikov in 1983. In 2D, they are generated by a pair of contravariant metrics g, \\tilde{g} and a pair of differential-geometric objects b, \\tilde{b}. If the determinant of the pencil g+λ \\tilde{g} vanishes for all λ, the operator is called degenerate. In this paper we provide a complete classification of degenerate two- and three-component Hamiltonian operators. Moreover, we study the integrability, by the method of hydrodynamic reductions, of 2+1 Hamiltonian systems arising from the structures we classified.
MULTI2D - a computer code for two-dimensional radiation hydrodynamics
NASA Astrophysics Data System (ADS)
Ramis, R.; Meyer-ter-Vehn, J.; Ramírez, J.
2009-06-01
Simulation of radiation hydrodynamics in two spatial dimensions is developed, having in mind, in particular, target design for indirectly driven inertial confinement energy (IFE) and the interpretation of related experiments. Intense radiation pulses by laser or particle beams heat high-Z target configurations of different geometries and lead to a regime which is optically thick in some regions and optically thin in others. A diffusion description is inadequate in this situation. A new numerical code has been developed which describes hydrodynamics in two spatial dimensions (cylindrical R-Z geometry) and radiation transport along rays in three dimensions with the 4 π solid angle discretized in direction. Matter moves on a non-structured mesh composed of trilateral and quadrilateral elements. Radiation flux of a given direction enters on two (one) sides of a triangle and leaves on the opposite side(s) in proportion to the viewing angles depending on the geometry. This scheme allows to propagate sharply edged beams without ray tracing, though at the price of some lateral diffusion. The algorithm treats correctly both the optically thin and optically thick regimes. A symmetric semi-implicit (SSI) method is used to guarantee numerical stability. Program summaryProgram title: MULTI2D Catalogue identifier: AECV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 151 098 No. of bytes in distributed program, including test data, etc.: 889 622 Distribution format: tar.gz Programming language: C Computer: PC (32 bits architecture) Operating system: Linux/Unix RAM: 2 Mbytes Word size: 32 bits Classification: 19.7 External routines: X-window standard library (libX11.so) and corresponding heading files (X11/*.h) are
NASA Astrophysics Data System (ADS)
Stone, James M.; Norman, Michael L.
1992-06-01
A detailed description of ZEUS-2D, a numerical code for the simulation of fluid dynamical flows including a self-consistent treatment of the effects of magnetic fields and radiation transfer is presented. Attention is given to the hydrodynamic (HD) algorithms which form the foundation for the more complex MHD and radiation HD algorithms. The effect of self-gravity on the flow dynamics is accounted for by an iterative solution of the sparse-banded matrix resulting from discretizing the Poisson equation in multidimensions. The results of an extensive series of HD test problems are presented. A detailed description of the MHD algorithms in ZEUS-2D is presented. A new method of computing the electromotive force is developed using the method of characteristics (MOC). It is demonstrated through the results of an extensive series of MHD test problems that the resulting hybrid MOC-constrained transport method provides for the accurate evolution of all modes of MHD wave families.
Comparison of different nonlinear solvers for 2D time-implicit stellar hydrodynamics
NASA Astrophysics Data System (ADS)
Viallet, M.; Baraffe, I.; Walder, R.
2013-07-01
Time-implicit schemes are attractive since they allow numerical time steps that are much larger than those permitted by the Courant-Friedrich-Lewy criterion characterizing time-explicit methods. This advantage comes, however, at a cost: the solution of a system of nonlinear equations is required at each time step. In this work, the nonlinear system results from the discretization of the hydrodynamical equations with the Crank-Nicholson scheme. We compare the cost of different methods, based on Newton-Raphson iterations, to solve this nonlinear system, and benchmark their performances against time-explicit schemes. Since our general scientific objective is to model stellar interiors, we use as test cases two realistic models for the convective envelope of a red giant and a young Sun. Focusing on 2D simulations, we show that the best performances are obtained with the quasi-Newton method proposed by Broyden. Another important concern is the accuracy of implicit calculations. Based on the study of an idealized problem, namely the advection of a single vortex by a uniform flow, we show that there are two aspects: i) the nonlinear solver has to be accurate enough to resolve the truncation error of the numerical discretization; and ii) the time step has be small enough to resolve the advection of eddies. We show that with these two conditions fulfilled, our implicit methods exhibit similar accuracy to time-explicit schemes, which have lower values for the time step and higher computational costs. Finally, we discuss in the conclusion the applicability of these methods to fully implicit 3D calculations.
Comparison of the 1D flux theory with a 2D hydrodynamic secondary settling tank model.
Ekama, G A; Marais, P
2004-01-01
The applicability of the 1D idealized flux theory (1DFT) for design of secondary settling tanks (SSTs) is evaluated by comparing its predicted maximum surface overflow (SOR) and solids loading (SLR) rates with that calculated from the 2D hydrodynamic model SettlerCAD using as a basis 35 full scale SST stress tests conducted on different SSTs with diameters from 30 to 45m and 2.25 to 4.1 m side water depth, with and without Stamford baffles. From the simulations, a relatively consistent pattern appeared, i.e. that the 1DFT can be used for design but its predicted maximum SLR needs to be reduced by an appropriate flux rating, the magnitude of which depends mainly on SST depth and hydraulic loading rate (HLR). Simulations of the sloping bottom shallow (1.5-2.5 m SWD) Dutch SSTs tested by STOWa and the Watts et al. SST, all with doubled SWDs, and the Darvill new (4.1 m) and old (2.5 m) SSTs with interchanged depths, were run to confirm the sensitivity of the flux rating to depth and HLR. Simulations with and without a Stamford baffle were also done. While the design of the internal features of the SST, such as baffling, have a marked influence on the effluent SS concentration for underloaded SSTs, these features appeared to have only a small influence on the flux rating, i.e. capacity, of the SST, In the meantime until more information is obtained, it would appear that from the simulations so far that the flux rating of 0.80 of the 1DFT maximum SLR recommended by Ekama and Marais remains a reasonable value to apply in the design of full scale SSTs--for deep SSTs (4 m SWD) the flux rating could be increased to 0.85 and for shallow SSTs (2.5 m SWD) decreased to 0.75. It is recommended that (i) while the apparent interrelationship between SST flux rating and depth suggests some optimization of the volume of the SST, that this be avoided and that (ii) the depth of the SST be designed independently of the surface area as is usually the practice and once selected, the
Hydrodynamic Simulations of Giant Impacts
NASA Astrophysics Data System (ADS)
Reinhardt, Christian; Stadel, Joachim
2013-07-01
We studied the basic numerical aspects of giant impacts using Smoothed Particles Hydrodynamics (SPH), which has been used in most of the prior studies conducted in this area (e.g., Benz, Canup). Our main goal was to modify the massive parallel, multi-stepping code GASOLINE widely used in cosmological simulations so that it can properly simulate the behavior of condensed materials such as granite or iron using the Tillotson equation of state. GASOLINE has been used to simulate hundreds of millions of particles for ideal gas physics so that using several millions of particles in condensed material simulations seems possible. In order to focus our attention of the numerical aspects of the problem we neglected the internal structure of the protoplanets and modelled them as homogenous (isothermal) granite spheres. For the energy balance we only considered PdV work and shock heating of the material during the impact (neglected cooling of the material). Starting at a low resolution of 2048 particles for the target and the impactor we run several simulations for different impact parameters and impact velocities and successfully reproduced the main features of the pioneering work of Benz from 1986. The impact sends a shock wave through both bodies heating the target and disrupting the remaining impactor. As in prior simulations material is ejected from the collision. How much, and whether it leaves the system or survives in an orbit for a longer time, depends on the initial conditions but also on resolution. Increasing the resolution (to 1.2x10⁶ particles) results in both a much clearer shock wave and deformation of the bodies during the impact and a more compact and detailed "arm" like structure of the ejected material. Currently we are investigating some numerical issues we encountered and are implementing differentiated models, making one step closer to more realistic protoplanets in such giant impact simulations.
Hydrodynamic simulations of recurrent novae
NASA Astrophysics Data System (ADS)
Starrfield, S.; Sparks, W. M.; Truran, J. W.; Sion, E. M.
1984-12-01
Simulations of the 1979 outburst of the recurrent nova U Scorpii using a Lagrangian, hydrodynamic computer code which incorporates accretion in the evolution to the outburst are discussed. Three evolutionary sequences were computed in an attempt to understand the very rapid outburst and short recurrence time of this most unusual nova. It is now possible to reproduce the CNO composition of the ejected material, the light curve, the amount of ejected material, and the kinetic energy of the ejecta. The best sequence studied involved accretion of solar rich material onto a 1.38 solar magnatude white dwarf at a rate of 1.6 x 10 to the minus 8 solar magnatude per year.
Hydrodynamic Simulations of Contact Binaries
NASA Astrophysics Data System (ADS)
Kadam, Kundan; Clayton, Geoffrey C.; Frank, Juhan; Marcello, Dominic; Motl, Patrick M.; Staff, Jan E.
2015-01-01
The motivation for our project is the peculiar case of the 'red nova" V1309 Sco which erupted in September 2008. The progenitor was, in fact, a contact binary system. We are developing a simulation of contact binaries, so that their formation, structural, and merger properties could be studied using hydrodynamics codes. The observed transient event was the disruption of the secondary star by the primary, and their subsequent merger into one star; hence to replicate this behavior, we need a core-envelope structure for both the stars. We achieve this using a combination of Self Consistant Field (SCF) technique and composite polytropes, also known as bipolytropes. So far we have been able to generate close binaries with various mass ratios. Another consequence of using bipolytropes is that according to theoretical calculations, the radius of a star should expand when the core mass fraction exceeds a critical value, resulting in interesting consequences in a binary system. We present some initial results of these simulations.
Hydrodynamic Simulations of Gaseous Argon Shock Experiments
NASA Astrophysics Data System (ADS)
Garcia, Daniel; Dattelbaum, Dana; Goodwin, Peter; Morris, John; Sheffield, Stephen; Burkett, Michael
2015-06-01
The lack of published Argon gas shock data motivated an evaluation of the Argon Equation of State (EOS) in gas phase initial density regimes never before reached. In particular, these regimes include initial pressures in the range of 200-500 psi (0.025 - 0.056 g/cc) and initial shock velocities around 0.2 cm/ μs. The objective of the numerical evaluation was to develop a physical understanding of the EOS behavior of shocked and subsequently multiply re-shocked Argon gas initially pressurized to 200-500 psi through Pagosa numerical hydrodynamic simulations utilizing the SESAME equation of state. Pagosa is a Los Alamos National Laboratory 2-D and 3-D Eulerian hydrocode capable of modeling high velocity compressible flow with multiple materials. The approach involved the use of gas gun experiments to evaluate the shock and multiple re-shock behavior of pressurized Argon gas to validate Pagosa simulations and the SESAME EOS. Additionally, the diagnostic capability within the experiments allowed for the EOS to be fully constrained with measured shock velocity, particle velocity and temperature. The simulations demonstrate excellent agreement with the experiments in the shock velocity/particle velocity space, but note unanticipated differences in the ionization front temperatures.
Simulating hydrodynamics on tidal mudflats
NASA Astrophysics Data System (ADS)
Cook, S.; Lippmann, T. C.
2014-12-01
Biogeochemical cycling in estuaries is governed by fluxes from both riverine sources and through estuarine sediment deposits. Although estimates from river sources are relatively common and easily sampled, estimates of nutrient fluxes through the fluid-sediment interface are less common and limited to deeper portions of the bays away from intertidal areas. Lack of quantifiable shear stress estimates over intertidal areas limits our overall understanding of nutrient budgets in estuaries. Unfortunately, observation of intertidal hydrodynamics and nutrient fluxes over tidal flats and near the water's edge is difficult owing to the temporally varying and spatially extensive region where the tides inundate, and thus numerical modeling is often employed. In this work, the Regional Ocean Modeling System (ROMS), a three dimensional numerical hydrodynamic model was used to investigate the shear stresses over intertidal mudflats in the Great Bay, a tidally-dominated New England estuary cut by several tidal channels and with over 50% of the estuary exposed at low tide. The ROMS wetting and drying scheme was used to simulate the rising and falling tide on the flats, a successful approach adapted in other regions of the world but not always inclusive of tidal channels. Bathymetric data obtained in 2009 and 2013 was used to define the model grid. Predicted tides are forced at Adam's Pt., a natural constriction in the estuary about 20 km upstream of the mouth and at the entrance to the Great Bay. Of particular interest are fluxes of material on-to and off-of the tidal flats which contribute to water quality conditions in the estuary, and are largely governed by shear stresses that drive nutrient fluxes at the fluid-sediment interface. Basin wide estimates of near-bottom shear stresses can be used to estimate first order nutrient fluxes over a tidal cycle and hence describe general biogeochemical dynamics of the estuary. Future work will include enhanced forcing of currents by
3D Hydrodynamic Simulations of Relativistic Jets
NASA Astrophysics Data System (ADS)
Hughes, P. A.; Miller, M. A.; Duncan, G. C.; Swift, C. M.
1998-12-01
We present the results of validation runs and the first extragalactic jet simulations performed with a 3D relativistic numerical hydrodynamic code employing a solver of the RHLLE type and using adaptive mesh refinement (AMR; Duncan & Hughes, 1994, Ap. J., 436, L119). Test problems include the shock tube, blast wave and spherical shock reflection (implosion). Trials with the code show that as a consequence of AMR it is viable to perform exploratory runs on workstation class machines (with no more than 128Mb of memory) prior to production runs. In the former case we achieve a resolution not much less than that normally regarded as the minimum needed to capture the essential physics of a problem, which means that such runs can provide valuable guidance allowing the optimum use of supercomputer resources. We present initial results from a program to explore the 3D stability properties of flows previously studied using a 2D axisymmetric code, and our first attempt to explore the structure and morphology of a relativistic jet encountering an ambient density gradient that mimics an ambient inhomogeneity or cloud.
Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials
NASA Astrophysics Data System (ADS)
Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna
2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.
Hydrodynamical Simulations of the Uranian Rings
NASA Astrophysics Data System (ADS)
Mosqueira, I.; Estrada, P. R.; Brookshaw, L.
1996-09-01
We investigate the global dynamics of the Uranian rings using a modified 2-D smoothed particle hydrodynamic code combined with a 2-D tree code used to compute the particle-to-particle gravitational interactions. This code includes epicyclic fluid motion, non-axisymmetric flow, local and non-local shear viscocity, self-consistent scale height evolution, ring-satellites gravitational interaction and co-evolution, and ring self-gravity. To follow the scale height of each particle we solve the vertical momentum equation for the flow using a Runge-Kutta scheme with a second order polynomial fit to the vertical behavior of the fluid pressure (Borderies, Goldreich, and Tremaine 1985. Icarus, 63, 406). The behavior of the fluid viscocity is obtained from Mosqueira (1996. Icarus, 122, 128) who found good agreement between an extension to the non-local viscocity model of Borderies, Goldreich, and Tremaine (1985) that includes local terms with the results of a local patch-code ring simulation. Our present viscocity model incorporates further terms which account for the epicyclic limit to the mean free path (Goldreich and Tremaine 1978. Icarus, 34, 227). This treatment covers both the high and low ring density regimes. Our approach treats the fluid work terms and internal energy self-consistently even in the presence of a non-zero divergence of the fluid velocity. Even within a 2-D framework the Uranian rings are so thin compared to their semi-major axes that radial resolution requires too many particles given our present computer resources. To address this issue we have developed a physical scaling that reduces the semi-major axis of the ring while preserving its width and, we believe, retains the relevant global satellite-ring dynamics. With a conservative value of the scaling parameter that reduces the ring's semi-major axis by a factor of 10, our scaling allows for savings between a factor of 20 in the case of synodic time scales, a factor of 200 for shear timescales, and
Experimental and Computational Study of Multiphase Flow Hydrodynamics in 2D Trickle Bed Reactors
NASA Astrophysics Data System (ADS)
Nadeem, H.; Ben Salem, I.; Kurnia, J. C.; Rabbani, S.; Shamim, T.; Sassi, M.
2014-12-01
Trickle bed reactors are largely used in the refining processes. Co-current heavy oil and hydrogen gas flow downward on catalytic particle bed. Fine particles in the heavy oil and/or soot formed by the exothermic catalytic reactions deposit on the bed and clog the flow channels. This work is funded by the refining company of Abu Dhabi and aims at mitigating pressure buildup due to fine deposition in the TBR. In this work, we focus on meso-scale experimental and computational investigations of the interplay between flow regimes and the various parameters that affect them. A 2D experimental apparatus has been built to investigate the flow regimes with an average pore diameter close to the values encountered in trickle beds. A parametric study is done for the development of flow regimes and the transition between them when the geometry and arrangement of the particles within the porous medium are varied. Liquid and gas flow velocities have also been varied to capture the different flow regimes. Real time images of the multiphase flow are captured using a high speed camera, which were then used to characterize the transition between the different flow regimes. A diffused light source was used behind the 2D Trickle Bed Reactor to enhance visualizations. Experimental data shows very good agreement with the published literature. The computational study focuses on the hydrodynamics of multiphase flow and to identify the flow regime developed inside TBRs using the ANSYS Fluent Software package. Multiphase flow inside TBRs is investigated using the "discrete particle" approach together with Volume of Fluid (VoF) multiphase flow modeling. The effect of the bed particle diameter, spacing, and arrangement are presented that may be used to provide guidelines for designing trickle bed reactors.
NASA Astrophysics Data System (ADS)
Zou, B.; Li, D. F.; Hu, H. J.; Zhang, H. W.; Lou, L. H.; Chen, M.; Lv, Z. Y.
Based on the verified two dimensional(2D) finite element model for river flow simulation, the effect of estuary training levees on the water flow and sediment movement in the Yellow River estuary is analyzed. For disclosing the effect of setting the two training levees on the flow and sediment motion, the calculation and analysis for the two projects, (one is no levees, the other is setting up two no levees) are given. The results show that when setting up two training levees, water flow is bound by levees and the water flows become more concentrated. As a result, velocity increases in the main channel, sediment carrying capacity of water flow increases correspondingly.
A discrete simulation of 2-D fluid flow on TERASYS
Mullins, P.G.; Krolak, P.D.
1995-12-01
A discrete simulation of two-dimensional (2-D) fluid flow, on a recently designed novel architecture called TERASYS is presented. The simulation uses a cellular automaton approach, implemented in a new language called data-parallel bit C (dbC). A performance comparison between our implementation on TERASYS and an implementation on the Connection Machine is discussed. We comment briefly on the suitability of the TERASYS system for modeling fluid flow using cellular automata.
Hydrodynamic simulations of microjetting from shock-loaded grooves
NASA Astrophysics Data System (ADS)
Roland, Caroline; de Resseguier, Thibaut; Sollier, Arnaud; Lescoute, Emilien; Soulard, Laurent; Loison, Didier
2015-06-01
The interaction of a shock wave with a free surface presenting geometrical defects, such as cavities or grooves, may lead to the ejection of micrometric debris at velocities of km/s order. This process can be involved in many applications, like pyrotechnics or industrial safety. Laser shock experiments reported in this conference (T. de Resseguier, C. Roland et al., abstract ref.000066) provide insight into jet formation and peak velocities for various groove angles and shock pressures. Here, we present hydrodynamic simulations of these experiments, in both 2D and 3D geometries, using both finite element method and smoothed particles hydrodynamics. Numerical results are compared to several theoretical predictions including the Richtmyer-Meshkov instabilities. The role of the elastic-plastic behavior on jet formation is investigated. Finally, the possibility to simulate the late stages of jet expansion and fragmentation is explored, to evaluate the mass distribution of the ejecta and their ballistic properties, still essentially unknown in the experiments.
Simulating Brownian suspensions with fluctuating hydrodynamics
NASA Astrophysics Data System (ADS)
Delmotte, Blaise; Keaveny, Eric E.
2015-12-01
Fluctuating hydrodynamics has been successfully combined with several computational methods to rapidly compute the correlated random velocities of Brownian particles. In the overdamped limit where both particle and fluid inertia are ignored, one must also account for a Brownian drift term in order to successfully update the particle positions. In this paper, we present an efficient computational method for the dynamic simulation of Brownian suspensions with fluctuating hydrodynamics that handles both computations and provides a similar approximation as Stokesian Dynamics for dilute and semidilute suspensions. This advancement relies on combining the fluctuating force-coupling method (FCM) with a new midpoint time-integration scheme we refer to as the drifter-corrector (DC). The DC resolves the drift term for fluctuating hydrodynamics-based methods at a minimal computational cost when constraints are imposed on the fluid flow to obtain the stresslet corrections to the particle hydrodynamic interactions. With the DC, this constraint needs only to be imposed once per time step, reducing the simulation cost to nearly that of a completely deterministic simulation. By performing a series of simulations, we show that the DC with fluctuating FCM is an effective and versatile approach as it reproduces both the equilibrium distribution and the evolution of particulate suspensions in periodic as well as bounded domains. In addition, we demonstrate that fluctuating FCM coupled with the DC provides an efficient and accurate method for large-scale dynamic simulation of colloidal dispersions and the study of processes such as colloidal gelation.
Atmospheric Outflows from Hot Jupiters: 2D MHD Simulations
NASA Astrophysics Data System (ADS)
Uribe, A.; Matsakos, T.; Konigl, A.
2015-01-01
Recent observations of stellar hydrogen Ly-α line absorption during transits of some hot Jupiter exoplanets suggest the presence of a dense, fast wind that is blowing from planetary atmosphere tep{2003Natur.422..143V,2007ApJ...671L..61B}. Modeling efforts include 1D hydrodynamic models tep{2009ApJ...693...23M,2004Icar..170..167Y,2007P&SS...55.1426G} and 2D isothermal magnetized wind models tep{2014arXiv1404.5817T}, among others. In this work, we model the 2D structure of the irradiated upper atmosphere of a hot Jupiter planet and its interaction with the planetary magnetic field. We calculate self consistently the heating by stellar UV radiation and the cooling of the atmosphere by Ly-α emission. We solve for the ionization structure assuming a 100% hydrogen atmosphere, accounting for the radiative ionization, recombination and advection of the gas. We show the effect of stellar tides and planetary magnetic field on the planet outflow and calculate the Ly-α transmission spectra of the resulting atmosphere.
NASA Astrophysics Data System (ADS)
Senter, A. E.; Pasternack, G. B.
2011-12-01
In higher order, wider channels, dead wood that is delivered to the wetted channel has a high probability of transporting downstream. Many other dead wood pieces can accumulate within a wide but often dry bankfull channel and along the edges of the riparian corridor. These dead wood pieces are of varying sizes - twigs to tree trunks - and may transport at unknown discharges as seasonally driven precipitation and random storms occur. The dynamics of dead wood pieces such as these were investigated along a 4th order 13-km segment of the South Yuba River, Sierra Nevada, California. The scientific questions answered in this study were: What were the bulk statistics of dead wood across multiple spatial scales: segment, reach, and morphologic unit? Was the longitudinal distribution of dead wood organized or random? As a function of discharge, what were the total percentage and number of digitized dead wood pieces per modeled wetted area? A kite-blimp was used to obtain ~4 cm resolution digital images of the river corridor in summer 2009. Images were georeferenced in ArcGIS; digitization of all visible dead wood resulted in >8000 individual polygons. During the same field season, topographic data were collected of the channel bathymetry, active channel expanse, and riparian corridor using RTK-GPS, total stations, pontoon-based echosounding, and LIDAR. SRH-2D was used to simulate 1-m resolution hydrodynamics (i.e., water surface elevations, depths, velocity vectors, and shear stresses) at 21 discharges spanning three orders of magnitude from base flow to moderate flood, also accounting for strong hydrologic seasonality. Model results were stratified and analyzed at segment, reach, and morphologic unit scales. Then hydrodynamic results at each scale were compared to dead wood data at each scale to understand the links between landforms, flows, and dead wood distributions.
Simulation of 2D Fields of Raindrop Size Distributions
NASA Astrophysics Data System (ADS)
Berne, A.; Schleiss, M.; Uijlenhoet, R.
2008-12-01
The raindrop size distribution (DSD hereafter) is of primary importance for quantitative applications of weather radar measurements. The radar reflectivity~Z (directly measured by radar) is related to the power backscattered by the ensemble of hydrometeors within the radar sampling volume. However, the rain rate~R (the flux of water to the surface) is the variable of interest for many applications (hydrology, weather forecasting, air traffic for example). Usually, radar reflectivity is converted into rain rate using a power law such as Z=aRb. The coefficients a and b of the Z-R relationship depend on the DSD. The variability of the DSD in space and time has to be taken into account to improve radar rain rate estimates. Therefore, the ability to generate a large number of 2D fields of DSD which are statistically homogeneous provides a very useful simulation framework that nicely complements experimental approaches based on DSD data, in order to investigate radar beam propagation through rain as well as radar retrieval techniques. The proposed approach is based on geostatistics for structural analysis and stochastic simulation. First, the DSD is assumed to follow a gamma distribution. Hence a 2D field of DSDs can be adequately described as a 2D field of a multivariate random function consisting of the three DSD parameters. Such fields are simulated by combining a Gaussian anamorphosis and a multivariate Gaussian random field simulation algorithm. Using the (cross-)variogram models fitted on data guaranties that the spatial structure of the simulated fields is consistent with the observed one. To assess its validity, the proposed method is applied to data collected during intense Mediterranean rainfall. As only time series are available, Taylor's hypothesis is assumed to convert time series in 1D range profile. Moreover, DSD fields are assumed to be isotropic so that the 1D structure can be used to simulate 2D fields. A large number of 2D fields of DSD parameters are
COYOTE: A computer program for 2-D reactive flow simulations
Cloutman, L.D.
1990-04-01
We describe the numerical algorithm used in the COYOTE two- dimensional, transient, Eulerian hydrodynamics program for reactive flows. The program has a variety of options that provide capabilities for a wide range of applications, and it is designed to be robust and relatively easy to use while maintaining adequate accuracy and efficiency to solve realistic problems. It is based on the ICE method, and it includes a general species and chemical reaction network for simulating reactive flows. It also includes swirl, turbulence transport models, and a nonuniform mesh capability. We describe several applications of the program. 33 refs., 4 figs.
Chemical mixing in smoothed particle hydrodynamics simulations
NASA Astrophysics Data System (ADS)
Greif, Thomas H.; Glover, Simon C. O.; Bromm, Volker; Klessen, Ralf S.
2009-02-01
We introduce a simple and efficient algorithm for diffusion in smoothed particle hydrodynamics (SPH) simulations and apply it to the problem of chemical mixing. Based on the concept of turbulent diffusion, we link the diffusivity of a pollutant to the local physical conditions and can thus resolve mixing in space and time. We apply our prescription to the evolution of an idealized supernova remnant and find that we can model the distribution of heavy elements without having to explicitly resolve hydrodynamic instabilities in the post-shock gas. Instead, the dispersal of the pollutant is implicitly modelled through its dependence on the local velocity dispersion. Our method can thus be used in any SPH simulation that investigates chemical mixing but lacks the necessary resolution on small scales. Potential applications include the enrichment of the interstellar medium in present-day galaxies, as well as the intergalactic medium at high redshifts.
EUNHA: a New Cosmological Hydrodynamic Simulation Code
NASA Astrophysics Data System (ADS)
Shin, Jihye; Kim, Juhan; Kim, Sungsoo S.; Park, Changbom
2014-06-01
We develop a parallel cosmological hydrodynamic simulation code designed for the study of formation and evolution of cosmological structures. The gravitational force is calculated using the TreePM method and the hydrodynamics is implemented based on the smoothed particle hydrodynamics. The initial displacement and velocity of simulation particles are calculated according to second-order Lagrangian perturbation theory using the power spectra of dark matter and baryonic matter. The initial background temperature is given by Recfast and the temperature fluctuations at the initial particle position are assigned according to the adiabatic model. We use a time-limiter scheme over the individual time steps to capture shock-fronts and to ease the time-step tension between the shock and preshock particles. We also include the astrophysical gas processes of radiative heating/cooling, star formation, metal enrichment, and supernova feedback. We test the code in several standard cases such as one-dimensional Riemann problems, Kelvin-Helmholtz, and Sedov blast wave instability. Star formation on the galactic disk is investigated to check whether the Schmidt-Kennicutt relation is properly recovered. We also study global star formation history at different simulation resolutions and compare them with observations.
Testing hydrodynamics schemes in galaxy disc simulations
NASA Astrophysics Data System (ADS)
Few, C. G.; Dobbs, C.; Pettitt, A.; Konstandin, L.
2016-08-01
We examine how three fundamentally different numerical hydrodynamics codes follow the evolution of an isothermal galactic disc with an external spiral potential. We compare an adaptive mesh refinement code (RAMSES), a smoothed particle hydrodynamics code (SPHNG), and a volume-discretized mesh-less code (GIZMO). Using standard refinement criteria, we find that RAMSES produces a disc that is less vertically concentrated and does not reach such high densities as the SPHNG or GIZMO runs. The gas surface density in the spiral arms increases at a lower rate for the RAMSES simulations compared to the other codes. There is also a greater degree of substructure in the SPHNG and GIZMO runs and secondary spiral arms are more pronounced. By resolving the Jeans length with a greater number of grid cells, we achieve more similar results to the Lagrangian codes used in this study. Other alterations to the refinement scheme (adding extra levels of refinement and refining based on local density gradients) are less successful in reducing the disparity between RAMSES and SPHNG/GIZMO. Although more similar, SPHNG displays different density distributions and vertical mass profiles to all modes of GIZMO (including the smoothed particle hydrodynamics version). This suggests differences also arise which are not intrinsic to the particular method but rather due to its implementation. The discrepancies between codes (in particular, the densities reached in the spiral arms) could potentially result in differences in the locations and time-scales for gravitational collapse, and therefore impact star formation activity in more complex galaxy disc simulations.
Numerical simulation of rock cutting using 2D AUTODYN
NASA Astrophysics Data System (ADS)
Woldemichael, D. E.; Rani, A. M. Abdul; Lemma, T. A.; Altaf, K.
2015-12-01
In a drilling process for oil and gas exploration, understanding of the interaction between the cutting tool and the rock is important for optimization of the drilling process using polycrystalline diamond compact (PDC) cutters. In this study the finite element method in ANSYS AUTODYN-2D is used to simulate the dynamics of cutter rock interaction, rock failure, and fragmentation. A two-dimensional single PDC cutter and rock model were used to simulate the orthogonal cutting process and to investigate the effect of different parameters such as depth of cut, and back rake angle on two types of rocks (sandstone and limestone). In the simulation, the cutting tool was dragged against stationary rock at predetermined linear velocity and the depth of cut (1,2, and 3 mm) and the back rake angles(-10°, 0°, and +10°) were varied. The simulation result shows that the +10° back rake angle results in higher rate of penetration (ROP). Increasing depth of cut leads to higher ROP at the cost of higher cutting force.
Multiscale simulation of 2D elastic wave propagation
NASA Astrophysics Data System (ADS)
Zhang, Wensheng; Zheng, Hui
2016-06-01
In this paper, we develop the multiscale method for simulation of elastic wave propagation. Based on the first-order velocity-stress hyperbolic form of 2D elastic wave equation, the particle velocities are solved first ona coarse grid by the finite volume method. Then the stress tensor is solved by using the multiscale basis functions which can represent the fine-scale variation of the wavefield on the coarse grid. The basis functions are computed by solving a local problem with the finite element method. The theoretical formulae and description of the multiscale method for elastic wave equation are given in more detail. The numerical computations for an inhomogeneous model with random scatter are completed. The results show the effectiveness of the multiscale method.
Machine learning and cosmological simulations - II. Hydrodynamical simulations
NASA Astrophysics Data System (ADS)
Kamdar, Harshil M.; Turk, Matthew J.; Brunner, Robert J.
2016-04-01
We extend a machine learning (ML) framework presented previously to model galaxy formation and evolution in a hierarchical universe using N-body + hydrodynamical simulations. In this work, we show that ML is a promising technique to study galaxy formation in the backdrop of a hydrodynamical simulation. We use the Illustris simulation to train and test various sophisticated ML algorithms. By using only essential dark matter halo physical properties and no merger history, our model predicts the gas mass, stellar mass, black hole mass, star formation rate, g - r colour, and stellar metallicity fairly robustly. Our results provide a unique and powerful phenomenological framework to explore the galaxy-halo connection that is built upon a solid hydrodynamical simulation. The promising reproduction of the listed galaxy properties demonstrably place ML as a promising and a significantly more computationally efficient tool to study small-scale structure formation. We find that ML mimics a full-blown hydrodynamical simulation surprisingly well in a computation time of mere minutes. The population of galaxies simulated by ML, while not numerically identical to Illustris, is statistically robust and physically consistent with Illustris galaxies and follows the same fundamental observational constraints. ML offers an intriguing and promising technique to create quick mock galaxy catalogues in the future.
Hydrodynamic and Spectral Simulations of HMXB Winds
Mauche, C W; Liedahl, D A; Akiyama, S; Plewa, T
2007-03-30
We describe preliminary results of a global model of the radiatively-driven photoionized wind and accretion flow of the high-mass X-ray binary Vela X-1. The full model combines FLASH hydrodynamic calculations, XSTAR photoionization calculations, HULLAC atomic data, and Monte Carlo radiation transport. We present maps of the density, temperature, velocity, and ionization parameter from a FLASH two-dimensional time-dependent simulation of Vela X-1, as well as maps of the emissivity distributions of the X-ray emission lines.
Testing hydrodynamics schemes in galaxy disc simulations
NASA Astrophysics Data System (ADS)
Few, C. G.; Dobbs, C.; Pettitt, A.; Konstandin, L.
2016-08-01
We examine how three fundamentally different numerical hydrodynamics codes follow the evolution of an isothermal galactic disc with an external spiral potential. We compare an adaptive mesh refinement code (RAMSES), a smoothed particle hydrodynamics code (sphNG), and a volume-discretised meshless code (GIZMO). Using standard refinement criteria, we find that RAMSES produces a disc that is less vertically concentrated and does not reach such high densities as the sphNG or GIZMO runs. The gas surface density in the spiral arms increases at a lower rate for the RAMSES simulations compared to the other codes. There is also a greater degree of substructure in the sphNG and GIZMO runs and secondary spiral arms are more pronounced. By resolving the Jeans' length with a greater number of grid cells we achieve more similar results to the Lagrangian codes used in this study. Other alterations to the refinement scheme (adding extra levels of refinement and refining based on local density gradients) are less successful in reducing the disparity between RAMSES and sphNG/GIZMO. Although more similar, sphNG displays different density distributions and vertical mass profiles to all modes of GIZMO (including the smoothed particle hydrodynamics version). This suggests differences also arise which are not intrinsic to the particular method but rather due to its implementation. The discrepancies between codes (in particular, the densities reached in the spiral arms) could potentially result in differences in the locations and timescales for gravitational collapse, and therefore impact star formation activity in more complex galaxy disc simulations.
Quantum Simulation with 2D Arrays of Trapped Ions
NASA Astrophysics Data System (ADS)
Richerme, Philip
2016-05-01
The computational difficulty of solving fully quantum many-body spin problems is a significant obstacle to understanding the behavior of strongly correlated quantum matter. This work proposes the design and construction of a 2D quantum spin simulator to investigate the physics of frustrated materials, highly entangled states, mechanisms potentially underpinning high-temperature superconductivity, and other topics inaccessible to current 1D systems. The effective quantum spins will be encoded within the well-isolated electronic levels of trapped ions, confined in a two-dimensional planar geometry, and made to interact using phonon-mediated optical dipole forces. The system will be scalable to 100+ quantum particles, far beyond the realm of classical intractability, while maintaining individual-ion control, long quantum coherence times, and site-resolved projective spin measurements. Once constructed, the two-dimensional quantum simulator will implement a broad range of spin models on a variety of reconfigurable lattices and characterize their behavior through measurements of spin-spin correlations and entanglement. This versatile tool will serve as an important experimental resource for exploring difficult quantum many-body problems in a regime where classical methods fail.
NASA Astrophysics Data System (ADS)
Hoch, J. M.; Bierkens, M. F.; Van Beek, R.; Winsemius, H.; Haag, A.
2015-12-01
Understanding the dynamics of fluvial floods is paramount to accurate flood hazard and risk modeling. Currently, economic losses due to flooding constitute about one third of all damage resulting from natural hazards. Given future projections of climate change, the anticipated increase in the World's population and the associated implications, sound knowledge of flood hazard and related risk is crucial. Fluvial floods are cross-border phenomena that need to be addressed accordingly. Yet, only few studies model floods at the large-scale which is preferable to tiling the output of small-scale models. Most models cannot realistically model flood wave propagation due to a lack of either detailed channel and floodplain geometry or the absence of hydrologic processes. This study aims to develop a large-scale modeling tool that accounts for both hydrologic and hydrodynamic processes, to find and understand possible sources of errors and improvements and to assess how the added hydrodynamics affect flood wave propagation. Flood wave propagation is simulated by DELFT3D-FM (FM), a hydrodynamic model using a flexible mesh to schematize the study area. It is coupled to PCR-GLOBWB (PCR), a macro-scale hydrological model, that has its own simpler 1D routing scheme (DynRout) which has already been used for global inundation modeling and flood risk assessments (GLOFRIS; Winsemius et al., 2013). A number of model set-ups are compared and benchmarked for the simulation period 1986-1996: (0) PCR with DynRout; (1) using a FM 2D flexible mesh forced with PCR output and (2) as in (1) but discriminating between 1D channels and 2D floodplains, and, for comparison, (3) and (4) the same set-ups as (1) and (2) but forced with observed GRDC discharge values. Outputs are subsequently validated against observed GRDC data at Óbidos and flood extent maps from the Dartmouth Flood Observatory. The present research constitutes a first step into a globally applicable approach to fully couple
Mesoscale simulations of hydrodynamic squirmer interactions.
Götze, Ingo O; Gompper, Gerhard
2010-10-01
The swimming behavior of self-propelled microorganisms is studied by particle-based mesoscale simulations. The simulation technique includes both hydrodynamics and thermal fluctuations that are both essential for the dynamics of microswimmers. The swimmers are modeled as squirmers, i.e., spherical objects with a prescribed tangential surface velocity, where the focus of thrust generation can be tuned from pushers to pullers. For passive squirmers (colloids), we show that the velocity autocorrelation function agrees quantitatively with the Boussinesq approximation. Single active squirmers show a persistent random-walk behavior, determined by forward motion, lateral diffusion, and orientational fluctuations, in agreement with theoretical predictions. For pairs of squirmers, which are initially swimming in parallel, we find an attraction for pushers and a repulsion for pullers, as expected. The hydrodynamic force between squirmer pairs is calculated as a function of the center-to-center distances d(cm) and is found to be consistent with a logarithmic distance dependence for d(cm) less than about two sphere diameters; here, the force is considerably stronger than expected from the far-field expansion. The dependence of the force strength on the asymmetry of the polar surface velocity is obtained. During the collision process, thermal fluctuations turn out to be very important and to strongly affect the postcollision velocity directions of both squirmers. PMID:21230327
NASA Astrophysics Data System (ADS)
Bandrowski, D.; Lai, Y.; Bradley, N.; Gaeuman, D. A.; Murauskas, J.; Som, N. A.; Martin, A.; Goodman, D.; Alvarez, J.
2014-12-01
In the field of river restoration sciences there is a growing need for analytical modeling tools and quantitative processes to help identify and prioritize project sites. 2D hydraulic models have become more common in recent years and with the availability of robust data sets and computing technology, it is now possible to evaluate large river systems at the reach scale. The Trinity River Restoration Program is now analyzing a 40 mile segment of the Trinity River to determine priority and implementation sequencing for its Phase II rehabilitation projects. A comprehensive approach and quantitative tool has recently been developed to analyze this complex river system referred to as: 2D-Hydrodynamic Based Logic Modeling (2D-HBLM). This tool utilizes various hydraulic output parameters combined with biological, ecological, and physical metrics at user-defined spatial scales. These metrics and their associated algorithms are the underpinnings of the 2D-HBLM habitat module used to evaluate geomorphic characteristics, riverine processes, and habitat complexity. The habitat metrics are further integrated into a comprehensive Logic Model framework to perform statistical analyses to assess project prioritization. The Logic Model will analyze various potential project sites by evaluating connectivity using principal component methods. The 2D-HBLM tool will help inform management and decision makers by using a quantitative process to optimize desired response variables with balancing important limiting factors in determining the highest priority locations within the river corridor to implement restoration projects. Effective river restoration prioritization starts with well-crafted goals that identify the biological objectives, address underlying causes of habitat change, and recognizes that social, economic, and land use limiting factors may constrain restoration options (Bechie et. al. 2008). Applying natural resources management actions, like restoration prioritization, is
Hydrodynamic simulations with the Godunov smoothed particle hydrodynamics
NASA Astrophysics Data System (ADS)
Murante, G.; Borgani, S.; Brunino, R.; Cha, S.-H.
2011-10-01
We present results based on an implementation of the Godunov smoothed particle hydrodynamics (GSPH), originally developed by Inutsuka, in the GADGET-3 hydrodynamic code. We first review the derivation of the GSPH discretization of the equations of moment and energy conservation, starting from the convolution of these equations with the interpolating kernel. The two most important aspects of the numerical implementation of these equations are (a) the appearance of fluid velocity and pressure obtained from the solution of the Riemann problem between each pair of particles, and (b) the absence of an artificial viscosity term. We carry out three different controlled hydrodynamical three-dimensional tests, namely the Sod shock tube, the development of Kelvin-Helmholtz instabilities in a shear-flow test and the 'blob' test describing the evolution of a cold cloud moving against a hot wind. The results of our tests confirm and extend in a number of aspects those recently obtained by Cha, Inutsuka & Nayakshin: (i) GSPH provides a much improved description of contact discontinuities, with respect to smoothed particle hydrodynamics (SPH), thus avoiding the appearance of spurious pressure forces; (ii) GSPH is able to follow the development of gas-dynamical instabilities, such as the Kevin-Helmholtz and the Rayleigh-Taylor ones; (iii) as a result, GSPH describes the development of curl structures in the shear-flow test and the dissolution of the cold cloud in the 'blob' test. Besides comparing the results of GSPH with those from standard SPH implementations, we also discuss in detail the effect on the performances of GSPH of changing different aspects of its implementation: choice of the number of neighbours, accuracy of the interpolation procedure to locate the interface between two fluid elements (particles) for the solution of the Riemann problem, order of the reconstruction for the assignment of variables at the interface, choice of the limiter to prevent oscillations of
A 2D simulation model for urban flood management
NASA Astrophysics Data System (ADS)
Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo
2014-05-01
The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and
Hydrodynamic Simulations of Unevenly Irradiated Jovian Planets
NASA Astrophysics Data System (ADS)
Langton, Jonathan; Laughlin, Gregory
2008-02-01
We employ a two-dimensional, grid-based hydrodynamic model to simulate upper atmospheric dynamics on extrasolar giant planets. The hydrodynamic equations of motion are integrated on a rotating, irradiated sphere using a pseudospectral algorithm. We use a two-frequency, two-stream approximation of radiative transfer to model the temperature forcing. This model is well suited to simulate the dynamics of the atmospheres of planets with high orbital eccentricity, which are subject to widely varying irradiation conditions. We identify six such planets, with eccentricities between e = 0.28 and e = 0.93 and semimajor axes from a = 0.0508 AU to a = 0.432 AU, as particularly interesting. For each, we determine the temperature profile and resulting infrared light curves in the 8 μm Spitzer band. Especially notable are the results for HD 80606b, which has the largest eccentricity (e = 0.9321) of any known planet, and HAT-P-2b, which transits its parent star, so that its physical properties are well constrained. Despite the varied orbital parameters, the atmospheric dynamics of these planets display a number of interesting common properties. In all cases, the atmospheric response is primarily driven by the intense irradiation at periastron. The resulting expansion of heated air produces high-velocity turbulent flow, including long-lived circumpolar vortices. In addition, a superrotating acoustic front develops on some planets; the strength of this disturbance depends on both the eccentricity and the temperature gradient from uneven heating. The specifics of the resulting infrared light curves depend strongly on the orbital geometry. We show, however, that the variations on HD 80606b and HAT-P-2b should be readily detectable at 4.5 and 8 μm using Spitzer. These two objects present the most attractive observational targets of all known high-e exoplanets.
Computer simulation of the fire-tube boiler hydrodynamics
NASA Astrophysics Data System (ADS)
Khaustov, Sergei A.; Zavorin, Alexander S.; Buvakov, Konstantin V.; Sheikin, Vyacheslav A.
2015-01-01
Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.
Hallquist, J.O.
1982-02-01
This revised report provides an updated user's manual for DYNA2D, an explicit two-dimensional axisymmetric and plane strain finite element code for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 4-node solid elements, and the equations-of motion are integrated by the central difference method. An interactive rezoner eliminates the need to terminate the calculation when the mesh becomes too distorted. Rather, the mesh can be rezoned and the calculation continued. The command structure for the rezoner is described and illustrated by an example.
Production code control system for hydrodynamics simulations
Slone, D.M.
1997-08-18
We describe how the Production Code Control System (pCCS), written in Perl, has been used to control and monitor the execution of a large hydrodynamics simulation code in a production environment. We have been able to integrate new, disparate, and often independent, applications into the PCCS framework without the need to modify any of our existing application codes. Both users and code developers see a consistent interface to the simulation code and associated applications regardless of the physical platform, whether an MPP, SMP, server, or desktop workstation. We will also describe our use of Perl to develop a configuration management system for the simulation code, as well as a code usage database and report generator. We used Perl to write a backplane that allows us plug in preprocessors, the hydrocode, postprocessors, visualization tools, persistent storage requests, and other codes. We need only teach PCCS a minimal amount about any new tool or code to essentially plug it in and make it usable to the hydrocode. PCCS has made it easier to link together disparate codes, since using Perl has removed the need to learn the idiosyncrasies of system or RPC programming. The text handling in Perl makes it easy to teach PCCS about new codes, or changes to existing codes.
Numerical relativistic hydrodynamic simulations of neutron stars
NASA Astrophysics Data System (ADS)
Haywood, Joe R.
Developments in numerical relativistic hydrodynamics over the past thirty years, along with the advent of high speed computers, have made problems needing general relativity and relativistic hydrodynamics tractable. One such problem is the relativistic evolution of neutron stars, either in a head on collision or in binary orbit. Also of current interest is the detection of gravitational radiation from binary neutron stars, black-hole neutron star binaries, binary black holes, etc. Such systems expected to emit gravitational radiation with amplitude large enough to be detected on Earth by such groups as LIGO and VIRGO. Unfortunately, the expected signal strength is below the current noise level. However, signal processing techniques have been developed which should eventually find a signal, if a good theoretical template can be found. In the cases above it is not possible to obtain an analytic solution to the Einstein equations and a numerical approximation is therefore most necessary. In this thesis the Einstein equations are written using the formalism of Arnowitt, Desser and Misner and a conformally flat metric is assumed. Numerical simulations of colliding neutron stars, having either a realistic or Gamma = 2 polytropic equation of state (EOS), are presented which confirm the rise in central density seen by [51, 89] for the softer EOS. For the binary calculation, the results of Wilson et al. [89] are confirmed, which show that the neutron stars can collapse to black holes before colliding when the EOS is realistic and we also confirm results of Miller [56] and others that there is essentially no compression, the central density does not increase, when the stiffer equation of state is used. Finally, a template for the gravitational radiation emitted from the binary is calculated and we show that the frequency of the emitted gravitational waves changes more slowly for the [89] EOS, which may result in a stronger signal in the 50-100 Hz band of LIGO.
A 2D simulation model for urban flood management
NASA Astrophysics Data System (ADS)
Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo
2014-05-01
The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and
Exploring spiral galaxy potentials with hydrodynamical simulations
NASA Astrophysics Data System (ADS)
Slyz, Adrianne D.; Kranz, Thilo; Rix, Hans-Walter
2003-12-01
We study how well the complex gas velocity fields induced by massive spiral arms are modelled by the hydrodynamical simulations that we used recently to constrain the dark matter fraction in nearby spiral galaxies. More specifically, we explore the dependence of the positions and amplitudes of features in the gas flow on the temperature of the interstellar medium (assumed to behave as a one-component isothermal fluid), the non-axisymmetric disc contribution to the galactic potential, the pattern speed Ωp, and finally the numerical resolution of the simulation. We argue that, after constraining the pattern speed reasonably well by matching the simulations to the observed spiral arm morphology, the amplitude of the non-axisymmetric perturbation (the disc fraction) is left as the primary parameter determining the gas dynamics. However, owing to the sensitivity of the positions of the shocks to modelling parameters, one has to be cautious when quantitatively comparing the simulations to observations. In particular, we show that a global least-squares analysis is not the optimal method for distinguishing different models, as it tends to slightly favour low disc fraction models. Nevertheless, we conclude that, given observational data of reasonably high spatial resolution and an accurate shock-resolving hydro-code, this method tightly constrains the dark matter content within spiral galaxies. We further argue that, even if the perturbations induced by spiral arms are weaker than those of strong bars, they are better suited for this kind of analysis because the spiral arms extend to larger radii where effects like inflows due to numerical viscosity and morphological dependence on gas sound speed are less of a concern than they are in the centres of discs.
NASA Astrophysics Data System (ADS)
Bellos, Vasilis; Tsakiris, George
2016-09-01
The study presents a new hybrid method for the simulation of flood events in small catchments. It combines a physically-based two-dimensional hydrodynamic model and the hydrological unit hydrograph theory. Unit hydrographs are derived using the FLOW-R2D model which is based on the full form of two-dimensional Shallow Water Equations, solved by a modified McCormack numerical scheme. The method is tested at a small catchment in a suburb of Athens-Greece for a storm event which occurred in February 2013. The catchment is divided into three friction zones and unit hydrographs of 15 and 30 min are produced. The infiltration process is simulated by the empirical Kostiakov equation and the Green-Ampt model. The results from the implementation of the proposed hybrid method are compared with recorded data at the hydrometric station at the outlet of the catchment and the results derived from the fully hydrodynamic model FLOW-R2D. It is concluded that for the case studied, the proposed hybrid method produces results close to those of the fully hydrodynamic simulation at substantially shorter computational time. This finding, if further verified in a variety of case studies, can be useful in devising effective hybrid tools for the two-dimensional flood simulations, which are lead to accurate and considerably faster results than those achieved by the fully hydrodynamic simulations.
Simulation of fabrication variations in supernova hydrodynamics experiments
NASA Astrophysics Data System (ADS)
Budde, A.; Drake, R. P.; Kuranz, C. C.; Grosskopf, M. J.; Plewa, T.; Hearn, N. C.
2010-06-01
Recent experiments at the Omega laser facility have used ˜4.5 kJ of energy to create a blast wave similar to the one that occurs in a core-collapse supernova. In the experiment, the blast wave crosses an interface with a drop in density similar to the He-H interface in a supernova, which induces the growth of a machined perturbation on the interface surface due to the Rayleigh-Taylor instability. These experiments have exhibited different morphology than our simulations predict. It has been hypothesized that such differences may be the result of unintended structures created in the target fabrication process. We have used 2D Cartesian simulations to model such fabrication variations using a branch of the hydrodynamic code FLASH. We have studied the convergence of these numerical models and developed analysis techniques to gauge and compare the impact each variation has on numerical results. In addition to this, we have implemented and verified a new viscosity package for our code. These accomplishments have allowed us to perform a thorough analysis of the effects that such fabrication variations have on our results through the use of numerical simulations.
Hydrodynamic Simulations of Jet- and Wind-driven Protostellar Outflows
NASA Astrophysics Data System (ADS)
Lee, Chin-Fei; Stone, James M.; Ostriker, Eve C.; Mundy, Lee G.
2001-08-01
We present two-dimensional hydrodynamic simulations of both jet- and wind-driven models for protostellar outflows in order to make detailed comparisons to the kinematics of observed molecular outflows. The simulations are performed with the ZEUS-2D hydrodynamic code using a simplified equation of state, simplified cooling and no external heating, and no self-gravity. In simulations of steady jets, swept-up ambient gas forms a thin shell that can be identified as a molecular outflow. We find a simple ballistic bow shock model is able to reproduce the structure and transverse velocity of the shell. Position-velocity (PV) diagrams for the shell cut along the outflow axis show a convex spur structure with the highest velocity at the bow tip and low-velocity red and blue components at any viewing angle. The power-law index of the mass-velocity (MV) relationship ranges from 1.5 to 3.5, depending strongly on the inclination. If the jet is time-variable, the PV diagrams show multiple convex spur structures, and the power-law index becomes smaller than the steady jet simulation. In simulations of isothermal steady wide-angle winds, swept-up ambient gas forms a thin shell that at early stages has a similar shape to the shell in the jet-driven model; it becomes broader at later times. We find the structure and kinematics of the shell is well described by a momentum-conserving model similar to that of Shu et al. (1991). In contrast to the results from jet simulations, the PV diagrams for the shell cut along the outflow axis show a lobe structure tilted with source inclination, with components that are primarily either red or blue unless the inclination is nearly in the plane of sky. The power-law index of the MV relationship ranges from 1.3 to 1.8. If the wind is time-variable, the PV diagrams also show multiple structures, and the power-law index becomes smaller than the steady wind simulation. Comparing the different simulations with observations, we find that some outflows
Hydrodynamical Simulations of Nuclear Rings in Barred Galaxies
NASA Astrophysics Data System (ADS)
Li, Zhi; Shen, Juntai; Kim, Woong-Tae
2015-06-01
Dust lanes, nuclear rings, and nuclear spirals are typical gas structures in the inner region of barred galaxies. Their shapes and properties are linked to the physical parameters of the host galaxy. We use high-resolution hydrodynamical simulations to study 2D gas flows in simple barred galaxy models. The nuclear rings formed in our simulations can be divided into two groups: one group is nearly round and the other is highly elongated. We find that roundish rings may not form when the bar pattern speed is too high or the bulge central density is too low. We also study the periodic orbits in our galaxy models, and find that the concept of inner Lindblad resonance (ILR) may be generalized by the extent of {x}2 orbits. All roundish nuclear rings in our simulations settle in the range of {x}2 orbits (or ILRs). However, knowing the resonances is insufficient to pin down the exact location of these nuclear rings. We suggest that the backbone of round nuclear rings is the {x}2 orbital family, i.e., round nuclear rings are allowed only in the radial range of {x}2 orbits. A round nuclear ring forms exactly at the radius where the residual angular momentum of infalling gas balances the centrifugal force, which can be described by a parameter {f}{ring} measured from the rotation curve. The gravitational torque on gas in high pattern speed models is larger, leading to a smaller ring size than in the low pattern speed models. Our result may have important implications for using nuclear rings to measure the parameters of real barred galaxies with 2D gas kinematics.
Hai, Pham T; Magome, J; Yorozuya, A; Inomata, H; Fukami, K; Takeuchi, K
2010-01-01
In order to assess the effects of climate change on flood disasters in urban areas, we applied a two dimensional finite element hydrodynamic model (2D-FEM) to simulate flood processes for the case analysis of levee breach caused by Kathleen Typhoon on 16 September 1947 in Kurihashi reach of Tone River, upstream of Tokyo area. The purpose is to use the model to simulate flood inundation processes under the present topography and land-use conditions with impending extreme flood scenarios due to climate change for mega-urban areas like Tokyo. Simulation used 100 m resolution topographic data (in PWRI), which was derived from original LiDAR (Light Detection and Ranging) data, and levee breach hydrographic data in 1947. In this paper, we will describe the application of the model with calibration approach and techniques when applying for such fine spatial resolution in urban environments. The fine unstructured triangular FEM mesh of the model appeared to be the most capable of introducing of constructions like roads/levees in simulations. Model results can be used to generate flood mapping, subsequently uploaded to Google Earth interface, making the modeling and presentation process much comprehensible to the general public. PMID:20962401
2D simulation of transport and degradation in the River Rhine.
Teichmann, L; Reuschenbach, P; Müller, B; Horn, H
2002-01-01
A simple 2D model has been developed for the simulation of mass transport and degradation of substances in the river Rhine. The model describes mass transport in the flow direction with a convective and a dispersive term. Transversal transport is described by segmenting the river and formulating a transversal exchange coefficient between the segments. Degradation can be formulated with any kinetics from first order to complex enzyme kinetics. The model was verified with monitoring data from the river Rhine. The hydrodynamic parameters such as dispersion coefficients and exchange coefficients were fitted to the conductivity, which was assumed to be non-degradable. The degradation term was fitted to ammonia values. The model was used to simulate measured concentrations of a readily (Aniline) and a poorly biodegradable substance (1,4-Dioxan) 10 m from the left river bank. It was the objective of this research program to develop a model which allows a realistic estimation of the locally and regionally predicted environmental concentration of chemical substances in the EU risk assessment scheme. PMID:12380980
NASA Astrophysics Data System (ADS)
Hayden-Lesmeister, A.; Remo, J. W.; Piazza, B.
2015-12-01
The Atchafalaya River (AR) in Louisiana is the principal distributary of the Mississippi River (MR), and its basin contains the largest contiguous area of baldcypress-water tupelo swamp forests in North America. After designation of the Atchafalaya River Basin (ARB) as a federal floodway following the destructive 1927 MR flood, it was extensively modified to accommodate a substantial portion of the MR flow (~25%) to mitigate flooding in southern Louisiana. These modifications and increased flows resulted in substantial incision along large portions of the AR, altering connectivity between the river and its associated waterbodies. As a result of incision, the hydroperiod has been substantially altered, which has contributed to a decline in ecological health of the ARB's baldcypress-water tupelo forests. While it is recognized that the altered hydroperiod has negatively affected natural baldcypress regeneration, it is unclear whether proposed projects designed to enhance flow connectivity will increase long-term survival of these forests. In this study, we have constructed a 1D2D hydrodynamic model using SOBEK 2.12 to realistically model key physical parameters such as residence times, inundation extent, water-surface elevations (WSELs), and flow velocities to increase our understanding of the ARB's altered hydroperiod and the consequences for baldcypress-water tupelo forests. While the model encompasses a majority of the ARB, our modeling effort is focused on the Flat Lake Water Management Unit located in the southern portion of the ARB, where it will also be used to evaluate flow connectivity enhancement projects within the management unit. We believe our 1D2D hybrid hydraulic modeling approach will provide the flexibility and accuracy needed to guide connectivity enhancement efforts in the ARB and may provide a model framework for guiding similar efforts along other highly-altered river systems.
Kaiglová, Jana; Langhammer, Jakub; Jiřinec, Petr; Janský, Bohumír; Chalupová, Dagmar
2015-03-01
This article used various hydrodynamic and sediment transport models to analyze the potential and the limits of different channel schematizations. The main aim was to select and evaluate the most suitable simulation method for fine-grained sediment remobilization assessment. Three types of channel schematization were selected to study the flow potential for remobilizing fine-grained sediment in artificially modified channels. Schematization with a 1D cross-sectional horizontal plan, a 1D+ approach, splitting the riverbed into different functional zones, and full 2D mesh, adopted in MIKE by the DHI modeling suite, was applied to the study. For the case study, a 55-km stretch of the Bílina River, in the Czech Republic, Central Europe, which has been heavily polluted by the chemical and coal mining industry since the mid-twentieth century, was selected. Long-term exposure to direct emissions of toxic pollutants including heavy metals and persistent organic pollutants (POPs) resulted in deposits of pollutants in fine-grained sediments in the riverbed. Simulations, based on three hydrodynamic model schematizations, proved that for events not exceeding the extent of the riverbed profile, the 1D schematization can provide comparable results to a 2D model. The 1D+ schematization can improve accuracy while keeping the benefits of high-speed simulation and low requirements of input DEM data, but the method's suitability is limited by the channel properties. PMID:25687259
Simulation and analysis of solute transport in 2D fracture/pipe networks: The SOLFRAC program
NASA Astrophysics Data System (ADS)
Bodin, Jacques; Porel, Gilles; Delay, Fred; Ubertosi, Fabrice; Bernard, Stéphane; de Dreuzy, Jean-Raynald
2007-01-01
The Time Domain Random Walk (TDRW) method has been recently developed by Delay and Bodin [Delay, F. and Bodin, J., 2001. Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in fracture networks. Geophys. Res. Lett., 28(21): 4051-4054.] and Bodin et al. [Bodin, J., Porel, G. and Delay, F., 2003c. Simulation of solute transport in discrete fracture networks using the time domain random walk method. Earth Planet. Sci. Lett., 6566: 1-8.] for simulating solute transport in discrete fracture networks. It is assumed that the fracture network can reasonably be represented by a network of interconnected one-dimensional pipes (i.e. flow channels). Processes accounted for are: (1) advection and hydrodynamic dispersion in the channels, (2) matrix diffusion, (3) diffusion into stagnant zones within the fracture planes, (4) sorption reactions onto the fracture walls and in the matrix, (5) linear decay, and (6) mass sharing at fracture intersections. The TDRW method is handy and very efficient in terms of computation costs since it allows for the one-step calculation of the particle residence time in each bond of the network. This method has been programmed in C++, and efforts have been made to develop an efficient and user-friendly software, called SOLFRAC. This program is freely downloadable at the URL http://labo.univ-poitiers.fr/hydrasa/intranet/telechargement.htm. It calculates solute transport into 2D pipe networks, while considering different types of injections and different concepts of local dispersion within each flow channel. Post-simulation analyses are also available, such as the mean velocity or the macroscopic dispersion at the scale of the entire network. The program may be used to evaluate how a given transport mechanism influences the macroscopic transport behaviour of fracture networks. It may also be used, as is the case, e.g., with analytical solutions, to interpret laboratory or field tracer test experiments
Hydrodynamic Simulations with the Godunov SPH
NASA Astrophysics Data System (ADS)
Borgani, S.; Murante, G.; Brunino, R.; Cha, S.-H.
2012-07-01
We present results based on an implementation of the Godunov Smoothed Particle Hydrodynamics (GSPH). We carry out controlled hydrodynamical three-dimensional tests, namely the Sod shock tube and the development of Kelvin-Helmholtz instabilities in a shear flow test. The results of our tests demonstrate GSPH provides a much improved description of contact discontinuities, with respect to SPH, and is able to follow the development of gas-dynamical instabilities, such as the Kevin-Helmholtz and the Rayleigh-Taylor ones.
SPH (smoothed particle hydrodynamics) simulations of hypervelocity impacts
Cloutman, L.D.
1991-01-24
The smoothed particle hydrodynamics (SPH) method has been used to simulate several cases of hypervelocity impact in an exploratory study to determine the suitability of the method for such problems. The calculations compare favorably with experimental results and with other numerical simulations. We discuss the requirements that must be satisfied for SPH to produce accurate simulations of such problems. 18 refs., 9 figs.
NASA Astrophysics Data System (ADS)
Croissant, T.; Lague, D.; Davy, P.
2014-12-01
Numerical models of floodplain dynamics often use a simplified 1D description of flow hydraulics and sediment transport that cannot fully account for differential friction between vegetated banks and low friction in the main channel. Key parameters of such models are the friction coefficient and the description of the channel bathymetry which strongly influence predicted water depth and velocity, and therefore sediment transport capacity. In this study, we use a newly developed 2D hydrodynamic model, Floodos, whose efficiency is a major advantage for exploring channel morphodynamics from a flood event to millennial time scales. We evaluate the quality of Floodos predictions in the Whataroa river, New Zealand and assess the effect of a spatially distributed friction coefficient (SDFC) on long term sediment transport. Predictions from the model are compared to water depth data from a gauging station located on the Whataroa River in Southern Alps, New Zealand. The Digital Elevation Model (DEM) of the 2.5 km long studied reach is derived from a 2010 LiDAR acquisition with 2 m resolution and an interpolated bathymetry. The several large floods experienced by this river during 2010 allow us to access water depth for a wide range of possible river discharges and to retrieve the scaling between these two parameters. The high resolution DEM used has a non-negligible part of submerged bathymetry that airborne LiDAR was not able to capture. Bathymetry can be reconstructed by interpolation methods that introduce several uncertainties concerning water depth predictions. We address these uncertainties inherent to the interpolation using a simplified channel with a geometry (slope and width) similar to the Whataroa river. We then explore the effect of a SDFC on velocity pattern, water depth and sediment transport capacity and discuss its relevance on long term predictions of sediment transport and channel morphodynamics.
Hydrodynamical Simulations of Nuclear Rings in Barred Galaxies
NASA Astrophysics Data System (ADS)
Li, Zhi; Shen, Juntai; Kim, Woong-Tae
2015-08-01
Dust lanes, nuclear rings, and nuclear spirals are typical gas structures in the inner region of barred galaxies. Their shapes and properties are linked to the physical parameters of the host galaxy. We use high-resolution hydrodynamical simulations to study 2D gas flows in simple barred galaxy models. The nuclear rings formed in our simulations can be divided into two groups: one group is nearly round and the other is highly elongated. We find that roundish rings may not form when the bar pattern speed is too high or the bulge central density is too low. We also study the periodic orbits in our galaxy models, and find that the concept of inner Lindblad resonance (ILR) may be generalized by the extent of x2 orbits. All roundish nuclear rings in our simulations settle in the range of x2 orbits (or ILRs). However, knowing the resonances is insufficient to pin down the exact location of these nuclear rings. We suggest that the backbone of round nuclear rings is the x2 orbital family, i.e. round nuclear rings are allowed only in the radial range of x2 orbits. A round nuclear ring forms exactly at the radius where the residual angular momentum of infalling gas balances the centrifugal force, which can be described by a parameter f_ring measured from the rotation curve. We find an empirical relation between the bar parameters and f_ring, and apply it to measure bar pattern speed in a sample of barred galaxies with nuclear rings.
2D numerical simulation of the resistive reconnection layer
D. A. Uzdensky; R. M. Kulsrud
2000-07-21
In this paper the authors present a two-dimensional numerical simulation of a reconnection current layer in incompressible resistive magnetohydrodynamics with uniform resistivity in the limit of very large Lundquist numbers. They use realistic boundary conditions derived consistently from the outside magnetic field, and they also take into account the effect of the backpressure from flow into the separatrix region. They find that within a few Alfven times the system reaches a steady state consistent with the Sweet-Parker model, even if the initial state is Petschek-like.
2D Numerical Simulation of the Resistive Reconnection Layer
Kulsrud, R.M.; Uzdensky, D.A.
1999-03-01
In this paper we present a two-dimensional numerical simulation of a reconnection current layer in incompressible resistive magnetohydrodynamics with uniform resistivity in the limit of very large Lundquist numbers. We use realistic boundary conditions derived consistently from the outside magnetic field, and we also take into account the effect of the back pressure from flow into the separatrix region. We find that within a few Alfvén times the system reaches a steady state consistent with the Sweet-Parker model, even if the initial state is Petschek-like.
Simulation of subgrid orographic precipitation with an embedded 2-D cloud-resolving model
NASA Astrophysics Data System (ADS)
Jung, Joon-Hee; Arakawa, Akio
2016-03-01
By explicitly resolving cloud-scale processes with embedded two-dimensional (2-D) cloud-resolving models (CRMs), superparameterized global atmospheric models have successfully simulated various atmospheric events over a wide range of time scales. Up to now, however, such models have not included the effects of topography on the CRM grid scale. We have used both 3-D and 2-D CRMs to simulate the effects of topography with prescribed "large-scale" winds. The 3-D CRM is used as a benchmark. The results show that the mean precipitation can be simulated reasonably well by using a 2-D representation of topography as long as the statistics of the topography such as the mean and standard deviation are closely represented. It is also shown that the use of a set of two perpendicular 2-D grids can significantly reduce the error due to a 2-D representation of topography.
Launch Environment Water Flow Simulations Using Smoothed Particle Hydrodynamics
NASA Technical Reports Server (NTRS)
Vu, Bruce T.; Berg, Jared J.; Harris, Michael F.; Crespo, Alejandro C.
2015-01-01
This paper describes the use of Smoothed Particle Hydrodynamics (SPH) to simulate the water flow from the rainbird nozzle system used in the sound suppression system during pad abort and nominal launch. The simulations help determine if water from rainbird nozzles will impinge on the rocket nozzles and other sensitive ground support elements.
The frontal method in hydrodynamics simulations
Walters, R.A.
1980-01-01
The frontal solution method has proven to be an effective means of solving the matrix equations resulting from the application of the finite element method to a variety of problems. In this study, several versions of the frontal method were compared in efficiency for several hydrodynamics problems. Three basic modifications were shown to be of value: 1. Elimination of equations with boundary conditions beforehand, 2. Modification of the pivoting procedures to allow dynamic management of the equation size, and 3. Storage of the eliminated equations in a vector. These modifications are sufficiently general to be applied to other classes of problems. ?? 1980.
Generating Optimal Initial Conditions for Smoothed Particle Hydrodynamics Simulations
NASA Astrophysics Data System (ADS)
Diehl, S.; Rockefeller, G.; Fryer, C. L.; Riethmiller, D.; Statler, T. S.
2015-12-01
We review existing smoothed particle hydrodynamics setup methods and outline their advantages, limitations, and drawbacks. We present a new method for constructing initial conditions for smoothed particle hydrodynamics simulations, which may also be of interest for N-body simulations, and demonstrate this method on a number of applications. This new method is inspired by adaptive binning techniques using weighted Voronoi tessellations. Particles are placed and iteratively moved based on their proximity to neighbouring particles and the desired spatial resolution. This new method can satisfy arbitrarily complex spatial resolution requirements.
2-D simulation of a waveguide free electron laser having a helical undulator
Kim, S.K.; Lee, B.C.; Jeong, Y.U.
1995-12-31
We have developed a 2-D simulation code for the calculation of output power from an FEL oscillator having a helical undulator and a cylindrical waveguide. In the simulation, the current and the energy of the electron beam is 2 A and 400 keV, respectively. The parameters of the permanent-magnet helical undulator are : period = 32 mm, number of periods = 20, magnetic field = 1.3 kG. The gain per pass is 10 and the output power is calculated to be higher than 10 kW The results of the 2-D simulation are compared with those of 1-D simulation.
Water Flow Simulation using Smoothed Particle Hydrodynamics (SPH)
NASA Technical Reports Server (NTRS)
Vu, Bruce; Berg, Jared; Harris, Michael F.
2014-01-01
Simulation of water flow from the rainbird nozzles has been accomplished using the Smoothed Particle Hydrodynamics (SPH). The advantage of using SPH is that no meshing is required, thus the grid quality is no longer an issue and accuracy can be improved.
Hydrodynamical Simulations of Narrow Planetary Rings. I. Scaling
NASA Astrophysics Data System (ADS)
Mosqueira, Ignacio; Estrada, Paul R.; Brookshaw, Leigh
1999-06-01
We investigate the global dynamics of the uranian rings using a modified 2-D smoothed particle hydrodynamic code combined with a 2-D tree code used to compute the particle-to-particle gravitational interactions. This code includes epicyclic fluid motion, nonaxisymmetric flow, local and nonlocal shear viscosity, self-consistent scale height evolution, ring-satellite gravitational interaction and coevolution, and ring self-gravity. To follow the scale height of each SPH particle we solve the vertical momentum equation for the flow using a Runge-Kutta scheme with a second order polynomial fit to the vertical behavior of the fluid pressure (N. Borderies et al., 1985, Icarus63, 406-420). The behavior of the fluid viscosity is obtained from I. Mosqueira (1996, Ph.D. thesis, Cornell University, Ithaca, NY), who found good agreement between a low optical depth extension of the high optical depth nonlocal viscosity model of Borderies et al. (1985) with the results of a local patch-code ring simulation. Our present viscosity model includes a further correction which accounts for the epicyclic limit to the mean free path (P. Goldreich and S. Tremaine, 1978, Icarus34, 227-239). This treatment covers both the high and the low ring density regimes so long as the fluid treatment remains valid. All energy source and sink terms in the presence of a nonzero fluid velocity divergence are self-consistently considered, including terms not considered in prior studies of rings. Furthermore, a new method has been tested and used to remove the noise contribution to the viscous momentum flux which occurs in traditional treatments of the viscosity within the SPH framework. In the present context this correction is needed to assure a physical behavior for the ring. Even within a 2-D framework the uranian rings are so narrow compared to their semimajor axes that radial resolution requires too many particles given our present computer resources. To address this issue we have developed a
Magneto-hydrodynamics Simulation in Astrophysics
NASA Astrophysics Data System (ADS)
Pang, Bijia
2011-08-01
Magnetohydrodynamics (MHD) studies the dynamics of an electrically conducting fluid under the influence of a magnetic field. Many astrophysical phenomena are related to MHD, and computer simulations are used to model these dynamics. In this thesis, we conduct MHD simulations of non-radiative black hole accretion as well as fast magnetic reconnection. By performing large scale three dimensional parallel MHD simulations on supercomputers and using a deformed-mesh algorithm, we were able to conduct very high dynamical range simulations of black hole accretion of Sgr A* at the Galactic Center. We find a generic set of solutions, and make specific predictions for currently feasible observations of rotation measure (RM). The magnetized accretion flow is subsonic and lacks outward convection flux, making the accretion rate very small and having a density slope of around -1. There is no tendency for the flows to become rotationally supported, and the slow time variability of th! e RM is a key quantitative signature of this accretion flow. We also provide a constructive numerical example of fast magnetic reconnection in a three-dimensional periodic box. Reconnection is initiated by a strong, localized perturbation to the field lines and the solution is intrinsically three-dimensional. Approximately 30% of the magnetic energy is released in an event which lasts about one Alfvén time, but only after a delay during which the field lines evolve into a critical configuration. In the co-moving frame of the reconnection regions, reconnection occurs through an X-like point, analogous to the Petschek reconnection. The dynamics appear to be driven by global flows rather than local processes. In addition to issues pertaining to physics, we present results on the acceleration of MHD simulations using heterogeneous computing systems te{shan2006heterogeneous}. We have implemented the MHD code on a variety of heterogeneous and multi-core architectures (multi-core x86, Cell, Nvidia and
Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models
Cook, Christopher B.; Richmond, Marshall C.
2001-05-01
This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields.
NASA Astrophysics Data System (ADS)
Yong, Heng; Zhai, ChuanLei; Jiang, Song; Song, Peng; Dai, ZhenSheng; Gu, JianFa
2016-01-01
In this paper, we introduce a multi-material arbitrary Lagrangian and Eulerian method for the hydrodynamic radiative multi-group diffusion model in 2D cylindrical coordinates. The basic idea in the construction of the method is the following: In the Lagrangian step, a closure model of radiation-hydrodynamics is used to give the states of equations for materials in mixed cells. In the mesh rezoning step, we couple the rezoning principle with the Lagrangian interface tracking method and an Eulerian interface capturing scheme to compute interfaces sharply according to their deformation and to keep cells in good geometric quality. In the interface reconstruction step, a dual-material Moment-of-Fluid method is introduced to obtain the unique interface in mixed cells. In the remapping step, a conservative remapping algorithm of conserved quantities is presented. A number of numerical tests are carried out and the numerical results show that the new method can simulate instabilities in complex fluid field under large deformation, and are accurate and robust.
Hydrodynamic simulations of pulsar glitch recovery
NASA Astrophysics Data System (ADS)
Howitt, G.; Haskell, B.; Melatos, A.
2016-05-01
Glitches are sudden jumps in the spin frequency of pulsars believed to originate in the superfluid interior of neutron stars. Superfluid flow in a model neutron star is simulated by solving the equations of motion of a two-component superfluid consisting of a viscous proton-electron plasma and an inviscid neutron condensate in a spherical Couette geometry. We examine the response of the model to glitches induced in three different ways: by instantaneous changes of the spin frequency of the inner and outer boundaries, and by instantaneous recoupling of the fluid components in the bulk. All simulations are performed with strong and weak mutual friction. It is found that the maximum size of a glitch originating in the bulk decreases as the mutual friction strengthens. It is also found that mutual friction determines the fraction of the frequency jump which is later recovered, a quantity known as the `healing parameter'. These behaviours may explain some of the diversity in observed glitch recoveries.
Hydrodynamic simulations of pulsar glitch recovery
NASA Astrophysics Data System (ADS)
Howitt, G.; Haskell, B.; Melatos, A.
2016-08-01
Glitches are sudden jumps in the spin frequency of pulsars believed to originate in the superfluid interior of neutron stars. Superfluid flow in a model neutron star is simulated by solving the equations of motion of a two-component superfluid consisting of a viscous proton-electron plasma and an inviscid neutron condensate in a spherical Couette geometry. We examine the response of the model to glitches induced in three different ways: by instantaneous changes of the spin frequency of the inner and outer boundaries, and by instantaneous recoupling of the fluid components in the bulk. All simulations are performed with strong and weak mutual friction. It is found that the maximum size of a glitch originating in the bulk decreases as the mutual friction strengthens. It is also found that mutual friction determines the fraction of the frequency jump which is later recovered, a quantity known as the `healing parameter'. These behaviours may explain some of the diversity in observed glitch recoveries.
The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis
Shaheen, Eman; Van Ongeval, Chantal; Zanca, Federica; Cockmartin, Lesley; Marshall, Nicholas; Jacobs, Jurgen; Young, Kenneth C.; Dance, David R.; Bosmans, Hilde
2011-12-15
Purpose: This work proposes a new method of building 3D models of microcalcification clusters and describes the validation of their realistic appearance when simulated into 2D digital mammograms and into breast tomosynthesis images. Methods: A micro-CT unit was used to scan 23 breast biopsy specimens of microcalcification clusters with malignant and benign characteristics and their 3D reconstructed datasets were segmented to obtain 3D models of microcalcification clusters. These models were then adjusted for the x-ray spectrum used and for the system resolution and simulated into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. Six radiologists were asked to distinguish between 40 real and 40 simulated clusters of microcalcifications in two separate studies on 2D mammography and tomosynthesis datasets. Receiver operating characteristic (ROC) analysis was used to test the ability of each observer to distinguish between simulated and real microcalcification clusters. The kappa statistic was applied to assess how often the individual simulated and real microcalcification clusters had received similar scores (''agreement'') on their realistic appearance in both modalities. This analysis was performed for all readers and for the real and the simulated group of microcalcification clusters separately. ''Poor'' agreement would reflect radiologists' confusion between simulated and real clusters, i.e., lesions not systematically evaluated in both modalities as either simulated or real, and would therefore be interpreted as a success of the present models. Results: The area under the ROC curve, averaged over the observers, was 0.55 (95% confidence interval [0.44, 0.66]) for the 2D study, and 0.46 (95% confidence interval [0.29, 0.64]) for the tomosynthesis study, indicating no statistically significant difference between real and simulated
Comparison of Non-Parabolic Hydrodynamic Simulations for Semiconductor Devices
NASA Technical Reports Server (NTRS)
Smith, A. W.; Brennan, K. F.
1996-01-01
Parabolic drift-diffusion simulators are common engineering level design tools for semiconductor devices. Hydrodynamic simulators, based on the parabolic band approximation, are becoming more prevalent as device dimensions shrink and energy transport effects begin to dominate device characteristic. However, band structure effects present in state-of-the-art devices necessitate relaxing the parabolic band approximation. This paper presents simulations of ballistic diodes, a benchmark device, of Si and GaAs using two different non-parabolic hydrodynamic formulations. The first formulation uses the Kane dispersion relationship in the derivation of the conservation equations. The second model uses a power law dispersion relation {(hk)(exp 2)/2m = xW(exp Y)}. Current-voltage relations show that for the ballistic diodes considered. the non-parabolic formulations predict less current than the parabolic case. Explanations of this will be provided by examination of velocity and energy profiles. At low bias, the simulations based on the Kane formulation predict greater current flow than the power law formulation. As the bias is increased this trend changes and the power law predicts greater current than the Kane formulation. It will be shown that the non-parabolicity and energy range of the hydrodynamic model based on the Kane dispersion relation are limited due to the binomial approximation which was utilized in the derivation.
3D multiple-point statistics simulation using 2D training images
NASA Astrophysics Data System (ADS)
Comunian, A.; Renard, P.; Straubhaar, J.
2012-03-01
One of the main issues in the application of multiple-point statistics (MPS) to the simulation of three-dimensional (3D) blocks is the lack of a suitable 3D training image. In this work, we compare three methods of overcoming this issue using information coming from bidimensional (2D) training images. One approach is based on the aggregation of probabilities. The other approaches are novel. One relies on merging the lists obtained using the impala algorithm from diverse 2D training images, creating a list of compatible data events that is then used for the MPS simulation. The other (s2Dcd) is based on sequential simulations of 2D slices constrained by the conditioning data computed at the previous simulation steps. These three methods are tested on the reproduction of two 3D images that are used as references, and on a real case study where two training images of sedimentary structures are considered. The tests show that it is possible to obtain 3D MPS simulations with at least two 2D training images. The simulations obtained, in particular those obtained with the s2Dcd method, are close to the references, according to a number of comparison criteria. The CPU time required to simulate with the method s2Dcd is from two to four orders of magnitude smaller than the one required by a MPS simulation performed using a 3D training image, while the results obtained are comparable. This computational efficiency and the possibility of using MPS for 3D simulation without the need for a 3D training image facilitates the inclusion of MPS in Monte Carlo, uncertainty evaluation, and stochastic inverse problems frameworks.
Hydrodynamics in adaptive resolution particle simulations: Multiparticle collision dynamics
NASA Astrophysics Data System (ADS)
Alekseeva, Uliana; Winkler, Roland G.; Sutmann, Godehard
2016-06-01
A new adaptive resolution technique for particle-based multi-level simulations of fluids is presented. In the approach, the representation of fluid and solvent particles is changed on the fly between an atomistic and a coarse-grained description. The present approach is based on a hybrid coupling of the multiparticle collision dynamics (MPC) method and molecular dynamics (MD), thereby coupling stochastic and deterministic particle-based methods. Hydrodynamics is examined by calculating velocity and current correlation functions for various mixed and coupled systems. We demonstrate that hydrodynamic properties of the mixed fluid are conserved by a suitable coupling of the two particle methods, and that the simulation results agree well with theoretical expectations.
γ^2 Velorum: combining interferometric observations with hydrodynamic simulations
NASA Astrophysics Data System (ADS)
Lamberts, A.; Millour, F.
2015-12-01
Colliding stellar winds in massive binary systems have been studied through their radio and strong X-ray emission for decades. More recently, spectro-interferometric observations in the near infrared have become available for certain binaries, but identifying the different contributions to the emission remains a challenge. Multidimensional hydrodynamic simulations reveal a complex double shocked structure and can guide the analysis of observational data. In this work, we analyse the wind collision region in the WR+O binary, γ^2 Velorum. We combine multi-epoch AMBER observations with mock data obtained with hydrodynamic simulations with the RAMSES code. We assess the contributions of the wind collision region in order to constrain the wind structure of both stars.
Hydrodynamic Simulations of Close and Contact Binary Systems using Bipolytropes
NASA Astrophysics Data System (ADS)
Kadam, Kundan
2016-01-01
I will present the results of hydrodynamic simulations of close and contact bipolytropic binary systems. This project is motivated by the peculiar case of the red nova, V1309 Sco, which is indeed a merger of a contact binary. Both the stars are believed to have evolved off the main sequence by the time of the merger and possess a small helium core. In order to represent the binary accurately, I need a core-envelope structure for both the stars. I have achieved this using bipolytropes or composite polytropes. For the simulations, I use an explicit 3D Eulerian hydrodynamics code in cylindrical coordinates. I will discuss the evolution and merger scenarios of systems with different mass ratios and core mass fractions as well as the effects due to the treatment of the adiabatic exponent.
Hydrodynamic Simulations of Shell Convection in Stellar Cores
NASA Astrophysics Data System (ADS)
Mocák, Miroslav; Müller, Ewald; Siess, Lionel
Shell convection driven by nuclear burning in a stellar core is a common hydrodynamic event in the evolution of many types of stars. We encounter and simulate this convection (1) in the helium core of a low-mass red giant during core helium flash leading to a dredge-down of protons across an entropy barrier, (2) in a carbon-oxygen core of an intermediate-mass star during core carbon flash, and (3) in the oxygen and carbon burning shell above the silicon-sulfur rich core of a massive star prior to supernova explosion. Our results, which were obtained with the hydrodynamics code HERAKLES, suggest that both entropy gradients and entropy barriers are less important for stellar structure than commonly assumed. Our simulations further reveal a new dynamic mixing process operating below the base of shell convection zones.
Numerical simulation of ( T 2, T 1) 2D NMR and fluid responses
NASA Astrophysics Data System (ADS)
Tan, Mao-Jin; Zou, You-Long; Zhang, Jin-Yan; Zhao, Xin
2012-12-01
One-dimensional nuclear magnetic resonance (1D NMR) logging technology is limited for fluid typing, while two-dimensional nuclear magnetic resonance (2D NMR) logging can provide more parameters including longitudinal relaxation time ( T 1) and transverse relaxation time ( T 2) relative to fluid types in porous media. Based on the 2D NMR relaxation mechanism in a gradient magnetic field, echo train simulation and 2D NMR inversion are discussed in detail. For 2D NMR inversion, a hybrid inversion method is proposed based on the damping least squares method (LSQR) and an improved truncated singular value decomposition (TSVD) algorithm. A series of spin echoes are first simulated with multiple waiting times ( T W s) in a gradient magnetic field for given fluid models and these synthesized echo trains are inverted by the hybrid method. The inversion results are consistent with given models. Moreover, the numerical simulation of various fluid models such as the gas-water, light oil-water, and vicious oil-water models were carried out with different echo spacings ( T E s) and T W s by this hybrid method. Finally, the influences of different signal-to-noise ratios (SNRs) on inversion results in various fluid models are studied. The numerical simulations show that the hybrid method and optimized observation parameters are applicable to fluid typing of gas-water and oil-water models.
Hydrodynamical simulations of realistic massive cluster populations
NASA Astrophysics Data System (ADS)
Barnes, David J.; Henson, Monique A.; Kay, Scott T.; McCarthy, Ian G.; Bahe, Yannick M.; Eagle Collaboration
2015-09-01
Galaxy clusters are seeded by density fluctuations in the early Universe and grow via hierarchical collapse to become the most massive virialised objects we observed today. They are powerful probes that study both cosmology and astrophysical processes. Their internal structure at the current epoch is the result of a non-trivial interplay between gravitational collapse and the energy fed into the intra-cluster medium (ICM) by star formation and active galactic nuclei (AGN). These processes shape the ICM during its formation at high redshift, but current observations of galaxy clusters are limited to z<0.5. The resolution and sensitivity of textit{Athena+} will allow it to study galaxy clusters in unprecedented detail. It will constrain cluster properties, such as its entropy, temperature and gas fraction, out to z˜2, enabling it to investigate the progenitors of today's massive clusters and observing the evolution of the properties of the ICM for the first time. Athena+ will produce a significant change in our understanding of the formation of galaxy clusters. Recently the theoretical modelling of clusters has advanced significantly and issues, such as the 'cooling catastophea', have been overcome by including feedback from star formation and AGN. We present the MAssive ClusterS and Intercluster Structures (MACSIS) project. The MACSIS project is a representative sample of 390 of galaxy clusters, with M_{FOF} > 10(15} M_{⊙) , re-simulated using the cosmo-OWLS model (Le Brun et al. 2014, McCarthy et al. in prep.) to extend it to the most massive and rarest objects. We demonstrate that this sample reproduces the scaling relations, with intrinsic scatter, observed with current instruments at low redshift. Under the hierarchical paradigm, the progenitors of these systems will be the first objects to collapse at high redshift and we examine to z=2 how the scaling relations of these massive objects evolve with redshift. Finally, we investigate methods of defining a
2D and 3D Mass Transfer Simulations in β Lyrae System
NASA Astrophysics Data System (ADS)
Nazarenko, V. V.; Glazunova, L. V.; Karetnikov, V. G.
2001-12-01
2D and 3D mass transfer simulations of the mass transfer in β Lyrae binary system. We have received that from a point L3 40 per cent of mass transfer from L1-point is lost.The structure of a gas envelope, around system is calculated.3-D mass transfer simulations has shown presence the spiral shock in the disk around primary star's and a jet-like structures (a mass flow in vertical direction) over a stream.
The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis
Shaheen, Eman De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van; Dance, David R.; Young, Kenneth C.
2014-08-15
Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly
2D-simulation of wet steam flow in a steam turbine with spontaneous condensation
NASA Astrophysics Data System (ADS)
Sun, Lan-Xin; Zheng, Qun; Liu, Shun-Long
2007-06-01
Removal of condensates from wet steam flow in the last stages of steam turbines significantly promotes stage efficiency and prevents erosion of rotors. In this paper, homogeneous spontaneous condensation in transonic steam flow in the 2-D rotor-tip section of a stage turbine is investigated. Calculated results agree with experimental data reasonably well. On the basis of the above work, a 2-D numerical simulation of wet steam flow in adjacent root sections of a complex steam turbine stage was carried out. Computational results were analyzed and provide insights into effective removal of humidity.
Simulation of a ceramic impact experiment using the SPHINX smooth particle hydrodynamics code
Mandell, D.A.; Wingate, C.A.; Schwalbe, L.A.
1996-08-01
We are developing statistically based, brittle-fracture models and are implementing them into hydrocodes that can be used for designing systems with components of ceramics, glass, and/or other brittle materials. Because of the advantages it has simulating fracture, we are working primarily with the smooth particle hydrodynamics code SPHINX. We describe a new brittle fracture model that we have implemented into SPHINX, and we discuss how the model differs from others. To illustrate the code`s current capability, we simulate an experiment in which a tungsten rod strikes a target of heavily confined ceramic. Simulations in 3D at relatively coarse resolution yield poor results. However, 2D plane-strain approximations to the test produce crack patterns that are strikingly similar to the data, although the fracture model needs further refinement to match some of the finer details. We conclude with an outline of plans for continuing research and development.
2D-3D hybrid stabilized finite element method for tsunami runup simulations
NASA Astrophysics Data System (ADS)
Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.
2016-09-01
This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.
2D-3D hybrid stabilized finite element method for tsunami runup simulations
NASA Astrophysics Data System (ADS)
Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.
2016-05-01
This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.
FRANC2D: A two-dimensional crack propagation simulator. Version 2.7: User's guide
NASA Technical Reports Server (NTRS)
Wawrzynek, Paul; Ingraffea, Anthony
1994-01-01
FRANC 2D (FRacture ANalysis Code, 2 Dimensions) is a menu driven, interactive finite element computer code that performs fracture mechanics analyses of 2-D structures. The code has an automatic mesh generator for triangular and quadrilateral elements. FRANC2D calculates the stress intensity factor using linear elastic fracture mechanics and evaluates crack extension using several methods that may be selected by the user. The code features a mesh refinement and adaptive mesh generation capability that is automatically developed according to the predicted crack extension direction and length. The code also has unique features that permit the analysis of layered structure with load transfer through simulated mechanical fasteners or bonded joints. The code was written for UNIX workstations with X-windows graphics and may be executed on the following computers: DEC DecStation 3000 and 5000 series, IBM RS/6000 series, Hewlitt-Packard 9000/700 series, SUN Sparc stations, and most Silicon Graphics models.
Simulation of Cardiac Arrhythmias Using a 2D Heterogeneous Whole Heart Model
Balakrishnan, Minimol; Chakravarthy, V. Srinivasa; Guhathakurta, Soma
2015-01-01
Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG) gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D) which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC), excitability, action potential duration (APD) and frequency of oscillations of the auto-rhythmic cell in WHM2D a large variety of cardiac arrhythmias can be generated including sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinus pause, junctional rhythm, Wolf Parkinson White syndrome and all types of AV conduction blocks. WHM2D includes key components of the electrical conduction system of the heart like the SA (Sino atrial) node cells, fast conducting intranodal pathways, slow conducting atriovenctricular (AV) node, bundle of His cells, Purkinje network, atrial, and ventricular myocardial cells. SA nodal cells, AV nodal cells, bundle of His cells, and Purkinje cells are represented by the Fitzhugh-Nagumo (FN) model which is a reduced model of the Hodgkin-Huxley neuron model. The atrial and ventricular myocardial cells are modeled by the Aliev-Panfilov (AP) two-variable model proposed for cardiac excitation. WHM2D can prove to be a valuable clinical tool for understanding cardiac arrhythmias. PMID:26733873
Simulation of Cardiac Arrhythmias Using a 2D Heterogeneous Whole Heart Model.
Balakrishnan, Minimol; Chakravarthy, V Srinivasa; Guhathakurta, Soma
2015-01-01
Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG) gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D) which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC), excitability, action potential duration (APD) and frequency of oscillations of the auto-rhythmic cell in WHM2D a large variety of cardiac arrhythmias can be generated including sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinus pause, junctional rhythm, Wolf Parkinson White syndrome and all types of AV conduction blocks. WHM2D includes key components of the electrical conduction system of the heart like the SA (Sino atrial) node cells, fast conducting intranodal pathways, slow conducting atriovenctricular (AV) node, bundle of His cells, Purkinje network, atrial, and ventricular myocardial cells. SA nodal cells, AV nodal cells, bundle of His cells, and Purkinje cells are represented by the Fitzhugh-Nagumo (FN) model which is a reduced model of the Hodgkin-Huxley neuron model. The atrial and ventricular myocardial cells are modeled by the Aliev-Panfilov (AP) two-variable model proposed for cardiac excitation. WHM2D can prove to be a valuable clinical tool for understanding cardiac arrhythmias. PMID:26733873
Hyperbolic self-gravity solver for large scale hydrodynamical simulations
NASA Astrophysics Data System (ADS)
Hirai, Ryosuke; Nagakura, Hiroki; Okawa, Hirotada; Fujisawa, Kotaro
2016-04-01
A new computationally efficient method has been introduced to treat self-gravity in Eulerian hydrodynamical simulations. It is applied simply by modifying the Poisson equation into an inhomogeneous wave equation. This roughly corresponds to the weak field limit of the Einstein equations in general relativity, and as long as the gravitation propagation speed is taken to be larger than the hydrodynamical characteristic speed, the results agree with solutions for the Poisson equation. The solutions almost perfectly agree if the domain is taken large enough, or appropriate boundary conditions are given. Our new method cannot only significantly reduce the computational time compared with existent methods, but is also fully compatible with massive parallel computation, nested grids, and adaptive mesh refinement techniques, all of which can accelerate the progress in computational astrophysics and cosmology.
Galaxies that shine: radiation-hydrodynamical simulations of disc galaxies
NASA Astrophysics Data System (ADS)
Rosdahl, Joakim; Schaye, Joop; Teyssier, Romain; Agertz, Oscar
2015-07-01
Radiation feedback is typically implemented using subgrid recipes in hydrodynamical simulations of galaxies. Very little work has so far been performed using radiation-hydrodynamics (RHD), and there is no consensus on the importance of radiation feedback in galaxy evolution. We present RHD simulations of isolated galaxy discs of different masses with a resolution of 18 pc. Besides accounting for supernova feedback, our simulations are the first galaxy-scale simulations to include RHD treatments of photoionization heating and radiation pressure, from both direct optical/UV radiation and multiscattered, re-processed infrared (IR) radiation. Photoheating smooths and thickens the discs and suppresses star formation about as much as the inclusion of (`thermal dump') supernova feedback does. These effects decrease with galaxy mass and are mainly due to the prevention of the formation of dense clouds, as opposed to their destruction. Radiation pressure, whether from direct or IR radiation, has little effect, but for the IR radiation we show that its impact is limited by our inability to resolve the high optical depths for which multiscattering becomes important. While artificially boosting the IR optical depths does reduce the star formation, it does so by smoothing the gas rather than by generating stronger outflows. We conclude that although higher resolution simulations, and potentially also different supernova implementations, are needed for confirmation, our findings suggest that radiation feedback is more gentle and less effective than is often assumed in subgrid prescriptions.
NASA Technical Reports Server (NTRS)
Tang, H. T.; Hofmann, R.; Yee, G.; Vaughan, D. K.
1980-01-01
Transient, nonlinear soil-structure interaction simulations of an Electric Power Research Institute, SIMQUAKE experiment were performed using the large strain, time domain STEALTH 2D code and a cyclic, kinematically hardening cap soil model. Results from the STEALTH simulations were compared to identical simulations performed with the TRANAL code and indicate relatively good agreement between all the STEALTH and TRANAL calculations. The differences that are seen can probably be attributed to: (1) large (STEALTH) vs. small (TRANAL) strain formulation and/or (2) grid discretization differences.
Momentum Transport: 2D and 3D Cloud Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2001-01-01
The major objective of this study is to investigate the momentum budgets associated with several convective systems that developed during the TOGA COARE IOP (west Pacific warm pool region) and GATE (east Atlantic region). The tool for this study is the improved Goddard Cumulas Ensemble (GCE) model which includes a 3-class ice-phase microphysical scheme, explicit cloud radiative interactive processes and air-sea interactive surface processes. The model domain contains 256 x 256 grid points (with 2 km resolution) in the horizontal and 38 grid points (to a depth of 22 km) in the vertical. The 2D domain has 1024 grid points. The simulations were performed over a 7-day time period (December 19-26, 1992, for TOGA COARE and September 1-7, 1994 for GATE). Cyclic literal boundary conditions are required for this type of long-term integration. Two well organized squall systems (TOGA, COARE February 22, 1993, and GATE September 12, 1994) were also simulated using the 3D GCE model. Only 9 h simulations were required to cover the life time of the squall systems. the lateral boundary conditions were open for these two squall systems simulations. the following will be examined: (1) the momentum budgets in the convective and stratiform regions, (2) the relationship between momentum transport and cloud organization (i.e., well organized squall lines versus less organized convective), (3) the differences and similarities in momentum transport between 2D and 3D simulated convective systems, and (4) the differences and similarities in momentum budgets between cloud systems simulated with open and cyclic lateral boundary conditions. Preliminary results indicate that there are only small differences between 2D and 3D simulated momentum budgets. Major differences occur, however, between momentum budgets associated with squall systems simulated using different lateral boundary conditions.
Najjar, F M; Solberg, J; White, D
2008-04-17
A verification test suite has been assessed with primary focus on low reynolds number flow of liquid metals. This is representative of the interface between the armature and rail in gun applications. The computational multiphysics framework, ALE3D, is used. The main objective of the current study is to provide guidance and gain confidence in the results obtained with ALE3D. A verification test suite based on 2-D cases is proposed and includes the lid-driven cavity and the Couette flow are investigated. The hydro and thermal fields are assumed to be steady and laminar in nature. Results are compared with analytical solutions and previously published data. Mesh resolution studies are performed along with various models for the equation of state.
2D simulation of active species and ozone production in a multi-tip DC air corona discharge
NASA Astrophysics Data System (ADS)
Meziane, M.; Eichwald, O.; Sarrette, J. P.; Ducasse, O.; Yousfi, M.
2011-11-01
The present paper shows for the first time in the literature a complete 2D simulation of the ozone production in a DC positive multi-tip to plane corona discharge reactor crossed by a dry air flow at atmospheric pressure. The simulation is undertaken until 1 ms and involves tens of successive discharge and post-discharge phases. The air flow is stressed by several monofilament corona discharges generated by a maximum of four anodic tips distributed along the reactor. The nonstationary hydrodynamics model for reactive gas mixture is solved using the commercial FLUENT software. During each discharge phase, thermal and vibrational energies as well as densities of radical and metastable excited species are locally injected as source terms in the gas medium surrounding each tip. The chosen chemical model involves 10 neutral species reacting following 24 reactions. The obtained results allow us to follow the cartography of the temperature and the ozone production inside the corona reactor as a function of the number of high voltage anodic tips.
Modeling and 2-D discrete simulation of dislocation dynamics for plastic deformation of metal
NASA Astrophysics Data System (ADS)
Liu, Juan; Cui, Zhenshan; Ou, Hengan; Ruan, Liqun
2013-05-01
Two methods are employed in this paper to investigate the dislocation evolution during plastic deformation of metal. One method is dislocation dynamic simulation of two-dimensional discrete dislocation dynamics (2D-DDD), and the other is dislocation dynamics modeling by means of nonlinear analysis. As screw dislocation is prone to disappear by cross-slip, only edge dislocation is taken into account in simulation. First, an approach of 2D-DDD is used to graphically simulate and exhibit the collective motion of a large number of discrete dislocations. In the beginning, initial grains are generated in the simulation cells according to the mechanism of grain growth and the initial dislocation is randomly distributed in grains and relaxed under the internal stress. During the simulation process, the externally imposed stress, the long range stress contribution of all dislocations and the short range stress caused by the grain boundaries are calculated. Under the action of these forces, dislocations begin to glide, climb, multiply, annihilate and react with each other. Besides, thermal activation process is included. Through the simulation, the distribution of dislocation and the stress-strain curves can be obtained. On the other hand, based on the classic dislocation theory, the variation of the dislocation density with time is described by nonlinear differential equations. Finite difference method (FDM) is used to solve the built differential equations. The dislocation evolution at a constant strain rate is taken as an example to verify the rationality of the model.
The influence of slope profile extraction techniques and DEM resolution on 2D rockfall simulation
NASA Astrophysics Data System (ADS)
Wang, X.; Frattini, P.; Agliardi, F.; Crosta, G. B.
2012-04-01
The development of advanced 3D rockfall modelling algorithms and tools during the last decade has allowed to gain insights in the topographic controls on the quality and reliability of rockfall simulation results. These controls include DEM resolution and roughness, and depend on the adopted rockfall simulation approach and DEM generation techniques. Despite the development of 3D simulations, the 2D modelling approach still remains suitable and convenient in some cases. Therefore, the accuracy of high-quality 3D descriptions of topography must be preserved when extracting slope profiles for 2D simulations. In this perspective, this study compares and evaluates three different techniques commonly used to extract slope profiles from DEM, in order to assess their suitability and effects on rockfall simulation results. These methods include: (A) an "interpolated shape" method (ESRI 3D Analyst), (B) a raw raster sampling method (EZ Profiler), and (C) a vector TIN sampling method (ESRI 3D Analyst). The raster DEMs used in the study were all derived from the same TIN DEM used for method C. For raster DEM, the "interpolated shape" method (A) extracts the profile by bi-linear interpolating the elevation among the four neighbouring cells at each sampling location along the profile trace. The EZ Profiler extension (B) extracts the profile by sampling elevation values directly from the DEM raster grid at each sampling location. These methods have been compared to the extraction of profiles from TIN DEM (C), where slope profile elevations are directly obtained by sampling the TIN triangular facets. 2D rockfall simulations performed using a widely used commercial software (RocfallTM) with the different profiles show that: (1) method A and C provide similar results; (2) runout simulated using profiles obtained by method A is usually shorter than method C; (3) method B presents abrupt horizontal steps in the profiles, resulting in unrealistic runout. To study the influence of DEM
Hydrodynamic Simulations and Tomographic Reconstructions of the Intergalactic Medium
NASA Astrophysics Data System (ADS)
Stark, Casey William
The Intergalactic Medium (IGM) is the dominant reservoir of matter in the Universe from which the cosmic web and galaxies form. The structure and physical state of the IGM provides insight into the cosmological model of the Universe, the origin and timeline of the reionization of the Universe, as well as being an essential ingredient in our understanding of galaxy formation and evolution. Our primary handle on this information is a signal known as the Lyman-alpha forest (or Ly-alpha forest) -- the collection of absorption features in high-redshift sources due to intervening neutral hydrogen, which scatters HI Ly-alpha photons out of the line of sight. The Ly-alpha forest flux traces density fluctuations at high redshift and at moderate overdensities, making it an excellent tool for mapping large-scale structure and constraining cosmological parameters. Although the computational methodology for simulating the Ly-alpha forest has existed for over a decade, we are just now approaching the scale of computing power required to simultaneously capture large cosmological scales and the scales of the smallest absorption systems. My thesis focuses on using simulations at the edge of modern computing to produce precise predictions of the statistics of the Ly-alpha forest and to better understand the structure of the IGM. In the first part of my thesis, I review the state of hydrodynamic simulations of the IGM, including pitfalls of the existing under-resolved simulations. Our group developed a new cosmological hydrodynamics code to tackle the computational challenge, and I developed a distributed analysis framework to compute flux statistics from our simulations. I present flux statistics derived from a suite of our large hydrodynamic simulations and demonstrate convergence to the per cent level. I also compare flux statistics derived from simulations using different discretizations and hydrodynamic schemes (Eulerian finite volume vs. smoothed particle hydrodynamics) and
Predictions of hydrodynamic simulations for direct dark matter detection
NASA Astrophysics Data System (ADS)
Bozorgnia, Nassim; Calore, Francesca; Schaller, Matthieu; Lovell, Mark; Bertone, Gianfranco; Frenk, Carlos S.; Crain, Robert A.; Navarro, Julio F.; Schaye, Joop; Theuns, Tom
2016-05-01
We study the effects of galaxy formation on dark matter direct detection using hydrodynamic simulations obtained from the “Evolution and Assembly of GaLaxies and their Environments” (EAGLE) and APOSTLE projects. We extract the local dark matter density and velocity distribution of the simulated Milky Way analogues, and use them directly to perform an analysis of current direct detection data. The local dark matter density of the Milky Way-like galaxies is 0.41–0.73 GeV/cm3, and a Maxwellian distribution (with best fit peak speed of 223–289 km/s) describes well the local dark matter speed distribution. We find that the consistency between the result of different direct detection experiments cannot be improved by using the dark matter distribution of the simulated haloes.
Out-of-Core Hydrodynamic Simulations of the IGM
NASA Astrophysics Data System (ADS)
Trac, H.; Pen, U.
2003-12-01
Probing the baryons in the intergalactic medium (IGM) through the Lyman alpha forest, the Sunyaev-Zeldovich effect, and the X-ray background is the next important task in cosmology. The evolution of the intergalactic medium is a numerically challenging problem to solve but advancements in hydrodynamic codes and computational techniques now make it tractable to simulate the IGM for the purpose of doing quantitative cosmology. We describe an out-of-core computing paradigm for very high-resolution simulations and a new code designed to handle the high Mach number dynamic range of the IGM. Out-of-core computation refers to the technique of using disk space as virtual memory and transferring data in and out of main memory at high I/O bandwidth. We present some results on the baryon budget and thermodynamic scaling relations from cosmological simulations with 20003 grid cells and 10003 dark matter particles.
Time-implicit hydrodynamical simulations of stellar interiors: Application to turbulent convection
NASA Astrophysics Data System (ADS)
Viallet, M.
2012-12-01
The talk described the first results on turbulent convection in the envelope of a red giant star obtained with the MUSIC code, a new multi-dimensional time-implicit code devoted to stellar interiors (Viallet, Baraffe & Walder, A&A, 2011). Currently, most of our physical understanding of stellar interiors and evolution largely relies on one-dimensional calculations. The description of complex physical processes like time-dependent turbulent convection, rotation or MHD processes mostly relies on simplified, phenomenological approaches, with a predictive power hampered by the use of several free parameters. These approaches have now reached their limits in the understanding of stellar structure and evolution. The development of multi-dimensional hydrodynamical simulations becomes crucial to progress in the field of stellar physics and to meet the enormous observational efforts aimed at producing data of unprecedented quality (COROT, Kepler GAIA). The MUSIC code solves the hydrodynamical equations in spherical geometry and is based on the finite volume method. The talk presented implicit large eddy simulations of the turbulent convection in a cold giant envelope both in 2D and 3D and covering 80% in radius of the stellar structure. The computational domain includes both the convective envelope and a significant fraction of the radiative zone, allowing for convective penetration. These simulations provide valuable insight to improve the description of turbulent convection in 1D models
NASA Astrophysics Data System (ADS)
Krause, M.; Camenzind, M.
2001-12-01
In the present paper, we examine the convergence behavior and inter-code reliability of astrophysical jet simulations in axial symmetry. We consider both pure hydrodynamic jets and jets with a dynamically significant magnetic field. The setups were chosen to match the setups of two other publications, and recomputed with the MHD code NIRVANA. We show that NIRVANA and the two other codes give comparable, but not identical results. We explain the differences by the different application of artificial viscosity in the three codes and numerical details, which can be summarized in a resolution effect, in the case without magnetic field: NIRVANA turns out to be a fair code of medium efficiency. It needs approximately twice the resolution as the code by Lind (Lind et al. 1989) and half the resolution as the code by Kössl (Kössl & Müller 1988). We find that some global properties of a hydrodynamical jet simulation, like e.g. the bow shock velocity, converge at 100 points per beam radius (ppb) with NIRVANA. The situation is quite different after switching on the toroidal magnetic field: in this case, global properties converge even at 10 ppb. In both cases, details of the inner jet structure and especially the terminal shock region are still insufficiently resolved, even at our highest resolution of 70 ppb in the magnetized case and 400 ppb for the pure hydrodynamic jet. The magnetized jet even suffers from a fatal retreat of the Mach disk towards the inflow boundary, which indicates that this simulation does not converge, in the end. This is also in definite disagreement with earlier simulations, and challenges further studies of the problem with other codes. In the case of our highest resolution simulation, we can report two new features: first, small scale Kelvin-Helmholtz instabilities are excited at the contact discontinuity next to the jet head. This slows down the development of the long wavelength Kelvin-Helmholtz instability and its turbulent cascade to smaller
Characterizing the danger of in-channel river hazards using LIDAR and a 2D hydrodynamic model
NASA Astrophysics Data System (ADS)
Strom, M. A.; Pasternack, G. B.
2014-12-01
Despite many injuries and deaths each year worldwide, no analytically rigorous attempt exists to characterize and quantify the dangers to boaters, swimmers, fishermen, and other river enthusiasts. While designed by expert boaters, the International Scale of River Difficulty provides a whitewater classification that uses qualitative descriptions and subjective scoring. The purpose of this study was to develop an objective characterization of in-channel hazard dangers across spatial scales from a single boulder to an entire river segment for application over a wide range of discharges and use in natural hazard assessment and mitigation, recreational boating safety, and river science. A process-based conceptualization of river hazards was developed, and algorithms were programmed in R to quantify the associated dangers. Danger indicators included the passage proximity and reaction time posed to boats and swimmers in a river by three hazards: emergent rocks, submerged rocks, and hydraulic jumps or holes. The testbed river was a 12.2 km mixed bedrock-alluvial section of the upper South Yuba River between Lake Spaulding and Washington, CA in the Sierra Mountains. The segment has a mean slope of 1.63%, with 8 reaches varying from 1.07% to 3.30% slope and several waterfalls. Data inputs to the hazard analysis included sub-decimeter aerial color imagery, airborne LIDAR of the river corridor, bathymetric data, flow inputs, and a stage-discharge relation for the end of the river segment. A key derived data product was the location and configuration of boulders and boulder clusters as these were potential hazards. Two-dimensional hydrodynamic modeling was used to obtain the meter-scale spatial pattern of depth and velocity at discharges ranging from baseflow to modest flood stages. Results were produced for four discharges and included the meter-scale spatial pattern of the passage proximity and reaction time dangers for each of the three hazards investigated. These results
Quantum simulation of 2D topological physics in a 1D array of optical cavities
Luo, Xi-Wang; Zhou, Xingxiang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei
2015-01-01
Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration. PMID:26145177
A faster method for 3D/2D medical image registration--a simulation study.
Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Gellrich, Niels Claudius; Jacob, Augustinus Ludwig; Regazzoni, Pietro; Messmer, Peter
2003-08-21
3D/2D patient-to-computed-tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Iterative variation of the CT's position between rendering steps finally leads to exact registration. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 3D/2D registration is the fact that finding a registration includes solving a minimization problem in six degrees of freedom (dof) in motion. This results in considerable time requirements since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations around a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of it's original value. The method was implemented and extensively tested on simulated x-ray images of a tibia, a pelvis and a skull base. When using one projective image and a discrete full parameter space search for solving the optimization problem, average accuracy was found to be 1.0 +/- 0.6(degrees) and 4.1 +/- 1.9 (mm) for a registration in six parameters, and 1.0 +/- 0.7(degrees) and 4.2 +/- 1.6 (mm) when using the 5 + 1 dof method described in this paper. Time requirements were reduced by a factor 3.1. We conclude that this hardware-independent optimization of 3D/2D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications. PMID:12974581
Numerical simulation of the hydrodynamic instability experiments and flow mixing
NASA Astrophysics Data System (ADS)
Bai, Jingsong; Wang, Tao; Li, Ping; Zou, Liyong; Liu, Cangli
2009-12-01
Based on the numerical methods of volume of fluid (VOF) and piecewise parabolic method (PPM) and parallel circumstance of Message Passing Interface (MPI), a parallel multi-viscosity-fluid hydrodynamic code MVPPM (Multi-Viscosity-Fluid Piecewise Parabolic Method) is developed and performed to study the hydrodynamic instability and flow mixing. Firstly, the MVPPM code is verified and validated by simulating three instability cases: The first one is a Riemann problem of viscous flow on the shock tube; the second one is the hydrodynamic instability and mixing of gaseous flows under re-shocks; the third one is a half height experiment of interfacial instability, which is conducted on the AWE’s shock tube. By comparing the numerical results with experimental data, good agreement is achieved. Then the MVPPM code is applied to simulate the two cases of the interfacial instabilities of jelly models accelerated by explosion products of a gaseous explosive mixture (GEM), which are adopted in our experiments. The first is implosive dynamic interfacial instability of cylindrical symmetry and mixing. The evolving process of inner and outer interfaces, and the late distribution of mixing mass caused by Rayleigh-Taylor (RT) instability in the center of different radius are given. The second is jelly layer experiment which is initialized with one periodic perturbation with different amplitude and wave length. It reveals the complex processes of evolution of interface, and presents the displacement of front face of jelly layer, bubble head and top of spike relative to initial equilibrium position vs. time. The numerical results are in excellent agreement with that experimental images, and show that the amplitude of initial perturbations affects the evolvement of fluid mixing zone (FMZ) growth rate extremely, especially at late times.
2D radiation-magnetohydrodynamic simulations of SATURN imploding Z-pinches
Hammer, J.H.; Eddleman, J.L.; Springer, P.T.
1995-11-06
Z-pinch implosions driven by the SATURN device at Sandia National Laboratory are modeled with a 2D radiation magnetohydrodynamic (MHD) code, showing strong growth of magneto-Rayleigh Taylor (MRT) instability. Modeling of the linear and nonlinear development of MRT modes predicts growth of bubble-spike structures that increase the time span of stagnation and the resulting x-ray pulse width. Radiation is important in the pinch dynamics keeping the sheath relatively cool during the run-in and releasing most of the stagnation energy. The calculations give x-ray pulse widths and magnitudes in reasonable agreement with experiments, but predict a radiating region that is too dense and radially localized at stagnation. We also consider peaked initial density profiles with constant imploding sheath velocity that should reduce MRT instability and improve performance. 2D krypton simulations show an output x-ray power > 80 TW for the peaked profile.
Comparison between 2D and 3D Numerical Modelling of a hot forging simulative test
Croin, M.; Ghiotti, A.; Bruschi, S.
2007-04-07
The paper presents the comparative analysis between 2D and 3D modelling of a simulative experiment, performed in laboratory environment, in which operating conditions approximate hot forging of a turbine aerofoil section. The plane strain deformation was chosen as an ideal case to analyze the process because of the thickness variations in the final section and the consequent distributions of contact pressure and sliding velocity at the interface that are closed to the conditions of the real industrial process. In order to compare the performances of 2D and 3D approaches, two different analyses were performed and compared with the experiments in terms of loads and temperatures peaks at the interface between the dies and the workpiece.
Spatially Resolved Synthetic Spectra from 2D Simulations of Stainless Steel Wire Array Implosions
Clark, R. W.; Giuliani, J. L.; Thornhill, J. W.; Chong, Y. K.; Dasgupta, A.; Davis, J.
2009-01-21
A 2D radiation MHD model has been developed to investigate stainless steel wire array implosion experiments on the Z and refurbished Z machines. This model incorporates within the Mach2 MHD code a self-consistent calculation of the non-LTE kinetics and ray trace based radiation transport. Such a method is necessary in order to account for opacity effects in conjunction with ionization kinetics of K-shell emitting plasmas. Here the model is used to investigate multi-dimensional effects of stainless steel wire implosions. In particular, we are developing techniques to produce non-LTE, axially and/or radially resolved synthetic spectra based upon snapshots of our 2D simulations. Comparisons between experimental spectra and these synthetic spectra will allow us to better determine the state of the experimental pinches.
Simulation of the flow and mass transfer for KDP crystals undergoing 2D translation during growth
NASA Astrophysics Data System (ADS)
Zhou, Chuan; Li, Mingwei; Hu, Zhitao; Yin, Huawei; Wang, Bangguo; Cui, Qidong
2016-09-01
In this study, a novel motion mode for crystals during growth, i.e., 2D translation, is proposed. Numerical simulations of flow and mass transfer are conducted for the growth of large-scale potassium dihydrogen phosphate (KDP) crystals subjected to the new motion mode. Surface supersaturation and shear stress are obtained as functions of the translational velocity, distance, size, orientation of crystals. The dependence of these two parameters on the flow fields around the crystals is also discussed. The thicknesses of the solute boundary layer varied with translational velocity are described. The characteristics of solution flow and surface supersaturation distribution are summarized, where it suggests that the morphological stability of a crystal surface can be enhanced if the proposed 2D translation is applied to crystal growth.
Simulation of 2D NMR Spectra of Carbohydrates Using GODESS Software.
Kapaev, Roman R; Toukach, Philip V
2016-06-27
Glycan Optimized Dual Empirical Spectrum Simulation (GODESS) is a web service, which has been recently shown to be one of the most accurate tools for simulation of (1)H and (13)C 1D NMR spectra of natural carbohydrates and their derivatives. The new version of GODESS supports visualization of the simulated (1)H and (13)C chemical shifts in the form of most 2D spin correlation spectra commonly used in carbohydrate research, such as (1)H-(1)H TOCSY, COSY/COSY-DQF/COSY-RCT, and (1)H-(13)C edHSQC, HSQC-COSY, HSQC-TOCSY, and HMBC. Peaks in the simulated 2D spectra are color-coded and labeled according to the signal assignment and can be exported in JCAMP-DX format. Peak widths are estimated empirically from the structural features. GODESS is available free of charge via the Internet at the platform of the Carbohydrate Structure Database project ( http://csdb.glycoscience.ru ). PMID:27227420
Application of 2-D simulations to hollow z-pinch implosions
Peterson, D.L.; Bowers, R.L.; Brownell, J.H.
1997-12-01
The application of simulations of z-pinch implosions should have at least two goals: first, to properly model the most important physical processes occurring in the pinch allowing for a better understanding of the experiments and second, provide a design capability for future experiments. Beginning with experiments fielded at Los Alamos on the Pegasus 1 and Pegasus 2 capacitor banks, the authors have developed a methodology for simulating hollow z-pinches in two dimensions which has reproduced important features of the measured experimental current drive, spectrum, radiation pulse shape, peak power and total radiated energy. This methodology employs essentially one free parameter, the initial level of the random density perturbations imposed at the beginning of the 2-D simulation, but in general no adjustments to other parameters are required. Currently the authors are applying this capability to the analysis of recent Saturn and PBFA-Z experiments. The code results provide insight into the nature of the pinch plasma prior to arrival on-axis, during thermalization and development after peak pinch time. Among other things, the simulation results provide an explanation for the production of larger amounts of radiated energy than would be expected from a simple slug-model kinetic energy analysis and the appearance of multiple peaks in the radiation power. The 2-D modeling has also been applied to the analysis of Saturn dynamic hohlraum experiments and is being used in the design of this and other Z-Pinch applications on PBFA-Z.
High Resolution Simulations of Relativistic Hydrodynamic and MHD Turbulence
NASA Astrophysics Data System (ADS)
Zrake, Jonathan; MacFadyen, A.
2013-01-01
We present a program of simulations designed to investigate the basic properties of relativistic hydrodynamic and magnetohydrodynamic (MHD) turbulence. We employ a well-tested 5th-order accurate numerical scheme at resolutions of up to 2048^3 zones for hydrodynamic turbulence, and a minimally diffusive 2nd-order scheme at resolutions of up to 1024^3 in the case of relativistic MHD. For the hydrodynamic case, we simulate a relativistically hot gas in a cubic periodic domain continuously driven at large scales with Lorentz factor of about 3. We find that relativistic turbulent velocity fluctuations with Γ β > 1 persist from the driving scale down to scales an order of magnitude smaller, demonstrating the existence of a sustained relativistic turbulent cascade. The power spectrum of the fluid 4-velocity is broadly Kolmogorov-like, roughly obeying a power law with 5/3 index between scales 1/10 and 1/100 of the domain. Departures from 5/3 scaling are larger for the power spectrum of 3-velocity. We find that throughout the inertial interval, 25% of power is in dilatational modes, which obey strict power law scaling between 1/2 and 1/100 of the domain with an index of 1.88. Our program also explores turbulent amplification of magnetic fields in the conditions of merging neutron stars, using a realistic equation of state for dense nuclear matter (ρ ˜ 10^13 g/cm^3). We find that very robustly, seed fields are amplified to magnetar strength (≥ 4 * 10^16 Gauss) within ˜1 micro-second for fluid volumes near the size of the NS crust thickness <10 meters. We present power spectra of the kinetic and magnetic energy taken long into the fully stationary evolution of the highest resolution models, finding the magnetic energy to be in super-equipartition (4 times larger) with the kinetic energy through the inertial range. We believe that current global simulations of merging NS binaries are insufficiently resolved for studying field amplification via turbulent processes
Fast Acceleration of 2D Wave Propagation Simulations Using Modern Computational Accelerators
Wang, Wei; Xu, Lifan; Cavazos, John; Huang, Howie H.; Kay, Matthew
2014-01-01
Recent developments in modern computational accelerators like Graphics Processing Units (GPUs) and coprocessors provide great opportunities for making scientific applications run faster than ever before. However, efficient parallelization of scientific code using new programming tools like CUDA requires a high level of expertise that is not available to many scientists. This, plus the fact that parallelized code is usually not portable to different architectures, creates major challenges for exploiting the full capabilities of modern computational accelerators. In this work, we sought to overcome these challenges by studying how to achieve both automated parallelization using OpenACC and enhanced portability using OpenCL. We applied our parallelization schemes using GPUs as well as Intel Many Integrated Core (MIC) coprocessor to reduce the run time of wave propagation simulations. We used a well-established 2D cardiac action potential model as a specific case-study. To the best of our knowledge, we are the first to study auto-parallelization of 2D cardiac wave propagation simulations using OpenACC. Our results identify several approaches that provide substantial speedups. The OpenACC-generated GPU code achieved more than speedup above the sequential implementation and required the addition of only a few OpenACC pragmas to the code. An OpenCL implementation provided speedups on GPUs of at least faster than the sequential implementation and faster than a parallelized OpenMP implementation. An implementation of OpenMP on Intel MIC coprocessor provided speedups of with only a few code changes to the sequential implementation. We highlight that OpenACC provides an automatic, efficient, and portable approach to achieve parallelization of 2D cardiac wave simulations on GPUs. Our approach of using OpenACC, OpenCL, and OpenMP to parallelize this particular model on modern computational accelerators should be applicable to other computational models of wave propagation in
Losing track of the time: the chemical clock of prestellar core evolution in hydrodynamic simulation
NASA Astrophysics Data System (ADS)
Szucs, L.; Glover, S.; Caselli, P.
2016-05-01
The ortho:para ratio of H2D+ is a proposed observational indicator of prestellar core ages, and thus a possible tool to determine the typical star formation time scale. The conversion of the measured ratio to an age estimate requires modelling of the chemical evolution. Such models usually consider static, one zone models of physical conditions. The relevant chemical time scales, however, are comparable to the dynamic time scale, therefore the history of gas might affect the ratio. To investigate the significance of gas dynamics and history on the spin-state ratio, we analyse prestellar cores formed in various environment in a hydrodynamic simulation. The fully time dependent, spatially resolved chemical evolution of the cores are computed using a state-of-art ortho:para and deuteration chemical network. The true ages are compared to the once indicated by the ortho:para ratio.
2D PIC/MC simulations of electrical asymmetry effect in capacitive coupled plasma
NASA Astrophysics Data System (ADS)
Zhang, Quan-Zhi; Jiang, Wei; Wang, You-Nian
2011-10-01
Recently a so-called electrical asymmetry effect (EAE), which could achieve high-degree separate control of ion flux and energy in dual-frequency capacitively coupled plasmas, was discovered theoretically by Heil et al. and was confirmed by experiments and theory/numerical simulations later on. However, since there always is a bigger grounded surface area for experiment devices, which reduces the geometrical symmetry, and all the simulations were limited to 1D before, it is, thus, worth studying the EAE when coupling the electrically and geometrically asymmetric discharges theoretically. Here, we perform 2D PIC/MC simulations, which can include both electrically and geometrically asymmetric factors. The EAE on plasma parameters, such as dc self-bias voltage, density profiles, ion energy distribution and power absorption of electron have been examined for different pressures and geometry conditions. Recently a so-called electrical asymmetry effect (EAE), which could achieve high-degree separate control of ion flux and energy in dual-frequency capacitively coupled plasmas, was discovered theoretically by Heil et al. and was confirmed by experiments and theory/numerical simulations later on. However, since there always is a bigger grounded surface area for experiment devices, which reduces the geometrical symmetry, and all the simulations were limited to 1D before, it is, thus, worth studying the EAE when coupling the electrically and geometrically asymmetric discharges theoretically. Here, we perform 2D PIC/MC simulations, which can include both electrically and geometrically asymmetric factors. The EAE on plasma parameters, such as dc self-bias voltage, density profiles, ion energy distribution and power absorption of electron have been examined for different pressures and geometry conditions. This work was supported by the National Natural Science Foundation of China (Grant No 10635010) and the Important National Science & Technology Specific Project (Grant No
Phase Transitions in Quasi-2D Plasma-Dust Systems: Simulations and Experiments
NASA Astrophysics Data System (ADS)
Petrov, Oleg; Vasiliev, Mikhail; Statsenko, Konstantin; Koss, Xeniya; Vasilieva, Elena; Myasnikov, Maxim; Lisin, Evgeny
2015-11-01
A nature of phase transition in quasi-2D dusty plasma structures was studied and the influence of the quasi-2D cluster size (a number of particles in it) on the features of the phase transition was investigated. Experiments and numerical simulation was conducted for the systems consisting of small (~ 10) and large (~ 103) number of particles. To investigate the phase state of the system with 7, 18 and 100 particles observed in numerical and laboratory experiments, we used the method based on analysis of dynamic entropy. Numerical modeling of small systems was conducted by the Langevin molecular dynamic method with the Langevin force, responsible for the stochastic nature of the motion of particles with a given kinetic temperature. Phase state of systems with the number of elements in the order of 103, was studied using the methods of statistical thermodynamics. Here we present new results of an experimental study of the change of translational and orientational order and topological defects, and the pair interactions at 2D melting of dust cluster in rf discharge plasma. The experimental results have revealed the existence of hexatic phase as well as solid-to-hexatic phase and hexatic-to-liquid transitions. This work was supported by the Russian Science Foundation (O.F. Petrov, M.M.Vasiliev, K.B. Stacenko, X.G. Koss, E.V. Vasilieva, M.I.Myasnikov and E.?.Lisin) through Grant No. 14-12-01440).
2-D/3-D ECE imaging data for validation of turbulence simulations
NASA Astrophysics Data System (ADS)
Choi, Minjun; Lee, Jaehyun; Yun, Gunsu; Lee, Woochang; Park, Hyeon K.; Park, Young-Seok; Sabbagh, Steve A.; Wang, Weixing; Luhmann, Neville C., Jr.
2015-11-01
The 2-D/3-D KSTAR ECEI diagnostic can provide a local 2-D/3-D measurement of ECE intensity. Application of spectral analysis techniques to the ECEI data allows local estimation of frequency spectra S (f) , wavenumber spectra S (k) , wavernumber and frequency spectra S (k , f) , and bispectra b (f1 ,f2) of ECE intensity over the 2-D/3-D space, which can be used to validate turbulence simulations. However, the minimum detectable fluctuation amplitude and the maximum detectable wavenumber are limited by the temporal and spatial resolutions of the diagnostic system, respectively. Also, the finite measurement area of the diagnostic channel could introduce uncertainty in the spectra estimation. The limitations and accuracy of the ECEI estimated spectra have been tested by a synthetic ECEI diagnostic with the model and/or fluctuations calculated by GTS. Supported by the NRF of Korea under Contract No. NRF-2014M1A7A1A03029881 and NRF-2014M1A7A1A03029865 and by U.S. DOE grant DE-FG02-99ER54524.
A future Outlook: Web based Simulation of Hydrodynamic models
NASA Astrophysics Data System (ADS)
Islam, A. S.; Piasecki, M.
2003-12-01
Despite recent advances to present simulation results as 3D graphs or animation contours, the modeling user community still faces some shortcomings when trying to move around and analyze data. Typical problems include the lack of common platforms with standard vocabulary to exchange simulation results from different numerical models, insufficient descriptions about data (metadata), lack of robust search and retrieval tools for data, and difficulties to reuse simulation domain knowledge. This research demonstrates how to create a shared simulation domain in the WWW and run a number of models through multi-user interfaces. Firstly, meta-datasets have been developed to describe hydrodynamic model data based on geographic metadata standard (ISO 19115) that has been extended to satisfy the need of the hydrodynamic modeling community. The Extended Markup Language (XML) is used to publish this metadata by the Resource Description Framework (RDF). Specific domain ontology for Web Based Simulation (WBS) has been developed to explicitly define vocabulary for the knowledge based simulation system. Subsequently, this knowledge based system is converted into an object model using Meta Object Family (MOF). The knowledge based system acts as a Meta model for the object oriented system, which aids in reusing the domain knowledge. Specific simulation software has been developed based on the object oriented model. Finally, all model data is stored in an object relational database. Database back-ends help store, retrieve and query information efficiently. This research uses open source software and technology such as Java Servlet and JSP, Apache web server, Tomcat Servlet Engine, PostgresSQL databases, Protégé ontology editor, RDQL and RQL for querying RDF in semantic level, Jena Java API for RDF. Also, we use international standards such as the ISO 19115 metadata standard, and specifications such as XML, RDF, OWL, XMI, and UML. The final web based simulation product is deployed as
Tuning and simulating a 193-nm resist for 2D applications
NASA Astrophysics Data System (ADS)
Howard, William B.; Wiaux, Vincent; Ercken, Monique; Bui, Bang; Byers, Jeff D.; Pochkowski, Mike
2002-07-01
For some applications, the usefulness of lithography simulation results depends strongly on the matching between experimental conditions and the simulation input parameters. If this matching is optimized and other sources of error are minimized, then the lithography model can be used to explain printed wafer experimental results. Further, simulation can be useful in predicting the results or in choosing the correct set of experiments. In this paper, PROLITH and ProDATA AutoTune were used to systematically vary simulation input parameters to match measured results on printed wafers used in a 193 nm process. The validity of the simulation parameters was then checked using 3D simulation compared to 2D top-down SEM images. The quality of matching was evaluated using the 1D metrics of average gate CD and Line End Shortening (LES). To ensure the most accurate simulation, a new approach was taken to create a compound mask from GDSII contextual information surrounding an accurate SEM image of the reticle region of interest. Corrections were made to account for all metrology offsets.
Multipacting Simulation Study for 56 MHz Quarter Wave Resonator using 2D Code
Naik,D.; Ben-Zvi, I.
2009-01-02
A beam excited 56 MHz Radio Frequency (RF) Niobium Quarter Wave Resonator (QWR) has been proposed to enhance RHIC beam luminosity and bunching. Being a RF cavity, multipacting is expected; therefore an extensive study was carried out with the Multipac 2.1 2D simulation code. The study revealed that multipacting occurs in various bands up to peak surface electric field 50 kV/m and is concentrated mostly above the beam gap and on the outer conductor. To suppress multipacting, a ripple structure was introduced to the outer conductor and the phenomenon was successfully eliminated from the cavity.
The giant impact simulations with density independent smoothed particle hydrodynamics
NASA Astrophysics Data System (ADS)
Hosono, Natsuki; Saitoh, Takayuki R.; Makino, Junichiro; Genda, Hidenori; Ida, Shigeru
2016-06-01
At present, the giant impact (GI) is the most widely accepted model for the origin of the Moon. Most of the numerical simulations of GI have been carried out with the smoothed particle hydrodynamics (SPH) method. Recently, however, it has been pointed out that standard formulation of SPH (SSPH) has difficulties in the treatment of a contact discontinuity such as a core-mantle boundary and a free surface such as a planetary surface. This difficulty comes from the assumption of differentiability of density in SSPH. We have developed an alternative formulation of SPH, density independent SPH (DISPH), which is based on differentiability of pressure instead of density to solve the problem of a contact discontinuity. In this paper, we report the results of the GI simulations with DISPH and compare them with those obtained with SSPH. We found that the disk properties, such as mass and angular momentum produced by DISPH is different from that of SSPH. In general, the disks formed by DISPH are more compact: while formation of a smaller mass moon for low-oblique impacts is expected with DISPH, inhibition of ejection would promote formation of a larger mass moon for high-oblique impacts. Since only the improvement of core-mantle boundary significantly affects the properties of circumplanetary disks generated by GI and DISPH has not been significantly improved from SSPH for a free surface, we should be very careful when some conclusions are drawn from the numerical simulations for GI. And it is necessary to develop the numerical hydrodynamical scheme for GI that can properly treat the free surface as well as the contact discontinuity.
SPHGal: smoothed particle hydrodynamics with improved accuracy for galaxy simulations
NASA Astrophysics Data System (ADS)
Hu, Chia-Yu; Naab, Thorsten; Walch, Stefanie; Moster, Benjamin P.; Oser, Ludwig
2014-09-01
We present the smoothed particle hydrodynamics (SPH) implementation SPHGal, which combines some recently proposed improvements in GADGET. This includes a pressure-entropy formulation with a Wendland kernel, a higher order estimate of velocity gradients, a modified artificial viscosity switch with a modified strong limiter, and artificial conduction of thermal energy. With a series of idealized hydrodynamic tests, we show that the pressure-entropy formulation is ideal for resolving fluid mixing at contact discontinuities but performs conspicuously worse at strong shocks due to the large entropy discontinuities. Including artificial conduction at shocks greatly improves the results. In simulations of Milky Way like disc galaxies a feedback-induced instability develops if too much artificial viscosity is introduced. Our modified artificial viscosity scheme prevents this instability and shows efficient shock capturing capability. We also investigate the star formation rate and the galactic outflow. The star formation rates vary slightly for different SPH schemes while the mass loading is sensitive to the SPH scheme and significantly reduced in our favoured implementation. We compare the accretion behaviour of the hot halo gas. The formation of cold blobs, an artefact of simple SPH implementations, can be eliminated efficiently with proper fluid mixing, either by conduction and/or by using a pressure-entropy formulation.
Update on Thermal and Hydrodynamic Simulations on LMJ Cryogenic Targets
Moll, G.; Charton, S.
2004-03-15
The temperature of the cryogenic target inside the hohlraum has been studied with a computational fluid dynamics code (FLUENT). Specific models have been developed and used for both thermal and hydrodynamic calculations.With thermal calculations only, we first have found the optimum heat flux required to counteract the effect of the laser entrance windows. This heat flux is centered on the hohlraum wall along the axis of revolution. With this heat flux, the temperature surface profiles of the capsule and the DT ice layer have been significantly reduced. Second, the sensitivity of the target temperature profiles (capsule and DT layer) relatively to capsule displacement has been determined. Thirdly, the effect of the shield extraction (shield surrounding the cryogenic structure) has been studied and has indicated that the target lifetime before the laser shot is less than 1s. Meanwhile, with hydrodynamic simulations, we have investigated the surface temperature profiles alteration due to He and H{sub 2} mixture convection within the hohlraum.In order to find out the variations between different configurations, results of these studies are given with seven significant digit outputs. Those results only indicate a trend because of the material's properties incertitude and the code approximation.
Baryon census in hydrodynamical simulations of galaxy clusters
NASA Astrophysics Data System (ADS)
Planelles, S.; Borgani, S.; Dolag, K.; Ettori, S.; Fabjan, D.; Murante, G.; Tornatore, L.
2013-05-01
We carry out an analysis of a set of cosmological smoothed particle hydrodynamics (SPH) hydrodynamical simulations of galaxy clusters and groups aimed at studying the total baryon budget in clusters, and how this budget is shared between the hot diffuse component and the stellar component. Using the TreePM+SPH GADGET-3 code, we carried out one set of non-radiative simulations, and two sets of simulations including radiative cooling, star formation and feedback from supernovae (SNe), one of which also accounting for the effect of feedback from active galactic nuclei (AGN). The analysis is carried out with the twofold aim of studying the implication of stellar and hot gas content on the relative role played by SNe and AGN feedback, and to calibrate the cluster baryon fraction and its evolution as a cosmological tool. With respect to previous similar analysis, the simulations used in this study provide us with a sufficient statistics of massive objects and including an efficient AGN feedback. We find that both radiative simulation sets predict a trend of stellar mass fraction with cluster mass that tends to be weaker than the observed one. However this tension depends on the particular set of observational data considered. Including the effect of AGN feedback alleviates this tension on the stellar mass and predicts values of the hot gas mass fraction and total baryon fraction to be in closer agreement with observational results. We further compute the ratio between the cluster baryon content and the cosmic baryon fraction, Yb, as a function of clustercentric radius and redshift. At R500 we find for massive clusters with M500 > 2 × 1014 h-1 M⊙ that Yb is nearly independent of the physical processes included and characterized by a negligible redshift evolution: Yb, 500 = 0.85 ± 0.03 with the error accounting for the intrinsic rms scatter within the set of simulated clusters. At smaller radii, R2500, the typical value of Yb slightly decreases, by an amount that
Simulation of hydrodynamically interacting particles confined by a spherical cavity
NASA Astrophysics Data System (ADS)
Aponte-Rivera, Christian; Zia, Roseanna N.
2016-06-01
We present a theoretical framework to model the behavior of a concentrated colloidal dispersion confined inside a spherical cavity. Prior attempts to model such behavior were limited to a single enclosed particle and attempts to enlarge such models to two or more particles have seen limited success owing to the challenges of accurately modeling many-body and singular hydrodynamic interactions. To overcome these difficulties, we have developed a set of hydrodynamic mobility functions that couple particle motion with hydrodynamic traction moments that, when inverted and combined with near-field resistance functions, form a complete coupling tensor that accurately captures both the far-field and near-field physics and is valid for an arbitrary number of spherical particles enclosed by a spherical cavity of arbitrary relative size a /R , where a and R are the particle and cavity size, respectively. This framework is then utilized to study the effect of spherical confinement on the self- and entrained motion of the colloids, for a range of particle-to-cavity size ratios. The self-motion of a finite-size enclosed particle is studied first, recovering prior results published in the literature: The hydrodynamic mobility of the particle is greatest at the center of the cavity and decays as (a /R ) /(1 -y2) , where y is the particle distance to the cavity center. Near the cavity wall, the no-slip surfaces couple strongly and mobility along the cavity radius vanishes as ξ ≡R -(a +y ) , where y is center-to-center distance from particle to cavity. Corresponding motion transverse to the cavity radius vanishes as [ln(1/ξ ) ] -1. The effect of confinement on entrainment of a particle in the flow created by the motion of others is also studied, where we find that confinement exerts a qualitative effect on the strength and anisotropy of entrainment of a passive particle dragged by the flow of a forced particle. As expected, entrainment strength decays with increased distance
RADIATIVE HYDRODYNAMIC SIMULATIONS OF ACOUSTIC WAVES IN SUNSPOTS
Bard, S.; Carlsson, M.
2010-10-10
We investigate the formation and evolution of the Ca II H line in a sunspot. The aim of our study is to establish the mechanisms underlying the formation of the frequently observed brightenings of small regions of sunspot umbrae known as 'umbral flashes'. We perform fully consistent NLTE radiation hydrodynamic simulations of the propagation of acoustic waves in sunspot umbrae and conclude that umbral flashes result from increased emission of the local solar material during the passage of acoustic waves originating in the photosphere and steepening to shock in the chromosphere. To quantify the significance of possible physical mechanisms that contribute to the formation of umbral flashes, we perform a set of simulations on a grid formed by different wave power spectra, different inbound coronal radiation, and different parameterized chromospheric heating. Our simulations show that the waves with frequencies in the range 4.5-7.0 mHz are critical to the formation of the observed blueshifts of umbral flashes while waves with frequencies below 4.5 mHz do not play a role despite their dominance in the photosphere. The observed emission in the Ca II H core between flashes only occurs in the simulations that include significant inbound coronal radiation and/or extra non-radiative chromospheric heating in addition to shock dissipation.
Simulations of reactive transport and precipitation with smoothed particle hydrodynamics
NASA Astrophysics Data System (ADS)
Tartakovsky, Alexandre M.; Meakin, Paul; Scheibe, Timothy D.; Eichler West, Rogene M.
2007-03-01
A numerical model based on smoothed particle hydrodynamics (SPH) was developed for reactive transport and mineral precipitation in fractured and porous materials. Because of its Lagrangian particle nature, SPH has several advantages for modeling Navier-Stokes flow and reactive transport including: (1) in a Lagrangian framework there is no non-linear term in the momentum conservation equation, so that accurate solutions can be obtained for momentum dominated flows and; (2) complicated physical and chemical processes such as surface growth due to precipitation/dissolution and chemical reactions are easy to implement. In addition, SPH simulations explicitly conserve mass and linear momentum. The SPH solution of the diffusion equation with fixed and moving reactive solid-fluid boundaries was compared with analytical solutions, Lattice Boltzmann [Q. Kang, D. Zhang, P. Lichtner, I. Tsimpanogiannis, Lattice Boltzmann model for crystal growth from supersaturated solution, Geophysical Research Letters, 31 (2004) L21604] simulations and diffusion limited aggregation (DLA) [P. Meakin, Fractals, scaling and far from equilibrium. Cambridge University Press, Cambridge, UK, 1998] model simulations. To illustrate the capabilities of the model, coupled three-dimensional flow, reactive transport and precipitation in a fracture aperture with a complex geometry were simulated.
Fish Pectoral Fin Hydrodynamics; Part II: Numerical Simulations and Analysis
NASA Astrophysics Data System (ADS)
Dong, H.; Madden, P. G.
2005-11-01
High-fidelity numerical simulations are being used to examine the key hydrodynamic features and thrust performance of the pectoral fin of a bluegill sunfish which is moving at a constant forward velocity. The numerical modeling approach employs a parallelized immersed boundary solver which can perform direct (DNS) or large-eddy simulation (LES) of flow past highly deformable bodies such as fish pectoral fins. The three-dimensional, time-dependent fin kinematics is obtained via a stereo-videographic technique and experiments also provide PIV data which is used to validate the numerical simulations. The primary objectives of the CFD effort are to quantify the thrust performance of the bluegill sunfish pectoral fin as well as to establish the mechanisms responsible for thrust production. Simulations show that the pectoral fin produces a relatively large amount of thrust at all phases in the fin motion while limiting the magnitude of the transverse forces. The motion of the fin produces a distinct system of connected vortices which are examined in detail in order to gain insight into the thrust producing mechanisms.
Ion acoustic wave collapse via two-ion wave decay: 2D Vlasov simulation and theory
NASA Astrophysics Data System (ADS)
Chapman, Thomas; Berger, Richard; Banks, Jeffrey; Brunner, Stephan
2015-11-01
The decay of ion acoustic waves (IAWs) via two-ion wave decay may transfer energy from the electric field of the IAWs to the particles, resulting in a significant heating of resonant particles. This process has previously been shown in numerical simulations to decrease the plasma reflectivity due to stimulated Brillouin scattering. Two-ion wave decay is a fundamental property of ion acoustic waves that occurs over most if not all of the parameter space of relevance to inertial confinement fusion experiments, and can lead to a sudden collapse of IAWs. The treatment of all species kinetically, and in particular the electrons, is required to describe the decay process correctly. We present fully kinetic 2D+2V Vlasov simulations of IAWs undergoing decay to a highly nonlinear turbulent state using the code LOKI. The scaling of the decay rate with characteristic plasma parameters and wave amplitude is shown. A new theory describing two-ion wave decay in 2D, that incorporates key kinetic properties of the electrons, is presented and used to explain quantitatively for the first time the observed decay of IAWs. Work performed under auspices of U.S. DoE by LLNL, Contract DE-AC52-07NA2734. Funded by LDRD 15-ERD-038 and supported by LLNL Grand Challenge allocation.
Superclusters of galaxies from the 2dF redshift survey. 2. Comparison with simulations
Einasto, Jaan; Einasto, M.; Saar, E.; Tago, E.; Liivamagi, L.J.; Joeveer, M.J; Suhhonenko, I.; Hutsi, G.; Jaaniste, J.; Heinamaki, P.; Muller, V.; Knebe, A.; Tucker, D.; /Fermilab
2006-04-01
We investigate properties of superclusters of galaxies found on the basis of the 2dF Galaxy Redshift Survey, and compare them with properties of superclusters from the Millennium Simulation.We study the dependence of various characteristics of superclusters on their distance from the observer, on their total luminosity, and on their multiplicity. The multiplicity is defined by the number of Density Field (DF) clusters in superclusters. Using the multiplicity we divide superclusters into four richness classes: poor, medium, rich and extremely rich.We show that superclusters are asymmetrical and have multi-branching filamentary structure, with the degree of asymmetry and filamentarity being higher for the more luminous and richer superclusters. The comparison of real superclusters with Millennium superclusters shows that most properties of simulated superclusters agree very well with real data, the main differences being in the luminosity and multiplicity distributions.
Calibration and simulation of ASM2d at different temperatures in a phosphorus removal pilot plant.
García-Usach, F; Ferrer, J; Bouzas, A; Seco, A
2006-01-01
In this work, an organic and nutrient removal pilot plant was used to study the temperature influence on phosphorus accumulating organisms. Three experiments were carried out at 13, 20 and 24.5 degrees C, achieving a high phosphorus removal percentage in all cases. The ASM2d model was calibrated at 13 and 20 degrees C and the Arrhenius equation constant was obtained for phosphorus removal processes showing that the temperature influences on the biological phosphorus removal subprocesses in a different degree. The 24.5 degrees C experiment was simulated using the model parameters obtained by means of the Arrhenius equation. The simulation results for the three experiments showed good correspondence with the experimental data, demonstrating that the model and the calibrated parameters were able to predict the pilot plant behaviour. PMID:16889256
Well-posedness and generalized plane waves simulations of a 2D mode conversion model
NASA Astrophysics Data System (ADS)
Imbert-Gérard, Lise-Marie
2015-12-01
Certain types of electro-magnetic waves propagating in a plasma can undergo a mode conversion process. In magnetic confinement fusion, this phenomenon is very useful to heat the plasma, since it permits to transfer the heat at or near the plasma center. This work focuses on a mathematical model of wave propagation around the mode conversion region, from both theoretical and numerical points of view. It aims at developing, for a well-posed equation, specific basis functions to study a wave mode conversion process. These basis functions, called generalized plane waves, are intrinsically based on variable coefficients. As such, they are particularly adapted to the mode conversion problem. The design of generalized plane waves for the proposed model is described in detail. Their implementation within a discontinuous Galerkin method then provides numerical simulations of the process. These first 2D simulations for this model agree with qualitative aspects studied in previous works.
NASA Astrophysics Data System (ADS)
Bezzeccheri, E.; Colasanti, S.; Falco, A.; Liguori, R.; Rubino, A.; Lugli, P.
2016-05-01
Vertical Organic Transistors and Phototransistors have been proven to be promising technologies due to the advantages of reduced channel length and larger sensitive area with respect to planar devices. Nevertheless, a real improvement of their performance is subordinate to the quantitative description of their operation mechanisms. In this work, we present a comparative study on the modeling of vertical and planar Organic Phototransistor (OPT) structures. Computer-based simulations of the devices have been carried out with Synopsys Sentaurus TCAD in a 2D Drift-Diffusion framework. The photoactive semiconductor material has been modeled using the virtual semiconductor approach as the archetypal P3HT:PC61BM bulk heterojunction. It has been found that both simulated devices have comparable electrical and optical characteristics, accordingly to recent experimental reports on the subject.
A Posteriori Analysis for Hydrodynamic Simulations Using Adjoint Methodologies
Woodward, C S; Estep, D; Sandelin, J; Wang, H
2009-02-26
This report contains results of analysis done during an FY08 feasibility study investigating the use of adjoint methodologies for a posteriori error estimation for hydrodynamics simulations. We developed an approach to adjoint analysis for these systems through use of modified equations and viscosity solutions. Targeting first the 1D Burgers equation, we include a verification of the adjoint operator for the modified equation for the Lax-Friedrichs scheme, then derivations of an a posteriori error analysis for a finite difference scheme and a discontinuous Galerkin scheme applied to this problem. We include some numerical results showing the use of the error estimate. Lastly, we develop a computable a posteriori error estimate for the MAC scheme applied to stationary Navier-Stokes.
SPLASH: An Interactive Visualization Tool for Smoothed Particle Hydrodynamics Simulations
NASA Astrophysics Data System (ADS)
Price, Daniel J.
2011-03-01
SPLASH (formerly SUPERSPHPLOT) is a visualization tool for output from (astrophysical) simulations using the Smoothed Particle Hydrodynamics (SPH) method in one, two and three dimensions. It is written in Fortran 90 and utilises the PGPLOT graphics subroutine library to do the actual plotting. It is based around a command-line menu structure but utilises the interactive capabilities of PGPLOT to manipulate data interactively in the plotting window. SPLASH is a fully interactive program; visualizations can be changed rapidly at the touch of a button (e.g. zooming, rotating, shifting cross section positions etc). Data is read directly from the code dump format giving rapid access to results and the visualization is advanced forwards and backwards through timesteps by single keystrokes. SPLASH uses the SPH kernel to render plots of not only density but other physical quantities, giving a smooth representation of the data.
Simulations of dolphin kick swimming using smoothed particle hydrodynamics.
Cohen, Raymond C Z; Cleary, Paul W; Mason, Bruce R
2012-06-01
In competitive human swimming the submerged dolphin kick stroke (underwater undulatory swimming) is utilized after dives and turns. The optimal dolphin kick has a balance between minimizing drag and maximizing thrust while also minimizing the physical exertion required of the swimmer. In this study laser scans of athletes are used to provide realistic swimmer geometries in a single anatomical pose. These are rigged and animated to closely match side-on video footage. Smoothed Particle Hydrodynamics (SPH) fluid simulations are performed to evaluate variants of this swimming stroke technique. This computational approach provides full temporal and spatial information about the flow moving around the deforming swimmer model. The effects of changes in ankle flexibility and stroke frequency are investigated through a parametric study. The results suggest that the net streamwise force on the swimmer is relatively insensitive to ankle flexibility but is strongly dependent on kick frequency. PMID:21840077
Radiation Hydrodynamic Simulations of an Inertial Fusion Energy Reactor Chamber
NASA Astrophysics Data System (ADS)
Sacks, Ryan Foster
Inertial fusion energy reactors present great promise for the future as they are capable of providing baseline power with no carbon footprint. Simulation work regarding the chamber response and first wall insult is carried out using the 1-D BUCKY radiation hydrodynamics code for a variety of differing chamber fills, radii, chamber obstructions and first wall materials. Discussion of the first wall temperature rise, x-ray spectrum incident on the wall, shock timing and maximum overpressure are presented. An additional discussion of the impact of different gas opacities and their effect on overall chamber dynamics, including the formation of two shock fronts, is also presented. This work is performed under collaboration with Lawrence Livermore National Laboratory at the University of Wisconsin-Madison's Fusion Technology Institute.
Highly-resolved 2D HYDRA simulations of Double-Shell Ignition Designs
Milovich, J L; Amendt, P; Hamza, A; Marinak, M; Robey, H
2006-06-30
Double-shell (DS) targets (Amendt, P. A. et al., 2002) offer a complementary approach to the cryogenic baseline design (Lindl, J. et al., 2004) for achieving ignition on the National Ignition Facility (NIF). Among the expected benefits are the ease of room temperature preparation and fielding, the potential for lower laser backscatter and the reduced need for careful shock timing. These benefits are offset, however, by demanding fabrication tolerances, e.g., shell concentricity and shell surface smoothness. In particular, the latter is of paramount importance since DS targets are susceptible to the growth of interface perturbations from impulsive and time-dependent accelerations. Previous work (Milovich, J. L. et al., 2004) has indicated that the growth of perturbations on the outer surface of the inner shell is potentially disruptive. To control this instability new designs have been proposed requiring bimetallic inner shells and material-matching mid-Z nanoporous foam. The challenges in manufacturing such exotic foams have led to a further evaluation of the densities and pore sizes needed to reduce the seeding of perturbations on the outer surface of the inner shell, thereby guiding the ongoing material science research efforts. Highly-resolved 2D simulations of porous foams have been performed to establish an upper limit on the allowable pore sizes for instability growth. Simulations indicate that foams with higher densities than previously thought are now possible. Moreover, while at the present time we are only able to simulate foams with average pore sizes larger than 1 micron (due to computational limitations), we can conclude that these pore sizes are potentially problematic. Furthermore, the effect of low-order hohlraum radiation asymmetries on the growth of intrinsic surface perturbations is also addressed. Highly-resolved 2D simulations indicate that the transverse flows that are set up by these low-order mode features (which can excite Kelvin
Reynolds-Averaged Navier-Stokes Simulation of a 2D Circulation Control Wind Tunnel Experiment
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Jones, Greg; Lin, John C.
2011-01-01
Numerical simulations are performed using a Reynolds-averaged Navier-Stokes (RANS) flow solver for a circulation control airfoil. 2D and 3D simulation results are compared to a circulation control wind tunnel test conducted at the NASA Langley Basic Aerodynamics Research Tunnel (BART). The RANS simulations are compared to a low blowing case with a jet momentum coefficient, C(sub u), of 0:047 and a higher blowing case of 0.115. Three dimensional simulations of the model and tunnel walls show wall effects on the lift and airfoil surface pressures. These wall effects include a 4% decrease of the midspan sectional lift for the C(sub u) 0.115 blowing condition. Simulations comparing the performance of the Spalart Allmaras (SA) and Shear Stress Transport (SST) turbulence models are also made, showing the SST model compares best to the experimental data. A Rotational/Curvature Correction (RCC) to the turbulence model is also evaluated demonstrating an improvement in the CFD predictions.
Spot size variation FCS in simulations of the 2D Ising model
NASA Astrophysics Data System (ADS)
Burns, Margaret C.; Nouri, Mariam; Veatch, Sarah L.
2016-06-01
Spot variation fluorescence correlation spectroscopy (svFCS) was developed to study the movement and organization of single molecules in plasma membranes. This experimental technique varies the size of an illumination area while measuring correlations in time using standard fluorescence correlation methods. Frequently, this data is interpreted using the assumption that correlation measurements reflect the dynamics of single molecule motions, and not motions of the average composition. Here, we explore how svFCS measurements report on the dynamics of components diffusing within simulations of a 2D Ising model with a conserved order parameter. Simulated correlation functions report on both the fast dynamics of single component mobility and the slower dynamics of the average composition. Over a range of simulation conditions, a conventional svFCS analysis suggests the presence of anomalous diffusion even though single molecule motions are nearly Brownian in these simulations. This misinterpretation is most significant when the surface density of the fluorescent label is elevated, therefore we suggest future measurements be made over a range of tracer densities. Some simulation conditions reproduce qualitative features of published svFCS experimental data. Overall, this work emphasizes the need to probe membranes using multiple complimentary experimental methodologies in order to draw conclusions regarding the nature of spatial and dynamical heterogeneity in these systems.
Global radiation-hydrodynamics simulations of red supergiant stars
NASA Astrophysics Data System (ADS)
Freytag, B.; Chiavassa, A.
2013-05-01
The small-scale surface granulation on cool main-sequence stars and white dwarfs influences the overall appearance of these objects only weakly. And it is only indirectly observable by analyzing e.g. line-shapes or temporal fluctuations - except for the Sun. The large-scale and high-contrast convective surface cells and accompanying sound waves on supergiants and low-gravity AGB stars on the other hand have a strong impact on the outer atmospheric layers and are directly detectable by interferometric observations. Necessary to interpret modern observations with their high resolution in frequency, time, and/or space are detailed numerical multi-dimensional time-dependent radiation-hydrodynamical simulations. Local simulations of small patches of convective surface layers and the atmosphere of main-sequence stars have matured over three decades and have reached an impressive level of agreement with observations and also between different computational codes. However, global simulations of the entire convective surface and atmosphere of a red supergiants are considerably more demanding - and limited - and have become available only for about one decade. Still, they show how the surface is shaped by the interaction of small surface granules, that sit on top of large envelope convection cells, and waves, that can travel as shocks into the outer atmosphere. The route to more complete future models will be discussed, that comprise the outer atmosphere of the stars and that could explain some of the little-understood phenomena like chromosphere, molsphere, or wind-formation.
Rise characteristics of gas bubbles in a 2D rectangular column: VOF simulations vs experiments
Krishna, R.; Baten, J.M. van
1999-10-01
About five centuries ago, Leonardo da Vinci described the sinuous motion of gas bubbles rising in water. The authors have attempted to simulate the rise trajectories of bubbles of 4, 5, 7, 8, 9, 12, and 20 mm in diameter rising in a 2D rectangular column filled with water. The simulations were carried out using the volume-of-fluid (VOF) technique developed by Hirt and Nichols (J. Computational Physics, 39, 201--225 (1981)). To solve the Navier-Stokes equations of motion the authors used a commercial solver, CFX 4.1c of AEA Technology, UK. They developed their own bubble-tracking algorithm to capture sinuous bubble motions. The 4 and 5 mm bubbles show large lateral motions observed by Da Vinci. The 7, 8 and 9 mm bubble behave like jellyfish. The 12 mm bubble flaps its wings like a bird. The extent of lateral motion of the bubbles decreases with increasing bubble size. Bubbles larger than 20 mm in size assume a spherical cap form and simulations of the rise characteristics match experiments exactly. VOF simulations are powerful tools for a priori determination of the morphology and rise characteristics of bubbles rising in a liquid. Bubble-bubble interactions are also properly modeled by the VOF technique.
Numerical simulation of 2D buoyant jets in ice-covered and temperature-stratified water
NASA Astrophysics Data System (ADS)
Gu, Ruochuan
A two-dimensional (2D) unsteady simulation model is applied to the problem of a submerged warm water discharge into a stratified lake or reservoir with an ice cover. Numerical simulations and analyses are conducted to gain insight into large-scale convective recirculation and flow processes in a cold waterbody induced by a buoyant jet. Jet behaviors under various discharge temperatures are captured by directly modeling flow and thermal fields. Flow structures and processes are described by the simulated spatial and temporal distributions of velocity and temperature in various regions: deflection, recirculation, attachment, and impingement. Some peculiar hydrothermal and dynamic features, e.g. reversal of buoyancy due to the dilution of a warm jet by entraining cold ambient water, are identified and examined. Simulation results show that buoyancy is the most important factor controlling jet behavior and mixing processes. The inflow boundary is treated as a liquid wall from which the jet is offset. Similarity and difference in effects of boundaries perpendicular and parallel to flow, and of buoyancy on jet attachment and impingement, are discussed. Symmetric flow configuration is used to de-emphasize the Coanda effect caused by offset.
Incorporating a Turbulence Transport Model into 2-D Hybrid Hall Thruster Simulations
NASA Astrophysics Data System (ADS)
Cha, Eunsun; Cappelli, Mark A.; Fernandez, Eduardo
2014-10-01
2-D hybrid simulations of Hall plasma thrusters that do not resolve cross-field transport-generating fluctuations require a model to capture how electrons migrate across the magnetic field. We describe the results of integrating a turbulent electron transport model into simulations of plasma behavior in a plane spanned by the E and B field vectors. The simulations treat the electrons as a fluid and the heavy species (ions/neutrals) as discrete particles. The transport model assumes that the turbulent eddy cascade in the electron fluid to smaller scales is the primary means of electron energy dissipation. Using this model, we compare simulations to experimental measurements made on a laboratory Hall discharge over a range of discharge voltage. Both the current-voltage trends as well as the plasma properties such as plasma temperature, electron density, and ion velocities seem agree favorably with experiments, where a simple Bohm transport model tends to perform poorly in capturing much of the discharge behavior.
Hydrodynamic modeling of petroleum reservoirs using simulator MUFITS
NASA Astrophysics Data System (ADS)
Afanasyev, Andrey
2015-04-01
MUFITS is new noncommercial software for numerical modeling of subsurface processes in various applications (www.mufits.imec.msu.ru). To this point, the simulator was used for modeling nonisothermal flows in geothermal reservoirs and for modeling underground carbon dioxide storage. In this work, we present recent extension of the code to petroleum reservoirs. The simulator can be applied in conventional black oil modeling, but it also utilizes a more complicated models for volatile oil and gas condensate reservoirs as well as for oil rim fields. We give a brief overview of the code by providing the description of internal representation of reservoir models, which are constructed of grid blocks, interfaces, stock tanks as well as of pipe segments and pipe junctions for modeling wells and surface networks. For conventional black oil approach, we present the simulation results for SPE comparative tests. We propose an accelerated compositional modeling method for sub- and supercritical flows subjected to various phase equilibria, particularly to three-phase equilibria of vapour-liquid-liquid type. The method is based on the calculation of the thermodynamic potential of reservoir fluid as a function of pressure, total enthalpy and total composition and storing its values as a spline table, which is used in hydrodynamic simulation for accelerated PVT properties prediction. We provide the description of both the spline calculation procedure and the flashing algorithm. We evaluate the thermodynamic potential for a mixture of two pseudo-components modeling the heavy and light hydrocarbon fractions. We develop a technique for converting black oil PVT tables to the potential, which can be used for in-situ hydrocarbons multiphase equilibria prediction under sub- and supercritical conditions, particularly, in gas condensate and volatile oil reservoirs. We simulate recovery from a reservoir subject to near-critical initial conditions for hydrocarbon mixture. We acknowledge
NASA Astrophysics Data System (ADS)
Humer, Günter; Reithofer, Andreas
2016-04-01
Using an extended 2D hydrodynamic model for evaluating damage risk caused by extreme rain events: Flash-Flood-Risk-Map (FFRM) Upper Austria Considering the increase in flash flood events causing massive damage during the last years in urban but also rural areas [1-4], the requirement for hydrodynamic calculation of flash flood prone areas and possible countermeasures has arisen to many municipalities and local governments. Besides the German based URBAS project [1], also the EU-funded FP7 research project "SWITCH-ON" [5] addresses the damage risk caused by flash floods in the sub-project "FFRM" (Flash Flood Risk Map Upper Austria) by calculating damage risk for buildings and vulnerable infrastructure like schools and hospitals caused by flash-flood driven inundation. While danger zones in riverine flooding are established as an integral part of spatial planning, flash floods caused by overland runoff from extreme rain events have been for long an underrated safety hazard not only for buildings and infrastructure, but man and animals as well. Based on the widespread 2D-model "hydro_as-2D", an extension was developed, which calculates the runoff formation from a spatially and temporally variable precipitation and determines two dimensionally the land surface area runoff and its concentration. The conception of the model is to preprocess the precipitation data and calculate the effective runoff-volume for a short time step of e.g. five minutes. This volume is applied to the nodes of the 2D-model and the calculation of the hydrodynamic model is started. At the end of each time step, the model run is stopped, the preprocessing step is repeated and the hydraulic model calculation is continued. In view of the later use for the whole of Upper Austria (12.000 km²) a model grid of 25x25 m² was established using digital elevation data. Model parameters could be estimated for the small catchment of river Ach, which was hit by an intense rain event with up to 109 mm per hour
NASA Astrophysics Data System (ADS)
Humer, Günter; Reithofer, Andreas
2016-04-01
Using an extended 2D hydrodynamic model for evaluating damage risk caused by extreme rain events: Flash-Flood-Risk-Map (FFRM) Upper Austria Considering the increase in flash flood events causing massive damage during the last years in urban but also rural areas [1-4], the requirement for hydrodynamic calculation of flash flood prone areas and possible countermeasures has arisen to many municipalities and local governments. Besides the German based URBAS project [1], also the EU-funded FP7 research project "SWITCH-ON" [5] addresses the damage risk caused by flash floods in the sub-project "FFRM" (Flash Flood Risk Map Upper Austria) by calculating damage risk for buildings and vulnerable infrastructure like schools and hospitals caused by flash-flood driven inundation. While danger zones in riverine flooding are established as an integral part of spatial planning, flash floods caused by overland runoff from extreme rain events have been for long an underrated safety hazard not only for buildings and infrastructure, but man and animals as well. Based on the widespread 2D-model "hydro_as-2D", an extension was developed, which calculates the runoff formation from a spatially and temporally variable precipitation and determines two dimensionally the land surface area runoff and its concentration. The conception of the model is to preprocess the precipitation data and calculate the effective runoff-volume for a short time step of e.g. five minutes. This volume is applied to the nodes of the 2D-model and the calculation of the hydrodynamic model is started. At the end of each time step, the model run is stopped, the preprocessing step is repeated and the hydraulic model calculation is continued. In view of the later use for the whole of Upper Austria (12.000 km²) a model grid of 25x25 m² was established using digital elevation data. Model parameters could be estimated for the small catchment of river Ach, which was hit by an intense rain event with up to 109 mm per hour
NASA Astrophysics Data System (ADS)
Li, Jinghe; Song, Linping; Liu, Qing Huo
2016-02-01
A simultaneous multiple frequency contrast source inversion (CSI) method is applied to reconstructing hydrocarbon reservoir targets in a complex multilayered medium in two dimensions. It simulates the effects of a salt dome sedimentary formation in the context of reservoir monitoring. In this method, the stabilized biconjugate-gradient fast Fourier transform (BCGS-FFT) algorithm is applied as a fast solver for the 2D volume integral equation for the forward computation. The inversion technique with CSI combines the efficient FFT algorithm to speed up the matrix-vector multiplication and the stable convergence of the simultaneous multiple frequency CSI in the iteration process. As a result, this method is capable of making quantitative conductivity image reconstruction effectively for large-scale electromagnetic oil exploration problems, including the vertical electromagnetic profiling (VEP) survey investigated here. A number of numerical examples have been demonstrated to validate the effectiveness and capacity of the simultaneous multiple frequency CSI method for a limited array view in VEP.
Relaxation of ferroelectric states in 2D distributions of quantum dots: EELS simulation
NASA Astrophysics Data System (ADS)
Cortés, C. M.; Meza-Montes, L.; Moctezuma, R. E.; Carrillo, J. L.
2016-06-01
The relaxation time of collective electronic states in a 2D distribution of quantum dots is investigated theoretically by simulating EELS experiments. From the numerical calculation of the probability of energy loss of an electron beam, traveling parallel to the distribution, it is possible to estimate the damping time of ferroelectric-like states. We generate this collective response of the distribution by introducing a mean field interaction among the quantum dots, and then, the model is extended incorporating effects of long-range correlations through a Bragg–Williams approximation. The behavior of the dielectric function, the energy loss function, and the relaxation time of ferroelectric-like states is then investigated as a function of the temperature of the distribution and the damping constant of the electronic states in the single quantum dots. The robustness of the trends and tendencies of our results indicate that this scheme of analysis can guide experimentalists to develop tailored quantum dots distributions for specific applications.
A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds
Li, Tingwen; Zhang, Yongmin
2013-10-11
Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.
Simulating Magnetized Laboratory Plasmas with Smoothed Particle Hydrodynamics
Johnson, Jeffrey N.
2009-01-01
The creation of plasmas in the laboratory continues to generate excitement in the physics community. Despite the best efforts of the intrepid plasma diagnostics community, the dynamics of these plasmas remains a difficult challenge to both the theorist and the experimentalist. This dissertation describes the simulation of strongly magnetized laboratory plasmas with Smoothed Particle Hydrodynamics (SPH), a method born of astrophysics but gaining broad support in the engineering community. We describe the mathematical formulation that best characterizes a strongly magnetized plasma under our circumstances of interest, and we review the SPH method and its application to astrophysical plasmas based on research by Phillips [1], Buerve [2], and Price and Monaghan [3]. Some modifications and extensions to this method are necessary to simulate terrestrial plasmas, such as a treatment of magnetic diffusion based on work by Brookshaw [4] and by Atluri [5]; we describe these changes as we turn our attention toward laboratory experiments. Test problems that verify the method are provided throughout the discussion. Finally, we apply our method to the compression of a magnetized plasma performed by the Compact Toroid Injection eXperiment (CTIX) [6] and show that the experimental results support our computed predictions.
Formation of galactic building blocks in cosmological hydrodynamic simulations
NASA Astrophysics Data System (ADS)
Chun, Kyungwon; Shin, Jihye; Kim, Sungsoo S.
2015-08-01
We aim to investigate the formation of primordial globular clusters (GCs) and dwarf galaxies as galactic building blocks in the Milky Way-like galaxy with cosmological zoom-in simulations. To accomplish our research goal, we modified cosmological hydrodynamic code, GADGET-2, such that it includes radiative heating and cooling, reionization (z < 8.9) of the Universe, UV shielding (nshield > 0.014cm-3), star formation, and supernova explosion. We first performed a dark matter(DM)-only, low resolution simulation with 32Mpc/h on a side to find the host halo (~10×1012 M⊙), and then resimulated a cubic box of a side length 4Mpc/h with 130 million DM and gas particles from z = 49. The mass of each particle is Mdm = 3.4×104 M⊙ and Mgas = 6.3×103 M⊙, thus the GCs and dwarf galaxies can be resolved with more than hundreds and thousands particles, respectively. Here, we present various properties of the building blocks such as mass function, formation epochs, baryon-to-dark matter ratio, metallicity, spatial distribution, and merger history on the host halo as functions of redshift.
Three-dimensional hydrodynamic simulations of L2 Puppis
NASA Astrophysics Data System (ADS)
Chen, Zhuo; Nordhaus, Jason; Frank, Adam; Blackman, Eric G.; Balick, Bruce
2016-06-01
Recent observations of the L2 Puppis system suggest that this Mira-like variable may be in the early stages of forming a bipolar planetary nebula (PN). As one of nearest and brightest AGB stars, thought be a binary, L2 Puppis serves as a benchmark object for studying the late-stages of stellar evolution. We perform global, three-dimensional, adaptive-mesh-refinement hydrodynamic simulations of the L2 Puppis system with ASTROBEAR. We use the radiative transfer code RADMC-3D to construct the broad-band spectral-energy-distribution (SED) and synthetic observational images from our simulations. Given the reported binary parameters, we are able to reproduce the current observational data if a short pulse of dense material is released from the AGB star with a velocity sufficient to escape the primary but not the binary. Such a situation could result from a thermal pulse, be induced by a periastron passage of the secondary, or could be launched if the primary ingests a planet.
Three-dimensional hydrodynamic simulations of L2 Puppis
NASA Astrophysics Data System (ADS)
Chen, Zhuo; Nordhaus, Jason; Frank, Adam; Blackman, Eric G.; Balick, Bruce
2016-08-01
Recent observations of the L2 Puppis system suggest that this Mira-like variable may be in the early stages of forming a bipolar planetary nebula. As one of nearest and brightest asymptotic giant branch (AGB) stars, thought be a binary, L2 Puppis serves as a benchmark object for studying the late-stages of stellar evolution. We perform global, three-dimensional, adaptive-mesh-refinement hydrodynamic simulations of the L2 Puppis system with ASTROBEAR. We use the radiative transfer code RADMC-3D to construct the broad-band spectral energy distribution and synthetic observational images from our simulations. Given the reported binary parameters, we are able to reproduce the current observational data if a short pulse of dense material is released from the AGB star with a velocity sufficient to escape the primary but not the binary. Such a situation could result from a thermal pulse, be induced by a periastron passage of the secondary, or could be launched if the primary ingests a planet.
Axisymmetric Simulations of Hot Jupiter-Stellar Wind Hydrodynamic Interaction
NASA Astrophysics Data System (ADS)
Christie, Duncan; Arras, Phil; Li, Zhi-Yun
2016-03-01
Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out under axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point.
Cosmological Simulations of Galaxy Formation Including Hydrodynamics (hyper-abridged)
NASA Astrophysics Data System (ADS)
Summers, F. J.
1994-06-01
The formation of galaxies in hierarchical cosmogonies is studied using high resolution N-body plus SPH hydrodynamics simulations. The collapse of structure is followed self-consistently from Mpc scale filamentary structures to kpc scale galactic objects. The characteristics and formation processes of the galaxy like objects are studied in detail, along with the aggregation into a poor cluster. Related studies consider the effects of modelling star formation, the reliability of tracing galaxies in simulations, and tests of SPH methods. This submission serves first to notify that the full text and figures of my thesis are available in compressed PostScript form via anonymous ftp from astro.princeton.edu in the directory /summers/thesis (122 files, 19 MB compressed, 65 MB uncompressed). See the README file first. Second, this submission contains the title page, abstract, table of contents, introductory chapter, summary chapter, and references for my thesis. Those who are curious about the work may scan these pages to identify which chapters may be interesting to get via ftp.
Hybrid magneto-hydrodynamic simulation of a driven FRC
Rahman, H. U. Wessel, F. J.; Binderbauer, M. W.; Qerushi, A.; Rostoker, N.; Conti, F.; Ney, P.
2014-03-15
We simulate a field-reversed configuration (FRC), produced by an “inductively driven” FRC experiment; comprised of a central-flux coil and exterior-limiter coil. To account for the plasma kinetic behavior, a standard 2-dimensional magneto-hydrodynamic code is modified to preserve the azimuthal, two-fluid behavior. Simulations are run for the FRC's full-time history, sufficient to include: acceleration, formation, current neutralization, compression, and decay. At start-up, a net ion current develops that modifies the applied-magnetic field forming closed-field lines and a region of null-magnetic field (i.e., a FRC). After closed-field lines form, ion-electron drag increases the electron current, canceling a portion of the ion current. The equilibrium is lost as the total current eventually dissipates. The time evolution and magnitudes of the computed current, ion-rotation velocity, and plasma temperature agree with the experiments, as do the rigid-rotor-like, radial-profiles for the density and axial-magnetic field [cf. Conti et al. Phys. Plasmas 21, 022511 (2014)].
HYDRODYNAMICAL SIMULATIONS OF THE BARRED SPIRAL GALAXY NGC 1097
Lin, Lien-Hsuan; Wang, Hsiang-Hsu; Hsieh, Pei-Ying; Taam, Ronald E.; Yang, Chao-Chin; Yen, David C. C.
2013-07-01
NGC 1097 is a nearby barred spiral galaxy believed to be interacting with the elliptical galaxy NGC 1097A located to its northwest. It hosts a Seyfert 1 nucleus surrounded by a circumnuclear starburst ring. Two straight dust lanes connected to the ring extend almost continuously out to the bar. The other ends of the dust lanes attach to two main spiral arms. To provide a physical understanding of its structural and kinematical properties, two-dimensional hydrodynamical simulations have been carried out. Numerical calculations reveal that many features of the gas morphology and kinematics can be reproduced provided that the gas flow is governed by a gravitational potential associated with a slowly rotating strong bar. By including the self-gravity of the gas disk in our calculation, we have found the starburst ring to be gravitationally unstable, which is consistent with the observation in Hsieh et al. Our simulations show that the gas inflow rate is 0.17 M{sub Sun} yr{sup -1} into the region within the starburst ring even after its formation, leading to the coexistence of both a nuclear ring and a circumnuclear disk.
Hydrodynamic simulations of the interaction between giant stars and planets
NASA Astrophysics Data System (ADS)
Staff, Jan E.; De Marco, Orsola; Wood, Peter; Galaviz, Pablo; Passy, Jean-Claude
2016-05-01
We present the results of hydrodynamic simulations of the interaction between a 10 Jupiter mass planet and a red or asymptotic giant branch stars, both with a zero-age main sequence mass of 3.5 M⊙. Dynamic in-spiral time-scales are of the order of few years and a few decades for the red and asymptotic giant branch stars, respectively. The planets will eventually be destroyed at a separation from the core of the giants smaller than the resolution of our simulations, either through evaporation or tidal disruption. As the planets in-spiral, the giant stars' envelopes are somewhat puffed up. Based on relatively long time-scales and even considering the fact that further in-spiral should take place before the planets are destroyed, we predict that the merger would be difficult to observe, with only a relatively small, slow brightening. Very little mass is unbound in the process. These conclusions may change if the planet's orbit enhances the star's main pulsation modes. Based on the angular momentum transfer, we also suspect that this star-planet interaction may be unable to lead to large-scale outflows via the rotation-mediated dynamo effect of Nordhaus and Blackman. Detectable pollution from the destroyed planets would only result for the lightest, lowest metallicity stars. We furthermore find that in both simulations the planets move through the outer stellar envelopes at Mach-3 to Mach-5, reaching Mach-1 towards the end of the simulations. The gravitational drag force decreases and the in-spiral slows down at the sonic transition, as predicted analytically.
Numerical simulation of HTPB combustion in a 2D hybrid slab combustor
NASA Astrophysics Data System (ADS)
Gariani, Gabriela; Maggi, Filippo; Galfetti, Luciano
2011-09-01
A code for the numerical simulation of combustion processes in hybrid rockets, developed at the Space Propulsion Laboratory of Politecnico di Milano (SPLab), is presented. The code deals with Navier-Stokes equations solved with RANS approach, blowing effect, combustion kinetics and radiation. The equations are closed with k-epsilon turbulence model and well stirred reactor model. The P1 model, a simplification of the PN radiation model, is adopted. Specific simulation tools were developed using OpenFOAM®open source technology. The computational domain is 2D and split in two subdomains, simulating the reacting gas mixture on one side and the solid fuel grain on the other. The interface between the two regions plays a key role as the solid grain pyrolysis comes from a straight solution of the model without shortcuts. A propellant combination with polybutadiene and gaseous oxygen has been chosen and a reduced kinetic model for combustion of butadiene, considered as the major gaseous constituent coming from polybutadiene pyrolysis, has been developed for reactions occurring in oxygen atmosphere. The computational domain tries to replicate the real experimental setup and is split into three areas: pre-chamber, slab zone and post-chamber. High speed camera visualizations of the combustion processes allow to compare the flame height, obtained by the code and by experimental tests, along the grain for given boundary conditions.
Simulation of abrasive flow machining process for 2D and 3D mixture models
NASA Astrophysics Data System (ADS)
Dash, Rupalika; Maity, Kalipada
2015-12-01
Improvement of surface finish and material removal has been quite a challenge in a finishing operation such as abrasive flow machining (AFM). Factors that affect the surface finish and material removal are media viscosity, extrusion pressure, piston velocity, and particle size in abrasive flow machining process. Performing experiments for all the parameters and accurately obtaining an optimized parameter in a short time are difficult to accomplish because the operation requires a precise finish. Computational fluid dynamics (CFD) simulation was employed to accurately determine optimum parameters. In the current work, a 2D model was designed, and the flow analysis, force calculation, and material removal prediction were performed and compared with the available experimental data. Another 3D model for a swaging die finishing using AFM was simulated at different viscosities of the media to study the effects on the controlling parameters. A CFD simulation was performed by using commercially available ANSYS FLUENT. Two phases were considered for the flow analysis, and multiphase mixture model was taken into account. The fluid was considered to be a
What Can We Learn about Magnetotail Reconnection from 2D PIC Harris-Sheet Simulations?
NASA Astrophysics Data System (ADS)
Goldman, M. V.; Newman, D. L.; Lapenta, G.
2016-03-01
The Magnetosphere Multiscale Mission (MMS) will provide the first opportunity to probe electron-scale physics during magnetic reconnection in Earth's magnetopause and magnetotail. This article will address only tail reconnection—as a non-steady-state process in which the first reconnected field lines advance away from the x-point in flux pile-up fronts directed Earthward and anti-Earthward. An up-to-date microscopic physical picture of electron and ion-scale collisionless tail reconnection processes is presented based on 2-D Particle-In-Cell (PIC) simulations initiated from a Harris current sheet and on Cluster and Themis measurements of tail reconnection. The successes and limitations of simulations when compared to measured reconnection are addressed in detail. The main focus is on particle and field diffusion region signatures in the tail reconnection geometry. The interpretation of these signatures is vital to enable spacecraft to identify physically significant reconnection events, to trigger meaningful data transfer from MMS to Earth and to construct a useful overall physical picture of tail reconnection. New simulation results and theoretical interpretations are presented for energy transport of particles and fields, for the size and shape of electron and ion diffusion regions, for processes occurring near the fronts and for the j × B (Hall) electric field.
Lattice Boltzmann simulations of 2D laminar flows past two tandem cylinders
NASA Astrophysics Data System (ADS)
Mussa, Alberto; Asinari, Pietro; Luo, Li-Shi
2009-03-01
We apply the lattice Boltzmann equation (LBE) with multiple-relaxation-time (MRT) collision model to simulate laminar flows in two-dimensions (2D). In order to simulate flows in an unbounded domain with the LBE method, we need to address two issues: stretched non-uniform mesh and inflow and outflow boundary conditions. We use the interpolated grid stretching method to address the need of non-uniform mesh. We demonstrate that various inflow and outflow boundary conditions can be easily and consistently realized with the MRT-LBE. The MRT-LBE with non-uniform stretched grids is first validated with a number of test cases: the Poiseuille flow, the flow past a cylinder asymmetrically placed in a channel, and the flow past a cylinder in an unbounded domain. We use the LBE method to simulate the flow past two tandem cylinders in an unbounded domain with Re = 100. Our results agree well with existing ones. Through this work we demonstrate the effectiveness of the MRT-LBE method with grid stretching.
Application of 2-D simulations to hollow Z-pinch implosions
Peterson, D. L.; Bowers, R. L.; Brownell, J. H.; Lund, C.; Matuska, W.; McLenithan, K.; Oona, H.; Deeney, C.; Derzon, M.; Spielman, R. B.; Nash, T. J.; Chandler, G.; Mock, R. C.; Sanford, T. W. L.; Matzen, M. K.; Roderick, N. F.
1997-05-05
The application of simulations of z-pinch implosions should have at least two goals: first, to properly model the most important physical processes occurring in the pinch allowing for a better understanding of the experiments and second, provide a design capability for future experiments. Beginning with experiments fielded at Los Alamos on the Pegasus I and Pegasus II capacitor banks, we have developed a methodology for simulating hollow z-pinches in two dimensions which has reproduced important features of the measured experimental current drive, spectrum, radiation pulse shape, peak power and total radiated energy (1,2,3). This methodology employs essentially one free parameter, the initial level of the random density perturbations imposed at the beginning of the 2-D simulation, but in general no adjustments to other parameters (such as the resistivity) are required (1). Limitations in the use of this approach include the use of the 3-T, gray diffusion treatment of radiation and the fact that the initial perturbation conditions are not known a priori. Nonetheless, the approach has been successful in reproducing important experimental features of such implosions over a wide variety of timescales (tens of nanoseconds to microseconds), current drives (3 to 16 MA), masses (submilligram to tens of milligrams), initial radii (<1 cm to 5 cm), materials (Al and W) and initial configurations (thin foils and wire arrays with 40 to 240 wires). Currently we are applying this capability to the analysis of recent Saturn and PBFA-Z experiments (4,5). The code results provide insight into the nature of the pinch plasma prior to arrival on-axis, during thermalization and development after peak pinch time. Among other things, the simulation results provide an explanation for the production of larger amounts of radiated energy than would be expected from a simple slug-model kinetic energy analysis and the appearance of multiple peaks in the radiation power. The 2-D modeling has
Application of 2-D simulations to hollow Z-pinch implosions
Peterson, D.L.; Bowers, R.L.; Brownell, J.H.; Lund, C.; Matuska, W.; McLenithan, K.; Oona, H.; Deeney, C.; Derzon, M.; Spielman, R.B.; Nash, T.J.; Chandler, G.; Mock, R.C.; Sanford, T.W.; Matzen, M.K.; Roderick, N.F.
1997-05-01
The application of simulations of z-pinch implosions should have at least two goals: first, to properly model the most important physical processes occurring in the pinch allowing for a better understanding of the experiments and second, provide a design capability for future experiments. Beginning with experiments fielded at Los Alamos on the Pegasus I and Pegasus II capacitor banks, we have developed a methodology for simulating hollow z-pinches in two dimensions which has reproduced important features of the measured experimental current drive, spectrum, radiation pulse shape, peak power and total radiated energy (1,2,3). This methodology employs essentially one free parameter, the initial level of the random density perturbations imposed at the beginning of the 2-D simulation, but in general no adjustments to other parameters (such as the resistivity) are required (1). Limitations in the use of this approach include the use of the 3-T, gray diffusion treatment of radiation and the fact that the initial perturbation conditions are not known {ital a priori}. Nonetheless, the approach has been successful in reproducing important experimental features of such implosions over a wide variety of timescales (tens of nanoseconds to microseconds), current drives (3 to 16 MA), masses (submilligram to tens of milligrams), initial radii ({lt}1cm to 5 cm), materials (Al and W) and initial configurations (thin foils and wire arrays with 40 to 240 wires). Currently we are applying this capability to the analysis of recent Saturn and PBFA-Z experiments (4,5). The code results provide insight into the nature of the pinch plasma prior to arrival on-axis, during thermalization and development after peak pinch time. Among other things, the simulation results provide an explanation for the production of larger amounts of radiated energy than would be expected from a simple slug-model kinetic energy analysis and the appearance of multiple peaks in the radiation power. The 2-D
NASA Astrophysics Data System (ADS)
Yamada, Susumu; Kitamura, Akihiro; Kurikami, Hiroshi; Machida, Masahiko
2015-04-01
Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on March 2011 released significant quantities of radionuclides to atmosphere. The most significant nuclide is radioactive cesium isotopes. Therefore, the movement of the cesium is one of the critical issues for the environmental assessment. Since the cesium is strongly sorbed by soil particles, the cesium transport can be regarded as the sediment transport which is mainly brought about by the aquatic system such as a river and a lake. In this research, our target is the sediment transport on Ogaki dam reservoir which is located in about 16 km northwest from FDNPP. The reservoir is one of the principal irrigation dam reservoirs in Fukushima Prefecture and its upstream river basin was heavily contaminated by radioactivity. We simulate the sediment transport on the reservoir using 2-D river simulation code named Nays2D originally developed by Shimizu et al. (The latest version of Nays2D is available as a code included in iRIC (http://i-ric.org/en/), which is a river flow and riverbed variation analysis software package). In general, a 2-D simulation code requires a huge amount of calculation time. Therefore, we parallelize the code and execute it on a parallel computer. We examine the relationship between the behavior of the sediment transport and the height of the reservoir exit. The simulation result shows that almost all the sand that enter into the reservoir deposit close to the entrance of the reservoir for any height of the exit. The amounts of silt depositing within the reservoir slightly increase by raising the height of the exit. However, that of the clay dramatically increases. Especially, more than half of the clay deposits, if the exit is sufficiently high. These results demonstrate that the water level of the reservoir has a strong influence on the amount of the clay discharged from the reservoir. As a result, we conclude that the tuning of the water level has a possibility for controlling the
THE EVOLUTION OF CENTRAL GROUP GALAXIES IN HYDRODYNAMICAL SIMULATIONS
Feldmann, R.; Carollo, C. M.; Mayer, L.; Lake, G.; Renzini, A.; Quinn, T.; Stinson, G. S.; Yepes, G.
2010-01-20
We trace the evolution of central galaxies in three approx10{sup 13} M{sub sun} galaxy groups simulated at high resolution in cosmological hydrodynamical simulations. In all three cases, the evolution in the group potential leads, at z = 0, to central galaxies that are massive, gas-poor early-type systems supported by stellar velocity dispersion and which resemble either elliptical or S0 galaxies. Their z approx 2-2.5 main progenitors are massive (M{sub *} approx (3-10) x 10{sup 10} M{sub sun}), star-forming (20-60 M{sub sun} yr{sup -1}) galaxies which host substantial reservoirs of cold gas (approx5 x 10{sup 9} M{sub sun}) in extended gas disks. Our simulations thus show that star-forming galaxies observed at z approx 2 are likely the main progenitors of central galaxies in galaxy groups at z = 0. At z approx 2 the stellar component of all galaxies is compact, with a half-mass radius <1 kpc. The central stellar density stays approximatively constant from such early epochs down to z = 0. Instead, the galaxies grow inside out, by acquiring a stellar envelope outside the innermost approx2 kpc. Consequently the density within the effective radius decreases by up to 2 orders of magnitude. Both major and minor mergers contribute to most (70{sup +20}{sub -15}%) of the mass accreted outside the effective radius and thus drive an episodical evolution of the half-mass radii, particularly below z = 1. In situ star formation and secular evolution processes contribute to 14{sup +18}{sub -9}% and 16{sup +6}{sub -11}%, respectively. Overall, the simulated galaxies grow by a factor approx4-5 in mass and size since redshift z approx 2. The short cooling time in the center of groups can foster a 'hot accretion' mode. In one of the three simulated groups this leads to a dramatic rejuvenation of the central group galaxy at z < 1, affecting its morphology, kinematics, and colors. This episode is eventually terminated by a group-group merger. Mergers also appear to be responsible for
NASA Astrophysics Data System (ADS)
De Colle, Fabio; Granot, Jonathan; López-Cámara, Diego; Ramirez-Ruiz, Enrico
2012-02-01
We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with ρvpropr -k , bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the relativistic flow.
1D and 2D simulations of seismic wave propagation in fractured media
NASA Astrophysics Data System (ADS)
Möller, Thomas; Friederich, Wolfgang
2016-04-01
Fractures and cracks have a significant influence on the propagation of seismic waves. Their presence causes reflections and scattering and makes the medium effectively anisotropic. We present a numerical approach to simulation of seismic waves in fractured media that does not require direct modelling of the fracture itself, but uses the concept of linear slip interfaces developed by Schoenberg (1980). This condition states that at an interface between two imperfectly bonded elastic media, stress is continuous across the interface while displacement is discontinuous. It is assumed that the jump of displacement is proportional to stress which implies a jump in particle velocity at the interface. We use this condition as a boundary condition to the elastic wave equation and solve this equation in the framework of a Nodal Discontinuous Galerkin scheme using a velocity-stress formulation. We use meshes with tetrahedral elements to discretise the medium. Each individual element face may be declared as a slip interface. Numerical fluxes have been derived by solving the 1D Riemann problem for slip interfaces with elastic and viscoelastic rheology. Viscoelasticity is realised either by a Kelvin-Voigt body or a Standard Linear Solid. These fluxes are not limited to 1D and can - with little modification - be used for simulations in higher dimensions as well. The Nodal Discontinuous Galerkin code "neXd" developed by Lambrecht (2013) is used as a basis for the numerical implementation of this concept. We present examples of simulations in 1D and 2D that illustrate the influence of fractures on the seismic wavefield. We demonstrate the accuracy of the simulation through comparison to an analytical solution in 1D.
2-D Three Fluid Simulation of Upstreaming Ions Above Auroral Precipitation
NASA Astrophysics Data System (ADS)
Danielides, M. A.; Lummerzheim, D.; Otto, A.; Stevens, R. J.
2006-12-01
The ionosphere is a rich reservoir of charged particles from which a variable fraction is transported to the magnetosphere. An important transport phenomena is the formation of upward ion flow above auroral structure. A primary region of the outflow is not known, but contributions come from polar cap, dayside cusp/cleft region, auroral oval, or even from mid-latitudes. In the past global magnetospheric models and fluid codes were used to simulate large scale ion outflow above, e.g., the polar-cap aurora. However, satellites orbiting at low- altitudes have repeatingly detected localized ion outflow above the auroral oval. Ionosphere-magnetosphere coupling simulations gave first insides into the small-scale dynamics of aurora. The aim of this study is the investigation of coupled plasma and neutral dynamics in smaller scale aurora to explain the generation, structure, and dynamics of vertical ion upstream. We consider auroral electron precipitation at ionospheric heights in a 2-D three fluid ionospheric-magnetospheric coupling code (Otto and Zhu, 2003). Specially we examine the effects of the electron precipitation, heat conduction and heating in field- aligned current through coulomb collisions or turbulence causing: i) electron heating, ii) electron pressure gradients, and iii) upstreaming of ions through a resulting ambipolar electric field. Our first case studies are performed for different boundary conditions and for different auroral electron precipitation parameters (variation in characteristic auroral energy, auroral energy flux and horizontal scale). The results shall clarify how auroral precipitation can drive ions upwards. Finally we discuss the effect of ion drag and the interaction of the upstreaming ions with a stable neutral constituent. Otto, O. and H. Zhu, Fluid plasma simulation of coupled systems: Ionosphere and magnetosphere, Space Plasma Simulation. Edited by J. Buechner, C. Dum, and M. Scholer., Lecture Notes in Physics, vol. 615, p.193
NASA Astrophysics Data System (ADS)
Suwa, T.; Imamura, F.; Sugawara, D.; Ogasawara, K.; Watanabe, M.; Hirahara, T.
2014-12-01
A tsunami simulator integrating a 3-D fluid simulation technology that runs on large-scale parallel computers using smoothed-particle hydrodynamics (SPH) method has been developed together with a 2-D tsunami propagation simulation technique using a nonlinear shallow water wave model. We use the 2-D simulation to calculate tsunami propagation of scale of about 1000km from epicenter to near shore. The 3-D SPH method can be used to calculate the water surface and hydraulic force that a tsunami can exert on a building, and to simulate flooding patterns at urban area of at most km scale. With our simulator we can also see three dimensional fluid feature such as complex changes a tsunami undergoes as it interacts with coastal topography or structures. As a result it is hoped that, e.g. , effect of the structures to dissipate waves energy passing over it can be elucidated. The authors utilize the simulator in the third of five fields of the Strategic Programs for Innovative Research, "Advanced Prediction Researches for Natural Disaster Prevention and Reduction," or the theme "Improvement of the tsunami forecasting system on the HPCI computer." The results of tsunami simulation using the K computer will be reported. We are going to apply it to a real problem of the disaster prevention in future.
2D properties of core turbulence on DIII-D and comparison to gyrokinetic simulations
Shafer, Morgan W; Fonck, R. J.; McKee, G. R.; Holland, Chris; White, A. E.; Schlossberg, D J
2012-01-01
Quantitative 2D characteristics of localized density fluctuations are presented over the range of 0.3 < r/a < 0.9 in L-mode plasmas on DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)]. Broadband density fluctuations increase in amplitude from (n) over tilde/n < 0.5% in the deep core to (n) over tilde/n similar to 2.5% near the outer region. The observed Doppler-shift due to the E x B velocity matches well with the measured turbulence group and phase velocities (in toroidally rotating neutral beam heated plasmas). Turbulence decorrelation rates are found to be similar to 200 kHz at the edge and to decrease toward the core (0.45 < r/a < 0.9) where they approach the E x B shearing rate (similar to 50 kHz). Radial and poloidal correlation lengths are found to scale with the ion gyroradius and exhibit an asymmetric poloidally elongated eddy structure. The ensemble-averaged turbulent eddy structure changes its tilt with respect to the radial-poloidal coordinates in the core, consistent with an E x B shear mechanism. The 2D spatial correlation and wavenumber spectra [S(k(r); k(theta))] are presented and compared to nonlinear flux-tube GYRO simulations at two radii, r/a = 0.5 and r/a = 0.75, showing reasonable overall agreement, but the GYRO spectrum exhibits a peak at finite kr for r/a = 0.75 that is not observed experimentally; E x B shear may cause this discrepancy. (C) 2012 American Institute of Physics.
2D IR spectra of cyanide in water investigated by molecular dynamics simulations
Lee, Myung Won; Carr, Joshua K.; Göllner, Michael; Hamm, Peter; Meuwly, Markus
2013-01-01
Using classical molecular dynamics simulations, the 2D infrared (IR) spectroscopy of CN− solvated in D2O is investigated. Depending on the force field parametrizations, most of which are based on multipolar interactions for the CN− molecule, the frequency-frequency correlation function and observables computed from it differ. Most notably, models based on multipoles for CN− and TIP3P for water yield quantitatively correct results when compared with experiments. Furthermore, the recent finding that T 1 times are sensitive to the van der Waals ranges on the CN− is confirmed in the present study. For the linear IR spectrum, the best model reproduces the full widths at half maximum almost quantitatively (13.0 cm−1 vs. 14.9 cm−1) if the rotational contribution to the linewidth is included. Without the rotational contribution, the lines are too narrow by about a factor of two, which agrees with Raman and IR experiments. The computed and experimental tilt angles (or nodal slopes) α as a function of the 2D IR waiting time compare favorably with the measured ones and the frequency fluctuation correlation function is invariably found to contain three time scales: a sub-ps, 1 ps, and one on the 10-ps time scale. These time scales are discussed in terms of the structural dynamics of the surrounding solvent and it is found that the longest time scale (≈10 ps) most likely corresponds to solvent exchange between the first and second solvation shell, in agreement with interpretations from nuclear magnetic resonance measurements.
2D IR spectra of cyanide in water investigated by molecular dynamics simulations.
Lee, Myung Won; Carr, Joshua K; Göllner, Michael; Hamm, Peter; Meuwly, Markus
2013-08-01
Using classical molecular dynamics simulations, the 2D infrared (IR) spectroscopy of CN(-) solvated in D2O is investigated. Depending on the force field parametrizations, most of which are based on multipolar interactions for the CN(-) molecule, the frequency-frequency correlation function and observables computed from it differ. Most notably, models based on multipoles for CN(-) and TIP3P for water yield quantitatively correct results when compared with experiments. Furthermore, the recent finding that T1 times are sensitive to the van der Waals ranges on the CN(-) is confirmed in the present study. For the linear IR spectrum, the best model reproduces the full widths at half maximum almost quantitatively (13.0 cm(-1) vs. 14.9 cm(-1)) if the rotational contribution to the linewidth is included. Without the rotational contribution, the lines are too narrow by about a factor of two, which agrees with Raman and IR experiments. The computed and experimental tilt angles (or nodal slopes) α as a function of the 2D IR waiting time compare favorably with the measured ones and the frequency fluctuation correlation function is invariably found to contain three time scales: a sub-ps, 1 ps, and one on the 10-ps time scale. These time scales are discussed in terms of the structural dynamics of the surrounding solvent and it is found that the longest time scale (≈10 ps) most likely corresponds to solvent exchange between the first and second solvation shell, in agreement with interpretations from nuclear magnetic resonance measurements. PMID:23927269
2D IR spectra of cyanide in water investigated by molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Lee, Myung Won; Carr, Joshua K.; Göllner, Michael; Hamm, Peter; Meuwly, Markus
2013-08-01
Using classical molecular dynamics simulations, the 2D infrared (IR) spectroscopy of CN- solvated in D2O is investigated. Depending on the force field parametrizations, most of which are based on multipolar interactions for the CN- molecule, the frequency-frequency correlation function and observables computed from it differ. Most notably, models based on multipoles for CN- and TIP3P for water yield quantitatively correct results when compared with experiments. Furthermore, the recent finding that T1 times are sensitive to the van der Waals ranges on the CN- is confirmed in the present study. For the linear IR spectrum, the best model reproduces the full widths at half maximum almost quantitatively (13.0 cm-1 vs. 14.9 cm-1) if the rotational contribution to the linewidth is included. Without the rotational contribution, the lines are too narrow by about a factor of two, which agrees with Raman and IR experiments. The computed and experimental tilt angles (or nodal slopes) α as a function of the 2D IR waiting time compare favorably with the measured ones and the frequency fluctuation correlation function is invariably found to contain three time scales: a sub-ps, 1 ps, and one on the 10-ps time scale. These time scales are discussed in terms of the structural dynamics of the surrounding solvent and it is found that the longest time scale (≈10 ps) most likely corresponds to solvent exchange between the first and second solvation shell, in agreement with interpretations from nuclear magnetic resonance measurements.
Simulations of SH wave scattering due to cracks by the 2-D finite difference method
NASA Astrophysics Data System (ADS)
Suzuki, Y.; Kawahara, J.; Okamoto, T.; Miyashita, K.
2006-05-01
We simulate SH wave scattering by 2-D parallel cracks using the finite difference method (FDM), instead of the popularly used boundary integral equation method (BIEM). Here special emphasis is put on simplicity; we apply a standard FDM (fourth-order velocity-stress scheme with a staggered grid) to media in cluding traction-freecracks, which are expressed by arrays of grid points with zero traction. Two types of accuracy tests based oncomparison with a reliable BIEM, suggest that the present method gives practically sufficient accuracy, except for the wavefields in the vicinity of cracks, which can be well handled if the second-order FDM is used instead. As an application of this method, we also simulate wave propagation in media with randomly distributed cracks of the same length. We experimentally determine the attenuation and velocity dispersion induced by scattering from the synthetic seismograms, using a waveform averaging technique. It is shown that the results are well explained by a theory based on the Foldy approximation for crack densities of up to about 01. The presence of a free surface does not affect the validity of the theory. A preliminary experiment also suggests that the validity will not change even for multi-scale cracks.
2D Mesoscale Simulation of Shock Response of Dry Sand in Plate Impact Experiments
NASA Astrophysics Data System (ADS)
Pei, L.; Teeter, R. D.; Dwivedi, S. K.; Gupta, Y. M.
2007-06-01
The one-dimensional approach with a homogenized continuum model used in the literature to derive the shock Hugoniot of sand from plate impact experimental data neglects heterogeneous deformation and cannot incorporate mesoscale phenomena. We present a 2D mesoscale simulation approach to probe the shock response of dry sand with the main objectives to identify important mesoscale phenomena and the role of inter granular friction. The in-house code ISP-SAND was used to generate sand with desired grain size distribution and porosity. The explicit finite element code ISP-TROTP was used to simulate plate impact experiments of assumed configurations. The deformation of individual sand grains was modeled by non-linear mean stress volume compression relation with an assumed mean stress dependent yield strength. The results show heterogeneous deformation with finite lateral velocity and regions of stress concentrations in the sand sample. The effects of grain size distribution, porosity and friction between grains are discussed by comparing the particle velocity profiles at the window interface. Work supported by DOE and AFOSR.
Metal Diffusion in Smoothed Particle Hydrodynamics Simulations of Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Williamson, David; Martel, Hugo; Kawata, Daisuke
2016-05-01
We perform a series of smoothed particle hydrodynamics simulations of isolated dwarf galaxies to compare different metal mixing models. In particular, we examine the role of diffusion in the production of enriched outflows and in determining the metallicity distributions of gas and stars. We investigate different diffusion strengths by changing the pre-factor of the diffusion coefficient, by varying how the diffusion coefficient is calculated from the local velocity distribution, and by varying whether the speed of sound is included as a velocity term. Stronger diffusion produces a tighter [O/Fe]–[Fe/H] distribution in the gas and cuts off the gas metallicity distribution function at lower metallicities. Diffusion suppresses the formation of low-metallicity stars, even with weak diffusion, and also strips metals from enriched outflows. This produces a remarkably tight correlation between “metal mass-loading” (mean metal outflow rate divided by mean metal production rate) and the strength of diffusion, even when the diffusion coefficient is calculated in different ways. The effectiveness of outflows at removing metals from dwarf galaxies and the metal distribution of the gas is thus dependent on the strength of diffusion. By contrast, we show that the metallicities of stars are not strongly dependent on the strength of diffusion, provided that some diffusion is present.
Metal Diffusion in Smoothed Particle Hydrodynamics Simulations of Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Williamson, David; Martel, Hugo; Kawata, Daisuke
2016-05-01
We perform a series of smoothed particle hydrodynamics simulations of isolated dwarf galaxies to compare different metal mixing models. In particular, we examine the role of diffusion in the production of enriched outflows and in determining the metallicity distributions of gas and stars. We investigate different diffusion strengths by changing the pre-factor of the diffusion coefficient, by varying how the diffusion coefficient is calculated from the local velocity distribution, and by varying whether the speed of sound is included as a velocity term. Stronger diffusion produces a tighter [O/Fe]-[Fe/H] distribution in the gas and cuts off the gas metallicity distribution function at lower metallicities. Diffusion suppresses the formation of low-metallicity stars, even with weak diffusion, and also strips metals from enriched outflows. This produces a remarkably tight correlation between “metal mass-loading” (mean metal outflow rate divided by mean metal production rate) and the strength of diffusion, even when the diffusion coefficient is calculated in different ways. The effectiveness of outflows at removing metals from dwarf galaxies and the metal distribution of the gas is thus dependent on the strength of diffusion. By contrast, we show that the metallicities of stars are not strongly dependent on the strength of diffusion, provided that some diffusion is present.
Simulating transitional hydrodynamics of the cerebrospinal fluid at extreme scale
NASA Astrophysics Data System (ADS)
Jain, Kartik; Roller, Sabine; Mardal, Kent-Andre
Chiari malformation type I is a disorder characterized by the herniation of cerebellar tonsils into the spinal canal through the foramen magnum resulting in obstruction to cerebrospinal fluid (CSF) outflow. The flow of pulsating bidirectional CSF is of acutely complex nature due to the anatomy of the conduit containing it - the subarachnoid space. We report lattice Boltzmann method based direct numerical simulations on patient specific cases with spatial resolution of 24 μm amounting meshes of up to 2 billion cells conducted on 50000 cores of the Hazelhen supercomputer in Stuttgart. The goal is to characterize intricate dynamics of the CSF at resolutions that are of the order of Kolmogorov microscales. Results unfold velocity fluctuations up to ~ 10 KHz , turbulent kinetic energy ~ 2 times of the mean flow energy in Chiari patients whereas the flow remains laminar in a control subject. The fluctuations confine near the cranio-vertebral junction and are commensurate with the extremeness of pathology and the extent of herniation. The results advocate that the manifestation of pathological conditions like Chiari malformation may lead to transitional hydrodynamics of the CSF, and a prudent calibration of numerical approach is necessary to avoid overlook of such phenomena.
Improving convergence in smoothed particle hydrodynamics simulations without pairing instability
NASA Astrophysics Data System (ADS)
Dehnen, Walter; Aly, Hossam
2012-09-01
The numerical convergence of smoothed particle hydrodynamics (SPH) can be severely restricted by random force errors induced by particle disorder, especially in shear flows, which are ubiquitous in astrophysics. The increase in the number NH of neighbours when switching to more extended smoothing kernels at fixed resolution (using an appropriate definition for the SPH resolution scale) is insufficient to combat these errors. Consequently, trading resolution for better convergence is necessary, but for traditional smoothing kernels this option is limited by the pairing (or clumping) instability. Therefore, we investigate the suitability of the Wendland functions as smoothing kernels and compare them with the traditional B-splines. Linear stability analysis in three dimensions and test simulations demonstrate that the Wendland kernels avoid the pairing instability for all NH, despite having vanishing derivative at the origin (disproving traditional ideas about the origin of this instability; instead, we uncover a relation with the kernel Fourier transform and give an explanation in terms of the SPH density estimator). The Wendland kernels are computationally more convenient than the higher order B-splines, allowing large NH and hence better numerical convergence (note that computational costs rise sublinear with NH). Our analysis also shows that at low NH the quartic spline kernel with NH ≈ 60 obtains much better convergence than the standard cubic spline.
NASA Astrophysics Data System (ADS)
Jung, J.; Arakawa, A.
2015-12-01
Through explicitly resolved cloud-scale processes by embedded 2-D cloud-resolving models (CRMs), the Multiscale Modeling Framework (MMF) known as the superparameterization has been reasonably successful to simulate various atmospheric events over a wide range of time scales. One thing to be justified is, however, if the influence of complex 3-D topography can be adequately represented by the embedded 2-D CRMs. In this study, simulations are performed in the presence of a variety of topography with embedded 3-D and 2-D CRMs in a single-column inactive GCM. Through the comparison between these simulations, it is demonstrated that the 2-D representation of topography is able to simulate the statistics of precipitation due to 3-D topography reasonably well as long as the topographic characteristics, such as the mean and standard deviation, are closely recognized. It is also shown that the use of two perpendicular sets of 2-D representations tends to reduce the error due to a 2-D representation.
Smoothed particle hydrodynamics simulations of gas and dust mixtures
NASA Astrophysics Data System (ADS)
Booth, R. A.; Sijacki, D.; Clarke, C. J.
2015-10-01
We present a `two-fluid' implementation of dust in smoothed particle hydrodynamics (SPH) in the test particle limit. The scheme is able to handle both short and long stopping times and reproduces the short friction time limit, which is not properly handled in other implementations. We apply novel tests to verify its accuracy and limitations, including multidimensional tests that have not been previously applied to the drag-coupled dust problem and which are particularly relevant to self-gravitating protoplanetary discs. Our tests demonstrate several key requirements for accurate simulations of gas-dust mixtures. First, in standard SPH particle jitter can degrade the dust solution, even when the gas density is well reproduced. The use of integral gradients, a Wendland kernel and a large number of neighbours can control this, albeit at a greater computational cost. Secondly, when it is necessary to limit the artificial viscosity we recommend using the Cullen & Dehnen switch, since the alternative, using α ˜ 0.1, can generate a large velocity noise up to σv ≲ 0.3cs in the dust particles. Thirdly, we find that an accurate dust density estimate requires >400 neighbours, since, unlike the gas, the dust particles do not feel regularization forces. This density noise applies to all particle-based two-fluid implementations of dust, irrespective of the hydro solver and could lead to numerically induced fragmentation. Although our tests show accurate dusty gas simulations are possible, care must be taken to minimize the contribution from numerical noise.
Using high resolution bathymetric lidar data for a Telemac2D simulation
NASA Astrophysics Data System (ADS)
Dobler, Wolfgang; Baran, Ramona; Steinbacher, Frank; Ritter, Marcel; Aufleger, Markus
2014-05-01
Knowledge about the hydraulic situation in a mountain torrent is relevant to quantify flood risks, to study sediment transport and to assess the waterbodies' ecology. To conduct reliable calculations, high-quality terrain data of riverbeds, riverbanks and floodplains are required. Typically, digital terrain models (DTMs) of floodplains are derived from classical airborne laserscanning (red wavelength) together with terrestrial surveys along riverbeds and riverbanks. Usually, these are restricted to a limited number of cross sections. Terrestrial surveys are required since laser measurement systems cannot penetrate the water column of the observed waterbodies. Consequently, data describing the geometry of riverbeds and bank structures are hardly available at high spatial resolutions and extents, comparable to the airborne-laser scanning derived data for river floodplains. In this study, a newly available, water-penetrating airborne laser system (green wavelength, FFG research project between the University of Innsbruck and Riegl LMS) was used to survey a mountain torrent. Detailed and extensive data (~30 points/m² on topo-bathy side) of the riverbed and the riverbanks were acquired with this single sensor. In order to construct a 2D-Telemac simulation, the point cloud was down-sampled to an appropriate resolution required for the simulation. The creation of the mesh was carried out with the Software HydroVish and imported into Blue Kenue for further boundary treatment. On one hand the calibration of the numerical model was based on a known water discharge-rate and on the other on abundant data points of the water surface. The green laser system demonstrates its great potential for such an analysis. The final results of the numerical simulation show clearly the supremacy of using such a high resolution data basis in contrast to the traditional way of terrestrial surveying of cross sections along riverbeds.
Simulating Ice Particle Melting using Smooth Particle Hydrodynamics
NASA Astrophysics Data System (ADS)
Kuo, Kwo-Sen; Pelissier, Craig
2015-04-01
To measure precipitation from space requires an accurate estimation of the collective scattering properties of particles suspended in a precipitating column. It is well known that the complicated and typically unknowable shapes of the solid precipitation particles cause much uncertainty in the retrievals involving such particles. This remote-sensing problem becomes even more difficult with the "melting layer" containing partially melted ice particles, where both the geometric shape and liquid-solid fraction of the hydrometeors are variables.. For the scattering properties of these particles depend not only on their shapes, but also their melt-water fraction,and the spatial distribution of liquid and ice within. To obtain an accurate estimation thus requires a set of "realistic" particle geometries and a method to determine the melt-water distribution at various stages in the melting process. Once this is achieved, a suitable method can be used to compute the scattering properties. In previous work, the growth of a set of astoundingly realistic ice particles has been simulated using the "Snowfake" algorithm of Gravner and Griffeath. To simulate the melting process of these particles, the method of Smooth Particle Hydrodynamics (SPH) is used. SPH is a mesh-less particle-based approach where kinematic and thermal dynamics is controlled entirely through two-body interactions between neighboring SPH particles. An important property of SPH is that the interaction at boundaries between air/ice/water is implicitly taken care of. This is crucial for this work since those boundaries are complex and vary throughout the melting process. We present the SPH implementation and a simulation, using highly parallel Graphic Processing Units (GPUs), with ~1 million SPH particles to represent one of the generated ice particle geometries. We plan to use this method, especially its parallelized version, to simulate the melting of all the "Snowfake" particles (~10,000 of them) in our
Chemical enrichment of galaxy clusters from hydrodynamical simulations
NASA Astrophysics Data System (ADS)
Tornatore, L.; Borgani, S.; Dolag, K.; Matteucci, F.
2007-12-01
We present cosmological hydrodynamical simulations of galaxy clusters aimed at studying the process of metal enrichment of the intra-cluster medium (ICM). These simulations have been performed by implementing a detailed model of chemical evolution in the TREE-PM+SPMGADGET-2 code. This model allows us to follow the metal release from Type II supernovae (SNII), Type Ia supernovae (SNIa) and asymptotic giant branch (AGB) stars by properly accounting for the lifetimes of stars of different mass, as well as to change the stellar initial mass function (IMF), the lifetime function and the stellar yields. As such, our implementation of chemical evolution represents a powerful instrument to follow the cosmic history of metal production. The simulations presented here have been performed with the twofold aim of checking numerical effects, as well as the impact of changing the model of chemical evolution and the efficiency of stellar feedback. In general, we find that the distribution of metals produced by SNII is more clumpy than for the product of low-mass stars, as a consequence of the different time-scales over which they are released. Using a standard Salpeter IMF produces a radial profile of iron abundance which is in fairly good agreement with observations available out to ~=0.6R500. This result holds almost independent of the numerical scheme adopted to distribute metals around star-forming regions. The mean age of enrichment of the ICM corresponds to redshift z ~ 0.5, which progressively increases outside the virial region. Increasing resolution, we improve the description of a diffuse high-redshift enrichment of the inter-galactic medium (IGM). This turns into a progressively more efficient enrichment of the cluster outskirts, while having a smaller impact at R <~ 0.5R500. As for the effect of the model of chemical evolution, we find that changing the IMF has the strongest impact. Using an IMF, which is top-heavier than the Salpeter one, provides a larger iron
Turbulent Convection in Stellar Interiors. I. Hydrodynamic Simulation
NASA Astrophysics Data System (ADS)
Meakin, Casey A.; Arnett, David
2007-09-01
We describe the results of 3D numerical simulations of oxygen shell burning and hydrogen core burning in a 23 Msolar stellar model. A detailed comparison is made to stellar mixing-length theory (MLT) for the shell-burning model. Simulations in 2D are significantly different from 3D, in terms of both flow morphology and velocity amplitude. Convective mixing regions are better predicted using a dynamic boundary condition based on the bulk Richardson number than by purely local, static criteria like Schwarzschild or Ledoux. MLT gives a good description of the velocity scale and temperature gradient for shell convection; however, there are other important effects that it does not capture, mostly related to the dynamical motion of the boundaries between convective and nonconvective regions. There is asymmetry between upflows and downflows, so the net kinetic energy flux is not zero. The motion of convective boundaries is a source of gravity waves; this is a necessary consequence of the deceleration of convective plumes. Convective ``overshooting'' is best described as an elastic response by the convective boundary, rather than ballistic penetration of the stable layers by turbulent eddies. The convective boundaries are rife with internal and interfacial wave motions, and a variety of instabilities arise that induce mixing through a process best described as turbulent entrainment. We find that the rate at which material entrainment proceeds at the boundaries is consistent with analogous laboratory experiments and simulation and observation of terrestrial atmospheric mixing. In particular, the normalized entrainment rate E=uE/σH is well described by a power-law dependence on the bulk Richardson number RiB=ΔbL/σ2H for the conditions studied, 20<~RiB<~420. We find E=ARi-nB, with best-fit values logA=0.027+/-0.38 and n=1.05+/-0.21. We discuss the applicability of these results to stellar evolution calculations.
NASA Astrophysics Data System (ADS)
Dong, Yunsong; Yang, Jiamin; Song, Tianming; Zhu, Tuo; Huang, Chengwu
2016-04-01
As a fundamental and crucial research topic in the direct-driven inertial confinement fusion (ICF), especially for shock ignition (SI), investigation on the laser coupling with planar low-Z targets is beneficial for deep physical comprehension at the primary phase of SI. The production of the intense shock and the shock coalescence in the multi-layer targets, driven by the 3ω intense laser (351 nm the wavelength), were studied in detail with the 1D and 2D radiation hydrodynamic simulations. It was inferred that the 1D simulation would overrate the shock velocity and the ablation pressure of the spike; the coalescence time and the velocity of the coalescence shock depended evidently on the pulse shape and the start time of the spike. The present study can also provide a semi-quantitative reference for the design of the SI decomposition experiments on the Shenguang-III prototype laser facility. supported by the National High-Tech R&D Program (863 Program) of China and National Natural Science Foundation of China (Nos. 11205143, 11505167)
2D fluid simulations of acoustic waves in pulsed ICP discharges: Comparison with experiments
NASA Astrophysics Data System (ADS)
Despiau-Pujo, Emilie; Cunge, Gilles; Sadeghi, Nader; Braithwaite, N. St. J.
2012-10-01
Neutral depletion, which is mostly caused by gas heating under typical material processing conditions, is an important phenomenon in high-density plasmas. In low pressure pulsed discharges, experiments show that additional depletion due to electron pressure (Pe) may have a non-negligible influence on radical transport [1]. To evaluate this effect, comparisons between 2D fluid simulations and measurements of gas convection in Ar/Cl2 pulsed ICP plasmas are reported. In the afterglow, Pe drops rapidly by electron cooling which generates a neutral pressure gradient between the plasma bulk and the reactor walls. This in turn forces the cold surrounding gas to move rapidly towards the center, thus launching an acoustic wave in the reactor. Time-resolved measurements of atoms drift velocity and gas temperature by LIF and LAS in the early afterglow are consistent with gas drifting at acoustic wave velocity followed by rapid gas cooling. Similar results are predicted by the model. The ion flux at the reactor walls is also shown to oscillate in phase with the acoustic wave due to ion-neutral friction forces. Finally, during plasma ignition, experiments show opposite phenomena when Pe rises.[4pt] [1] Cunge et al, APL 96, 131501 (2010)
Simulation of bootstrap current in 2D and 3D ideal magnetic fields in tokamaks
NASA Astrophysics Data System (ADS)
Raghunathan, M.; Graves, J. P.; Cooper, W. A.; Pedro, M.; Sauter, O.
2016-09-01
We aim to simulate the bootstrap current for a MAST-like spherical tokamak using two approaches for magnetic equilibria including externally caused 3D effects such as resonant magnetic perturbations (RMPs), the effect of toroidal ripple, and intrinsic 3D effects such as non-resonant internal kink modes. The first approach relies on known neoclassical coefficients in ideal MHD equilibria, using the Sauter (Sauter et al 1999 Phys. Plasmas 6 2834) expression valid for all collisionalities in axisymmetry, and the second approach being the quasi-analytic Shaing–Callen (Shaing and Callen 1983 Phys. Fluids 26 3315) model in the collisionless regime for 3D. Using the ideal free-boundary magnetohydrodynamic code VMEC, we compute the flux-surface averaged bootstrap current density, with the Sauter and Shaing–Callen expressions for 2D and 3D ideal MHD equilibria including an edge pressure barrier with the application of resonant magnetic perturbations, and equilibria possessing a saturated non-resonant 1/1 internal kink mode with a weak internal pressure barrier. We compare the applicability of the self-consistent iterative model on the 3D applications and discuss the limitations and advantages of each bootstrap current model for each type of equilibrium.
A New 2D-Advection-Diffusion Model Simulating Trace Gas Distributions in the Lowermost Stratosphere
NASA Astrophysics Data System (ADS)
Hegglin, M. I.; Brunner, D.; Peter, T.; Wirth, V.; Fischer, H.; Hoor, P.
2004-12-01
Tracer distributions in the lowermost stratosphere are affected by both, transport (advective and non-advective) and in situ sources and sinks. They influence ozone photochemistry, radiative forcing, and heating budgets. In-situ measurements of long-lived species during eight measurement campaigns revealed relatively simple behavior of the tracers in the lowermost stratosphere when represented in an equivalent-latitude versus potential temperature framework. We here present a new 2D-advection-diffusion model that simulates the main transport pathways influencing the tracer distributions in the lowermost stratosphere. The model includes slow diabatic descent of aged stratospheric air and vertical and/or horizontal diffusion across the tropopause and within the lowermost stratosphere. The diffusion coefficients used in the model represent the combined effects of different processes with the potential of mixing tropospheric air into the lowermost stratosphere such as breaking Rossby and gravity waves, deep convection penetrating the tropopause, turbulent diffusion, radiatively driven upwelling etc. They were specified by matching model simulations to observed distributions of long-lived trace gases such as CO and N2O obtained during the project SPURT. The seasonally conducted campaigns allow us to study the seasonal dependency of the diffusion coefficients. Despite its simplicity the model yields a surprisingly good description of the small scale features of the measurements and in particular of the observed tracer gradients at the tropopause. The correlation coefficients between modeled and measured trace gas distributions were up to 0.95. Moreover, mixing across isentropes appears to be more important than mixing across surfaces of constant equivalent latitude (or PV). With the aid of the model, the distribution of the fraction of tropospheric air in the lowermost stratosphere can be determined.
Icarus: A 2-D Direct Simulation Monte Carlo (DSMC) Code for Multi-Processor Computers
BARTEL, TIMOTHY J.; PLIMPTON, STEVEN J.; GALLIS, MICHAIL A.
2001-10-01
Icarus is a 2D Direct Simulation Monte Carlo (DSMC) code which has been optimized for the parallel computing environment. The code is based on the DSMC method of Bird[11.1] and models from free-molecular to continuum flowfields in either cartesian (x, y) or axisymmetric (z, r) coordinates. Computational particles, representing a given number of molecules or atoms, are tracked as they have collisions with other particles or surfaces. Multiple species, internal energy modes (rotation and vibration), chemistry, and ion transport are modeled. A new trace species methodology for collisions and chemistry is used to obtain statistics for small species concentrations. Gas phase chemistry is modeled using steric factors derived from Arrhenius reaction rates or in a manner similar to continuum modeling. Surface chemistry is modeled with surface reaction probabilities; an optional site density, energy dependent, coverage model is included. Electrons are modeled by either a local charge neutrality assumption or as discrete simulational particles. Ion chemistry is modeled with electron impact chemistry rates and charge exchange reactions. Coulomb collision cross-sections are used instead of Variable Hard Sphere values for ion-ion interactions. The electro-static fields can either be: externally input, a Langmuir-Tonks model or from a Green's Function (Boundary Element) based Poison Solver. Icarus has been used for subsonic to hypersonic, chemically reacting, and plasma flows. The Icarus software package includes the grid generation, parallel processor decomposition, post-processing, and restart software. The commercial graphics package, Tecplot, is used for graphics display. All of the software packages are written in standard Fortran.
Debris Flow Hazard Map Simulation using FLO-2D For Selected Areas in the Philippines
NASA Astrophysics Data System (ADS)
Khallil Ferrer, Peter; Llanes, Francesca; dela Resma, Marvee; Realino, Victoriano, II; Obrique, Julius; Ortiz, Iris Jill; Aquino, Dakila; Narod Eco, Rodrigo; Mahar Francisco Lagmay, Alfredo
2014-05-01
On December 4, 2012, Super Typhoon Bopha wreaked havoc in the southern region of Mindanao, leaving 1,067 people dead and causing USD 800 million worth of damage. Classified as a Category 5 typhoon by the Joint Typhoon Warning Center (JTWC), Bopha brought intense rainfall and strong winds that triggered landslides and debris flows, particularly in Barangay (village) Andap, New Bataan municipality, in the southern Philippine province of Compostela Valley. The debris flow destroyed school buildings and covered courts and an evacuation center. Compostela Valley also suffered the most casualties of any province: 612 out of a total of 1,067. In light of the disaster in Compostela, measures were immediately devised to improve available geohazard maps to raise public awareness about landslides and debris flows. A debris flow is a very rapid to extremely rapid flow of saturated non-plastic debris in a steep channel. They are generated when heavy rainfall saturates sediments, causing them to flow down river channels within an alluvial fan situated at the base of the slope of a mountain drainage network. Many rural communities in the Philippines, such as Barangay Andap, are situated at the apex of alluvial fans and in the path of potential debris flows. In this study, we conducted simulations of debris flows to assess the risks in inhabited areas throughout the Philippines and validated the results in the field, focusing on the provinces of Pangasinan and Aurora as primary examples. Watersheds that drain in an alluvial fan using a 10-m resolution Synthetic Aperture Radar (SAR)-derived Digital Elevation Model (DEM) was first delineated, and then a 1 in 100-year rain return rainfall scenario for the watershed was used to simulate debris flows using FLO-2D, a flood-routing software. The resulting simulations were used to generate debris flow hazard maps which are consistent with danger zones in alluvial fans delineated previously from satellite imagery and available DEMs. The
Simulation of Inundation Zone triggered by Dam Failure using FLO-2D
NASA Astrophysics Data System (ADS)
Lee, K.; Kim, S. W.; Kim, J. M.
2014-12-01
Floods due to gradual dam breach can lead to devastating disasters with tremendous loss of life and property. Hence it is important to identify the potential risk areas for natural hazard problem such as dam failure. A numerical modeling approach is often used to build a flood hazard map caused by dam failure. The two primary tasks in the analysis of a dam breach are the prediction of the reservoir outflow hydrograph and the routing of the hydrograph through the downstream valley. The hydrograph to be routed downstream may be prescribed, and parametric models could be used to build a outflow hydrograph once breach parameters capturing breach formation and progress are specified. Even though breach growth is one of the most important parameter in building the reservoir outflow hydrograph, observations are rarely available. In the mean while lake level data is often measured during the dam failure on the real time basis and they may capture the characteristics of breach formation and progress. Thus a simple method is developed to reproduce breach formation. The breach formation is retrieved from lake level data as a function of time during dam failure event. The new method uses an optimization scheme as a primary tool. Because observation for breach formation doesn't exist, it is hard to validate the performance of the new method. Alternatively the retrieved breach formation curve is linked with a parametric dam failure model to give outflow hydrograph. Then FLO-2D is run to route the outflow hydrograph through the downstream valley for the test site. To validate the new method the simulation of FLO-2D is relatively compared with the on-site investigation for the inundation zone. The new method is promising in that it provides reasonable accuracy in the test site. Keywords: Dam failure, Natural hazard, Breach, Hydrograph AcknowledgementThis research was supported by a grant (13SCIPS01) from Smart Civil Infrastructure Research Program funded by Ministry of Land
CFD simulation of hydrodynamic characteristics on pulse combustor
NASA Astrophysics Data System (ADS)
Rahmatika, Annie Mufyda; Salihat, Efaning; Tikasari, Rachma; Widiyastuti, W.; Winardi, Sugeng
2016-02-01
The purpose of this research is to study the simulation of the combustion characteristics and performances in pulse combustor using different excess air composition and different pulse combustor geometry using CFD (Computational Fluid Dynamics) software Ansys FLUENT 15.0. The distribution of temperature, pressure, and fluid velocity using 2D axisymmetric with k-ɛ turbulence models. Two kind geometries of pulse combustors were selected and compared their performance. The first combustor, called geometry A has expanded tail-pipe with diameter 10 mm expanded to 20 mm with length 86 mm. The second combustor, called geometry B has cylinder tailpipe which 10 mm in diameter and 200 mm in length. Air and propane were selected as oxidizer and fuel, respectively, at temperature 27°C and pressure 1 atm with varied excess air of 0%, 23%, 200%, and 500%. The simulation result shows that the average temperature of outflow gas combustion decreased with increasing the excess air. On the other hand, the pressure amplitude increased with increasing the excess air. Amplitude of presure for excess air of 0%, 23%, 200% and 500% were 14,976.03 Pa; 26,100.19 Pa; 41,529.02 Pa; and 85,019.01 Pa, respectively. The geometry of pulse combustor affected the performance of gas combustion produced. Geometry A showed that the energy produced in the combustion cycle amounts to 538,639 to 958,639 J/kg. On the other hand, geometry B showed that the generated energy was in the range 864,502 to 1,280,814 J/kg. Combustor with geometry B provided more effective combustion performance rather than B caused by its larger heat transfer area sectional area.
NASA Technical Reports Server (NTRS)
Shie, Chung-Lin; Tao, Wei-Kuo; Simpson, Joanne
2003-01-01
The 1999 Kwajalein Atoll field experiment (KWAJEX), one of several major TRMM (Tropical Rainfall Measuring Mission) field experiments, has successfully obtained a wealth of information and observation data on tropical convective systems over the western Central Pacific region. In this paper, clouds and convective systems that developed during three active periods (Aug 7-12, Aug 17-21, and Aug 29-Sep 13) around Kwajalein Atoll site are simulated using both 2D and 3D Goddard Cumulus Ensemble (GCE) models. Based on numerical results, the clouds and cloud systems are generally unorganized and short lived. These features are validated by radar observations that support the model results. Both the 2D and 3D simulated rainfall amounts and their stratiform contribution as well as the heat, water vapor, and moist static energy budgets are examined for the three convective episodes. Rainfall amounts are quantitatively similar between the two simulations, but the stratiform contribution is considerably larger in the 2D simulation. Regardless of dimension, fo all three cases, the large-scale forcing and net condensation are the two major physical processes that account for the evolution of the budgets with surface latent heat flux and net radiation solar and long-wave radiation)being secondary processes. Quantitative budget differences between 2D and 3D as well as between various episodes will be detailed.Morover, simulated radar signatures and Q1/Q2 fields from the three simulations are compared to each other and with radar and sounding observations.
NASA Astrophysics Data System (ADS)
Lee, Khil-Ha; Kim, Sung-Wook; Kim, Sang-Hyun
2014-05-01
model, called FLO-2D runs to simulate channel routing downstream to give the maximum water level. Once probable inundation areas are identified by the huge volume of water in the caldera lake, the unique geography, and the limited control capability, a potential hazard assessment can be represented. The study will contribute to build a geohazard map for the decision-makers and practitioners. Keywords: Volcanic flood, Caldera lake, Hazard assessment, Magma effusion Acknowledgement This research was supported by a grant [NEMA-BAEKDUSAN-2012-1-2] from the Volcanic Disaster Preparedness Research Center sponsored by National Emergency Management Agency of Korea.
NASA Technical Reports Server (NTRS)
Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.
1994-01-01
A two-dimensional computational code, PRLUS2D, which was developed for the reactive propulsive flows of ramjets and scramjets, was validated for two-dimensional shock-wave/turbulent-boundary-layer interactions. The problem of compression corners at supersonic speeds was solved using the RPLUS2D code. To validate the RPLUS2D code for hypersonic speeds, it was applied to a realistic hypersonic inlet geometry. Both the Baldwin-Lomax and the Chien two-equation turbulence models were used. Computational results showed that the RPLUS2D code compared very well with experimentally obtained data for supersonic compression corner flows, except in the case of large separated flows resulting from the interactions between the shock wave and turbulent boundary layer. The computational results compared well with the experiment results in a hypersonic NASA P8 inlet case, with the Chien two-equation turbulence model performing better than the Baldwin-Lomax model.
Simulating the oxygen content of ambient organic aerosol with the 2D volatility basis set
NASA Astrophysics Data System (ADS)
Murphy, B. N.; Donahue, N. M.; Fountoukis, C.; Pandis, S. N.
2011-08-01
A module predicting the oxidation state of organic aerosol (OA) has been developed using the two-dimensional volatility basis set (2D-VBS) framework. This model is an extension of the 1D-VBS framework and tracks saturation concentration and oxygen content of organic species during their atmospheric lifetime. The host model, a one-dimensional Lagrangian transport model, is used to simulate air parcels arriving at Finokalia, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-08). Extensive observations were collected during this campaign using an aerosol mass spectrometer (AMS) and a thermodenuder to determine the chemical composition and volatility, respectively, of the ambient OA. Although there are several uncertain model parameters, the consistently high oxygen content of OA measured during FAME-08 (O:C = 0.8) can help constrain these parameters and elucidate OA formation and aging processes that are necessary for achieving the high degree of oxygenation observed. The base-case model reproduces observed OA mass concentrations (measured mean = 3.1 μg m-3, predicted mean = 3.3 μg m-3) and O:C (predicted O:C = 0.78) accurately. A suite of sensitivity studies explore uncertainties due to (1) the anthropogenic secondary OA (SOA) aging rate constant, (2) assumed enthalpies of vaporization, (3) the volatility change and number of oxygen atoms added for each generation of aging, (4) heterogeneous chemistry, (5) the oxidation state of the first generation of compounds formed from SOA precursor oxidation, and (6) biogenic SOA aging. Perturbations in most of these parameters do impact the ability of the model to predict O:C well throughout the simulation period. By comparing measurements of the O:C from FAME-08, several sensitivity cases including a high oxygenation case, a low oxygenation case, and biogenic SOA aging case are found to unreasonably depict OA aging, keeping in mind that this study does not consider possibly important processes
Simulating the oxygen content of ambient organic aerosol with the 2D volatility basis set
NASA Astrophysics Data System (ADS)
Murphy, B. N.; Donahue, N. M.; Fountoukis, C.; Pandis, S. N.
2011-03-01
A module predicting the oxidation state of organic aerosol (OA) has been developed using the two-dimensional volatility basis set (2D-VBS) framework. This model is an extension of the 1D-VBS framework and tracks saturation concentration and oxygen content of organic species during their atmospheric lifetime. The host model, a one-dimensional Lagrangian transport model, is used to simulate air parcels arriving at Finokalia, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-08). Extensive observations were collected during this campaign using an aerosol mass spectrometer (AMS) and a thermodenuder to determine the chemical composition and volatility, respectively, of the ambient OA. Although there are several uncertain model parameters, the consistently high oxygen content of OA measured during FAME-08 (O:C = 0.8) can help constrain these parameters and elucidate OA formation and aging processes that are necessary for achieving the high degree of oxygenation observed. The base-case model reproduces observed OA mass concentrations (measured mean = 3.1 μg m-3, predicted mean = 3.3 μg m-3) and O:C ratio (predicted O:C = 0.78) accurately. A suite of sensitivity studies explore uncertainties due to (1) the anthropogenic secondary OA (SOA) aging rate constant, (2) assumed enthalpies of vaporization, (3) the volatility change and number of oxygen atoms added for each generation of aging, (4) heterogeneous chemistry, (5) the oxidation state of the first generation of compounds formed from SOA precursor oxidation, and (6) biogenic SOA aging. Perturbations in most of these parameters do impact the ability of the model to predict O:C ratios well throughout the simulation period. By comparing measurements of the O:C ratio from FAME-08, several sensitivity cases including a high oxygenation case, low oxygenation case, and biogenic SOA aging case are found to unreasonably depict OA aging. However, many of the cases chosen for this study predict average
NASA Astrophysics Data System (ADS)
Suzuki, Y.; KOYAGUCHI, T.; OGAWA, M.; Hachisu, I.
2001-05-01
Mixing of eruption cloud and air is one of the most important processes for eruption cloud dynamics. The critical condition of eruption types (eruption column or pyroclastic flow) depends on efficiency of mixing of eruption cloud and the ambient air. However, in most of the previous models (e.g., Sparks,1986; Woods, 1988), the rate of mixing between cloud and air is taken into account by introducing empirical parameters such as entrainment coefficient or turbulent diffusion coefficient. We developed a numerical model of 2-D (axisymmetrical) eruption columns in order to simulate the turbulent mixing between eruption column and air. We calculated the motion of an eruption column from a circular vent on the flat surface of the earth. Supposing that relative velocity of gas and ash particles is sufficiently small, we can treat eruption cloud as a single gas. Equation of state (EOS) for the mixture of the magmatic component (i.e. volcanic gas plus pyroclasts) and air can be expressed by EOS for an ideal gas, because volume fraction of the gas phase is very large. The density change as a function of mixing ratio between air and the magmatic component has a strong non-linear feature, because the density of the mixture drastically decreases as entrained air expands by heating. This non-linear feature can be reproduced by changing the gas constant and the ratio of specific heat in EOS for ideal gases; the molecular weight increases and the ratio of specific heat approaches 1 as the magmatic component increases. It is assumed that the dynamics of eruption column follows the Euler equation, so that no viscous effect except for the numerical viscosity is taken into account. Roe scheme (a general TVD scheme for compressible flow) is used in order to simulate the generation of shock waves inside and around the eruption column. The results show that many vortexes are generated around the boundary between eruption cloud and air, which results in violent mixing. When the size of
SmaggIce 2D Version 1.8: Software Toolkit Developed for Aerodynamic Simulation Over Iced Airfoils
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Vickerman, Mary B.
2005-01-01
SmaggIce 2D version 1.8 is a software toolkit developed at the NASA Glenn Research Center that consists of tools for modeling the geometry of and generating the grids for clean and iced airfoils. Plans call for the completed SmaggIce 2D version 2.0 to streamline the entire aerodynamic simulation process--the characterization and modeling of ice shapes, grid generation, and flow simulation--and to be closely coupled with the public-domain application flow solver, WIND. Grid generated using version 1.8, however, can be used by other flow solvers. SmaggIce 2D will help researchers and engineers study the effects of ice accretion on airfoil performance, which is difficult to do with existing software tools because of complex ice shapes. Using SmaggIce 2D, when fully developed, to simulate flow over an iced airfoil will help to reduce the cost of performing flight and wind-tunnel tests for certifying aircraft in natural and simulated icing conditions.
The core helium flash revisited. II. Two and three-dimensional hydrodynamic simulations
NASA Astrophysics Data System (ADS)
Mocák, M.; Müller, E.; Weiss, A.; Kifonidis, K.
2009-07-01
Context: We study turbulent convection during the core helium flash close to its peak by comparing the results of two and three-dimensional hydrodynamic simulations. Aims: In a previous study we found that the temporal evolution and the properties of the convection inferred from two-dimensional hydrodynamic studies are similar to those predicted by quasi-hydrostatic stellar evolutionary calculations. However, as vorticity is conserved in axisymmetric flows, two-dimensional simulations of convection are characterized by incorrect dominant spatial scales and exaggerated velocities. Here, we present three-dimensional simulations that eliminate the restrictions and flaws of two-dimensional models and that provide a geometrically unbiased insight into the hydrodynamics of the core helium flash. In particular, we study whether the assumptions and predictions of stellar evolutionary calculations based on the mixing-length theory can be confirmed by hydrodynamic simulations. Methods: We used a multidimensional Eulerian hydrodynamics code based on state-of-the-art numerical techniques to simulate the evolution of the helium core of a 1.25 M⊙ Pop I star. Results: Our three-dimensional hydrodynamic simulations of the evolution of a star during the peak of the core helium flash do not show any explosive behavior. The convective flow patterns developing in the three-dimensional models are structurally different from those of the corresponding two-dimensional models, and the typical convective velocities are lower than those found in their two-dimensional counterparts. Three-dimensional models also tend to agree more closely with the predictions of mixing length theory. Our hydrodynamic simulations show the turbulent entrainment that leads to a growth of the convection zone on a dynamic time scale. In contrast to mixing length theory, the outer part of the convection zone is characterized by a subadiabatic temperature gradient.
The simulation of the hydrodynamics of San Quintin Bay
NASA Astrophysics Data System (ADS)
Ramirez, I.; Blanco, R.; Vazquez, R.; Ramirez, G.; Numeric Ocean Team
2013-05-01
A three-dimensional hydrodynamic model was implemented to reproduce the general circulation of San Quintin Bay (SQB). Field measurements were taken to validate the results of the model during the wet season in October 2010, and spring in April 2011. During the rainy season the bay presented slightly lower salinity than the adjacent ocean. The main driving force of the hydrodynamics was the tide, showing currents up to 0.9 m/s. Tidal currents were well reproduced in the model on several important points along the bay. Additionally the model explained the characteristics on the circulation on False Bay which is difficult to navigate and measure due to the shallow areas.
Wang, Xu; Ding, Jie; Guo, Wan-Qian; Ren, Nan-Qi
2010-12-01
Investigating how a bioreactor functions is a necessary precursor for successful reactor design and operation. Traditional methods used to investigate flow-field cannot meet this challenge accurately and economically. Hydrodynamics model can solve this problem, but to understand a bioreactor in sufficient depth, it is often insufficient. In this paper, a coupled hydrodynamics-reaction kinetics model was formulated from computational fluid dynamics (CFD) code to simulate a gas-liquid-solid three-phase biotreatment system for the first time. The hydrodynamics model is used to formulate prediction of the flow field and the reaction kinetics model then portrays the reaction conversion process. The coupled model is verified and used to simulate the behavior of an expanded granular sludge bed (EGSB) reactor for biohydrogen production. The flow patterns were visualized and analyzed. The coupled model also demonstrates a qualitative relationship between hydrodynamics and biohydrogen production. The advantages and limitations of applying this coupled model are discussed. PMID:20727741
Ando, Tadashi; Chow, Edmond; Skolnick, Jeffrey
2013-01-01
Hydrodynamic interactions exert a critical effect on the dynamics of macromolecules. As the concentration of macromolecules increases, by analogy to the behavior of semidilute polymer solutions or the flow in porous media, one might expect hydrodynamic screening to occur. Hydrodynamic screening would have implications both for the understanding of macromolecular dynamics as well as practical implications for the simulation of concentrated macromolecular solutions, e.g., in cells. Stokesian dynamics (SD) is one of the most accurate methods for simulating the motions of N particles suspended in a viscous fluid at low Reynolds number, in that it considers both far-field and near-field hydrodynamic interactions. This algorithm traditionally involves an O(N3) operation to compute Brownian forces at each time step, although asymptotically faster but more complex SD methods are now available. Motivated by the idea of hydrodynamic screening, the far-field part of the hydrodynamic matrix in SD may be approximated by a diagonal matrix, which is equivalent to assuming that long range hydrodynamic interactions are completely screened. This approximation allows sparse matrix methods to be used, which can reduce the apparent computational scaling to O(N). Previously there were several simulation studies using this approximation for monodisperse suspensions. Here, we employ newly designed preconditioned iterative methods for both the computation of Brownian forces and the solution of linear systems, and consider the validity of this approximation in polydisperse suspensions. We evaluate the accuracy of the diagonal approximation method using an intracellular-like suspension. The diffusivities of particles obtained with this approximation are close to those with the original method. However, this approximation underestimates intermolecular correlated motions, which is a trade-off between accuracy and computing efficiency. The new method makes it possible to perform large-scale and
NASA Astrophysics Data System (ADS)
Ando, Tadashi; Chow, Edmond; Skolnick, Jeffrey
2013-09-01
Hydrodynamic interactions exert a critical effect on the dynamics of macromolecules. As the concentration of macromolecules increases, by analogy to the behavior of semidilute polymer solutions or the flow in porous media, one might expect hydrodynamic screening to occur. Hydrodynamic screening would have implications both for the understanding of macromolecular dynamics as well as practical implications for the simulation of concentrated macromolecular solutions, e.g., in cells. Stokesian dynamics (SD) is one of the most accurate methods for simulating the motions of N particles suspended in a viscous fluid at low Reynolds number, in that it considers both far-field and near-field hydrodynamic interactions. This algorithm traditionally involves an O(N3) operation to compute Brownian forces at each time step, although asymptotically faster but more complex SD methods are now available. Motivated by the idea of hydrodynamic screening, the far-field part of the hydrodynamic matrix in SD may be approximated by a diagonal matrix, which is equivalent to assuming that long range hydrodynamic interactions are completely screened. This approximation allows sparse matrix methods to be used, which can reduce the apparent computational scaling to O(N). Previously there were several simulation studies using this approximation for monodisperse suspensions. Here, we employ newly designed preconditioned iterative methods for both the computation of Brownian forces and the solution of linear systems, and consider the validity of this approximation in polydisperse suspensions. We evaluate the accuracy of the diagonal approximation method using an intracellular-like suspension. The diffusivities of particles obtained with this approximation are close to those with the original method. However, this approximation underestimates intermolecular correlated motions, which is a trade-off between accuracy and computing efficiency. The new method makes it possible to perform large-scale and
NASA Astrophysics Data System (ADS)
Baruteau, Clément; Zhu, Zhaohuan
2016-06-01
We investigate the dynamics of large dust grains in massive lopsided transition discs via 2D hydrodynamical simulations including both gas and dust. Our simulations adopt a ring-like gas density profile that becomes unstable against the Rossby-wave instability and forms a large crescent-shaped vortex. When gas self-gravity is discarded, but the indirect force from the displacement of the star by the vortex is included, we confirm that dust grains with stopping times of order the orbital time, which should be typically a few centimetres in size, are trapped ahead of the vortex in the azimuthal direction, while the smallest and largest grains concentrate towards the vortex centre. We obtain maximum shift angles of about 25°. Gas self-gravity accentuates the concentration differences between small and large grains. At low to moderate disc masses, the larger the grains, the farther they are trapped ahead of the vortex. Shift angles up to 90° are reached for 10 cm-sized grains, and we show that such large offsets can produce a double-peaked continuum emission observable at mm/cm wavelengths. This behaviour comes about because the large grains undergo horseshoe U-turns relative to the vortex due to the vortex's gravity. At large disc masses, since the vortex's pattern frequency becomes increasingly slower than Keplerian, small grains concentrate slightly beyond the vortex and large grains form generally non-axisymmetric ring-like structures around the vortex's radial location. Gas self-gravity therefore imparts distinct trapping locations for small and large dust grains, which may be probed by current and future observations.
NASA Astrophysics Data System (ADS)
Yun, Hyewon; Kim, Jungrack; Tsai, YaLun; Lin, ShihYuan; Choi, Yunsoo
2016-04-01
There is great interest in the mechanism and consequences of arctic ice sheet migration in the context of worldwide climate change. An in-depth investigation of glacial movement involving supra/under glacial hydrological channel activities is key to understanding the acceleration of Greenland's ice sheet changes and needs to be established as an integrated model. In terms of the glacial migration involving basal hydrology, we have conducted a case study over the Russell glacier in western Greenland. Remote sensed image analyses combined with a numerical model in its melt water outflow channels, such as the Akuliarusiarsuup Kuua and Qinnguata Kuussua rivers, and ice sheet simulations were performed. Employed technical approaches are summarized as follows: 1) Collecting 3D migration vectors combining differential interferometric SAR (D-InSAR) analysis, together with the in-house pixel tracking method employing optical flow and sub-pixel refinement with C band Sentinel-1 and L band ALOS PALSAR-2 images; 2) a 2D hydrodynamic simulation based on the channel bathymetry, which was driven from calibrated LANDSAT images together with along-track stereo DTM, and 3) an ice sheet model to extract the bedrock and basal characteristics of the glaciers. In addition, we tried Sentinel-1 InSAR time series to monitor ice sheet migrations over a certain time domain. The results revealed the importance of hydrological channel morphology as a governing factor over migration speeds of glaciers. Specifically, the sub glacial processes and underlying morphology traced by remote sensing observation and the numerical model were correlated with the observed local migration speeds in terminus of the Russell glacier. Those experiences naturally will lead to a more comprehensive understanding of the processes of artic glaciers. Thus, based on the output of this study, the proposed method will be extended to tackle the issues of ice sheet change occurring in the Greenland costal area
Justification for a 2D versus 3D fingertip finite element model during static contact simulations.
Harih, Gregor; Tada, Mitsunori; Dolšak, Bojan
2016-10-01
The biomechanical response of a human hand during contact with various products has not been investigated in details yet. It has been shown that excessive contact pressure on the soft tissue can result in discomfort, pain and also cumulative traumatic disorders. This manuscript explores the benefits and limitations of a simplified two-dimensional vs. an anatomically correct three-dimensional finite element model of a human fingertip. Most authors still use 2D FE fingertip models due to their simplicity and reduced computational costs. However we show that an anatomically correct 3D FE fingertip model can provide additional insight into the biomechanical behaviour. The use of 2D fingertip FE models is justified when observing peak contact pressure values as well as displacement during the contact for the given studied cross-section. On the other hand, an anatomically correct 3D FE fingertip model provides a contact pressure distribution, which reflects the fingertip's anatomy. PMID:26856769
Mach number validation of a new zonal CFD method (ZAP2D) for airfoil simulations
NASA Technical Reports Server (NTRS)
Strash, Daniel J.; Summa, Michael; Yoo, Sungyul
1991-01-01
A closed-loop overlapped velocity coupling procedure has been utilized to combine a two-dimensional potential-flow panel code and a Navier-Stokes code. The fully coupled two-zone code (ZAP2D) has been used to compute the flow past a NACA 0012 airfoil at Mach numbers ranging from 0.3 to 0.84 near the two-dimensional airfoil C(lmax) point for a Reynolds number of 3 million. For these cases, the grid domain size can be reduced to 3 chord lengths with less than 3-percent loss in accuracy for freestream Mach numbers through 0.8. Earlier validation work with ZAP2D has demonstrated a reduction in the required Navier-Stokes computation time by a factor of 4 for subsonic Mach numbers. For this more challenging condition of high lift and Mach number, the saving in CPU time is reduced to a factor of 2.
Simulation of multi-steps thermal transition in 2D spin-crossover nanoparticles
NASA Astrophysics Data System (ADS)
Jureschi, Catalin-Maricel; Pottier, Benjamin-Louis; Linares, Jorge; Richard Dahoo, Pierre; Alayli, Yasser; Rotaru, Aurelian
2016-04-01
We have used an Ising like model to study the thermal behavior of a 2D spin crossover (SCO) system embedded in a matrix. The interaction parameter between edge SCO molecules and its local environment was included in the standard Ising like model as an additional term. The influence of the system's size and the ratio between the number of edge molecules and the other molecules were also discussed.
Numerical simulations of glass impacts using smooth particle hydrodynamics
Mandell, D.A.; Wingate, C.A.
1996-05-01
As part of a program to develop advanced hydrocode design tools, we have implemented a brittle fracture model for glass into the SPHINX smooth particle hydrodynamics code. We have evaluated this model and the code by predicting data from one-dimensional flyer plate impacts into glass. Since fractured glass properties, which are needed in the model, are not available, we did sensitivity studies of these properties, as well as sensitivity studies to determine the number of particles needed in the calculations. The numerical results are in good agreement with the data. {copyright} {ital 1996 American Institute of Physics.}
Numerical simulations of glass impacts using smooth particle hydrodynamics
Mandell, D.A.; Wingate, C.A.
1995-07-01
As part of a program to develop advanced hydrocode design tools, we have implemented a brittle fracture model for glass into the SPHINX smooth particle hydrodynamics code. We have evaluated this model and the code by predicting data from one-dimensional flyer plate impacts into glass. Since fractured glass properties, which are needed in the model, are not available, we did sensitivity studies of these properties, as well as sensitivity studies to determine the number of particles needed in the calculations. The numerical results are in good agreement with the data.
Numerical simulation of the hydrodynamical combustion to strange quark matter
Niebergal, Brian; Ouyed, Rachid; Jaikumar, Prashanth
2010-12-15
We present results from a numerical solution to the burning of neutron matter inside a cold neutron star into stable u,d,s quark matter. Our method solves hydrodynamical flow equations in one dimension with neutrino emission from weak equilibrating reactions, and strange quark diffusion across the burning front. We also include entropy change from heat released in forming the stable quark phase. Our numerical results suggest burning front laminar speeds of 0.002-0.04 times the speed of light, much faster than previous estimates derived using only a reactive-diffusive description. Analytic solutions to hydrodynamical jump conditions with a temperature-dependent equation of state agree very well with our numerical findings for fluid velocities. The most important effect of neutrino cooling is that the conversion front stalls at lower density (below {approx_equal}2 times saturation density). In a two-dimensional setting, such rapid speeds and neutrino cooling may allow for a flame wrinkle instability to develop, possibly leading to detonation.
NASA Astrophysics Data System (ADS)
Elangovan, Premkumar; Warren, Lucy M.; Mackenzie, Alistair; Rashidnasab, Alaleh; Diaz, Oliver; Dance, David R.; Young, Kenneth C.; Bosmans, Hilde; Strudley, Celia J.; Wells, Kevin
2014-08-01
Planar 2D x-ray mammography is generally accepted as the preferred screening technique used for breast cancer detection. Recently, digital breast tomosynthesis (DBT) has been introduced to overcome some of the inherent limitations of conventional planar imaging, and future technological enhancements are expected to result in the introduction of further innovative modalities. However, it is crucial to understand the impact of any new imaging technology or methodology on cancer detection rates and patient recall. Any such assessment conventionally requires large scale clinical trials demanding significant investment in time and resources. The concept of virtual clinical trials and virtual performance assessment may offer a viable alternative to this approach. However, virtual approaches require a collection of specialized modelling tools which can be used to emulate the image acquisition process and simulate images of a quality indistinguishable from their real clinical counterparts. In this paper, we present two image simulation chains constructed using modelling tools that can be used for the evaluation of 2D-mammography and DBT systems. We validate both approaches by comparing simulated images with real images acquired using the system being simulated. A comparison of the contrast-to-noise ratios and image blurring for real and simulated images of test objects shows good agreement ( < 9% error). This suggests that our simulation approach is a promising alternative to conventional physical performance assessment followed by large scale clinical trials.
Diemer, K.L.
1992-01-01
Lattice gas automata models for hydrodynamics offer a method for simulating fluids in between the standard molecular dynamic models and finite difference schemes. The algorithm is especially suited to low Mach number flow around complex boundaries and can be implemented in a fully parallelizable, memory efficient manner using only boolean operations. The simplest lattice gas automata is reviewed. The modification of the standard Chapmann-Enskog expansion lattice gas case is reviewed. In the long wavelength and long time limit, the incompressible Navier-Stokes equation is derived. Analytic calculations of shear viscosity [eta], mean free path [lambda], and a reduced Reynolds number R are presented for a number of 2D and 3D lattice gas models. Comparisons of lattice gas results with analytical predictions and other numerical methods are reviewed. This is followed by a discussion of the zero velocity limit used in deriving the above analytic results. Lattice gas hydrodynamic models for flows through porous media in two and three dimensions are described. The computational method easily handles arbitrary boundaries and a large range of Reynolds numbers. Darcy's law is confirmed for Poiseuille flow and for complicated boundary flows. Lattice gas simulation results for permeability for one geometry are compared with experimental results and found to agree to within 10%. Lattice gas hydrodynamic models for two dimensional binary fluids are described. The scaling of the correlation function during late stage growth is examined. The domain growth kinetics during this period is also explored and compared with the work of Furukawa. A local lattice gas model for binary fluids with an adjustable parameter [lambda] which allows degree of miscibility is introduced. For [lambda] < [lambda][sub c] the fluids are immiscible while for [lambda] > [lambda][sub c] the fluids are miscible. Theoretical and numerical studies on the diffusive properties of this lattice gas are presented.
NASA Astrophysics Data System (ADS)
Scopatz, A.; Fatenejad, M.; Flocke, N.; Gregori, G.; Koenig, M.; Lamb, D. Q.; Lee, D.; Meinecke, J.; Ravasio, A.; Tzeferacos, P.; Weide, K.; Yurchak, R.
2013-03-01
We report the results of FLASH hydrodynamic simulations of the experiments conducted by the University of Oxford High Energy Density Laboratory Astrophysics group and its collaborators at the Laboratoire pour l'Utilisation de Lasers Intenses (LULI). In these experiments, a long-pulse laser illuminates a target in a chamber filled with Argon gas, producing shock waves that generate magnetic fields via the Biermann battery mechanism. The simulations show that the result of the laser illuminating the target is a series of complex hydrodynamic phenomena.
Hydrodynamic simulation of ultrashort pulse laser ablation of gold film
NASA Astrophysics Data System (ADS)
Yu, Dong; Jiang, Lan; Wang, Feng; Shi, Xuesong; Qu, Liangti; Lu, Yongfeng
2015-06-01
The electron collision frequency in a hydrodynamic model was improved to match the laser energy absorbed with experimental data. The model calculation was used to investigate the ablation depth and the dependence of the threshold fluence of gold film on pulse width and wavelength. Two methods for estimating the ablation depth are introduced here with their respective scope of application. The dependence of the threshold fluence of gold film on the pulse width of the laser with a 1053 nm center wavelength agreed well with the experimental data. It was also observed that for pulses shorter than ~200 ps, the threshold fluence showed linear dependence on the logarithm of pulse width and increased with the wavelength, which was different from previous results.
Karavitis, G.A.
1984-01-01
The SIMSYS2D two-dimensional water-quality simulation system is a large-scale digital modeling software system used to simulate flow and transport of solutes in freshwater and estuarine environments. Due to the size, processing requirements, and complexity of the system, there is a need to easily move the system and its associated files between computer sites when required. A series of job control language (JCL) procedures was written to allow transferability between IBM and IBM-compatible computers. (USGS)
Non-parabolic hydrodynamic formulations for the simulation of inhomogeneous semiconductor devices
NASA Technical Reports Server (NTRS)
Smith, Arlynn W.; Brennan, Kevin F.
1995-01-01
Hydrodynamic models are becoming prevalent design tools for small scale devices and other devices in which high energy effects can dominate transport. Most current hydrodynamic models use a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting for band structure effects in hydrodynamic device simulation has begun to grow since parabolic models can not fully describe the transport in state of the art devices due to the distribution populating non-parabolic states within the band. This paper presents two different non-parabolic formulations of the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The first formulation uses the Kane dispersion relationship (hk)(exp 2)/2m = W(1 + alpha(W)). The second formulation makes use of a power law ((hk)(exp 2)/2m = xW(sup y)) for the dispersion relation. Hydrodynamic models which use the first formulation rely on the binomial expansion to obtain moment equations with closed form coefficients. This limits the energy range over which the model is valid. The power law formulation readily produces closed form coefficients similar to those obtained using the parabolic band approximation. However, the fitting parameters (x,y) are only valid over a limited energy range. The physical significance of the band non-parabolicity is discussed as well as the advantages/disadvantages and approximations of the two non-parabolic models. A companion paper describes device simulations based on the three dispersion relationships: parabolic, Kane dispersion, and power low dispersion.
Non-Parabolic Hydrodynamic Formulations for the Simulation of Inhomogeneous Semiconductor Devices
NASA Technical Reports Server (NTRS)
Smith, A. W.; Brennan, K. F.
1996-01-01
Hydrodynamic models are becoming prevalent design tools for small scale devices and other devices in which high energy effects can dominate transport. Most current hydrodynamic models use a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting for band structure effects in hydrodynamic device simulation has begun to grow since parabolic models cannot fully describe the transport in state of the art devices due to the distribution populating non-parabolic states within the band. This paper presents two different non-parabolic formulations or the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The first formulation uses the Kane dispersion relationship ((hk)(exp 2)/2m = W(1 + alphaW). The second formulation makes use of a power law ((hk)(exp 2)/2m = xW(exp y)) for the dispersion relation. Hydrodynamic models which use the first formulation rely on the binomial expansion to obtain moment equations with closed form coefficients. This limits the energy range over which the model is valid. The power law formulation readily produces closed form coefficients similar to those obtained using the parabolic band approximation. However, the fitting parameters (x,y) are only valid over a limited energy range. The physical significance of the band non-parabolicity is discussed as well as the advantages/disadvantages and approximations of the two non-parabolic models. A companion paper describes device simulations based on the three dispersion relationships; parabolic, Kane dispersion and power law dispersion.
NASA Astrophysics Data System (ADS)
Theers, Mario; Westphal, Elmar; Gompper, Gerhard; Winkler, Roland G.
2016-03-01
The friction and diffusion coefficients of rigid spherical colloidal particles dissolved in a fluid are determined from velocity and force autocorrelation functions by mesoscale hydrodynamic simulations. Colloids with both slip and no-slip boundary conditions are considered, which are embedded in fluids modeled by multiparticle collision dynamics with and without angular momentum conservation. For no-slip boundary conditions, hydrodynamics yields the well-known Stokes law, while for slip boundary conditions the lack of angular momentum conservation leads to a reduction of the hydrodynamic friction coefficient compared to the classical result. The colloid diffusion coefficient is determined by integration of the velocity autocorrelation function, where the numerical result at shorter times is combined with the theoretical hydrodynamic expression for longer times. The suitability of this approach is confirmed by simulations of sedimenting colloids. In general, we find only minor deviations from the Stokes-Einstein relation, which even disappear for larger colloids. Importantly, for colloids with slip boundary conditions, our simulation results contradict the frequently assumed additivity of local and hydrodynamic diffusion coefficients.
NASA Astrophysics Data System (ADS)
Vlasis, Alkiviadis; Dessart, Luc; Audit, Edouard
2016-05-01
Some interacting supernovae (SNe) of Type IIn show a sizeable continuum polarization suggestive of a large-scale asymmetry in the circumstellar medium (CSM) and/or the SN ejecta. Here, we extend the recent work of Dessart et al. on superluminous SNe IIn and perform axially-symmetric (i.e. 2D) multigroup radiation hydrodynamics simulations to explore the impact of an imposed large-scale density asymmetry. When the CSM is asymmetric, the latitudinal variation of the radial optical depth τ introduces a strong flux redistribution from the higher density CSM regions, where the shock luminosity is larger, towards the lower density CSM regions where photons escape more freely - this redistribution ceases when τ ≲ 1. Along directions where the CSM density is larger, the shock deceleration is stronger and its progression slower, producing a non-spherical cold-dense shell (CDS). For an oblate CSM density distribution, the photosphere (CDS) has an oblate (prolate) morphology when τ ≳ 1. When the CSM is symmetric and the ejecta asymmetric, the flux redistribution within the CSM now tends to damp the latitudinal variation of the luminosity at the shock. It then requires a larger ejecta asymmetry to produce a sizeable latitudinal variation in the emergent flux. When the interaction is between a SN ejecta and a relic disc, the luminosity boost at early times scales with the disc opening angle - forming a superluminous SN IIn this way requires an unrealistically thick disc. In contrast, interaction with a disc of modest thickness/mass can yield a power that rivals radioactive decay of a standard SN II at nebular times.
SEM simulation for 2D and 3D inspection metrology and defect review
NASA Astrophysics Data System (ADS)
Levi, Shimon; Schwartsband, Ishai; Khristo, Sergey; Ivanchenko, Yan; Adan, Ofer
2014-03-01
Advanced SEM simulation has become a key element in the ability of SEM inspection, metrology and defect review to meet the challenges of advanced technologies. It grants additional capabilities to the end user, such as 3D height measurements, accurate virtual metrology, and supports Design Based Metrology to bridge the gap between design layout and SEM image. In this paper we present SEM simulations capabilities, which take into consideration all parts of the SEM physical and electronic path, interaction between Electron beam and material, multi perspective SEM imaging and shadowing derived from proximity effects caused by the interaction of the Secondary Electrons signal with neighboring pattern edges. Optimizing trade-off between simulation accuracy, calibration procedures and computational complexity, the simulation is running in real-time with minimum impact on throughput. Experiment results demonstrate Height measurement capacities, and CAD based simulated pattern is compared with SEM image to evaluate simulated pattern fidelity.
Simulation of Ultra-Small MOSFETs Using a 2-D Quantum-Corrected Drift-Diffusion Model
NASA Technical Reports Server (NTRS)
Biegal, Bryan A.; Rafferty, Connor S.; Yu, Zhiping; Ancona, Mario G.; Dutton, Robert W.; Saini, Subhash (Technical Monitor)
1998-01-01
The continued down-scaling of electronic devices, in particular the commercially dominant MOSFET, will force a fundamental change in the process of new electronics technology development in the next five to ten years. The cost of developing new technology generations is soaring along with the price of new fabrication facilities, even as competitive pressure intensifies to bring this new technology to market faster than ever before. To reduce cost and time to market, device simulation must become a more fundamental, indeed dominant, part of the technology development cycle. In order to produce these benefits, simulation accuracy must improve markedly. At the same time, device physics will become more complex, with the rapid increase in various small-geometry and quantum effects. This work describes both an approach to device simulator development and a physical model which advance the effort to meet the tremendous electronic device simulation challenge described above. The device simulation approach is to specify the physical model at a high level to a general-purpose (but highly efficient) partial differential equation solver (in this case PROPHET, developed by Lucent Technologies), which then simulates the model in 1-D, 2-D, or 3-D for a specified device and test regime. This approach allows for the rapid investigation of a wide range of device models and effects, which is certainly essential for device simulation to catch up with, and then stay ahead of, electronic device technology of the present and future. The physical device model used in this work is the density-gradient (DG) quantum correction to the drift-diffusion model [Ancona, Phys. Rev. B 35(5), 7959 (1987)]. This model adds tunneling and quantum smoothing of carrier density profiles to the drift-diffusion model. We used the DG model in 1-D and 2-D (for the first time) to simulate both bipolar and unipolar devices. Simulations of heavily-doped, short-base diodes indicated that the DG quantum
Direct MD Simulations of Terahertz Absorption and 2D Spectroscopy Applied to Explosive Crystals.
Katz, G; Zybin, S; Goddard, W A; Zeiri, Y; Kosloff, R
2014-03-01
A direct molecular dynamics simulation of the THz spectrum of a molecular crystal is presented. A time-dependent electric field is added to a molecular dynamics simulation of a crystal slab. The absorption spectrum is composed from the energy dissipated calculated from a series of applied pulses characterized by a carrier frequency. The spectrum of crystalline cyclotrimethylenetrinitramine (RDX) and triacetone triperoxide (TATP) were simulated with the ReaxFF force field. The proposed direct method avoids the linear response and harmonic approximations. A multidimensional extension of the spectroscopy is suggested and simulated based on the nonlinear response to a single polarized pulse of radiation in the perpendicular polarization direction. PMID:26274066
HEAT.PRO - THERMAL IMBALANCE FORCE SIMULATION AND ANALYSIS USING PDE2D
NASA Technical Reports Server (NTRS)
Vigue, Y.
1994-01-01
HEAT.PRO calculates the thermal imbalance force resulting from satellite surface heating. The heated body of a satellite re-radiates energy at a rate that is proportional to its temperature, losing the energy in the form of photons. By conservation of momentum, this momentum flux out of the body creates a reaction force against the radiation surface, and the net thermal force can be observed as a small perturbation that affects long term orbital behavior of the satellite. HEAT.PRO calculates this thermal imbalance force and then determines its effects on satellite orbits, especially where the Earth's shadowing of an orbiting satellite causes periodic changes in the spacecraft's thermal environment. HEAT.PRO implements a finite element method routine called PDE2D which incorporates material properties to determine the solar panel surface temperatures. The nodal temperatures are computed at specified time steps and are used to determine the magnitude and direction of the thermal force on the spacecraft. These calculations are based on the solar panel orientation and satellite's position with respect to the earth and sun. It is necessary to have accurate, current knowledge of surface emissivity, thermal conductivity, heat capacity, and material density. These parameters, which may change due to degradation of materials in the environment of space, influence the nodal temperatures that are computed and thus the thermal force calculations. HEAT.PRO was written in FORTRAN 77 for Cray series computers running UNICOS. The source code contains directives for and is used as input to the required partial differential equation solver, PDE2D. HEAT.PRO is available on a 9-track 1600 BPI magnetic tape in UNIX tar format (standard distribution medium) or a .25 inch streaming magnetic tape cartridge in UNIX tar format. An electronic copy of the documentation in Macintosh Microsoft Word format is included on the distribution tape. HEAT.PRO was developed in 1991. Cray and UNICOS are
2D grating simulation for X-ray phase-contrast and dark-field imaging with a Talbot interferometer
NASA Astrophysics Data System (ADS)
Zanette, Irene; David, Christian; Rutishauser, Simon; Weitkamp, Timm
2010-04-01
Talbot interferometry is a recently developed and an extremely powerful X-ray phase-contrast imaging technique. Besides giving access to ultra-high sensitivity differential phase contrast images, it also provides the dark field image, which is a map of the scattering power of the sample. In this paper we investigate the potentialities of an improved version of the interferometer, in which two dimensional gratings are used instead of standard line grids. This approach allows to overcome the difficulties that might be encountered in the images produced by a one dimensional interferometer. Among these limitations there are the phase wrapping and quantitative phase retrieval problems and the directionality of the differential phase and dark-field signals. The feasibility of the 2D Talbot interferometer has been studied with a numerical simulation on the performances of its optical components under different circumstances. The gratings can be obtained either by an ad hoc fabrication of the 2D structures or by a superposition of two perpendicular linear grids. Through this simulation it has been possible to find the best parameters for a practical implementation of the 2D Talbot interferometer.
2D Quantum Simulation of MOSFET Using the Non Equilibrium Green's Function Method
NASA Technical Reports Server (NTRS)
Svizhenko, Alexel; Anantram, M. P.; Govindan, T. R.; Yan, Jerry (Technical Monitor)
2000-01-01
The objectives this viewgraph presentation summarizes include: (1) the development of a quantum mechanical simulator for ultra short channel MOSFET simulation, including theory, physical approximations, and computer code; (2) explore physics that is not accessible by semiclassical methods; (3) benchmarking of semiclassical and classical methods; and (4) study other two-dimensional devices and molecular structure, from discretized Hamiltonian to tight-binding Hamiltonian.
Numerical Simulations of High-Frequency Respiratory Flows in 2D and 3D Lung Bifurcation Models
NASA Astrophysics Data System (ADS)
Chen, Zixi; Parameswaran, Shamini; Hu, Yingying; He, Zhaoming; Raj, Rishi; Parameswaran, Siva
2014-07-01
To better understand the human pulmonary system and optimize the high-frequency oscillatory ventilation (HFOV) design, numerical simulations were conducted under normal breathing frequency and HFOV condition using a CFD code Ansys Fluent and its user-defined C programs. 2D and 3D double bifurcating lung models were created, and the geometry corresponds to fifth to seventh generations of airways with the dimensions based on the Weibel's pulmonary model. Computations were carried out for different Reynolds numbers (Re = 400 and 1000) and Womersley numbers (α = 4 and 16) to study the air flow fields, gas transportation, and wall shear stresses in the lung airways. Flow structure was compared with experimental results. Both 2D and 3D numerical models successfully reproduced many results observed in the experiment. The oxygen concentration distribution in the lung model was investigated to analyze the influence of flow oscillation on gas transport inside the lung model.
SAGE 2D and 3D Simulations of the Explosive Venting of Supercritical Fluids Through Porous Media
NASA Astrophysics Data System (ADS)
Weaver, R.; Gisler, G.; Svensen, H.; Mazzini, A.
2008-12-01
Magmatic intrusive events in large igneous provinces heat sedimentary country rock leading to the eventual release of volatiles. This has been proposed as a contributor to climate change and other environmental impacts. By means of numerical simulations, we examine ways in which these volatiles can be released explosively from depth. Gases and fluids cooked out of country rock by metamorphic heating may be confined for a time by impermeable clays or other barriers, developing high pressures and supercritical fluids. If confinement is suddenly breached (by an earthquake for example) in such a way that the fluid has access to porous sediments, a violent eruption of a non-magmatic mixture of fluid and sediment may result. Surface manifestations of these events could be hydrothermal vent complexes, kimberlite pipes, pockmarks, or mud volcanoes. These are widespread on Earth, especially in large igneous provinces, as in the Karoo Basin of South Africa, the North Sea off the Norwegian margin, and the Siberian Traps. We have performed 2D and 3D simulations with the Sage hydrocode (from Los Alamos and Science Applications International) of supercritical venting in a variety of geometries and configurations. The simulations show several different patterns of propagation and fracturing in porous or otherwise weakened overburden, dependent on depth, source conditions (fluid availability, temperature, and pressure), and manner of confinement breach. Results will be given for a variety of 2D and 3D simulations of these events exploring the release of volatiles into the atmosphere.
Multi-phase shock simulations with smoothed particle hydrodynamics (SPH)
NASA Astrophysics Data System (ADS)
Omang, M. G.; Trulsen, J. K.
2014-09-01
In this paper we present an approach to the implementation of a multi-phase description in the numerical Smoothed Particle Hydrodynamics method. The work is based on previous work, but has been modified to suit the applications of interest, in this case shock propagation through dusty gases. Theoretical models for multi-phase systems rely on the introduction of a number of terms describing the interaction between the different phases; drag and heat exchange are two examples. These terms contain parameters, the value of many of which must be determined empirically. We present results on the effect of changing values of some of the important parameters and compare our results to experimental and numerical results published in the literature. Our numerical results generally agree well with published results, taking uncertainties concerning accuracy in existing experimental data and details in the choice of parameters for numerical results into consideration. In particular, we find that a reduction in dust particle size is an efficient way of increasing shock retardation for a given dust loading.
Simulating Brittle Fracture of Rocks using Smoothed Particle Hydrodynamics
NASA Astrophysics Data System (ADS)
Das, Rajarshi; Cleary, Paul W.
2009-05-01
Numerical modelling can assist in understanding and predicting complex fracture processes. Smoothed Particle Hydrodynamics (SPH) is a particle-based Lagrangian method that is particularly suited to the analysis of fracture due to its capacity to model large deformation and to track free surfaces generated. A damage model is used to predict the fracture of elastic solids. The damage parameter represents the volume-averaged micro-fracture of the volume of material represented by an SPH particle. Evolution of damage is predicted using the strain history of each particle. Damage inhibits the transmission of tensile stress between particles, and once it reaches unity, the interface becomes unable to transmit tensile stress, resulting in a macro-crack. Connected macro-cracks lead to complete fragmentation. In this paper, we explore the ability of an SPH-based damage model to predict brittle fracture of rocks during impact. Rock shape is found to have considerable influence on the fracture process, the fragment sizes, the energy dissipation during impact, and the post-fracture motion of the fragments.
Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores
Burris, Paul C.; Laage, Damien; Thompson, Ward H.
2016-05-20
Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this Paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is usedmore » to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. Lastly, the simulated spectra indicate that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra.« less
Burris, Paul C; Laage, Damien; Thompson, Ward H
2016-05-21
Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is used to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. The simulated spectra indicates that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra. PMID:27208967
Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores
NASA Astrophysics Data System (ADS)
Burris, Paul C.; Laage, Damien; Thompson, Ward H.
2016-05-01
Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is used to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. The simulated spectra indicates that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra.
Tracer dispersion simulation in low wind speed conditions with a new 2D Langevin equation system
NASA Astrophysics Data System (ADS)
Anfossi, D.; Alessandrini, S.; Trini Castelli, S.; Ferrero, E.; Oettl, D.; Degrazia, G.
The simulation of atmospheric dispersion in low wind speed conditions (LW) is still recognised as a challenge for modellers. Recently, a new system of two coupled Langevin equations that explicitly accounts for meandering has been proposed. It is based on the study of turbulence and dispersion properties in LW. The new system was implemented in the Lagrangian stochastic particle models LAMBDA and GRAL. In this paper we present simulations with this new approach applying it to the tracer experiments carried out in LW by Idaho National Engineering Laboratory (INEL, USA) in 1974 and by the Graz University of Technology and CNR-Torino near Graz in 2003. To assess the improvement obtained with the present model with respect to previous models not taking into account the meandering effect, the simulations for the INEL experiments were also performed with the old version of LAMBDA. The results of the comparisons clearly indicate that the new approach improves the simulation results.
Radar Reflectivity Simulated by a 2-D Spectra Bin Model: Sensitivity of Cloud-aerosol Interaction
NASA Technical Reports Server (NTRS)
Li, Kiaowen; Tao, Wei-Kuo; Khain, Alexander; Simpson, Joanne; Johnson, Daniel
2003-01-01
The Goddard Cumulus Ensemble (GCE) model with bin spectra microphysics is used to simulate mesoscale convective systems.The model uses explicit bins to represent size spectra of cloud nuclei, water drops, ice crystals, snow and graupel. Each hydrometeorite category is described by 33 mass bins. The simulations provide a unique data set of simulated raindrop size distribution in a realistic dynamic frame. Calculations of radar parameters using simulated drop size distribution serve as an evaluation of numerical model performance. In addition, the GCE bin spectra modes is a very useful tool to study uncertainties related to radar observations; all the environmental parameters are precisely known. In this presentation, we concentrate on the discussion of Z-R (ZDR-R) relation in the simulated systems. Due to computational limitations, the spectra bin model has been run in two dimensions with 31 stretched vertical layers and 1026 horizontal grid points (1 km resolution). Two different cases, one in midlatitude continent, the other in tropical ocean, have been simulated. The continental case is a strong convection which lasted for two hours. The oceanic case is a persistent system with more than 10 hours' life span. It is shown that the simulated Z-R (ZDR-R) relations generally agree with observations using radar and rain gauge data. The spatial and temporal variations of Z-R relation in different locations are also analyzed. Impact of aerosols on cloud formation and raindrop size distribution was studied. Both clean (low CCN) and dirty (high CCN) cases are simulated. The Z-R relation is shown to vary considerable in the initial CCN concentrations.
Three-dimensional Hydrodynamic Simulations of Accretion in High-mass X-ray Binaries
NASA Astrophysics Data System (ADS)
Raymer, Eric John
Wind accretion in high-mass X-ray binaries (HMXBs) often results in highly variable X-ray behavior, the nature of which is not well understood. Most models of wind accretion are based on the analytical predictions of Hoyle-Lyttleton accretion (HLA), which assumes a steady axisymmetric flow. Surprisingly little is known about the structure, stability, and time-evolution of HLA in three dimensions, particularly in the presence of non-uniform winds. This work describes hydrodynamic simulations of idealized HLA in three-dimensions, then applies these simulations to two HMXB subclasses that exhibit unexplained X-ray behavior. Our idealized HLA models show that the accretion flow remains steady and stable in two-dimensional axisymmetric and three dimensional grid geometries, assuming a uniform upstream flow. We test the stability of the model with linear upstream density gradients and find that they are able to induce rotational flow around the accretor that reduces the mass accretion rate by up to an order of magnitude. We apply our 3D model to accretion in the context of Be/X-ray binaries, in which the accreting neutron star is immersed in the dense decretion disk of the Be donor star. These systems have traditionally been described with 2D models that exhibit the flip-flop instability. This instability results in the formation and destruction of transient accretion disks with accompanying bursts of mass accretion. Our 3D models show no sign of the flip-flop instability, but instead display rotation about the neutron star directed primarily out of the plane of the decretion disk. This rotation generates large-scale asymmetries in the bow shock and suppresses mass accretion by up to two orders of magnitude. The accretion of a clumped stellar wind is one of the primary mechanisms proposed to explain the high-luminosity X-ray flares of supergiant fast X-ray transients. We model clump accretion in 3D to determine whether the impact of a clump can produce flares with a
Fourier based methodology for simulating 2D-random shapes in heterogeneous materials
NASA Astrophysics Data System (ADS)
Mattrand, C.; Béakou, A.; Charlet, K.
2015-08-01
Gaining insights into the effects of microstructural details on materials behavior may be achieved by incorporating their attributes into numerical modeling. This requires us to make considerable efforts to feature heterogeneity morphology distributions and their spatial arrangement. This paper focuses on modeling the scatter observed in materials heterogeneity geometry. The proposed strategy is based on the development of a 1D-shape signature function representing the 2D-section of a given shape, on Fourier basis functions. The Fourier coefficients are then considered as random variables. This methodology has been applied to flax fibers which are gradually introduced into composite materials as a potential alternative to synthetic reinforcements. In this contribution, the influence of some underlying assumptions regarding the choice of one 1D-shape signature function, its discretization scheme and truncation level, and the best way of modeling the associated random variables is also investigated. Some configurations coming from the combination of these tuning parameters are found to be sufficiently relevant to render efficiently the morphometric factors of the observed fibers statistically speaking.
Three-Dimensional Hydrodynamic Simulations of Collapsing Prolate Clouds
NASA Astrophysics Data System (ADS)
Nelson, R. P.; Papaloizou, J. C. B.
1993-12-01
We present the results of collapse calculations for elongated clouds performed using the numerical method of smoothed particle hydrodynamics (SPH). The clouds considered are isothermal, prolate spheroids with different axial ratios (a/b). Results are obtained for different values of a/b and mbarL, the mean mass per unit length. It is found that initially uniform clouds undergo fragmentation when the collapse is preferentially down on to the major axis, due to the intrinsic instability of a linear configuration. This occurs when the value of mbarL is sufficiently large. A criterion for elongated clouds to undergo linear collapse is derived using the tensor virial theorem, and it is found that the numerically obtained value of mbarL for which fragmentation occurs corresponds closely to that expected from analytical considerations. The addition of small density perturbations simply results in clouds that fragment more easily, particularly for cases in which a/b is close to unity. Previous calculations, presented by other authors for the case of finite cylinders, show that clouds with cylindrical geometries are highly unstable to the formation of two fragments that occur at the ends of the cylinder. We find that collapsing, prolate spheroids show qualitatively different behaviour, with no preferred tendency to form fragments at the ends of the cloud. Instead fragmentation appears to occur more readily towards the centre of the cloud where the local mass per unit length is greatest. Our implementation of SPH employs spatially variable smoothing lengths, h. In order to obtain a Hamiltonian system, we incorporate terms involving the spatial variability of h in the particle equations of motion, not included in previous implementations. We find that inclusion of these ∇h terms results in much improved energy conservation, but has little effect on the qualitative outcome of the calculations presented here. (fset 'queer "∇")
Monte Carlo simulations of a novel Micromegas 2D array for proton dosimetry
NASA Astrophysics Data System (ADS)
Dolney, D.; Ainsley, C.; Hollebeek, R.; Maughan, R.
2016-02-01
Modern proton therapy affords control of the delivery of radiotherapeutic dose on fine length and temporal scales. The authors have developed a novel detector technology based on Micromesh Gaseous Structure (Micromegas) that is uniquely tailored for applications using therapeutic proton beams. An implementation of a prototype Micromegas detector for Monte Carlo using Geant4 is presented here. Comparison of simulation results with measurements demonstrates agreement in relative dose along the proton longitudinal dose profile to be 1%. The effect of a radioactive calibration source embedded in the chamber gas is demonstrated by measurements and reproduced by simulations, also at the 1% level. Our Monte Carlo simulations are shown to reproduce the time structure of ionization pulses produced by a double-scattering delivery system.
NASA Astrophysics Data System (ADS)
Michelson, Sara; Bao, Jian-Wen; Grell, Evelyn
2016-04-01
In this study, numerical model simulations of an idealized 2-D squall line are investigated using microphysics budget analysis. Four commonly-used microphysics schemes of various complexity are used in the simulations. Diagnoses of the source and sink terms of the hydrometeor budget equations reveal that the differences related to the assumptions of hydrometeor size-distributions between the schemes lead to the differences in the simulations due to the net effect of various microphysical processes on the interaction between latent heating/evaporative cooling and flow dynamics as the squall line develops. Results from this study also highlight the possibility that the advantage of double-moment formulations can be overshadowed by the uncertainties in the spectral definition of individual hydrometeor categories and spectrum-dependent microphysical processes.
NASA Astrophysics Data System (ADS)
Steinke, R. C.
2015-12-01
Discretizing 1-D vadose zone simulations in the moisture content domain, such as is done in the Talbot-Ogden method, provides some advantages over discretizing in depth, such as is done in Richards' Equation. These advantages include inherent mass conservation and lower computational cost. However, doing so presents a difficulty for integration with 2-D groundwater interflow simulations. The equations of motion of the bins of discrete moisture content take the depth of the water table as an input. They do not produce it as an output. Finding the correct water table depth so that the groundwater recharge from the 1-D vadose zone simulation mass balances with the lateral flows from the 2-D groundwater interflow simulation was a previously unsolved problem. In this paper we present a net-groundwater-recharge method to solve to this problem and compare it with the source-term method used with Richards' Equation.
Schaffranek, Raymond W.
2004-01-01
A numerical model for simulation of surface-water integrated flow and transport in two (horizontal-space) dimensions is documented. The model solves vertically integrated forms of the equations of mass and momentum conservation and solute transport equations for heat, salt, and constituent fluxes. An equation of state for salt balance directly couples solution of the hydrodynamic and transport equations to account for the horizontal density gradient effects of salt concentrations on flow. The model can be used to simulate the hydrodynamics, transport, and water quality of well-mixed bodies of water, such as estuaries, coastal seas, harbors, lakes, rivers, and inland waterways. The finite-difference model can be applied to geographical areas bounded by any combination of closed land or open water boundaries. The simulation program accounts for sources of internal discharges (such as tributary rivers or hydraulic outfalls), tidal flats, islands, dams, and movable flow barriers or sluices. Water-quality computations can treat reactive and (or) conservative constituents simultaneously. Input requirements include bathymetric and topographic data defining land-surface elevations, time-varying water level or flow conditions at open boundaries, and hydraulic coefficients. Optional input includes the geometry of hydraulic barriers and constituent concentrations at open boundaries. Time-dependent water level, flow, and constituent-concentration data are required for model calibration and verification. Model output consists of printed reports and digital files of numerical results in forms suitable for postprocessing by graphical software programs and (or) scientific visualization packages. The model is compatible with most mainframe, workstation, mini- and micro-computer operating systems and FORTRAN compilers. This report defines the mathematical formulation and computational features of the model, explains the solution technique and related model constraints, describes the
2D and 3D PIC-MCC simulations of a low temperature magnetized plasma on CPU and GPU
NASA Astrophysics Data System (ADS)
Claustre, Jonathan; Chaudhury, Bhaskar; Fubiani, Gwenael; Boeuf, Jean-Pierre
2012-10-01
A Particle-In-Cell Monte Carlo Collisions model is used to described plasma transport in a low temperature magnetized plasma under conditions similar to those of the negative ion source for the neutral beam injector of ITER. A large diamagnetic electron current is present in the plasma because of the electron pressure gradient between the ICP driver of the source and the entrance of the magnetic filter, and is directed toward the chamber walls. The plasma potential adjusts to limit the diamagnetic electron current to the wall, leading to large electron current flow through the filter, and to a non uniform plasma density in the region between magnetic filter and extracting grids. On the basis of the PIC-MCC simulation results, we describe the plasma properties and electron current density distributions through the filter in 2D and 3D situations and use these models to better understand plasma transport across the filter in these conditions. We also present comparisons between computation times of two PIC-MCC simulation codes that have been developed for operations on standard CPU (Central Processing Units, code in Fortran) and on GPU (Graphics Processing Units, code in CUDA). The results show that the GPU simulation is about 25 times faster than the CPU one for a 2D domain with 512x512 grid points. The computation time ratio increases with the number of grid points.
NASA Astrophysics Data System (ADS)
Mininni, P.; Dmitruk, P.; Odier, P.; Pinton, J.-F.; Plihon, N.; Verhille, G.; Volk, R.; Bourgoin, M.
2014-05-01
We analyze time series stemming from experiments and direct numerical simulations of hydrodynamic and magnetohydrodynamic turbulence. Simulations are done in periodic boxes, but with a volumetric forcing chosen to mimic the geometry of the flow in the experiments, the von Kármán swirling flow between two counterrotating impellers. Parameters in the simulations are chosen to (within computational limitations) allow comparisons between the experiments and the numerical results. Conducting fluids are considered in all cases. Two different configurations are considered: a case with a weak externally imposed magnetic field and a case with self-sustained magnetic fields. Evidence of long-term memory and 1/f noise is observed in experiments and simulations, in the case with weak magnetic field associated with the hydrodynamic behavior of the shear layer in the von Kármán flow, and in the dynamo case associated with slow magnetohydrodynamic behavior of the large-scale magnetic field.
NASA Astrophysics Data System (ADS)
Kulikov, Igor; Chernykh, Igor; Tutukov, Alexander
2016-05-01
This paper presents a new hydrodynamic model of interacting galaxies based on the joint solution of multicomponent hydrodynamic equations, first moments of the collisionless Boltzmann equation and the Poisson equation for gravity. Using this model, it is possible to formulate a unified numerical method for solving hyperbolic equations. This numerical method has been implemented for hybrid supercomputers with Intel Xeon Phi accelerators. The collision of spiral and disk galaxies considering the star formation process, supernova feedback and molecular hydrogen formation is shown as a simulation result.
The 2-D simulations of the NRL (Naval Research Laboratory) laser experiment
NASA Astrophysics Data System (ADS)
Lyon, J. G.
1985-05-01
Two-dimensional gas-dynamic simulations of the NRL laser experiment have been performed to study the formation of aneurysms in the blast wave and to study the formation of structure internal to the blast front itself. In one set of simulations the debris shell was perturbed sinusoidally in mass and position and also perturbed to mimic the action of a slow jet of material leaving the target at slower speeds than the bulk of the debris. In all cases the blast wave remained stable to any aneurysm-like instability. Internal structure, however, was quite easily produced and grew as a function of time. In the other set of simulations the effect of a pre-heated channel upon the propagation of the blast wave was examined. Bulges in the blast wave shock front were produced in these simulations that could be the beginning of the aneurysm phenomenon, but the preheated channel by itself appears to be insufficient to produce the observed aneurysm.
A convergent 2D finite-difference scheme for the Dirac–Poisson system and the simulation of graphene
Brinkman, D.; Heitzinger, C.; Markowich, P.A.
2014-01-15
We present a convergent finite-difference scheme of second order in both space and time for the 2D electromagnetic Dirac equation. We apply this method in the self-consistent Dirac–Poisson system to the simulation of graphene. The model is justified for low energies, where the particles have wave vectors sufficiently close to the Dirac points. In particular, we demonstrate that our method can be used to calculate solutions of the Dirac–Poisson system where potentials act as beam splitters or Veselago lenses.
Maximov, Philipp Y; McDaniel, Russell E; Fernandes, Daphne J; Korostyshevskiy, Valeriy R; Bhatta, Puspanjali; Mürdter, Thomas E; Flockhart, David A; Jordan, V Craig
2014-01-01
Background and Purpose Tamoxifen is a prodrug that is metabolically activated by 4-hydroxylation to the potent primary metabolite 4-hydroxytamoxifen (4OHT) or via another primary metabolite N-desmethyltamoxifen (NDMTAM) to a biologically active secondary metabolite endoxifen through a cytochrome P450 2D6 variant system (CYP2D6). To elucidate the mechanism of action of tamoxifen and the importance of endoxifen for its effect, we determined the anti-oestrogenic efficacy of tamoxifen and its metabolites, including endoxifen, at concentrations corresponding to serum levels measured in breast cancer patients with various CYP2D6 genotypes (simulating tamoxifen treatment). Experimental Approach The biological effects of tamoxifen and its metabolites on cell growth and oestrogen-responsive gene modulation were evaluated in a panel of oestrogen receptor-positive breast cancer cell lines. Actual clinical levels of tamoxifen metabolites in breast cancer patients were used in vitro along with actual levels of oestrogens observed in premenopausal patients taking tamoxifen. Key Results Tamoxifen and its primary metabolites (4OHT and NDMTAM) only partially inhibited the stimulant effects of oestrogen on cells. The addition of endoxifen at concentrations corresponding to different CYP2D6 genotypes was found to enhance the anti-oestrogenic effect of tamoxifen and its metabolites with an efficacy that correlated with the concentration of endoxifen; at concentrations corresponding to the extensive metabolizer genotype it further inhibited the actions of oestrogen. In contrast, lower concentrations of endoxifen (intermediate and poor metabolizers) had little or no anti-oestrogenic effects. Conclusions and Implications Endoxifen may be a clinically relevant metabolite in premenopausal patients as it provides additional anti-oestrogenic actions during tamoxifen treatment. PMID:25073551
The EAGLE simulations of galaxy formation: the importance of the hydrodynamics scheme
NASA Astrophysics Data System (ADS)
Schaller, Matthieu; Dalla Vecchia, Claudio; Schaye, Joop; Bower, Richard G.; Theuns, Tom; Crain, Robert A.; Furlong, Michelle; McCarthy, Ian G.
2015-12-01
We present results from a subset of simulations from the `Evolution and Assembly of GaLaxies and their Environments' (EAGLE) suite in which the formulation of the hydrodynamics scheme is varied. We compare simulations that use the same subgrid models without recalibration of the parameters but employing the standard GADGET flavour of smoothed particle hydrodynamics (SPH) instead of the more recent state-of-the-art ANARCHY formulation of SPH that was used in the fiducial EAGLE runs. We find that the properties of most galaxies, including their masses and sizes, are not significantly affected by the details of the hydrodynamics solver. However, the star formation rates of the most massive objects are affected by the lack of phase mixing due to spurious surface tension in the simulation using standard SPH. This affects the efficiency with which AGN activity can quench star formation in these galaxies and it also leads to differences in the intragroup medium that affect the X-ray emission from these objects. The differences that can be attributed to the hydrodynamics solver are, however, likely to be less important at lower resolution. We also find that the use of a time-step limiter is important for achieving the feedback efficiency required to match observations of the low-mass end of the galaxy stellar mass function.
2D simulations based on general time-dependent reciprocal relation for LFEIT.
Karadas, Mursel; Gencer, Nevzat Guneri
2015-08-01
Lorentz field electrical impedance tomography (LFEIT) is a newly proposed technique for imaging the conductivity of the tissues by measuring the electromagnetic induction under the ultrasound pressure field. In this paper, the theory and numerical simulations of the LFEIT are reported based on the general time dependent formulation. In LFEIT, a phased array ultrasound probe is used to introduce a current distribution inside a conductive body. The velocity current occurs, due to the movement of the conductive particles under a static magnetic field. In order to sense this current, a receiver coil configuration that surrounds the volume conductor is utilized. Finite Element Method (FEM) is used to carry out the simulations of LFEIT. It is shown that, LFEIT can be used to reconstruct the conductivity even up to 50% perturbation in the initial conductivity distribution. PMID:26736569
A mathematical model for a didactic device able to simulate a 2D Newtonian gravitational field
NASA Astrophysics Data System (ADS)
De Marchi, Fabrizio
2015-01-01
In this paper we propose a mathematical model to describe a theoretical device able to simulate an inverse-square force on a test mass moving on a horizontal plane. We use two pulleys, a counterweight, a wire and a smooth rail, in addition to the test mass. The tension of the wire (i.e. the attractive force on the test mass) is determined by the position of a counterweight free to move on a rail placed under the plane. The profile of the rail is calculated in order to obtain the required Newtonian force. Details of this calculation are reported in the paper, and numerical simulations are provided in order to investigate the stability of the orbits under the effect of the main friction forces and other perturbative effects. This work points out that there are some criticalities intrinsic to the apparatus and gives some suggestions about how to minimize their impact.
Seismic wavefield propagation in 2D anisotropic media: Ray theory versus wave-equation simulation
NASA Astrophysics Data System (ADS)
Bai, Chao-ying; Hu, Guang-yi; Zhang, Yan-teng; Li, Zhong-sheng
2014-05-01
Despite the ray theory that is based on the high frequency assumption of the elastic wave-equation, the ray theory and the wave-equation simulation methods should be mutually proof of each other and hence jointly developed, but in fact parallel independent progressively. For this reason, in this paper we try an alternative way to mutually verify and test the computational accuracy and the solution correctness of both the ray theory (the multistage irregular shortest-path method) and the wave-equation simulation method (both the staggered finite difference method and the pseudo-spectral method) in anisotropic VTI and TTI media. Through the analysis and comparison of wavefield snapshot, common source gather profile and synthetic seismogram, it is able not only to verify the accuracy and correctness of each of the methods at least for kinematic features, but also to thoroughly understand the kinematic and dynamic features of the wave propagation in anisotropic media. The results show that both the staggered finite difference method and the pseudo-spectral method are able to yield the same results even for complex anisotropic media (such as a fault model); the multistage irregular shortest-path method is capable of predicting similar kinematic features as the wave-equation simulation method does, which can be used to mutually test each other for methodology accuracy and solution correctness. In addition, with the aid of the ray tracing results, it is easy to identify the multi-phases (or multiples) in the wavefield snapshot, common source point gather seismic section and synthetic seismogram predicted by the wave-equation simulation method, which is a key issue for later seismic application.
2-D transmitral flows simulation by means of the immersed boundary method on unstructured grids
NASA Astrophysics Data System (ADS)
Denaro, F. M.; Sarghini, F.
2002-04-01
Interaction between computational fluid dynamics and clinical researches recently allowed a deeper understanding of the physiology of complex phenomena involving cardio-vascular mechanisms. The aim of this paper is to develop a simplified numerical model based on the Immersed Boundary Method and to perform numerical simulations in order to study the cardiac diastolic phase during which the left ventricle is filled with blood flowing from the atrium throughout the mitral valve. As one of the diagnostic problems to be faced by clinicians is the lack of a univocal definition of the diastolic performance from the velocity measurements obtained by Eco-Doppler techniques, numerical simulations are supposed to provide an insight both into the physics of the diastole and into the interpretation of experimental data. An innovative application of the Immersed Boundary Method on unstructured grids is presented, fulfilling accuracy requirements related to the development of a thin boundary layer along the moving immersed boundary. It appears that this coupling between unstructured meshes and the Immersed Boundary Method is a promising technique when a wide range of spatial scales is involved together with a moving boundary. Numerical simulations are performed in a range of physiological parameters and a qualitative comparison with experimental data is presented, in order to demonstrate that, despite the simplified model, the main physiological characteristics of the diastole are well represented. Copyright
Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.; Li, H. D.; Feng, H.; Sun, W. G.
2015-01-15
Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density, heat and momentum transport equations along with neutral density, and momentum transport equations. Transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. It is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.
Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.; Li, H. D.; Feng, H.; Sun, W. G.
2015-01-09
Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Furthermore, two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density,more » heat and momentum transport equations along with neutral density, and momentum transport equations. In transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. Moreover, it is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.« less
NASA Astrophysics Data System (ADS)
Butler, Jason E.; Shaqfeh, Eric S. G.
2005-01-01
Using methods adapted from the simulation of suspension dynamics, we have developed a Brownian dynamics algorithm with multibody hydrodynamic interactions for simulating the dynamics of polymer molecules. The polymer molecule is modeled as a chain composed of a series of inextensible, rigid rods with constraints at each joint to ensure continuity of the chain. The linear and rotational velocities of each segment of the polymer chain are described by the slender-body theory of Batchelor [J. Fluid Mech. 44, 419 (1970)]. To include hydrodynamic interactions between the segments of the chain, the line distribution of forces on each segment is approximated by making a Legendre polynomial expansion of the disturbance velocity on the segment, where the first two terms of the expansion are retained in the calculation. Thus, the resulting linear force distribution is specified by a center of mass force, couple, and stresslet on each segment. This method for calculating the hydrodynamic interactions has been successfully used to simulate the dynamics of noncolloidal suspensions of rigid fibers [O. G. Harlen, R. R. Sundararajakumar, and D. L. Koch, J. Fluid Mech. 388, 355 (1999); J. E. Butler and E. S. G. Shaqfeh, J. Fluid Mech. 468, 204 (2002)]. The longest relaxation time and center of mass diffusivity are among the quantities calculated with the simulation technique. Comparisons are made for different levels of approximation of the hydrodynamic interactions, including multibody interactions, two-body interactions, and the "freely draining" case with no interactions. For the short polymer chains studied in this paper, the results indicate a difference in the apparent scaling of diffusivity with polymer length for the multibody versus two-body level of approximation for the hydrodynamic interactions.
A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging
Gallio, Elena; Rampado, Osvaldo; Gianaria, Elena; Bianchi, Silvio Diego; Ropolo, Roberto
2015-01-01
Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies. PMID:26545097
A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging.
Gallio, Elena; Rampado, Osvaldo; Gianaria, Elena; Bianchi, Silvio Diego; Ropolo, Roberto
2015-01-01
Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies. PMID:26545097
Properties of galaxies reproduced by a hydrodynamic simulation.
Vogelsberger, M; Genel, S; Springel, V; Torrey, P; Sijacki, D; Xu, D; Snyder, G; Bird, S; Nelson, D; Hernquist, L
2014-05-01
Previous simulations of the growth of cosmic structures have broadly reproduced the 'cosmic web' of galaxies that we see in the Universe, but failed to create a mixed population of elliptical and spiral galaxies, because of numerical inaccuracies and incomplete physical models. Moreover, they were unable to track the small-scale evolution of gas and stars to the present epoch within a representative portion of the Universe. Here we report a simulation that starts 12 million years after the Big Bang, and traces 13 billion years of cosmic evolution with 12 billion resolution elements in a cube of 106.5 megaparsecs a side. It yields a reasonable population of ellipticals and spirals, reproduces the observed distribution of galaxies in clusters and characteristics of hydrogen on large scales, and at the same time matches the 'metal' and hydrogen content of galaxies on small scales. PMID:24805343
Effect of angular momentum conservation on hydrodynamic simulations of colloids.
Yang, Mingcheng; Theers, Mario; Hu, Jinglei; Gompper, Gerhard; Winkler, Roland G; Ripoll, Marisol
2015-07-01
In contrast to most real fluids, angular momentum is not a locally conserved quantity in some mesoscopic simulation methods. Here we quantify the importance of this conservation in the flow fields associated with different colloidal systems. The flow field is analytically calculated with and without angular momentum conservation for the multiparticle collision dynamics (MPC) method, and simulations are performed to verify the predictions. The flow field generated around a colloidal particle moving under an external force with slip boundary conditions depends on the conservation of angular momentum, and the amplitude of the friction force is substantially affected. Interestingly, no dependence on the angular momentum conservation is found for the flow fields generated around colloids under the influence of phoretic forces. Moreover, circular Couette flow between a no-slip and a slip cylinder is investigated, which allows us to validate one of the two existing expressions for the MPC stress tensor. PMID:26274301
Temperature dependence of protein hydration hydrodynamics by molecular dynamics simulations.
Lau, E Y; Krishnan, V V
2007-07-18
The dynamics of water molecules near the protein surface are different from those of bulk water and influence the structure and dynamics of the protein itself. To elucidate the temperature dependence hydration dynamics of water molecules, we present results from the molecular dynamic simulation of the water molecules surrounding two proteins (Carboxypeptidase inhibitor and Ovomucoid) at seven different temperatures (T=273 to 303 K, in increments of 5 K). Translational diffusion coefficients of the surface water and bulk water molecules were estimated from 2 ns molecular dynamics simulation trajectories. Temperature dependence of the estimated bulk water diffusion closely reflects the experimental values, while hydration water diffusion is retarded significantly due to the protein. Protein surface induced scaling of translational dynamics of the hydration waters is uniform over the temperature range studied, suggesting the importance protein-water interactions.
2D fluid simulations of discharges at atmospheric pressure in reactive gas mixtures
NASA Astrophysics Data System (ADS)
Bourdon, Anne
2015-09-01
Since a few years, low-temperature atmospheric pressure discharges have received a considerable interest as they efficiently produce many reactive chemical species at a low energy cost. This potential is of great interest for a wide range of applications as plasma assisted combustion or biomedical applications. Then, in current simulations of atmospheric pressure discharges, there is the need to take into account detailed kinetic schemes. It is interesting to note that in some conditions, the kinetics of the discharge may play a role on the discharge dynamics itself. To illustrate this, we consider the case of the propagation of He-N2 discharges in long capillary tubes, studied for the development of medical devices for endoscopic applications. Simulation results put forward that the discharge dynamics and structure depend on the amount of N2 in the He-N2 mixture. In particular, as the amount of N2 admixture increases, the discharge propagation velocity in the tube increases, reaches a maximum for about 0 . 1 % of N2 and then decreases, in agreement with experiments. For applications as plasma assisted combustion with nanosecond repetitively pulsed discharges, there is the need to handle the very different timescales of the nanosecond discharge with the much longer (micro to millisecond) timescales of combustion processes. This is challenging from a computational point of view. It is also important to better understand the coupling of the plasma induced chemistry and the gas heating. To illustrate this, we present the simulation of the flame ignition in lean mixtures by a nanosecond pulsed discharge between two point electrodes. In particular, among the different discharge regimes of nanosecond repetitively pulsed discharges, a ``spark'' regime has been put forward in the experiments, with an ultra-fast local heating of the gas. For other discharge regimes, the gas heating is much weaker. We have simulated the nanosecond spark regime and have observed shock waves
Real-time 2D floating-point fast Fourier transforms for seeker simulation
NASA Astrophysics Data System (ADS)
Chamberlain, Richard; Lord, Eric; Shand, David J.
2002-07-01
The floating point Fast Fourier Transform (FFT) is one of the most useful basic functions available to the image and signal processing engineer allowing many complex and detailed special functions to be implemented more simply in the frequency domain. In the Hardware-in-the-Loop field an image transformed using FFT would allow the designer to think about accurate frequency based simulation of seeker lens effects, motion blur, detector transfer functions and much more. Unfortunately, the transform requires many hundreds of thousands or millions of floating point operations on a single modest sized image making it impractical for realtime Hardware-in-the-Loop systems. .until now. This paper outlines the development, by Nallatech, of an FPGA based IEEE floating point core. It traces the subsequent use of this core to develop a full 256 X 256 FFT and filter process implemented on COTS hardware at frame rates up to 150Hz. This transform can be demonstrated to model optical transfer functions at a far greater accuracy than the current spatial models. Other applications and extensions of this technique will be discussed such as filtering for image tracking algorithms and in the simulation of radar processing in the frequency domain.
NASA Astrophysics Data System (ADS)
Cao, Jiang; Cresti, Alessandro; Esseni, David; Pala, Marco
2016-02-01
We simulate a band-to-band tunneling field-effect transistor based on a vertical heterojunction of single-layer MoS2 and WTe2, by exploiting the non-equilibrium Green's function method and including electron-phonon scattering. For both in-plane and out-of-plane transport, we attempt to calibrate out models to the few available experimental results. We focus on the role of chemical doping and back-gate biasing, and investigate the off-state physics of this device by analyzing the influence of the top-gate geometrical alignment on the device performance. The device scalability as a function of gate length is also studied. Finally, we present two metrics for the switching delay and energy of the device. Our simulations indicate that vertical field-effect transistors based on transition metal dichalcogenides can provide very small values of sub-threshold swing when properly designed in terms of doping concentration and top-gate extension length.
Gyrokinetic simulations of 2D magnetic reconnection turbulence in guide fields
NASA Astrophysics Data System (ADS)
Terry, P. W.; Pueschel, M. J.; Jenko, F.; Zweibel, E.; Zhdankin, V.; Told, D.
2012-10-01
Following the analyses in [M.J. Pueschel et al., Phys. Plasmas 18, 112102 (2011)], a study of turbulence in driven reconnection is commenced, with a sinusoidal current sheet providing the drive through a Krook-type operator in a bi-periodic box. Simulations with the Gene code cover all relevant physical parameters, allowing for encompassing comparisons with expectations from linear simulations. A central observed feature are coherent circular current structures which may be identified as plasmoids. These objects move randomly in the plane perpendicular to the guide field, and may either disappear again after some time or instead merge with one another---the setup can thus be described as turbulence driven by reconnection, but simultaneously creating its own reconnection. Such merger events are associated with large bursts in the heating rate jE, and display strong non-Maxwellian components of the distribution function in parallel velocity space. The plasmoid energetics are studied, as are their ability to produce populations of fast particles. Statistics of such populations are used to facilitate direct comparisons with astrophysical scenarios of energetic particle production.
Evans, T.E.; Leonard, A.W.; West, W.P.; Finkenthal, D.F.; Fenstermacher, M.E.; Porter, G.D.
1998-08-01
Experimentally measured carbon line emissions and total radiated power distributions from the DIII-D divertor and Scrape-Off Layer (SOL) are compared to those calculated with the Monte Carlo Impurity (MCI) model. A UEDGE background plasma is used in MCI with the Roth and Garcia-Rosales (RG-R) chemical sputtering model and/or one of six physical sputtering models. While results from these simulations do not reproduce all of the features seen in the experimentally measured radiation patterns, the total radiated power calculated in MCI is in relatively good agreement with that measured by the DIII-D bolometric system when the Smith78 physical sputtering model is coupled to RG-R chemical sputtering in an unaltered UEDGE plasma. Alternatively, MCI simulations done with UEDGE background ion temperatures along the divertor target plates adjusted to better match those measured in the experiment resulted in three physical sputtering models which when coupled to the RG-R model gave a total radiated power that was within 10% of measured value.
NASA Astrophysics Data System (ADS)
Pérez-Corona, M.; García, J. A.; Taller, G.; Polgár, D.; Bustos, E.; Plank, Z.
2016-02-01
The purpose of geophysical electrical surveys is to determine the subsurface resistivity distribution by making measurements on the ground surface. From these measurements, the true resistivity of the subsurface can be estimated. The ground resistivity is related to various geological parameters, such as the mineral and fluid content, porosity and degree of water saturation in the rock. Electrical resistivity surveys have been used for many decades in hydrogeological, mining and geotechnical investigations. More recently, they have been used for environmental surveys. To obtain a more accurate subsurface model than is possible with a simple 1-D model, a more complex model must be used. In a 2-D model, the resistivity values are allowed to vary in one horizontal direction (usually referred to as the x direction) but are assumed to be constant in the other horizontal (the y) direction. A more realistic model would be a fully 3-D model where the resistivity values are allowed to change in all three directions. In this research, a simulation of the cone penetration test and 2D imaging resistivity are used as tools to simulate the distribution of hydrocarbons in soil.
A computer simulation of hydrodynamics and heat transfer at immersed surfaces in a fluidized bed
Kodikal, N.J.; Bhavnani, S.H.
1999-07-01
A computer simulation of the hydrodynamics and heat transfer processes in a fluidized bed with bubbles propagating from a single jet has been developed. The velocity, volume fraction, and temperature distributions of both phases predicted by the model show satisfactory agreement with the experimental models of Kuipers (1990). An Eulerian-Eulerian approach that incorporates a two-fluid model was utilized. The simulation was developed using a general purpose Computational Fluid Dynamics (CFD) solver; PHOENICS{reg{underscore}sign}. The conservation equations describing the physics of the two-phase nature of the fluidized bed are solved using the finite volume approach. The Interphase-Slip-Algorithm, which is a part of the PHOENICS package, was utilized to ensure numerical stability and convergence of the problem. The unsteady state simulation predicts the hydrodynamics and heat transfer in the fluidized bed. Also predicted, is the formation and propagation of a bubble from a single jet near the immersed surface, as a function of time. The heat transfer coefficients prevailing at the immersed heated wall are calculated. The calculated values of the heat transfer coefficients and simulated hydrodynamics compare well with experimental and numerical data present in literature. Such a simulation technique allows performance evaluation for different bed input parameters, and can evolve into a tool that would help in the optimum design of a fluidized combustion chamber.
SIMULATION REAL SCALE EXPERIMENT ON LEVEE BREACH USING 2D SHALLOW FLOW MODEL
NASA Astrophysics Data System (ADS)
Zenno, Hiroki; Iwasaki, Toshiki; Shimizu, Yasuyuki; Kimura, Ichiro
Flood in rivers is a common disaster all over the world. If a levee breach happens, it sometimes causes a fatal disaster. In addition, many buildings, urban facilities, lifelines, etc. are seriously damaged. Detailed mechanism of a levee breach has not been clarified yet. Therefore, it is important to predict the collapsing process of riverbank and behavior of overtop flow for reducing damage. We applied a two-dimensional shallow flow computational model to levee breach phenomena caused by overflow and the performance of the model was elucidated. A calibration of the numerical model is made through the comparison with field experimental data. Recently, a real-scale experiment on a levee breach was carried out at the Chiyoda Experimental Channel in Hokkaido, Japan. We performed the computation under the same conditions in the experiment. The computational results showed the excellent performance for simulating levee breach phenomena.
Simulating HFIR Core Thermal Hydraulics Using 3D-2D Model Coupling
Travis, Adam R; Freels, James D; Ekici, Kivanc
2013-01-01
A model utilizing interdimensional variable coupling is presented for simulating the thermal hydraulic interactions of the High Flux Isotope Reactor (HFIR) core at Oak Ridge National Laboratory (ORNL). The model s domain consists of a single, explicitly represented three-dimensional fuel plate and a simplified two-dimensional coolant channel slice. In simplifying the coolant channel, and thus the number of mesh points in which the Navier-Stokes equations must be solved, the computational cost and solution time are both greatly reduced. In order for the reduced-dimension coolant channel to interact with the explicitly represented fuel plate, however, interdimensional variable coupling must be enacted along all shared boundaries. The primary focus of this paper is in detailing the collection, storage, passage, and application of variables across this interdimensional interface. Comparisons are made showing the general speed-up associated with this simplified coupled model.
A hierarchical lattice spring model to simulate the mechanics of 2-D materials-based composites
NASA Astrophysics Data System (ADS)
Brely, Lucas; Bosia, Federico; Pugno, Nicola
2015-07-01
In the field of engineering materials, strength and toughness are typically two mutually exclusive properties. Structural biological materials such as bone, tendon or dentin have resolved this conflict and show unprecedented damage tolerance, toughness and strength levels. The common feature of these materials is their hierarchical heterogeneous structure, which contributes to increased energy dissipation before failure occurring at different scale levels. These structural properties are the key to exceptional bioinspired material mechanical properties, in particular for nanocomposites. Here, we develop a numerical model in order to simulate the mechanisms involved in damage progression and energy dissipation at different size scales in nano- and macro-composites, which depend both on the heterogeneity of the material and on the type of hierarchical structure. Both these aspects have been incorporated into a 2-dimensional model based on a Lattice Spring Model, accounting for geometrical nonlinearities and including statistically-based fracture phenomena. The model has been validated by comparing numerical results to continuum and fracture mechanics results as well as finite elements simulations, and then employed to study how structural aspects impact on hierarchical composite material properties. Results obtained with the numerical code highlight the dependence of stress distributions on matrix properties and reinforcement dispersion, geometry and properties, and how failure of sacrificial elements is directly involved in the damage tolerance of the material. Thanks to the rapidly developing field of nanocomposite manufacture, it is already possible to artificially create materials with multi-scale hierarchical reinforcements. The developed code could be a valuable support in the design and optimization of these advanced materials, drawing inspiration and going beyond biological materials with exceptional mechanical properties.
RADIATIVE HYDRODYNAMIC SIMULATIONS OF HD209458b: TEMPORAL VARIABILITY
Dobbs-Dixon, Ian; Cumming, Andrew; Lin, D. N. C.
2010-02-20
We present a new approach for simulating the atmospheric dynamics of the close-in giant planet HD209458b that allows for the decoupling of radiative and thermal energies, direct stellar heating of the interior, and the solution of the full three-dimensional Navier-Stokes equations. Simulations reveal two distinct temperature inversions (increasing temperature with decreasing pressure) at the sub-stellar point due to the combined effects of opacity and dynamical flow structure and exhibit instabilities leading to changing velocities and temperatures on the nightside for a range of viscosities. Imposed on the quasi-static background, temperature variations of up to 15% are seen near the terminators and the location of the coldest spot is seen to vary by more than 20{sup 0}, occasionally appearing west of the anti-solar point. Our new approach introduces four major improvements to our previous methods including simultaneously solving both the thermal energy and radiative equations in both the optical and infrared, incorporating updated opacities, including a more accurate treatment of stellar energy deposition that incorporates the opacity relevant for higher energy stellar photons, and the addition of explicit turbulent viscosity.
Ion Dynamics at a Rippled Quasi-parallel Shock: 2D Hybrid Simulations
NASA Astrophysics Data System (ADS)
Hao, Yufei; Lu, Quanming; Gao, Xinliang; Wang, Shui
2016-05-01
In this paper, two-dimensional hybrid simulations are performed to investigate ion dynamics at a rippled quasi-parallel shock. The results show that the ripples around the shock front are inherent structures of a quasi-parallel shock, and the re-formation of the shock is not synchronous along the surface of the shock front. By following the trajectories of the upstream ions, we find that these ions behave differently when they interact with the shock front at different positions along the shock surface. The upstream particles are transmitted more easily through the upper part of a ripple, and the corresponding bulk velocity downstream is larger, where a high-speed jet is formed. In the lower part of the ripple, the upstream particles tend to be reflected by the shock. Ions reflected by the shock may suffer multiple-stage acceleration when moving along the shock surface or trapped between the upstream waves and the shock front. Finally, these ions may escape further upstream or move downstream; therefore, superthermal ions can be found both upstream and downstream.
NASA Astrophysics Data System (ADS)
Kuhl, J. M.; Desjardin, P. E.
2012-01-01
Two-dimensional, fully coupled direct numerical simulations (DNS) are conducted to examine the local energy dynamics of a flexible cantilevered plate in the wake of a two-dimensional circular cylinder. The motion of the cantilevered plate is described using a finite element formulation and a fully compressible, finite volume Navier Stokes solver is used to compute the flow field. A sharp interface level set method is employed in conjunction with a ghost fluid method to describe the immersed boundaries of the bluff body and flexible plate. DNS is first conducted to validate the numerical methodology and compared with previous studies of flexible cantilevered plates and flow over bluff bodies; excellent agreement with previous results is observed. A newly defined power production/loss geometry metric is introduced based on surface curvature and plate velocity. The metric is found to be useful for determining which sections of the plate will produce energy based on curvature and deflection rate. Scatter plots and probability measures are presented showing a high correlation between the direction of energy transfer (i.e., to or from the plate) and the sign of the newly defined curvature-deflection-rate metric. The findings from this study suggest that a simple local geometry/kinematic based metric can be devised to aid in the development and design of flexible wind energy harvesting flutter mills.
NASA Technical Reports Server (NTRS)
Zimmerman, Michael I.; Farrell, W. M.; Snubbs, T. J.; Halekas, J. S.
2011-01-01
Anticipating the plasma and electrical environments in permanently shadowed regions (PSRs) of the moon is critical in understanding local processes of space weathering, surface charging, surface chemistry, volatile production and trapping, exo-ion sputtering, and charged dust transport. In the present study, we have employed the open-source XOOPIC code [I] to investigate the effects of solar wind conditions and plasma-surface interactions on the electrical environment in PSRs through fully two-dimensional pattic1e-in-cell simulations. By direct analogy with current understanding of the global lunar wake (e.g., references) deep, near-terminator, shadowed craters are expected to produce plasma "mini-wakes" just leeward of the crater wall. The present results (e.g., Figure I) are in agreement with previous claims that hot electrons rush into the crater void ahead of the heavier ions, fanning a negative cloud of charge. Charge separation along the initial plasma-vacuum interface gives rise to an ambipolar electric field that subsequently accelerates ions into the void. However, the situation is complicated by the presence of the dynamic lunar surface, which develops an electric potential in response to local plasma currents (e.g., Figure Ia). In some regimes, wake structure is clearly affected by the presence of the charged crater floor as it seeks to achieve current balance (i.e. zero net current to the surface).
KEEN and KEEPN wave simulations from 2D to 4D
NASA Astrophysics Data System (ADS)
Mehrenberger, Michel; Afeyan, Bedros; Larson, David; Crouseilles, Nicolas; Casas, Fernando; Faou, Erwan; Dodhy, Adila; Sonnendrucker, Eric; Shoucri, Magdi
2015-11-01
We show for well-driven KEEN (Kinetic Electrostatic Electron Nonlinear) waves and their analogs in pair plasmas KEEPN (Positron) waves, how the dynamics is captured in a variety of complimentary numerical approaches. Symplectic integration and quadrature node based techniques are deployed to achieve satisfactory results in the long time evolution of highly nonlinear, kinetic, non-stationary, self-organized structures in phase space. Fixed and composite velocity grid arbitrary-order interpolation approaches have advantages we highlight. Adaptivity to local phase space density morphological structures will be discussed starting within the framework of the Shape Function Kinetics (SFK) approach. Fine resolution in velocity only in the range affected by KEEN waves makes for more efficient simulations, especially in higher dimensions. We explore the parameter space of unequal electron and positron temperatures as well as the effects of a relative drift velocity in their initial conditions. Ponderomotively driven KEEPN waves have many novelties when compared to KEEN waves, such as double, staggered, vortex structures, which we highlight. Work supported by the AFOSR and OFES.
Origin of energetic ions observed in the terrestrial ion foreshock : 2D full-particle simulations
NASA Astrophysics Data System (ADS)
Savoini, Philippe; Lembege, bertrand
2016-04-01
Collisionless shocks are well-known structures in astrophysical environments which dissipate bulk flow kinetic energy and accelerate large fraction of particle. Spacecrafts have firmly established the existence of the so-called terrestrial foreshock region magnetically connected to the shock and filled by two distinct populations in the quasi-perpendicular shock region (i.e. for 45r{ } ≤ quad θ Bn quad ≤ 90r{ }, where θ Bn is the angle between the shock normal and the upstream magnetic field) : (i) the field-aligned ion beams or `` FAB '' characterized by a gyrotropic distributionsout{,} and (ii) the gyro-phase bunched ions or `` GPB '' characterized by a NON gyrotropic distribution. The present work is based on the use of two dimensional PIC simulation of a curved shock and associated foreshock region where full curvature effects, time of flight effects and both electrons and ions dynamics are fully described by a self consistent approach. Our previous analysis (Savoini et Lembège, 2015) has evidenced that these two types of backstreaming populations can originate from the shock front itself without invoking any local diffusion by ion beam instabilities. Present results are focussed on individual ion trajectories and evidence that "FAB" population is injected into the foreshock mainly along the shock front whereas the "GPB" population penetrates more deeply the shock front. Such differences explain why the "FAB" population loses their gyro-phase coherency and become gyrotropic which is not the case for the "GPB". The impact of these different injection features on the energy gain for each ion population will be presented in détails. Savoini, P. and B. Lembège (2015), `` Production of nongyrotropic and gyrotropic backstreaming ion distributions in the quasi-perpendicular ion foreshock région '', J. Geophys. Res., 120, pp 7154-7171, doi = 10.1002/2015JA021018.
NASA Astrophysics Data System (ADS)
Dages, Cecile; Samouelian, Anatja; Lanoix, Marthe; Dollinger, Jeanne; Chakkour, Sara; Chovelon, Gabrielle; Trabelsi, Khouloud; Voltz, Marc
2015-04-01
Ditches are involved in the transfer of pesticide to surface and groundwaters (e.g. Louchart et al., 2001). Soil horizons underlying ditch beds may present specific soil characteristics compared to neighbouring field soils due to erosion/deposition processes, to the specific biological activities (rooting dynamic and animal habitat) in the ditches (e.g. Vaughan et al., 2008) and to management practices (burning, dredging, mowing,...). Moreover, in contrast to percolation processes in field soils that can be assumed to be mainly 1D vertical, those occurring in the ditch beds are by essence 2D or even 3D. Nevertheless, due to a lake of knowledge, these specific aspects of transfer within ditch beds are generally omitted for hydrological simulation at the catchment scale (Mottes et al., 2014). Accordingly, the aims of this study were i) to characterize subsurface solute transfer through ditch beds and ii) to determine equivalent hydraulic parameters of the ditch beds for use in catchment scale hydrological simulations. A complementary aim was to evaluate the error in predictions performed when percolation in ditches is assumed to be similar to that in the neighbouring field soil. First, bromide transfer experiments were performed on undisturbed soil column (15 cm long with a 15 cm inner-diameter), horizontally and vertically sampled within each soil horizon underlying a ditch bed and within the neighboring field. Columns were sampled at the Roujan catchment (Hérault, France), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). Second, for each column, a set of parameters was determined by inverse optimization with mobile-immobile or dual permeability models, with CXTFIT (Toride et al., 1999) or with HYDRUS (Simunek et al., 1998). Third, infiltration and percolation in the ditch was simulated by a 2D flow domain approach considering the 2D variation in hydraulic properties of the cross section of a ditch bed. Last
NASA Astrophysics Data System (ADS)
Hoffmann, H.; Seiß, M.; Salo, H.; Spahn, F.
2014-04-01
Small moonlets in Saturn's rings induce propeller called structures into the surrounding ring material. Images of Saturn's rings, taken by the Cassini spacecraft near Saturn's equinox in 2009, show shadows cast by these propellers [1], offering the opportunity to study their vertical structure. We compare results from an extended hydrodynamical propeller model with results from local N-body box simulations of propeller structures. In the hydrodynamical model, maximal propeller heights are determined from the gravitational scattering of the ring particles by the moonlet. Afterwards the disturbed balance of viscous heating and collisional cooling is considered as main mechanism of the propeller height relaxation [2]. For the N-body box simulations we use the code by Salo [3], which was also applied in the propeller simulations of [4] and [5]. We find that the exponential height relaxation predicted by the hydrodynamical modelling is confirmed by N-body simulations of non-self gravitating ring particles. By projecting the propeller height evolution of the hydrodynamical model into observations of the shadows cast by the Earhart propeller, we determine the exponential cooling constant of the height relaxation. With this cooling constant we estimate collision frequencies of about 6 collisions per particle per orbit in the propeller gap region or about 11 collisions per particle per orbit in the propeller wake region of the Earhart propeller. The N-body simulations lead to maximal propeller heights between 60 to 70 percent of the Hill radius of the corresponding moonlet. Moonlet sizes estimated by this relation are in fair agreement with size estimates from radial propeller scalings [5, 6] for propeller structures with observed shadows.
Krylov subspace methods for computing hydrodynamic interactions in Brownian dynamics simulations
Ando, Tadashi; Chow, Edmond; Saad, Yousef; Skolnick, Jeffrey
2012-01-01
Hydrodynamic interactions play an important role in the dynamics of macromolecules. The most common way to take into account hydrodynamic effects in molecular simulations is in the context of a Brownian dynamics simulation. However, the calculation of correlated Brownian noise vectors in these simulations is computationally very demanding and alternative methods are desirable. This paper studies methods based on Krylov subspaces for computing Brownian noise vectors. These methods are related to Chebyshev polynomial approximations, but do not require eigenvalue estimates. We show that only low accuracy is required in the Brownian noise vectors to accurately compute values of dynamic and static properties of polymer and monodisperse suspension models. With this level of accuracy, the computational time of Krylov subspace methods scales very nearly as O(N2) for the number of particles N up to 10 000, which was the limit tested. The performance of the Krylov subspace methods, especially the “block” version, is slightly better than that of the Chebyshev method, even without taking into account the additional cost of eigenvalue estimates required by the latter. Furthermore, at N = 10 000, the Krylov subspace method is 13 times faster than the exact Cholesky method. Thus, Krylov subspace methods are recommended for performing large-scale Brownian dynamics simulations with hydrodynamic interactions. PMID:22897254
NASA Astrophysics Data System (ADS)
Campforts, Benjamin; Vanacker, Veerle; Vanderborght, Jan; Baken, Stijn; Smolders, Erik; Govers, Gerard
2016-04-01
Meteoric 10Be allows for the quantification of vertical and lateral soil fluxes over long time scales (103-105 yr). However, the mobility of meteoric 10Be in the soil system makes a translation of meteoric 10Be inventories into erosion and deposition rates complex. Here, we present a spatially explicit 2D model simulating the behaviour of meteoric 10Be on a hillslope. The model consists of two parts. The first component deals with advective and diffusive mobility of meteoric 10Be within the soil profile, and the second component describes lateral soil and meteoric 10Be fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering as well as downslope fluxes of soil due to creep, water and tillage erosion. Synthetic model simulations show that meteoric 10Be inventories can be related to erosion and deposition across a wide range of geomorphological and pedological settings. Our results also show that meteoric 10Be can be used as a tracer to detect human impact on soil fluxes for soils with a high affinity for meteoric 10Be. However, the quantification of vertical mobility is essential for a correct interpretation of the observed variations in meteoric 10Be profiles and inventories. Application of the Be2D model to natural conditions using data sets from the Southern Piedmont (Bacon et al., 2012) and Appalachian Mountains (Jungers et al., 2009; West et al., 2013) allows to reliably constrain parameter values. Good agreement between simulated and observed meteoric 10Be concentrations and inventories is obtained with realistic parameter values. Furthermore, our results provide detailed insights into the processes redistributing meteoric 10Be at the soil-hillslope scale.
Hydrodynamic cavitation in microsystems. II. Simulations and optical observations
NASA Astrophysics Data System (ADS)
Medrano, M.; Pellone, C.; Zermatten, P. J.; Ayela, F.
2012-04-01
Numerical calculations in the single liquid phase and optical observations in the two-phase cavitating flow regime have been performed on microdiaphragms and microventuris fed with deionized water. Simulations have confirmed the influence of the shape of the shrinkage upon the contraction of the jet, and so on the localisation of possible cavitating area downstream. Observations of cavitating flow patterns through hybrid silicon-pyrex microdevices have been performed either via a laser excitation with a pulse duration of 6 ns, or with the help of a high-speed camera. Recorded snapshots and movies are presented. Concerning microdiaphragms, it is confirmed that very high shear rates downstream the diaphragms are the cause of bubbly flows. Concerning microventuris, a gaseous cavity forms on a boundary downstream the throat. As a consequence of a microsystem instability, the cavity displays a high frequency pulsation. Low values Strouhal numbers are associated to such a sheet cavitation. Moreover, when the intensity of the cavitating flow is reduced, there is a mismatch between the frequency of the pulsation of the cavity and the frequency of shedded clouds downstream the channel. That may be the consequence of viscous effects limiting the impingement of a re-entrant liquid jet on the attached cavity.
Hydrodynamic simulations of captured protoatmospheres around Earth-like planets
NASA Astrophysics Data System (ADS)
Stökl, Alexander; Dorfi, Ernst; Lammer, Helmut
2015-04-01
Context. Young terrestrial planets, when they are still embedded in a circumstellar disk, accumulate an atmosphere of nebula gas. The evolution and eventual evaporation of the protoplanetary disk affect the structure and dynamics of the planetary atmosphere. These processes, combined with other mass loss mechanisms, such as thermal escape driven by extreme ultraviolet and soft X-ray radiation from the young host star, determine how much of the primary atmosphere, if anything at all, survives into later stages of planetary evolution. Aims: Our aim is to explore the structure and the dynamic outflow processes of nebula-accreted atmospheres in dependency on changes in the planetary environment. Methods: We integrate stationary hydrostatic models and perform time-dependent dynamical simulations to investigate the effect of a changing nebula environment on the atmospheric structure and the timescales on which the protoatmosphere reacts to these changes. Results: We find that the behavior of the atmospheres strongly depends on the mass of the planetary core. For planets of about Mars-mass the atmospheric structure, and in particular the atmospheric mass, changes drastically and on very short timescales whereas atmospheres around higher mass planets are much more robust and inert.
Water pipe flow simulation using improved virtual particles on smoothed particle hydrodynamics
NASA Astrophysics Data System (ADS)
Ting, E. S.; Yeak, S. H.
2014-12-01
Smoothed Particle Hydrodynamics (SPH) is a meshless method used widely to solve problems such as fluid flows. Due to its meshless property, it is ideal to solve problems on complex geometry. In this paper, boundary treatment were implied for the rectangular pipe flow simulations using SPH. The repulsive force is applied to the boundary particles along with the improved virtual particles on different geometry alignment. The water flow is solved using incompressible SPH and will be examined throughout the simulation. Results from this simulation will be compared with single layered virtual particles. Based on the result of the study, it is found that the improved virtual particles is more accurate and stable.
FireStem2D – A Two-Dimensional Heat Transfer Model for Simulating Tree Stem Injury in Fires
Chatziefstratiou, Efthalia K.; Bohrer, Gil; Bova, Anthony S.; Subramanian, Ravishankar; Frasson, Renato P. M.; Scherzer, Amy; Butler, Bret W.; Dickinson, Matthew B.
2013-01-01
FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by resolving stem moisture loss, temperatures through the stem, degree of bark charring, and necrotic depth around the stem. We present the results of numerical parameterization and model evaluation experiments for FireStem2D that simulate laboratory stem-heating experiments of 52 tree sections from 25 trees. We also conducted a set of virtual sensitivity analysis experiments to test the effects of unevenness of heating around the stem and with aboveground height using data from two studies: a low-intensity surface fire and a more intense crown fire. The model allows for improved understanding and prediction of the effects of wildland fire on injury and mortality of trees of different species and sizes. PMID:23894599
NASA Astrophysics Data System (ADS)
Obergaulinger, M.; Chimeno, J. M.; Mimica, P.; Aloy, M. A.; Iyudin, A.
2015-12-01
The observational signature of supernova remnants (SNRs) is very complex, in terms of both their geometrical shape and their spectral properties, dominated by non-thermal synchrotron and inverse-Compton scattering. We propose a post-processing method to analyse the broad-band emission of SNRs based on three-dimensional hydrodynamical simulations. From the hydrodynamical data, we estimate the distribution of non-thermal electrons accelerated at the shock wave and follow the subsequent evolution as they lose or gain energy by adiabatic expansion or compression and emit energy by radiation. As a first test case, we use a simulation of a bipolar supernova expanding into a cloudy medium. We find that our method qualitatively reproduces the main observational features of typical SNRs and produces fluxes that agree with observations to within a factor of a few allowing for further use in more extended sets of models.
NASA Astrophysics Data System (ADS)
Yang, G.; Han, X.; Hu, D. A.
2015-11-01
Modified cylindrical smoothed particle hydrodynamics (MCSPH) approximation equations are derived for hydrodynamics with material strength in axisymmetric cylindrical coordinates. The momentum equation and internal energy equation are represented to be in the axisymmetric form. The MCSPH approximation equations are applied to simulate the process of explosively driven metallic tubes, which includes strong shock waves, large deformations and large inhomogeneities, etc. The meshless and Lagrangian character of the MCSPH method offers the advantages in treating the difficulties embodied in these physical phenomena. Two test cases, the cylinder test and the metallic tube driven by two head-on colliding detonation waves, are presented. Numerical simulation results show that the new form of the MCSPH method can predict the detonation process of high explosives and the expansion process of metallic tubes accurately and robustly.
NASA Technical Reports Server (NTRS)
Libersky, Larry; Allahdadi, Firooz A.; Carney, Theodore C.
1992-01-01
Analysis of interaction occurring between space debris and orbiting structures is of great interest to the planning and survivability of space assets. Computer simulation of the impact events using hydrodynamic codes can provide some understanding of the processes but the problems involved with this fundamental approach are formidable. First, any realistic simulation is necessarily three-dimensional, e.g., the impact and breakup of a satellite. Second, the thickness of important components such as satellite skins or bumper shields are small with respect to the dimension of the structure as a whole, presenting severe zoning problems for codes. Thirdly, the debris cloud produced by the primary impact will yield many secondary impacts which will contribute to the damage and possible breakup of the structure. The problem was approached by choosing a relatively new computational technique that has virtues peculiar to space impacts. The method is called Smoothed Particle Hydrodynamics.
NASA Astrophysics Data System (ADS)
Cardall, Christian Y.; Budiardja, Reuben D.; Endeve, Eirik; Mezzacappa, Anthony
2014-02-01
GenASiS (General Astrophysical Simulation System) is a new code being developed initially and primarily, though by no means exclusively, for the simulation of core-collapse supernovae on the world's leading capability supercomputers. This paper—the first in a series—demonstrates a centrally refined coordinate patch suitable for gravitational collapse and documents methods for compressible nonrelativistic hydrodynamics. We benchmark the hydrodynamics capabilities of GenASiS against many standard test problems; the results illustrate the basic competence of our implementation, demonstrate the strengths and limitations of the HLLC relative to the HLL Riemann solver in a number of interesting cases, and provide preliminary indications of the code's ability to scale and to function with cell-by-cell fixed-mesh refinement.
Cholla: 3D GPU-based hydrodynamics code for astrophysical simulation
NASA Astrophysics Data System (ADS)
Schneider, Evan E.; Robertson, Brant E.
2016-07-01
Cholla (Computational Hydrodynamics On ParaLLel Architectures) models the Euler equations on a static mesh and evolves the fluid properties of thousands of cells simultaneously using GPUs. It can update over ten million cells per GPU-second while using an exact Riemann solver and PPM reconstruction, allowing computation of astrophysical simulations with physically interesting grid resolutions (>256^3) on a single device; calculations can be extended onto multiple devices with nearly ideal scaling beyond 64 GPUs.
NASA Astrophysics Data System (ADS)
Cianflone, S.; Lakhian, V.; Dickson, S. E.
2014-12-01
Approximately one third of Canadians and Americans use groundwater as their source of drinking water. Porous media aquifers typically provide significant filtration of particulate contaminants (e.g., viruses, bacteria, protozoa). Fractured media, however, does not provide the same degree of filtration, and in fact often acts as a pathway for particulates to migrate, typically at much greater velocities than in porous media. Fractured aquifers, therefore, are significantly more vulnerable to particulate contamination than unconsolidated porous media. Thus, understanding in the mechanisms of particle migration and retention in fractures is important for the protection and management of these drinking water sources. The purpose of this work was to investigate the role of hydrodynamics on particle transport in saturated, variable aperture fractures. A 2D fracture was randomly generated with an average aperture of approximately 2mm. The fracture was inscribed into pieces of poly(methyl methacrylate), thus creating a pseudo-2D fracture (the xy fracture domain is invariant in z). Transport experiments using fluorescent microspheres (0.05 um, 0.5 um, and 0.75 um) were performed at 2.6 m/day, 26 m/day and 113 m/day and the resulting breakthrough curves were measured. These breakthrough curves included various shoulders and artifacts that were repeatable and could be used to evaluate the quality of a model. COMSOL Multiphysics, was used to generate an average flow field through the 2D fracture by numerically solving the steady-state Navier-Stokes equation. In order to have a 3D realization of the flow field, a parabolic flow regime was assumed in the z-axis and used to scale the average flow field. Random walk particle tracking was utilized to generate breakthrough curves; however, the Brownian motion and local fluid shear mechanisms needed to be considered in addition to the standard movement of particles via the local flow field in order to appropriately model the
Dispersion Relation and Numerical Simulation of Hydrodynamic Waves In Mar's Topside Ionosphere
NASA Astrophysics Data System (ADS)
Wang, J.-S.; Nielsen, E.
The dispersion relation for hydrodynamic waves in an ionosphere with at most a weak magnetic field shows, hydrodynamic hybrid waves may be excited in the topside iono- sphere of Mars and Venus owing to fluctuations in the solar wind pressure. The hy- brid waves result from coupling between two different hydrodynamic wave modes: the classic acoustic-gravity wave(AGW) and the newly developed background gradi- ent wave(BGW). Numerical simulations show that these waves will cause wave-like structures in the altitude profiles of the ionospheric plasma density. The wavelength and frequency are various but their prevailing values in Martian ionosphere are about 60km and 0.001-0.0001Hz, respectively. The amplitudes of the plasma density vari- ations decrease nearly exponentially with increasing altitude, and are of the same or- der of the magnitude as the uncertainty on all the previous measurements of Mar- tian ionospheric electron densities. Radio occultation observations at Mars and Venus show electron density fluctuations in the high altitude ionosphere. The fluctuations are mainly noise, but they may in part be caused by hydrodynamic wave activity. To verify wave activity more detailed measurements are required, and may be obtained with the low frequency radar planned for the Mars Express mission.
Analysis of Highly-Resolved Simulations of 2-D Humps Toward Improvement of Second-Moment Closures
NASA Technical Reports Server (NTRS)
Jeyapaul, Elbert; Rumsey Christopher
2013-01-01
Fully resolved simulation data of flow separation over 2-D humps has been used to analyze the modeling terms in second-moment closures of the Reynolds-averaged Navier- Stokes equations. Existing models for the pressure-strain and dissipation terms have been analyzed using a priori calculations. All pressure-strain models are incorrect in the high-strain region near separation, although a better match is observed downstream, well into the separated-flow region. Near-wall inhomogeneity causes pressure-strain models to predict incorrect signs for the normal components close to the wall. In a posteriori computations, full Reynolds stress and explicit algebraic Reynolds stress models predict the separation point with varying degrees of success. However, as with one- and two-equation models, the separation bubble size is invariably over-predicted.
Hydrodynamic Moving-mesh Simulations of the Common Envelope Phase in Binary Stellar Systems
NASA Astrophysics Data System (ADS)
Ohlmann, Sebastian T.; Röpke, Friedrich K.; Pakmor, Rüdiger; Springel, Volker
2016-01-01
The common envelope (CE) phase is an important stage in binary stellar evolution. It is needed to explain many close binary stellar systems, such as cataclysmic variables, SN Ia progenitors, or X-ray binaries. To form the resulting close binary, the initial orbit has to shrink, thereby transferring energy to the primary giant's envelope that is hence ejected. The details of this interaction, however, are still not understood. Here, we present new hydrodynamic simulations of the dynamical spiral-in forming a CE system. We apply the moving-mesh code arepo to follow the interaction of a 1{M}⊙ compact star with a 2{M}⊙ red giant possessing a 0.4{M}⊙ core. The nearly Lagrangian scheme combines advantages of smoothed particle hydrodynamics and traditional grid-based hydrodynamic codes and allows us to capture also small flow features at high spatial resolution. Our simulations reproduce the initial transfer of energy and angular momentum from the binary core to the envelope by spiral shocks seen in previous studies, but after about 20 orbits a new phenomenon is observed. Large-scale flow instabilities are triggered by shear flows between adjacent shock layers. These indicate the onset of turbulent convection in the CE, thus altering the transport of energy on longer timescales. At the end of our simulation, only 8% of the envelope mass is ejected. The failure to unbind the envelope completely may be caused by processes on thermal timescales or unresolved microphysics.
NASA Astrophysics Data System (ADS)
Kwan, Thomas; Huang, Chengkun; Carlsten, Bruce
2012-10-01
Understanding CSR effects in a bunch compressor requires accurate and self-consistent dynamical simulations accounting for the realistic beam shape and parameters, transient dynamics and possibly a material boundary. We first extend the well-known 1D CSR model into two dimensions and develop a simple numerical algorithm based on the Lienard-Wiechert formula for the electric field of a stiff beam. This numerical model includes the 2D spatial dependence of the field in the bending plane and is accurate for arbitrary beam energy. It also removes the singularity in space charge field presented in a 1D model. Good agreement is obtained with 1D CSR analytic [1] result for FEL related beam parameters but deviations are also found for low-energy or large spot size beams and off-axis fields. We also employ fully electromagnetic Particle-In-Cell (PIC) simulations for self-consistent CSR modeling. The relatively large numerical phase error and anisotropy in a standard PIC algorithm is improved with a high order Finite Difference Time Domain scheme. Detail self-consistent PIC simulations of the CSR fields and beam dynamics will be presented and discussed.
Ekama, G A; Marais, P
2004-02-01
The applicability of the one-dimensional idealized flux theory (1DFT) for the design of secondary settling tanks (SSTs) is evaluated by comparing its predicted maximum surface overflow (SOR) and solids loading (SLR) rates with that calculated with the two-dimensional computational fluid dynamics model SettlerCAD using as a basis 35 full-scale SST stress tests conducted on different SSTs with diameters from 30 to 45m and 2.25-4.1m side water depth (SWD), with and without Stamford baffles. From the simulations, a relatively consistent pattern appeared, i.e. that the 1DFT can be used for design but its predicted maximum SLR needs to be reduced by an appropriate flux rating, the magnitude of which depends mainly on SST depth and hydraulic loading rate (HLR). Simulations of the Watts et al. (Water Res. 30(9)(1996)2112) SST, with doubled SWDs and the Darvill new (4.1m) and old (2.5m) SSTs with interchanged depths, were run to confirm the sensitivity of the flux rating to depth and HLR. Simulations with and without a Stamford baffle were also performed. While the design of the internal features of the SST, such as baffling, has a marked influence on the effluent SS concentration while the SST is underloaded, these features appeared to have only a small influence on the flux rating, i.e. capacity, of the SST. Until more information is obtained, it would appear from the simulations that the flux rating of 0.80 of the 1DFT maximum SLR recommended by Ekama and Marais (Water Pollut. Control 85(1)(1986)101) remains a reasonable value to apply in the design of full-scale SSTs-for deep SSTs (4m SWD) the flux rating could be increased to 0.85 and for shallow SSTs (2.5m SWD) decreased to 0.75. It is recommended that (i) while the apparent interrelationship between SST flux rating and depth suggests some optimization of the volume of the SST, this be avoided and (ii) the depth of the SST be designed independently of the surface area as is usually the practice and once selected, the
NASA Astrophysics Data System (ADS)
Schiettekatte, François; Chicoine, Martin
2016-03-01
Corteo is a program that implements Monte Carlo (MC) method to simulate ion beam analysis (IBA) spectra of several techniques by following the ions trajectory until a sufficiently large fraction of them reach the detector to generate a spectrum. Hence, it fully accounts for effects such as multiple scattering (MS). Here, a version of Corteo is presented where the target can be a 2D or 3D image. This image can be derived from micrographs where the different compounds are identified, therefore bringing extra information into the solution of an IBA spectrum, and potentially significantly constraining the solution. The image intrinsically includes many details such as the actual surface or interfacial roughness, or actual nanostructures shape and distribution. This can for example lead to the unambiguous identification of structures stoichiometry in a layer, or at least to better constraints on their composition. Because MC computes in details the trajectory of the ions, it simulates accurately many of its aspects such as ions coming back into the target after leaving it (re-entry), as well as going through a variety of nanostructures shapes and orientations. We show how, for example, as the ions angle of incidence becomes shallower than the inclination distribution of a rough surface, this process tends to make the effective roughness smaller in a comparable 1D simulation (i.e. narrower thickness distribution in a comparable slab simulation). Also, in ordered nanostructures, target re-entry can lead to replications of a peak in a spectrum. In addition, bitmap description of the target can be used to simulate depth profiles such as those resulting from ion implantation, diffusion, and intermixing. Other improvements to Corteo include the possibility to interpolate the cross-section in angle-energy tables, and the generation of energy-depth maps.
NASA Astrophysics Data System (ADS)
Premaratne, Pavithra Dhanuka
Disruption and fragmentation of an asteroid using nuclear explosive devices (NEDs) is a highly complex yet a practical solution to mitigating the impact threat of asteroids with short warning time. A Hypervelocity Asteroid Intercept Vehicle (HAIV) concept, developed at the Asteroid Deflection Research Center (ADRC), consists of a primary vehicle that acts as kinetic impactor and a secondary vehicle that houses NEDs. The kinetic impactor (lead vehicle) strikes the asteroid creating a crater. The secondary vehicle will immediately enter the crater and detonate its nuclear payload creating a blast wave powerful enough to fragment the asteroid. The nuclear subsurface explosion modeling and hydrodynamic simulation has been a challenging research goal that paves the way an array of mission critical information. A mesh-free hydrodynamic simulation method, Smoothed Particle Hydrodynamics (SPH) was utilized to obtain both qualitative and quantitative solutions for explosion efficiency. Commercial fluid dynamics packages such as AUTODYN along with the in-house GPU accelerated SPH algorithms were used to validate and optimize high-energy explosion dynamics for a variety of test cases. Energy coupling from the NED to the target body was also examined to determine the effectiveness of nuclear subsurface explosions. Success of a disruption mission also depends on the survivability of the nuclear payload when the secondary vehicle approaches the newly formed crater at a velocity of 10 km/s or higher. The vehicle may come into contact with debris ejecting the crater which required the conceptual development of a Whipple shield. As the vehicle closes on the crater, its skin may also experience extreme temperatures due to heat radiated from the crater bottom. In order to address this thermal problem, a simple metallic thermal shield design was implemented utilizing a radiative heat transfer algorithm and nodal solutions obtained from hydrodynamic simulations.
Somasundaram, Deepak S; Trabia, Mohamed; O'Toole, Brendan; Hixson, Robert S
2014-01-23
This paper describes our work to characterize the variables affecting the smoothed particle hydrodynamics (SPH) method in the LS-DYNA package for simulating high-velocity flyer plate impact experiments. LS-DYNA simulations are compared with one-dimensional experimental data of an oxygen-free high-conductivity (OFHC) copper flyer plate impacting another plate of the same material. The comparison is made by measuring the velocity of a point on the back surface of the impact plate using the velocity interferometer system for any reflector (VISAR) technique.
Simulation of wave mitigation by coastal vegetation using smoothed particle hydrodynamics method
NASA Astrophysics Data System (ADS)
Iryanto; Gunawan, P. H.
2016-02-01
Vegetation in coastal area lead to wave mitigation has been studied by some researchers recently. The effect of vegetation forest in coastal area is minimizing the negative impact of wave propagation. In order to describe the effect of vegetation resistance into the water flow, the modified model of framework smoothed hydrodynamics particle has been constructed. In the Lagrangian framework, the Darcy, Manning, and laminar viscosity resistances are added. The effect of each resistances is given in some results of numerical simulations. Simulation of wave mitigation on sloping beach is also given.
PEGAS: Hydrodynamical code for numerical simulation of the gas components of interacting galaxies
NASA Astrophysics Data System (ADS)
Kulikov, Igor
A new hydrodynamical code for numerical simulation of the gravitational gas dynamics is described in the paper. The code is based on the Fluid-in-Cell method with a Godunov-type scheme at the Eulerian stage. The numerical method was adapted for GPU-based supercomputers. The performance of the code is shown by the simulation of the collision of the gas components of two similar disc galaxies in the course of the central collision of the galaxies in the polar direction.
Transport coefficients of off-lattice mesoscale-hydrodynamics simulation techniques.
Noguchi, Hiroshi; Gompper, Gerhard
2008-07-01
The viscosity and self-diffusion constant of particle-based mesoscale hydrodynamic methods, multiparticle collision dynamics (MPC), and dissipative particle dynamics, are investigated, both with and without angular-momentum conservation. Analytical results are derived for fluids with an ideal-gas equation of state and a finite-time-step dynamics, and compared with simulation data. In particular, the viscosity is derived in a general form for all variants of the MPC method. In general, very good agreement between theory and simulations is obtained. PMID:18764080
NASA Astrophysics Data System (ADS)
Vázquez-Quesada, Adolfo; Bian, Xin; Ellero, Marco
2016-04-01
A three-dimensional model for a suspension of rigid spherical particles in a Newtonian fluid is presented. The solvent is modeled with smoothed particle hydrodynamics method, which takes into account exactly the long-range multi-body hydrodynamic interactions between suspended spheres. Short-range lubrication forces which are necessary to simulate concentrated suspensions, are introduced pair-wisely based on the analytical solution of Stokes equations for approaching/departing objects. Given that lubrication is singular at vanishing solid particle separations, an implicit splitting integration scheme is used to obtain accurate results and at the same time to avoid prohibitively small simulation time steps. Hydrodynamic interactions between solid particles, at both long-range and short-range limits, are verified against theory in the case of two approaching spheres in a quiescent medium and under bulk shear flow, where good agreements are obtained. Finally, numerical results for the suspension viscosity of a many-particle system are shown and compared with analytical solutions available in the dilute and semi-dilute case as well as with previous numerical results obtained in the concentrated limit.
NASA Astrophysics Data System (ADS)
Simão Ferreira, C. J.; Bijl, H.; van Bussel, G.; van Kuik, G.
2007-07-01
The implementation of wind energy conversion systems in the built environment renewed the interest and the research on Vertical Axis Wind Turbines (VAWT), which in this application present several advantages over Horizontal Axis Wind Turbines (HAWT). The VAWT has an inherent unsteady aerodynamic behavior due to the variation of angle of attack with the angle of rotation, perceived velocity and consequentially Reynolds number. The phenomenon of dynamic stall is then an intrinsic effect of the operation of a Vertical Axis Wind Turbine at low tip speed ratios, having a significant impact in both loads and power. The complexity of the unsteady aerodynamics of the VAWT makes it extremely attractive to be analyzed using Computational Fluid Dynamics (CFD) models, where an approximation of the continuity and momentum equations of the Navier-Stokes equations set is solved. The complexity of the problem and the need for new design approaches for VAWT for the built environment has driven the authors of this work to focus the research of CFD modeling of VAWT on: •comparing the results between commonly used turbulence models: URANS (Spalart-Allmaras and k-epsilon) and large eddy models (Large Eddy Simulation and Detached Eddy Simulation) •verifying the sensitivity of the model to its grid refinement (space and time), •evaluating the suitability of using Particle Image Velocimetry (PIV) experimental data for model validation. The 2D model created represents the middle section of a single bladed VAWT with infinite aspect ratio. The model simulates the experimental work of flow field measurement using Particle Image Velocimetry by Simão Ferreira et al for a single bladed VAWT. The results show the suitability of the PIV data for the validation of the model, the need for accurate simulation of the large eddies and the sensitivity of the model to grid refinement.
NASA Astrophysics Data System (ADS)
Liu, Yao; Liu, Baoliang; Lei, Jilin; Guan, Changtao; Huang, Bin
2016-07-01
A three-dimensional numerical model was established to simulate the hydrodynamics within an octagonal tank of a recirculating aquaculture system. The realizable k-ɛ turbulence model was applied to describe the flow, the discrete phase model (DPM) was applied to generate particle trajectories, and the governing equations are solved using the finite volume method. To validate this model, the numerical results were compared with data obtained from a full-scale physical model. The results show that: (1) the realizable k-ɛ model applied for turbulence modeling describes well the flow pattern in octagonal tanks, giving an average relative error of velocities between simulated and measured values of 18% from contour maps of velocity magnitudes; (2) the DPM was applied to obtain particle trajectories and to simulate the rate of particle removal from the tank. The average relative error of the removal rates between simulated and measured values was 11%. The DPM can be used to assess the self-cleaning capability of an octagonal tank; (3) a comprehensive account of the hydrodynamics within an octagonal tank can be assessed from simulations. The velocity distribution was uniform with an average velocity of 15 cm/s; the velocity reached 0.8 m/s near the inlet pipe, which can result in energy losses and cause wall abrasion; the velocity in tank corners was more than 15 cm/s, which suggests good water mixing, and there was no particle sedimentation. The percentage of particle removal for octagonal tanks was 90% with the exception of a little accumulation of ≤ 5 mm particle in the area between the inlet pipe and the wall. This study demonstrated a consistent numerical model of the hydrodynamics within octagonal tanks that can be further used in their design and optimization as well as promote the wide use of computational fluid dynamics in aquaculture engineering.
Analysis of the Space Shuttle Orbiter skin panels under simulated hydrodynamic loads
NASA Technical Reports Server (NTRS)
Carden, Huey D.; Fasanella, Edwin L.; Jones, Lisa E.
1988-01-01
The Space Shuttle orbiter skin panels were analyzed under pressure loads simulating hydrodynamic loads to determine their capability to sustain a potential ditching and to determine pressures that typically would produce failures. Two Dynamic Crash Analysis of Structures (DYCAST) finite element models were used. One model was used to represent skin panels (bays) in the center body, while a second model was used to analyze a fuselage bay in the wing region of the orbiter. From an assessment of the DYCAST nonlinear computer results, it is concluded that the probability is extremely high that most, if not all, of the lower skin panels would rupture under ditching conditions. Extremely high pressure loads which are produced under hydrodynamic planning conditions far exceed the very low predicted failure pressures for the skin panels. Consequently, a ditching of the orbiter is not considered to have a high probability of success and should not be considered a means of emergency landing unless no other option exists.
NASA Astrophysics Data System (ADS)
Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua; Berk, H. L.
2014-03-01
Inertial confinement fusion requires an imploded target in which a central hot spot is surrounded by a cold and dense pusher. The hot spot/pusher interface can take complicated shape in three dimensions due to hydrodynamic mix. It is also a transition region where the Knudsen and inverse Knudsen layer effect can significantly modify the fusion reactivity in comparison with the commonly used value evaluated with background Maxwellians. Here, we describe a hybrid model that couples the kinetic correction of fusion reactivity to global hydrodynamic implosion simulations. The key ingredient is a non-perturbative treatment of the tail ions in the interface region where the Gamow ion Knudsen number approaches or surpasses order unity. The accuracy of the coupling scheme is controlled by the precise criteria for matching the non-perturbative kinetic model to perturbative solutions in both configuration space and velocity space.
NASA Astrophysics Data System (ADS)
Shibata, Masaru; Font, José A.
2005-08-01
A recent paper by Lucas-Serrano et al. [A. Lucas-Serrano, J. A. Font, J. M. Ibánez, and J. M. Martí, Astron. Astrophys. 428, 703 (2004)] indicates that a high-resolution central (HRC) scheme is robust enough to yield accurate hydrodynamical simulations of special relativistic flows in the presence of ultrarelativistic speeds and strong shock waves. In this paper we apply this scheme in full general relativity (involving dynamical spacetimes), and assess its suitability by performing test simulations for oscillations of rapidly rotating neutron stars and merger of binary neutron stars. It is demonstrated that this HRC scheme can yield results as accurate as those by the so-called high-resolution shock-capturing (HRSC) schemes based upon Riemann solvers. Furthermore, the adopted HRC scheme has increased computational efficiency as it avoids the costly solution of Riemann problems and has practical advantages in the modeling of neutron star spacetimes. Namely, it allows simulations with stiff equations of state by successfully dealing with very low-density unphysical atmospheres. These facts not only suggest that such a HRC scheme may be a desirable tool for hydrodynamical simulations in general relativity, but also open the possibility to perform accurate magnetohydrodynamical simulations in curved dynamic spacetimes.
Cook, Chris B.; Richmond, Marshall C.; Coleman, Andre M.; Rakowski, Cynthia L.; Titzler, P. Scott; Bleich, Matthew D.
2003-06-10
Summer temperatures in the Lower Snake River can be altered by releasing cold waters that originate from deep depths within Dworshak Reservoir. These cold releases are used to lower temperatures in the Clearwater and Lower Snake Rivers, and improve hydrodynamic and water quality conditions for migrating aquatic species. This project monitored the complex three-dimensional hydrodynamic and thermal conditions at the confluence of the Clearwater and Snake Rivers and the processes that led to stratification of Lower Granite Reservoir (LGR) during the late spring, summer, and fall of 2002. Hydrodynamic, water quality, and meteorological conditions around the reservoir were monitored at frequent intervals, and this effort is currently continuing in 2003. Monitoring of the reservoir is a multi-year endeavor, and this report spans only the first year of data collection. In addition to monitoring the LGR environment, a three-dimensional hydrodynamic and water quality model has also been applied. This model uses collected field data as boundary conditions and has been applied to the entire 2002 field season. Numerous data collection sites were within the model domain and serve as both calibration and validation locations for the numerical model. Errors between observed and simulated data vary in magnitude from location to location and from one time to another. Generally, errors are small and within expected ranges, although model parameters may be improved in the future to minimize differences between observed and simulated values as additional 2003 field data become available. A two-dimensional laterally-averaged hydrodynamic and water quality model was applied to the three reservoirs downstream of LGR (the pools behind Little Goose, Lower Monumental, and Ice Harbor Dams). A two-dimensional model is appropriate for these reservoirs because observed lateral thermal variations during summer and fall 2002 were almost negligible, however vertical thermal variations were quite
NASA Astrophysics Data System (ADS)
Kawamura, E.; Lichtenberg, A. J.; Lieberman, M. A.; Marakhtanov, A. M.
2016-06-01
A fast 2D axisymmetric fluid-analytical multifrequency capacitively coupled plasma (CCP) reactor code is used to study center high nonuniformity in a low pressure electronegative chlorine discharge. In the code, a time-independent Helmholtz wave equation is used to solve for the capacitive fields in the linearized frequency domain. This eliminates the time dependence from the electromagnetic (EM) solve, greatly speeding up the simulations at the cost of neglecting higher harmonics. However, since the code allows up to three driving frequencies, we can add the two most important harmonics to the CCP simulations as the second and third input frequencies. The amplitude and phase of these harmonics are estimated by using a recently developed 1D radial nonlinear transmission line (TL) model of a highly asymmetric cylindrical discharge (Lieberman et al 2015 Plasma Sources Sci. Technol. 24 055011). We find that at higher applied frequencies, the higher harmonics contribute significantly to the center high nonuniformity due to their shorter plasma wavelengths.
NASA Astrophysics Data System (ADS)
Jia, Xiaojie; Ai, Bin; Deng, Youjun; Xu, Xinxiang; Peng, Hua; Shen, Hui
2015-08-01
On the basis of perfect PC2D simulation to the measured current density vs voltage (J-V) curve of the best selective emitter (SE) solar cell fabricated by the CSG Company using the screen printing phosphoric paste method, we systematically investigated the effect of the parameters of gridline, base, selective emitter, back surface field (BSF) layer and surface recombination rate on performance of the SE solar cell. Among these parameters, we identified that the base minority carrier lifetime, the front and back surface recombination rate and the ratio of the sheet-resistance of heavily and lightly doped region are the four largest efficiency-affecting factors. If all the parameters have ideal values, the SE solar cell fabricated on a p-type monocrystalline silicon wafer can even obtain the efficiency of 20.45%. In addition, the simulation also shows that fine gridline combining dense gridline and increasing bus bar number while keeping the lower area ratio can offer the other ways to improve the efficiency.
Simulations of P-SV wave scattering due to cracks by the 2-D finite difference method
NASA Astrophysics Data System (ADS)
Suzuki, Yuji; Shiina, Takahiro; Kawahara, Jun; Okamoto, Taro; Miyashita, Kaoru
2013-12-01
We simulate P-SV wave scattering by 2-D parallel cracks using the finite difference method (FDM). Here, special emphasis is put on simplicity; we apply a standard FDM (second-order velocity-stress scheme with a staggered grid) to media including traction-free, infinitesimally thin cracks, which are expressed in a simple manner. As an accuracy test of the present method, we calculate the displacement discontinuity along an isolated crack caused by harmonic waves using the method, which is compared with the corresponding results based on a reliable boundary integral equation method. The test resultantly indicates that the present method yields sufficient accuracy. As an application of this method, we also simulate wave propagation in media with randomly distributed cracks. We experimentally determine the attenuation and velocity dispersion induced by scattering from the synthetic seismograms, using a waveform averaging technique. It is shown that the results are well explained by a theory based on the Foldy approximation, if the crack density is sufficiently low. The theory appears valid with a crack density up to at least 0.1 for SV wave incidence, whereas the validity limit appears lower for P wave incidence.
NASA Astrophysics Data System (ADS)
Llanes, F.; dela Resma, M.; Ferrer, P.; Realino, V.; Aquino, D. T.; Eco, R. C.; Lagmay, A.
2013-12-01
From November 14 to December 3, 2004, Luzon Island was ravaged by 4 successive typhoons: Typhoon Mufia, Tropical Storm Merbok, Tropical Depression Winnie, and Super Typhoon Nanmadol. Tropical Depression Winnie was the most destructive of the four when it triggered landslides on November 29 that devastated the municipalities of Infanta, General Nakar, and Real in Quezon Province, southeast Luzon. Winnie formed east of Central Luzon on November 27 before it moved west-northwestward over southeastern Luzon on November 29. A total of 1,068 lives were lost and more than USD 170 million worth of damages to crops and infrastructure were incurred from the landslides triggered by Typhoon Winnie on November 29 and the flooding caused by the 4 typhoons. FLO-2D, a flood routing software for generating flood and debris flow hazard maps, was utilized to simulate the debris flows that could potentially affect the study area. Based from the rainfall intensity-duration-frequency analysis, the cumulative rainfall from typhoon Winnie on November 29 which was approximately 342 mm over a 9-hour period was classified within a 100-year return period. The Infanta station of the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) was no longer able to measure the amount of rainfall after this period because the rain gauge in that station was washed away by floods. Rainfall data with a 100-year return period was simulated over the watersheds delineated from a SAR-derived digital elevation model. The resulting debris flow hazard map was compared with results from field investigation and previous studies made on the landslide event. The simulation identified 22 barangays (villages) with a total of 45,155 people at risk of turbulent flow and flooding.
NASA Astrophysics Data System (ADS)
Martowicz, A.; Ruzzene, M.; Staszewski, W. J.; Rimoli, J. J.; Uhl, T.
2014-03-01
The work deals with the reduction of numerical dispersion in simulations of wave propagation in solids. The phenomenon of numerical dispersion naturally results from time and spatial discretization present in a numerical model of mechanical continuum. Although discretization itself makes possible to model wave propagation in structures with complicated geometries and made of different materials, it inevitably causes simulation errors when improper time and length scales are chosen for the simulations domains. Therefore, by definition, any characteristic parameter for spatial and time resolution must create limitations on maximal wavenumber and frequency for a numerical model. It should be however noted that expected increase of the model quality and its functionality in terms of affordable wavenumbers, frequencies and speeds should not be achieved merely by denser mesh and reduced time integration step. The computational cost would be simply unacceptable. The authors present a nonlocal finite difference scheme with the coefficients calculated applying a Fourier series, which allows for considerable reduction of numerical dispersion. There are presented the results of analyses for 2D models, with isotropic and anisotropic materials, fulfilling the planar stress state. Reduced numerical dispersion is shown in the dispersion surfaces for longitudinal and shear waves propagating for different directions with respect to the mesh orientation and without dramatic increase of required number of nonlocal interactions. A case with the propagation of longitudinal wave in composite material is studied with given referential solution of the initial value problem for verification of the time-domain outcomes. The work gives a perspective of modeling of any type of real material dispersion according to measurements and with assumed accuracy.
Botelho, D A; Barry, M E; Collecutt, G C; Brook, J; Wiltshire, D
2013-01-01
A desalination plant is proposed to be the major water supply to the Olympic Dam Expansion Mining project. Located in the Upper Spencer Gulf, South Australia, the site was chosen due to the existence of strong currents and their likely advantages in terms of mixing and dilution of discharged return water. A high-resolution hydrodynamic model (Estuary, Lake and Coastal Ocean Model, ELCOM) was constructed and, through a rigorous review process, was shown to reproduce the intricate details of the Spencer Gulf dynamics, including those characterising the discharge site. Notwithstanding this, it was found that deploying typically adopted 'direct insertion' techniques to simulate the brine discharge within the hydrodynamic model was problematic. Specifically, it was found that in this study the direct insertion technique delivered highly conservative brine dilution predictions in and around the proposed site, and that these were grid and time-step dependent. To improve the predictive capability, a strategy to link validated computational fluid dynamics (CFD) predictions to hydrodynamic simulations was devised. In this strategy, environmental conditions from ELCOM were used to produce boundary conditions for execution of a suite of CFD simulations. In turn, the CFD simulations provided the brine dilutions and flow rates to be applied in ELCOM. In order to conserve mass in a system-wide sense, artificial salt sinks were introduced to the ELCOM model such that salt quantities were conserved. As a result of this process, ELCOM predictions were naturally very similar to CFD predictions near the diffuser, whilst at the same time they produced an area of influence (further afield) comparable to direct insertion methods. It was concluded that the linkage of the models, in comparison to direct insertion methods, constituted a more realistic and defensible alternative to predict the far-field dispersion of outfall discharges, particularly with regards to the estimation of brine
Large-scale hydrodynamical and N-body simulations of viscous overstability in Saturn's rings
NASA Astrophysics Data System (ADS)
Latter, H.; Rein, H.; Ogilvie, G.
2012-09-01
We aim to understand axisymmetric structure formation in Saturn's A and B-rings on scales of 100 m to several kms through nonlinear hydrodynamical and N-body simulations of the viscous overstability. The viscous overstability is a robust generator of structure on short scales, as witnessed by previous hydrodynamical and N-body simulations (Schmidt and Tscharnuter 1999, Salo et al. 2001), and is hence the most likely candidate responsible for recently observed periodic microstructure (Colwell et al. 2007, Thomson et al. 2007). It is also possible that during its nonlinear saturation the instability gives rise to axisymmetric patterns on slightly longer scales that may correspond to observed irregular structure on 1-10 km (Porco et al. 2005, Latter and Ogilvie 2009, 2010). Our hydrodynamical and N-body simulations are undertaken in local Cartesian domains that can extend over 10 km in radius and can be evolved forward in time for more than 1000 orbits. These hence provide the scope to fully describe the nonlinear saturation of the overstability and to mainfest the full range of its dynamics. Self-gravity is omitted at this stage, but will be included in future work. Nonlinear wavetrains dominate all the simulations, and we associate them with the observed periodic microstructure. The preferred lengthscale of these waves (~200 m) is set by secondary modulational instabilities. These wavetrains undergo small chaotic fluctuations in their phases and amplitudes, and may be punctuated by more formidable `wave-defects', that are distributed on longer scales (~ 1-5 km). It is possible that the defects are connected to the irregular larger-scale variations observed. We also speculate on the azimuthal extent of the waves and the influence of self-gravity wakes on their dynamics.
NASA Astrophysics Data System (ADS)
Machado, Christiano B.; Pereira, Wagner C. A.; Padilla, Frédéric; Laugier, Pascal
2012-05-01
Ultrasound axial transmission (UAT) has been proposed to the diagnosis and follow-up of fracture healing. Some researchers have already pointed out the influence of fracture length, geometry and callus composition on the ultrasound time-of-flight and attenuation, with experimental and simulation studies. The aim of this work was to develop a pilot study on the effect of bone fracture unevenness on UAT measurements. Two-dimensional (2D) numerical simulations of ultrasound wave propagation were run using a custom-made finite-difference time domain code (SimSonic2D). Numerical models were composed of two 4-mm thick bone plates, with fracture lengths varying from 0 to 4 mm. For each case, an upward (UWun) and downward (DWun) unevenness of 0.5, 1.0 and 1.5 mm was implemented in the second plate. The 1-MHz emitter and receptor transducers were placed at 40 mm from each other, 20 mm apart from the center fracture. Two configurations were considered: 1.5 mm above the plates (for the 0-mm unevenness case) and transducers in contact with bone plate. For each situation, the time-of-flight of the first arriving signal (TOFFAS) and the FAS energy amplitude loss measured by the sound pressure level (SPLFAS) were computed. Results showed that there was a linear increase in TOFFAS with increasing fracture length, and a decrease of SPLFAS with the presence of a discontinuity. TOFFAS values were decreased with UWun (-0.87 μs for UWun = 1.5 mm), and increased with DWun (+0.99 μs for DWun = 1.5 mm). The SPLFAS increased with both UWun (+3.54 dB for UWun = 1.5 mm) and DWun (+8.15 dB for DWun = 1.5 mm). Both parameters showed the same variability. When transducers were put in contact with bone surface, fracture unevenness had no influence on TOF and SPL estimates. Previous works have already demonstrated that a fracture of 3 mm can increase TOFFAS in an order of 1 μs. Considering these preliminary results, it can be concluded that, although the variable fracture unevenness (until 1
NASA Astrophysics Data System (ADS)
Zhang, Xi; Showman, Adam P.
2015-11-01
Most of the current atmospheric chemistry models for planets (e.g., Krasnopolsky & Parshev 1981; Yung & Demore 1982; Yung, Allen & Pinto 1984; Lavvas et al. 2008; Zhang et al. 2012) and exoplanets (e.g., Line, Liang & Yung 2010; Moses et al. 2011; Hu & Seager 2014) adopt a one-dimensional (1D) chemical-diffusion approach in the vertical coordinate. Although only a crude approximation, these 1D models have succeeded in explaining the global-averaged vertical profiles of many chemical species in observations. One of the important assumptions of these models is that all chemical species are transported via the same eddy diffusion profile--that is, the assumption is made that the eddy diffusivity is a fundamental property of the dynamics alone, and does not depend on the chemistry. Here we show that, as also noticed in the Earth community (e.g., Holton 1986), this “homogenous eddy diffusion” assumption generally breaks down. We first show analytically why the 1D eddy diffusivity must generally depend both on the horizontal eddy mixing and the chemical lifetime of the species. This implies that the long-lived species and short-lived chemical species will generally exhibit different eddy diffusion profiles, even in a given atmosphere with identical dynamics. Next, we present tracer-transport simulations in a 2D chemical-diffusion-advection model (Shia et al. 1989; Zhang, Shia & Yung 2013) and a 3D general circulation model (MITgcm, e.g., Liu & Showman 2013), for both rapid-rotating planets and tidally-locked exoplanets, to further explore the effect of chemical timescales on the eddy diffusivity. From the 2D and 3D simulation outputs, we derive effective 1D eddy diffusivity profiles for chemical tracers exhibiting a range of chemical timescales. We show that the derived eddy diffusivity can depend strongly on the horizontal eddy mixing and chemistry, although the dependences are more complex than the analytic model predicts. Overall, these results suggest that
NASA Astrophysics Data System (ADS)
Zakharov, Leonid E.; Li, Xujing
2015-06-01
This paper formulates the Tokamak Magneto-Hydrodynamics (TMHD), initially outlined by X. Li and L. E. Zakharov [Plasma Science and Technology 17(2), 97-104 (2015)] for proper simulations of macroscopic plasma dynamics. The simplest set of magneto-hydrodynamics equations, sufficient for disruption modeling and extendable to more refined physics, is explained in detail. First, the TMHD introduces to 3-D simulations the Reference Magnetic Coordinates (RMC), which are aligned with the magnetic field in the best possible way. The numerical implementation of RMC is adaptive grids. Being consistent with the high anisotropy of the tokamak plasma, RMC allow simulations at realistic, very high plasma electric conductivity. Second, the TMHD splits the equation of motion into an equilibrium equation and the plasma advancing equation. This resolves the 4 decade old problem of Courant limitations of the time step in existing, plasma inertia driven numerical codes. The splitting allows disruption simulations on a relatively slow time scale in comparison with the fast time of ideal MHD instabilities. A new, efficient numerical scheme is proposed for TMHD.
Zakharov, Leonid E.; Li, Xujing
2015-06-15
This paper formulates the Tokamak Magneto-Hydrodynamics (TMHD), initially outlined by X. Li and L. E. Zakharov [Plasma Science and Technology 17(2), 97–104 (2015)] for proper simulations of macroscopic plasma dynamics. The simplest set of magneto-hydrodynamics equations, sufficient for disruption modeling and extendable to more refined physics, is explained in detail. First, the TMHD introduces to 3-D simulations the Reference Magnetic Coordinates (RMC), which are aligned with the magnetic field in the best possible way. The numerical implementation of RMC is adaptive grids. Being consistent with the high anisotropy of the tokamak plasma, RMC allow simulations at realistic, very high plasma electric conductivity. Second, the TMHD splits the equation of motion into an equilibrium equation and the plasma advancing equation. This resolves the 4 decade old problem of Courant limitations of the time step in existing, plasma inertia driven numerical codes. The splitting allows disruption simulations on a relatively slow time scale in comparison with the fast time of ideal MHD instabilities. A new, efficient numerical scheme is proposed for TMHD.
Zhao, Tongyang; Wang, Xiaogong; Jiang, Lei; Larson, Ronald G.
2014-07-01
We examine the accuracy of dissipative particle dynamics (DPD) simulations of polymers in dilute solutions with hydrodynamic interaction (HI), at the theta point, modeled by setting the DPD conservative interaction between beads to zero. We compare the first normal-mode relaxation time extracted from the DPD simulations with theoretical predictions from a normal-mode analysis for theta chains. We characterize the influence of bead inertia within the coil by a ratio L{sub m}/R{sub g}, where L{sub m} is the ballistic distance over which bead inertia is lost, and R{sub g} is the radius of gyration of the polymer coil, while the HI strength per bead h* is determined by the ratio of bead hydrodynamic radius (r{sub H}) to the equilibrium spring length. We show how to adjust h* through the spring length and monomer mass, and how to optimize the accuracy of DPD for fixed h* by increasing the friction coefficient (γ ≥ 9) and by incorporating a nonlinear distance dependence into the frictional interaction. Even with this optimization, DPD simulations exhibit deviations of over 20% from the theoretical normal-mode predictions for high HI strength with h* ≥ 0.20, for chains with as many as 100 beads, which is a larger deviation than is found for Stochastic rotation dynamics simulations for similar chains lengths and values of h*.
SIMULATIONS OF HIGH-VELOCITY CLOUDS. I. HYDRODYNAMICS AND HIGH-VELOCITY HIGH IONS
Kwak, Kyujin; Henley, David B.; Shelton, Robin L. E-mail: dbh@physast.uga.edu
2011-09-20
We present hydrodynamic simulations of high-velocity clouds (HVCs) traveling through the hot, tenuous medium in the Galactic halo. A suite of models was created using the FLASH hydrodynamics code, sampling various cloud sizes, densities, and velocities. In all cases, the cloud-halo interaction ablates material from the clouds. The ablated material falls behind the clouds where it mixes with the ambient medium to produce intermediate-temperature gas, some of which radiatively cools to less than 10,000 K. Using a non-equilibrium ionization algorithm, we track the ionization levels of carbon, nitrogen, and oxygen in the gas throughout the simulation period. We present observation-related predictions, including the expected H I and high ion (C IV, N V, and O VI) column densities on sightlines through the clouds as functions of evolutionary time and off-center distance. The predicted column densities overlap those observed for Complex C. The observations are best matched by clouds that have interacted with the Galactic environment for tens to hundreds of megayears. Given the large distances across which the clouds would travel during such time, our results are consistent with Complex C having an extragalactic origin. The destruction of HVCs is also of interest; the smallest cloud (initial mass {approx} 120 M{sub sun}) lost most of its mass during the simulation period (60 Myr), while the largest cloud (initial mass {approx} 4 x 10{sup 5} M{sub sun}) remained largely intact, although deformed, during its simulation period (240 Myr).
3D hydrodynamic simulations of the Galactic supernova remnant CTB 109
NASA Astrophysics Data System (ADS)
Bolte, J.; Sasaki, M.; Breitschwerdt, D.
2015-10-01
Context. Using detailed 3D hydrodynamic simulations we study the nature of the Galactic supernova remnant (SNR) CTB 109 (G109.1-1.0), which is well known for its semicircular shape and a bright diffuse X-ray emission feature inside the SNR. Aims: Our model has been designed to explain the observed morphology, with a special emphasis on the bright emission feature inside the SNR. Moreover, we determine the age of the remnant and compare our findings with X-ray observations. With CTB 109 we test a new method of detailed numerical simulations of diffuse young objects, using realistic initial conditions derived directly from observations. Methods: We performed numerical 3D simulations with the RAMSES code. The initial density structure has been directly taken from 12CO emission data, adding an additional dense cloud, which, when it is shocked, causes the bright emission feature. Results: From parameter studies we obtained the position (ℓ,b) = (109.1545°,-1.0078°) for an elliptical cloud with ncloud = 25 cm-3 based on the preshock density from Chandra data and a maximum diameter of 4.54 pc, whose encounter with the supernova (SN) shock wave generates the bright X-ray emission inside the SNR. The calculated age of the remnant is about 11 000 yr according to our simulations. In addition, we can also determine the most probable site of the SN explosion. Conclusions: Hydrodynamic simulations can reproduce the morphology and the observed size of the SNR CTB 109 remarkably well. Moreover, the simulations show that it is very plausible that the bright X-ray emission inside the SNR is the result of an elliptical dense cloud shocked by the SN explosion wave. We show that numerical simulations using observational data for an initial model can produce meaningful results.
Shadowfax: Moving mesh hydrodynamical integration code
NASA Astrophysics Data System (ADS)
Vandenbroucke, Bert
2016-05-01
Shadowfax simulates galaxy evolution. Written in object-oriented modular C++, it evolves a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. For the hydrodynamical integration, it makes use of a (co-) moving Lagrangian mesh. The code has a 2D and 3D version, contains utility programs to generate initial conditions and visualize simulation snapshots, and its input/output is compatible with a number of other simulation codes, e.g. Gadget2 (ascl:0003.001) and GIZMO (ascl:1410.003).
NASA Technical Reports Server (NTRS)
Li, Xiaofan; Sui, C.-H.; Lau, K.-M.
1999-01-01
The phase relation between the perturbation kinetic energy (K') associated with the tropical convection and the horizontal-mean moist available potential energy (bar-P) associated with environmental conditions is investigated by an energetics analysis of a numerical experiment. This experiment is performed using a 2-D cloud resolving model forced by the TOGA-COARE derived vertical velocity. The imposed upward motion leads to a decrease of bar-P directly through the associated vertical advective cooling, and to an increase of K' directly through cloud related processes, feeding the convection. The maximum K' and its maximum growth rate lags and leads, respectively, the maximum imposed large-scale upward motion by about 1-2 hours, indicating that convection is phase locked with large-scale forcing. The dominant life cycle of the simulated convection is about 9 hours, whereas the time scales of the imposed large-scale forcing are longer than the diurnal cycle. In the convective events, maximum growth of K' leads maximum decay of the perturbation moist available potential energy (P') by about 3 hours through vertical heat transport by perturbation circulation, and perturbation cloud heating. Maximum decay of P' leads maximum decay of bar-P by about one hour through the perturbation radiative, processes, the horizontal-mean cloud heating, and the large-scale vertical advective cooling. Therefore, maximum gain of K' occurs about 4-5 hours before maximum decay of bar-P.
NASA Astrophysics Data System (ADS)
Liang, Y.; DiCarlo, D. A.; Hesse, M. A.
2015-12-01
Carbon capture and storage in deep geological formations has the potential to reduce anthropogenic CO2 emissions from industrial point sources. Dissolution of CO2 into the brine, resulting in stable stratification, has been identified as the key to long-term storage security. Here we present new analogue laboratory experiment method, advanced image processing method and optimized simulation method to characterize CO2 convective dissolution trapping process and gravitational finger behaviors, in order to study the effect of hydrodynamic dispersion on the CO2 convective dissolution process, as well as to study the effect of control physical parameters on the gravitational finger dynamics. Figure 1 shows the image processing method to analyze the finger dynamics. Understanding the effect of hydrodynamic dispersion and the finger dynamics are essential to evaluate whether convective dissolution occurs, as well as to predict how fast it occurs at the geological CO2 storage field scale. The effect of hydrodynamics dispersion and the finger dynamics can be applied to estimate the security of geological CO2 storage fields, in turn. Optimiezed simulation work is conducted to predict the CO2 dissolution rate at geological CO2 storage field. The large experimental assembly will allow us to quantify in detail for the first time the relationship between convective dissolution rate and the controlling factors of the system, including permeability and driven force, which could be essential to trapping process at Bravo Dome geological CO2 storage field. We complement the homogeneous experiments with a detailed study of the scaling law of the convective flux with dispersion effect. The advanced image processing method with Fourier's transform method allow us to understand the finger dynamics and corresponding control factors in porous media, for the first time. By applying the dispersion effect and finger dynamics we found from the experimental study, we optimize the simulation
Ortiz, Roderick F.; Galloway, Joel M.; Miller, Lisa D.; Mau, David P.
2008-01-01
Pueblo Reservoir is one of southeastern Colorado's most valuable water resources. The reservoir provides irrigation, municipal, and industrial water to various entities throughout the region. The reservoir also provides flood control, recreational activities, sport fishing, and wildlife enhancement to the region. The Bureau of Reclamation is working to meet its goal to issue a Final Environmental Impact Statement (EIS) on the Southern Delivery System project (SDS). SDS is a regional water-delivery project that has been proposed to provide a safe, reliable, and sustainable water supply through the foreseeable future (2046) for Colorado Springs, Fountain, Security, and Pueblo West. Discussions with the Bureau of Reclamation and the U.S. Geological Survey led to a cooperative agreement to simulate the hydrodynamics and water quality of Pueblo Reservoir. This work has been completed and described in a previously published report, U.S. Geological Survey Scientific Investigations Report 2008-5056. Additionally, there was a need to make comparisons of simulated hydrodynamics and water quality for projected demands associated with the various EIS alternatives and plans by Pueblo West to discharge treated water into the reservoir. Plans by Pueblo West are fully independent of the SDS project. This report compares simulated hydrodynamics and water quality for projected demands in Pueblo Reservoir resulting from changes in inflow and water quality entering the reservoir, and from changes to withdrawals from the reservoir as projected for the year 2046. Four of the seven EIS alternatives were selected for scenario simulations. The four U.S. Geological Survey simulation scenarios were the No Action scenario (EIS Alternative 1), the Downstream Diversion scenario (EIS Alternative 2), the Upstream Return-Flow scenario (EIS Alternative 4), and the Upstream Diversion scenario (EIS Alternative 7). Additionally, the results of an Existing Conditions scenario (water years 2000 through
Stellar hydrodynamical modeling of dwarf galaxies: simulation methodology, tests, and first results
NASA Astrophysics Data System (ADS)
Vorobyov, Eduard I.; Recchi, Simone; Hensler, Gerhard
2015-07-01
Context. In spite of enormous progress and brilliant achievements in cosmological simulations, they still lack numerical resolution or physical processes to simulate dwarf galaxies in sufficient detail. Accurate numerical simulations of individual dwarf galaxies are thus still in demand. Aims: We aim to improve available numerical techniques to simulate individual dwarf galaxies. In particular, we aim to (i) study in detail the coupling between stars and gas in a galaxy, exploiting the so-called stellar hydrodynamical approach; and (ii) study for the first time the chemodynamical evolution of individual galaxies starting from self-consistently calculated initial gas distributions. Methods: We present a novel chemodynamical code for studying the evolution of individual dwarf galaxies. In this code, the dynamics of gas is computed using the usual hydrodynamics equations, while the dynamics of stars is described by the stellar hydrodynamics approach, which solves for the first three moments of the collisionless Boltzmann equation. The feedback from stellar winds and dying stars is followed in detail. In particular, a novel and detailed approach has been developed to trace the aging of various stellar populations, which facilitates an accurate calculation of the stellar feedback depending on the stellar age. The code has been accurately benchmarked, allowing us to provide a recipe for improving the code performance on the Sedov test problem. Results: We build initial equilibrium models of dwarf galaxies that take gas self-gravity into account and present different levels of rotational support. Models with high rotational support (and hence high degrees of flattening) develop prominent bipolar outflows; a newly-born stellar population in these models is preferentially concentrated to the galactic midplane. Models with little rotational support blow away a large fraction of the gas and the resulting stellar distribution is extended and diffuse. Models that start from non
Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems
1994-06-20
FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors,more » gasifiers, and FCC (Fluid Catalytic Cracker) reactors.« less
The Ultraviolet View of Multi-Spin Galaxies: Insight from Smooth Particle Hydrodynamic Simulations
NASA Astrophysics Data System (ADS)
Bettoni, D.; Mazzei, P.; Marino, A.; Rampazzo, R.; Galletta, G.; Buson, L. M.
2014-05-01
The UV images of the Galaxy Evolution Explorer satellite revealed that about (30±3)% of early-type galaxies show UV emission indicating a rejuvenation episode. In early-type galaxies with multi-spin components this percentage increases at 50%. We present here the characteristics of this sample and our smooth particle hydrodynamic simulations with chemo-photometric implementation that provide dynamical and morphological information together with the spectral energy distribution at each evolutionary stage. We show our match of the global properties of two early-type galaxies, NGC 3626 and NGC 5173. For these galaxies we can trace their evolutionary path.
Coupled discrete element and smoothed particle hydrodynamics simulations of the die filling process
NASA Astrophysics Data System (ADS)
Breinlinger, Thomas; Kraft, Torsten
2015-08-01
Die filling is an important part of the powder compaction process chain, where defects in the final part can be introduced—or prevented. Simulation of this process is therefore a goal for many part producers and has been studied by some researchers already. In this work, we focus on the influence of the surrounding air on the powder flow. We demonstrate the implementing and coupling of the discrete element method for the granular powder and the smoothed particle hydrodynamics method for the gas flow. Application of the method to the die filling process is demonstrated.
Simulations of implosions with a 3D, parallel, unstructured-grid, radiation-hydrodynamics code
Kaiser, T B; Milovich, J L; Prasad, M K; Rathkopf, J; Shestakov, A I
1998-12-28
An unstructured-grid, radiation-hydrodynamics code is used to simulate implosions. Although most of the problems are spherically symmetric, they are run on 3D, unstructured grids in order to test the code's ability to maintain spherical symmetry of the converging waves. Three problems, of increasing complexity, are presented. In the first, a cold, spherical, ideal gas bubble is imploded by an enclosing high pressure source. For the second, we add non-linear heat conduction and drive the implosion with twelve laser beams centered on the vertices of an icosahedron. In the third problem, a NIF capsule is driven with a Planckian radiation source.
Simulating Rayleigh-Taylor (RT) instability using PPM hydrodynamics @scale on Roadrunner (u)
Woodward, Paul R; Dimonte, Guy; Rockefeller, Gabriel M; Fryer, Christopher L; Dimonte, Guy; Dai, W; Kares, R. J.
2011-01-05
The effect of initial conditions on the self-similar growth of the RT instability is investigated using a hydrodynamics code based on the piecewise-parabolic-method (PPM). The PPM code was converted to the hybrid architecture of Roadrunner in order to perform the simulations at extremely high speed and spatial resolution. This paper describes the code conversion to the Cell processor, the scaling studies to 12 CU's on Roadrunner and results on the dependence of the RT growth rate on initial conditions. The relevance of the Roadrunner implementation of this PPM code to other existing and anticipated computer architectures is also discussed.
TITAN2D simulations of pyroclastic flows at Cerro Machín Volcano, Colombia: Hazard implications
NASA Astrophysics Data System (ADS)
Murcia, H. F.; Sheridan, M. F.; Macías, J. L.; Cortés, G. P.
2010-03-01
Cerro Machín is a dacitic tuff ring located in the central part of the Colombian Andes. It lies at the southern end of the Cerro Bravo-Cerro Machín volcanic belt. This volcano has experienced at least six major explosive eruptions during the last 5000 years. These eruptions have generated pyroclastic flows associated with Plinian activity that have traveled up to 8 km from the crater, and pyroclastic flows associated with Vulcanian activity with shorter runouts of 5 km from the source. Today, some 21,000 people live within a 8 km radius of Cerro Machín. The volcano is active with fumaroles and has shown increasing seismic activity since 2004, and therefore represents a potentially increasing threat to the local population. To evaluate the possible effects of future eruptions that may generate pyroclastic density currents controlled by granular flow dynamics we performed flow simulations with the TITAN2D code. These simulations were run in all directions around the volcano, using the input parameters of the largest eruption reported. The results show that an eruption of 0.3 km 3 of pyroclastic flows from a collapsing Plinian column would travel up to 9 km from the vent, emplacing a deposit thicker than 60 m within the Toche River valley. Deposits >45 m thick can be expected in the valleys of San Juan, Santa Marta, and Azufral creeks, while 30 m thick deposits could accumulate within the drainages of the Tochecito, Bermellón, and Coello Rivers. A minimum area of 56 km 2 could be affected directly by this kind of eruption. In comparison, Vulcanian column-collapse pyroclastic flows of 0.1 km 3 would travel up to 6 km from the vent depositing >45 m thick debris inside the Toche River valley and more than 30 m inside the valleys of San Juan, Santa Marta, and Azufral creeks. The minimum area that could be affected directly by this kind of eruption is 33 km 2. The distribution and thickness of the deposits obtained by these simulations are consistent with the hazard
NASA Astrophysics Data System (ADS)
Marenduzzo, D.; Orlandini, E.; Cates, M. E.; Yeomans, J. M.
2007-09-01
We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently “extensile” rods, in the case of flow-aligning liquid crystals, and for sufficiently “contractile” ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of “convection rolls.” These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics.
Spectral calculation through outflows around compact objects and its hydrodynamic simulation
NASA Astrophysics Data System (ADS)
Yoshida, Tessei; Ebisawa, Ken; Tsujimoto, Masahiro; Ohsuga, Ken; Nakagawa, Yujin; Nomura, Mariko
Compact objects such as black holes and neutron starts are shining by converting the gravitational energy via mass accretion. Recent theoretical studies predict that outflows tend to accompany the mass accretion process and affect X-ray spectra. In fact, ``blue-shifted'' metal absorption lines have been observed from active galactic nuclei and X-ray binaries, indicating that the absorbers are moving toward us, namely the outflows do exist. In order to constrain physical conditions and geometries around the compact objects, we need to compare the observed X-ray spectra and theoretically expected signatures caused by the outflows. For the observational side, we will use the micro calorimeter with the unprecedented spectral resolution of E/DeltaE˜1000 on-board Astro-H (in 2015 launch), which is the ONLY detector that can observe the detailed line profiles containing information of the outflows. The radiation-hydrodynamic simulation is needed to interpret the Astro-H spectra. We construct the spectral model by the following two theoretical steps: We first determine the density and velocity profiles of the outflows around the compact object by a hydrodynamic simulation. We then calculate X-ray spectra through such outflows, by using the spectral synthesis code ``Cloudy''. We present the results of the simulated profiles and the calculated spectra.
Marenduzzo, D; Orlandini, E; Cates, M E; Yeomans, J M
2007-09-01
We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently "extensile" rods, in the case of flow-aligning liquid crystals, and for sufficiently "contractile" ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of "convection rolls." These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics. PMID:17930285
Multi-dimensional hydrodynamic simulations aimed at characterizing heavily aluminized RDX
NASA Astrophysics Data System (ADS)
Yoh, Jack J.; Kim, Bohoon; Kim, Minsung
2015-06-01
An accurate and reliable prediction of reactive flow is a challenging task for an energetic material subjected to an external shock impact. The present study aims at simulating the shock induced detonation of heavily aluminized RDX which contains 35% of aluminum. A series of gap tests with the longitudinal simulations involving gap substances are conducted to understand the inherent initiation process that depends on the shock propagation through multi-material domain and the high strain dynamics of nearby confinement materials. A pressure chamber test is used to validate the blast wave calculation of the sample charge, and a full 3-D hydrodynamic simulation is performed to predict fragmentation of an explosively loaded steel casing. The paper provides an elaborate description of how a heavily aluminized RDX is characterized in terms of its thermo-chemical response and multi-material interaction with inert confinement materials.
Hydrodynamic simulation of river Yamuna for riverbed assessment: a case study of Delhi region.
Vijay, Ritesh; Sargoankar, Aabha; Gupta, Apurba
2007-07-01
A well known river hydrodynamic model RiverCAD has been used to simulate and visualize flood scenarios for different designated flood flows under complex riverbed geometry with several man made structures like bridges and barrages. The model applied successfully for the stretch of 23 km in the Yamuna floodplain of Delhi region from Wazirabad barrage in the upstream to Okhla barrage. Flood flows for various return periods namely once in 10, 25, 50 and 100 years were estimated based on recorded flow data for the period of 1963 to 2003 using standard flood frequency analysis techniques. The simulation results were compared and the model was calibrated with water surface elevation records of the previous floods at various barrage and bridge locations. Simulation results enabled prediction of maximum water levels, submergence scenarios and land availability under different designated flood flows for riverbed assessment, development and management. PMID:17131082
Combining hydrodynamic modeling with nonthermal test particle tracking to improve flare simulations
NASA Astrophysics Data System (ADS)
Winter, Henry Degraffenried, III
Solar flares remain a subject of intense study in the solar physics community. These huge releases of energy on the Sun have direct consequences for humans on Earth and in space. The processes that impart tremendous amounts of energy are not well understood. In order to test theoretical models of flare formation and evolution, state of the art, numerical codes must be created that can accurately simulate the wide range of electromagnetic radiation emitted by flares. A direct comparison of simulated radiation to increasingly detailed observations will allow scientists to test the validity of theoretical models. To accomplish this task, numerical codes were developed that can simulate both the thermal and nonthermal components of a flaring plasma, their interactions, and their emissions. The HYLOOP code combines a hydrodynamic equation solver with a nonthermal particle tracking code in order to simulate the thermal and nonthermal aspects of a flare. A solar flare was simulated using this new code with a static atmosphere and with a dynamic atmosphere, to illustrate the importance of considering hydrodynamic effects on nonthermal beam evolution. The importance of density gradients in the evolution of nonthermal electron beams was investigated by studying their effects in isolation. The importance of the initial pitch-angle cosine distribution to flare dynamics was investigated. Emission in XRT filters were calculated and analyzed to see if there were soft X-ray signatures that could give clues to the nonthermal particle distributions. Finally the HXR source motions that appeared in the simulations were compared to real observations of this phenomena.
Fediai, Artem; Ryndyk, Dmitry A; Cuniberti, Gianaurelio
2016-10-01
Up to now, the electrical properties of the contacts between 3D metals and 2D materials have never been computed at a fully ab initio level due to the huge number of atomic orbitals involved in a current path from an electrode to a pristine 2D material. As a result, there are still numerous open questions and controversial theories on the electrical properties of systems with 3D/2D interfaces-for example, the current path and the contact length scalability. Our work provides a first-principles solution to this long-standing problem with the use of the modular approach, a method which rigorously combines a Green function formalism with the density functional theory (DFT) for this particular contact type. The modular approach is a general approach valid for any 3D/2D contact. As an example, we apply it to the most investigated among 3D/2D contacts-metal/graphene contacts-and show its abilities and consistency by comparison with existing experimental data. As it is applicable to any 3D/2D interface, the modular approach allows the engineering of 3D/2D contacts with the pre-defined electrical properties. PMID:27502169
NASA Technical Reports Server (NTRS)
Fleming, Eric L.; Jackman, Charles H.; Considine, David B.; Stolarski, Richard S.
1999-01-01
In this study, we examine the sensitivity of long lived tracers to changes in the base transport components in our 2-D model. Changes to the strength of the residual circulation in the upper troposphere and stratosphere and changes to the lower stratospheric K(sub zz) had similar effects in that increasing the transport rates decreased the overall stratospheric mean age, and increased the rate of removal of material from the stratosphere. Increasing the stratospheric K(sub yy) increased the mean age due to the greater recycling of air parcels through the middle atmosphere, via the residual circulation, before returning to the troposphere. However, increasing K(sub yy) along with self-consistent increases in the corresponding planetary wave drive, which leads to a stronger residual circulation, more than compensates for the K(sub yy)-effect, and produces significantly younger ages throughout the stratosphere. Simulations with very small tropical stratospheric K(sub yy) decreased the globally averaged age of air by as much as 25% in the middle and upper stratosphere, and resulted in substantially weaker vertical age gradients above 20 km in the extratropics. We found only very small stratospheric tracer sensitivity to the magnitude of the horizontal mixing across the tropopause, and to the strength of the mesospheric gravity wave drag and diffusion used in the model. We also investigated the transport influence on chemically active tracers and found a strong age-tracer correlation, both in concentration and calculated lifetimes. The base model transport gives the most favorable overall comparison with a variety of inert tracer observations, and provides a significant improvement over our previous 1995 model transport. Moderate changes to the base transport were found to provide modest agreement with some of the measurements. Transport scenarios with residence times ranging from moderately shorter to slightly longer relative to the base case simulated N2O lifetimes
NASA Astrophysics Data System (ADS)
Xu, Heming; Rodgers, Arthur J.; Lomov, Ilya N.; Vorobiev, Oleg Y.
2014-03-01
Seismic source characteristics of low-yield (0.5-5 kt) underground explosions are inferred from hydrodynamic simulations using a granite material model on high-performance (parallel) computers. We use a non-linear rheological model for granite calibrated to historical near-field nuclear test data. Equivalent elastic P-wave source spectra are derived from the simulated hydrodynamic response using reduced velocity potentials. Source spectra and parameters are compared with the models of M ueller and M urphy (Bull Seism Soc Am 61:1675-1692, 1971, hereafter MM71) and D enny and J ohnson (Explosion source phenomenology, pp 1-24, 1991, hereafter DJ91). The source spectra inferred from the simulations of different yields at normal scaled depth-of-burial (SDOB) match the MM71 spectra reasonably well. For normally buried nuclear explosions, seismic moments are larger for the hydrodynamic simulations than MM71 (by 25 %) and for DJ91 (by over a factor of 2), however, the scaling of moment with yield across this low-yield range is consistent for our calculations and the two models. Spectra from our simulations show higher corner frequencies at the lower end of the 0.5-5.0 kt yield range and stronger variation with yield than the MM71 and DJ91 models predict. The spectra from our simulations have additional energy above the corner frequency, probably related to non-linear near-source effects, but at high frequencies the spectral slopes agree with the f -2 predictions of MM71. Simulations of nuclear explosions for a range of SDOB from 0.5 to 3.9 show stronger variations in the seismic moment than predicted by the MM71 and DJ91 models. Chemical explosions are found to generate higher moments by a factor of about two compared to nuclear explosions of the same yield in granite and at normal depth-of-burial, broadly consistent with comparisons of nuclear and chemical shots at the US Nevada Test Site (D enny, Proceeding of symposium on the non-proliferation experiment, Rockville
Hendrickson, B.; Plimpton, S.; Attaway, S.; Swegle, J.
1996-09-01
Transient dynamics simulations are commonly used to model phenomena such as car crashes, underwater explosions, and the response of shipping containers to high-speed impacts. Physical objects in such a simulation are typically represented by Lagrangian meshes because the meshes can move and deform with the objects as they undergo stress. Fluids (gasoline, water) or fluid-like materials (earth) in the simulation can be modeled using the techniques of smoothed particle hydrodynamics. Implementing a hybrid mesh/particle model on a massively parallel computer poses several difficult challenges. One challenge is to simultaneously parallelize and load-balance both the mesh and particle portions of the computation. A second challenge is to efficiently detect the contacts that occur within the deforming mesh and between mesh elements and particles as the simulation proceeds. These contacts impart forces to the mesh elements and particles which must be computed at each timestep to accurately capture the physics of interest. In this paper we describe new parallel algorithms for smoothed particle hydrodynamics and contact detection which turn out to have several key features in common. Additionally, we describe how to join the new algorithms with traditional parallel finite element techniques to create an integrated particle/mesh transient dynamics simulation. Our approach to this problem differs from previous work in that we use three different parallel decompositions, a static one for the finite element analysis and dynamic ones for particles and for contact detection. We have implemented our ideas in a parallel version of the transient dynamics code PRONTO-3D and present results for the code running on a large Intel Paragon.
Influence of elevation modelling on hydrodynamic simulations of a tidally-dominated estuary
NASA Astrophysics Data System (ADS)
Falcão, Ana Paula; Mazzolari, Andrea; Gonçalves, Alexandre B.; Araújo, Maria Amélia V. C.; Trigo-Teixeira, António
2013-08-01
Hydrodynamic simulation of estuaries requires a single digital elevation model (DEM) resulting from merging of both topographic and bathymetric data. These two datasets are usually produced using different technologies, co-ordinate systems and datums. Intertidal data in particular are often lacking due to the difficulty of data acquisition using conventional survey techniques. This paper presents a fast, accurate and low-cost methodology to fill this gap and highlights the effect of the digital elevation model characteristics, such as the interpolation method and spatial resolution, on modelled water levels and flooded areas. The Lima river estuary, located in North-western Portugal, is used as a case study. Validation tests for commonly available spatial interpolators showed ordinary kriging to be the most adequate interpolator. Digital elevation models with regular grids of 5 m and 50 m resolution were used, together with the original (not interpolated) elevation dataset, as input to a finite element hydrodynamic model for astronomic tide simulation. Results indicate that the larger differences between using different elevation models occur at low tide during spring tide, marginally impacting the flood modelling. The effect of a vertical offset of the chart datum with respect to a part of the digital elevation model was finally investigated, showing a limited influence in the determination of the water levels.
VALIDITY OF HYDROSTATIC EQUILIBRIUM IN GALAXY CLUSTERS FROM COSMOLOGICAL HYDRODYNAMICAL SIMULATIONS
Suto, Daichi; Suto, Yasushi; Kawahara, Hajime; Sasaki, Shin; Kitayama, Tetsu; Cen, Renyue
2013-04-10
We examine the validity of the hydrostatic equilibrium (HSE) assumption for galaxy clusters using one of the highest-resolution cosmological hydrodynamical simulations. We define and evaluate several effective mass terms corresponding to the Euler equations of gas dynamics, and quantify the degree of the validity of HSE in terms of the mass estimate. We find that the mass estimated under the HSE assumption (the HSE mass) deviates from the true mass by up to {approx}30%. This level of departure from HSE is consistent with the previous claims, but our physical interpretation is rather different. We demonstrate that the inertial term in the Euler equations makes a negligible contribution to the total mass, and the overall gravity of the cluster is balanced by the thermal gas pressure gradient and the gas acceleration term. Indeed, the deviation from the HSE mass is well explained by the acceleration term at almost all radii. We also clarify the confusion of previous work due to the inappropriate application of the Jeans equations in considering the validity of HSE from the gas dynamics extracted from cosmological hydrodynamical simulations.
NASA Astrophysics Data System (ADS)
Fernández-Pato, Javier; Caviedes-Voullième, Daniel; García-Navarro, Pilar
2016-05-01
One of the most difficult issues in the development of hydrologic models is to find a rigorous source of data and specific parameters to a given problem, on a given location that enable reliable calibration. In this paper, a distributed and physically based model (2D Shallow Water Equations) is used for surface flow and runoff calculations in combination with two infiltration laws (Horton and Green-Ampt) for estimating infiltration in a watershed. This technique offers the capability of assigning a local and time-dependent infiltration rate to each computational cell depending on the available surface water, soil type or vegetation. We investigate how the calibration of parameters is affected by transient distributed Shallow Water model and the complexity of the problem. In the first part of this work, we calibrate the infiltration parameters for both Horton and Green-Ampt models under flat ponded soil conditions. Then, by means of synthetic test cases, we perform a space-distributed sensitivity analysis in order to show that this calibration can be significantly affected by the introduction of topography or rainfall. In the second part, parameter calibration for a real catchment is addressed by comparing the numerical simulations with two different sets of experimental data, corresponding to very different events in terms of the rainfall volume. We show that the initial conditions of the catchment and the rainfall pattern have a special relevance in the quality of the adjustment. Hence, it is shown that the topography of the catchment and the storm characteristics affect the calibration of infiltration parameters.
NASA Astrophysics Data System (ADS)
Kwan, Thomas; Le, Ari; Schmitt, Mark; Herrmann, Hans; Batha, Steve
2015-11-01
We have carried out simulations of direct-drive capsule implosion experiments conducted on Omega laser facility at the Laboratory of Laser energetics of the University of Rochester. The capsules had a glass shell (SiO2) with D, T, He-3 fills at various proportions. One-dimensional radiation hydrodynamic calculations and kinetic particle/hybrid simulations with LSP were carried out for the post-shot analysis to compare neutron yield, yield ratio, and shell convergence in assessing the effects of plasma kinetic effects. The LSP simulations were initiated with the output from the rad-hydro simulations at the end of the laser-drive. The electrons are treated as a fluid while all the ion species by the kinetic PIC technique. Our LSP simulations clearly showed species separation between the deuterons, tritons and He-3 during the implosion but significantly less after the compression. The neutron yield, gamma bang-time and -width from the LSP simulations compared favorably with experiments. Detail comparison among the kinetic simulations, rad-hydro simulations, and experimental results will be presented. Work performed under the auspices of the US Department of Energy by Los Alamos National Laboratory under Contract No. W-7405-ENG-36.
Convergence of AMR and SPH simulations - I. Hydrodynamical resolution and convergence tests
NASA Astrophysics Data System (ADS)
Hubber, D. A.; Falle, S. A. E. G.; Goodwin, S. P.
2013-06-01
We compare the results for a set of hydrodynamical tests performed with the adaptive mesh refinement finite volume code, MG, and the smoothed particle hydrodynamics (SPH) code, SEREN. The test suite includes shock tube tests, with and without cooling, the non-linear thin-shell instability and the Kelvin-Helmholtz instability. The main conclusions are the following. (i) The two methods converge in the limit of high resolution and accuracy in most cases. All tests show good agreement when numerical effects (e.g. discontinuities in SPH) are properly treated. (ii) Both methods can capture adiabatic shocks and well-resolved cooling shocks perfectly well with standard prescriptions. However, they both have problems when dealing with under-resolved cooling shocks, or strictly isothermal shocks, at high Mach numbers. The finite volume code only works well at first order and even then requires some additional artificial viscosity. SPH requires either a larger value of the artificial viscosity parameter, αAV, or a modified form of the standard artificial viscosity term using the harmonic mean of the density, rather than the arithmetic mean. (iii) Some SPH simulations require larger kernels to increase neighbour number and reduce particle noise in order to achieve agreement with finite volume simulations (e.g. the Kelvin-Helmholtz instability). However, this is partly due to the need to reduce noise that can corrupt the growth of small-scale perturbations (e.g. the Kelvin-Helmholtz instability). In contrast, instabilities seeded from large-scale perturbations (e.g. the non-linear thin shell instability) do not require more neighbours and hence work well with standard SPH formulations and converge with the finite volume simulations. (iv) For purely hydrodynamical problems, SPH simulations take an order of magnitude longer to run than finite volume simulations when running at equivalent resolutions, i.e. when they both resolve the underlying physics to the same degree. This
NASA Astrophysics Data System (ADS)
Kuramoto, Kiyoshi; Umemoto, Takafumi; Ishiwatari, Masaki
2013-08-01
Hydrodynamic escape of hydrogen driven by solar extreme ultraviolet (EUV) radiation heating is numerically simulated by using the constrained interpolation profile scheme, a high-accuracy scheme for solving the one-dimensional advection equation. For a wide range of hydrogen number densities at the lower boundary and solar EUV fluxes, more than half of EUV heating energy is converted to mechanical energy of the escaping hydrogen. Less energy is lost by downward thermal conduction even giving low temperature for the atmospheric base. This result differs from a previous numerical simulation study that yielded much lower escape rates by employing another scheme in which relatively strong numerical diffusion is implemented. Because the solar EUV heating effectively induces hydrogen escape, the hydrogen mixing ratio was likely to have remained lower than 1 vol% in the anoxic Earth atmosphere during the Archean era.
A synthetic 21-cm Galactic Plane Survey of a smoothed particle hydrodynamics galaxy simulation
NASA Astrophysics Data System (ADS)
Douglas, Kevin A.; Acreman, David M.; Dobbs, Clare L.; Brunt, Christopher M.
2010-09-01
We have created synthetic neutral hydrogen (HI) Galactic Plane Survey data cubes covering 90° <= l <= 180°, using a model spiral galaxy from smoothed particle hydrodynamics (SPH) simulations and the radiative transfer code TORUS. The density, temperature and other physical parameters are fed from the SPH simulation into TORUS, where the HI emissivity and opacity are calculated before the 21-cm line emission profile is determined. Our main focus is the observation of outer Galaxy `Perseus arm' HI, with a view to tracing atomic gas as it encounters shock motions as it enters a spiral arm interface, an early step in the formation of molecular clouds. The observation of HI self-absorption features at these shock sites (in both real observations and our synthetic data) allows us to investigate further the connection between cold atomic gas and the onset of molecular cloud formation.
Smoothed particle hydrodynamics simulation of shear-induced powder migration in injection moulding.
Kauzlarić, David; Pastewka, Lars; Meyer, Hagen; Heldele, Richard; Schulz, Michael; Weber, Oxana; Piotter, Volker; Hausselt, Jürgen; Greiner, Andreas; Korvink, Jan G
2011-06-13
We present the application of the smoothed particle hydrodynamics (SPH) discretization scheme to Phillips' model for shear-induced particle migration in concentrated suspensions. This model provides an evolution equation for the scalar mean volume fraction of idealized spherical solid particles of equal diameter which is discretized by the SPH formalism. In order to obtain a discrete evolution equation with exact conservation properties we treat in fact the occupied volume of the solid particles as the degree of freedom for the fluid particles. We present simulation results in two- and three-dimensional channel flow. The two-dimensional results serve as a verification by a comparison to analytic solutions. The three-dimensional results are used for a comparison with experimental measurements obtained from computer tomography of injection moulded ceramic microparts. We observe the best agreement of measurements with snapshots of the transient simulation for a ratio D(c)/D(η)=0.1 of the two model parameters. PMID:21536579
NASA Astrophysics Data System (ADS)
Lembege, B.; Savoini, P.; Stienlet, J.
2013-05-01
Two distinct ion populations backstreaming into the solar wind have been clearly evidenced by various space missions within the quasi-perpendicular region of the ion foreshock located upstream of the Earth's Bow shock (i.e. for 45° ≤ Theta_Bn ≤ 90°, where Theta_Bn is the angle between the shock normal and the upstream magnetostatic field): (i) field-aligned ion beams (« FAB ») characterized by a gyrotropic distribution, and (ii) gyro-phase bunched ions («GPB »), characterized by a NON gyrotropic distribution. The origin of these backstreaming ions has not been clearly identified and is presently analyzed with the help of 2D PIC simulation of a curved shock, where full curvature effects, time of flight effects and both electrons and ions dynamics are fully described within a self consistent approach. Present simulations evidence that these two populations can be effectively created directly by the shock front without invoking microinstabilities. The analysis of both individual and statistical ion trajectories evidences that: (i) two new parameters, namely the interaction time DT_inter and distance of penetration L_depth into the shock wave, play a key role and allow to discriminate these two populations. "GPB" population is characterized by a very short interaction time (DT_inter = 1 to 2 Tci) in comparison to the "FAB" population (DT_inter = 2 Tci to 10 Tci) which moves back and forth between the upstream edge of the shock front and the overshoot, where tci is the upstream ion gyroperiod. (ii) the importance of the injection angle (i.e. the angle between the normal of the shock front and the gyration velocity when ions reach the shock) to understand how the reflection process takes place. (iii) "FAB" population drifts along the curved shock front scanning a large Theta_Bn range from 90°. (iv) "GPB" population is embedded within the "FAB" population near the shock front which explains the difficulty to identify such a population in the experimental
Simulating pH effects in an algal-growth hydrodynamics model(1).
James, Scott C; Janardhanam, Vijayasarathi; Hanson, David T
2013-06-01
Models and numerical simulations are relatively inexpensive tools that can be used to enhance economic competitiveness through operation and system optimization to minimize energy and resource consumption, while maximizing algal oil yield. This work uses modified versions of the U.S. Environmental Protection Agency's Environmental Fluid Dynamics Code (EFDC) in conjunction with the U.S. Army Corp of Engineers' water-quality code (CE-QUAL) to simulate flow hydrodynamics coupled to algal growth kinetics. The model allows the flexibility of manipulating a host of variables associated with algal growth such as temperature, light intensity, and nutrient availability. pH of the medium is a newly added operational parameter governing algal growth that affects algal photosynthesis, differential availability of inorganic forms of carbon, enzyme activity in algae cell walls, and oil production rates. A single-layer algal-growth/hydrodynamic model without pH limitation was verified by comparing solution curves of algal biomass and phosphorus concentrations to an analytical solution. Media pH, now included in the model as a growth-limiting factor, can be entered as a measured value or calculated based on CO2 concentrations. Upon adding the ability to limit growth due to pH, physically reasonable results have been obtained from the model both with and without pH limitation. When the model was used to simulate algal growth from a pond experiment in the greenhouse, a least-squares fitting technique yielded a maximum algal production (subsequently modulated by limitation factors) of 1.05 d(-1) . Overall, the measured and simulated biomass concentrations in the greenhouse pond were in close agreement. PMID:27007048
NASA Astrophysics Data System (ADS)
Rougier, Esteban; Patton, Howard J.; Knight, Earl E.; Bradley, Christopher R.
2011-08-01
Yield : depth of burial (DoB) tradeoff curves (TOCs) based on seismic magnitudes of the 25 May 2009 North Korean test depend strongly on the choice of empirical cavity radius (Rc) scaling model. Ambiguities over Rc scaling, particularly at large scaled DoB (SDoB), translate into unacceptably large systematic errors on yield estimates for this test. Hydrodynamic calculations involving realistic material response models offer a viable alternative to characterize Rc scaling for a range of SDoB where limited data from past nuclear tests exist. Results of such calculations are presented for a granite medium with a material response validated by modeling four phenomenological criteria for past nuclear tests in granite (free field velocity, energy partitioning into the seismic wavefield, velocity attenuation, and measured Rc). These results unambiguously favor the Rc scaling model of Denny and Johnson (DJ91) and the TOC based on that model. Lower bounds on yield and DoB of the North Korean test are constrained by predictions of an SDoB threshold for free surface damage from 2-D simulations since no such reported damage was observed for this test. Constrained by the hydrodynamic simulations, the DJ91 model indicates the minimum yield and DoB for the 25 May 2009 North Korean test is 5.7 kilotons and 375 m.
A simulation study of sperm motility hydrodynamics near fish eggs and spheres.
Ishimoto, Kenta; Cosson, Jacky; Gaffney, Eamonn A
2016-01-21
For teleost fish fertilisation, sperm must proceed through a small opening on the egg surface, referred to as the micropyle. In this paper, we have used boundary element simulations to explore whether the hydrodynamic attraction between sperm and a fish egg can be a sperm guidance cue. Hydrodynamical egg-sperm interactions alone do not increase the chances of an egg encounter, nor do they induce surface swimming for virtual turbot fish sperm across smooth spheres with a diameter of 1mm, which is representative of a turbot fish egg. When a repulsive surface force between the virtual turbot sperm and the egg is introduced, as motivated by surface charge and van-der-Waals interactions for instance, we find that extended surface swimming of the virtual sperm across a model turbot egg occurs, but ultimately the sperm escapes from the egg. This is due to the small exit angle of the scattering associated with the initial sperm-egg interaction at the egg surface, leading to a weak drift away from the egg, in combination with a weak hydrodynamical attraction between both gametes, though the latter is not sufficient to prevent eventual escape. The resulting transience is not observed experimentally but is a detailed quantitative difference between theory and observation in that stable surface swimming is predicted for eggs with radii larger than about 1.8mm. Regardless, the extended sperm swimming trajectory across the egg constitutes a two-dimensional search for the micropyle and thus the egg is consistently predicted to provide a guidance cue for sperm once they are sufficiently close. In addition, the observation that the virtual turbot sperm swims stably next to a flat plane given repulsive surface interactions, but does not swim stably adjacent to a turbot-sized egg, which is extremely large by sperm-lengthscales, also highlights that the stability of sperm swimming near a boundary is very sensitive to geometry. PMID:26542943
Benchapattarapong, N; Anderson, W A; Bai, F; Moo-Young, M
2005-07-01
A physico-chemical, two phase simulated pseudoplastic fermentation (SPF) broth was investigated in which Solka Floc cellulose fibre was used to simulate the filamentous biomass, and a mixture of 0.1% (w/v) carboxymethyl cellulose (CMC) and 0.15 M aqueous sodium chloride was used to simulate the liquid fraction of the fermentation broth. An investigation of the rheological behaviour and hydrodynamic properties of the SPF broth was carried out, and compared to both a fungal Tolypocladium inflatum fermentation broth and a CMC solution in a 50 L stirred tank bioreactor equipped with conventional Rushton turbines. The experimental data confirmed the ability of the two phase SPF broth to mimic both the T. inflatum broth bulk rheology as well as the mixing and mass transfer behaviour. In contrast, using a homogeneous CMC solution with a similar bulk rheology to simulate the fermentation resulted in a significant underestimation of the mass transfer and mixing times. The presence of the solid phase and its microstructure in the SPF broth appear to play a significant role in gas holdup and bubble size, thus leading to the different behaviours. The SPF broth seems to be a more accurate simulation fluid that can be used to predict the bioreactor mixing and mass transfer performance in filamentous fermentations, in comparison with CMC solutions used in some previous studies. PMID:15744504
NASA Astrophysics Data System (ADS)
Dyachkov, Sergey; Parshikov, Anatoly; Zhakhovsky, Vasily
2015-06-01
The machining of materials produces regular micrometer-sized surface perturbations. The microscopic cumulative jets can be generated from such surface under shock loading. It is a problem to trace space-time evolution of such jets with good enough resolution in experimental conditions. Comparative simulations by molecular dynamics (MD) and smoothed-particle hydrodynamics (SPH) methods, using an equation of state consistent with the employed interatomic potential, can shed of light on details of jet formation. The realistic experimental samples can be directly simulated by SPH method, while the linear size of a MD sample is restricted by the order of 100 nm. To compare the SPH and MD simulations the MD results must to be scaled to micrometer-sized samples. We demonstrate that the scaling provides the similar jet velocity profiles and mass distributions obtained by both methods. Furthermore, the simulated results agree well with the experimental observations with Copper and Tin. The effect of surface tension, which guides evolution of nanoscale-sized jet shape, may lead to discrepancies between MD and SPH simulations, especially for weak shocks and small surface perturbations.
NASA Astrophysics Data System (ADS)
Martinez Galarza, Juan R.; Smith, Howard Alan; Weiner, Aaron; Hayward, Christopher C.; Lanz, Lauranne; Zezas, Andreas; Rosenthal, Lee; Ashby, Matthew
2016-01-01
Thermal emission from an Active Galactic Nucleus (AGN) can provide a significant contribution to the bolometric luminosity of galaxies, and its effect at infrared wavelengths can mimic the process of star-formation, jeopardizing star formation rate (SFR) diagnostics. It is therefore important to model the AGN emission and to quantify its effect on the estimated SFRs when SED fitting tools are applied. We tackle this problem by studying the dust radiative transfer calculations of hydrodynamically simulated binary galaxy mergers covering a broad range of parameters, including stellar mas ratios, gas contents, AGN luminosity and viewing angles. We apply the energy balance SED fitting codes CHIBURST and CIGALE to the mock SEDs of our simulated merger, and then compare with the results of applying the same codes to the SEDs of observed merging galaxies in the Local Universe. At different stages of the interaction, we compare their derived SFRs and AGN fractions with those predicted by the hydrodynamical simulations, for a broad range of the interaction parameters, but focus on the stages near coalescence, when the AGN contribution exceed 10% of the total luminosity. We show that the contribution to IR luminosity is greatest during and immediately after coalescence, when the two supermassive black holes of the interacting pair merge and undergo and enhanced period of accretion. Under certain conditions, CIGALE succeeds at recovering the SFRs and AGN fractions with higher accuracy than other available codes, such as MAGPHYS, even during these extreme stages. Our results show that using the IR luminosity as a simple surrogate for star formation can significantly overestimate the true SFR by underestimating the contribution from the AGN. Finally, we study the effect of using different parametric star formation histories (SFHs) when fitting the SEDs of galaxies, and show that a delayed SFH is usually a reasonable choice for merging galaxies.
NASA Astrophysics Data System (ADS)
Liu, Jun; Larson, Ronald G.
2013-05-01
We develop a Brownian dynamics simulation method with full hydrodynamic interactions (HI) to study the recognition kinetics between two patterned colloidal spheres. We use a general resistance matrix (12*12) to describe both the far and near-field hydrodynamics of translation, rotation, and translation-rotation coupling between the two spheres, adopted from Jeffrey and Onishi [J. Fluid Mech. 139, 261 (1984), 10.1017/S0022112084000355]. We apply the method to the specific binding of "patchy" spheres, including effects of depletion attraction and orientation-specific binding, as are present in "Janus" spheres whose surfaces contain hydrophobic and hydrophilic faces [Q. Chen, S. C. Bae, and S. Granick, Nature (London) 469, 381 (2011), 10.1038/nature09713]. The binding times obtained between two non-patterned spheres (of equal or unequal diameter) with or without HI extrapolated to infinite dilution are shown to be in good agreement with theoretical predictions of the Smoluchowski equation. In addition, the binding times for pairs of spheres for three cases of surface patterning of the two spheres (uniform-uniform, uniform-Janus, and Janus-Janus) are compared with or without rotational motion.
NASA Astrophysics Data System (ADS)
Volkov, A. N.
2016-06-01
Parkers' model of thermal escape implies the search of solutions of one-dimensional hydrodynamic equations for an inviscid but thermally conducting gas with a critical point and vanishing temperature far from the source. The properties of solutions of this model are studied for neutral mon- and diatomic gases with the viscosity index varying from 1/2 to 1. The domains of existence and uniqueness of solutions in terms of the source Jeans escape parameter and Knudsen number are established. The solutions are found to exist only in a narrow range of the critical point Jeans parameter. The lower and upper limits of this range correspond to solutions that are dominated by either heat conduction or adiabatic expansion. Thermal escape described by Parker's model occurs in two asymptotic regimes: the low-density (LD) regime, when escape is dominated by heat conduction, and the high-density (HD) regime, when escape is dominated by adiabatic expansion. Expressions for the mass and energy escape rates in these regimes are found theoretically. The comparison of results of hydrodynamic and kinetic simulations performed in identical conditions shows that Parker's model is capable of describing thermal escape only in the HD regime, providing decent agreement with the kinetic model in terms of the atmospheric structure below the exobase and the mass and energy escape rates. In the LD regime, Parker's model predicts a much faster drop in atmospheric temperature and less extended atmospheres, and can both over- and underestimate the escape rates in orders of magnitude.
Three-dimensional Hybrid Continuum-Atomistic Simulations for Multiscale Hydrodynamics
Wijesinghe, S; Hornung, R; Garcia, A; Hadjiconstantinou, N
2004-04-15
We present an adaptive mesh and algorithmic refinement (AMAR) scheme for modeling multi-scale hydrodynamics. The AMAR approach extends standard conservative adaptive mesh refinement (AMR) algorithms by providing a robust flux-based method for coupling an atomistic fluid representation to a continuum model. The atomistic model is applied locally in regions where the continuum description is invalid or inaccurate, such as near strong flow gradients and at fluid interfaces, or when the continuum grid is refined to the molecular scale. The need for such ''hybrid'' methods arises from the fact that hydrodynamics modeled by continuum representations are often under-resolved or inaccurate while solutions generated using molecular resolution globally are not feasible. In the implementation described herein, Direct Simulation Monte Carlo (DSMC) provides an atomistic description of the flow and the compressible two-fluid Euler equations serve as our continuum-scale model. The AMR methodology provides local grid refinement while the algorithm refinement feature allows the transition to DSMC where needed. The continuum and atomistic representations are coupled by matching fluxes at the continuum-atomistic interfaces and by proper averaging and interpolation of data between scales. Our AMAR application code is implemented in C++ and is built upon the SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) framework developed at Lawrence Livermore National Laboratory. SAMRAI provides the parallel adaptive gridding algorithm and enables the coupling between the continuum and atomistic methods.
Multi-resolution flow simulations by smoothed particle hydrodynamics via domain decomposition
NASA Astrophysics Data System (ADS)
Bian, Xin; Li, Zhen; Tang, Yu-Hang; Karniadakis, George
2015-11-01
We present a methodology to concurrently couple particle-based methods via a domain decomposition (DD) technique for simulating viscous flows. In particular, we select two resolutions of the smoothed particle hydrodynamics (SPH) method as demonstration. Within the DD framework, a simulation domain is decomposed into two (or more) overlapping sub-domains, each of which has an individual particle scale determined by the local flow physics. Consistency of the two sub-domains is achieved in the overlap region by matching the two independent simulations based on Lagrangian interpolation of state variables and fluxes. The domain decomposition based SPH method (DD-SPH) employs different spatial and temporal resolutions, and hence, each sub-domain has its own smoothing length and time step. As a consequence, particle refinement and de-refinement are performed asynchronously according to individual time advancement of each sub-domain. The proposed strategy avoids SPH force interactions between different resolutions on purpose, so that coupling, in principle, can go beyond SPH - SPH, and may allow SPH to be coupled with other mesoscopic or microscopic particle methods. The DD-SPH method is validated first for a transient Couette flow, where simulation results base. US DOE Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4).
SIMULATIONS OF 2D AND 3D THERMOCAPILLARY FLOWS BY A LEAST-SQUARES FINITE ELEMENT METHOD. (R825200)
Numerical results for time-dependent 2D and 3D thermocapillary flows are presented in this work. The numerical algorithm is based on the Crank-Nicolson scheme for time integration, Newton's method for linearization, and a least-squares finite element method, together with a matri...
Effects of baryons on the dark matter distribution in cosmological hydrodynamical simulations
NASA Astrophysics Data System (ADS)
Schaller, Matthieu
2015-09-01
Simulations including solely dark matter performed over the last three decades have delivered an accurate and robust description of the cosmic web and dark matter structures. With the advent of more precise cosmological probes, planned and ongoing, and dark matter detection experiments, this numerical modelling has to be improved to incorporate the complex non-linear and energetic processes taking place during galaxy formation. We use the ``Evolution and Assembly of GaLaxies and their Environment'' (EAGLE) suite of cosmological simulations to investigate the effects of baryons and astrophysical processes on the underlying dark matter distribution. Many effects are expected and we investigate (i): the modification of the profile of halos from the Navarro-Frenk-White profile shape found in collisionless simulations, including the changes in the dark matter profiles themselves, (ii) the changes of the inner density profiles of rich clusters, where observations have suggested a deviation from the standard cold dark matter paradigm, (iii) the offset created by astrophysical process between the centre of galaxies and the centre of the dark matter halo in which they reside and, (iv) the changes in the shape of the dark matter profile due to baryons in the centre of Milky Way halos and the impact these changes have on the morphology of the annihilation signal that could be observed as an indirect proof of the existence of dark matter. In all cases we find that the baryons play a significant role and change the results found in collisionless simulations dramatically. This highlights the need for more simulations like EAGLE to better understand and analyse future cosmology surveys. We also conduct a thorough study of the hydrodynamics solver parameters used in these simulations, assess their impact on the simulated galaxy population and show how robust some of the EAGLE results are against such variations.
NASA Astrophysics Data System (ADS)
Devriendt, Julien
2015-08-01
In this talk I will review how numerical hydrodynamics simulations predict galaxies evolve in the redshift range 1
NASA Astrophysics Data System (ADS)
Danilewicz, Andrzej; Sikora, Zbigniew
2015-02-01
A theoretical base of SPH method, including the governing equations, discussion of importance of the smoothing function length, contact formulation, boundary treatment and finally utilization in hydrocode simulations are presented. An application of SPH to a real case of large penetrations (crater creating) into the soil caused by falling mass in Dynamic Replacement Method is discussed. An influence of particles spacing on method accuracy is presented. An example calculated by LS-DYNA software is discussed. Chronological development of Smooth Particle Hydrodynamics is presented. Theoretical basics of SPH method stability and consistency in SPH formulation, artificial viscosity and boundary treatment are discussed. Time integration techniques with stability conditions, SPH+FEM coupling, constitutive equation and equation of state (EOS) are presented as well.
Long-term and Large-scale Hydrodynamical Simulations of Migrating Planets
NASA Astrophysics Data System (ADS)
Benítez-Llambay, Pablo; Ramos, Ximena S.; Beaugé, Cristian; Masset, Frédéric S.
2016-07-01
We present a new method that allows for long-term and large-scale hydrodynamical simulations of migrating planets over a grid-based Eulerian code. This technique, which consists of a remapping of the disk by tracking the planetary migration, enables runs of migrating planets over a time comparable to the age of protoplanetary disks. This method also has the potential to address efficiency problems related to the migration of multi-planet systems in gaseous disks and to improve the current results of the migration of massive planets by including global viscous evolution as well as detailed studies of the co-orbital region during migration. We perform different tests using the public code FARGO3D to validate this method and compare its results with those obtained using a classical fixed grid.
Protein Simulations in Fluids: Coupling the OPEP Coarse-Grained Force Field with Hydrodynamics.
Sterpone, Fabio; Derreumaux, Philippe; Melchionna, Simone
2015-04-14
A novel simulation framework that integrates the OPEP coarse-grained (CG) model for proteins with the Lattice Boltzmann (LB) methodology to account for the fluid solvent at mesoscale level is presented. OPEP is a very efficient, water-free and electrostatic-free force field that reproduces at quasi-atomistic detail processes like peptide folding, structural rearrangements, and aggregation dynamics. The LB method is based on the kinetic description of the solvent in order to solve the fluid mechanics under a wide range of conditions, with the further advantage of being highly scalable on parallel architectures. The capabilities of the approach are presented, and it is shown that the strategy is effective in exploring the role of hydrodynamics on protein relaxation and peptide aggregation. The end result is a strategy for modeling systems of thousands of proteins, such as in the case of dense protein suspensions. The future perspectives of the multiscale approach are also discussed. PMID:26574390
SASI ACTIVITY IN THREE-DIMENSIONAL NEUTRINO-HYDRODYNAMICS SIMULATIONS OF SUPERNOVA CORES
Hanke, Florian; Mueller, Bernhard; Wongwathanarat, Annop; Marek, Andreas; Janka, Hans-Thomas E-mail: bjmuellr@mpa-garching.mpg.de E-mail: amarek@mpa-garching.mpg.de
2013-06-10
The relevance of the standing accretion shock instability (SASI) compared to neutrino-driven convection in three-dimensional (3D) supernova-core environments is still highly controversial. Studying a 27 M{sub Sun} progenitor, we demonstrate, for the first time, that violent SASI activity can develop in 3D simulations with detailed neutrino transport despite the presence of convection. This result was obtained with the PROMETHEUS-VERTEX code with the same sophisticated neutrino treatment so far used only in one-dimensional and two-dimensional (2D) models. While buoyant plumes initially determine the nonradial mass motions in the postshock layer, bipolar shock sloshing with growing amplitude sets in during a phase of shock retraction and turns into a violent spiral mode whose growth is only quenched when the infall of the Si/SiO interface leads to strong shock expansion in response to a dramatic decrease of the mass accretion rate. In the phase of large-amplitude SASI sloshing and spiral motions, the postshock layer exhibits nonradial deformation dominated by the lowest-order spherical harmonics (l = 1, m = 0, {+-}1) in distinct contrast to the higher multipole structures associated with neutrino-driven convection. We find that the SASI amplitudes, shock asymmetry, and nonradial kinetic energy in three dimensions can exceed those of the corresponding 2D case during extended periods of the evolution. We also perform parameterized 3D simulations of a 25 M{sub Sun} progenitor, using a simplified, gray neutrino transport scheme, an axis-free Yin-Yang grid, and different amplitudes of random seed perturbations. They confirm the importance of the SASI for another progenitor, its independence of the choice of spherical grid, and its preferred growth for fast accretion flows connected to small shock radii and compact proto-neutron stars as previously found in 2D setups.
General Relativistic Hydrodynamic Simulation of Accretion Flow from a Stellar Tidal Disruption
NASA Astrophysics Data System (ADS)
Shiokawa, Hotaka; Krolik, Julian H.; Cheng, Roseanne M.; Piran, Tsvi; Noble, Scott C.
2015-05-01
We study how the matter dispersed when a supermassive black hole tidally disrupts a star joins an accretion flow. Combining a relativistic hydrodynamic simulation of the stellar disruption with a relativistic hydrodynamics simulation of the subsequent debris motion, we track the evolution of such a system until ≃ 80% of the stellar mass bound to the black hole has settled into an accretion flow. Shocks near the stellar pericenter and also near the apocenter of the most tightly bound debris dissipate orbital energy, but only enough to make its characteristic radius comparable to the semimajor axis of the most bound material, not the tidal radius as previously envisioned. The outer shocks are caused by post-Newtonian relativistic effects, both on the stellar orbit during its disruption and on the tidal forces. Accumulation of mass into the accretion flow is both non-monotonic and slow, requiring several to 10 times the orbital period of the most tightly bound tidal streams, while the inflow time for most of the mass may be comparable to or longer than the mass accumulation time. Deflection by shocks does, however, cause some mass to lose both angular momentum and energy, permitting it to move inward even before most of the mass is accumulated into the accretion flow. Although the accretion rate still rises sharply and then decays roughly as a power law, its maximum is ≃ 0.1× the previous expectation, and the timescale of the peak is ≃ 5× longer than previously predicted. The geometric mean of the black hole mass and stellar mass inferred from a measured event timescale is therefore ≃ 0.2× the value given by classical theory.
Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime
2015-07-01
The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (T(s)≈0.96) is close to the theoretically derived value of T(s)=1 at zero ambient pressure for this vdW fluid. PMID:26274283
RICH: OPEN-SOURCE HYDRODYNAMIC SIMULATION ON A MOVING VORONOI MESH
Yalinewich, Almog; Steinberg, Elad; Sari, Re’em
2015-02-01
We present here RICH, a state-of-the-art two-dimensional hydrodynamic code based on Godunov’s method, on an unstructured moving mesh (the acronym stands for Racah Institute Computational Hydrodynamics). This code is largely based on the code AREPO. It differs from AREPO in the interpolation and time-advancement schemeS as well as a novel parallelization scheme based on Voronoi tessellation. Using our code, we study the pros and cons of a moving mesh (in comparison to a static mesh). We also compare its accuracy to other codes. Specifically, we show that our implementation of external sources and time-advancement scheme is more accurate and robust than is AREPO when the mesh is allowed to move. We performed a parameter study of the cell rounding mechanism (Lloyd iterations) and its effects. We find that in most cases a moving mesh gives better results than a static mesh, but it is not universally true. In the case where matter moves in one way and a sound wave is traveling in the other way (such that relative to the grid the wave is not moving) a static mesh gives better results than a moving mesh. We perform an analytic analysis for finite difference schemes that reveals that a Lagrangian simulation is better than a Eulerian simulation in the case of a highly supersonic flow. Moreover, we show that Voronoi-based moving mesh schemes suffer from an error, which is resolution independent, due to inconsistencies between the flux calculation and the change in the area of a cell. Our code is publicly available as open source and designed in an object-oriented, user-friendly way that facilitates incorporation of new algorithms and physical processes.
NASA Astrophysics Data System (ADS)
Sigalotti, Leonardo Di G.; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime
2015-07-01
The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (Ts≈0.96 ) is close to the theoretically derived value of Ts=1 at zero ambient pressure for this vdW fluid.
NASA Astrophysics Data System (ADS)
Juhui, Chen; Yanjia, Tang; Dan, Li; Pengfei, Xu; Huilin, Lu
2013-07-01
Flow behavior of gas and particles is predicted by the large eddy simulation of gas-second order moment of solid model (LES-SOM model) in the simulation of flow behavior in CFB. This study shows that the simulated solid volume fractions along height using a two-dimensional model are in agreement with experiments. The velocity, volume fraction and second-order moments of particles are computed. The second-order moments of clusters are calculated. The solid volume fraction, velocity and second order moments are compared at the three different model constants.
NASA Astrophysics Data System (ADS)
Shi, Xun; Komatsu, Eiichiro; Nelson, Kaylea; Nagai, Daisuke
2015-03-01
Turbulent gas motion inside galaxy clusters provides a non-negligible non-thermal pressure support to the intracluster gas. If not corrected, it leads to a systematic bias in the estimation of cluster masses from X-ray and Sunyaev-Zel'dovich (SZ) observations assuming hydrostatic equilibrium, and affects interpretation of measurements of the SZ power spectrum and observations of cluster outskirts from ongoing and upcoming large cluster surveys. Recently, Shi & Komatsu developed an analytical model for predicting the radius, mass, and redshift dependence of the non-thermal pressure contributed by the kinetic random motions of intracluster gas sourced by the cluster mass growth. In this paper, we compare the predictions of this analytical model to a state-of-the-art cosmological hydrodynamics simulation. As different mass growth histories result in different non-thermal pressure, we perform the comparison on 65 simulated galaxy clusters on a cluster-by-cluster basis. We find an excellent agreement between the modelled and simulated non-thermal pressure profiles. Our results open up the possibility of using the analytical model to correct the systematic bias in the mass estimation of galaxy clusters. We also discuss tests of the physical picture underlying the evolution of intracluster non-thermal gas motions, as well as a way to further improve the analytical modelling, which may help achieve a unified understanding of non-thermal phenomena in galaxy clusters.
The clustering of baryonic matter. II: halo model and hydrodynamic simulations
Fedeli, C.; Semboloni, E.; Velliscig, M.; Daalen, M. Van; Schaye, J.; Hoekstra, H. E-mail: sembolon@strw.leidenuniv.nl E-mail: daalen@strw.leidenuniv.nl E-mail: hoekstra@strw.leidenuniv.nl
2014-08-01
We recently developed a generalization of the halo model in order to describe the spatial clustering properties of each mass component in the Universe, including hot gas and stars. In this work we discuss the complementarity of the model with respect to a set of cosmological simulations including hydrodynamics of different kinds. We find that the mass fractions and density profiles measured in the simulations do not always succeed in reproducing the simulated matter power spectra, the reason being that the latter encode information from a much larger range in masses than that accessible to individually resolved structures. In other words, this halo model allows one to extract information on the growth of structures from the spatial clustering of matter, that is complementary with the information coming from the study of individual objects. We also find a number of directions for improvement of the present implementation of the model, depending on the specific application one has in mind. The most relevant one is the necessity for a scale dependence of the bias of the diffuse gas component, which will be interesting to test with future detections of the Warm-Hot Intergalactic Medium. This investigation confirms the possibility to gain information on the physics of galaxy and cluster formation by studying the clustering of mass, and our next work will consist of applying the halo model to use future high-precision cosmic shear surveys to this end.
THE DISTRIBUTION OF SATELLITES AROUND CENTRAL GALAXIES IN A COSMOLOGICAL HYDRODYNAMICAL SIMULATION
Dong, X. C.; Lin, W. P.; Wang, Yang Ocean; Kang, X.; Dutton, Aaron A.; Macciò, Andrea V. E-mail: kangxi@pmo.ac.cn
2014-08-20
Observations have shown that the spatial distribution of satellite galaxies is not random, but rather is aligned with the major axes of central galaxies (CGs). The strength of the alignment is dependent on the properties of both the satellites and centrals. Theoretical studies using dissipationless N-body simulations are limited by their inability to directly predict the shape of CGs. Using hydrodynamical simulations including gas cooling, star formation, and feedback, we carry out a study of galaxy alignment and its dependence on the galaxy properties predicted directly from the simulations. We found that the observed alignment signal is well produced, as is the color dependence: red satellites and red centrals both show stronger alignments than their blue counterparts. The reason for the stronger alignment of red satellites is that most of them stay in the inner region of the dark matter halo where the shape of the CG better traces the dark matter distribution. The dependence of alignment on the color of CGs arises from the halo mass dependence, since the alignment between the shape of the central stellar component and the inner halo increases with halo mass. We also find that the alignment of satellites is most strongly dependent on their metallicity, suggesting that the metallicity of satellites, rather than color, is a better tracer of galaxy alignment on small scales. This could be tested in future observational studies.
Simulation of Hydrodynamics at Stratified Reservoirs Using a Staged Modeling Approach
Khangaonkar, Tarang P.; Yang, Zhaoqing; Paik, Joongcheol; Sotiropoulos, Fotis
2008-10-01
Hydropower reservoirs impounded by high-head dams exhibit complex circulation that confuses the downstream migrating salmon and limits successful collection and passage of fish. Fish passage engineers attempt to modify the hydrothermal behavior at reservoirs through structural and operational modifications and often use hydrodynamic simulations to guide their actions. Simulation of key hydrothermal processes such as (a) development of a stable two-layer stratified system, (b) density-driven currents over a reservoir length scale, and (c) discharge hydraulics near the power generation and fish collection intakes requires highly specialized models applied at differing temporal and spatial scales. A staged modeling approach is presented that uses external coupling of models at varying temporal scales and spatial resolution to simulate the entire hydraulic regime from the mouth of the reservoir at the upstream end to the discharge at the dam. The staged modeling approach is illustrated using a case study where structural modifications were evaluated to improve reservoir stratification and density-driven currents. The model results provided input and valuable insight in the development of a new structure design and configuration for effective fish collection near the forebay of a high-head dam.
Swain, Eric; Decker, Jeremy
2010-01-01
Numerical modeling is needed to predict environmental temperatures, which affect a number of biota in southern Florida, U.S.A., such as the West Indian manatee (Trichechus manatus), which uses thermal basins for refuge from lethal winter cold fronts. To numerically simulate heat-transport through a dynamic coastal wetland region, an algorithm was developed for the FTLOADDS coupled hydrodynamic surface-water/ground-water model that uses formulations and coefficients suited to the coastal wetland thermal environment. In this study, two field sites provided atmospheric data to develop coefficients for the heat flux terms representing this particular study area. Several methods were examined to represent the heat-flux components used to compute temperature. A Dalton equation was compared with a Penman formulation for latent heat computations, producing similar daily-average temperatures. Simulation of heat-transport in the southern Everglades indicates that the model represents the daily fluctuation in coastal temperatures better than at inland locations; possibly due to the lack of information on the spatial variations in heat-transport parameters such as soil heat capacity and surface albedo. These simulation results indicate that the new formulation is suitable for defining the existing thermohydrologic system and evaluating the ecological effect of proposed restoration efforts in the southern Everglades of Florida.
Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali
2014-01-01
Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization. PMID:24600168
Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali
2014-01-01
Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization. PMID:24600168
NASA Astrophysics Data System (ADS)
Zhang, Ning
This thesis presents the parasitic extraction and magnetic analysis for transformers, inductors, and IGBT bridge busbars with Maxwell 2D and Maxwell 3D simulation. In the first chapter, the magnetic field of a transformer in Maxwell 2D is analyzed. The parasitic capacitance between each winding of the transformer are extracted by Maxwell 2D. According to the actual dimensions, the parasitic capacitances are calculated. The results are verified by comparing with the measurement results from 4395A impedance analyzer. In the second chapter, two CM inductors are simulated in Maxwell 3D. One is the conventional winding inductor, the other one is the proposed one. The magnetic field distributions of different winding directions are analyzed. The analysis is verified by the simulation result. The last chapter introduces a technique to analyze, extract, and measure the parasitic inductance of planar busbars. With this technique, the relationship between self-inductance and mutual-inductance is analyzed. Secondly, a total inductance is calculated based on the developed technique. Thirdly, the current paths and the inductance on a planar busbar are investigated with DC-link capacitors. Furthermore, the analysis of the inductance is addressed. Ansys Q3D simulation and analysis are presented. Finally, the experimental verification is shown by the S-parameter measurement.
Simulation of hydrodynamics, temperature, and dissolved oxygen in Beaver Lake, Arkansas, 1994-1995
Haggard, Brian; Green, W. Reed
2002-01-01
The tailwaters of Beaver Lake and other White River reservoirs support a cold-water trout fishery of significant economic yield in northwestern Arkansas. The Arkansas Game and Fish Commission has requested an increase in existing minimum flows through the Beaver Lake dam to increase the amount of fishable waters downstream. Information is needed to assess the impact of additional minimum flows on temperature and dissolved-oxygen qualities of reservoir water above the dam and the release water. A two-dimensional, laterally averaged hydrodynamic, thermal and dissolved-oxygen model was developed and calibrated for Beaver Lake, Arkansas. The model simulates surface-water elevation, currents, heat transport and dissolved-oxygen dynamics. The model was developed to assess the impacts of proposed increases in minimum flows from 1.76 cubic meters per second (the existing minimum flow) to 3.85 cubic meters per second (the additional minimum flow). Simulations included assessing (1) the impact of additional minimum flows on tailwater temperature and dissolved-oxygen quality and (2) increasing initial water-surface elevation 0.5 meter and assessing the impact of additional minimum flow on tailwater temperatures and dissolved-oxygen concentrations. The additional minimum flow simulation (without increasing initial pool elevation) appeared to increase the water temperature (<0.9 degrees Celsius) and decrease dissolved oxygen concentration (<2.2 milligrams per liter) in the outflow discharge. Conversely, the additional minimum flow plus initial increase in pool elevation (0.5 meter) simulation appeared to decrease outflow water temperature (0.5 degrees Celsius) and increase dissolved oxygen concentration (<1.2 milligrams per liter) through time. However, results from both minimum flow scenarios for both water temperature and dissolved oxygen concentration were within the boundaries or similar to the error between measured and simulated water column profile values.
Simulation of hydrodynamics, temperature, and dissolved oxygen in Norfork Lake, Arkansas, 1994-1995
Galloway, Joel M.; Green, W. Reed
2002-01-01
Outflow from Norfork Lake and other White River reservoirs support a cold-water trout fishery of significant economic yield in north-central Arkansas and south-central Missouri. The Arkansas Game and Fish Commission has requested an increase in existing minimum flows through the Norfork Lake dam to increase the amount of fishable waters downstream. Information is needed to assess the impact of increased minimum flows on temperature and dissolved-oxygen concentrations of reservoir water and the outflow. A two-dimensional, laterally averaged, hydrodynamic, temperature, and dissolved-oxygen model was developed and calibrated for Norfork Lake, located on the Arkansas-Missouri State line. The model simulates water-surface elevation, heat transport, and dissolved-oxygen dynamics. The model was developed to assess the impacts of proposed increases in minimum flow from 1.6 cubic meter per second (the existing minimum flow) to 8.5 cubic meters per second (the increased minimum flow). Simulations included assessing the impact of (1) increased minimum flows and (2) increased minimum flows with increased water-surface elevation of 1.1 meter in Norfork Lake on outflow temperatures and dissolved-oxygen concentrations. The increased minimum flow simulation (without increasing initial water-surface elevation) appeared to increase the water temperature and decrease dissolved-oxygen concentration in the outflow. Conversely, the increased minimum flow and initial increase in water-surface elevation (1.1 meter) simulation appeared to decrease outflow water temperature and increase dissolved-oxygen concentration through time. However, results from both scenarios for water temperature and dissolved-oxygen concentration were within the boundaries or similar to the error between measured and simulated water column profile values.
NASA Astrophysics Data System (ADS)
Magri, F.; Inbar, N.; Raggad, M.; Möller, S.; Siebert, C.; Möller, P.; Kuehn, M.
2014-12-01
Lake Kinneret (Lake Tiberias or Sea of Galilee) is the most important freshwater reservoir in the Northern Jordan Valley. Simulations that couple fluid flow, heat and mass transport are built to understand the mechanisms responsible for the salinization of this important resource. Here the effects of permeability distribution on 2D and 3D convective patterns are compared. 2D simulations indicate that thermal brine in Haon and some springs in the Yamourk Gorge (YG) are the result of mixed convection, i.e. the interaction between the regional flow from the bordering heights and thermally-driven flow (Magri et al., 2014). Calibration of the calculated temperature profiles suggests that the faults in Haon and the YG provides paths for ascending hot waters, whereas the fault in the Golan recirculates water between 1 and 2 km depths. At higher depths, faults induce 2D layered convection in the surrounding units. The 2D assumption for a faulted basin can oversimplify the system, and the conclusions might not be fully correct. The 3D results also point to mixed convection as the main mechanism for the thermal anomalies. However, in 3D the convective structures are more complex allowing for longer flow paths and residence times. In the fault planes, hydrothermal convection develops in a finger regime enhancing inflow and outflow of heat in the system. Hot springs can form locally at the surface along the fault trace. By contrast, the layered cells extending from the faults into the surrounding sediments are preserved and are similar to those simulated in 2D. The results are consistent with the theory from Zhao et al. (2003), which predicts that 2D and 3D patterns have the same probability to develop given the permeability and temperature ranges encountered in geothermal fields. The 3D approach has to be preferred to the 2D in order to capture all patterns of convective flow, particularly in the case of planar high permeability regions such as faults. Magri, F., et al., 2014
Yan, Chang; Yuan, Rongfeng; Pfalzgraff, William C; Nishida, Jun; Wang, Lu; Markland, Thomas E; Fayer, Michael D
2016-05-01
Functionalized self-assembled monolayers (SAMs) are the focus of ongoing investigations because they can be chemically tuned to control their structure and dynamics for a wide variety of applications, including electrochemistry, catalysis, and as models of biological interfaces. Here we combine reflection 2D infrared vibrational echo spectroscopy (R-2D IR) and molecular dynamics simulations to determine the relationship between the structures of functionalized alkanethiol SAMs on gold surfaces and their underlying molecular motions on timescales of tens to hundreds of picoseconds. We find that at higher head group density, the monolayers have more disorder in the alkyl chain packing and faster dynamics. The dynamics of alkanethiol SAMs on gold are much slower than the dynamics of alkylsiloxane SAMs on silica. Using the simulations, we assess how the different molecular motions of the alkyl chain monolayers give rise to the dynamics observed in the experiments. PMID:27044113
NASA Astrophysics Data System (ADS)
Price, Daniel J.; Laibe, Guillaume
2015-07-01
We describe a simple method for simulating the dynamics of small grains in a dusty gas, relevant to micron-sized grains in the interstellar medium and grains of centimetre size and smaller in protoplanetary discs. The method involves solving one extra diffusion equation for the dust fraction in addition to the usual equations of hydrodynamics. This `diffusion approximation for dust' is valid when the dust stopping time is smaller than the computational timestep. We present a numerical implementation using smoothed particle hydrodynamics that is conservative, accurate and fast. It does not require any implicit timestepping and can be straightforwardly ported into existing 3D codes.
NASA Astrophysics Data System (ADS)
Guzman, Orlando; Velez, Jose Antonio; Castañeda, David
2008-03-01
Experimental biosensors based on liquid crystals (LC) use nematics to detect the presence of specific analytes, via the optical textures exhibited by the LC at long times. Efforts to model the time evolution of these textures have relied on relaxational models, ignoring transport phenomena. In this work we include hydrodynamics into a model for these LC biosensors, using lattice Boltzmann (LB) methods and assess the effect on the lifetime of multidomain structures, characteristic of high concentrations of analyte. We apply Yeoman's et al. LB algorithm, which reproduces the hydrodynamic equations developed by Beris and Edwards for LCs. We also take into account thermal fluctuations, by adding random perturbations to the hydrodynamic modes. Following Adhikari et al., their amplitude is determined by the Fluctuation-Dissipation theorem and we excite both hydrodynamic and the sub-hydrodynamic modes (also called ghost modes). As a result, we analyze the influence of the fluctuations and hydrodynamics on the movement of topological defects.
A heterogeneous and parallel computing framework for high-resolution hydrodynamic simulations
NASA Astrophysics Data System (ADS)
Smith, Luke; Liang, Qiuhua
2015-04-01
Shock-capturing hydrodynamic models are now widely applied in the context of flood risk assessment and forecasting, accurately capturing the behaviour of surface water over ground and within rivers. Such models are generally explicit in their numerical basis, and can be computationally expensive; this has prohibited full use of high-resolution topographic data for complex urban environments, now easily obtainable through airborne altimetric surveys (LiDAR). As processor clock speed advances have stagnated in recent years, further computational performance gains are largely dependent on the use of parallel processing. Heterogeneous computing architectures (e.g. graphics processing units or compute accelerator cards) provide a cost-effective means of achieving high throughput in cases where the same calculation is performed with a large input dataset. In recent years this technique has been applied successfully for flood risk mapping, such as within the national surface water flood risk assessment for the United Kingdom. We present a flexible software framework for hydrodynamic simulations across multiple processors of different architectures, within multiple computer systems, enabled using OpenCL and Message Passing Interface (MPI) libraries. A finite-volume Godunov-type scheme is implemented using the HLLC approach to solving the Riemann problem, with optional extension to second-order accuracy in space and time using the MUSCL-Hancock approach. The framework is successfully applied on personal computers and a small cluster to provide considerable improvements in performance. The most significant performance gains were achieved across two servers, each containing four NVIDIA GPUs, with a mix of K20, M2075 and C2050 devices. Advantages are found with respect to decreased parametric sensitivity, and thus in reducing uncertainty, for a major fluvial flood within a large catchment during 2005 in Carlisle, England. Simulations for the three-day event could be performed
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Shie, C.-H.; Simpson, J.; Starr, D.; Johnson, D.; Sud, Y.
2003-01-01
Real clouds and clouds systems are inherently three dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D). A few 3D CRMs have been used to study the response of clouds to large-scale forcing. In these 3D simulations, the model domain was small, and the integration time was 6 hours. Only recently have 3D experiments been performed for multi-day periods for tropical cloud system with large horizontal domains at the National Center for Atmospheric Research. The results indicate that surface precipitation and latent heating profiles are very similar between the 2D and 3D simulations of these same cases. The reason for the strong similarity between the 2D and 3D CRM simulations is that the observed large-scale advective tendencies of potential temperature, water vapor mixing ratio, and horizontal momentum were used as the main forcing in both the 2D and 3D models. Interestingly, the 2D and 3D versions of the CRM used in CSU and U.K. Met Office showed significant differences in the rainfall and cloud statistics for three ARM cases. The major objectives of this project are to calculate and axamine: (1)the surface energy and water budgets, (2) the precipitation processes in the convective and stratiform regions, (3) the cloud upward and downward mass fluxes in the convective and stratiform regions; (4) cloud characteristics such as size, updraft intensity and lifetime, and (5) the entrainment and detrainment rates associated with clouds and cloud systems that developed in TOGA COARE, GATE, SCSMEX, ARM and KWAJEX. Of special note is that the analyzed (model generated) data sets are all produced by the same current version of the GCE model, i.e. consistent model physics and configurations. Trajectory analyse and inert tracer calculation will be conducted to identify the differences and similarities in the organization of convection between simulated 2D and 3D cloud systems.
NASA Astrophysics Data System (ADS)
Wu, Benxin; Shin, Yung C.
2007-05-01
In laser shock peening (LSP) under a water-confinement regime, laser-matter interaction near the coating-water interface can induce very high pressures in the order of gigapascals, which can impart compressive residual stresses into metal workpieces to improve fatigue and corrosion properties. For axisymmetric laser spots with finite size, the pressure generation near the water-coating interface is a two dimensional process in nature. This is in particular the case for microscale LSP performed with very small laser spots, which is a very promising technique to improve the reliability performance of microdevices. However, models capable of predicting two dimensional (2D) spatial distributions of the induced pressures near the coating-water interface in LSP have rarely been reported in literature. In this paper, a predictive 2D axisymmetric model is developed by numerically solving the hydrodynamic equations, supplemented with appropriate equations of state of water and the coating material. The model can produce 2D spatial distributions of material responses near the water-coating interface in LSP, and is verified through comparisons with experimental measurements. The model calculation shows that the effect of radial release wave on pressure spatial distributions becomes more significant as the laser spot size decreases, indicating the importance of a 2D model, particularly for microscale LSP.
Wu, Benxin; Shin, Yung C.
2007-05-15
In laser shock peening (LSP) under a water-confinement regime, laser-matter interaction near the coating-water interface can induce very high pressures in the order of gigapascals, which can impart compressive residual stresses into metal workpieces to improve fatigue and corrosion properties. For axisymmetric laser spots with finite size, the pressure generation near the water-coating interface is a two dimensional process in nature. This is in particular the case for microscale LSP performed with very small laser spots, which is a very promising technique to improve the reliability performance of microdevices. However, models capable of predicting two dimensional (2D) spatial distributions of the induced pressures near the coating-water interface in LSP have rarely been reported in literature. In this paper, a predictive 2D axisymmetric model is developed by numerically solving the hydrodynamic equations, supplemented with appropriate equations of state of water and the coating material. The model can produce 2D spatial distributions of material responses near the water-coating interface in LSP, and is verified through comparisons with experimental measurements. The model calculation shows that the effect of radial release wave on pressure spatial distributions becomes more significant as the laser spot size decreases, indicating the importance of a 2D model, particularly for microscale LSP.
Multi-resolution flow simulations by smoothed particle hydrodynamics via domain decomposition
NASA Astrophysics Data System (ADS)
Bian, Xin; Li, Zhen; Karniadakis, George Em
2015-09-01
We present a methodology to concurrently couple particle-based methods via a domain decomposition (DD) technique for simulating viscous flows. In particular, we select two resolutions of the smoothed particle hydrodynamics (SPH) method as demonstration. Within the DD framework, a simulation domain is decomposed into two (or more) overlapping sub-domains, each of which has an individual particle scale determined by the local flow physics. Consistency of the two sub-domains is achieved in the overlap region by matching the two independent simulations based on Lagrangian interpolation of state variables and fluxes. The domain decomposition based SPH method (DD-SPH) employs different spatial and temporal resolutions, and hence, each sub-domain has its own smoothing length and time step. As a consequence, particle refinement and de-refinement are performed asynchronously according to individual time advancement of each sub-domain. The proposed strategy avoids SPH force interactions between different resolutions on purpose, so that coupling, in principle, can go beyond SPH-SPH, and may allow SPH to be coupled with other mesoscopic or microscopic particle methods. The DD-SPH method is validated first for a transient Couette flow, where simulation results based on proper coupling of spatial-temporal scales agree well with analytical solutions. In particular, we find that the size of the overlap region should be at least rc,1 + 2rc,2, where rc,1 and rc,2 are cut off radii in the two sub-domains with rc,1 ≤rc,2. Subsequently, a perturbation wave is considered traveling either parallel or perpendicular to the hybrid interface. Compressibility is significant if transient behavior at short sonic-time-scale is relevant, while the fluid can be treated as quasi-incompressible at sufficiently long time scale. To this end, we propose a coupling of density fields from the two sub-domains. Finally, a steady Wannier flow is simulated, where a rotating cylinder is placed next to a
The distribution of metals in cosmological hydrodynamical simulations of dwarf disc galaxies
NASA Astrophysics Data System (ADS)
Pilkington, K.; Gibson, B. K.; Brook, C. B.; Calura, F.; Stinson, G. S.; Thacker, R. J.; Michel-Dansac, L.; Bailin, J.; Couchman, H. M. P.; Wadsley, J.; Quinn, T. R.; Maccio, A.
2012-09-01
We examine the chemical properties of five cosmological hydrodynamical simulations of an M33-like disc galaxy which have been shown previously to be consistent with the morphological characteristics and bulk scaling relations expected of late-type spirals. These simulations are part of the Making Galaxies in a Cosmological Context Project, in which stellar feedback is tuned to match the stellar mass-halo mass relationship. Each realization employed identical initial conditions and assembly histories, but differed from one another in their underlying baryonic physics prescriptions, including (a) the efficiency with which each supernova energy couples to the surrounding interstellar medium, (b) the impact of feedback associated with massive star radiation pressure, (c) the role of the minimum shut-off time for radiative cooling of Type II supernovae remnants, (d) the treatment of metal diffusion and (e) varying the initial mass function. Our analysis focusses on the resulting stellar metallicity distribution functions (MDFs) in each simulated (analogous) 'solar neighbourhood' (2-3 disc scalelengths from the galactic centre) and central 'bulge' region. We compare and contrast the simulated MDFs' skewness, kurtosis and dispersion (inter-quartile, inter-decile, inter-centile and inter-tenth-percentile regions) with that of the empirical solar neighbourhood MDF and Local Group dwarf galxies. We find that the MDFs of the simulated discs are more negatively skewed, with higher kurtosis, than those observed locally in the Milky Way and Local Group dwarfs. We can trace this difference to the simulations' very tight and correlated age-metallicity relations (compared with that of the Milky Way's solar neighbourhood), suggesting that these relations within 'dwarf' discs might be steeper than in L⋆ discs (consistent with the simulations' star formation histories and extant empirical data), and/or the degree of stellar orbital redistribution and migration inferred locally has
NASA Astrophysics Data System (ADS)
Buntemeyer, Lars; Banerjee, Robi; Peters, Thomas; Klassen, Mikhail; Pudritz, Ralph E.
2016-02-01
We present an algorithm for solving the radiative transfer problem on massively parallel computers using adaptive mesh refinement and domain decomposition. The solver is based on the method of characteristics which requires an adaptive raytracer that integrates the equation of radiative transfer. The radiation field is split into local and global components which are handled separately to overcome the non-locality problem. The solver is implemented in the framework of the magneto-hydrodynamics code FLASH and is coupled by an operator splitting step. The goal is the study of radiation in the context of star formation simulations with a focus on early disc formation and evolution. This requires a proper treatment of radiation physics that covers both the optically thin as well as the optically thick regimes and the transition region in particular. We successfully show the accuracy and feasibility of our method in a series of standard radiative transfer problems and two 3D collapse simulations resembling the early stages of protostar and disc formation.
Investigating galaxy-filament alignments in hydrodynamic simulations using density ridges
NASA Astrophysics Data System (ADS)
Chen, Yen-Chi; Ho, Shirley; Tenneti, Ananth; Mandelbaum, Rachel; Croft, Rupert; DiMatteo, Tiziana; Freeman, Peter E.; Genovese, Christopher R.; Wasserman, Larry
2015-12-01
In this paper, we study the filamentary structures and the galaxy alignment along filaments at redshift z = 0.06 in the MassiveBlack-II simulation, a state-of-the-art, high-resolution hydrodynamical cosmological simulation which includes stellar and AGN feedback in a volume of (100 Mpc h-1)3. The filaments are constructed using the subspace constrained mean shift (SCMS; Ozertem & Erdogmus; Chen et al.). First, we show that reconstructed filaments using galaxies and reconstructed filaments using dark matter particles are similar to each other; over 50 per cent of the points on the galaxy filaments have a corresponding point on the dark matter filaments within distance 0.13 Mpc h-1 (and vice versa) and this distance is even smaller at high-density regions. Second, we observe the alignment of the major principal axis of a galaxy with respect to the orientation of its nearest filament and detect a 2.5 Mpc h-1 critical radius for filament's influence on the alignment when the subhalo mass of this galaxy is between 109 M⊙ h-1 and 1012 M⊙ h-1. Moreover, we find the alignment signal to increase significantly with the subhalo mass. Third, when a galaxy is close to filaments (less than 0.25 Mpc h-1), the galaxy alignment towards the nearest galaxy group is positively correlated with the galaxy subhalo mass. Finally, we find that galaxies close to filaments or groups tend to be rounder than those away from filaments or groups.
GAMMA-RAY BURST AFTERGLOW BROADBAND FITTING BASED DIRECTLY ON HYDRODYNAMICS SIMULATIONS
Van Eerten, Hendrik; MacFadyen, Andrew; Van der Horst, Alexander
2012-04-10
We present a powerful new tool for fitting broadband gamma-ray burst afterglow data, which can be used to determine the burst explosion parameters and the synchrotron radiation parameters. By making use of scale invariance between relativistic jets of different energies and different circumburst medium densities, and by capturing the output of high-resolution two-dimensional relativistic hydrodynamical (RHD) jet simulations in a concise summary, the jet dynamics are generated quickly. Our method calculates the full light curves and spectra using linear radiative transfer sufficiently fast to allow for a direct iterative fit of RHD simulations to the data. The fit properly accounts for jet features that so far have not been successfully modeled analytically, such as jet decollimation, inhomogeneity along the shock front, and the transitory phase between the early-time relativistic and late-time non-relativistic outflow. As a first application of the model we simultaneously fit the radio, X-ray, and optical data of GRB 990510. We find not only noticeable differences between our findings for the explosion and radiation parameters and those of earlier authors, but also an improved model fit when we include the observer angle in the data fit. The fit method will be made freely available on request and online at http://cosmo.nyu.edu/afterglowlibrary. In addition to data fitting, the software tools can also be used to quickly generate a light curve or spectrum for arbitrary observer position, jet, and radiation parameters.
NASA Astrophysics Data System (ADS)
Abe, Makito; Umemura, Masayuki; Hasegawa, Kenji
2016-08-01
We explore the possibility of the formation of globular clusters under ultraviolet (UV) background radiation. One-dimensional spherical symmetric radiation hydrodynamics (RHD) simulations by Hasegawa et al. have demonstrated that the collapse of low-mass (106-7 M⊙) gas clouds exposed to intense UV radiation can lead to the formation of compact star clusters like globular clusters (GCs) if gas clouds contract with supersonic infall velocities. However, three-dimensional effects, such as the anisotropy of background radiation and the inhomogeneity in gas clouds, have not been studied so far. In this paper, we perform three-dimensional RHD simulations in a semi-cosmological context, and reconsider the formation of compact star clusters in strong UV radiation fields. As a result, we find that although anisotropic radiation fields bring an elongated shadow of neutral gas, almost spherical compact star clusters can be procreated from a "supersonic infall" cloud, since photo-dissociating radiation suppresses the formation of hydrogen molecules in the shadowed regions and the regions are compressed by UV heated ambient gas. The properties of resultant star clusters match those of GCs. On the other hand, in weak UV radiation fields, dark matter-dominated star clusters with low stellar density form due to the self-shielding effect as well as the positive feedback by ionizing photons. Thus, we conclude that the "supersonic infall" under a strong UV background is a potential mechanism to form GCs.
Cao, Duc; Moses, Gregory; Delettrez, Jacques
2015-08-15
An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.
Gamma-Ray Burst Afterglow Broadband Fitting Based Directly on Hydrodynamics Simulations
NASA Astrophysics Data System (ADS)
van Eerten, Hendrik; van der Horst, Alexander; MacFadyen, Andrew
2012-04-01
We present a powerful new tool for fitting broadband gamma-ray burst afterglow data, which can be used to determine the burst explosion parameters and the synchrotron radiation parameters. By making use of scale invariance between relativistic jets of different energies and different circumburst medium densities, and by capturing the output of high-resolution two-dimensional relativistic hydrodynamical (RHD) jet simulations in a concise summary, the jet dynamics are generated quickly. Our method calculates the full light curves and spectra using linear radiative transfer sufficiently fast to allow for a direct iterative fit of RHD simulations to the data. The fit properly accounts for jet features that so far have not been successfully modeled analytically, such as jet decollimation, inhomogeneity along the shock front, and the transitory phase between the early-time relativistic and late-time non-relativistic outflow. As a first application of the model we simultaneously fit the radio, X-ray, and optical data of GRB 990510. We find not only noticeable differences between our findings for the explosion and radiation parameters and those of earlier authors, but also an improved model fit when we include the observer angle in the data fit. The fit method will be made freely available on request and online at http://cosmo.nyu.edu/afterglowlibrary. In addition to data fitting, the software tools can also be used to quickly generate a light curve or spectrum for arbitrary observer position, jet, and radiation parameters.
MODA: a new algorithm to compute optical depths in multidimensional hydrodynamic simulations
NASA Astrophysics Data System (ADS)
Perego, Albino; Gafton, Emanuel; Cabezón, Rubén; Rosswog, Stephan; Liebendörfer, Matthias
2014-08-01
Aims: We introduce the multidimensional optical depth algorithm (MODA) for the calculation of optical depths in approximate multidimensional radiative transport schemes, equally applicable to neutrinos and photons. Motivated by (but not limited to) neutrino transport in three-dimensional simulations of core-collapse supernovae and neutron star mergers, our method makes no assumptions about the geometry of the matter distribution, apart from expecting optically transparent boundaries. Methods: Based on local information about opacities, the algorithm figures out an escape route that tends to minimize the optical depth without assuming any predefined paths for radiation. Its adaptivity makes it suitable for a variety of astrophysical settings with complicated geometry (e.g., core-collapse supernovae, compact binary mergers, tidal disruptions, star formation, etc.). We implement the MODA algorithm into both a Eulerian hydrodynamics code with a fixed, uniform grid and into an SPH code where we use a tree structure that is otherwise used for searching neighbors and calculating gravity. Results: In a series of numerical experiments, we compare the MODA results with analytically known solutions. We also use snapshots from actual 3D simulations and compare the results of MODA with those obtained with other methods, such as the global and local ray-by-ray method. It turns out that MODA achieves excellent accuracy at a moderate computational cost. In appendix we also discuss implementation details and parallelization strategies.
NASA Astrophysics Data System (ADS)
Kordilla, J.; Tartakovsky, A. M.; Pan, W.; Shigorina, E.; Noffz, T.; Geyer, T.
2015-12-01
Unsaturated flow in fractured porous media exhibits highly complex flow dynamics and a wide range of intermittent flow processes. Especially in wide aperture fractures, flow processes may be dominated by gravitational instead of capillary forces leading to a deviation from the classical volume effective approaches (Richard's equation, Van Genuchten type relationships). The existence of various flow modes such as droplets, rivulets, turbulent and adsorbed films is well known, however, their spatial and temporal distribution within fracture networks is still an open question partially due to the lack of appropriate modeling tools. With our work we want to gain a deeper understanding of the underlying flow and transport dynamics in unsaturated fractured media in order to support the development of more refined upscaled methods, applicable on catchment scales. We present fracture-scale flow simulations obtained with a parallelized Smoothed Particle Hydrodynamics (SPH) model. The model allows us to simulate free-surface flow dynamics including the effect of surface tension for a wide range of wetting conditions in smooth and rough fractures. Due to the highly efficient generation of surface tension via particle-particle interaction forces the dynamic wetting of surfaces can readily be obtained. We validated the model via empirical and semi-analytical solutions and conducted laboratory-scale percolation experiments of unsaturated flow through synthetic fracture systems. The setup allows us to obtain travel time distributions and identify characteristic flow mode distributions on wide aperture fractures intercepted by horizontal fracture elements.
NASA Astrophysics Data System (ADS)
Nishiura, Daisuke; Furuichi, Mikito; Sakaguchi, Hide
2015-09-01
The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated for three types of current shared-memory parallel computer devices: many integrated core (MIC) processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in efficient shared-memory allocation methods for each chipset, because the efficient data access patterns differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP programming for MIC processors and multi-core CPUs. We first introduce several parallel implementation techniques for the SPH code, and then examine these on our target computer architectures to determine the most effective algorithms for each processor unit. In addition, we evaluate the effective computing performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics for overall performance in a multi-device environment. In our benchmark test, the GPU is found to produce the best arithmetic performance as a standalone device unit, and gives the most efficient power consumption. The multi-core CPU obtains the most effective computing performance. The computational speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using MICs is an attractive choice for existing SPH codes on multi-core CPUs parallelized by OpenMP, as it gains computational acceleration without the need for significant changes to the source code.
Three-dimensional hydrodynamic simulations of the combustion of a neutron star into a quark star
Herzog, Matthias; Roepke, Friedrich K.
2011-10-15
We present three-dimensional numerical simulations of turbulent combustion converting a neutron star into a quark star. Hadronic matter, described by a microphysical finite-temperature equation of state, is converted into strange quark matter. We assume this phase, represented by a bag-model equation of state, to be absolutely stable. Following the example of thermonuclear burning in white dwarfs leading to type Ia supernovae, we treat the conversion process as a potentially turbulent deflagration. Solving the nonrelativistic Euler equations using established numerical methods we conduct large eddy simulations including an elaborate subgrid scale model, while the propagation of the conversion front is modeled with a level-set method. Our results show that for large parts of the parameter space the conversion becomes turbulent and therefore significantly faster than in the laminar case. Despite assuming absolutely stable strange quark matter, in our hydrodynamic approximation an outer layer remains in the hadronic phase, because the conversion front stops when it reaches conditions under which the combustion is no longer exothermic.
Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M.
2013-06-10
The nature of angular momentum transport in the boundary layers of accretion disks has been one of the central and long-standing issues of accretion disk theory. In this work we demonstrate that acoustic waves excited by supersonic shear in the boundary layer serve as an efficient mechanism of mass, momentum, and energy transport at the interface between the disk and the accreting object. We develop the theory of angular momentum transport by acoustic modes in the boundary layer, and support our findings with three-dimensional hydrodynamical simulations, using an isothermal equation of state. Our first major result is the identification of three types of global modes in the boundary layer. We derive dispersion relations for each of these modes that accurately capture the pattern speeds observed in simulations to within a few percent. Second, we show that angular momentum transport in the boundary layer is intrinsically nonlocal, and is driven by radiation of angular momentum away from the boundary layer into both the star and the disk. The picture of angular momentum transport in the boundary layer by waves that can travel large distances before dissipating and redistributing angular momentum and energy to the disk and star is incompatible with the conventional notion of local transport by turbulent stresses. Our results have important implications for semianalytical models that describe the spectral emission from boundary layers.
NASA Astrophysics Data System (ADS)
Cao, Duc; Moses, Gregory; Delettrez, Jacques
2015-08-01
An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.
NASA Astrophysics Data System (ADS)
Smith, Scott C.; Houser, Janet L.; Centrella, Joan M.
1996-02-01
We have carried out three-dimensional numerical simulations of the dynamical bar instability in a rotating star and the resulting gravitational radiation using both an Eulerian code written in cylindrical coordinates and a smooth particle hydrodynamics (SPH) code. The star is modeled initially as a polytrope with index n = 3/2 and Trot|W| ≍ 0.30, where Trot is the rotational kinetic energy and |W| is the gravitational potential energy. In both codes the gravitational field is purely Newtonian, and the gravitational radiation is calculated in the quadrupole approximation. We have run three simulations with the Eulerian code, varying the number of angular zones and the treatment of the boundary between the star and the vacuum. Using the SPH code we did seven runs, varying the number of particles, the artificial viscosity, and the type of initial model. We compare the growth rate and rotation speed of the bar, the mass, and angular momentum distributions, and the gravitational radiation quantities. We highlight the successes and difficulties of both methods and make suggestions for future improvements.
NASA Astrophysics Data System (ADS)
Granato, Gian Luigi; Ragone-Figueroa, Cinthia; Domínguez-Tenreiro, Rosa; Obreja, Aura; Borgani, Stefano; De Lucia, Gabriella; Murante, Giuseppe
2015-06-01
We compute and study the infrared and sub-mm properties of high-redshift (z ≳ 1) simulated clusters and protoclusters. The results of a large set of hydrodynamical zoom-in simulations including active galactic nuclei (AGN) feedback, have been treated with the recently developed radiative transfer code GRASIL-3D, which accounts for the effect of dust reprocessing in an arbitrary geometry. Here, we have slightly generalized the code to adapt it to the present purpose. Then we have post-processed boxes of physical size 2 Mpc encompassing each of the 24 most massive clusters identified at z = 0, at several redshifts between 0.5 and 3, producing IR and sub-mm mock images of these regions and spectral energy distributions (SEDs) of the radiation coming out from them. While this field is in its infancy from the observational point of view, rapid development is expected in the near future thanks to observations performed in the far-IR and sub-mm bands. Notably, we find that in this spectral regime our prediction are little affected by the assumption required by this post-processing, and the emission is mostly powered by star formation (SF) rather than accretion on to super massive black hole (SMBH). The comparison with the little observational information currently available, highlights that the simulated cluster regions never attain the impressive star formation rates suggested by these observations. This problem becomes more intriguing taking into account that the brightest cluster galaxies (BCGs) in the same simulations turn out to be too massive. It seems that the interplay between the feedback schemes and the star formation model should be revised, possibly incorporating a positive feedback mode.
Jiang, Yan-Fei; Stone, James M.; Davis, Shane W.
2014-12-01
We study super-Eddington accretion flows onto black holes using a global three-dimensional radiation magneto-hydrodynamical simulation. We solve the time-dependent radiative transfer equation for the specific intensities to accurately calculate the angular distribution of the emitted radiation. Turbulence generated by the magneto-rotational instability provides self-consistent angular momentum transfer. The simulation reaches inflow equilibrium with an accretion rate ∼220 L {sub Edd}/c {sup 2} and forms a radiation-driven outflow along the rotation axis. The mechanical energy flux carried by the outflow is ∼20% of the radiative energy flux. The total mass flux lost in the outflow is about 29% of the net accretion rate. The radiative luminosity of this flow is ∼10 L {sub Edd}. This yields a radiative efficiency ∼4.5%, which is comparable to the value in a standard thin disk model. In our simulation, vertical advection of radiation caused by magnetic buoyancy transports energy faster than photon diffusion, allowing a significant fraction of the photons to escape from the surface of the disk before being advected into the black hole. We contrast our results with the lower radiative efficiencies inferred in most models, such as the slim disk model, which neglect vertical advection. Our inferred radiative efficiencies also exceed published results from previous global numerical simulations, which did not attribute a significant role to vertical advection. We briefly discuss the implications for the growth of supermassive black holes in the early universe and describe how these results provided a basis for explaining the spectrum and population statistics of ultraluminous X-ray sources.
Local Radiation Hydrodynamic Simulations of Massive Star Envelopes at the Iron Opacity Peak
NASA Astrophysics Data System (ADS)
Jiang, Yan-Fei; Cantiello, Matteo; Bildsten, Lars; Quataert, Eliot; Blaes, Omer
2015-11-01
We perform three-dimensional radiation hydrodynamic simulations of the structure and dynamics of the radiation-dominated envelopes of massive stars at the location of the iron opacity peak. One-dimensional hydrostatic calculations predict an unstable density inversion at this location, whereas our simulations reveal a complex interplay of convective and radiative transport whose behavior depends on the ratio of the photon diffusion time to the dynamical time. The latter is set by the ratio of the optical depth per pressure scale height, {τ }0, to {τ }{{c}}=c/{c}{{g}}, where {c}{{g}}≈ 50 {km} {{{s}}}-1 is the isothermal sound speed in the gas alone. When {τ }0\\gg {τ }{{c}}, convection reduces the radiation acceleration and removes the density inversion. The turbulent energy transport in the simulations agrees with mixing length theory and provides its first numerical calibration in the radiation-dominated regime. When {τ }0\\ll {τ }{{c}}, convection becomes inefficient and the turbulent energy transport is negligible. The turbulent velocities exceed cg, driving shocks and large density fluctuations that allow photons to preferentially diffuse out through low-density regions. However, the effective radiation acceleration is still larger than the gravitational acceleration so that the time average density profile contains a modest density inversion. In addition, the simulated envelope undergoes large-scale oscillations with periods of a few hours. The turbulent velocity field may affect the broadening of spectral lines and therefore stellar rotation measurements in massive stars, while the time variable outer atmosphere could lead to variations in their mass loss and stellar radius.
Simulation of film and droplet flow on wide aperture fracture using Smoothed Particle Hydrodynamics
NASA Astrophysics Data System (ADS)
Kordilla, J.; Tartakovsky, A.; Geyer, T.
2012-04-01
Fractured media provide rapid flow pathways for water percolating through the unsaturated zone. Film flow has been widely acknowledged as a major rapid flow process with average velocities of 3x10-7m/s (Tokunaga, 1997). Further flow regimes such as droplets, rivulets and falling films may reach much higher velocities while coexisting with films (Ghezzehei, 2004). In order to establish a unified description of multiphase flow at such small scales simulation approaches have to be able to deal with the highly dynamical interfaces and reproduce the physical behavior dominated by capillary, surface tension and gravitational forces. In this work we show simulations of free-surface flow on inclined fracture surfaces using a Smoothed Particle Hydrodynamics (SPH) model (Tartakovsky, 2005). The three-dimensional Lagrangian code employs an interpolation kernel in order to solve the Navier-Stokes equation at an arbitrary set of points (particles). Pairwise fluid-fluid and solid-fluid interaction forces are used to simulate a wide range of wetting conditions and Reynolds numbers encountered in laboratory experiments. Model results are verified with empirical and semianalytical solutions. Contact angles of droplets in a critical state, i.e. at the verge of movement, are compared with laboratory experiments reported in literature. Transient droplet dynamics are shown to reproduce the linear scaling proposed by Podgorski (2001). Depending on Reynolds number and static contact angles droplets leave behind trailing films. In order to investigate the influence of adsorbed films on droplet flow surfaces are prewetted with a thin film and simulations repeated. The results indicate a strong dependence of droplet flow dynamics on the existence of adsorbed films with droplet velocities being tripled under certain conditions. Despite their relatively slow velocities, adsorbed films are shown to be an essential part of unsaturated droplet flow dynamics as they enhance the wetting and
Three-dimensional simulations of ablative hydrodynamic instabilities in indirectly driven targets
Marinak, M.M.; Tipton, R.E.; Remington, B.A.
1996-06-01
To model ignition in a National Ignition Facility (NIF) capsule implosion, the authors must understand the behavior of instabilities that can cause breakup of the pellet shell. During a capsule implosion, shocks that transit the shell cause growth of perturbations at the surface or at an interface because of a Richtmyer-Meshkov type of instability. Following shock breakout, or earlier for a shaped pulse, the low-density ablated plasma accelerates the pusher, and the ablation front is Rayleigh-Taylor (RT) unstable. Ablation and finite density gradients have the effect of stabilizing the short wavelength modes. Unstable modes present on the outer surface grow and feed through to the inner surface. Once the shell encounters the rebounding shock from the capsule center, it decelerates and the inner surface becomes RT unstable. If perturbations grow large enough, pusher material mixes into the core, degrading implosion performance. Capsule designs for the NIF depend on ablative stabilization and saturation to prevent perturbations initially present on the capsule surface from growing large enough to quench ignition. Here, the authors examine the first simulations and experiments to study the effect of 3-D perturbation shape on instability growth and saturation in indirectly driven targets. The first section discusses HYDRA, the radiation hydrodynamics code developed for these simulations. The subsequent section examines 3-D shape effects in single-mode perturbations in planar foil simulations and experiments. A discussion of the evolution of multimode perturbations on planar foils is followed by a discussion of 3-D simulations of instability growth in Nova capsule implosions.
Laganapan, Aleena Maria; Mouas, Mohamed; Videcoq, Arnaud; Cerbelaud, Manuella; Bienia, Marguerite; Bowen, Paul; Ferrando, Riccardo
2015-11-15
The percolation behavior of alumina suspensions is studied by computer simulations. The percolation threshold ϕc is calculated, determining the key factors that affect its magnitude: the strength of colloid-colloid attraction and the presence of hydrodynamic interactions (HIs). To isolate the effects of HIs, we compare the results of Brownian Dynamics, which do not include hydrodynamics, with those of Stochastic Rotation Dynamics-Molecular Dynamics, which include hydrodynamics. Our results show that ϕc decreases with the increase of the attraction between the colloids. The inclusion of HIs always leads to more elongated structures during the aggregation process, producing a sizable decrease of ϕc when the colloid-colloid attraction is not too strong. On the other hand, the effects of HIs on ϕc tend to become negligible with increasing attraction strength. Our ϕc values are in good agreement with those estimated by the yield stress model by Flatt and Bowen. PMID:26232284
NASA Astrophysics Data System (ADS)
Ito, Y.; Noborio, K.
2015-12-01
In Japan, soil disinfection with hot water has been popular since the use of methyl bromide was restricted in 2005. Decreasing the amount of hot water applied may make farmers reduce the operation cost. To determine the appropriate amount of hot water needed for soil disinfection, HYDRUS-2D was evaluated. A field experiment was conducted and soil water content and soil temperature were measured at 5, 10, 20, 40, 60, 80 and 100 cm deep when 95oC hot water was applied. Irrigation tubing equipped with drippers every 30 cm were laid at the soil surface, z=0 cm. An irrigation rate for each dripper was 0.83 cm min-1 between t=0 and 120 min, and thereafter it was zero. Temperature of irrigation water was 95oC. Total simulation time with HYDRUS-2D was 720 min for a homogeneous soil. A simulating domain was selected as x=60 cm and z=100 cm. A potential evaporation rate was assumed to be 0 cm min-1 because the soil surface was covered with a plastic sheet. The boundary condition at the bottom was free drainage and those of both sides were no-flux conditions. Hydraulic properties and bulk densities measured at each depth were used for simulation. It was assumed that there was no organic matter contained. Soil thermal properties were adopted from previous study and HYDRUS 2D. Simulated temperatures at 5, 10, 20 and 40 cm deep agreed well with those measured although simulated temperatures at 60, 80, and 100 cm deep were overly estimated. Estimates of volumetric water content at 5 cm deep agreed well with measured values. Simulated values at 10 to 100 cm deep were overly estimated by 0.1 to 0.3 (m3 m-3). The deeper the soil became, the more the simulated wetting front lagged behind the measured one. It was speculated that water viscosity estimated smaller at high temperature might attributed to the slower advances of wetting front simulated with HYDRUS 2-D.
Goksel, Orcun; Zahiri-Azar, Reza; Salcudean, Septimiu E
2007-01-01
Motion estimation in sequences of ultrasound echo signals is essential for a wide range of applications. In time domain cross correlation, which is a common motion estimation technique, the displacements are typically not integral multiples of the sampling period. Therefore, to estimate the motion with sub-sample accuracy, 1D and 2D interpolation methods such as parabolic, cosine, and ellipsoid fitting have been introduced in the literature. In this paper, a simulation framework is presented in order to compare the performance of currently available techniques. First, the tissue deformation is modeled using the finite element method (FEM) and then the corresponding pre-/post-deformation radio-frequency (RF) signals are generated using Field II ultrasound simulation software. Using these simulated RF data of deformation, both axial and lateral tissue motion are estimated with sub-sample accuracy. The estimated displacements are then evaluated by comparing them to the known displacements computed by the FEM. This simulation approach was used to evaluate three different lateral motion estimation techniques employing (i) two separate 1D sub-sampling, (ii) two consecutive 1D sub-sampling, and (iii) 2D joint sub-sampling estimators. The estimation errors during two different tissue compression tests are presented with and without spatial filtering. Results show that RF signal processing methods involving tissue deformation can be evaluated using the proposed simulation technique, which employs accurate models. PMID:18002416
X-ray Mass Proxies From Hydrodynamic Simulations Of Galaxy Clusters
NASA Astrophysics Data System (ADS)
Rasia, Elena
2011-05-01
Using extended sets of cosmological hydro-dynamical simulations of galaxy clusters, we present a detailed study of scaling relations between the total mass and three mass proxies based on X-ray observable quantities: temperature, gas mass, and the product of the two, YX. Our analysis is based on 140 clusters (M_vir > 5e13 Msun/h) with 30 objects having mass larger than 1e15 Msun/h at redshift 0. The large statistics is used to quantify the robustness of the scaling relations, to determine their redshift evolution, and to calibrate their intrinsic scatter and its distribution. We further use another set of 18 objects simulated with 7 different recipes for the physics of the gas to test the robustness of mass proxies against plasma physics. We supplement this intrinsic analysis of simulations, including observational effect expected when measuring the X-ray cluster temperature and gas mass. For this purpose, we create more than 300 events files reproducing Chandra observations and analyze them through the standard X-ray data reduction pipeline. We find that the M-YX relation to be the least sensitive to variations of the ICM physics, its slope, and redshift evolution being always very close to the self-similar prediction. The scatter distribution around the best-fitting relations is always close to log-normal. The gas mass is the mass proxy with smallest scatter, with a mild dependence in redshift. These results confirm that both YX and the gas mass are well suited mass proxies for cosmological applications of future large X-ray surveys. [This work has been partially supported by PRIN-MIUR grant by ASI-AAE and ASI-COFIN; by the INFN-PD51 grant, by HPC-Europa Translational Access program, by DFG Priority Program 1177 and by DFG Cluster of Excellence].
Green, W. Reed; Galloway, Joel M.; Richards, Joseph M.; Wesolowski, Edwin A.
2003-01-01
Outflow from Table Rock Lake and other White River reservoirs support a cold-water trout fishery of substantial economic yield in south-central Missouri and north-central Arkansas. The Missouri Department of Conservation has requested an increase in existing minimum flows through the Table Rock Lake Dam from the U.S. Army Corps of Engineers to increase the quality of fishable waters downstream in Lake Taneycomo. Information is needed to assess the effect of increased minimum flows on temperature and dissolved- oxygen concentrations of reservoir water and the outflow. A two-dimensional, laterally averaged, hydrodynamic, temperature, and dissolved-oxygen model, CE-QUAL-W2, was developed and calibrated for Table Rock Lake, located in Missouri, north of the Arkansas-Missouri State line. The model simulates water-surface elevation, heat transport, and dissolved-oxygen dynamics. The model was developed to assess the effects of proposed increases in minimum flow from about 4.4 cubic meters per second (the existing minimum flow) to 11.3 cubic meters per second (the increased minimum flow). Simulations included assessing the effect of (1) increased minimum flows and (2) increased minimum flows with increased water-surface elevations in Table Rock Lake, on outflow temperatures and dissolved-oxygen concentrations. In both minimum flow scenarios, water temperature appeared to stay the same or increase slightly (less than 0.37 ?C) and dissolved oxygen appeared to decrease slightly (less than 0.78 mg/L) in the outflow during the thermal stratification season. However, differences between the minimum flow scenarios for water temperature and dissolved- oxygen concentration and the calibrated model were similar to the differences between measured and simulated water-column profile values.
NASA Astrophysics Data System (ADS)
Hojjati, Alireza; McCarthy, Ian G.; Harnois-Deraps, Joachim; Ma, Yin-Zhe; Van Waerbeke, Ludovic; Hinshaw, Gary; Le Brun, Amandine M. C.
2015-10-01
We use the cosmo-OWLS suite of cosmological hydrodynamical simulations, which includes different galactic feedback models, to predict the cross-correlation signal between weak gravitational lensing and the thermal Sunyaev-Zeldovich (tSZ) y-parameter. The predictions are compared to the recent detection reported by van Waerbeke and collaborators. The simulations reproduce the weak lensing-tSZ cross-correlation, ξyκ(θ), well. The uncertainty arising from different possible feedback models appears to be important on small scales only (0θ lesssim 1 arcmin), while the amplitude of the correlation on all scales is sensitive to cosmological parameters that control the growth rate of structure (such as σ8, Ωm and Ωb). This study confirms our previous claim (in Ma et al.) that a significant proportion of the signal originates from the diffuse gas component in low-mass (Mhalo lesssim 1014 Msolar) clusters as well as from the region beyond the virial radius. We estimate that approximately 20% of the detected signal comes from low-mass clusters, which corresponds to about 30% of the baryon density of the Universe. The simulations also suggest that more than half of the baryons in the Universe are in the form of diffuse gas outside halos (gtrsim 5 times the virial radius) which is not hot or dense enough to produce a significant tSZ signal or be observed by X-ray experiments. Finally, we show that future high-resolution tSZ-lensing cross-correlation observations will serve as a powerful tool for discriminating between different galactic feedback models.
NASA Astrophysics Data System (ADS)
Wang, Jin; Ma, Jianyong; Zhou, Changhe
2014-11-01
A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.
NASA Astrophysics Data System (ADS)
Di Prima, Simone; Bagarello, Vincenzo; Bautista, Inmaculada; Burguet, Maria; Cerdà, Artemi; Iovino, Massimo; Prosdocimi, Massimo
2016-04-01
Studying soil hydraulic properties is necessary for interpreting and simulating many hydrological processes having environmental and economic importance, such as rainfall partition into infiltration and runoff. The saturated hydraulic conductivity, Ks, exerts a dominating influence on the partitioning of rainfall in vertical and lateral flow paths. Therefore, estimates of Ks are essential for describing and modeling hydrological processes (Zimmermann et al., 2013). According to several investigations, Ks data collected by ponded infiltration tests could be expected to be unusable for interpreting field hydrological processes, and particularly infiltration. In fact, infiltration measured by ponding give us information about the soil maximum or potential infiltration rate (Cerdà, 1996). Moreover, especially for the hydrodynamic parameters, many replicated measurements have to be carried out to characterize an area of interest since they are known to vary widely both in space and time (Logsdon and Jaynes, 1996; Prieksat et al., 1994). Therefore, the technique to be applied at the near point scale should be simple and rapid. Bagarello et al. (2014) and Alagna et al. (2015) suggested that the Ks values determined by an infiltration experiment carried applying water at a relatively large distance from the soil surface could be more appropriate than those obtained with a low height of water pouring to explain surface runoff generation phenomena during intense rainfall events. These authors used the Beerkan Estimation of Soil Transfer parameters (BEST) procedure for complete soil hydraulic characterization (Lassabatère et al., 2006) to analyze the field infiltration experiment. This methodology, combining low and high height of water pouring, seems appropriate to test the effect of intense and prolonged rainfall events on the hydraulic characteristics of the surface soil layer. In fact, an intense and prolonged rainfall event has a perturbing effect on the soil surface
Linking 1D evolutionary to 3D hydrodynamical simulations of massive stars
NASA Astrophysics Data System (ADS)
Cristini, A.; Meakin, C.; Hirschi, R.; Arnett, D.; Georgy, C.; Viallet, M.
2016-03-01
Stellar evolution models of massive stars are important for many areas of astrophysics, for example nucleosynthesis yields, supernova progenitor models and understanding physics under extreme conditions. Turbulence occurs in stars primarily due to nuclear burning at different mass coordinates within the star. The understanding and correct treatment of turbulence and turbulent mixing at convective boundaries in stellar models has been studied for decades but still lacks a definitive solution. This paper presents initial results of a study on convective boundary mixing (CBM) in massive stars. The ‘stiffness’ of a convective boundary can be quantified using the bulk Richardson number ({{Ri}}{{B}}), the ratio of the potential energy for restoration of the boundary to the kinetic energy of turbulent eddies. A ‘stiff’ boundary ({{Ri}}{{B}}˜ {10}4) will suppress CBM, whereas in the opposite case a ‘soft’ boundary ({{Ri}}{{B}}˜ 10) will be more susceptible to CBM. One of the key results obtained so far is that lower convective boundaries (closer to the centre) of nuclear burning shells are ‘stiffer’ than the corresponding upper boundaries, implying limited CBM at lower shell boundaries. This is in agreement with 3D hydrodynamic simulations carried out by Meakin and Arnett (2007 Astrophys. J. 667 448-75). This result also has implications for new CBM prescriptions in massive stars as well as for nuclear burning flame front propagation in super-asymptotic giant branch stars and also the onset of novae.
New Insights on Pulsating White Dwarfs from 3D Radiation-Hydrodynamical Simulations
NASA Astrophysics Data System (ADS)
Tremblay, Pier-Emmanuel; Fontaine, Gilles; Ludwig, Hans-Günter
2015-08-01
We have recently computed a grid of 3D radiation-hydrodynamical simulations for the atmosphere of 70 pure-hydrogen DA white dwarfs in the range 7.0 < log g < 9.0. This includes the full ZZ Ceti instability strip where DA white dwarfs are pulsating, by far the most common type of degenerate pulsators. We have significantly improved the theoretical framework to study these objects by removing the free parameters of 1D convection, which were previously a major modeling hurdle. We will compare our new models with the observed sample of ZZ Ceti stars and highlight the improved derived properties of these objects. In particular, the new spectroscopically determined 3D atmospheric parameters allow for an improved definition of instability strip edges. We have also made new predictions for the size of convection zones, which significantly impact the position where the pulsations are driven, and the region of the HR diagram where white dwarfs are expected to pulsate. Finally, we will present new results from non-adiabatic pulsation calculations.
Hydrodynamic simulation of non-thermal pressure profiles of galaxy clusters
Nelson, Kaylea; Nagai, Daisuke; Lau, Erwin T.
2014-09-01
Cosmological constraints from X-ray and microwave observations of galaxy clusters are subjected to systematic uncertainties. Non-thermal pressure support due to internal gas motions in galaxy clusters is one of the major sources of astrophysical uncertainties. Using a mass-limited sample of galaxy clusters from a high-resolution hydrodynamical cosmological simulation, we characterize the non-thermal pressure fraction profile and study its dependence on redshift, mass, and mass accretion rate. We find that the non-thermal pressure fraction profile is universal across redshift when galaxy cluster radii are defined with respect to the mean matter density of the universe instead of the commonly used critical density. We also find that the non-thermal pressure is predominantly radial, and the gas velocity anisotropy profile exhibits strong universality when galaxy cluster radii are defined with respect to the mean matter density of the universe. However, we find that the non-thermal pressure fraction is strongly dependent on the mass accretion rate of the galaxy cluster. We provide fitting formulae for the universal non-thermal pressure fraction and velocity anisotropy profiles of gas in galaxy clusters, which should be useful in modeling astrophysical uncertainties pertinent to using galaxy clusters as cosmological probes.
HEAVY DUST OBSCURATION OF z = 7 GALAXIES IN A COSMOLOGICAL HYDRODYNAMIC SIMULATION
Kimm, Taysun; Cen, Renyue
2013-10-10
Hubble Space Telescope observations with the Wide Field Camera 3/Infrared reveal that galaxies at z ∼ 7 have very blue ultraviolet (UV) colors, consistent with these systems being dominated by young stellar populations with moderate or little attenuation by dust. We investigate UV and optical properties of the high-z galaxies in the standard cold dark matter model using a high-resolution adaptive mesh refinement cosmological hydrodynamic simulation. For this purpose, we perform panchromatic three-dimensional dust radiative transfer calculations on 198 galaxies of stellar mass 5 × 10{sup 8}-3 × 10{sup 10} M{sub ☉} with three parameters: the dust-to-metal ratio, the extinction curve, and the fraction of directly escaped light from stars (f{sub esc}). Our stellar mass function is found to be in broad agreement with Gonzalez et al., independent of these parameters. We find that our heavily dust-attenuated galaxies (A{sub V} ∼ 1.8) can also reasonably match modest UV-optical colors, blue UV slopes, as well as UV luminosity functions, provided that a significant fraction (∼10%) of light directly escapes from them. The observed UV slope and scatter are better explained with a Small-Magellanic-Cloud-type extinction curve, whereas a Milky-Way-type curve also predicts blue UV colors due to the 2175 Å bump. We expect that upcoming observations by the Atacama Large Millimeter/submillimeter Array will be able to test this heavily obscured model.
HYDRODYNAMICAL SIMULATIONS OF A COMPACT SOURCE SCENARIO FOR THE GALACTIC CENTER CLOUD G2
Ballone, A.; Schartmann, M.; Burkert, A.; Gillessen, S.; Genzel, R.; Fritz, T. K.; Eisenhauer, F.; Pfuhl, O.; Ott, T.
2013-10-10
The origin of the dense gas cloud G2 discovered in the Galactic Center is still a debated puzzle. G2 might be a diffuse cloud or the result of an outflow from an invisible star embedded in it. We present hydrodynamical simulations of the evolution of different spherically symmetric winds of a stellar object embedded in G2. We find that the interaction with the ambient medium and the extreme gravitational field of the supermassive black hole in the Galactic Center must be taken into account in such a source scenario. The thermal pressure of the hot and dense atmosphere confines the wind, while its ram pressure shapes it via stripping along the orbit, with the details depending on the wind parameters. Tidal forces squeeze the wind near pericenter, reducing it to a thin and elongated filament. We also find that in this scenario most of the Brγ luminosity is expected to come from the densest part of the wind, which has a highly filamentary structure with a low filling factor. For our assumed atmosphere, the observations can be best matched by a mass outflow rate of M-dot{sub w}=8.8×10{sup -8} M{sub sun} yr{sup -1} and a wind velocity of v{sub w} = 50 km s{sup –1}. These values are comparable with those of a young T Tauri star wind, as already suggested by Scoville and Burkert.
Narayanan, K.S.; Das, S.K.; Jasmin Sudha, A.; Rao, E.H.V.M.; Lydia, G.; Murthy, S.S.; Kumareshan, M.; Harvey, J.; Kasinathan, N.; Rajan, M.
2006-07-01
In the Safety analysis of Fast Breeder Reactor, assessment of Molten Fuel Coolant Interaction (MFCI) assumes importance for two aspects, namely the characterization of the debris and severity of pressure pulses generation. An attempt has been made to investigate the debris generation characteristics with molten Woods Metal (Alloy of Bi 50% Pb 25% Sn 12.5% and Cd 12.5% and melting point of 346 K) - Water simulant system. Liquid Woods metal and liquid Uranium dioxide physical properties (Density, Surface tension and Kinematic viscosity) are similar. Experimental studies were conducted for various melt temperatures covering non - boiling, convective boiling and film boiling regimes of water, to assess the debris generation resulting from both hydrodynamic and thermal interaction. Woods metal was heated to the desired temperature and poured through a hot funnel having a nozzle of 8 mm release diameter into a water column of height up to 140 cm. Experiments were repeated for different coolant temperature and melt inventory up to 5 kg. The melt entry velocity was determined from video recordings. The debris is analyzed on the basis of interface temperature, Rayleigh-Taylor and Kelvin - Helmholtz instabilities. It is observed that Kelvin-Helmholtz instability is the dominant fragmentation phenomena. Contribution due to coolant boiling resulted in more debris generation in the size less than 4 mm. (authors)
Hydrodynamical simulations of coupled and uncoupled quintessence models - II. Galaxy clusters
NASA Astrophysics Data System (ADS)
Carlesi, Edoardo; Knebe, Alexander; Lewis, Geraint F.; Yepes, Gustavo
2014-04-01
We study the z = 0 properties of clusters (and large groups) of galaxies within the context of interacting and non-interacting quintessence cosmological models, using a series of adiabatic SPH simulations. Initially, we examine the average properties of groups and clusters, quantifying their differences in ΛCold Dark Matter (ΛCDM), uncoupled Dark Energy (uDE) and coupled Dark Energy (cDE) cosmologies. In particular, we focus upon radial profiles of the gas density, temperature and pressure, and we also investigate how the standard hydrodynamic equilibrium hypothesis holds in quintessence cosmologies. While we are able to confirm previous results about the distribution of baryons, we also find that the main discrepancy (with differences up to 20 per cent) can be seen in cluster pressure profiles. We then switch attention to individual structures, mapping each halo in quintessence cosmology to its ΛCDM counterpart. We are able to identify a series of small correlations between the coupling in the dark sector and halo spin, triaxiality and virialization ratio. When looking at spin and virialization of dark matter haloes, we find a weak (5 per cent) but systematic deviation in fifth force scenarios from ΛCDM.
NASA Astrophysics Data System (ADS)
Carlesi, Edoardo; Knebe, Alexander; Lewis, Geraint F.; Wales, Scott; Yepes, Gustavo
2014-04-01
We present the results of a series of adiabatic hydrodynamical simulations of several quintessence models (both with a free and an interacting scalar field) in comparison to a standard Λ cold dark matter cosmology. For each we use 2 × 10243 particles in a 250 h-1 Mpc periodic box assuming 7-year Wilkinson Microwave Anisotropy Probe cosmology. In this work we focus on the properties of haloes in the cosmic web at z = 0. The web is classified into voids, sheets, filaments and knots depending on the eigenvalues of the velocity shear tensor, which are an excellent proxy for the underlying overdensity distribution. We find that the properties of objects classified according to their surrounding environment show a substantial dependence on the underlying cosmology; for example, while Vmax shows average deviations of ≈5 per cent across the different models when considering the full halo sample, comparing objects classified according to their environment, the size of the deviation can be as large as 20 per cent. We also find that halo spin parameters are positively correlated to the coupling, whereas halo concentrations show the opposite behaviour. Furthermore, when studying the concentration-mass relation in different environments, we find that in all cosmologies underdense regions have a larger normalization and a shallower slope. While this behaviour is found to characterize all the models, differences in the best-fitting relations are enhanced in (coupled) dark energy models, thus providing a clearer prediction for this class of models.
The Fundamental Plane of star formation in galaxies revealed by the EAGLE hydrodynamical simulations
NASA Astrophysics Data System (ADS)
Lagos, Claudia del P.; Theuns, Tom; Schaye, Joop; Furlong, Michelle; Bower, Richard G.; Schaller, Matthieu; Crain, Robert A.; Trayford, James W.; Matthee, Jorryt
2016-07-01
We investigate correlations between different physical properties of star-forming galaxies in the `Evolution and Assembly of GaLaxies and their Environments' (EAGLE) cosmological hydrodynamical simulation suite over the redshift range 0 ≤ z ≤ 4.5. A principal component analysis reveals that neutral gas fraction (fgas,neutral), stellar mass (Mstellar) and star formation rate (SFR) account for most of the variance seen in the population, with galaxies tracing a two-dimensional, nearly flat, surface in the three-dimensional space of fgas, neutral-Mstellar-SFR with little scatter. The location of this plane varies little with redshift, whereas galaxies themselves move along the plane as their fgas, neutral and SFR drop with redshift. The positions of galaxies along the plane are highly correlated with gas metallicity. The metallicity can therefore be robustly predicted from fgas, neutral, or from the Mstellar and SFR. We argue that the appearance of this `Fundamental Plane of star formation' is a consequence of self-regulation, with the plane's curvature set by the dependence of the SFR on gas density and metallicity. We analyse a large compilation of observations spanning the redshift range 0 ≲ z ≲ 3, and find that such a plane is also present in the data. The properties of the observed Fundamental Plane of star formation are in good agreement with EAGLE's predictions.
Radiation hydrodynamic simulations of line-driven disk winds for ultra-fast outflows
NASA Astrophysics Data System (ADS)
Nomura, Mariko; Ohsuga, Ken; Takahashi, Hiroyuki R.; Wada, Keiichi; Yoshida, Tessei
2016-02-01
Using two-dimensional radiation hydrodynamic simulations, we investigate the origin of the ultra-fast outflows (UFOs) that are often observed in luminous active galactic nuclei (AGNs). We found that the radiation force due to the spectral lines generates strong winds (line-driven disk winds) that are launched from the inner region of accretion disks (˜30 Schwarzschild radii). A wide range of black hole masses (MBH) and Eddington ratios (ε) was investigated to study the conditions causing the line-driven winds. For MBH = 106-109 M⊙ and ε = 0.1-0.7, funnel-shaped disk winds appear, in which dense matter is accelerated outward with an opening angle of 70°-80° and with 10% of the speed of light. If we observe the wind along its direction, the velocity, the column density, and the ionization state are consistent with those of the observed UFOs. As long as obscuration by the torus does not affect the observation of X-ray bands, the UFOs could be statistically observed in about 13%-28% of the luminous AGNs, which is not inconsistent with the observed ratio (˜40%). We also found that the results are insensitive to the X-ray luminosity and the density of the disk surface. Thus, we can conclude that UFOs could exist in any luminous AGNs, such as narrow-line Seyfert 1s and quasars with ε > 0.1, with which fast line-driven winds are associated.
NASA Astrophysics Data System (ADS)
Grosskopf, Michael; Drake, R.; Kuranz, C.; Park, H.; Kugland, N.; Pollaine, S.; Ross, J.; Remington, B.; Spitkovsky, A.; Gargate, L.; Gregori, G.; Bell, A.; Murphy, C.; Meinecke, J.; Reville, B.; Sakawa, Y.; Kuramitsu, Y.; Takabe, H.; Froula, D.; Fiksel, G.; Miniati, F.; Koenig, M.; Ravasio, A.; Liang, E.; Woolsey, N.
2012-05-01
Collisionless shocks, shocks generated by plasma wave interactions in regions where the collisional mean-free-path for ions is long compared to the length scale for instabilities that generate magnetic fields, are found in many astrophysical systems such as supernova remnants and planetary bow shocks. Generating conditions to investigate collisionless shock physics is difficult to achieve in a laboratory setting; however, high-energy-density physics facilities have made this a possibility. Experiments whose goal is to investigate the production and growth of magnetic fields in collisionless shocks in laboratory-scale systems are being carried out on intense lasers, several of which are measuring the plasma properties and magnetic field strength in counter-streaming, collisionless flows generated by laser ablation. This poster reports radiation-hydrodynamic simulations using the CRASH code to model the ablative flow of plasma generated in order to assess potential designs, as well as infer properties of collected data from previous experiments. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.
NASA Astrophysics Data System (ADS)
Chen, H.; Zhou, D.
2014-03-01
In order to comprehensively study the hydrodynamic characteristics of diffuser for marine current turbine with a postpositive bulb, a geometric model of the turbine was established. Three-dimensional CFD simulation of turbulent flow was performed based on the incompressible continuity equation, the Navier-Stokes equations and the Spalart-Allmaras turbulence model. The influence of diffuser was calculated and analyzed by numerical results, which were also compared with model test results. Results showed that the numerical results agree fairly well with model test and the maximum error of impeller efficiency and power is 1.5% and 1.8% in the rated water velocity condition, which are less than 5.8% and 5.5% under other cases respectively. The new type marine current turbine with a bulb for erecting motor which is different from regular, and the diffuser can aggregate water flow, raise inlet water velocity more than 3% and efficiency of impeller effectively increased. After diffuser was added, the power coefficient curve rose over the full range, so the high power area became widely, and then remarkably prolonged power time as well as increased generated energy, it is also significant for efficient utilization of marine current energy and environmental pollution remission.
NASA Astrophysics Data System (ADS)
Wu, C.; Chang, T.
2010-12-01
A new method in describing the multifractal characteristics of intermittent events was introduced by Cheng and Wu [Chang T. and Wu C.C., Physical Rev, E77, 045401(R), 2008]. The procedure provides a natural connection between the rank-ordered spectrum and the idea of one-parameter scaling for monofractals. This technique has been demonstrated using results obtained from a 2D MHD simulation. It has also been successfully applied to in-situ solar wind observations [Chang T., Wu, C.C. and Podesta, J., AIP Conf Proc. 1039, 75, 2008], and the broadband electric field oscillations from the auroral zone [Tam, S.W.Y. et al., Physical Rev, E81, 036414, 2010]. We take the next step in this procedure. By using the ROMA spectra and the scaled probability distribution functions (PDFs), raw PDFs can be calculated, which can be compared directly with PDFs from observations or simulation results. In addition to 2D MHD simulation results and in-situ solar wind observation, we show clearly using the ROMA analysis the multifractal character of the 3D fluid simulation data obtained from the JHU turbulence database cluster at http://turbulence.pha.jhu.edu. In particular, we show the scaling of the non-symmetrical PDF for the parallel-velocity fluctuations of this 3D fluid data.
NASA Astrophysics Data System (ADS)
Chen, XinJian
2012-12-01
This paper presents an application of a three-dimensional unstructured Cartesian grid model (Chen, 2011) to a real-world case, namely the Crystal River/Kings Bay system located on the Gulf coast of the Florida peninsula of the United States. Crystal River/Kings Bay is a spring-fed estuarine system which is believed to be the largest natural refuge in the United States for manatees during the coldest days in winter because of the existence of a large amount of discharge out of numerous spring vents at the bottom of Kings Bay. The unstructured Cartesian grid model was used to simulate hydrodynamics, including salinity transport processes and thermodynamics, in the estuary during a 34-month period from April 2007 to February 2010. Although there are some unidentified uncertainties in quantifying flow rates from the spring vents and salinity variations in spring flows, simulated water elevations, salinities, temperatures, and cross-sectional flux all match well or very well with measured real-time field data. This suggests that the unstructured Cartesian grid model can adequately simulate hydrodynamics in a complex shallow water system such as Crystal River/Kings Bay and the numerical theory for the unstructured Cartesian grid model works properly. The successful simulation of hydrodynamics in the estuarine system also suggests that an empirical formula that relates the spring discharge with the water level in Kings Bay and the groundwater level measured in a nearby well is reasonable.
Radiation-Hydrodynamic Simulations of Massive Star Formation with Protostellar Outflows
Cunningham, A J; Klein, R I; Krumholz, M R; McKee, C F
2011-03-02
We report the results of a series of AMR radiation-hydrodynamic simulations of the collapse of massive star forming clouds using the ORION code. These simulations are the first to include the feedback effects protostellar outflows, as well as protostellar radiative heating and radiation pressure exerted on the infalling, dusty gas. We find that that outflows evacuate polar cavities of reduced optical depth through the ambient core. These enhance the radiative flux in the poleward direction so that it is 1.7 to 15 times larger than that in the midplane. As a result the radiative heating and outward radiation force exerted on the protostellar disk and infalling cloud gas in the equatorial direction are greatly diminished. The simultaneously reduces the Eddington radiation pressure barrier to high-mass star formation and increases the minimum threshold surface density for radiative heating to suppress fragmentation compared to models that do not include outflows. The strength of both these effects depends on the initial core surface density. Lower surface density cores have longer free-fall times and thus massive stars formed within them undergo more Kelvin contraction as the core collapses, leading to more powerful outflows. Furthermore, in lower surface density clouds the ratio of the time required for the outflow to break out of the core to the core free-fall time is smaller, so that these clouds are consequently influenced by outflows at earlier stages of collapse. As a result, outflow effects are strongest in low surface density cores and weakest in high surface density one. We also find that radiation focusing in the direction of outflow cavities is sufficient to prevent the formation of radiation pressure-supported circumstellar gas bubbles, in contrast to models which neglect protostellar outflow feedback.
Stellar feedback from high-mass X-ray binaries in cosmological hydrodynamical simulations
NASA Astrophysics Data System (ADS)
Artale, M. C.; Tissera, P. B.; Pellizza, L. J.
2015-04-01
We explored the role of X-ray binaries composed by a black hole and a massive stellar companion [black hole X-ray binaries (BHXs)] as sources of kinetic feedback by using hydrodynamical cosmological simulations. Following previous results, our BHX model selects metal-poor stars (Z = [0, 10-4]) as possible progenitors. The model that better reproduces observations assumes that an ˜20 per cent fraction of low-metallicity black holes are in binary systems which produces BHXs. These sources are estimated to deposit ˜1052 erg of kinetic energy per event. With these parameters and in the simulated volume, we find that the energy injected by BHXs represents ˜30 per cent of the total energy released by Type II supernova and BHX events at redshift z ˜ 7 and then decreases rapidly as baryons get chemically enriched. Haloes with virial masses smaller than ˜1010 M⊙ (or Tvir ≲ 105 K) are the most directly affected ones by BHX feedback. These haloes host galaxies with stellar masses in the range 107-108 M⊙. Our results show that BHX feedback is able to keep the interstellar medium warm, without removing a significant gas fraction, in agreement with previous analytical calculations. Consequently, the stellar-to-dark matter mass ratio is better reproduced at high redshift. Our model also predicts a stronger evolution of the number of galaxies as a function of the stellar mass with redshift when BHX feedback is considered. These findings support previous claims that the BHXs could be an effective source of feedback in early stages of galaxy evolution.
Dark matter annihilation radiation in hydrodynamic simulations of Milky Way haloes
NASA Astrophysics Data System (ADS)
Schaller, Matthieu; Frenk, Carlos S.; Theuns, Tom; Calore, Francesca; Bertone, Gianfranco; Bozorgnia, Nassim; Crain, Robert A.; Fattahi, Azadeh; Navarro, Julio F.; Sawala, Till; Schaye, Joop
2016-02-01
We obtain predictions for the properties of cold dark matter annihilation radiation using high-resolution hydrodynamic zoom-in cosmological simulations of Milky Way-like galaxies (APOSTLE project) carried out as part of the `Evolution and Assembly of GaLaxies and their Environments' (EAGLE) programme. Galactic haloes in the simulation have significantly different properties from those assumed in the `standard halo model' often used in dark matter detection studies. The formation of the galaxy causes a contraction of the dark matter halo, whose density profile develops a steeper slope than the Navarro-Frenk-White (NFW) profile between r ≈ 1.5 kpc and r ≈ 10 kpc. At smaller radii, r ≲ 1.5 kpc, the haloes develop a flatter than NFW slope. This unexpected feature may be specific to our particular choice of subgrid physics model but nevertheless the dark matter density profiles agree within 30 per cent as the mass resolution is increased by a factor 150. The inner regions of the haloes are almost perfectly spherical (axis ratios b/a > 0.97 within r = 1 kpc) and there is no offset larger than 45 pc between the centre of the stellar distribution and the centre of the dark halo. The morphology of the predicted dark matter annihilation radiation signal is in broad agreement with γ-ray observations at large Galactic latitudes (b ≳ 3°). At smaller angles, the inferred signal in one of our four galaxies is similar to that which is observed but it is significantly weaker in the other three.
Radiation-hydrodynamic Simulations of Massive Star Formation with Protostellar Outflows
NASA Astrophysics Data System (ADS)
Cunningham, Andrew J.; Klein, Richard I.; Krumholz, Mark R.; McKee, Christopher F.
2011-10-01
We report the results of a series of adaptive mesh refinement radiation-hydrodynamic simulations of the collapse of massive star-forming clouds using the ORION code. These simulations are the first to include the feedback effects protostellar outflows, as well as protostellar radiative heating and radiation pressure exerted on the infalling, dusty gas. We find that outflows evacuate polar cavities of reduced optical depth through the ambient core. These enhance the radiative flux in the poleward direction so that it is 1.7-15 times larger than that in the midplane. As a result the radiative heating and outward radiation force exerted on the protostellar disk and infalling cloud gas in the equatorial direction are greatly diminished. This simultaneously reduces the Eddington radiation pressure barrier to high-mass star formation and increases the minimum threshold surface density for radiative heating to suppress fragmentation compared to models that do not include outflows. The strength of both these effects depends on the initial core surface density. Lower surface density cores have longer free-fall times and thus massive stars formed within them undergo more Kelvin contraction as the core collapses, leading to more powerful outflows. Furthermore, in lower surface density clouds the ratio of the time required for the outflow to break out of the core to the core free-fall time is smaller, so that these clouds are consequently influenced by outflows at earlier stages of the collapse. As a result, outflow effects are strongest in low surface density cores and weakest in high surface density ones. We also find that radiation focusing in the direction of outflow cavities is sufficient to prevent the formation of radiation pressure-supported circumstellar gas bubbles, in contrast to models which neglect protostellar outflow feedback.
NASA Astrophysics Data System (ADS)
Bever, A. J.; MacWilliams, M.
2012-12-01
Under the conceptual model of sediment transport in San Pablo Bay, a sub-embayment of San Francisco Bay, proposed by Krone (1979), sediment typically enters San Pablo Bay during large winter and spring flows and is redistributed during summer conditions through wind wave resuspension and transport by tidal currents. A detailed understanding of how the waves and tides redistribute sediment within San Francisco Bay is critical for predicting how future sea level rise and a reduction in the sediment supply to the Bay will impact existing marsh and mudflat habitat, tidal marsh restoration projects, and ongoing maintenance dredging of the navigation channels. The three-dimensional UnTRIM San Francisco Bay-Delta Model was coupled with the Simulating WAves Nearshore (SWAN) wave model and the SediMorph morphological model, to develop a three-dimensional hydrodynamic, wind wave, and sediment transport model of the San Francisco Bay and the Sacramento-San Joaquin Delta. Numerical simulations of sediment resuspension due to tidal currents and wind waves and the subsequent transport of this sediment by tidal currents are used to quantify the spatial and temporal variability of sediment fluxes on the extensive shoals in San Pablo Bay under a range of tidal and wind conditions. The results demonstrate that suspended sediment concentration and sediment fluxes within San Pablo Bay are a complex product of tides and waves interacting spatially throughout the Bay, with concentrations responding to local resuspension and sediment advection. Sediment fluxes between the San Pablo Bay shoals and the deeper channel are highest during spring tides, and are elevated for up to a week following wave events, even though the greatest influence of the wave event occurs abruptly.
Shetty, Rahul; Ostriker, Eve C. E-mail: ostriker@astro.umd.edu
2012-07-20
We explore the self-regulation of star formation using a large suite of high-resolution hydrodynamic simulations, focusing on molecule-dominated regions (galactic centers and [U]LIRGS) where feedback from star formation drives highly supersonic turbulence. In equilibrium, the total midplane pressure, dominated by turbulence, must balance the vertical weight of the interstellar medium. Under self-regulation, the momentum flux injected by feedback evolves until it matches the vertical weight. We test this flux balance in simulations spanning a wide range of parameters, including surface density {Sigma}, momentum injected per stellar mass formed (p{sub *}/m{sub *}), and angular velocity. The simulations are two-dimensional radial-vertical slices, and include both self-gravity and an external potential that helps to confine gas to the disk midplane. After the simulations reach a steady state in all relevant quantities, including the star formation rate {Sigma}{sub SFR}, there is remarkably good agreement between the vertical weight, the turbulent pressure, and the momentum injection rate from supernovae. Gas velocity dispersions and disk thicknesses increase with p{sub *}/m{sub *}. The efficiency of star formation per free-fall time at the midplane density, {epsilon}{sub ff}(n{sub 0}), is insensitive to the local conditions and to the star formation prescription in very dense gas. We measure {epsilon}{sub ff}(n{sub 0}) {approx} 0.004-0.01, consistent with low and approximately constant efficiencies inferred from observations. For {Sigma} in (100-1000) M{sub Sun} pc{sup -2}, we find {Sigma}{sub SFR} in (0.1-4) M{sub Sun} kpc{sup -2} yr{sup -1}, generally following a {Sigma}{sub SFR} {proportional_to} {Sigma}{sup 2} relationship. The measured relationships agree very well with vertical equilibrium and with turbulent energy replenishment by feedback within a vertical crossing time. These results, along with the observed {Sigma}-{Sigma}{sub SFR} relation in high
NASA Astrophysics Data System (ADS)
Wendling, A.; Daniel, J. L.; Hivet, G.; Vidal-Sallé, E.; Boisse, P.
2015-12-01
Numerical simulation is a powerful tool to predict the mechanical behavior and the feasibility of composite parts. Among the available numerical approaches, as far as woven reinforced composites are concerned, 3D finite element simulation at the mesoscopic scale leads to a good compromise between realism and complexity. At this scale, the fibrous reinforcement is modeled by an interlacement of yarns assumed to be homogeneous that have to be accurately represented. Among the numerous issues induced by these simulations, the first one consists in providing a representative meshed geometrical model of the unit cell at the mesoscopic scale. The second one consists in enabling a fast data input in the finite element software (contacts definition, boundary conditions, elements reorientation, etc.) so as to obtain results within reasonable time. Based on parameterized 3D CAD modeling tool of unit-cells of dry fabrics already developed, this paper presents an efficient strategy which permits an automated meshing of the models with 3D hexahedral elements and to accelerate of several orders of magnitude the simulation data input. Finally, the overall modeling strategy is illustrated by examples of finite element simulation of the mechanical behavior of fabrics.
NASA Astrophysics Data System (ADS)
Ge, Ji; Liu, Hong-Gang; Su, Yong-Bo; Cao, Yu-Xiong; Jin, Zhi
2012-05-01
A physical model for scaling and optimizing InGaAs/InP double heterojunction bipolar transistors (DHBTs) based on hydrodynamic simulation is developed. The model is based on the hydrodynamic equation, which can accurately describe non-equilibrium conditions such as quasi-ballistic transport in the thin base and the velocity overshoot effect in the depleted collector. In addition, the model accounts for several physical effects such as bandgap narrowing, variable effective mass, and doping-dependent mobility at high fields. Good agreement between the measured and simulated values of cutoff frequency, ft, and maximum oscillation frequency, fmax, are achieved for lateral and vertical device scalings. It is shown that the model in this paper is appropriate for downscaling and designing InGaAs/InP DHBTs.
NASA Technical Reports Server (NTRS)
Scalapino, D. J.; Sugar, R. L.; White, S. R.; Bickers, N. E.; Scalettar, R. T.
1989-01-01
Numerical simulations on the half-filled three-dimensional Hubbard model clearly show the onset of Neel order. Simulations of the two-dimensional electron-phonon Holstein model show the competition between the formation of a Peierls-CDW state and a superconducting state. However, the behavior of the partly filled two-dimensional Hubbard model is more difficult to determine. At half-filling, the antiferromagnetic correlations grow as T is reduced. Doping away from half-filling suppresses these correlations, and it is found that there is a weak attractive pairing interaction in the d-wave channel. However, the strength of the pair field susceptibility is weak at the temperatures and lattice sizes that have been simulated, and the nature of the low-temperature state of the nearly half-filled Hubbard model remains open.
NASA Astrophysics Data System (ADS)
Muders, Dirk
1995-08-01
Exploring the clumpy and filamentary structure of interstellar molecular clouds is one of the key problems of modern astrophysics. So far, we have little knowledge of the physical processes that cause the structure, but turbulence is suspected to be essential. In this thesis I study turbulent flows and how they contribute to the structure of interstellar dark clouds. To this end, three-dimensional numerical hydrodynamic simulations are needed since the detailed turbulent spatial and velocity structure cannot be analytically calculated. I employ the ``Lattice Boltzmann Method'', a recently developed numerical method which solves the Boltzmann equation in a discretized phase space. Mesoscopic particle packets move with fixed velocities on a Cartesian lattice and at each time step they exchange mass according to given rules. Because of its mainly local operations the method is well suited for application on parallel or clustered computers. As part of my thesis I have developed a parallelized ``Lattice Boltzmann Method'' hydrodynamics code. I have improved the numerical stability for Reynolds numbers of up to 104.5 and Mach numbers of up to 0.9 and I have extended the method to include a second miscible fluid phase. The code has been used on the three currently most powerful workstations at the ``Max-Planck-Institut für Radioastronomie'' in Bonn and on the massively parallel mainframe CM-5 at the ``Gesellschaft für Mathematik und Datenverarbeitung'' in St. Augustin. The simulations consist of collimated shear flows and the motion of molecular clumps through an ambient medium. The dependence of the emerging structure on Reynolds and Mach numbers is studied. The main results are (1) that distinct clumps and filaments appear only at the transition between laminar and fully turbulent flow at Reynolds numbers between 500 and 5000 and (2) that subsonic viscous shear flows are capable of producing the dark cloud velocity structure. The unexpectedly low Reynolds numbers can
A Model for Subgrid-Scale Flow in Hydrodynamical Simulations of Rapidly Rotating, Oscillating Stars
NASA Astrophysics Data System (ADS)
Clement, M. J.
1992-05-01
A 2D/3D hydro code has been developed to study the dynamics of rotating stellar interiors. One of the first problems to be addressed was the modeling of the subgrid-scale (SGS) viscosity that is needed to simulate the effects of turbulence on scales smaller than the grid spacing in a computational mesh. In real stars, kinetic energy on global scales cascades down to the dissipative regime where it is transformed into thermal energy. This bottom-end scale, lambda_ {diss}, is also the size of the smallest turbulent eddies which are typically tens of centimeters in stellar interiors. Numerical simulations, however, can realistically model only scales larger than the grid separation, lambda_ {grid}, which may be 7 or 8 orders of magnitude larger than lambda_ {diss}. Therefore, an SGS viscosity is required to absorb energy that would otherwise buildup on the grid-scale and destroy the simulation. This viscosity should have the form A L rho v_t where A is a dimensionless parameter of order unity, L is a length-scale of order lambda_ {grid}, rho is the local density, and v_t is a measure of the turbulent velocity at the grid-scale. Empirically, we know that A should actually be somewhat smaller than unity in the high shear or very turbulent flows that often occur near boundaries, ``walls'', or free surfaces. In this paper, I propose a suitable algorithm (i.e., a ``law of the wall'') for determining the magnitude A of the SGS viscosity in the compressible interiors of stellar models. I also address the problem imposed by a nonuniform grid spacing and come to the conclusion that the only physically acceptable viscosity is a nonisotropic one that will guarantee at every point a rate of diffusion of momentum, energy, and mass which is independent of direction.
Peterson, D.L.; Bowers, R.L.; Lebeda, C.F.; Matuska, W.; Benage, J.; Idzorek, G.; Oona, H.; Stokes, J.; Roderick, N.F.
1995-09-01
Two experiments, PegI-41, conducted on the Los Alamos Pegasus I capacitor bank, and PegII-25, on the Pegasus II bank, consisted of the implosions of 13 mg (nominal), 5 cm radius, 2 cm high thin cylindrical aluminum foils resulting in soft x-ray radiation pulses from the plasma thermalization on axis. The implosions were conducted in direct-drive (no intermediate switching) mode with peak currents of about 4 MA and 5 MA respectively, and implosion times of about 2.5 {micro}s and 2.0 {micro}s. A radiation yield of about 250 kJ was measured for PegII-25. The purpose of these experiments was to examine the physics of the implosion and relate this physics to the production of the radiation pulse and to provide detailed experimental data which could be compared with 2-D radiation-magnetohydrodynamic (RMHD) simulations. Included in the experimental diagnostic suites were faraday rotation and dB/dt current measurements, a visible framing camera, an x-ray stripline camera, time-dependent spectroscopy, bolometers and XRD`S. A comparison of the results from these experiments shows agreement with 2-D simulation results in the instability development, current, and radiation pulse data, including the pulsewidth, shape, peak power and total radiation yield as measured by bolometry. Instabilities dominate the behavior of the implosion and largely determine the properties of the resulting radiation pulse. The 2-D simulations can be seen to be an important tool in understanding the implosion physics.
Matha, D.; Schlipf, M.; Cordle, A.; Pereira, R.; Jonkman, J.
2011-10-01
This paper presents the current major modeling challenges for floating offshore wind turbine design tools and describes aerodynamic and hydrodynamic effects due to rotor and platform motions and usage of non-slender support structures.
Chukalovsky, A. A.; Rakhimova, T. V.; Klopovsky, K. S.; Mankelevich, Yu. A.; Proshina, O. V.
2011-03-15
The kinetic processes occurring in an electric-discharge oxygen-iodine laser are analyzed with the help of a 2D (r, z) gasdynamic model taking into account transport of excited oxygen, singlet oxygen, and radicals from the electric discharge and their mixing with the iodine-containing gas. The main processes affecting the dynamics of the gas temperature and gain are revealed. The simulation results obtained using the 2D model agree well with the experimental data on the mixture gain. A subsonic oxygen-iodine laser in which singlet oxygen is generated by a 350 W transverse RF discharge excited in an oxygen flow at a pressure P = 10 Torr and the discharge tube wall is covered with mercury oxide is simulated. The simulated mixing system is optimized in terms of the flow rate and the degree of preliminary dissociation of the iodine flow. The optimal regime of continuous operation of a subsonic electric-discharge oxygen-iodine laser is found.
[2D imaging simulations of a small animal PET scanner with DOI measurement: jPET-RD.].
Yamaya, Taiga; Kitamura, Keishi; Hagiwara, Naoki; Obi, Takashi; Hasegawa, Tomoyuki; Yoshida, Eiji; Tsuda, Tomoaki; Inadama, Naoko; Wada, Yasuhiro; Murayama, Hideo
2005-01-01
We present a preliminary study on the design of a high sensitivity small animal DOI-PET scanner: jPET-RD (for Rodents with DOI detectors), which will contribute to molecular imaging. The 4-layer DOI block detector for the jPET-RD that consists of scintillation crystals (1.4 mm x 1.4 mm x 4.5 mm) and a flat panel position-sensitive photomultiplier tube (52 mm x 52 mm) was previously proposed. In this paper, we investigate imaging performance of the jPET-RD through numerical simulations. The scanner has a hexagonal geometry with a small diameter and a large axial aperture. Therefore DOI information is expected to improve resolution uniformity in the whole field of view (FOV). We simulate the scanner for various parameters of the number of DOI channels and the crystal length. Simulated data are reconstructed using the maximum likelihood expectation maximization with accurate system modeling. The trade-off results between background noise and spatial resolution show that only shortening the length of crystal does not improve the trade-off at all, and that 4-layer DOI information improves uniformity of spatial resolution in the whole FOV. Excellent performance of the jPET-RD can be expected based on the numerical simulation results. PMID:15961924
Fan, D.; Geng, C.; Chen, L.Q.
1997-03-01
The local kinetics and topological phenomena during normal grain growth were studied in two dimensions by computer simulations employing a continuum diffuse-interface field model. The relationships between topological class and individual grain growth kinetics were examined, and compared with results obtained previously from analytical theories, experimental results and Monte Carlo simulations. It was shown that both the grain-size and grain-shape (side) distributions are time-invariant and the linear relationship between the mean radii of individual grains and topological class n was reproduced. The moments of the shape distribution were determined, and the differences among the data from soap froth. Potts model and the present simulation were discussed. In the limit when the grain size goes to zero, the average number of grain edges per grain is shown to be between 4 and 5, implying the direct vanishing of 4- and 5-sided grains, which seems to be consistent with recent experimental observations on thin films. Based on the simulation results, the conditions for the applicability of the familiar Mullins-Von Neumann law and the Hillert`s equation were discussed.
PM2D code simulation of electronic dynamics and electro-magnetic fields generation by