Science.gov

Sample records for 2d imaging acquisition

  1. 2D imaging and 3D sensing data acquisition and mutual registration for painting conservation

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale

    2004-12-01

    We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.

  2. 2D imaging and 3D sensing data acquisition and mutual registration for painting conservation

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale

    2005-01-01

    We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.

  3. [EOS imaging acquisition system : 2D/3D diagnostics of the skeleton].

    PubMed

    Tarhan, T; Froemel, D; Meurer, A

    2015-12-01

    The application spectrum of the EOS imaging acquisition system is versatile. It is especially useful in the diagnostics and planning of corrective surgical procedures in complex orthopedic cases. The application is indicated when assessing deformities and malpositions of the spine, pelvis and lower extremities. It can also be used in the assessment and planning of hip and knee arthroplasty. For the first time physicians have the opportunity to conduct examinations of the whole body under weight-bearing conditions in order to anticipate the effects of a planned surgical procedure on the skeletal system as a whole and therefore on the posture of the patient. Compared to conventional radiographic examination techniques, such as x-ray or computed tomography, the patient is exposed to much less radiation. Therefore, the pediatric application of this technique can be described as reasonable.

  4. 2D phase-sensitive inversion recovery imaging to measure in vivo spinal cord gray and white matter areas in clinically feasible acquisition times.

    PubMed

    Papinutto, Nico; Schlaeger, Regina; Panara, Valentina; Caverzasi, Eduardo; Ahn, Sinyeob; Johnson, Kevin J; Zhu, Alyssa H; Stern, William A; Laub, Gerhard; Hauser, Stephen L; Henry, Roland G

    2015-09-01

    To present and assess a procedure for measurement of spinal cord total cross-sectional areas (TCA) and gray matter (GM) areas based on phase-sensitive inversion recovery imaging (PSIR). In vivo assessment of spinal cord GM and white matter (WM) could become pivotal to study various neurological diseases, but it is challenging because of insufficient GM/WM contrast provided by conventional magnetic resonance imaging (MRI). We acquired 2D PSIR images at 3T at each disc level of the spinal axis in 10 healthy subjects and measured TCA, cord diameters, WM and GM areas, and GM area/TCA ratios. Second, we investigated 32 healthy subjects at four selected levels (C2-C3, C3-C4, T8-T9, T9-T10, total acquisition time <8 min) and generated normative reference values of TCA and GM areas. We assessed test-retest, intra- and interoperator reliability of the acquisition strategy, and measurement steps. The measurement procedure based on 2D PSIR imaging allowed TCA and GM area assessments along the entire spinal cord axis. The tests we performed revealed high test-retest/intraoperator reliability (mean coefficient of variation [COV] at C2-C3: TCA = 0.41%, GM area = 2.75%) and interoperator reliability of the measurements (mean COV on the 4 levels: TCA = 0.44%, GM area = 4.20%; mean intraclass correlation coefficient: TCA = 0.998, GM area = 0.906). 2D PSIR allows reliable in vivo assessment of spinal cord TCA, GM, and WM areas in clinically feasible acquisition times. The area measurements presented here are in agreement with previous MRI and postmortem studies. © 2014 Wiley Periodicals, Inc.

  5. Comparison of the effect of simple and complex acquisition trajectories on the 2D SPR and 3D voxelized differences for dedicated breast CT imaging

    NASA Astrophysics Data System (ADS)

    Shah, Jainil P.; Mann, Steve D.; McKinley, Randolph L.; Tornai, Martin P.

    2014-03-01

    The 2D scatter-to-primary (SPR) ratios and 3D voxelized difference volumes were characterized for a cone beam breast CT scanner capable of arbitrary (non-traditional) 3D trajectories. The CT system uses a 30x30cm2 flat panel imager with 197 micron pixellation and a rotating tungsten anode x-ray source with 0.3mm focal spot, with an SID of 70cm. Data were acquired for two cylindrical phantoms (12.5cm and 15cm diameter) filled with three different combinations of water and methanol yielding a range of uniform densities. Projections were acquired with two acquisition trajectories: 1) simple-circular azimuthal orbit with fixed tilt; and 2) saddle orbit following a +/-15° sinusoidal trajectory around the object. Projection data were acquired in 2x2 binned mode. Projections were scatter corrected using a beam stop array method, and the 2D SPR was measured on the projections. The scatter corrected and uncorrected data were then reconstructed individually using an iterative ordered subsets convex algorithm, and the 3D difference volumes were calculated as the absolute difference between the two. Results indicate that the 2D SPR is ~7-15% higher on projections with greatest tilt for the saddle orbit, due to the longer x-ray path length through the volume, compared to the 0° tilt projections. Additionally, the 2D SPR increases with object diameter as well as density. The 3D voxelized difference volumes are an estimate of the scatter contribution to the reconstructed attenuation coefficients on a voxel level. They help visualize minor deficiencies and artifacts in the volumes due to correction methods.

  6. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  7. Diagnosis of intracranial hemorrhagic lesions: comparison between 3D-SWAN (3D T2*-weighted imaging with multi-echo acquisition) and 2D-T2*-weighted imaging.

    PubMed

    Hayashida, Yoshiko; Kakeda, Shingo; Hiai, Yasuhiro; Ide, Satoshi; Ogasawara, Atsushi; Ooki, Hodaka; Watanabe, Keita; Nishimura, Joji; Ohnari, Norihiro; Korogi, Yukunori

    2014-03-01

    3D-susceptibility-weighted angiography (SWAN) can produce high-resolution images that yield excellent susceptibility-weighted contrast at a relatively short acquisition time. To compare SWAN- and 2D-T2*-weighted gradient-echo images (T2*-WI) for their sensitivity in the depiction of cerebral hemorrhagic lesions. We subjected 75 patients with suspected cerebral hemorrhagic lesions to SWAN and T2*-WI at 3T. We first measured the contrast-to-noise ratio (CNR) using an agar phantom that contained different concentrations of superparamagnetic iron oxide (SPIO). The acquisition time for SWAN and T2*-WI was similar (182 vs. 196 s). Neuroradiologists compared the two imaging methods for lesion detectability and conspicuity. The CNR of the phantom was higher on SWAN images. Of the 75 patients, 50 were found to have a total of 278 cerebral hemorrhagic lesions (microbleeds, n = 229 [82.4%]; intracerebral hemorrhage, n = 18 [6.5%]; superficial siderosis, n = 13 [4.7%]; axonal injuries, n = 8 [2.9%]; subarachnoid hemorrhage [SAH] or brain contusion, n = 3 each [1.0%]; subdural hematoma, n = 2 [0.7%]; cavernous hemangioma or dural arterteriovenous fistula, n = 1 each [0.4%]). In none of the lesions was the SWAN sequence inferior to T2*-WI with respect to lesion detectability and conspicuity. In fact, SWAN yielded better lesion conspicuity in patients with superficial siderosis and SAH: it detected significantly more lesions than T2*-WI (P < 0.01) and it was particularly useful for the detection of microbleeds and lesions near the skull base. SWAN is equal or superior to standard T2*-WI for the diagnosis of various cerebral hemorrhagic lesions. Because its acquisition time is reasonable it may replace T2*-WI.

  8. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  9. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  10. Real-time 2-D temperature imaging using ultrasound.

    PubMed

    Liu, Dalong; Ebbini, Emad S

    2010-01-01

    We have previously introduced methods for noninvasive estimation of temperature change using diagnostic ultrasound. The basic principle was validated both in vitro and in vivo by several groups worldwide. Some limitations remain, however, that have prevented these methods from being adopted in monitoring and guidance of minimally invasive thermal therapies, e.g., RF ablation and high-intensity-focused ultrasound (HIFU). In this letter, we present first results from a real-time system for 2-D imaging of temperature change using pulse-echo ultrasound. The front end of the system is a commercially available scanner equipped with a research interface, which allows the control of imaging sequence and access to the RF data in real time. A high-frame-rate 2-D RF acquisition mode, M2D, is used to capture the transients of tissue motion/deformations in response to pulsed HIFU. The M2D RF data is streamlined to the back end of the system, where a 2-D temperature imaging algorithm based on speckle tracking is implemented on a graphics processing unit. The real-time images of temperature change are computed on the same spatial and temporal grid of the M2D RF data, i.e., no decimation. Verification of the algorithm was performed by monitoring localized HIFU-induced heating of a tissue-mimicking elastography phantom. These results clearly demonstrate the repeatability and sensitivity of the algorithm. Furthermore, we present in vitro results demonstrating the possible use of this algorithm for imaging changes in tissue parameters due to HIFU-induced lesions. These results clearly demonstrate the value of the real-time data streaming and processing in monitoring, and guidance of minimally invasive thermotherapy.

  11. Time efficiency and diagnostic agreement of 2-D versus 3-D ultrasound acquisition of the neonatal brain.

    PubMed

    Romero, Javier M; Madan, Neil; Betancur, Ilda; Ciobanu, Adrian; Murphy, Erin; McCullough, Danielle; Grant, P Ellen

    2014-08-01

    The purpose of this study was to compare acquisition time efficiency and diagnostic agreement of neonatal brain ultrasound (US) scans obtained with a 3-D volume US acquisition protocol and the conventional 2-D acquisition protocol. Ninety-one consecutive premature neonatal brain ultrasound scans were prospectively performed on 59 neonates with the conventional 2-D acquisition protocol. Immediately after the 2-D study, a coronal 3-D ultrasound volume was acquired and later reconstructed into axial and sagittal planes. All 59 neonates were imaged in the neonatal intensive care unit to rule out intracranial hemorrhage. Total time for 2-D and 3-D acquisition protocols was recorded, and a two-tailed t-test was used to determine if study durations differed significantly. One pediatric neuroradiologist reviewed the reformatted 3-D images, tomographic ultrasound images. Results were compared with the clinical interpretation of the 2-D conventional study. The mean scanning time for the 2-D US acquisition protocol was 10.56 min (standard deviation [SD] = 7.11), and that for the 3-D volume US acquisition protocol was 1.48 min (SD = 0.59) (p ≤ 0.001). Inter-observer agreement revealed k values of 0.84 for hydrocephalus, 0.80 for germinal matrix hemorrhage/intraventricular hemorrhage, 0.74 for periventricular leukomalacia and 0.91 for subdural collection, hence near-perfect to substantial agreement between imaging protocols. There was a significant decrease in acquisition time for the 3-D volume ultrasound acquisition protocol compared with the conventional 2-D US protocol (p = <0.001), without compromising the diagnostic quality compared with a conventional 2-D US imaging protocol.

  12. Single-shot T1 mapping using simultaneous acquisitions of spin- and stimulated-echo-planar imaging (2D ss-SESTEPI).

    PubMed

    Shi, Xianfeng; Kim, Seong-Eun; Jeong, Eun-Kee

    2010-09-01

    The conventional stimulated-echo NMR sequence only measures the longitudinal component while discarding the transverse component, after tipping up the prepared magnetization. This transverse magnetization can be used to measure a spin echo, in addition to the stimulated echo. Two-dimensional single-shot spin- and stimulated-echo-planar imaging (ss-SESTEPI) is an echo-planar-imaging-based single-shot imaging technique that simultaneously acquires a spin-echo-planar image and a stimulated-echo-planar image after a single radiofrequency excitation. The magnitudes of the spin-echo-planar image and stimulated-echo-planar image differ by T(1) decay and diffusion weighting for perfect 90 degrees radiofrequency and thus can be used to rapidly measure T(1). However, the spatial variation of amplitude of radiofrequency field induces uneven splitting of the transverse magnetization for the spin-echo-planar image and stimulated-echo-planar image within the imaging field of view. Correction for amplitude of radiofrequency field inhomogeneity is therefore critical for two-dimensional ss-SESTEPI to be used for T(1) measurement. We developed a method for amplitude of radiofrequency field inhomogeneity correction by acquiring an additional stimulated-echo-planar image with minimal mixing time, calculating the difference between the spin echo and the stimulated echo and multiplying the stimulated-echo-planar image by the inverse functional map. Diffusion-induced decay is corrected by measuring the average diffusivity during the prescanning. Rapid single-shot T(1) mapping may be useful for various applications, such as dynamic T(1) mapping for real-time estimation of the concentration of contrast agent in dynamic contrast enhancement MRI.

  13. Multifluorescence 2D gel imaging and image analysis.

    PubMed

    Vormbrock, Ingo; Hartwig, Sonja; Lehr, Stefan

    2012-01-01

    Although image acquisition and analysis are crucial steps within the multifluorescence two-dimensional gel electrophoresis workflow, some basics are frequently not carried out with the necessary diligence. This chapter should help to prevent easily avoidable failures during imaging and image preparation for comparative protein analysis.

  14. 2D Free-breathing Dual Navigator-gated Cardiac Function Validated against the 2D Breath-hold Acquisition

    PubMed Central

    Peters, Dana C.; Nezafat, Reza; Eggers, Holger; Stehning, Christian; Manning, Warren J.

    2008-01-01

    Purpose To develop and validate a free-breathing cardiac cine acquisition, with potential to simplify cardiac MR studies, provide registered slices and increase spatial resolution. Materials and Methods A 2D free-breathing (FB) navigator-gated cine radial acquisition for cardiac function was developed which used two navigators (one placed prior to the QRS, and another 500 ms after the QRS complex, after systole) to provide complete motion-compensated assessment of systole, without loss of end-diastole. Eleven subjects were studied. Results The 2D FB method provided results visually and quantitatively similar to the 2D breath-hold (BH) methods. Comparison of volumes measured with the free-breathing to those measured by standard 2D BH cine resulted in mean bias ± 2 standard deviations of 1.0 ml ± 13.7 ml, 1.1 ml ± 7.6 ml, 3.0 g ± 18.8 g, and 0.3 %± 2.5%, for end-diastolic volume, end-systolic volume, and left-ventricular mass, and ejection fraction, respectively. Slice misregistration was identified in 4 (36%) of the BH studies, but none (0%) of the FB studies. In subjects with slice misregistration, there was greater discordance in LV volume measurements (P<0.05 for end-diastolic mass). Conclusion The free-breathing cine acquisition provided results qualitatively and quantitatively similar to 2D breath-hold methods with improved slice registration. PMID:18777547

  15. 2D free-breathing dual navigator-gated cardiac function validated against the 2D breath-hold acquisition.

    PubMed

    Peters, Dana C; Nezafat, Reza; Eggers, Holger; Stehning, Christian; Manning, Warren J

    2008-09-01

    To develop and validate a free-breathing cardiac cine acquisition, with potential to simplify cardiac MR studies, provide registered slices, and increase spatial resolution. A 2D free-breathing (FB) navigator-gated cine radial acquisition for cardiac function was developed that used two navigators (one placed prior to the QRS, and another 500 msec after the QRS complex, after systole) to provide complete motion-compensated assessment of systole, without loss of end-diastole. Eleven subjects were studied. The 2D FB method provided results visually and quantitatively similar to the 2D breath-hold (BH) methods. Comparison of volumes measured with FB to those measured by standard 2D BH cine resulted in mean bias+/-2 standard deviations of 1.0 mL+/-13.7 mL, 1.1 mL+/-7.6 mL, 3.0 g+/-18.8 g, and 0.3%+/-2.5%, for end-diastolic volume, end-systolic volume, left ventricular (LV) mass, and ejection fraction, respectively. Slice misregistration was identified in four (36%) of the BH studies, but none (0%) of the FB studies. In subjects with slice misregistration, there was greater discordance in LV volume measurements (P<0.05 for end-diastolic mass). The FB cine acquisition provided results qualitatively and quantitatively similar to 2D BH methods with improved slice registration. Copyright (c) 2008 Wiley-Liss, Inc.

  16. Image Acquisition Context

    PubMed Central

    Bidgood, W. Dean; Bray, Bruce; Brown, Nicolas; Mori, Angelo Rossi; Spackman, Kent A.; Golichowski, Alan; Jones, Robert H.; Korman, Louis; Dove, Brent; Hildebrand, Lloyd; Berg, Michael

    1999-01-01

    Objective: To support clinically relevant indexing of biomedical images and image-related information based on the attributes of image acquisition procedures and the judgments (observations) expressed by observers in the process of image interpretation. Design: The authors introduce the notion of “image acquisition context,” the set of attributes that describe image acquisition procedures, and present a standards-based strategy for utilizing the attributes of image acquisition context as indexing and retrieval keys for digital image libraries. Methods: The authors' indexing strategy is based on an interdependent message/terminology architecture that combines the Digital Imaging and Communication in Medicine (DICOM) standard, the SNOMED (Systematized Nomenclature of Human and Veterinary Medicine) vocabulary, and the SNOMED DICOM microglossary. The SNOMED DICOM microglossary provides context-dependent mapping of terminology to DICOM data elements. Results: The capability of embedding standard coded descriptors in DICOM image headers and image-interpretation reports improves the potential for selective retrieval of image-related information. This favorably affects information management in digital libraries. PMID:9925229

  17. Reconstruction-based 3D/2D image registration.

    PubMed

    Tomazevic, Dejan; Likar, Bostjan; Pernus, Franjo

    2005-01-01

    In this paper we present a novel 3D/2D registration method, where first, a 3D image is reconstructed from a few 2D X-ray images and next, the preoperative 3D image is brought into the best possible spatial correspondence with the reconstructed image by optimizing a similarity measure. Because the quality of the reconstructed image is generally low, we introduce a novel asymmetric mutual information similarity measure, which is able to cope with low image quality as well as with different imaging modalities. The novel 3D/2D registration method has been evaluated using standardized evaluation methodology and publicly available 3D CT, 3DRX, and MR and 2D X-ray images of two spine phantoms, for which gold standard registrations were known. In terms of robustness, reliability and capture range the proposed method outperformed the gradient-based method and the method based on digitally reconstructed radiographs (DRRs).

  18. A self contained Linux based data acquisition system for 2D detectors with delay line readout

    NASA Astrophysics Data System (ADS)

    Beltran, D.; Toledo, J.; Klora, A. C.; Ramos-Lerate, I.; Martínez, J. C.

    2007-01-01

    This article describes a fast and self-contained data acquisition system for 2D gas-filled detectors with delay line readout. It allows the realization of time resolved experiments in the millisecond scale. The acquisition system comprises of an industrial PC running Linux, a commercial time-to-digital converter and an in-house developed histogramming PCI card. The PC provides a mass storage for images and a graphical user interface for system monitoring and control. The histogramming card builds images with a maximum count rate of 5 MHz limited by the time-to-digital converter. Histograms are transferred to the PC at 85 MB/s. This card also includes a time frame generator, a calibration channel unit and eight digital outputs for experiment control. The control software was developed for easy integration into a beamline, including scans. The system is fully operational at the Spanish beamline BM16 at the ESRF in France, the neutron beamlines Adam and Eva at the ILL in France, the Max Plank Institute in Stuttgart in Germany, the University of Copenhagen in Denmark and at the future ALBA synchrotron in Spain. Some representative collected images from synchrotron and neutron beamlines are presented.

  19. Photorealistic image synthesis and camera validation from 2D images

    NASA Astrophysics Data System (ADS)

    Santos Ferrer, Juan C.; González Chévere, David; Manian, Vidya

    2014-06-01

    This paper presents a new 3D scene reconstruction technique using the Unity 3D game engine. The method presented here allow us to reconstruct the shape of simple objects and more complex ones from multiple 2D images, including infrared and digital images from indoor scenes and only digital images from outdoor scenes and then add the reconstructed object to the simulated scene created in Unity 3D, these scenes are then validated with real world scenes. The method used different cameras settings and explores different properties in the reconstructions of the scenes including light, color, texture, shapes and different views. To achieve the highest possible resolution, it was necessary the extraction of partial textures from visible surfaces. To recover the 3D shapes and the depth of simple objects that can be represented by the geometric bodies, there geometric characteristics were used. To estimate the depth of more complex objects the triangulation method was used, for this the intrinsic and extrinsic parameters were calculated using geometric camera calibration. To implement the methods mentioned above the Matlab tool was used. The technique presented here also let's us to simulate small simple videos, by reconstructing a sequence of multiple scenes of the video separated by small margins of time. To measure the quality of the reconstructed images and video scenes the Fast Low Band Model (FLBM) metric from the Video Quality Measurement (VQM) software was used. Low bandwidth perception based features include edges and motion.

  20. Available information in 2D motional Stark effect imaging.

    PubMed

    Creese, Mathew; Howard, John

    2010-10-01

    Recent advances in imaging techniques have allowed the extension of the standard polarimetric 1D motional Stark effect (MSE) diagnostic to 2D imaging of the internal magnetic field of fusion devices [J. Howard, Plasma Phys. Controlled Fusion 50, 125003 (2008)]. This development is met with the challenge of identifying and extracting the new information, which can then be used to increase the accuracy of plasma equilibrium and current density profile determinations. This paper develops a 2D analysis of the projected MSE polarization orientation and Doppler phase shift. It is found that, for a standard viewing position, the 2D MSE imaging system captures sufficient information to allow imaging of the internal vertical magnetic field component B(Z)(r,z) in a tokamak.

  1. 2-D Imaging of Electron Temperature in Tokamak Plasmas

    SciTech Connect

    T. Munsat; E. Mazzucato; H. Park; C.W. Domier; M. Johnson; N.C. Luhmann Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

    2004-07-08

    By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.

  2. Sparse radar imaging using 2D compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Radar imaging is an ill-posed linear inverse problem and compressed sensing (CS) has been proved to have tremendous potential in this field. This paper surveys the theory of radar imaging and a conclusion is drawn that the processing of ISAR imaging can be denoted mathematically as a problem of 2D sparse decomposition. Based on CS, we propose a novel measuring strategy for ISAR imaging radar and utilize random sub-sampling in both range and azimuth dimensions, which will reduce the amount of sampling data tremendously. In order to handle 2D reconstructing problem, the ordinary solution is converting the 2D problem into 1D by Kronecker product, which will increase the size of dictionary and computational cost sharply. In this paper, we introduce the 2D-SL0 algorithm into the reconstruction of imaging. It is proved that 2D-SL0 can achieve equivalent result as other 1D reconstructing methods, but the computational complexity and memory usage is reduced significantly. Moreover, we will state the results of simulating experiments and prove the effectiveness and feasibility of our method.

  3. 2D/3D Image Registration using Regression Learning

    PubMed Central

    Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen

    2013-01-01

    In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object’s 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region’s motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method’s application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof. PMID:24058278

  4. 2D/3D Image Registration using Regression Learning.

    PubMed

    Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen

    2013-09-01

    In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object's 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region's motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method's application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof.

  5. Focusing surface wave imaging with flexible 2D array

    NASA Astrophysics Data System (ADS)

    Zhou, Shiyuan; Fu, Junqiang; Li, Zhe; Xu, Chunguang; Xiao, Dingguo; Wang, Shaohan

    2016-04-01

    Curved surface is widely exist in key parts of energy and power equipment, such as, turbine blade cylinder block and so on. Cycling loading and harsh working condition of enable fatigue cracks appear on the surface. The crack should be found in time to avoid catastrophic damage to the equipment. A flexible 2D array transducer was developed. 2D Phased Array focusing method (2DPA), Mode-Spatial Double Phased focusing method (MSDPF) and the imaging method using the flexible 2D array probe are studied. Experiments using these focusing and imaging method are carried out. Surface crack image is obtained with both 2DPA and MSDPF focusing method. It have been proved that MSDPF can be more adaptable for curved surface and more calculate efficient than 2DPA.

  6. 2D Orthogonal Locality Preserving Projection for Image Denoising.

    PubMed

    Shikkenawis, Gitam; Mitra, Suman K

    2016-01-01

    Sparse representations using transform-domain techniques are widely used for better interpretation of the raw data. Orthogonal locality preserving projection (OLPP) is a linear technique that tries to preserve local structure of data in the transform domain as well. Vectorized nature of OLPP requires high-dimensional data to be converted to vector format, hence may lose spatial neighborhood information of raw data. On the other hand, processing 2D data directly, not only preserves spatial information, but also improves the computational efficiency considerably. The 2D OLPP is expected to learn the transformation from 2D data itself. This paper derives mathematical foundation for 2D OLPP. The proposed technique is used for image denoising task. Recent state-of-the-art approaches for image denoising work on two major hypotheses, i.e., non-local self-similarity and sparse linear approximations of the data. Locality preserving nature of the proposed approach automatically takes care of self-similarity present in the image while inferring sparse basis. A global basis is adequate for the entire image. The proposed approach outperforms several state-of-the-art image denoising approaches for gray-scale, color, and texture images.

  7. Smooth 2D manifold extraction from 3D image stack

    PubMed Central

    Shihavuddin, Asm; Basu, Sreetama; Rexhepaj, Elton; Delestro, Felipe; Menezes, Nikita; Sigoillot, Séverine M; Del Nery, Elaine; Selimi, Fekrije; Spassky, Nathalie; Genovesio, Auguste

    2017-01-01

    Three-dimensional fluorescence microscopy followed by image processing is routinely used to study biological objects at various scales such as cells and tissue. However, maximum intensity projection, the most broadly used rendering tool, extracts a discontinuous layer of voxels, obliviously creating important artifacts and possibly misleading interpretation. Here we propose smooth manifold extraction, an algorithm that produces a continuous focused 2D extraction from a 3D volume, hence preserving local spatial relationships. We demonstrate the usefulness of our approach by applying it to various biological applications using confocal and wide-field microscopy 3D image stacks. We provide a parameter-free ImageJ/Fiji plugin that allows 2D visualization and interpretation of 3D image stacks with maximum accuracy. PMID:28561033

  8. [3D display of sequential 2D medical images].

    PubMed

    Lu, Yisong; Chen, Yazhu

    2003-12-01

    A detailed review is given in this paper on various current 3D display methods for sequential 2D medical images and the new development in 3D medical image display. True 3D display, surface rendering, volume rendering, 3D texture mapping and distributed collaborative rendering are discussed in depth. For two kinds of medical applications: Real-time navigation system and high-fidelity diagnosis in computer aided surgery, different 3D display methods are presented.

  9. Building 3D scenes from 2D image sequences

    NASA Astrophysics Data System (ADS)

    Cristea, Paul D.

    2006-05-01

    Sequences of 2D images, taken by a single moving video receptor, can be fused to generate a 3D representation. This dynamic stereopsis exists in birds and reptiles, whereas the static binocular stereopsis is common in mammals, including humans. Most multimedia computer vision systems for stereo image capture, transmission, processing, storage and retrieval are based on the concept of binocularity. As a consequence, their main goal is to acquire, conserve and enhance pairs of 2D images able to generate a 3D visual perception in a human observer. Stereo vision in birds is based on the fusion of images captured by each eye, with previously acquired and memorized images from the same eye. The process goes on simultaneously and conjointly for both eyes and generates an almost complete all-around visual field. As a consequence, the baseline distance is no longer fixed, as in the case of binocular 3D view, but adjustable in accordance with the distance to the object of main interest, allowing a controllable depth effect. Moreover, the synthesized 3D scene can have a better resolution than each individual 2D image in the sequence. Compression of 3D scenes can be achieved, and stereo transmissions with lower bandwidth requirements can be developed.

  10. Automated ship image acquisition

    NASA Astrophysics Data System (ADS)

    Hammond, T. R.

    2008-04-01

    The experimental Automated Ship Image Acquisition System (ASIA) collects high-resolution ship photographs at a shore-based laboratory, with minimal human intervention. The system uses Automatic Identification System (AIS) data to direct a high-resolution SLR digital camera to ship targets and to identify the ships in the resulting photographs. The photo database is then searchable using the rich data fields from AIS, which include the name, type, call sign and various vessel identification numbers. The high-resolution images from ASIA are intended to provide information that can corroborate AIS reports (e.g., extract identification from the name on the hull) or provide information that has been omitted from the AIS reports (e.g., missing or incorrect hull dimensions, cargo, etc). Once assembled into a searchable image database, the images can be used for a wide variety of marine safety and security applications. This paper documents the author's experience with the practicality of composing photographs based on AIS reports alone, describing a number of ways in which this can go wrong, from errors in the AIS reports, to fixed and mobile obstructions and multiple ships in the shot. The frequency with which various errors occurred in automatically-composed photographs collected in Halifax harbour in winter time were determined by manual examination of the images. 45% of the images examined were considered of a quality sufficient to read identification markings, numbers and text off the entire ship. One of the main technical challenges for ASIA lies in automatically differentiating good and bad photographs, so that few bad ones would be shown to human users. Initial attempts at automatic photo rating showed 75% agreement with manual assessments.

  11. Comparison of different sets of array configurations for multichannel 2D ERT acquisition

    NASA Astrophysics Data System (ADS)

    Martorana, R.; Capizzi, P.; D'Alessandro, A.; Luzio, D.

    2017-02-01

    Traditional electrode arrays such Wenner-Schlumberger or dipole-dipole are still widely used thanks to their well-known properties but the array configurations are generally not optimized for multi-channel resistivity measures. Synthetic datasets relating to four different arrays, dipole-dipole (DD), pole-dipole (PD), Wenner-Schlumberger (WS) and a modified version of multiple gradient (MG), have been made for a systematic comparison between 2D resistivity models and their inverted images. Different sets of array configurations generated from simple combinations of geometric parameters (potential dipole lengths and dipole separation factors) were tested with synthetic and field data sets, even considering the influence of errors and the acquisition velocity. The purpose is to establish array configurations capable to provide reliable results but, at the same time, not involving excessive survey costs, even linked to the acquiring time and therefore to the number of current dipoles used. For DD, PD and WS arrays a progression of different datasets were considered increasing the number of current dipoles trying to get about the same amount of measures. A multi-coverage MG array configuration is proposed by increasing the lateral coverage and so the number of current dipoles. Noise simulating errors both on the electrode positions and on the electric potential was added. The array configurations have been tested on field data acquired in the landfill site of Bellolampo (Palermo, Italy), to detect and locate the leachate plumes and to identify the HDPE bottom of the landfill. The inversion results were compared using a quantitative analysis of data misfit, relative model resolution and model misfit. The results show that the trends of the first two parameters are linked on the array configuration and that a cumulative analysis of these parameters can help to choose the best array configuration in order to obtain a good resolution and reliability of a survey, according

  12. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-04

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples.

  13. Interactive 2D to 3D stereoscopic image synthesis

    NASA Astrophysics Data System (ADS)

    Feldman, Mark H.; Lipton, Lenny

    2005-03-01

    Advances in stereoscopic display technologies, graphic card devices, and digital imaging algorithms have opened up new possibilities in synthesizing stereoscopic images. The power of today"s DirectX/OpenGL optimized graphics cards together with adapting new and creative imaging tools found in software products such as Adobe Photoshop, provide a powerful environment for converting planar drawings and photographs into stereoscopic images. The basis for such a creative process is the focus of this paper. This article presents a novel technique, which uses advanced imaging features and custom Windows-based software that utilizes the Direct X 9 API to provide the user with an interactive stereo image synthesizer. By creating an accurate and interactive world scene with moveable and flexible depth map altered textured surfaces, perspective stereoscopic cameras with both visible frustums and zero parallax planes, a user can precisely model a virtual three-dimensional representation of a real-world scene. Current versions of Adobe Photoshop provide a creative user with a rich assortment of tools needed to highlight elements of a 2D image, simulate hidden areas, and creatively shape them for a 3D scene representation. The technique described has been implemented as a Photoshop plug-in and thus allows for a seamless transition of these 2D image elements into 3D surfaces, which are subsequently rendered to create stereoscopic views.

  14. Quantifying Therapeutic and Diagnostic Efficacy in 2D Microvascular Images

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; Vickerman, Mary B.; Keith, Patricia A.

    2009-01-01

    VESGEN is a newly automated, user-interactive program that maps and quantifies the effects of vascular therapeutics and regulators on microvascular form and function. VESGEN analyzes two-dimensional, black and white vascular images by measuring important vessel morphology parameters. This software guides the user through each required step of the analysis process via a concise graphical user interface (GUI). Primary applications of the VESGEN code are 2D vascular images acquired as clinical diagnostic images of the human retina and as experimental studies of the effects of vascular regulators and therapeutics on vessel remodeling.

  15. Volumetric Elasticity Imaging with a 2D CMUT Array

    PubMed Central

    Fisher, Ted G.; Hall, Timothy J.; Panda, Satchi; Richards, Michael S.; Barbone, Paul E.; Jiang, Jingfeng; Resnick, Jeff; Barnes, Steve

    2010-01-01

    This paper reports the use of a two-dimensional (2D) capacitive micro-machined ultrasound transducer (CMUT) to acquire radio frequency (RF) echo data from relatively large volumes of a simple ultrasound phantom to compare 3D elasticity imaging methods. Typical 2D motion tracking for elasticity image formation was compared to three different methods of 3D motion tracking, with sum-squared difference (SSD) used as the similarity measure. Differences among the algorithms were the degree to which they tracked elevational motion: not at all (2D search), planar search, combination of multiple planes, and plane independent guided search. The cross correlation between the pre-deformation and motion-compensated post-deformation RF echo fields was used to quantify motion tracking accuracy. The lesion contrast-to-noise ratio was used to quantify image quality. Tracking accuracy and strain image quality generally improved with increased tracking sophistication. When used as input for a 3D modulus reconstruction, high quality 3D displacement estimates yielded accurate and low noise modulus reconstruction. PMID:20510188

  16. Volumetric elasticity imaging with a 2-D CMUT array.

    PubMed

    Fisher, Ted G; Hall, Timothy J; Panda, Satchi; Richards, Michael S; Barbone, Paul E; Jiang, Jingfeng; Resnick, Jeff; Barnes, Steve

    2010-06-01

    This article reports the use of a two-dimensional (2-D) capacitive micro-machined ultrasound transducer (CMUT) to acquire radio-frequency (RF) echo data from relatively large volumes of a simple ultrasound phantom to compare three-dimensional (3-D) elasticity imaging methods. Typical 2-D motion tracking for elasticity image formation was compared with three different methods of 3-D motion tracking, with sum-squared difference (SSD) used as the similarity measure. Differences among the algorithms were the degree to which they tracked elevational motion: not at all (2-D search), planar search, combination of multiple planes and plane independent guided search. The cross-correlation between the predeformation and motion-compensated postdeformation RF echo fields was used to quantify motion tracking accuracy. The lesion contrast-to-noise ratio was used to quantify image quality. Tracking accuracy and strain image quality generally improved with increased tracking sophistication. When used as input for a 3-D modulus reconstruction, high quality 3-D displacement estimates yielded accurate and low noise modulus reconstruction.

  17. Volume Calculation of Venous Thrombosis Using 2D Ultrasound Images.

    PubMed

    Dhibi, M; Puentes, J; Bressollette, L; Guias, B; Solaiman, B

    2005-01-01

    Venous thrombosis screening exams use 2D ultrasound images, from which medical experts obtain a rough idea of the thrombosis aspect and infer an approximate volume. Such estimation is essential to follow up the thrombosis evolution. This paper proposes a method to calculate venous thrombosis volume from non-parallel 2D ultrasound images, taking advantage of a priori knowledge about the thrombosis shape. An interactive ellipse fitting contour segmentation extracts the 2D thrombosis contours. Then, a Delaunay triangulation is applied to the set of 2D segmented contours positioned in 3D, and the area that each contour defines, to obtain a global thrombosis 3D surface reconstruction, with a dense triangulation inside the contours. Volume is calculated from the obtained surface and contours triangulation, using a maximum unit normal component approach. Preliminary results obtained on 3 plastic phantoms and 3 in vitro venous thromboses, as well as one in vivo case are presented and discussed. An error rate of volume estimation inferior to 4,5% for the plastic phantoms, and 3,5% for the in vitro venous thromboses was obtained.

  18. Enabling Fast Pseudo-2D NMR Spectral Acquisition for Broadband Homonuclear Decoupling: The EXACT NMR Approach.

    PubMed

    Ndukwe, Ikenna E; Shchukina, Alexandra; Zorin, Vadim; Cobas, Carlos; Kazimierczuk, Krzysztof; Butts, Craig P

    2017-08-05

    Pseudo-2D NMR spectroscopy provides a means of acquiring broadband homonuclear decoupled spectra useful for structural characterization of complex molecules. However, data points concatenated in the direct dimension in these experiments are acquired over incremented time periods-leading to long acquisition times with no sensitivity benefits due to the absence of signal averaging between scans. Herein, the concept of EXACT NMR spectroscopy ("burst" non-uniform sampling of data points) is explored in pseudo-2D experiments with results revealing little or no loss in spectral quality or signal intensity despite the acceleration of acquisition-up to 400 % in some cases. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A 2D histogram representation of images for pooling

    NASA Astrophysics Data System (ADS)

    Yu, Xinnan; Zhang, Yu-Jin

    2011-03-01

    Designing a suitable image representation is one of the most fundamental issues of computer vision. There are three steps in the popular Bag of Words based image representation: feature extraction, coding and pooling. In the final step, current methods make an M x K encoded feature matrix degraded to a K-dimensional vector (histogram), where M is the number of features, and K is the size of the codebook: information is lost dramatically here. In this paper, a novel pooling method, based on 2-D histogram representation, is proposed to retain more information from the encoded image features. This pooling method can be easily incorporated into state-of- the-art computer vision system frameworks. Experiments show that our approach improves current pooling methods, and can achieve satisfactory performance of image classification and image reranking even when using a small codebook and costless linear SVM.

  20. Bayesian 2D Current Reconstruction from Magnetic Images

    NASA Astrophysics Data System (ADS)

    Clement, Colin B.; Bierbaum, Matthew K.; Nowack, Katja; Sethna, James P.

    We employ a Bayesian image reconstruction scheme to recover 2D currents from magnetic flux imaged with scanning SQUIDs (Superconducting Quantum Interferometric Devices). Magnetic flux imaging is a versatile tool to locally probe currents and magnetic moments, however present reconstruction methods sacrifice resolution due to numerical instability. Using state-of-the-art blind deconvolution techniques we recover the currents, point-spread function and height of the SQUID loop by optimizing the probability of measuring an image. We obtain uncertainties on these quantities by sampling reconstructions. This generative modeling technique could be used to develop calibration protocols for scanning SQUIDs, to diagnose systematic noise in the imaging process, and can be applied to many tools beyond scanning SQUIDs.

  1. Geometrical Correlation and Matching of 2d Image Shapes

    NASA Astrophysics Data System (ADS)

    Vizilter, Y. V.; Zheltov, S. Y.

    2012-07-01

    The problem of image correspondence measure selection for image comparison and matching is addressed. Many practical applications require image matching "just by shape" with no dependence on the concrete intensity or color values. Most popular technique for image shape comparison utilizes the mutual information measure based on probabilistic reasoning and information theory background. Another approach was proposed by Pytiev (so called "Pytiev morphology") based on geometrical and algebraic reasoning. In this framework images are considered as piecewise-constant 2D functions, tessellation of image frame by the set of non-intersected connected regions determines the "shape" of image and the projection of image onto the shape of other image is determined. Morphological image comparison is performed using the normalized morphological correlation coefficients. These coefficients estimate the closeness of one image to the shape of other image. Such image analysis technique can be characterized as an ""ntensity-to-geometry" matching. This paper generalizes the Pytiev morphological approach for obtaining the pure "geometry-to-geometry" matching techniques. The generalized intensity-geometrical correlation coefficient is proposed including the linear correlation coefficient and the square of Pytiev correlation coefficient as its partial cases. The morphological shape correlation coefficient is proposed based on the statistical averaging of images with the same shape. Centered morphological correlation coefficient is obtained under the condition of intensity centering of averaged images. Two types of symmetric geometrical normalized correlation coefficients are proposed for comparison of shape-tessellations. The technique for correlation and matching of shapes with ordered intensities is proposed with correlation measures invariant to monotonous intensity transformations. The quality of proposed geometrical correlation measures is experimentally estimated in the task of

  2. Microwave Imaging with Infrared 2-D Lock-in Amplifier

    NASA Astrophysics Data System (ADS)

    Chiyo, Noritaka; Arai, Mizuki; Tanaka, Yasuhiro; Nishikata, Atsuhiro; Maeno, Takashi

    We have developed a 3-D electromagnetic field measurement system using 2-D lock-in amplifier. This system uses an amplitude modulated electromagnetic wave source to heat a resistive screen. A very small change of temperature on a screen illuminated with the modulated electromagnetic wave is measured using an infrared thermograph camera. In this paper, we attempted to apply our system to microwave imaging. By placing conductor patches in front of the resistive screen and illuminating with microwave, the shape of each conductor was clearly observed as the temperature difference image of the screen. In this way, the conductor pattern inside the non-contact type IC card could be visualized. Moreover, we could observe the temperature difference image reflecting the shape of a Konnyaku (a gelatinous food made from devil's-tonge starch) or a dried fishbone, both as non-conducting material resembling human body. These results proved that our method is applicable to microwave see-through imaging.

  3. Parameterising root system growth models using 2D neutron radiography images

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Felderer, Bernd; Vontobel, Peter; Leitner, Daniel

    2013-04-01

    Root architecture is a key factor for plant acquisition of water and nutrients from soil. In particular in view of a second green revolution where the below ground parts of agricultural crops are important, it is essential to characterise and quantify root architecture and its effect on plant resource acquisition. Mathematical models can help to understand the processes occurring in the soil-plant system, they can be used to quantify the effect of root and rhizosphere traits on resource acquisition and the response to environmental conditions. In order to do so, root architectural models are coupled with a model of water and solute transport in soil. However, dynamic root architectural models are difficult to parameterise. Novel imaging techniques such as x-ray computed tomography, neutron radiography and magnetic resonance imaging enable the in situ visualisation of plant root systems. Therefore, these images facilitate the parameterisation of dynamic root architecture models. These imaging techniques are capable of producing 3D or 2D images. Moreover, 2D images are also available in the form of hand drawings or from images of standard cameras. While full 3D imaging tools are still limited in resolutions, 2D techniques are a more accurate and less expensive option for observing roots in their environment. However, analysis of 2D images has additional difficulties compared to the 3D case, because of overlapping roots. We present a novel algorithm for the parameterisation of root system growth models based on 2D images of root system. The algorithm analyses dynamic image data. These are a series of 2D images of the root system at different points in time. Image data has already been adjusted for missing links and artefacts and segmentation was performed by applying a matched filter response. From this time series of binary 2D images, we parameterise the dynamic root architecture model in the following way: First, a morphological skeleton is derived from the binary

  4. A novel point cloud registration using 2D image features

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Chou; Tai, Yen-Chou; Lee, Jhong-Jin; Chen, Yong-Sheng

    2017-01-01

    Since a 3D scanner only captures a scene of a 3D object at a time, a 3D registration for multi-scene is the key issue of 3D modeling. This paper presents a novel and an efficient 3D registration method based on 2D local feature matching. The proposed method transforms the point clouds into 2D bearing angle images and then uses the 2D feature based matching method, SURF, to find matching pixel pairs between two images. The corresponding points of 3D point clouds can be obtained by those pixel pairs. Since the corresponding pairs are sorted by their distance between matching features, only the top half of the corresponding pairs are used to find the optimal rotation matrix by the least squares approximation. In this paper, the optimal rotation matrix is derived by orthogonal Procrustes method (SVD-based approach). Therefore, the 3D model of an object can be reconstructed by aligning those point clouds with the optimal transformation matrix. Experimental results show that the accuracy of the proposed method is close to the ICP, but the computation cost is reduced significantly. The performance is six times faster than the generalized-ICP algorithm. Furthermore, while the ICP requires high alignment similarity of two scenes, the proposed method is robust to a larger difference of viewing angle.

  5. Assessment of image quality in real time three-dimensional dobutamine stress echocardiography: an integrated 2D/3D approach.

    PubMed

    Johri, Amer M; Chitty, David W; Hua, Lanqi; Marincheva, Gergana; Picard, Michael H

    2015-03-01

    Three-dimensional (3D) stress echocardiography is a relatively new technique offering the potential to acquire images of the entire left ventricle from 1 or 2 transducer positions in a time-efficient manner. Relative to two-dimensional (2D) imaging, the ability to quickly acquire full volume images during peak stress with 3D echocardiography can eliminate left ventricular (LV) foreshortening while reducing inter-operator variability. Our objectives were to (1) determine the practicality of a novel integrated 2D/3D stress protocol in incorporating 3D imaging into a standard 2D stress echocardiogram and (2) to determine whether the quality of imaging using the novel 2D/3D protocol was sufficient for interpretation. Twenty-five patients referred for stress echocardiography underwent an integrated 2D/3D image acquisition protocol. LV segments were scored from 0 (absent or no clear endocardial visualization) to 3 (excellent/full visualization of endocardial border) with each modality. 2D segment quality scoring was compared with 3D. An integrated score was compared with either 2D or 3D imaging alone. Two-dimensional and 3D imaging were optimal for differing segments and the integrated protocol was superior to either modality alone. 3D imaging was superior in visualizing the anterior and anterolateral region of the base segments, compared to 2D imaging. 3D imaging was less useful for the base, the mid-inferior, and the inferoseptal segments, thus emphasizing the need to retain 2D imaging in stress echocardiography at this time. The integrated 2D/3D protocol approach to stress echocardiography is technically feasible and maximizes image quality of dobutamine stress echocardiography, improving patient assessment. © 2014, Wiley Periodicals, Inc.

  6. Image Appraisal for 2D and 3D Electromagnetic Inversion

    SciTech Connect

    Alumbaugh, D.L.; Newman, G.A.

    1999-01-28

    Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.

  7. 2-D Drift Velocities from the IMAGE EUV Plasmaspheric Imager

    NASA Technical Reports Server (NTRS)

    Gallagher, D.; Adrian, M.

    2007-01-01

    The IMAGE Mission extreme ultraviolet imager (EUY) observes He+ plasmaspheric ions throughout the inner magnetosphere. Limited by ionizing radiation and viewing close to the Sun, images of the He+ distribution are available every 10 minutes for many hours as the spacecraft passes through apogee in its highly elliptical orbit. As a consistent constituent at about 15%, He+ is an excellent surrogate for monitoring all of the processes that control the dynamics of plasmaspheric plasma. In particular, the motion ofHe+ transverse to the ambient magnetic field is a direct indication of convective electric fields. The analysis of boundary motions has already achieved new insights into the electrodynamic coupling processes taking place between energetic magnetospheric plasmas and the ionosphere. Yet to be fulfilled, however, is the original promise that global EUY images of the plasmasphere might yield two-dimensional pictures of meso-scale to macro-scale electric fields in the inner magnetosphere. This work details the technique and initial application of an IMAGE EUY analysis that appears capable of following thermal plasma motion on a global basis.

  8. NGMIX: Gaussian mixture models for 2D images

    NASA Astrophysics Data System (ADS)

    Sheldon, Erin

    2015-08-01

    NGMIX implements Gaussian mixture models for 2D images. Both the PSF profile and the galaxy are modeled using mixtures of Gaussians. Convolutions are thus performed analytically, resulting in fast model generation as compared to methods that perform the convolution in Fourier space. For the galaxy model, NGMIX supports exponential disks and de Vaucouleurs and Sérsic profiles; these are implemented approximately as a sum of Gaussians using the fits from Hogg & Lang (2013). Additionally, any number of Gaussians can be fit, either completely free or constrained to be cocentric and co-elliptical.

  9. Joint 2D and 3D phase processing for quantitative susceptibility mapping: application to 2D echo-planar imaging.

    PubMed

    Wei, Hongjiang; Zhang, Yuyao; Gibbs, Eric; Chen, Nan-Kuei; Wang, Nian; Liu, Chunlei

    2017-04-01

    Quantitative susceptibility mapping (QSM) measures tissue magnetic susceptibility and typically relies on time-consuming three-dimensional (3D) gradient-echo (GRE) MRI. Recent studies have shown that two-dimensional (2D) multi-slice gradient-echo echo-planar imaging (GRE-EPI), which is commonly used in functional MRI (fMRI) and other dynamic imaging techniques, can also be used to produce data suitable for QSM with much shorter scan times. However, the production of high-quality QSM maps is difficult because data obtained by 2D multi-slice scans often have phase inconsistencies across adjacent slices and strong susceptibility field gradients near air-tissue interfaces. To address these challenges in 2D EPI-based QSM studies, we present a new data processing procedure that integrates 2D and 3D phase processing. First, 2D Laplacian-based phase unwrapping and 2D background phase removal are performed to reduce phase inconsistencies between slices and remove in-plane harmonic components of the background phase. This is followed by 3D background phase removal for the through-plane harmonic components. The proposed phase processing was evaluated with 2D EPI data obtained from healthy volunteers, and compared against conventional 3D phase processing using the same 2D EPI datasets. Our QSM results were also compared with QSM values from time-consuming 3D GRE data, which were taken as ground truth. The experimental results show that this new 2D EPI-based QSM technique can produce quantitative susceptibility measures that are comparable with those of 3D GRE-based QSM across different brain regions (e.g. subcortical iron-rich gray matter, cortical gray and white matter). This new 2D EPI QSM reconstruction method is implemented within STI Suite, which is a comprehensive shareware for susceptibility imaging and quantification. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Seulimeum segment characteristic indicated by 2-D resistivity imaging method

    NASA Astrophysics Data System (ADS)

    Syukri, M.; Saad, R.

    2017-06-01

    The study conducted at Aceh (Indonesia) within Krueng Raya and Ie Seu Um vicinity with the same geology setting (Lam Teuba volcanic), to study Seulimeum Segment characteristic using 2-D resistivity imaging method. The 2-D resistivity survey applied Pole-dipole array with minimum electrode spacing of 2 and 5 m for Ie Seu Um study area, while 10 m for Krueng Raya area. Resistivity value of Ie Seu Um study area has been correlated and validated with existing outcrops and hot springs which the value used to identify overburden, saturated area and bedrock of Krueng Raya area. The resistivity value of overburden in Krueng Raya area was identify as <30 Ohm.m, bedrock is >30 Ohm.m and saturated zone is <9 Ohm.m. The imaging results used to identify the Seulimeum segment system, where the depth is increasing from southern part (20-50 m) to northern part (50-200 m) when approaching the Andaman Sea and breaks into two sections to produce horst and graben system which indicate that it produced from the moving plat.

  11. Preliminary work of real-time ultrasound imaging system for 2-D array transducer.

    PubMed

    Li, Xu; Yang, Jiali; Ding, Mingyue; Yuchi, Ming

    2015-01-01

    Ultrasound (US) has emerged as a non-invasive imaging modality that can provide anatomical structure information in real time. To enable the experimental analysis of new 2-D array ultrasound beamforming methods, a pre-beamformed parallel raw data acquisition system was developed for 3-D data capture of 2D array transducer. The transducer interconnection adopted the row-column addressing (RCA) scheme, where the columns and rows were active in sequential for transmit and receive events, respectively. The DAQ system captured the raw data in parallel and the digitized data were fed through the field programmable gate array (FPGA) to implement the pre-beamforming. Finally, 3-D images were reconstructed through the devised platform in real-time.

  12. Image Pretreatment Tools II: Normalization Techniques for 2-DE and 2-D DIGE.

    PubMed

    Robotti, Elisa; Marengo, Emilio; Quasso, Fabio

    2016-01-01

    Gel electrophoresis is usually applied to identify different protein expression profiles in biological samples (e.g., control vs. pathological, control vs. treated). Information about the effect to be investigated (a pathology, a drug, a ripening effect, etc.) is however generally confounded with experimental variability that is quite large in 2-DE and may arise from small variations in the sample preparation, reagents, sample loading, electrophoretic conditions, staining and image acquisition. Obtaining valid quantitative estimates of protein abundances in each map, before the differential analysis, is therefore fundamental to provide robust candidate biomarkers. Normalization procedures are applied to reduce experimental noise and make the images comparable, improving the accuracy of differential analysis. Certainly, they may deeply influence the final results, and to this respect they have to be applied with care. Here, the most widespread normalization procedures are described both for what regards the applications to 2-DE and 2D Difference Gel-electrophoresis (2-D DIGE) maps.

  13. Fast acquisition of high-resolution 2D NMR spectroscopy in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Lin, Liangjie; Wei, Zhiliang; Zeng, Qing; Yang, Jian; Lin, Yanqin; Chen, Zhong

    2016-05-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy plays an important role in chemical and biological analyses. In this study, we combine the J-coupling coherence transfer module with the echo-train acquisition technique for fast acquisition of high-resolution 2D NMR spectra in magnetic fields with unknown spatial variations. The proposed method shows satisfactory performance on a 5 mM ethyl 3-bromopropionate sample, under a 5-kHz (10 ppm at 11.7 T) B0 inhomogeneous field, as well as under varying degrees of pulse-flip-angle deviations. Moreover, a simulative ex situ NMR measurement is also conducted to show the effectiveness of the proposed pulse sequence.

  14. 2-D fluorescence lifetime imaging using a time-gated image intensifier

    NASA Astrophysics Data System (ADS)

    Dowling, K.; Hyde, S. C. W.; Dainty, J. C.; French, P. M. W.; Hares, J. D.

    1997-02-01

    We report a 2-D fluorescence lifetime imaging system based on a time-gated image intensifier and a Cr:LiSAF regenerative amplifier. We have demonstrated 185 ps temporal resolution. The deleterious effects of optical scattering are demonstrated.

  15. Tracking of deformable target in 2D ultrasound images

    NASA Astrophysics Data System (ADS)

    Royer, Lucas; Marchal, Maud; Le Bras, Anthony; Dardenne, Guillaume; Krupa, Alexandre

    2015-03-01

    In this paper, we propose a novel approach for automatically tracking deformable target within 2D ultrasound images. Our approach uses only dense information combined with a physically-based model and has therefore the advantage of not using any fiducial marker nor a priori knowledge on the anatomical environment. The physical model is represented by a mass-spring damper system driven by different types of forces where the external forces are obtained by maximizing image similarity metric between a reference target and a deformed target across the time. This deformation is represented by a parametric warping model where the optimal parameters are estimated from the intensity variation. This warping function is well-suited to represent localized deformations in the ultrasound images because it directly links the forces applied on each mass with the motion of all the pixels in its vicinity. The internal forces constrain the deformation to physically plausible motions, and reduce the sensitivity to the speckle noise. The approach was validated on simulated and real data, both for rigid and free-form motions of soft tissues. The results are very promising since the deformable target could be tracked with a good accuracy for both types of motion. Our approach opens novel possibilities for computer-assisted interventions where deformable organs are involved and could be used as a new tool for interactive tracking of soft tissues in ultrasound images.

  16. A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.

    PubMed

    Qiu, Weibao; Wang, Congzhi; Li, Yongchuan; Zhou, Juan; Yang, Ge; Xiao, Yang; Feng, Ge; Jin, Qiaofeng; Mu, Peitian; Qian, Ming; Zheng, Hairong

    2015-09-01

    Ultrasound elastography is widely used for the non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) is a quantitative method for assessing tissue stiffness. SWI has been demonstrated to be less operator dependent than quasi-static elastography, and has the ability to acquire quantitative elasticity information in contrast with acoustic radiation force impulse (ARFI) imaging. However, traditional SWI implementations cannot acquire two dimensional (2D) quantitative images of the tissue elasticity distribution. This study proposes and evaluates a scanning-mode 2D SWI (s2D-SWI) system. The hardware and image processing algorithms are presented in detail. Programmable devices are used to support flexible control of the system and the image processing algorithms. An analytic signal based cross-correlation method and a Radon transformation based shear wave speed determination method are proposed, which can be implemented using parallel computation. Imaging of tissue mimicking phantoms, and in vitro, and in vivo imaging test are conducted to demonstrate the performance of the proposed system. The s2D-SWI system represents a new choice for the quantitative mapping of tissue elasticity, and has great potential for implementation in commercial ultrasound scanners.

  17. Localization of significant 3D objects in 2D images for generic vision tasks

    NASA Astrophysics Data System (ADS)

    Mokhtari, Marielle; Bergevin, Robert

    1995-10-01

    Computer vision experiments are not very often linked to practical applications but rather deal with typical laboratory experiments under controlled conditions. For instance, most object recognition experiments are based on specific models used under limitative constraints. Our work proposes a general framework for rapidly locating significant 3D objects in 2D static images of medium to high complexity, as a prerequisite step to recognition and interpretation when no a priori knowledge of the contents of the scene is assumed. In this paper, a definition of generic objects is proposed, covering the structures that are implied in the image. Under this framework, it must be possible to locate generic objects and assign a significance figure to each one from any image fed to the system. The most significant structure in a given image becomes the focus of interest of the system determining subsequent tasks (like subsequent robot moves, image acquisitions and processing). A survey of existing strategies for locating 3D objects in 2D images is first presented and our approach is defined relative to these strategies. Perceptual grouping paradigms leading to the structural organization of the components of an image are at the core of our approach.

  18. Comparison of spatiotemporal interpolators for 4D image reconstruction from 2D transesophageal ultrasound

    NASA Astrophysics Data System (ADS)

    Haak, Alexander; van Stralen, Marijn; van Burken, Gerard; Klein, Stefan; Pluim, Josien P. W.; de Jong, Nico; van der Steen, Antonius F. W.; Bosch, Johan G.

    2012-03-01

    °For electrophysiology intervention monitoring, we intend to reconstruct 4D ultrasound (US) of structures in the beating heart from 2D transesophageal US by scanplane rotation. The image acquisition is continuous but unsynchronized to the heart rate, which results in a sparsely and irregularly sampled dataset and a spatiotemporal interpolation method is desired. Previously, we showed the potential of normalized convolution (NC) for interpolating such datasets. We explored 4D interpolation by 3 different methods: NC, nearest neighbor (NN), and temporal binning followed by linear interpolation (LTB). The test datasets were derived by slicing three 4D echocardiography datasets at random rotation angles (θ, range: 0-180) and random normalized cardiac phase (τ, range: 0-1). Four different distributions of rotated 2D images with 600, 900, 1350, and 1800 2D input images were created from all TEE sets. A 2D Gaussian kernel was used for NC and optimal kernel sizes (σθ and στ) were found by performing an exhaustive search. The RMS gray value error (RMSE) of the reconstructed images was computed for all interpolation methods. The estimated optimal kernels were in the range of σθ = 3.24 - 3.69°/ στ = 0.045 - 0.048, σθ = 2.79°/ στ = 0.031 - 0.038, σθ = 2.34°/ στ = 0.023 - 0.026, and σθ = 1.89°/ στ = 0.021 - 0.023 for 600, 900, 1350, and 1800 input images respectively. We showed that NC outperforms NN and LTB. For a small number of input images the advantage of NC is more pronounced.

  19. Scanning-mode 2D acoustic radiation force impulse (s2D-ARFI) imaging based on GPU acceleration.

    PubMed

    Wang, Congzhi; Zeng, Bo; Qiu, Weibao; Zheng, Hairong

    2014-01-01

    Acoustic radiation force impulse (ARFI) technique is a quantitative method for tissue stiffness assessment. It has been proved to be less operator dependent than the quasi-static elastography, and has more simple hardware architecture than the supersonic shearwave imaging (SSI) technique, which make it easier to be miniaturized for some special clinical applications. However, unlike the SSI, ARFI cannot provide real-time 2D images of tissue stiffness distribution mainly due to its data-intensive and time-consuming algorithms. In this study, the algorithms of ARFI were modified and improved to fit for the parallel computation on graphics processing unit (GPU), and the quasi-real-time scanning-mode 2D ARFI images (s2D-ARFI) were implemented on a self-developed compact system. High ratio of the time consumptions between the algorithms using CPU and using GPU has been verified, and it was also proved that there was no distinct difference between the stiffness images obtained by these two methods. The s2D-ARFI provides us an additional choice for quantitatively imaging the tissue stiffness, and has a potential to be miniaturized and used in the emergency treatments in field first-aid and the donor evaluation for organ transplantation.

  20. How does C-VIEW image quality compare with conventional 2D FFDM?

    SciTech Connect

    Nelson, Jeffrey S. Wells, Jered R.; Baker, Jay A.; Samei, Ehsan

    2016-05-15

    Purpose: The FDA approved the use of digital breast tomosynthesis (DBT) in 2011 as an adjunct to 2D full field digital mammography (FFDM) with the constraint that all DBT acquisitions must be paired with a 2D image to assure adequate interpretative information is provided. Recently manufacturers have developed methods to provide a synthesized 2D image generated from the DBT data with the hope of sparing patients the radiation exposure from the FFDM acquisition. While this much needed alternative effectively reduces the total radiation burden, differences in image quality must also be considered. The goal of this study was to compare the intrinsic image quality of synthesized 2D C-VIEW and 2D FFDM images in terms of resolution, contrast, and noise. Methods: Two phantoms were utilized in this study: the American College of Radiology mammography accreditation phantom (ACR phantom) and a novel 3D printed anthropomorphic breast phantom. Both phantoms were imaged using a Hologic Selenia Dimensions 3D system. Analysis of the ACR phantom includes both visual inspection and objective automated analysis using in-house software. Analysis of the 3D anthropomorphic phantom includes visual assessment of resolution and Fourier analysis of the noise. Results: Using ACR-defined scoring criteria for the ACR phantom, the FFDM images scored statistically higher than C-VIEW according to both the average observer and automated scores. In addition, between 50% and 70% of C-VIEW images failed to meet the nominal minimum ACR accreditation requirements—primarily due to fiber breaks. Software analysis demonstrated that C-VIEW provided enhanced visualization of medium and large microcalcification objects; however, the benefits diminished for smaller high contrast objects and all low contrast objects. Visual analysis of the anthropomorphic phantom showed a measureable loss of resolution in the C-VIEW image (11 lp/mm FFDM, 5 lp/mm C-VIEW) and loss in detection of small microcalcification

  1. A multi-frequency electrical impedance tomography system for real-time 2D and 3D imaging

    NASA Astrophysics Data System (ADS)

    Yang, Yunjie; Jia, Jiabin

    2017-08-01

    This paper presents the design and evaluation of a configurable, fast multi-frequency Electrical Impedance Tomography (mfEIT) system for real-time 2D and 3D imaging, particularly for biomedical imaging. The system integrates 32 electrode interfaces and the current frequency ranges from 10 kHz to 1 MHz. The system incorporates the following novel features. First, a fully adjustable multi-frequency current source with current monitoring function is designed. Second, a flexible switching scheme is developed for arbitrary sensing configuration and a semi-parallel data acquisition architecture is implemented for high-frame-rate data acquisition. Furthermore, multi-frequency digital quadrature demodulation is accomplished in a high-capacity Field Programmable Gate Array. At last, a 3D imaging software, visual tomography, is developed for real-time 2D and 3D image reconstruction, data analysis, and visualization. The mfEIT system is systematically tested and evaluated from the aspects of signal to noise ratio (SNR), frame rate, and 2D and 3D multi-frequency phantom imaging. The highest SNR is 82.82 dB on a 16-electrode sensor. The frame rate is up to 546 fps at serial mode and 1014 fps at semi-parallel mode. The evaluation results indicate that the presented mfEIT system is a powerful tool for real-time 2D and 3D imaging.

  2. Adaptive optofluidic lens(es) for switchable 2D and 3D imaging

    NASA Astrophysics Data System (ADS)

    Huang, Hanyang; Wei, Kang; Zhao, Yi

    2016-03-01

    The stereoscopic image is often captured using dual cameras arranged side-by-side and optical path switching systems such as two separate solid lenses or biprism/mirrors. The miniaturization of the overall size of current stereoscopic devices down to several millimeters is at a sacrifice of further device size shrinkage. The limited light entry worsens the final image resolution and brightness. It is known that optofluidics offer good re-configurability for imaging systems. Leveraging this technique, we report a reconfigurable optofluidic system whose optical layout can be swapped between a singlet lens with 10 mm in diameter and a pair of binocular lenses with each lens of 3 mm in diameter for switchable two-dimensional (2D) and three-dimensional (3D) imaging. The singlet and the binoculars share the same optical path and the same imaging sensor. The singlet acquires a 3D image with better resolution and brightness, while the binoculars capture stereoscopic image pairs for 3D vision and depth perception. The focusing power tuning capability of the singlet and the binoculars enable image acquisition at varied object planes by adjusting the hydrostatic pressure across the lens membrane. The vari-focal singlet and binoculars thus work interchangeably and complementarily. The device is thus expected to have applications in robotic vision, stereoscopy, laparoendoscopy and miniaturized zoom lens system.

  3. 2D/4D marker-free tumor tracking using 4D CBCT as the reference image.

    PubMed

    Wang, Mengjiao; Sharp, Gregory C; Rit, Simon; Delmon, Vivien; Wang, Guangzhi

    2014-05-07

    Tumor motion caused by respiration is an important issue in image-guided radiotherapy. A 2D/4D matching method between 4D volumes derived from cone beam computed tomography (CBCT) and 2D fluoroscopic images was implemented to track the tumor motion without the use of implanted markers. In this method, firstly, 3DCBCT and phase-rebinned 4DCBCT are reconstructed from cone beam acquisition. Secondly, 4DCBCT volumes and a streak-free 3DCBCT volume are combined to improve the image quality of the digitally reconstructed radiographs (DRRs). Finally, the 2D/4D matching problem is converted into a 2D/2D matching between incoming projections and DRR images from each phase of the 4DCBCT. The diaphragm is used as a target surrogate for matching instead of using the tumor position directly. This relies on the assumption that if a patient has the same breathing phase and diaphragm position as the reference 4DCBCT, then the tumor position is the same. From the matching results, the phase information, diaphragm position and tumor position at the time of each incoming projection acquisition can be derived. The accuracy of this method was verified using 16 candidate datasets, representing lung and liver applications and one-minute and two-minute acquisitions. The criteria for the eligibility of datasets were described: 11 eligible datasets were selected to verify the accuracy of diaphragm tracking, and one eligible dataset was chosen to verify the accuracy of tumor tracking. The diaphragm matching accuracy was 1.88 ± 1.35 mm in the isocenter plane and the 2D tumor tracking accuracy was 2.13 ± 1.26 mm in the isocenter plane. These features make this method feasible for real-time marker-free tumor motion tracking purposes.

  4. 2D/4D marker-free tumor tracking using 4D CBCT as the reference image

    NASA Astrophysics Data System (ADS)

    Wang, Mengjiao; Sharp, Gregory C.; Rit, Simon; Delmon, Vivien; Wang, Guangzhi

    2014-05-01

    Tumor motion caused by respiration is an important issue in image-guided radiotherapy. A 2D/4D matching method between 4D volumes derived from cone beam computed tomography (CBCT) and 2D fluoroscopic images was implemented to track the tumor motion without the use of implanted markers. In this method, firstly, 3DCBCT and phase-rebinned 4DCBCT are reconstructed from cone beam acquisition. Secondly, 4DCBCT volumes and a streak-free 3DCBCT volume are combined to improve the image quality of the digitally reconstructed radiographs (DRRs). Finally, the 2D/4D matching problem is converted into a 2D/2D matching between incoming projections and DRR images from each phase of the 4DCBCT. The diaphragm is used as a target surrogate for matching instead of using the tumor position directly. This relies on the assumption that if a patient has the same breathing phase and diaphragm position as the reference 4DCBCT, then the tumor position is the same. From the matching results, the phase information, diaphragm position and tumor position at the time of each incoming projection acquisition can be derived. The accuracy of this method was verified using 16 candidate datasets, representing lung and liver applications and one-minute and two-minute acquisitions. The criteria for the eligibility of datasets were described: 11 eligible datasets were selected to verify the accuracy of diaphragm tracking, and one eligible dataset was chosen to verify the accuracy of tumor tracking. The diaphragm matching accuracy was 1.88 ± 1.35 mm in the isocenter plane and the 2D tumor tracking accuracy was 2.13 ± 1.26 mm in the isocenter plane. These features make this method feasible for real-time marker-free tumor motion tracking purposes.

  5. A preliminary evaluation work on a 3D ultrasound imaging system for 2D array transducer

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoli; Li, Xu; Yang, Jiali; Li, Chunyu; Song, Junjie; Ding, Mingyue; Yuchi, Ming

    2016-04-01

    This paper presents a preliminary evaluation work on a pre-designed 3-D ultrasound imaging system. The system mainly consists of four parts, a 7.5MHz, 24×24 2-D array transducer, the transmit/receive circuit, power supply, data acquisition and real-time imaging module. The row-column addressing scheme is adopted for the transducer fabrication, which greatly reduces the number of active channels . The element area of the transducer is 4.6mm by 4.6mm. Four kinds of tests were carried out to evaluate the imaging performance, including the penetration depth range, axial and lateral resolution, positioning accuracy and 3-D imaging frame rate. Several strong reflection metal objects , fixed in a water tank, were selected for the purpose of imaging due to a low signal-to-noise ratio of the transducer. The distance between the transducer and the tested objects , the thickness of aluminum, and the seam width of the aluminum sheet were measured by a calibrated micrometer to evaluate the penetration depth, the axial and lateral resolution, respectively. The experiment al results showed that the imaging penetration depth range was from 1.0cm to 6.2cm, the axial and lateral resolution were 0.32mm and 1.37mm respectively, the imaging speed was up to 27 frames per second and the positioning accuracy was 9.2%.

  6. 2D ERT imaging of tracer dispersion in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Lekmine, G.; Pessel, M.; Auradou, H.

    2009-12-01

    Electrical resistivity tomography applied in cross-borehole is a method often used to follow the invasion process of pollutants. The aim of this work is to test experimentally the electrode arrays and inversion processes used to obtain a spatial representation of tracer propagation in porous media. Experiments were conducted in a plexiglass container with glass beads of 166 microns in diameter. The height of the container is 275 mm, its width 85 mm and its thickness 10 mm. 21 electrodes, equally spaced, are placed along each of the lateral sides of the porous medium : these electrodes are used to perform the electrical measurements. The device is lightened from behind and a video camera records the fluid propagation. The tracer (i.e the pollutant) is a water solution containing a known amount of dye together with NaCl (0.5g/l up to 1.5g/l). The medium is first saturated by a water solution containing a slight concentration of NaCl so that its density is smaller than the tracer’s. An upward flow is first established, the denser fluid is injected at the bottom and over the full width of the medium. In this way, the flow is stabilized by gravity avoiding the development of unstable fingers. Still, the fluids are miscible and a mixing front develops during the flow: in the present study, the interest is to estimate the 2D tracer front dispersion by both optical and electrical imaging. The comparison of the two techniques allows to study the ability of the inversion process to quantify the solute transport. A sensitivity analysis is led in order to determine the best measurement sequence to monitor the tracer’s front evolution through the entire volume of the medium. Hence, each time step is constituted by the same 190 transverse dipole-dipole set of lasting 5 minutes between the first and the last measurement. At the laboratory scale, the experimental design affects the measurements through edges effects: most of these artefacts can be partially suppressed by using

  7. Digital radiography image quality: image acquisition.

    PubMed

    Williams, Mark B; Krupinski, Elizabeth A; Strauss, Keith J; Breeden, William K; Rzeszotarski, Mark S; Applegate, Kimberly; Wyatt, Margaret; Bjork, Sandra; Seibert, J Anthony

    2007-06-01

    This article on digital radiography image acquisition is the first of two articles written as part of an intersociety effort to establish image quality standards for digital and computed radiography. The topic of the other paper is digital radiography image processing and display. The articles were developed collaboratively by the ACR, the American Association of Physicists in Medicine, and the Society for Imaging Informatics in Medicine. Increasingly, medical imaging and patient information are being managed using digital data during acquisition, transmission, storage, display, interpretation, and consultation. Data management during each of these operations has a direct impact on the quality of patient care. These articles describe what is known to improve image quality for digital and computed radiography and make recommendations on optimal acquisition, processing, and display. The practice of digital radiography is a rapidly evolving technology that will require the timely revision of any guidelines and standards. This document provides a basis for the technologies available today in clinical practice and may be useful in guiding the future clinical practice of digital radiography.

  8. Optimal angular dose distribution to acquire 3D and extra 2D images for digital breast tomosynthesis (DBT)

    NASA Astrophysics Data System (ADS)

    Park, Hye-Suk; Kim, Ye-Seul; Lee, Haeng-Hwa; Gang, Won-Suk; Kim, Hee-Joung; Choi, Young-Wook; Choi, JaeGu

    2015-08-01

    The purpose of this study is to determine the optimal non-uniform angular dose distribution to improve the quality of the 3D reconstructed images and to acquire extra 2D projection images. In this analysis, 7 acquisition sets were generated by using four different values for the number of projections (11, 15, 21, and 29) and total angular range (±14°, ±17.5°, ±21°, and ±24.5° ). For all acquisition sets, the zero-degree projection was used as the 2D image that was close to that of standard conventional mammography (CM). Exposures used were 50, 100, 150, and 200 mR for the zero-degree projection, and the remaining dose was distributed over the remaining projection angles. To quantitatively evaluate image quality, we computed the CNR (contrast-to-noise ratio) and the ASF (artifact spread function) for the same radiation dose. The results indicate that, for microcalcifications, acquisition sets with approximately 4 times higher exposure on the zero-degree projection than the average exposure for the remaining projection angles yielded higher CNR values and were 3% higher than the uniform distribution. However, very high dose concentrations toward the zero-degree projection may reduce the quality of the reconstructed images due to increasing noise in the peripheral views. The zero-degree projection of the non-uniform dose distribution offers a 2D image similar to that of standard CM, but with a significantly lower radiation dose. Therefore, we need to evaluate the diagnostic potential of extra 2D projection image when diagnose breast cancer by using 3D images with non-uniform angular dose distributions.

  9. A nonrigid kernel-based framework for 2D-3D pose estimation and 2D image segmentation.

    PubMed

    Sandhu, Romeil; Dambreville, Samuel; Yezzi, Anthony; Tannenbaum, Allen

    2011-06-01

    In this work, we present a nonrigid approach to jointly solving the tasks of 2D-3D pose estimation and 2D image segmentation. In general, most frameworks that couple both pose estimation and segmentation assume that one has exact knowledge of the 3D object. However, under nonideal conditions, this assumption may be violated if only a general class to which a given shape belongs is given (e.g., cars, boats, or planes). Thus, we propose to solve the 2D-3D pose estimation and 2D image segmentation via nonlinear manifold learning of 3D embedded shapes for a general class of objects or deformations for which one may not be able to associate a skeleton model. Thus, the novelty of our method is threefold: first, we present and derive a gradient flow for the task of nonrigid pose estimation and segmentation. Second, due to the possible nonlinear structures of one's training set, we evolve the pre-image obtained through kernel PCA for the task of shape analysis. Third, we show that the derivation for shape weights is general. This allows us to use various kernels, as well as other statistical learning methodologies, with only minimal changes needing to be made to the overall shape evolution scheme. In contrast with other techniques, we approach the nonrigid problem, which is an infinite-dimensional task, with a finite-dimensional optimization scheme. More importantly, we do not explicitly need to know the interaction between various shapes such as that needed for skeleton models as this is done implicitly through shape learning. We provide experimental results on several challenging pose estimation and segmentation scenarios.

  10. Hybrid feature-based diffeomorphic registration for tumor tracking in 2-D liver ultrasound images.

    PubMed

    Cifor, Amalia; Risser, Laurent; Chung, Daniel; Anderson, Ewan M; Schnabel, Julia A

    2013-09-01

    Real-time ultrasound image acquisition is a pivotal resource in the medical community, in spite of its limited image quality. This poses challenges to image registration methods, particularly to those driven by intensity values. We address these difficulties in a novel diffeomorphic registration technique for tumor tracking in series of 2-D liver ultrasound. Our method has two main characteristics: 1) each voxel is described by three image features: intensity, local phase, and phase congruency; 2) we compute a set of forces from either local information (Demons-type of forces), or spatial correspondences supplied by a block-matching scheme, from each image feature. A family of update deformation fields which are defined by these forces, and inform upon the local or regional contribution of each image feature are then composed to form the final transformation. The method is diffeomorphic, which ensures the invertibility of deformations. The qualitative and quantitative results yielded by both synthetic and real clinical data show the suitability of our method for the application at hand.

  11. 2D cine DENSE with low encoding frequencies accurately quantifies cardiac mechanics with improved image characteristics.

    PubMed

    Wehner, Gregory J; Grabau, Jonathan D; Suever, Jonathan D; Haggerty, Christopher M; Jing, Linyuan; Powell, David K; Hamlet, Sean M; Vandsburger, Moriel H; Zhong, Xiaodong; Fornwalt, Brandon K

    2015-11-04

    Displacement Encoding with Stimulated Echoes (DENSE) encodes displacement into the phase of the magnetic resonance signal. The encoding frequency (ke) maps the measured phase to tissue displacement while the strength of the encoding gradients affects image quality. 2D cine DENSE studies have used a ke of 0.10 cycles/mm, which is high enough to remove an artifact-generating echo from k-space, provide high sensitivity to tissue displacements, and dephase the blood pool. However, through-plane dephasing can remove the unwanted echo and dephase the blood pool without relying on high ke. Additionally, the high sensitivity comes with the costs of increased phase wrapping and intra-voxel dephasing. We hypothesized that ke below 0.10 cycles/mm can be used to improve image characteristics and provide accurate measures of cardiac mechanics. Spiral cine DENSE images were obtained for 10 healthy subjects and 10 patients with a history of heart disease on a 3 T Siemens Trio. A mid-ventricular short-axis image was acquired with different ke: 0.02, 0.04, 0.06, 0.08, and 0.10 cycles/mm. Peak twist, circumferential strain, and radial strain were compared between acquisitions employing different ke using Bland-Altman analyses and coefficients of variation. The percentage of wrapped pixels in the phase images at end-systole was calculated for each ke. The dephasing of the blood signal and signal to noise ratio (SNR) were also calculated and compared. Negligible differences were seen in strains and twist for all ke between 0.04 and 0.10 cycles/mm. These differences were of the same magnitude as inter-test differences. Specifically, the acquisitions with 0.04 cycles/mm accurately quantified cardiac mechanics and had zero phase wrapping. Compared to 0.10 cycles/mm, the acquisitions with 0.04 cycles/mm had 9 % greater SNR and negligible differences in blood pool dephasing. For 2D cine DENSE with through-plane dephasing, the encoding frequency can be lowered to 0.04

  12. [Design of the 2D-FFT image reconstruction software based on Matlab].

    PubMed

    Xu, Hong-yu; Wang, Hong-zhi

    2008-09-01

    This paper presents a Matlab's implementation for 2D-FFT image reconstruction algorithm of magnetic resonance imaging, with the universal COM component that Windows system can identify. This allows to segregate the 2D-FFT image reconstruction algorithm from the business magnetic resonance imaging closed system, providing the ability for initial data processing before reconstruction, which would be important for improving the image quality, diagnostic value and image post-processing.

  13. Bi-sided integral imaging with 2D/3D convertibility using scattering polarizer.

    PubMed

    Yeom, Jiwoon; Hong, Keehoon; Park, Soon-gi; Hong, Jisoo; Min, Sung-Wook; Lee, Byoungho

    2013-12-16

    We propose a two-dimensional (2D) and three-dimensional (3D) convertible bi-sided integral imaging. The proposed system uses the polarization state of projected light for switching its operation mode between 2D and 3D modes. By using an optical module composed of two scattering polarizers and one linear polarizer, the proposed integral imaging system simultaneously provides 3D images with 2D background images for observers who are located in the front and the rear sides of the system. The occlusion effect between 2D images and 3D images is realized by using a compensation mask for 2D images and the elemental images. The principle of proposed system is experimentally verified.

  14. WE-AB-BRA-07: Quantitative Evaluation of 2D-2D and 2D-3D Image Guided Radiation Therapy for Clinical Trial Credentialing, NRG Oncology/RTOG

    SciTech Connect

    Giaddui, T; Yu, J; Xiao, Y; Jacobs, P; Manfredi, D; Linnemann, N

    2015-06-15

    Purpose: 2D-2D kV image guided radiation therapy (IGRT) credentialing evaluation for clinical trial qualification was historically qualitative through submitting screen captures of the fusion process. However, as quantitative DICOM 2D-2D and 2D-3D image registration tools are implemented in clinical practice for better precision, especially in centers that treat patients with protons, better IGRT credentialing techniques are needed. The aim of this work is to establish methodologies for quantitatively reviewing IGRT submissions based on DICOM 2D-2D and 2D-3D image registration and to test the methodologies in reviewing 2D-2D and 2D-3D IGRT submissions for RTOG/NRG Oncology clinical trials qualifications. Methods: DICOM 2D-2D and 2D-3D automated and manual image registration have been tested using the Harmony tool in MIM software. 2D kV orthogonal portal images are fused with the reference digital reconstructed radiographs (DRR) in the 2D-2D registration while the 2D portal images are fused with DICOM planning CT image in the 2D-3D registration. The Harmony tool allows alignment of the two images used in the registration process and also calculates the required shifts. Shifts calculated using MIM are compared with those submitted by institutions for IGRT credentialing. Reported shifts are considered to be acceptable if differences are less than 3mm. Results: Several tests have been performed on the 2D-2D and 2D-3D registration. The results indicated good agreement between submitted and calculated shifts. A workflow for reviewing these IGRT submissions has been developed and will eventually be used to review IGRT submissions. Conclusion: The IROC Philadelphia RTQA center has developed and tested a new workflow for reviewing DICOM 2D-2D and 2D-3D IGRT credentialing submissions made by different cancer clinical centers, especially proton centers. NRG Center for Innovation in Radiation Oncology (CIRO) and IROC RTQA center continue their collaborative efforts to enhance

  15. Colony image acquisition and segmentation

    NASA Astrophysics Data System (ADS)

    Wang, W. X.

    2007-12-01

    For counting of both colonies and plaques, there is a large number of applications including food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing, AMES testing, pharmaceuticals, paints, sterile fluids and fungal contamination. Recently, many researchers and developers have made efforts for this kind of systems. By investigation, some existing systems have some problems. The main problems are image acquisition and image segmentation. In order to acquire colony images with good quality, an illumination box was constructed as: the box includes front lightning and back lightning, which can be selected by users based on properties of colony dishes. With the illumination box, lightning can be uniform; colony dish can be put in the same place every time, which make image processing easy. The developed colony image segmentation algorithm consists of the sub-algorithms: (1) image classification; (2) image processing; and (3) colony delineation. The colony delineation algorithm main contain: the procedures based on grey level similarity, on boundary tracing, on shape information and colony excluding. In addition, a number of algorithms are developed for colony analysis. The system has been tested and satisfactory.

  16. Advanced solvent signal suppression for the acquisition of 1D and 2D NMR spectra of Scotch Whisky.

    PubMed

    Kew, Will; Bell, Nicholle G A; Goodall, Ian; Uhrín, Dušan

    2017-09-01

    A simple and robust solvent suppression technique that enables acquisition of high-quality 1D (1) H nuclear magnetic resonance (NMR) spectra of alcoholic beverages on cryoprobe instruments was developed and applied to acquire NMR spectra of Scotch Whisky. The method uses 3 channels to suppress signals of water and ethanol, including those of (13) C satellites of ethanol. It is executed in automation allowing high throughput investigations of alcoholic beverages. On the basis of the well-established 1D nuclear Overhauser spectroscopy (NOESY) solvent suppression technique, this method suppresses the solvent at the beginning of the pulse sequence, producing pure phase signals minimally affected by the relaxation. The developed solvent suppression procedure was integrated into several homocorrelated and heterocorrelated 2D NMR experiments, including 2D correlation spectroscopy (COSY), 2D total correlation spectroscopy (TOCSY), 2D band-selective TOCSY, 2D J-resolved spectroscopy, 2D (1) H, (13) C heteronuclear single-quantum correlation spectroscopy (HSQC), 2D (1) H, (13) C HSQC-TOCSY, and 2D (1) H, (13) C heteronuclear multiple-bond correlation spectroscopy (HMBC). A 1D chemical-shift-selective TOCSY experiments was also modified. The wealth of information obtained by these experiments will assist in NMR structure elucidation of Scotch Whisky congeners and generally the composition of alcoholic beverages at the molecular level. © 2017 The Authors Magnetic Resonance in Chemistry Published by John Wiley & Sons Ltd.

  17. Development of 2D imaging of SXR plasma radiation by means of GEM detectors

    NASA Astrophysics Data System (ADS)

    Chernyshova, M.; Czarski, T.; Jabłoński, S.; Kowalska-Strzeciwilk, E.; Poźniak, K.; Kasprowicz, G.; Zabołotny, W.; Wojeński, A.; Byszuk, A.; Burza, M.; Juszczyk, B.; Zienkiewicz, P.

    2014-11-01

    Presented 2D gaseous detector system has been developed and designed to provide energy resolved fast dynamic plasma radiation imaging in the soft X-Ray region with 0.1 kHz exposure frequency for online, made in real time, data acquisition (DAQ) mode. The detection structure is based on triple Gas Electron Multiplier (GEM) amplification structure followed by the pixel readout electrode. The efficiency of detecting unit was adjusted for the radiation energy region of tungsten in high-temperature plasma, the main candidate for the plasma facing material for future thermonuclear reactors. Here we present preliminary laboratory results and detector parameters obtained for the developed system. The operational characteristics and conditions of the detector were designed to work in the X-Ray range of 2-17 keV. The detector linearity was checked using the fluorescence lines of different elements and was found to be sufficient for good photon energy reconstruction. Images of two sources through various screens were performed with an X-Ray laboratory source and 55Fe source showing a good imaging capability. Finally offline stream-handling data acquisition mode has been developed for the detecting system with timing down to the ADC sampling frequency rate (~13 ns), up to 2.5 MHz of exposure frequency, which could pave the way to invaluable physics information about plasma dynamics due to very good time resolving ability. Here we present results of studied spatial resolution and imaging properties of the detector for conditions of laboratory moderate counting rates and high gain.

  18. A review of 3D/2D registration methods for image-guided interventions.

    PubMed

    Markelj, P; Tomaževič, D; Likar, B; Pernuš, F

    2012-04-01

    Registration of pre- and intra-interventional data is one of the key technologies for image-guided radiation therapy, radiosurgery, minimally invasive surgery, endoscopy, and interventional radiology. In this paper, we survey those 3D/2D data registration methods that utilize 3D computer tomography or magnetic resonance images as the pre-interventional data and 2D X-ray projection images as the intra-interventional data. The 3D/2D registration methods are reviewed with respect to image modality, image dimensionality, registration basis, geometric transformation, user interaction, optimization procedure, subject, and object of registration.

  19. 2D photoacoustic scanning imaging with a single pulsed laser diode excitation

    NASA Astrophysics Data System (ADS)

    Chen, Xuegang; Li, Changwei; Zeng, Lvming; Liu, Guodong; Huang, Zhen; Ren, Zhong

    2012-03-01

    A portable near-infrared photoacoustic scanning imaging system has been developed with a single pulsed laser diode, which was integrated with an optical lens system to straightforward boost the laser energy density for photoacoustic generation. The 905 nm laser diode provides a maximum energy output of 14 μJ within 100 ns pulse duration, and the pulse repetition frequency rate is 0.8 KHz. As a possible alternative light source, the preliminary 2D photoacoustic results primely correspond with the test phantoms of umbonate extravasated gore and knotted blood vessel network. The photoacoustic SNR can reach 20.6+/-1.2 dB while signal averaging reduces to 128 pulses from thousands to tens of thousands times, and the signal acquisition time accelerates to less than 0.2 s in each A-scan, especially the volume of the total radiation source is only 10 × 3 × 3 cm3. It demonstrated that the pulsed semiconductor laser could be a candidate of photoacoustic equipment for daily clinical application.

  20. 2D photoacoustic scanning imaging with a single pulsed laser diode excitation

    NASA Astrophysics Data System (ADS)

    Chen, Xuegang; Li, Changwei; Zeng, Lvming; Liu, Guodong; Huang, Zhen; Ren, Zhong

    2011-11-01

    A portable near-infrared photoacoustic scanning imaging system has been developed with a single pulsed laser diode, which was integrated with an optical lens system to straightforward boost the laser energy density for photoacoustic generation. The 905 nm laser diode provides a maximum energy output of 14 μJ within 100 ns pulse duration, and the pulse repetition frequency rate is 0.8 KHz. As a possible alternative light source, the preliminary 2D photoacoustic results primely correspond with the test phantoms of umbonate extravasated gore and knotted blood vessel network. The photoacoustic SNR can reach 20.6+/-1.2 dB while signal averaging reduces to 128 pulses from thousands to tens of thousands times, and the signal acquisition time accelerates to less than 0.2 s in each A-scan, especially the volume of the total radiation source is only 10 × 3 × 3 cm3. It demonstrated that the pulsed semiconductor laser could be a candidate of photoacoustic equipment for daily clinical application.

  1. 3D-2D registration of cerebral angiograms: a method and evaluation on clinical images.

    PubMed

    Mitrovic, Uroš; Špiclin, Žiga; Likar, Boštjan; Pernuš, Franjo

    2013-08-01

    Endovascular image-guided interventions (EIGI) involve navigation of a catheter through the vasculature followed by application of treatment at the site of anomaly using live 2D projection images for guidance. 3D images acquired prior to EIGI are used to quantify the vascular anomaly and plan the intervention. If fused with the information of live 2D images they can also facilitate navigation and treatment. For this purpose 3D-2D image registration is required. Although several 3D-2D registration methods for EIGI achieve registration accuracy below 1 mm, their clinical application is still limited by insufficient robustness or reliability. In this paper, we propose a 3D-2D registration method based on matching a 3D vasculature model to intensity gradients of live 2D images. To objectively validate 3D-2D registration methods, we acquired a clinical image database of 10 patients undergoing cerebral EIGI and established "gold standard" registrations by aligning fiducial markers in 3D and 2D images. The proposed method had mean registration accuracy below 0.65 mm, which was comparable to tested state-of-the-art methods, and execution time below 1 s. With the highest rate of successful registrations and the highest capture range the proposed method was the most robust and thus a good candidate for application in EIGI.

  2. 2D Images Recorded With a Single-Sided Magnetic Particle Imaging Scanner.

    PubMed

    Grafe, Ksenija; von Gladiss, Anselm; Bringout, Gael; Ahlborg, Mandy; Buzug, Thorsten M

    2016-04-01

    Magnetic Particle Imaging is a new medical imaging modality, which detects superparamagnetic iron oxide nanoparticles. The particles are excited by magnetic fields. Most scanners have a tube-like measurement field and therefore, both the field of view and the object size are limited. A single-sided scanner has the advantage that the object is not limited in size, only the penetration depth is limited. A single-sided scanner prototype for 1D imaging has been presented in 2009. Simulations have been published for a 2D single-sided scanner and first 1D measurements have been carried out. In this paper, the first 2D single-sided scanner prototype is presented and the first calibration-based reconstruction results of measured 2D phantoms are shown. The field free point is moved on a Lissajous trajectory inside a 30 × 30 mm2 area. Images of phantoms with a maximal distance of 10 mm perpendicular to the scanner surface have been reconstructed. Different cylindrically shaped holes of phantoms have been filled with 6.28 μl undiluted Resovist. After the measurement and image reconstruction of the phantoms, particle volumes could be distinguished with a distance of 2 mm and 6 mm in vertical and horizontal direction, respectively.

  3. Imaging With Synthesized 2D Mammography: Differences, Advantages, and Pitfalls Compared With Digital Mammography.

    PubMed

    Zuckerman, Samantha P; Maidment, Andrew D A; Weinstein, Susan P; McDonald, Elizabeth S; Conant, Emily F

    2017-07-01

    Synthesized 2D (s2D) mammography is rapidly replacing digital mammography in breast imaging with digital breast tomosynthesis (DBT) to reduce radiation dose and maintain screening outcomes. We illustrate variations in the appearance of s2D and digital mammograms to aid in implementation of this technology. Despite subjective differences in the appearance of s2D and digital mammograms, early outcomes of screening using s2D mammography and DBT are not inferior to those achieved with digital mammography and DBT. Understanding these variations may aid in implementing this technique and improving patient outcomes.

  4. Multifractal analysis of 2D gray soil images

    NASA Astrophysics Data System (ADS)

    González-Torres, Ivan; Losada, Juan Carlos; Heck, Richard; Tarquis, Ana M.

    2015-04-01

    Soil structure, understood as the spatial arrangement of soil pores, is one of the key factors in soil modelling processes. Geometric properties of individual and interpretation of the morphological parameters of pores can be estimated from thin sections or 3D Computed Tomography images (Tarquis et al., 2003), but there is no satisfactory method to binarized these images and quantify the complexity of their spatial arrangement (Tarquis et al., 2008, Tarquis et al., 2009; Baveye et al., 2010). The objective of this work was to apply a multifractal technique, their singularities (α) and f(α) spectra, to quantify it without applying any threshold (Gónzalez-Torres, 2014). Intact soil samples were collected from four horizons of an Argisol, formed on the Tertiary Barreiras group of formations in Pernambuco state, Brazil (Itapirema Experimental Station). The natural vegetation of the region is tropical, coastal rainforest. From each horizon, showing different porosities and spatial arrangements, three adjacent samples were taken having a set of twelve samples. The intact soil samples were imaged using an EVS (now GE Medical. London, Canada) MS-8 MicroCT scanner with 45 μm pixel-1 resolution (256x256 pixels). Though some samples required paring to fit the 64 mm diameter imaging tubes, field orientation was maintained. References Baveye, P.C., M. Laba, W. Otten, L. Bouckaert, P. Dello, R.R. Goswami, D. Grinev, A. Houston, Yaoping Hu, Jianli Liu, S. Mooney, R. Pajor, S. Sleutel, A. Tarquis, Wei Wang, Qiao Wei, Mehmet Sezgin. Observer-dependent variability of the thresholding step in the quantitative analysis of soil images and X-ray microtomography data. Geoderma, 157, 51-63, 2010. González-Torres, Iván. Theory and application of multifractal analysis methods in images for the study of soil structure. Master thesis, UPM, 2014. Tarquis, A.M., R.J. Heck, J.B. Grau; J. Fabregat, M.E. Sanchez and J.M. Antón. Influence of Thresholding in Mass and Entropy Dimension of 3-D

  5. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate.

    PubMed

    Trache, Tudor; Stöbe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas

    2014-12-01

    Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values.

  6. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate

    PubMed Central

    Stöbe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas

    2014-01-01

    Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values. PMID:26693303

  7. On Limits of Embedding in 3D Images Based on 2D Watson's Model

    NASA Astrophysics Data System (ADS)

    Kavehvash, Zahra; Ghaemmaghami, Shahrokh

    We extend the Watson image quality metric to 3D images through the concept of integral imaging. In the Watson's model, perceptual thresholds for changes to the DCT coefficients of a 2D image are given for information hiding. These thresholds are estimated in a way that the resulting distortion in the 2D image remains undetectable by the human eyes. In this paper, the same perceptual thresholds are estimated for a 3D scene in the integral imaging method. These thresholds are obtained based on the Watson's model using the relation between 2D elemental images and resulting 3D image. The proposed model is evaluated through subjective tests in a typical image steganography scheme.

  8. A 2-D imaging heat-flux gauge

    SciTech Connect

    Noel, B.W.; Borella, H.M. ); Beshears, D.L.; Sartory, W.K.; Tobin, K.W.; Williams, R.K. ); Turley, W.D. . Santa Barbara Operations)

    1991-07-01

    This report describes a new leadless two-dimensional imaging optical heat-flux gauge. The gauge is made by depositing arrays of thermorgraphic-phosphor (TP) spots onto the faces of a polymethylpentene is insulator. In the first section of the report, we describe several gauge configurations and their prototype realizations. A satisfactory configuration is an array of right triangles on each face that overlay to form squares when the gauge is viewed normal to the surface. The next section of the report treats the thermal conductivity of TPs. We set up an experiment using a comparative longitudinal heat-flow apparatus to measure the previously unknown thermal conductivity of these materials. The thermal conductivity of one TP, Y{sub 2}O{sub 3}:Eu, is 0.0137 W/cm{center dot}K over the temperature range from about 300 to 360 K. The theories underlying the time response of TP gauges and the imaging characteristics are discussed in the next section. Then we discuss several laboratory experiments to (1) demonstrate that the TP heat-flux gauge can be used in imaging applications; (2) obtain a quantum yield that enumerates what typical optical output signal amplitudes can be obtained from TP heat-flux gauges; and (3) determine whether LANL-designed intensified video cameras have sufficient sensitivity to acquire images from the heat-flux gauges. We obtained positive results from all the measurements. Throughout the text, we note limitations, areas where improvements are needed, and where further research is necessary. 12 refs., 25 figs., 4 tabs.

  9. Correlative confocal Raman Imaging for 2D materials

    NASA Astrophysics Data System (ADS)

    Yang, Jianyong; Liu, Wei; Dieing, Thomas; Fischer, Harald; Henrich, Marius; Hollricher, Olaf

    2015-03-01

    Graphene was one of the first two-dimensional materials which soon after its first mono-layer production received much attention by many researchers worldwide. Its properties vastly differ from bulk graphite and its potential for applications ranges from transistors to transparent conducting electrodes and solar cell applications. While Graphene is arguably the most prominent two-dimensional material there are to this date many more that are subject to current research such as MoS2, WS2 or MoSe2. Graphene has been already and still is extensively studied using a variety of characterization techniques. Raman spectroscopy and more importantly still, Raman imaging proved to be of great value due to the clearly different spectra obtained from single, double, triple and multi-layered Graphene. This and more information that can be extracted from Raman spectroscopy and imaging can well be complemented with other techniques such as various forms of atomic force microscopy (AFM), Scanning Nearfield Optical Microscopy (SNOM), and scanning electron microscopy (SEM). In this contribution we illustrate the benefit of correlating said techniques with confocal Raman imaging in order to deepen the understanding of the samples in question.

  10. Registration of 2D x-ray images to 3D MRI by generating pseudo-CT data

    NASA Astrophysics Data System (ADS)

    van der Bom, M. J.; Pluim, J. P. W.; Gounis, M. J.; van de Kraats, E. B.; Sprinkhuizen, S. M.; Timmer, J.; Homan, R.; Bartels, L. W.

    2011-02-01

    Spatial and soft tissue information provided by magnetic resonance imaging can be very valuable during image-guided procedures, where usually only real-time two-dimensional (2D) x-ray images are available. Registration of 2D x-ray images to three-dimensional (3D) magnetic resonance imaging (MRI) data, acquired prior to the procedure, can provide optimal information to guide the procedure. However, registering x-ray images to MRI data is not a trivial task because of their fundamental difference in tissue contrast. This paper presents a technique that generates pseudo-computed tomography (CT) data from multi-spectral MRI acquisitions which is sufficiently similar to real CT data to enable registration of x-ray to MRI with comparable accuracy as registration of x-ray to CT. The method is based on a k-nearest-neighbors (kNN)-regression strategy which labels voxels of MRI data with CT Hounsfield Units. The regression method uses multi-spectral MRI intensities and intensity gradients as features to discriminate between various tissue types. The efficacy of using pseudo-CT data for registration of x-ray to MRI was tested on ex vivo animal data. 2D-3D registration experiments using CT and pseudo-CT data of multiple subjects were performed with a commonly used 2D-3D registration algorithm. On average, the median target registration error for registration of two x-ray images to MRI data was approximately 1 mm larger than for x-ray to CT registration. The authors have shown that pseudo-CT data generated from multi-spectral MRI facilitate registration of MRI to x-ray images. From the experiments it could be concluded that the accuracy achieved was comparable to that of registering x-ray images to CT data.

  11. 2-D traveltime and waveform inversion for improved seismic imaging: Naga Thrust and Fold Belt, India

    NASA Astrophysics Data System (ADS)

    Jaiswal, Priyank; Zelt, Colin A.; Bally, Albert W.; Dasgupta, Rahul

    2008-05-01

    Exploration along the Naga Thrust and Fold Belt in the Assam province of Northeast India encounters geological as well as logistic challenges. Drilling for hydrocarbons, traditionally guided by surface manifestations of the Naga thrust fault, faces additional challenges in the northeast where the thrust fault gradually deepens leaving subtle surface expressions. In such an area, multichannel 2-D seismic data were collected along a line perpendicular to the trend of the thrust belt. The data have a moderate signal-to-noise ratio and suffer from ground roll and other acquisition-related noise. In addition to data quality, the complex geology of the thrust belt limits the ability of conventional seismic processing to yield a reliable velocity model which in turn leads to poor subsurface image. In this paper, we demonstrate the application of traveltime and waveform inversion as supplements to conventional seismic imaging and interpretation processes. Both traveltime and waveform inversion utilize the first arrivals that are typically discarded during conventional seismic processing. As a first step, a smooth velocity model with long wavelength characteristics of the subsurface is estimated through inversion of the first-arrival traveltimes. This velocity model is then used to obtain a Kirchhoff pre-stack depth-migrated image which in turn is used for the interpretation of the fault. Waveform inversion is applied to the central part of the seismic line to a depth of ~1 km where the quality of the migrated image is poor. Waveform inversion is performed in the frequency domain over a series of iterations, proceeding from low to high frequency (11-19 Hz) using the velocity model from traveltime inversion as the starting model. In the end, the pre-stack depth-migrated image and the waveform inversion model are jointly interpreted. This study demonstrates that a combination of traveltime and waveform inversion with Kirchhoff pre-stack depth migration is a promising approach

  12. 2D image compression using concurrent wavelet transform

    NASA Astrophysics Data System (ADS)

    Talukder, Kamrul Hasan; Harada, Koichi

    2011-10-01

    In the recent years wavelet transform (WT) has been widely used for image compression. As WT is a sequential process, much time is required to transform data. Here a new approach has been presented where the transformation process is executed concurrently. As a result the procedure runs first and the time of transformation is reduced. Multiple threads are used for row and column transformation and the communication among threads has been managed effectively. Thus, the transformation time has been reduced significantly. The proposed system provides better compression ratio and PSNR value with lower time complexity.

  13. 3-D Deep Penetration Photoacoustic Imaging with a 2-D CMUT Array.

    PubMed

    Ma, Te-Jen; Kothapalli, Sri Rajasekhar; Vaithilingam, Srikant; Oralkan, Omer; Kamaya, Aya; Wygant, Ira O; Zhuang, Xuefeng; Gambhir, Sanjiv S; Jeffrey, R Brooke; Khuri-Yakub, Butrus T

    2010-10-11

    In this work, we demonstrate 3-D photoacoustic imaging of optically absorbing targets embedded as deep as 5 cm inside a highly scattering background medium using a 2-D capacitive micromachined ultrasonic transducer (CMUT) array with a center frequency of 5.5 MHz. 3-D volumetric images and 2-D maximum intensity projection images are presented to show the objects imaged at different depths. Due to the close proximity of the CMUT to the integrated frontend circuits, the CMUT array imaging system has a low noise floor. This makes the CMUT a promising technology for deep tissue photoacoustic imaging.

  14. Magnetic resonance imaging of the cervical spine: comparison of 2D T2-weighted turbo spin echo, 2D T2*weighted gradient-recalled echo and 3D T2-weighted variable flip-angle turbo spin echo sequences.

    PubMed

    Meindl, T; Wirth, S; Weckbach, S; Dietrich, O; Reiser, M; Schoenberg, S O

    2009-03-01

    To compare an isotropic three-dimensional (3D) high-resolution T2-weighted (w) MR sequence and its reformations with conventional sequences for imaging of the cervical spine. Fifteen volunteers were examined at 1.5 T using sagittal and axial 3D T2-w, sagittal and axial 2D T2w, and axial 2D T2*w MR sequences. Axial reformations of the sagittal 3D dataset were generated (3D MPR T2w). Signal-to-noise and image homogeneity were evaluated in a phantom and in vivo. Visibility of ten anatomical structures of the cervical spine was evaluated. Artifacts were assessed. For statistical analysis, Cohen's kappa, Wilcoxon matched pairs, and t-testing were utilized. There were no significant differences in homogeneity between the sequences. Sagittal 3D T2w enabled better delineation of nerve roots, neural foramina, and intraforaminal structures compared to sagittal 2D T2w. Axial 3D T2w and axial 3D MPR T2w resulted in superior visibility of most anatomical structures compared to axial 2D T2w and comparable results to 2D T2*w concerning the spinal cord, nerve roots, intraforaminal structures, and fat. Artifacts were most pronounced in axial 2D T2w and axial 3D T2w. Acquisition of a 3D T2w data set is feasible in the cervical spine with superior delineation of anatomical structures compared to 2D sequences.

  15. 3D/2D image registration: the impact of X-ray views and their number.

    PubMed

    Tomazevic, Dejan; Likar, Bostjan; Pernus, Franjo

    2007-01-01

    An important part of image-guided radiation therapy or surgery is registration of a three-dimensional (3D) preoperative image to two-dimensional (2D) images of the patient. It is expected that the accuracy and robustness of a 3D/2D image registration method do not depend solely on the registration method itself but also on the number and projections (views) of intraoperative images. In this study, we systematically investigate these factors by using registered image data, comprising of CT and X-ray images of a cadaveric lumbar spine phantom and the recently proposed 3D/2D registration method. The results indicate that the proportion of successful registrations (robustness) significantly increases when more X-ray images are used for registration.

  16. Framework for 2D-3D image fusion of infrared thermography with preoperative MRI.

    PubMed

    Hoffmann, Nico; Weidner, Florian; Urban, Peter; Meyer, Tobias; Schnabel, Christian; Radev, Yordan; Schackert, Gabriele; Petersohn, Uwe; Koch, Edmund; Gumhold, Stefan; Steiner, Gerald; Kirsch, Matthias

    2017-01-23

    Multimodal medical image fusion combines information of one or more images in order to improve the diagnostic value. While previous applications mainly focus on merging images from computed tomography, magnetic resonance imaging (MRI), ultrasonic and single-photon emission computed tomography, we propose a novel approach for the registration and fusion of preoperative 3D MRI with intraoperative 2D infrared thermography. Image-guided neurosurgeries are based on neuronavigation systems, which further allow us track the position and orientation of arbitrary cameras. Hereby, we are able to relate the 2D coordinate system of the infrared camera with the 3D MRI coordinate system. The registered image data are now combined by calibration-based image fusion in order to map our intraoperative 2D thermographic images onto the respective brain surface recovered from preoperative MRI. In extensive accuracy measurements, we found that the proposed framework achieves a mean accuracy of 2.46 mm.

  17. Aircraft target identification based on 2D ISAR images using multiresolution analysis wavelet

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Xiao, Huaitie; Hu, Xiangjiang

    2001-09-01

    The formation of 2D ISAR images for radar target identification hold much promise for additional distinguish- ability between targets. Since an image contains important information is a wide range of scales, and this information is often independent from one scale to another, wavelet analysis provides a method of identifying the spatial frequency content of an image and the local regions within the image where those spatial frequencies exist. In this paper, a multiresolution analysis wavelet method based on 2D ISAR images was proposed for use in aircraft radar target identification under the wide band high range resolution radar background. The proposed method was performed in three steps; first, radar backscatter signals were processed in the form of 2D ISAR images, then, Mallat's wavelet algorithm was used in the decomposition of images, finally, a three layer perceptron neural net was used as classifier. The result of experiments demonstrated that the feasibility of using multiresolution analysis wavelet for target identification.

  18. Stability analysis and breast tumor classification from 2D ARMA models of ultrasound images.

    PubMed

    Abdulsadda, A; Bouaynaya, N; Iqbal, K

    2009-01-01

    Two-dimensional (2D) autoregressive moving average (ARMA) random fields have been proven to be accurate models of ultrasound breast images. However, the stability properties of these models have not been examined. In this paper, we investigate the stability of 2D ARMA models in ultrasound breast images, and use the estimated 2D ARMA coefficients as a basis for statistical inference using artificial neural networks. Specifically, we use the estimated 2D ARMA coefficients as inputs to a Multi layer perceptron (MLP) neural network to classify the ultrasound breast image into three regions: healthy tissue, benign tumor, and cancerous tumor. Our simulation results on various cancerous and benign ultrasound breast images illustrate the power of the proposed algorithm as attested by different learning algorithms and classification accuracy measures.

  19. Automatic Masking for Robust 3D-2D Image Registration in Image-Guided Spine Surgery

    PubMed Central

    Ketcha, M. D.; De Silva, T.; Uneri, A.; Kleinszig, G.; Vogt, S.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2016-01-01

    During spinal neurosurgery, patient-specific information, planning, and annotation such as vertebral labels can be mapped from preoperative 3D CT to intraoperative 2D radiographs via image-based 3D-2D registration. Such registration has been shown to provide a potentially valuable means of decision support in target localization as well as quality assurance of the surgical product. However, robust registration can be challenged by mismatch in image content between the preoperative CT and intraoperative radiographs, arising, for example, from anatomical deformation or the presence of surgical tools within the radiograph. In this work, we develop and evaluate methods for automatically mitigating the effect of content mismatch by leveraging the surgical planning data to assign greater weight to anatomical regions known to be reliable for registration and vital to the surgical task while removing problematic regions that are highly deformable or often occluded by surgical tools. We investigated two approaches to assigning variable weight (i.e., "masking") to image content and/or the similarity metric: (1) masking the preoperative 3D CT ("volumetric masking"); and (2) masking within the 2D similarity metric calculation ("projection masking"). The accuracy of registration was evaluated in terms of projection distance error (PDE) in 61 cases selected from an IRB-approved clinical study. The best performing of the masking techniques was found to reduce the rate of gross failure (PDE > 20 mm) from 11.48% to 5.57% in this challenging retrospective data set. These approaches provided robustness to content mismatch and eliminated distinct failure modes of registration. Such improvement was gained without additional workflow and has motivated incorporation of the masking methods within a system under development for prospective clinical studies. PMID:27335531

  20. Automatic Masking for Robust 3D-2D Image Registration in Image-Guided Spine Surgery.

    PubMed

    Ketcha, M D; De Silva, T; Uneri, A; Kleinszig, G; Vogt, S; Wolinsky, J-P; Siewerdsen, J H

    During spinal neurosurgery, patient-specific information, planning, and annotation such as vertebral labels can be mapped from preoperative 3D CT to intraoperative 2D radiographs via image-based 3D-2D registration. Such registration has been shown to provide a potentially valuable means of decision support in target localization as well as quality assurance of the surgical product. However, robust registration can be challenged by mismatch in image content between the preoperative CT and intraoperative radiographs, arising, for example, from anatomical deformation or the presence of surgical tools within the radiograph. In this work, we develop and evaluate methods for automatically mitigating the effect of content mismatch by leveraging the surgical planning data to assign greater weight to anatomical regions known to be reliable for registration and vital to the surgical task while removing problematic regions that are highly deformable or often occluded by surgical tools. We investigated two approaches to assigning variable weight (i.e., "masking") to image content and/or the similarity metric: (1) masking the preoperative 3D CT ("volumetric masking"); and (2) masking within the 2D similarity metric calculation ("projection masking"). The accuracy of registration was evaluated in terms of projection distance error (PDE) in 61 cases selected from an IRB-approved clinical study. The best performing of the masking techniques was found to reduce the rate of gross failure (PDE > 20 mm) from 11.48% to 5.57% in this challenging retrospective data set. These approaches provided robustness to content mismatch and eliminated distinct failure modes of registration. Such improvement was gained without additional workflow and has motivated incorporation of the masking methods within a system under development for prospective clinical studies.

  1. Automatic masking for robust 3D-2D image registration in image-guided spine surgery

    NASA Astrophysics Data System (ADS)

    Ketcha, M. D.; De Silva, T.; Uneri, A.; Kleinszig, G.; Vogt, S.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2016-03-01

    During spinal neurosurgery, patient-specific information, planning, and annotation such as vertebral labels can be mapped from preoperative 3D CT to intraoperative 2D radiographs via image-based 3D-2D registration. Such registration has been shown to provide a potentially valuable means of decision support in target localization as well as quality assurance of the surgical product. However, robust registration can be challenged by mismatch in image content between the preoperative CT and intraoperative radiographs, arising, for example, from anatomical deformation or the presence of surgical tools within the radiograph. In this work, we develop and evaluate methods for automatically mitigating the effect of content mismatch by leveraging the surgical planning data to assign greater weight to anatomical regions known to be reliable for registration and vital to the surgical task while removing problematic regions that are highly deformable or often occluded by surgical tools. We investigated two approaches to assigning variable weight (i.e., "masking") to image content and/or the similarity metric: (1) masking the preoperative 3D CT ("volumetric masking"); and (2) masking within the 2D similarity metric calculation ("projection masking"). The accuracy of registration was evaluated in terms of projection distance error (PDE) in 61 cases selected from an IRB-approved clinical study. The best performing of the masking techniques was found to reduce the rate of gross failure (PDE > 20 mm) from 11.48% to 5.57% in this challenging retrospective data set. These approaches provided robustness to content mismatch and eliminated distinct failure modes of registration. Such improvement was gained without additional workflow and has motivated incorporation of the masking methods within a system under development for prospective clinical studies.

  2. A 2D MTF approach to evaluate and guide dynamic imaging developments

    PubMed Central

    Chao, Tzu-Cheng; Chung, Hsiao-Wen; Hoge, W. Scott; Madore, Bruno

    2010-01-01

    As the number and complexity of partially sampled dynamic imaging methods continue to increase, reliable strategies to evaluate performance may prove most useful. In the present work, an analytical framework to evaluate given reconstruction methods is presented. A perturbation algorithm allows the proposed evaluation scheme to perform robustly without requiring knowledge about the inner workings of the method being evaluated. A main output of the evaluation process consists of a 2D modulation transfer function (MTF), an easy-to-interpret visual rendering of a method’s ability to capture all combinations of spatial and temporal frequencies. Approaches to evaluate noise properties and artifact content at all spatial and temporal frequencies are also proposed. One fully sampled phantom and three fully sampled cardiac cine datasets were subsampled (R=4 and 8), and reconstructed with the different methods tested here. A hybrid method, which combines the main advantageous features observed in our assessments, was proposed and tested in a cardiac cine application, with acceleration factors of 3.5 and 6.3 (skip factor of 4 and 8, respectively). This approach combines features from methods such as k-t sensitivity-encoding (k-t SENSE), unaliasing by Fourier encoding the overlaps in the temporal dimension-SENSE (UNFOLD-SENSE), generalized autocalibrating partially parallel acquisition (GRAPPA), sensitivity profiles from an array of coils for encoding and reconstruction in parallel (SPACE-RIP), self, hybrid referencing with UNFOLD and GRAPPA (SHRUG) and GRAPPA-enhanced sensitivity maps for SENSE reconstructions (GEYSER). PMID:19877276

  3. XAFS data acquisition with 2D-detectors: Transmission mode XAFS and grazing incidence EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Lützenkirchen-Hecht, D.; Gasse, J.-C.; Bögel, R.; Wagner, R.; Frahm, R.

    2016-05-01

    XAFS-experiments in transmission and reflection modes have been performed using a Pilatus 100K pixel detector. Transmission mode XAFS spectra from a Co metal foil and Co3O4 were recorded to evaluate the data quality offered by this 2D-detector. Furthermore, the pixel detector was also used to measure reflection mode grazing incidence EXAFS data. Using different regions of interest in the collected scattering patterns, we will show that the diffuse scattering can be separated for the different contributing surfaces and interfaces, allowing simultaneous investigations of surfaces and buried interfaces within multi-layered samples.

  4. Imaging of patellar cartilage with a 2D multiple-echo data image combination sequence.

    PubMed

    Schmid, Marius R; Pfirrmann, Christian W A; Koch, Peter; Zanetti, Marco; Kuehn, Bernd; Hodler, Juerg

    2005-06-01

    We sought to evaluate the diagnostic value of a 2D multiple-echo data image combination (MEDIC) MRI sequence in the detection of patellar cartilage defects. Our study included 52 consecutive patients who had knee surgery within 4 months of undergoing an MRI examination including an axial 2D MEDIC (TR/TE, 884/26; flip angle, 30 degrees ) sequence. Cartilage was surgically graded on a 5-point scale: 0, normal; 1, softening or swelling; 2, partial thickness defect; 3, fissuring to the level of the subchondral bone; or 4, exposed subchondral bone. Cartilage was graded on MRI according to a scale that was almost identical to the surgical scale except that grade 1 lesions were defined as signal alteration or swelling of cartilage. Two blinded reviewers independently analyzed patellar cartilage. Sensitivity, specificity, accuracy, and weighted kappa values for interobserver variability were calculated. Low-grade cartilage lesions predominated in our study group. When grade 2 or higher was considered the threshold for relevance, the sensitivity, specificity, and accuracy for the MEDIC sequence was as high as 79%, 82%, and 81%, respectively. Increasing the threshold of relevance to grade 3 increased the sensitivity, specificity, and accuracy to as high as 83%, 91%, and 90%, respectively. Interobserver agreement for the MEDIC sequence was good (weighted kappa = 0.68). The 2D MEDIC sequence performs comparably to previously described sequences optimized for cartilage imaging such as the 3D double-echo steady-state or 3D spoiled gradient-recalled sequences with good interobserver agreement, high sensitivity, and excellent specificity for revealing low- to intermediate-degree cartilage defects.

  5. Accurate positioning for head and neck cancer patients using 2D and 3D image guidance

    PubMed Central

    Kang, Hyejoo; Lovelock, Dale M.; Yorke, Ellen D.; Kriminiski, Sergey; Lee, Nancy; Amols, Howard I.

    2011-01-01

    Our goal is to determine an optimized image-guided setup by comparing setup errors determined by two-dimensional (2D) and three-dimensional (3D) image guidance for head and neck cancer (HNC) patients immobilized by customized thermoplastic masks. Nine patients received weekly imaging sessions, for a total of 54, throughout treatment. Patients were first set up by matching lasers to surface marks (initial) and then translationally corrected using manual registration of orthogonal kilovoltage (kV) radiographs with DRRs (2D-2D) on bony anatomy. A kV cone beam CT (kVCBCT) was acquired and manually registered to the simulation CT using only translations (3D-3D) on the same bony anatomy to determine further translational corrections. After treatment, a second set of kVCBCT was acquired to assess intrafractional motion. Averaged over all sessions, 2D-2D registration led to translational corrections from initial setup of 3.5 ± 2.2 (range 0–8) mm. The addition of 3D-3D registration resulted in only small incremental adjustment (0.8 ± 1.5 mm). We retrospectively calculated patient setup rotation errors using an automatic rigid-body algorithm with 6 degrees of freedom (DoF) on regions of interest (ROI) of in-field bony anatomy (mainly the C2 vertebral body). Small rotations were determined for most of the imaging sessions; however, occasionally rotations > 3° were observed. The calculated intrafractional motion with automatic registration was < 3.5 mm for eight patients, and < 2° for all patients. We conclude that daily manual 2D-2D registration on radiographs reduces positioning errors for mask-immobilized HNC patients in most cases, and is easily implemented. 3D-3D registration adds little improvement over 2D-2D registration without correcting rotational errors. We also conclude that thermoplastic masks are effective for patient immobilization. PMID:21330971

  6. A Method to Recognize Anatomical Site and Image Acquisition View in X-ray Images.

    PubMed

    Chang, Xiao; Mazur, Thomas; Li, H Harold; Yang, Deshan

    2017-06-16

    A method was developed to recognize anatomical site and image acquisition view automatically in 2D X-ray images that are used in image-guided radiation therapy. The purpose is to enable site and view dependent automation and optimization in the image processing tasks including 2D-2D image registration, 2D image contrast enhancement, and independent treatment site confirmation. The X-ray images for 180 patients of six disease sites (the brain, head-neck, breast, lung, abdomen, and pelvis) were included in this study with 30 patients each site and two images of orthogonal views each patient. A hierarchical multiclass recognition model was developed to recognize general site first and then specific site. Each node of the hierarchical model recognized the images using a feature extraction step based on principal component analysis followed by a binary classification step based on support vector machine. Given two images in known orthogonal views, the site recognition model achieved a 99% average F1 score across the six sites. If the views were unknown in the images, the average F1 score was 97%. If only one image was taken either with or without view information, the average F1 score was 94%. The accuracy of the site-specific view recognition models was 100%.

  7. Megavoltage 2D topographic imaging: An attractive alternative to megavoltage CT for the localization of breast cancer patients treated with TomoDirect.

    PubMed

    Meyer, Philippe; Le Pennec, Fabien; Hui, Susanta K; Dehaynin, Nicolas; Jarnet, Delphine; Gantier, Matthieu; Niederst, Claudine; Mazzara, Christophe; Baudrier, Etienne; Noblet, Vincent

    2017-07-01

    To show the usefulness of topographic 2D megavoltage images (MV2D) for the localization of breast cancer patients treated with TomoDirect (TD), a radiotherapy treatment technique with fixed-angle beams performed on a TomoTherapy system. A method was developed to quickly localize breast cancer patients treated with TD by registering the MV2D images produced before a TD treatment with reference images reconstructed from a kilovoltage CT simulation scanner and by using the projection of the beam-eye-view TD treatment field. Dose and image quality measurements were performed to determine the optimal parameters for acquiring MV2D images. A TD treatment was simulated on a chest phantom equipped with a breast attachment. MVCT and MV2D images were performed for 7 different shifted positions of the phantom and registered by 10 different operators with the simulation kilovoltage CT images. Compared to MVCT, MV2D imaging reduces the dose by a factor of up to 45 and the acquisition time by a factor of up to 49. Comparing the registration shift values obtained for the phantom images obtained with MVCT in the coarse mode to those obtained with MV2D, the mean difference is 1.0±1.1mm, -1.1mm±1.1, and -0.1±2.2mm, respectively, in the lateral, longitudinal, and vertical directions. With dual advantages (very fast imaging and a potentially reduced dose to the heart and contralateral organs), MV2D topographic images may be an attractive alternative to MVCT for the localization of breast cancer patients treated with TomoDirect. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. 3-D Reconstruction From 2-D Radiographic Images and Its Application to Clinical Veterinary Medicine

    NASA Astrophysics Data System (ADS)

    Hamamoto, Kazuhiko; Sato, Motoyoshi

    3D imaging technique is very important and indispensable in diagnosis. The main stream of the technique is one in which 3D image is reconstructed from a set of slice images, such as X-ray CT and MRI. However, these systems require large space and high costs. On the other hand, a low cost and small size 3D imaging system is needed in clinical veterinary medicine, for example, in the case of diagnosis in X-ray car or pasture area. We propose a novel 3D imaging technique using 2-D X-ray radiographic images. This system can be realized by cheaper system than X-ray CT and enables to get 3D image in X-ray car or portable X-ray equipment. In this paper, a 3D visualization technique from 2-D radiographic images is proposed and several reconstructions are shown. These reconstructions are evaluated by veterinarians.

  9. Multi-scale contrast enhancement of oriented features in 2D images using directional morphology

    NASA Astrophysics Data System (ADS)

    Das, Debashis; Mukhopadhyay, Susanta; Praveen, S. R. Sai

    2017-01-01

    This paper presents a multi-scale contrast enhancement scheme for improving the visual quality of directional features present in 2D gray scale images. Directional morphological filters are employed to locate and extract the scale-specific image features with different orientations which are subsequently stored in a set of feature images. The final enhanced image is constructed by weighted combination of these feature images with the original image. While construction, the feature images corresponding to progressively smaller scales are made to have higher proportion of contribution through the use of progressively larger weights. The proposed method has been formulated, implemented and executed on a set of real 2D gray scale images with oriented features. The experimental results visually establish the efficacy of the method. The proposed method has been compared with other similar methods both on subjective and objective basis and the overall performance is found to be satisfactory.

  10. Optimisation of acquisition time in bioluminescence imaging

    NASA Astrophysics Data System (ADS)

    Taylor, Shelley L.; Mason, Suzannah K. G.; Glinton, Sophie; Cobbold, Mark; Styles, Iain B.; Dehghani, Hamid

    2015-03-01

    Decreasing the acquisition time in bioluminescence imaging (BLI) and bioluminescence tomography (BLT) will enable animals to be imaged within the window of stable emission of the bioluminescent source, a higher imaging throughput and minimisation of the time which an animal is anaesthetised. This work investigates, through simulation using a heterogeneous mouse model, two methods of decreasing acquisition time: 1. Imaging at fewer wavelengths (a reduction from five to three); and 2. Increasing the bandwidth of filters used for imaging. The results indicate that both methods are viable ways of decreasing the acquisition time without a loss in quantitative accuracy. Importantly, when choosing imaging wavelengths, the spectral attenuation of tissue and emission spectrum of the source must be considered, in order to choose wavelengths at which a high signal can be achieved. Additionally, when increasing the bandwidth of the filters used for imaging, the bandwidth must be accounted for in the reconstruction algorithm.

  11. Using artificial neural networks to invert 2D DC resistivity imaging data for high resistivity contrast regions: A MATLAB application

    NASA Astrophysics Data System (ADS)

    Neyamadpour, Ahmad; Taib, Samsudin; Wan Abdullah, W. A. T.

    2009-11-01

    MATLAB is a high-level matrix/array language with control flow statements and functions. MATLAB has several useful toolboxes to solve complex problems in various fields of science, such as geophysics. In geophysics, the inversion of 2D DC resistivity imaging data is complex due to its non-linearity, especially for high resistivity contrast regions. In this paper, we investigate the applicability of MATLAB to design, train and test a newly developed artificial neural network in inverting 2D DC resistivity imaging data. We used resilient propagation to train the network. The model used to produce synthetic data is a homogeneous medium of 100 Ω m resistivity with an embedded anomalous body of 1000 Ω m. The location of the anomalous body was moved to different positions within the homogeneous model mesh elements. The synthetic data were generated using a finite element forward modeling code by means of the RES2DMOD. The network was trained using 21 datasets and tested on another 16 synthetic datasets, as well as on real field data. In field data acquisition, the cable covers 120 m between the first and the last take-out, with a 3 m x-spacing. Three different electrode spacings were measured, which gave a dataset of 330 data points. The interpreted result shows that the trained network was able to invert 2D electrical resistivity imaging data obtained by a Wenner-Schlumberger configuration rapidly and accurately.

  12. Methods for 2-D and 3-D Endobronchial Ultrasound Image Segmentation.

    PubMed

    Zang, Xiaonan; Bascom, Rebecca; Gilbert, Christopher; Toth, Jennifer; Higgins, William

    2016-07-01

    Endobronchial ultrasound (EBUS) is now commonly used for cancer-staging bronchoscopy. Unfortunately, EBUS is challenging to use and interpreting EBUS video sequences is difficult. Other ultrasound imaging domains, hampered by related difficulties, have benefited from computer-based image-segmentation methods. Yet, so far, no such methods have been proposed for EBUS. We propose image-segmentation methods for 2-D EBUS frames and 3-D EBUS sequences. Our 2-D method adapts the fast-marching level-set process, anisotropic diffusion, and region growing to the problem of segmenting 2-D EBUS frames. Our 3-D method builds upon the 2-D method while also incorporating the geodesic level-set process for segmenting EBUS sequences. Tests with lung-cancer patient data showed that the methods ran fully automatically for nearly 80% of test cases. For the remaining cases, the only user-interaction required was the selection of a seed point. When compared to ground-truth segmentations, the 2-D method achieved an overall Dice index = 90.0% ±4.9%, while the 3-D method achieved an overall Dice index = 83.9 ± 6.0%. In addition, the computation time (2-D, 0.070 s/frame; 3-D, 0.088 s/frame) was two orders of magnitude faster than interactive contour definition. Finally, we demonstrate the potential of the methods for EBUS localization in a multimodal image-guided bronchoscopy system.

  13. Methods for 2D and 3D Endobronchial Ultrasound Image Segmentation

    PubMed Central

    Zang, Xiaonan; Bascom, Rebecca; Gilbert, Christopher; Toth, Jennifer

    2016-01-01

    Endobronchial ultrasound (EBUS) is now commonly used for cancer-staging bronchoscopy. Unfortunately, EBUS is challenging to use and interpreting EBUS video sequences is difficult. Other ultrasound imaging domains, hampered by related difficulties, have benefited from computer-based image-segmentation methods. Yet, so far, no such methods have been proposed for EBUS. We propose image-segmentation methods for 2D EBUS frames and 3D EBUS sequences. Our 2D method adapts the fast-marching level-set process, anisotropic diffusion, and region growing to the problem of segmenting 2D EBUS frames. Our 3D method builds upon the 2D method while also incorporating the geodesic level-set process for segmenting EBUS sequences. Tests with lung-cancer patient data showed that the methods ran fully automatically for nearly 80% of test cases. For the remaining cases, the only user-interaction required was the selection of a seed point. When compared to ground-truth segmentations, the 2D method achieved an overall Dice index = 90.0%±4.9%, while the 3D method achieved an overall Dice index = 83.9±6.0%. In addition, the computation time (2D, 0.070 sec/frame; 3D, 0.088 sec/frame) was two orders of magnitude faster than interactive contour definition. Finally, we demonstrate the potential of the methods for EBUS localization in a multimodal image-guided bronchoscopy system. PMID:26529748

  14. Imaging Infiltration in 2D using GPR Reflection Tomography Enabled by Automated Data Collection

    NASA Astrophysics Data System (ADS)

    Mangel, A. R.; Moysey, S. M.; Bradford, J.

    2016-12-01

    Fast imaging systems are critical for monitoring short-lived transient processes, such as changes in water content resulting from the infiltration of water into soils. Automated antenna placement can lead to substantial increases in the rate at which high-resolution, multi-offset GPR data can be acquired. Such high-speed acquisition makes it possible for us to evaluate the use of 2D reflection tomography in the post-migrated domain to image dynamic water content changes over time during an infiltration event. To improve our understanding of the capabilities of reflection tomography as a hydrologic monitoring technique, we first applied the algorithm to a set of numerical simulations. Results indicate that reflection tomography is capable of resolving water content distributions associated with an infiltration event to within 3-10% vol. /vol. of true water content values. Large errors, i.e. >10%, exist, however, where there is limited information available from the data, typically caused by reduced ray coverage. In addition to the numerical simulations, an empirical data set was collected in a large sand tank during an infiltration and recovery event. Soil moisture and tank outflow were monitored for comparison to the tomography results. Water content distributions estimated from reflection tomography are in good agreement with in-situ soil measurements, with similar errors observed to those in the numerical study. Additionally, water content distributions from tomography of the data reveal a heterogeneous flow pattern which allowed for the re-conceptualization of the wetting front geometry. In conclusion, the automation of GPR data collection is paramount to monitoring highly dynamic hydrologic events and enables the use of higher-order data analysis algorithms, like reflection tomography. This method shows promise in extracting unprecedented information regarding the 2D field-scale spatial distribution of water content through time, but challenges still remain in

  15. Acquisition, Image and Data Compression.

    DTIC Science & Technology

    1983-04-30

    ELECTRICAL ENGINEERING COMM’, UNICATIONS SYSTEMS LABORATORY ~V 7 SECURITY CLASSIFICATION OF THIS PAGE (When Des Ftered) REPORT DOCUMENTATION PAGE...Lusing an astigmatic processor.2,5 Or one can use a 2-D multiplexed holographic processor to implement di- rectly the space-variant impulse response

  16. A Block-matching based technique for the analysis of 2D gel images.

    PubMed

    Freire, Ana; Seoane, José A; Rodríguez, Alvaro; Ruiz-Romero, Cristina; López-Campos, Guillermo; Dorado, Julián

    2010-01-01

    Research at protein level is a useful practice in personalized medicine. More specifically, 2D gel images obtained after electrophoresis process can lead to an accurate diagnosis. Several computational approaches try to help the clinicians to establish the correspondence between pairs of proteins of multiple 2D gel images. Most of them perform the alignment of a patient image referred to a reference image. In this work, an approach based on block-matching techniques is developed. Its main characteristic is that it does not need to perform the whole alignment between two images considering each protein separately. A comparison with other published methods is presented. It can be concluded that this method works over broad range of proteomic images, although they have a high level of difficulty.

  17. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes

    PubMed Central

    Guo, Xiaohu; Cai, Yiqi; Yang, Yin; Wang, Jing; Jia, Xun

    2016-01-01

    By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT) scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs) are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs) of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes. PMID:27019849

  18. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes.

    PubMed

    Zhong, Zichun; Guo, Xiaohu; Cai, Yiqi; Yang, Yin; Wang, Jing; Jia, Xun; Mao, Weihua

    2016-01-01

    By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT) scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs) are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs) of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes.

  19. 2-D nonlinear IIR-filters for image processing - An exploratory analysis

    NASA Technical Reports Server (NTRS)

    Bauer, P. H.; Sartori, M.

    1991-01-01

    A new nonlinear IIR filter structure is introduced and its deterministic properties are analyzed. It is shown to be better suited for image processing applications than its linear shift-invariant counterpart. The new structure is obtained from causality inversion of a 2D quarterplane causal linear filter with respect to the two directions of propagation. It is demonstrated, that by using this design, a nonlinear 2D lowpass filter can be constructed, which is capable of effectively suppressing Gaussian or impulse noise without destroying important image information.

  20. Multiresolution image representation using combined 2-D and 1-D directional filter banks.

    PubMed

    Tanaka, Yuichi; Ikehara, Masaaki; Nguyen, Truong Q

    2009-02-01

    In this paper, effective multiresolution image representations using a combination of 2-D filter bank (FB) and directional wavelet transform (WT) are presented. The proposed methods yield simple implementation and low computation costs compared to previous 1-D and 2-D FB combinations or adaptive directional WT methods. Furthermore, they are nonredundant transforms and realize quad-tree like multiresolution representations. In applications on nonlinear approximation, image coding, and denoising, the proposed filter banks show visual quality improvements and have higher PSNR than the conventional separable WT or the contourlet.

  1. 2-D nonlinear IIR-filters for image processing - An exploratory analysis

    NASA Technical Reports Server (NTRS)

    Bauer, P. H.; Sartori, M.

    1991-01-01

    A new nonlinear IIR filter structure is introduced and its deterministic properties are analyzed. It is shown to be better suited for image processing applications than its linear shift-invariant counterpart. The new structure is obtained from causality inversion of a 2D quarterplane causal linear filter with respect to the two directions of propagation. It is demonstrated, that by using this design, a nonlinear 2D lowpass filter can be constructed, which is capable of effectively suppressing Gaussian or impulse noise without destroying important image information.

  2. Geometric uncertainty of 2D projection imaging in monitoring 3D tumor motion.

    PubMed

    Suh, Yelin; Dieterich, Sonja; Keall, Paul J

    2007-06-21

    The purpose of this study was to investigate the accuracy of two-dimensional (2D) projection imaging methods in three-dimensional (3D) tumor motion monitoring. Many commercial linear accelerator types have projection imaging capabilities, and tumor motion monitoring is useful for motion inclusive, respiratory gated or tumor tracking strategies. Since 2D projection imaging is limited in its ability to resolve the motion along the imaging beam axis, there is unresolved motion when monitoring 3D tumor motion. From the 3D tumor motion data of 160 treatment fractions for 46 thoracic and abdominal cancer patients, the unresolved motion due to the geometric limitation of 2D projection imaging was calculated as displacement in the imaging beam axis for different beam angles and time intervals. The geometric uncertainty to monitor 3D motion caused by the unresolved motion of 2D imaging was quantified using the root-mean-square (rms) metric. Geometric uncertainty showed interfractional and intrafractional variation. Patient-to-patient variation was much more significant than variation for different time intervals. For the patient cohort studied, as the time intervals increase, the rms, minimum and maximum values of the rms uncertainty show decreasing tendencies for the lung patients but increasing for the liver and retroperitoneal patients, which could be attributed to patient relaxation. Geometric uncertainty was smaller for coplanar treatments than non-coplanar treatments, as superior-inferior (SI) tumor motion, the predominant motion from patient respiration, could be always resolved for coplanar treatments. Overall rms of the rms uncertainty was 0.13 cm for all treatment fractions and 0.18 cm for the treatment fractions whose average breathing peak-trough ranges were more than 0.5 cm. The geometric uncertainty for 2D imaging varies depending on the tumor site, tumor motion range, time interval and beam angle as well as between patients, between fractions and within a

  3. Nanohole-array-based device for 2D snapshot multispectral imaging

    PubMed Central

    Najiminaini, Mohamadreza; Vasefi, Fartash; Kaminska, Bozena; Carson, Jeffrey J. L.

    2013-01-01

    We present a two-dimensional (2D) snapshot multispectral imager that utilizes the optical transmission characteristics of nanohole arrays (NHAs) in a gold film to resolve a mixture of input colors into multiple spectral bands. The multispectral device consists of blocks of NHAs, wherein each NHA has a unique periodicity that results in transmission resonances and minima in the visible and near-infrared regions. The multispectral device was illuminated over a wide spectral range, and the transmission was spectrally unmixed using a least-squares estimation algorithm. A NHA-based multispectral imaging system was built and tested in both reflection and transmission modes. The NHA-based multispectral imager was capable of extracting 2D multispectral images representative of four independent bands within the spectral range of 662 nm to 832 nm for a variety of targets. The multispectral device can potentially be integrated into a variety of imaging sensor systems. PMID:24005065

  4. Nanohole-array-based device for 2D snapshot multispectral imaging.

    PubMed

    Najiminaini, Mohamadreza; Vasefi, Fartash; Kaminska, Bozena; Carson, Jeffrey J L

    2013-01-01

    We present a two-dimensional (2D) snapshot multispectral imager that utilizes the optical transmission characteristics of nanohole arrays (NHAs) in a gold film to resolve a mixture of input colors into multiple spectral bands. The multispectral device consists of blocks of NHAs, wherein each NHA has a unique periodicity that results in transmission resonances and minima in the visible and near-infrared regions. The multispectral device was illuminated over a wide spectral range, and the transmission was spectrally unmixed using a least-squares estimation algorithm. A NHA-based multispectral imaging system was built and tested in both reflection and transmission modes. The NHA-based multispectral imager was capable of extracting 2D multispectral images representative of four independent bands within the spectral range of 662 nm to 832 nm for a variety of targets. The multispectral device can potentially be integrated into a variety of imaging sensor systems.

  5. 3D reconstruction of a carotid bifurcation from 2D transversal ultrasound images.

    PubMed

    Yeom, Eunseop; Nam, Kweon-Ho; Jin, Changzhu; Paeng, Dong-Guk; Lee, Sang-Joon

    2014-12-01

    Visualizing and analyzing the morphological structure of carotid bifurcations are important for understanding the etiology of carotid atherosclerosis, which is a major cause of stroke and transient ischemic attack. For delineation of vasculatures in the carotid artery, ultrasound examinations have been widely employed because of a noninvasive procedure without ionizing radiation. However, conventional 2D ultrasound imaging has technical limitations in observing the complicated 3D shapes and asymmetric vasodilation of bifurcations. This study aims to propose image-processing techniques for better 3D reconstruction of a carotid bifurcation in a rat by using 2D cross-sectional ultrasound images. A high-resolution ultrasound imaging system with a probe centered at 40MHz was employed to obtain 2D transversal images. The lumen boundaries in each transverse ultrasound image were detected by using three different techniques; an ellipse-fitting, a correlation mapping to visualize the decorrelation of blood flow, and the ellipse-fitting on the correlation map. When the results are compared, the third technique provides relatively good boundary extraction. The incomplete boundaries of arterial lumen caused by acoustic artifacts are somewhat resolved by adopting the correlation mapping and the distortion in the boundary detection near the bifurcation apex was largely reduced by using the ellipse-fitting technique. The 3D lumen geometry of a carotid artery was obtained by volumetric rendering of several 2D slices. For the 3D vasodilatation of the carotid bifurcation, lumen geometries at the contraction and expansion states were simultaneously depicted at various view angles. The present 3D reconstruction methods would be useful for efficient extraction and construction of the 3D lumen geometries of carotid bifurcations from 2D ultrasound images.

  6. Color image enhancement of medical images using alpha-rooting and zonal alpha-rooting methods on 2D QDFT

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; John, Aparna; Agaian, Sos S.

    2017-03-01

    2-D quaternion discrete Fourier transform (2-D QDFT) is the Fourier transform applied to color images when the color images are considered in the quaternion space. The quaternion numbers are four dimensional hyper-complex numbers. Quaternion representation of color image allows us to see the color of the image as a single unit. In quaternion approach of color image enhancement, each color is seen as a vector. This permits us to see the merging effect of the color due to the combination of the primary colors. The color images are used to be processed by applying the respective algorithm onto each channels separately, and then, composing the color image from the processed channels. In this article, the alpha-rooting and zonal alpha-rooting methods are used with the 2-D QDFT. In the alpha-rooting method, the alpha-root of the transformed frequency values of the 2-D QDFT are determined before taking the inverse transform. In the zonal alpha-rooting method, the frequency spectrum of the 2-D QDFT is divided by different zones and the alpha-rooting is applied with different alpha values for different zones. The optimization of the choice of alpha values is done with the genetic algorithm. The visual perception of 3-D medical images is increased by changing the reference gray line.

  7. Acquisition hardware for digital imaging.

    PubMed

    Widmer, William R

    2008-01-01

    Use of digital radiography is growing rapidly in veterinary medicine. Two basic digital imaging systems are available, computed radiography (CR) and direct digital radiography (DDR). Computed radiographic detectors use a two-step process for image capture and processing. Image capture is by X-ray sensitive phosphors in the image plate. The image plate reader transforms the latent phosphor image to light photons that are converted to an analog electrical signal. An analog to digital converter is used to digitize the electrical signal before computer analysis. Direct digital detectors provide digital data by direct readout after image capture--a reader unnecessary. Types of DDR detectors are flat panel detectors and charge coupled device (CCD) detectors. Flat panel detectors are composed of layers of semiconductors for image capture with transistor and microscopic circuitry embedded in a pixel array. Direct converting flat panel detectors convert incident X-rays directly into electrical charges. Indirect detectors convert X-rays to visible light, then to electrical charges. All flat panel detectors send a digitized electrical signal to a computer using a direct link. Charge coupled device detectors have a small chip similar to those used in digital cameras. A scintillator first converts X-rays to a light signal that is minified by an optical system before reaching the chip. The chip sends a digital signal directly to a computer. Both CR and DDR provide quality diagnostic images. CR is a mature technology while DDR is an emerging technology.

  8. Measured count-rate performance of the Discovery STE PET/CT scanner in 2D, 3D and partial collimation acquisition modes.

    PubMed

    Macdonald, L R; Schmitz, R E; Alessio, A M; Wollenweber, S D; Stearns, C W; Ganin, A; Harrison, R L; Lewellen, T K; Kinahan, P E

    2008-07-21

    We measured count rates and scatter fraction on the Discovery STE PET/CT scanner in conventional 2D and 3D acquisition modes, and in a partial collimation mode between 2D and 3D. As part of the evaluation of using partial collimation, we estimated global count rates using a scanner model that combined computer simulations with an empirical live-time function. Our measurements followed the NEMA NU2 count rate and scatter-fraction protocol to obtain true, scattered and random coincidence events, from which noise equivalent count (NEC) rates were calculated. The effect of patient size was considered by using 27 cm and 35 cm diameter phantoms, in addition to the standard 20 cm diameter cylindrical count-rate phantom. Using the scanner model, we evaluated two partial collimation cases: removing half of the septa (2.5D) and removing two-thirds of the septa (2.7D). Based on predictions of the model, a 2.7D collimator was constructed. Count rates and scatter fractions were then measured in 2D, 2.7D and 3D. The scanner model predicted relative NEC variation with activity, as confirmed by measurements. The measured 2.7D NEC was equal or greater than 3D NEC for all activity levels in the 27 cm and 35 cm phantoms. In the 20 cm phantom, 3D NEC was somewhat higher ( approximately 15%) than 2.7D NEC at 100 MBq. For all higher activity concentrations, 2.7D NEC was greater and peaked 26% above the 3D peak NEC. The peak NEC in 2.7D mode occurred at approximately 425 MBq, and was 26-50% greater than the peak 3D NEC, depending on object size. NEC in 2D was considerably lower, except at relatively high activity concentrations. Partial collimation shows promise for improved noise equivalent count rates in clinical imaging without altering other detector parameters.

  9. Detection of Leptomeningeal Metastasis by Contrast-Enhanced 3D T1-SPACE: Comparison with 2D FLAIR and Contrast-Enhanced 2D T1-Weighted Images

    PubMed Central

    Gil, Bomi; Hwang, Eo-Jin; Lee, Song; Jang, Jinhee; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-soo

    2016-01-01

    Introduction To compare the diagnostic accuracy of contrast-enhanced 3D(dimensional) T1-weighted sampling perfection with application-optimized contrasts by using different flip angle evolutions (T1-SPACE), 2D fluid attenuated inversion recovery (FLAIR) images and 2D contrast-enhanced T1-weighted image in detection of leptomeningeal metastasis except for invasive procedures such as a CSF tapping. Materials and Methods Three groups of patients were included retrospectively for 9 months (from 2013-04-01 to 2013-12-31). Group 1 patients with positive malignant cells in CSF cytology (n = 22); group 2, stroke patients with steno-occlusion in ICA or MCA (n = 16); and group 3, patients with negative results on MRI, whose symptom were dizziness or headache (n = 25). A total of 63 sets of MR images are separately collected and randomly arranged: (1) CE 3D T1-SPACE; (2) 2D FLAIR; and (3) CE T1-GRE using a 3-Tesla MR system. A faculty neuroradiologist with 8-year-experience and another 2nd grade trainee in radiology reviewed each MR image- blinded by the results of CSF cytology and coded their observations as positives or negatives of leptomeningeal metastasis. The CSF cytology result was considered as a gold standard. Sensitivity and specificity of each MR images were calculated. Diagnostic accuracy was compared using a McNemar’s test. A Cohen's kappa analysis was performed to assess inter-observer agreements. Results Diagnostic accuracy was not different between 3D T1-SPACE and CSF cytology by both raters. However, the accuracy test of 2D FLAIR and 2D contrast-enhanced T1-weighted GRE was inconsistent by the two raters. The Kappa statistic results were 0.657 (3D T1-SPACE), 0.420 (2D FLAIR), and 0.160 (2D contrast-enhanced T1-weighted GRE). The 3D T1-SPACE images showed the highest inter-observer agreements between the raters. Conclusions Compared to 2D FLAIR and 2D contrast-enhanced T1-weighted GRE, contrast-enhanced 3D T1 SPACE showed a better detection rate of

  10. Model-based 3D/2D deformable registration of MR images.

    PubMed

    Marami, Bahram; Sirouspour, Shahin; Capson, David W

    2011-01-01

    A method is proposed for automatic registration of 3D preoperative magnetic resonance images of deformable tissue to a sequence of its 2D intraoperative images. The algorithm employs a dynamic continuum mechanics model of the deformation and similarity (distance) measures such as correlation ratio, mutual information or sum of squared differences for registration. The registration is solely based on information present in the 3D preoperative and 2D intraoperative images and does not require fiducial markers, feature extraction or image segmentation. Results of experiments with a biopsy training breast phantom show that the proposed method can perform well in the presence of large deformations. This is particularly useful for clinical applications such as MR-based breast biopsy where large tissue deformations occur.

  11. 2D electron temperature diagnostic using soft x-ray imaging technique

    SciTech Connect

    Nishimura, K. Sanpei, A. Tanaka, H.; Ishii, G.; Kodera, R.; Ueba, R.; Himura, H.; Masamune, S.; Ohdachi, S.; Mizuguchi, N.

    2014-03-15

    We have developed a two-dimensional (2D) electron temperature (T{sub e}) diagnostic system for thermal structure studies in a low-aspect-ratio reversed field pinch (RFP). The system consists of a soft x-ray (SXR) camera with two pin holes for two-kinds of absorber foils, combined with a high-speed camera. Two SXR images with almost the same viewing area are formed through different absorber foils on a single micro-channel plate (MCP). A 2D T{sub e} image can then be obtained by calculating the intensity ratio for each element of the images. We have succeeded in distinguishing T{sub e} image in quasi-single helicity (QSH) from that in multi-helicity (MH) RFP states, where the former is characterized by concentrated magnetic fluctuation spectrum and the latter, by broad spectrum of edge magnetic fluctuations.

  12. Image segmentation and classification based on a 2D distributed hidden Markov model

    NASA Astrophysics Data System (ADS)

    Ma, Xiang; Schonfeld, Dan; Khokhar, Ashfaq

    2008-01-01

    In this paper, we propose a two-dimensional distributed hidden Markovmodel (2D-DHMM), where dependency of the state transition probability on any state is allowed as long as causality is preserved. The proposed 2D-DHMM model is result of a novel solution to a more general non-causal two-dimensional hidden Markovmodel (2D-HMM) that we proposed. Our proposed models can capture, for example, dependency among diagonal states, which can be critical in many image processing applications, for example, image segmentation. A new sets of basic image patterns are designed to enrich the variability of states, which in return largely improves the accuracy of state estimations and segmentation performance. We provide three algorithms for the training and classification of our proposed model. A new Expectation-Maximization (EM) algorithm suitable for estimation of the new model is derived, where a novel General Forward-Backward (GFB) algorithm is proposed for recursive estimation of the model parameters. A new conditional independent subset-state sequence structure decomposition of state sequences is proposed for the 2D Viterbi algorithm. Application to aerial image segmentation shows the superiority of our model compared to the existing models.

  13. Real-time 2D Imaging of Thermal and Mechanical Tissue Response to Focused Ultrasound

    NASA Astrophysics Data System (ADS)

    Liu, Dalong; Ebbini, Emad S.

    2010-03-01

    An integrated system capable of performing high frame-rate two-dimensional (2D) temperature imaging in realtime is has been developed. The system consists of a SonixRP ultrasound scanner and a custom built data processing unit connected with Gigabit Ethernet (GbE). The SonixRP scanner which serves as the frontend of the integrated system allows us to have flexibilities of controlling the beam sequence and accessing the radio frequency (RF) data in realtime through its research interface. The RF data is then streamlined to the backend of the system through GbE, where the data is processed using a 2D temperature estimation algorithm running in a general purpose graphics processing unit (GPU). Using this system, we have developed a 2D high frame-rate imaging mode, M2D, for imaging the mechanical and thermal tissue response to subtherapeutic HIFU beams. In this paper, we present results from imaging subtherapetic HIFU beams in vitro porcine heart before and after lesion formation. The results demonstrate the feasibility of tissue parameter changes due to HIFU-induced lesions.

  14. Digital breast tomosynthesis image reconstruction using 2D and 3D total variation minimization.

    PubMed

    Ertas, Metin; Yildirim, Isa; Kamasak, Mustafa; Akan, Aydin

    2013-10-31

    Digital breast tomosynthesis (DBT) is an emerging imaging modality which produces three-dimensional radiographic images of breast. DBT reconstructs tomographic images from a limited view angle, thus data acquired from DBT is not sufficient enough to reconstruct an exact image. It was proven that a sparse image from a highly undersampled data can be reconstructed via compressed sensing (CS) techniques. This can be done by minimizing the l1 norm of the gradient of the image which can also be defined as total variation (TV) minimization. In tomosynthesis imaging problem, this idea was utilized by minimizing total variation of image reconstructed by algebraic reconstruction technique (ART). Previous studies have largely addressed 2-dimensional (2D) TV minimization and only few of them have mentioned 3-dimensional (3D) TV minimization. However, quantitative analysis of 2D and 3D TV minimization with ART in DBT imaging has not been studied. In this paper two different DBT image reconstruction algorithms with total variation minimization have been developed and a comprehensive quantitative analysis of these two methods and ART has been carried out: The first method is ART + TV2D where TV is applied to each slice independently. The other method is ART + TV3D in which TV is applied by formulating the minimization problem 3D considering all slices. A 3D phantom which roughly simulates a breast tomosynthesis image was designed to evaluate the performance of the methods both quantitatively and qualitatively in the sense of visual assessment, structural similarity (SSIM), root means square error (RMSE) of a specific layer of interest (LOI) and total error values. Both methods show superior results in reducing out-of-focus slice blur compared to ART. Computer simulations show that ART + TV3D method substantially enhances the reconstructed image with fewer artifacts and smaller error rates than the other two algorithms under the same configuration and parameters and it

  15. Digital breast tomosynthesis image reconstruction using 2D and 3D total variation minimization

    PubMed Central

    2013-01-01

    Background Digital breast tomosynthesis (DBT) is an emerging imaging modality which produces three-dimensional radiographic images of breast. DBT reconstructs tomographic images from a limited view angle, thus data acquired from DBT is not sufficient enough to reconstruct an exact image. It was proven that a sparse image from a highly undersampled data can be reconstructed via compressed sensing (CS) techniques. This can be done by minimizing the l1 norm of the gradient of the image which can also be defined as total variation (TV) minimization. In tomosynthesis imaging problem, this idea was utilized by minimizing total variation of image reconstructed by algebraic reconstruction technique (ART). Previous studies have largely addressed 2-dimensional (2D) TV minimization and only few of them have mentioned 3-dimensional (3D) TV minimization. However, quantitative analysis of 2D and 3D TV minimization with ART in DBT imaging has not been studied. Methods In this paper two different DBT image reconstruction algorithms with total variation minimization have been developed and a comprehensive quantitative analysis of these two methods and ART has been carried out: The first method is ART + TV2D where TV is applied to each slice independently. The other method is ART + TV3D in which TV is applied by formulating the minimization problem 3D considering all slices. Results A 3D phantom which roughly simulates a breast tomosynthesis image was designed to evaluate the performance of the methods both quantitatively and qualitatively in the sense of visual assessment, structural similarity (SSIM), root means square error (RMSE) of a specific layer of interest (LOI) and total error values. Both methods show superior results in reducing out-of-focus slice blur compared to ART. Conclusions Computer simulations show that ART + TV3D method substantially enhances the reconstructed image with fewer artifacts and smaller error rates than the other two algorithms under the same

  16. Snapshot 2D tomography via coded aperture x-ray scatter imaging

    PubMed Central

    MacCabe, Kenneth P.; Holmgren, Andrew D.; Tornai, Martin P.; Brady, David J.

    2015-01-01

    This paper describes a fan beam coded aperture x-ray scatter imaging system which acquires a tomographic image from each snapshot. This technique exploits cylindrical symmetry of the scattering cross section to avoid the scanning motion typically required by projection tomography. We use a coded aperture with a harmonic dependence to determine range, and a shift code to determine cross-range. Here we use a forward-scatter configuration to image 2D objects and use serial exposures to acquire tomographic video of motion within a plane. Our reconstruction algorithm also estimates the angular dependence of the scattered radiance, a step toward materials imaging and identification. PMID:23842254

  17. Combining 2D synchrosqueezed wave packet transform with optimization for crystal image analysis

    NASA Astrophysics Data System (ADS)

    Lu, Jianfeng; Wirth, Benedikt; Yang, Haizhao

    2016-04-01

    We develop a variational optimization method for crystal analysis in atomic resolution images, which uses information from a 2D synchrosqueezed transform (SST) as input. The synchrosqueezed transform is applied to extract initial information from atomic crystal images: crystal defects, rotations and the gradient of elastic deformation. The deformation gradient estimate is then improved outside the identified defect region via a variational approach, to obtain more robust results agreeing better with the physical constraints. The variational model is optimized by a nonlinear projected conjugate gradient method. Both examples of images from computer simulations and imaging experiments are analyzed, with results demonstrating the effectiveness of the proposed method.

  18. Combined 3D photoacoustic and 2D fluorescence imaging of indocyanine green contrast agent flow

    NASA Astrophysics Data System (ADS)

    Kosik, Ivan; Carson, Jeffrey J. L.

    2013-03-01

    Photoacoustic imaging uses laser induced ultrasound transients to generate optical absorption maps of the illuminated volume. In this work, we used a custom built photoacoustic imaging system consisting of a 60-channel transducer array, a 50 MHz data acquisition system, and an Nd:YAG pumped OPO laser, to perform simultaneous photoacoustic and fluorescence imaging. A single 780 nm laser pulse generated both ultrasound and fluorescence, enabling reconstruction of images for both modalities with near perfect temporal co-registration. The result highlighted the ability of photoacoustic imaging to supplement fluorescence data when optical scatter reduces fluorescence resolution beyond its useful range.

  19. Comparison between 2D and 3D high-resolution black-blood techniques for carotid artery wall imaging in clinically significant atherosclerosis.

    PubMed

    Balu, Niranjan; Chu, Baocheng; Hatsukami, Thomas S; Yuan, Chun; Yarnykh, Vasily L

    2008-04-01

    To compare two- (2D) and three-dimensional (3D) black-blood imaging methods for morphological measurements of the carotid artery wall and atherosclerotic plaque. A total of 18 subjects with 50% to 79% carotid stenosis were scanned with 2D (2-mm slice thickness) and 3D (1-mm/0.5-mm actual/interpolated slice thickness) T1-weighted fast spin-echo (FSE) black-blood imaging sequences with double inversion-recovery (DIR) blood suppression. Morphological measurements (lumen area, wall area, vessel area, mean wall thickness, and maximal wall thickness), signal-to-noise ratio (SNR) in the wall and lumen, and wall-lumen contrast-to-noise ratio (CNR) were compared between 2D and 3D images. The effect of improved slice resolution in 3D imaging was evaluated for visualization of small plaque components. Lumen SNR (P = 0.16), wall SNR (P = 0.65), and CNR (P = 0.94) were comparable between 2D/3D. There was no difference in average lumen area (P = 0.16), average wall area (P = 0.99), average vessel area (P = 0.0.58), mean wall thickness (P = 0.09), and maximum wall thickness (P = 0.06) between 2D/3D. Distributions of small plaque components such as calcification were better characterized by the 3D acquisition. There was a higher sensitivity to motion artifacts with 3D imaging, resulting in three examinations with low image quality. 2D and 3D protocols provided comparable morphometric measurements of the carotid artery. The major advantage of 3D imaging is improved small plaque component visualization, while the 2D technique provides higher reliability for image quality. (c) 2008 Wiley-Liss, Inc.

  20. Comparison Between 2D and 3D High-Resolution Black-Blood Techniques for Carotid Artery Wall Imaging in Clinically Significant Atherosclerosis

    PubMed Central

    Balu, Niranjan; Chu, Baocheng; Hatsukami, Thomas S.; Yuan, Chun; Yarnykh, Vasily L.

    2010-01-01

    Purpose To compare two- (2D) and three-dimensional (3D) black-blood imaging methods for morphological measurements of the carotid artery wall and atherosclerotic plaque. Materials and Methods A total of 18 subjects with 50% to 79% carotid stenosis were scanned with 2D (2-mm slice thickness) and 3D (1-mm/0.5-mm actual/interpolated slice thickness) T1-weighted fast spin-echo (FSE) black-blood imaging sequences with double inversion-recovery (DIR) blood suppression. Morphological measurements (lumen area, wall area, vessel area, mean wall thickness, and maximal wall thickness), signal-to-noise ratio (SNR) in the wall and lumen, and wall-lumen contrast-to-noise ratio (CNR) were compared between 2D and 3D images. The effect of improved slice resolution in 3D imaging was evaluated for visualization of small plaque components. Results Lumen SNR (P = 0.16), wall SNR (P = 0.65), and CNR (P = 0.94) were comparable between 2D/3D. There was no difference in average lumen area (P = 0.16), average wall area (P = 0.99), average vessel area (P = 0.0.58), mean wall thickness (P = 0.09), and maximum wall thickness (P = 0.06) between 2D/3D. Distributions of small plaque components such as calcification were better characterized by the 3D acquisition. There was a higher sensitivity to motion artifacts with 3D imaging, resulting in three examinations with low image quality. Conclusion 2D and 3D protocols provided comparable morphometric measurements of the carotid artery. The major advantage of 3D imaging is improved small plaque component visualization, while the 2D technique provides higher reliability for image quality. PMID:18383253

  1. [Rapid 2D-3D medical image registration based on CUDA].

    PubMed

    Li, Lingzhi; Zou, Beiji

    2014-08-01

    The medical image registration between preoperative three-dimensional (3D) scan data and intraoperative two-dimensional (2D) image is a key technology in the surgical navigation. Most previous methods need to generate 2D digitally reconstructed radiographs (DRR) images from the 3D scan volume data, then use conventional image similarity function for comparison. This procedure includes a large amount of calculation and is difficult to archive real-time processing. In this paper, with using geometric feature and image density mixed characteristics, we proposed a new similarity measure function for fast 2D-3D registration of preoperative CT and intraoperative X-ray images. This algorithm is easy to implement, and the calculation process is very short, while the resulting registration accuracy can meet the clinical use. In addition, the entire calculation process is very suitable for highly parallel numerical calculation by using the algorithm based on CUDA hardware acceleration to satisfy the requirement of real-time application in surgery.

  2. Integration of Ground Penetrating Radar (GPR) and 2-D Resistivity Imaging methods for soil investigation

    NASA Astrophysics Data System (ADS)

    Sulaiman, Nabila; Nordiana, M. M.; Azwin, I. N.; Taqiuddin, Z. M.; Maslinda, Umi; Hisham, Hazrul; Nur Amalina, M. K. A.; Afiq Saharudin, Muhamad; Nordiana, A. N.

    2017-04-01

    Rock lithology influences the electrical properties representing soils or rocks. Electrical conductivity value can be measured using geophysical methods like Ground Penetrating Radar (GPR) and 2-D resistivity imaging. The objective of this survey is to integrate GPR, 2-D resistivity imaging and borehole log based on the conductivity value with soil description and N-value from borehole. Borehole is conducted in the middle of the survey line at a distance of 20 m. GPR method used 250 MHz frequency antenna. The result was filtered using Band Pass, Time Varying Gain and DC removal. 2-D resistivity imaging used two arrays; Wenner-Schlumberger and pole-dipole with total distance of 40 m and 1 m minimum electrode spacing using ABEM SAS4000. The results of both arrays are represented in the form of inversion models. Electrical conductivity values for GPR are calculated based on the conductivity values obtained by 2-D resistivity imaging. The conductivity values calculated from GPR are in good agreement with the values from 2-D resistivity imaging method. Electrical conductivity for the top soil is 0.7 - 3.0 mS/m with no soil description and N-value due to imprecise sample of the loose soil condition. The results showed that soil composed of loose silty gravel with some sand at the depth of 1.81 - 2.99 m has higher value of conductivity (0.4 - 3.0 mS/m) while soil dominated by very stiff sandy silt with some rock fragment (gravel) at the depth of 3 - 3.5 m has lower conductivity values of 0.4 mS/m to 0.7 mS/m. Soil having low electrical conductivity is probably due to the stiff condition (minimum water content) confirmed by greater N-value. Integration of geophysical methods and geotechnical method is a success and the geophysical parameters can be used in understanding soil condition.

  3. A comparison of 2D and 3D digital image correlation for a membrane under inflation

    NASA Astrophysics Data System (ADS)

    Murienne, Barbara J.; Nguyen, Thao D.

    2016-02-01

    Three-dimensional (3D) digital image correlation (DIC) is becoming widely used to characterize the behavior of structures undergoing 3D deformations. However, the use of 3D-DIC can be challenging under certain conditions, such as high magnification, and therefore small depth of field, or a highly controlled environment with limited access for two-angled cameras. The purpose of this study is to compare 2D-DIC and 3D-DIC for the same inflation experiment and evaluate whether 2D-DIC can be used when conditions discourage the use of a stereo-vision system. A latex membrane was inflated vertically to 5.41 kPa (reference pressure), then to 7.87 kPa (deformed pressure). A two-camera stereo-vision system acquired top-down images of the membrane, while a single camera system simultaneously recorded images of the membrane in profile. 2D-DIC and 3D-DIC were used to calculate horizontal (in the membrane plane) and vertical (out of the membrane plane) displacements, and meridional strain. Under static conditions, the baseline uncertainty in horizontal displacement and strain were smaller for 3D-DIC than 2D-DIC. However, the opposite was observed for the vertical displacement, for which 2D-DIC had a smaller baseline uncertainty. The baseline absolute error in vertical displacement and strain were similar for both DIC methods, but it was larger for 2D-DIC than 3D-DIC for the horizontal displacement. Under inflation, the variability in the measurements were larger than under static conditions for both DIC methods. 2D-DIC showed a smaller variability in displacements than 3D-DIC, especially for the vertical displacement, but a similar strain uncertainty. The absolute difference in the average displacements and strain between 3D-DIC and 2D-DIC were in the range of the 3D-DIC variability. Those findings suggest that 2D-DIC might be used as an alternative to 3D-DIC to study the inflation response of materials under certain conditions.

  4. A comparison of 2D and 3D digital image correlation for a membrane under inflation.

    PubMed

    Murienne, Barbara J; Nguyen, Thao D

    2016-02-01

    Three-dimensional (3D) digital image correlation (DIC) is becoming widely used to characterize the behavior of structures undergoing 3D deformations. However, the use of 3D-DIC can be challenging under certain conditions, such as high magnification, and therefore small depth of field, or a highly controlled environment with limited access for two-angled cameras. The purpose of this study is to compare 2D-DIC and 3D-DIC for the same inflation experiment and evaluate whether 2D-DIC can be used when conditions discourage the use of a stereo-vision system. A latex membrane was inflated vertically to 5.41 kPa (reference pressure), then to 7.87 kPa (deformed pressure). A two-camera stereo-vision system acquired top-down images of the membrane, while a single camera system simultaneously recorded images of the membrane in profile. 2D-DIC and 3D-DIC were used to calculate horizontal (in the membrane plane) and vertical (out of the membrane plane) displacements, and meridional strain. Under static conditions, the baseline uncertainty in horizontal displacement and strain were smaller for 3D-DIC than 2D-DIC. However, the opposite was observed for the vertical displacement, for which 2D-DIC had a smaller baseline uncertainty. The baseline absolute error in vertical displacement and strain were similar for both DIC methods, but it was larger for 2D-DIC than 3D-DIC for the horizontal displacement. Under inflation, the variability in the measurements were larger than under static conditions for both DIC methods. 2D-DIC showed a smaller variability in displacements than 3D-DIC, especially for the vertical displacement, but a similar strain uncertainty. The absolute difference in the average displacements and strain between 3D-DIC and 2D-DIC were in the range of the 3D-DIC variability. Those findings suggest that 2D-DIC might be used as an alternative to 3D-DIC to study the inflation response of materials under certain conditions.

  5. A comparison of 2D and 3D digital image correlation for a membrane under inflation

    PubMed Central

    Murienne, Barbara J.; Nguyen, Thao D.

    2015-01-01

    Three-dimensional (3D) digital image correlation (DIC) is becoming widely used to characterize the behavior of structures undergoing 3D deformations. However, the use of 3D-DIC can be challenging under certain conditions, such as high magnification, and therefore small depth of field, or a highly controlled environment with limited access for two-angled cameras. The purpose of this study is to compare 2D-DIC and 3D-DIC for the same inflation experiment and evaluate whether 2D-DIC can be used when conditions discourage the use of a stereo-vision system. A latex membrane was inflated vertically to 5.41 kPa (reference pressure), then to 7.87 kPa (deformed pressure). A two-camera stereo-vision system acquired top-down images of the membrane, while a single camera system simultaneously recorded images of the membrane in profile. 2D-DIC and 3D-DIC were used to calculate horizontal (in the membrane plane) and vertical (out of the membrane plane) displacements, and meridional strain. Under static conditions, the baseline uncertainty in horizontal displacement and strain were smaller for 3D-DIC than 2D-DIC. However, the opposite was observed for the vertical displacement, for which 2D-DIC had a smaller baseline uncertainty. The baseline absolute error in vertical displacement and strain were similar for both DIC methods, but it was larger for 2D-DIC than 3D-DIC for the horizontal displacement. Under inflation, the variability in the measurements were larger than under static conditions for both DIC methods. 2D-DIC showed a smaller variability in displacements than 3D-DIC, especially for the vertical displacement, but a similar strain uncertainty. The absolute difference in the average displacements and strain between 3D-DIC and 2D-DIC were in the range of the 3D-DIC variability. Those findings suggest that 2D-DIC might be used as an alternative to 3D-DIC to study the inflation response of materials under certain conditions. PMID:26543296

  6. A Detector for 2-D Neutron Imaging for the Spallation Neutron Source

    SciTech Connect

    Britton Jr, Charles L; Bryan, Bill; Wintenberg, Alan Lee; Clonts, Lloyd G; Warmack, Robert J Bruce; McKnight, Timothy E; Frank, Steven Shane; Cooper, Ronald G; Dudney, Nancy J; Veith, Gabriel M

    2006-01-01

    Abstract - We have designed, built, and tested a 2-D pixellated thermal neutron detector. The detector is modeled after the MicroMegas-type structure previously published for collider-type experiments. The detector consists of a 4X4 square array of 1 cm 2 pixels each of which is connected to an individual preamplifier-shaper-data acquisition system. The neutron converter is a 10B film on an aluminum substrate. We describe the construction of the detector and the test results utilizing 252Cf sources in Lucite to thermalize the neutrons.Drift electrode (Aluminum) Converter (10B) 3 mm Conversion gap neutron (-900 V)

  7. The Ultrasonic Measurement of Crystallographic Orientation for Imaging Anisotropic Components with 2d Arrays

    NASA Astrophysics Data System (ADS)

    Lane, C. J. L.; Dunhill, A. K.; Drinkwater, B. W.; Wilcox, P. D.

    2011-06-01

    Single crystal components are used widely in the gas-turbine industry. However, these components are elastically anisotropic which causes difficulties when performing NDE inspections with ultrasound. Recently an ultrasonic algorithm for a 2D array has been corrected to perform the reliable volumetric inspection of single crystals. For the algorithm to be implemented the crystallographic orientation of the components must be known. This paper, therefore, develops and reviews crystallographic orientation methods using 2D ultrasonic arrays. The methods under examination are based on the anisotropic propagation of surface and bulk waves and an image-based orientation method is also considered.

  8. 2D Doppler backscattering using synthetic aperture microwave imaging of MAST edge plasmas

    NASA Astrophysics Data System (ADS)

    Thomas, D. A.; Brunner, K. J.; Freethy, S. J.; Huang, B. K.; Shevchenko, V. F.; Vann, R. G. L.

    2016-02-01

    Doppler backscattering (DBS) is already established as a powerful diagnostic; its extension to 2D enables imaging of turbulence characteristics from an extended region of the cut-off surface. The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D DBS experiments of MAST edge plasma. SAMI actively probes the plasma edge using a wide (±40° vertical and horizontal) and tuneable (10-34.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24° FWHM at 10-34.5 GHz. This capability is unique to SAMI and is a novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial observations of phenomena previously measured by conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch angle to be made; preliminary results are presented. Capabilities gained through steering a beam using a phased array and the limitations of this technique are discussed.

  9. New applications for the touchscreen in 2D and 3D medical imaging workstations

    NASA Astrophysics Data System (ADS)

    Hinckley, Ken; Goble, John C.; Pausch, Randy; Kassell, Neal F.

    1995-04-01

    We present a new interface technique which augments a 3D user interface based on the physical manipulation of tools, or props, with a touchscreen. This hybrid interface intuitively and seamlessly combines 3D input with more traditional 2D input in the same user interface. Example 2D interface tasks of interest include selecting patient images from a database, browsing through axial, coronal, and sagittal image slices, or adjusting image center and window parameters. Note the facility with which a touchscreen can be used: the surgeon can move in 3D using the props, and then, without having to put the props down, the surgeon can reach out and touch the screen to perform 2D tasks. Based on previous work by Sears, we provide touchscreen users with visual feedback in the form of a small cursor which appears above the finger, allowing targets much smaller than the finger itself to be selected. Based on our informal user observations to date, this touchscreen stabilization algorithm allows targets as small as 1.08 mm X 1.08 mm to be selected by novices, and makes possible selection of targets as small as 0.27 mm X 0.27 mm after some training. Based on implemented prototype systems, we suggest that touchscreens offer not only intuitive 2D input which is well accepted by physicians, but that touchscreens also offer fast and accurate input which blends well with 3D interaction techniques.

  10. A positioning QA procedure for 2D/2D (kV/MV) and 3D/3D (CT/CBCT) image matching for radiotherapy patient setup.

    PubMed

    Guan, Huaiqun; Hammoud, Rabih; Yin, Fang-Fang

    2009-10-06

    A positioning QA procedure for Varian's 2D/2D (kV/MV) and 3D/3D (planCT/CBCT) matching was developed. The procedure was to check: (1) the coincidence of on-board imager (OBI), portal imager (PI), and cone beam CT (CBCT)'s isocenters (digital graticules) to a linac's isocenter (to a pre-specified accuracy); (2) that the positioning difference detected by 2D/2D (kV/MV) and 3D/3D(planCT/CBCT) matching can be reliably transferred to couch motion. A cube phantom with a 2 mm metal ball (bb) at the center was used. The bb was used to define the isocenter. Two additional bbs were placed on two phantom surfaces in order to define a spatial location of 1.5 cm anterior, 1.5 cm inferior, and 1.5 cm right from the isocenter. An axial scan of the phantom was acquired from a multislice CT simulator. The phantom was set at the linac's isocenter (lasers); either AP MV/R Lat kV images or CBCT images were taken for 2D/2D or 3D/3D matching, respectively. For 2D/2D, the accuracy of each device's isocenter was obtained by checking the distance between the central bb and the digital graticule. Then the central bb in orthogonal DRRs was manually moved to overlay to the off-axis bbs in kV/MV images. For 3D/3D, CBCT was first matched to planCT to check the isocenter difference between the two CTs. Manual shifts were then made by moving CBCT such that the point defined by the two off-axis bbs overlay to the central bb in planCT. (PlanCT can not be moved in the current version of OBI1.4.) The manual shifts were then applied to remotely move the couch. The room laser was used to check the accuracy of the couch movement. For Trilogy (or Ix-21) linacs, the coincidence of imager and linac's isocenter was better than 1 mm (or 1.5 mm). The couch shift accuracy was better than 2 mm.

  11. MR imaging features of idiopathic thoracic spinal cord herniations using combined 3D-fiesta and 2D-PC Cine techniques.

    PubMed

    Ferré, J C; Carsin-Nicol, B; Hamlat, A; Carsin, M; Morandi, X

    2005-03-01

    Idiopathic thoracic spinal cord herniation (TISCH) is a rare cause of surgically treatable progressive myelopathy. The authors report 3 cases of TISCH diagnosed based on conventional T1- and T2-weighted Spin-Echo (SE) MR images in one case, and T1- and T2-weighted SE images combined with 3D-FIESTA (Fast Imaging Employing Steady state Acquisition) and 2D-Phase-Contrast Cine MR imaging in 2 cases. Conventional MRI findings usually provided the diagnosis. 3D-FIESTA images confirmed it, showing the herniated cord in the ventral epidural space. Moreover, in combination with 2D-Phase Contrast cine technique, it was a sensitive method to for the detection of associated pre- or postoperative cerebrospinal fluid spaces abnormalities.

  12. Visualizing dispersive features in 2D image via minimum gradient method

    DOE PAGES

    He, Yu; Wang, Yan; Shen, Zhi -Xun

    2017-07-24

    Here, we developed a minimum gradient based method to track ridge features in a 2D image plot, which is a typical data representation in many momentum resolved spectroscopy experiments. Through both analytic formulation and numerical simulation, we compare this new method with existing DC (distribution curve) based and higher order derivative based analyses. We find that the new method has good noise resilience and enhanced contrast especially for weak intensity features and meanwhile preserves the quantitative local maxima information from the raw image. An algorithm is proposed to extract 1D ridge dispersion from the 2D image plot, whose quantitative applicationmore » to angle-resolved photoemission spectroscopy measurements on high temperature superconductors is demonstrated.« less

  13. Visualizing dispersive features in 2D image via minimum gradient method

    NASA Astrophysics Data System (ADS)

    He, Yu; Wang, Yan; Shen, Zhi-Xun

    2017-07-01

    We developed a minimum gradient based method to track ridge features in a 2D image plot, which is a typical data representation in many momentum resolved spectroscopy experiments. Through both analytic formulation and numerical simulation, we compare this new method with existing DC (distribution curve) based and higher order derivative based analyses. We find that the new method has good noise resilience and enhanced contrast especially for weak intensity features and meanwhile preserves the quantitative local maxima information from the raw image. An algorithm is proposed to extract 1D ridge dispersion from the 2D image plot, whose quantitative application to angle-resolved photoemission spectroscopy measurements on high temperature superconductors is demonstrated.

  14. A fast convolution-based methodology to simulate 2-D/3-D cardiac ultrasound images.

    PubMed

    Gao, Hang; Choi, Hon Fai; Claus, Piet; Boonen, Steven; Jaecques, Siegfried; Van Lenthe, G Harry; Van der Perre, Georges; Lauriks, Walter; D'hooge, Jan

    2009-02-01

    This paper describes a fast convolution-based methodology for simulating ultrasound images in a 2-D/3-D sector format as typically used in cardiac ultrasound. The conventional convolution model is based on the assumption of a space-invariant point spread function (PSF) and typically results in linear images. These characteristics are not representative for cardiac data sets. The spatial impulse response method (IRM) has excellent accuracy in the linear domain; however, calculation time can become an issue when scatterer numbers become significant and when 3-D volumetric data sets need to be computed. As a solution to these problems, the current manuscript proposes a new convolution-based methodology in which the data sets are produced by reducing the conventional 2-D/3-D convolution model to multiple 1-D convolutions (one for each image line). As an example, simulated 2-D/3-D phantom images are presented along with their gray scale histogram statistics. In addition, the computation time is recorded and contrasted to a commonly used implementation of IRM (Field II). It is shown that COLE can produce anatomically plausible images with local Rayleigh statistics but at improved calculation time (1200 times faster than the reference method).

  15. A Wavelet Relational Fuzzy C-Means Algorithm for 2D Gel Image Segmentation

    PubMed Central

    Rashwan, Shaheera; Faheem, Mohamed Talaat; Sarhan, Amany; Youssef, Bayumy A. B.

    2013-01-01

    One of the most famous algorithms that appeared in the area of image segmentation is the Fuzzy C-Means (FCM) algorithm. This algorithm has been used in many applications such as data analysis, pattern recognition, and image segmentation. It has the advantages of producing high quality segmentation compared to the other available algorithms. Many modifications have been made to the algorithm to improve its segmentation quality. The proposed segmentation algorithm in this paper is based on the Fuzzy C-Means algorithm adding the relational fuzzy notion and the wavelet transform to it so as to enhance its performance especially in the area of 2D gel images. Both proposed modifications aim to minimize the oversegmentation error incurred by previous algorithms. The experimental results of comparing both the Fuzzy C-Means (FCM) and the Wavelet Fuzzy C-Means (WFCM) to the proposed algorithm on real 2D gel images acquired from human leukemias, HL-60 cell lines, and fetal alcohol syndrome (FAS) demonstrate the improvement achieved by the proposed algorithm in overcoming the segmentation error. In addition, we investigate the effect of denoising on the three algorithms. This investigation proves that denoising the 2D gel image before segmentation can improve (in most of the cases) the quality of the segmentation. PMID:24174990

  16. Fast Threshold Image Segmentation Based on 2D Fuzzy Fisher and Random Local Optimized QPSO.

    PubMed

    Chunming Zhang; Yongchun Xie; Da Liu; Li Wang

    2017-03-01

    In the paper, a real-time segmentation method that separates the target signal from the navigation image is proposed. In the approaching docking stage, the navigation image is composed of target and non-target signal, which are separately bright spot and space vehicle itself. Since the non-target signals is the main part of the navigation image, the traditional entropy-related criterions and Ostu-related criterions will bring inadequate segmentation, while the mere 2D Fisher criterion will causes over-segmentation, all the methods show their shortages in dealing with this kind of case. To guarantee a precise image segmentation, a revised 2D fuzzy Fisher is proposed in the paper to make a trade-off between positioning target regions and retaining target fuzzy boundaries. First, to reduce redundant computations in finding the threshold pair, a 2D fuzzy Fisher criterion-based integral image is established by way of simplifying the corresponding fuzzy domains. Then, to quicken the convergence, a random orthogonal component is added in its quasi-optimum particle to enhance its local searching capacity in each iteration. Experimental results show its competence of quick segmentation.

  17. A quantitative damage imaging technique based on enhanced CCRTM for composite plates using 2D scan

    NASA Astrophysics Data System (ADS)

    He, Jiaze; Yuan, Fuh-Gwo

    2016-10-01

    A two-dimensional (2D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric wafer mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region in the vicinity of the PZT to capture the scattered wavefield. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, a reflectivity coefficients of the delamination is calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2D areal scans and 1D line scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.

  18. A wavelet relational fuzzy C-means algorithm for 2D gel image segmentation.

    PubMed

    Rashwan, Shaheera; Faheem, Mohamed Talaat; Sarhan, Amany; Youssef, Bayumy A B

    2013-01-01

    One of the most famous algorithms that appeared in the area of image segmentation is the Fuzzy C-Means (FCM) algorithm. This algorithm has been used in many applications such as data analysis, pattern recognition, and image segmentation. It has the advantages of producing high quality segmentation compared to the other available algorithms. Many modifications have been made to the algorithm to improve its segmentation quality. The proposed segmentation algorithm in this paper is based on the Fuzzy C-Means algorithm adding the relational fuzzy notion and the wavelet transform to it so as to enhance its performance especially in the area of 2D gel images. Both proposed modifications aim to minimize the oversegmentation error incurred by previous algorithms. The experimental results of comparing both the Fuzzy C-Means (FCM) and the Wavelet Fuzzy C-Means (WFCM) to the proposed algorithm on real 2D gel images acquired from human leukemias, HL-60 cell lines, and fetal alcohol syndrome (FAS) demonstrate the improvement achieved by the proposed algorithm in overcoming the segmentation error. In addition, we investigate the effect of denoising on the three algorithms. This investigation proves that denoising the 2D gel image before segmentation can improve (in most of the cases) the quality of the segmentation.

  19. A faster method for 3D/2D medical image registration--a simulation study.

    PubMed

    Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Gellrich, Niels Claudius; Jacob, Augustinus Ludwig; Regazzoni, Pietro; Messmer, Peter

    2003-08-21

    3D/2D patient-to-computed-tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Iterative variation of the CT's position between rendering steps finally leads to exact registration. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 3D/2D registration is the fact that finding a registration includes solving a minimization problem in six degrees of freedom (dof) in motion. This results in considerable time requirements since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations around a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of it's original value. The method was implemented and extensively tested on simulated x-ray images of a tibia, a pelvis and a skull base. When using one projective image and a discrete full parameter space search for solving the optimization problem, average accuracy was found to be 1.0 +/- 0.6(degrees) and 4.1 +/- 1.9 (mm) for a registration in six parameters, and 1.0 +/- 0.7(degrees) and 4.2 +/- 1.6 (mm) when using the 5 + 1 dof method described in this paper. Time requirements were reduced by a factor 3.1. We conclude that this hardware-independent optimization of 3D/2D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications.

  20. A faster method for 3D/2D medical image registration—a simulation study

    NASA Astrophysics Data System (ADS)

    Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Claudius Gellrich, Niels; Jacob, Augustinus Ludwig; Regazzoni, Pietro; Messmer, Peter

    2003-08-01

    3D/2D patient-to-computed-tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Iterative variation of the CT's position between rendering steps finally leads to exact registration. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 3D/2D registration is the fact that finding a registration includes solving a minimization problem in six degrees of freedom (dof) in motion. This results in considerable time requirements since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations around a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of it's original value. The method was implemented and extensively tested on simulated x-ray images of a tibia, a pelvis and a skull base. When using one projective image and a discrete full parameter space search for solving the optimization problem, average accuracy was found to be 1.0 +/- 0.6(°) and 4.1 +/- 1.9 (mm) for a registration in six parameters, and 1.0 +/- 0.7(°) and 4.2 +/- 1.6 (mm) when using the 5 + 1 dof method described in this paper. Time requirements were reduced by a factor 3.1. We conclude that this hardware-independent optimization of 3D/2D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications.

  1. A Cylindrical, Inner Volume Selecting 2D-T2-Prep Improves GRAPPA-Accelerated Image Quality in MRA of the Right Coronary Artery

    PubMed Central

    Coristine, Andrew J.; Yerly, Jerome; Stuber, Matthias

    2016-01-01

    Background Two-dimensional (2D) spatially selective radiofrequency (RF) pulses may be used to excite restricted volumes. By incorporating a "pencil beam" 2D pulse into a T2-Prep, one may create a "2D-T2-Prep" that combines T2-weighting with an intrinsic outer volume suppression. This may particularly benefit parallel imaging techniques, where artefacts typically originate from residual foldover signal. By suppressing foldover signal with a 2D-T2-Prep, image quality may therefore improve. We present numerical simulations, phantom and in vivo validations to address this hypothesis. Methods A 2D-T2-Prep and a conventional T2-Prep were used with GRAPPA-accelerated MRI (R = 1.6). The techniques were first compared in numerical phantoms, where per pixel maps of SNR (SNRmulti), noise, and g-factor were predicted for idealized sequences. Physical phantoms, with compartments doped to mimic blood, myocardium, fat, and coronary vasculature, were scanned with both T2-Preparation techniques to determine the actual SNRmulti and vessel sharpness. For in vivo experiments, the right coronary artery (RCA) was imaged in 10 healthy adults, using accelerations of R = 1,3, and 6, and vessel sharpness was measured for each. Results In both simulations and phantom experiments, the 2D-T2-Prep improved SNR relative to the conventional T2-Prep, by an amount that depended on both the acceleration factor and the degree of outer volume suppression. For in vivo images of the RCA, vessel sharpness improved most at higher acceleration factors, demonstrating that the 2D-T2-Prep especially benefits accelerated coronary MRA. Conclusion Suppressing outer volume signal with a 2D-T2-Prep improves image quality particularly well in GRAPPA-accelerated acquisitions in simulations, phantoms, and volunteers, demonstrating that it should be considered when performing accelerated coronary MRA. PMID:27736866

  2. Efficient Sample Delay Calculation for 2-D and 3-D Ultrasound Imaging.

    PubMed

    Ibrahim, Aya; Hager, Pascal A; Bartolini, Andrea; Angiolini, Federico; Arditi, Marcel; Thiran, Jean-Philippe; Benini, Luca; De Micheli, Giovanni

    2017-08-01

    Ultrasound imaging is a reference medical diagnostic technique, thanks to its blend of versatility, effectiveness, and moderate cost. The core computation of all ultrasound imaging methods is based on simple formulae, except for those required to calculate acoustic propagation delays with high precision and throughput. Unfortunately, advanced three-dimensional (3-D) systems require the calculation or storage of billions of such delay values per frame, which is a challenge. In 2-D systems, this requirement can be four orders of magnitude lower, but efficient computation is still crucial in view of low-power implementations that can be battery-operated, enabling usage in numerous additional scenarios. In this paper, we explore two smart designs of the delay generation function. To quantify their hardware cost, we implement them on FPGA and study their footprint and performance. We evaluate how these architectures scale to different ultrasound applications, from a low-power 2-D system to a next-generation 3-D machine. When using numerical approximations, we demonstrate the ability to generate delay values with sufficient throughput to support 10 000-channel 3-D imaging at up to 30 fps while using 63% of a Virtex 7 FPGA, requiring 24 MB of external memory accessed at about 32 GB/s bandwidth. Alternatively, with similar FPGA occupation, we show an exact calculation method that reaches 24 fps on 1225-channel 3-D imaging and does not require external memory at all. Both designs can be scaled to use a negligible amount of resources for 2-D imaging in low-power applications and for ultrafast 2-D imaging at hundreds of frames per second.

  3. Image Acquisition in Real Time

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In 1995, Carlos Jorquera left NASA s Jet Propulsion Laboratory (JPL) to focus on erasing the growing void between high-performance cameras and the requisite software to capture and process the resulting digital images. Since his departure from NASA, Jorquera s efforts have not only satisfied the private industry's cravings for faster, more flexible, and more favorable software applications, but have blossomed into a successful entrepreneurship that is making its mark with improvements in fields such as medicine, weather forecasting, and X-ray inspection. Formerly a JPL engineer who constructed imaging systems for spacecraft and ground-based astronomy projects, Jorquera is the founder and president of the three-person firm, Boulder Imaging Inc., based in Louisville, Colorado. Joining Jorquera to round out the Boulder Imaging staff are Chief Operations Engineer Susan Downey, who also gained experience at JPL working on space-bound projects including Galileo and the Hubble Space Telescope, and Vice President of Engineering and Machine Vision Specialist Jie Zhu Kulbida, who has extensive industrial and research and development experience within the private sector.

  4. Shadow scanning lens-free microscopy with tomographic reconstruction of 2D images

    NASA Astrophysics Data System (ADS)

    Manturov, Alexey O.; Blushtein, Eugeny A.; Morev, Vladislav S.

    2016-04-01

    Shadow Scanning Lens-free Microscopy (SSLM) is a possible method for optical imaging that can potentially achieve high spatial resolution. At present work we discuss the SSLM and analyse the resolution limit conditioned by the light scattering from the edge scanning imaging system that uses a shadow from moving knife edge or wire to collect the sets of tomographic projection data of two-dimensional objects. The results of numerical estimation of the SSLM resolution for reconstruction of 2D object image are presented. The experimental setup of SSLM with wire scanning element was developed. The developed device works in a UV band range and shows the spatial resolution about 90 nm.

  5. A rapidly modulated multifocal detection scheme for parallel acquisition of Raman spectra from a 2-D focal array.

    PubMed

    Kong, Lingbo; Chan, James

    2014-07-01

    We report the development of a rapidly modulated multifocal detection scheme that enables full Raman spectra (~500-2000 cm(-1)) from a 2-D focal array to be acquired simultaneously. A spatial light modulator splits a laser beam to generate an m × n multifocal array. Raman signals generated within each focus are projected simultaneously into a spectrometer and imaged onto a TE-cooled CCD camera. A shuttering system using different masks is constructed to collect the superimposed Raman spectra of different multifocal patterns. The individual Raman spectrum from each focus is then retrieved from the superimposed spectra with no crosstalk using a postacquisition data processing algorithm. This system is expected to significantly improve the speed of current Raman-based instruments such as laser tweezers Raman spectroscopy and hyperspectral Raman imaging.

  6. Simultaneous 3D–2D image registration and C-arm calibration: Application to endovascular image-guided interventions

    SciTech Connect

    Mitrović, Uroš; Pernuš, Franjo; Likar, Boštjan; Špiclin, Žiga

    2015-11-15

    Purpose: Three-dimensional to two-dimensional (3D–2D) image registration is a key to fusion and simultaneous visualization of valuable information contained in 3D pre-interventional and 2D intra-interventional images with the final goal of image guidance of a procedure. In this paper, the authors focus on 3D–2D image registration within the context of intracranial endovascular image-guided interventions (EIGIs), where the 3D and 2D images are generally acquired with the same C-arm system. The accuracy and robustness of any 3D–2D registration method, to be used in a clinical setting, is influenced by (1) the method itself, (2) uncertainty of initial pose of the 3D image from which registration starts, (3) uncertainty of C-arm’s geometry and pose, and (4) the number of 2D intra-interventional images used for registration, which is generally one and at most two. The study of these influences requires rigorous and objective validation of any 3D–2D registration method against a highly accurate reference or “gold standard” registration, performed on clinical image datasets acquired in the context of the intervention. Methods: The registration process is split into two sequential, i.e., initial and final, registration stages. The initial stage is either machine-based or template matching. The latter aims to reduce possibly large in-plane translation errors by matching a projection of the 3D vessel model and 2D image. In the final registration stage, four state-of-the-art intrinsic image-based 3D–2D registration methods, which involve simultaneous refinement of rigid-body and C-arm parameters, are evaluated. For objective validation, the authors acquired an image database of 15 patients undergoing cerebral EIGI, for which accurate gold standard registrations were established by fiducial marker coregistration. Results: Based on target registration error, the obtained success rates of 3D to a single 2D image registration after initial machine-based and

  7. Simultaneous 3D-2D image registration and C-arm calibration: Application to endovascular image-guided interventions.

    PubMed

    Mitrović, Uroš; Pernuš, Franjo; Likar, Boštjan; Špiclin, Žiga

    2015-11-01

    Three-dimensional to two-dimensional (3D-2D) image registration is a key to fusion and simultaneous visualization of valuable information contained in 3D pre-interventional and 2D intra-interventional images with the final goal of image guidance of a procedure. In this paper, the authors focus on 3D-2D image registration within the context of intracranial endovascular image-guided interventions (EIGIs), where the 3D and 2D images are generally acquired with the same C-arm system. The accuracy and robustness of any 3D-2D registration method, to be used in a clinical setting, is influenced by (1) the method itself, (2) uncertainty of initial pose of the 3D image from which registration starts, (3) uncertainty of C-arm's geometry and pose, and (4) the number of 2D intra-interventional images used for registration, which is generally one and at most two. The study of these influences requires rigorous and objective validation of any 3D-2D registration method against a highly accurate reference or "gold standard" registration, performed on clinical image datasets acquired in the context of the intervention. The registration process is split into two sequential, i.e., initial and final, registration stages. The initial stage is either machine-based or template matching. The latter aims to reduce possibly large in-plane translation errors by matching a projection of the 3D vessel model and 2D image. In the final registration stage, four state-of-the-art intrinsic image-based 3D-2D registration methods, which involve simultaneous refinement of rigid-body and C-arm parameters, are evaluated. For objective validation, the authors acquired an image database of 15 patients undergoing cerebral EIGI, for which accurate gold standard registrations were established by fiducial marker coregistration. Based on target registration error, the obtained success rates of 3D to a single 2D image registration after initial machine-based and template matching and final registration

  8. Image acquisition system for a hospital enterprise

    NASA Astrophysics Data System (ADS)

    Moore, Stephen M.; Beecher, David E.

    1998-07-01

    Hospital enterprises are being created through mergers and acquisitions of existing hospitals. One area of interest in the PACS literature has been the integration of information systems and imaging systems. Hospital enterprises with multiple information and imaging systems provide new challenges to the integration task. This paper describes the requirements at the BJC Health System and a testbed system that is designed to acquire images from a number of different modalities and hospitals. This testbed system is integrated with Project Spectrum at BJC which is designed to provide a centralized clinical repository and a single desktop application for physician review of the patient chart (text, lab values, images).

  9. Occluded target viewing and identification high-resolution 2D imaging laser radar

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Dippel, George F.; Cecchetti, Kristen D.; Wikman, John C.; Drouin, David P.; Egbert, Paul I.

    2007-09-01

    BAE SYSTEMS has developed a high-resolution 2D imaging laser radar (LADAR) system that has proven its ability to detect and identify hard targets in occluded environments, through battlefield obscurants, and through naturally occurring image-degrading atmospheres. Limitations of passive infrared imaging for target identification using medium wavelength infrared (MWIR) and long wavelength infrared (LWIR) atmospheric windows are well known. Of particular concern is that as wavelength is increased the aperture must be increased to maintain resolution, hence, driving apertures to be very larger for long-range identification; impractical because of size, weight, and optics cost. Conversely, at smaller apertures and with large f-numbers images may become photon starved with long integration times. Here, images are most susceptible to distortion from atmospheric turbulence, platform vibration, or both. Additionally, long-range identification using passive thermal imaging is clutter limited arising from objects in close proximity to the target object.

  10. Development of a novel 2D color map for interactive segmentation of histological images

    PubMed Central

    Chaudry, Qaiser; Sharma, Yachna; Raza, Syed H.; Wang, May D.

    2016-01-01

    We present a color segmentation approach based on a two-dimensional color map derived from the input image. Pathologists stain tissue biopsies with various colored dyes to see the expression of biomarkers. In these images, because of color variation due to inconsistencies in experimental procedures and lighting conditions, the segmentation used to analyze biological features is usually ad-hoc. Many algorithms like K-means use a single metric to segment the image into different color classes and rarely provide users with powerful color control. Our 2D color map interactive segmentation technique based on human color perception information and the color distribution of the input image, enables user control without noticeable delay. Our methodology works for different staining types and different types of cancer tissue images. Our proposed method’s results show good accuracy with low response and computational time making it a feasible method for user interactive applications involving segmentation of histological images.

  11. Seismic investigation of gas hydrates in the Gulf of Mexico: 2013 multi-component and high-resolution 2D acquisition at GC955 and WR313

    USGS Publications Warehouse

    Haines, Seth S.; Hart, Patrick E.; Shedd, William W.; Frye, Matthew

    2014-01-01

    The U.S. Geological Survey led a seismic acquisition cruise at Green Canyon 955 (GC955) and Walker Ridge 313 (WR313) in the Gulf of Mexico from April 18 to May 3, 2013, acquiring multicomponent and high-resolution 2D seismic data. GC955 and WR313 are established, world-class study sites where high gas hydrate saturations exist within reservoir-grade sands in this long-established petroleum province. Logging-while-drilling (LWD) data acquired in 2009 by the Gulf of Mexico Gas Hydrates Joint Industry Project provide detailed characterization at the borehole locations, and industry seismic data provide regional- and local-scale structural and stratigraphic characterization. Significant remaining questions regarding lithology and hydrate saturation between and away from the boreholes spurred new geophysical data acquisition at these sites. The goals of our 2013 surveys were to (1) achieve improved imaging and characterization at these sites and (2) refine geophysical methods for gas hydrate characterization in other locations. In the area of GC955 we deployed 21 ocean-bottom seismometers (OBS) and acquired approximately 400 km of high-resolution 2D streamer seismic data in a grid with line spacing as small as 50 m and along radial lines that provide source offsets up to 10 km and diverse azimuths for the OBS. In the area of WR313 we deployed 25 OBS and acquired approximately 450 km of streamer seismic data in a grid pattern with line spacing as small as 250 m and along radial lines that provide source offsets up to 10 km for the OBS. These new data afford at least five times better resolution of the structural and stratigraphic features of interest at the sites and enable considerably improved characterization of lithology and the gas and gas hydrate systems. Our recent survey represents a unique application of dedicated geophysical data to the characterization of confirmed reservoir-grade gas hydrate accumulations.

  12. Offline estimation of 2 D crystal lattice parameters by processing the electron diffraction image

    NASA Astrophysics Data System (ADS)

    Haq, Nuhman ul; Hayat, Khizar; Madani, Sajjad A.; Iqbal, Yaseen

    2012-03-01

    Electron diffraction provides useful information about the internal composition of materials and has been in the use of material scientists for more than fifty years. In order to extract useful information from offline diffraction images, they are manually analyzed by using some photometric technique. Manual analysis is however a cumbersome, laborious and difficult task. To reduce the labors of material scientists one can employ image processing techniques to perform automated analysis, due to the well established popularity and clear evidence of widely used image processing techniques. In this work an image processing technique is being proposed for the extraction of 2D unit cell information from diffraction images on one hand and finding the 2D point group contained by the lattices on the other. The technique employs a morphological shrinking operation to find the center of each spot in the underlying preprocessed diffraction image. This is followed by the extraction of eight points with reference to the spot produced by the transmitted electron beam. The resultant nine points, i.e. the extracted eight plus the reference spot generated by the transmitted electron beam, are then subjected to symmetry operations, rotation symmetry and mirror symmetry, in polar coordinate system, to classify the point group of the lattice produced by the electron diffraction. One of the difficult task, even in manual analysis, is to ascertain the exact spot where the transmitted electron beam hit the sample at the time of realization of the image. This has been accurately and intuitively done by employing the notion that the transmitted spot must have greater number of pixels, with the highest gray value, among the diffracted spots. The proposed strategy has been applied to a sample set of various images and the results shows that the technique is efficient in determining the unit cell in 2D and classify the point group with good accuracy.

  13. Reconfigurable 2D cMUT-ASIC arrays for 3D ultrasound image

    NASA Astrophysics Data System (ADS)

    Song, Jongkeun; Jung, Sungjin; Kim, Youngil; Cho, Kyungil; Kim, Baehyung; Lee, Seunghun; Na, Junseok; Yang, Ikseok; Kwon, Oh-kyong; Kim, Dongwook

    2012-03-01

    This paper describes the design and implementations of the complete 2D capacitive micromachined ultrasound transducer electronics and its analog front-end module for transmitting high voltage ultrasound pulses and receiving its echo signals to realize 3D ultrasound image. In order to minimize parasitic capacitances and ultimately improve signal-to- noise ratio (SNR), cMUT has to be integrate with Tx/Rx electronics. Additionally, in order to integrate 2D cMUT array module, significant optimized high voltage pulser circuitry, low voltage analog/digital circuit design and packaging challenges are required due to high density of elements and small pitch of each element. We designed 256(16x16)- element cMUT and reconfigurable driving ASIC composed of 120V high voltage pulser, T/R switch, low noise preamplifier and digital control block to set Tx frequency of ultrasound and pulse train in each element. Designed high voltage analog ASIC was successfully bonded with 2D cMUT array by flip-chip bonding process and it connected with analog front-end board to transmit pulse-echo signals. This implementation of reconfigurable cMUT-ASIC-AFE board enables us to produce large aperture 2D transducer array and acquire high quality of 3D ultrasound image.

  14. 2D Ultrasound and 3D MR Image Registration of the Prostate for Brachytherapy Surgical Navigation

    PubMed Central

    Zhang, Shihui; Jiang, Shan; Yang, Zhiyong; Liu, Ranlu

    2015-01-01

    Abstract Two-dimensional (2D) ultrasound (US) images are widely used in minimally invasive prostate procedure for its noninvasive nature and convenience. However, the poor quality of US image makes it difficult to be used as guiding utility. To improve the limitation, we propose a multimodality image guided navigation module that registers 2D US images with magnetic resonance imaging (MRI) based on high quality preoperative models. A 2-step spatial registration method is used to complete the procedure which combines manual alignment and rapid mutual information (MI) optimize algorithm. In addition, a 3-dimensional (3D) reconstruction model of prostate with surrounding organs is employed to combine with the registered images to conduct the navigation. Registration accuracy is measured by calculating the target registration error (TRE). The results show that the error between the US and preoperative MR images of a polyvinyl alcohol hydrogel model phantom is 1.37 ± 0.14 mm, with a similar performance being observed in patient experiments. PMID:26448009

  15. a New 2d Otsu for Water Extraction from SAR Image

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Zhang, J.

    2017-09-01

    SAR image segmentation is a crucial step that heavily influences the performance of image interpretation. The texture factor to replace the neighborhood mean dimension in the traditional Otsu method is proposed in this work, aiming at the problem that the SAR image has unique characteristics and the original 2D Otsu method only considers the pixel neighborhood mean information. In this paper, TerraSAR image with the single band and single polarization is used to water extraction. Firstly, the semantic function is used to analyze the structural characteristics of the sample image to determine the optimal parameters of the texture information extraction. Then, calculate the textural measures such as contrast, entropy, homogeneity, mean and second moment based on gray level co-occurrence matrix(GLCM) method. The results are compared with the artificially marked images and the results of the original 2D Otsu.The experimental results achieve higher objective values, which shows the proposed algorithm using texture factor has a high practical value for SAR Image water segmentation.

  16. Effective GPR Data Acquisition and Imaging

    NASA Astrophysics Data System (ADS)

    Sato, M.

    2014-12-01

    We have demonstrated that dense GPR data acquisition typically antenna step increment less than 1/10 wave length can provide clear 3-dimeantiona subsurface images, and we created 3DGPR images. Now we are interested in developing GPR survey methodologies which required less data acquisition time. In order to speed up the data acquisition, we are studying efficient antenna positioning for GPR survey and 3-D imaging algorithm. For example, we have developed a dual sensor "ALIS", which combines GPR with metal detector (Electromagnetic Induction sensor) for humanitarian demining, which acquires GPR data by hand scanning. ALIS is a pulse radar system, which has a frequency range 0.5-3GHz.The sensor position tracking system has accuracy about a few cm, and the data spacing is typically more than a few cm, but it can visualize the mines, which has a diameter about 8cm. 2 systems of ALIS have been deployed by Cambodian Mine Action Center (CMAC) in mine fields in Cambodia since 2009 and have detected more than 80 buried land mines. We are now developing signal processing for an array type GPR "Yakumo". Yakumo is a SFCW radar system which is a multi-static radar, consisted of 8 transmitter antennas and 8 receiver antennas. We have demonstrated that the multi-static data acquisition is not only effective in data acquisition, but at the same time, it can increase the quality of GPR images. Archaeological survey by Yakumo in large areas, which are more than 100m by 100m have been conducted, for promoting recovery from Tsunami attacked East Japan in March 2011. With a conventional GPR system, we are developing an interpolation method of radar signals, and demonstrated that it can increase the quality of the radar images, without increasing the data acquisition points. When we acquire one dimensional GPR profile along a survey line, we can acquire relatively high density data sets. However, when we need to relocate the data sets along a "virtual" survey line, for example a

  17. 3D/2D Model-to-Image Registration for Quantitative Dietary Assessment.

    PubMed

    Chen, Hsin-Chen; Jia, Wenyan; Li, Zhaoxin; Sun, Yung-Nien; Sun, Mingui

    2012-12-31

    Image-based dietary assessment is important for health monitoring and management because it can provide quantitative and objective information, such as food volume, nutrition type, and calorie intake. In this paper, a new framework, 3D/2D model-to-image registration, is presented for estimating food volume from a single-view 2D image containing a reference object (i.e., a circular dining plate). First, the food is segmented from the background image based on Otsu's thresholding and morphological operations. Next, the food volume is obtained from a user-selected, 3D shape model. The position, orientation and scale of the model are optimized by a model-to-image registration process. Then, the circular plate in the image is fitted and its spatial information is used as constraints for solving the registration problem. Our method takes the global contour information of the shape model into account to obtain a reliable food volume estimate. Experimental results using regularly shaped test objects and realistically shaped food models with known volumes both demonstrate the effectiveness of our method.

  18. Image restoration using 2D autoregressive texture model and structure curve construction

    NASA Astrophysics Data System (ADS)

    Voronin, V. V.; Marchuk, V. I.; Petrosov, S. P.; Svirin, I.; Agaian, S.; Egiazarian, K.

    2015-05-01

    In this paper an image inpainting approach based on the construction of a composite curve for the restoration of the edges of objects in an image using the concepts of parametric and geometric continuity is presented. It is shown that this approach allows to restore the curved edges and provide more flexibility for curve design in damaged image by interpolating the boundaries of objects by cubic splines. After edge restoration stage, a texture restoration using 2D autoregressive texture model is carried out. The image intensity is locally modeled by a first spatial autoregressive model with support in a strongly causal prediction region on the plane. Model parameters are estimated by Yule-Walker method. Several examples considered in this paper show the effectiveness of the proposed approach for large objects removal as well as recovery of small regions on several test images.

  19. Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Li, Haolin; Wang, Di; Pan, Shumin; Zhou, Zhihong

    2015-05-01

    Most of the existing image encryption techniques bear security risks for taking linear transform or suffer encryption data expansion for adopting nonlinear transformation directly. To overcome these difficulties, a novel image compression-encryption scheme is proposed by combining 2D compressive sensing with nonlinear fractional Mellin transform. In this scheme, the original image is measured by measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the nonlinear fractional Mellin transform. The measurement matrices are controlled by chaos map. The Newton Smoothed l0 Norm (NSL0) algorithm is adopted to obtain the decryption image. Simulation results verify the validity and the reliability of this scheme.

  20. Filters in 2D and 3D Cardiac SPECT Image Processing.

    PubMed

    Lyra, Maria; Ploussi, Agapi; Rouchota, Maritina; Synefia, Stella

    2014-01-01

    Nuclear cardiac imaging is a noninvasive, sensitive method providing information on cardiac structure and physiology. Single photon emission tomography (SPECT) evaluates myocardial perfusion, viability, and function and is widely used in clinical routine. The quality of the tomographic image is a key for accurate diagnosis. Image filtering, a mathematical processing, compensates for loss of detail in an image while reducing image noise, and it can improve the image resolution and limit the degradation of the image. SPECT images are then reconstructed, either by filter back projection (FBP) analytical technique or iteratively, by algebraic methods. The aim of this study is to review filters in cardiac 2D, 3D, and 4D SPECT applications and how these affect the image quality mirroring the diagnostic accuracy of SPECT images. Several filters, including the Hanning, Butterworth, and Parzen filters, were evaluated in combination with the two reconstruction methods as well as with a specified MatLab program. Results showed that for both 3D and 4D cardiac SPECT the Butterworth filter, for different critical frequencies and orders, produced the best results. Between the two reconstruction methods, the iterative one might be more appropriate for cardiac SPECT, since it improves lesion detectability due to the significant improvement of image contrast.

  1. Filters in 2D and 3D Cardiac SPECT Image Processing

    PubMed Central

    Ploussi, Agapi; Synefia, Stella

    2014-01-01

    Nuclear cardiac imaging is a noninvasive, sensitive method providing information on cardiac structure and physiology. Single photon emission tomography (SPECT) evaluates myocardial perfusion, viability, and function and is widely used in clinical routine. The quality of the tomographic image is a key for accurate diagnosis. Image filtering, a mathematical processing, compensates for loss of detail in an image while reducing image noise, and it can improve the image resolution and limit the degradation of the image. SPECT images are then reconstructed, either by filter back projection (FBP) analytical technique or iteratively, by algebraic methods. The aim of this study is to review filters in cardiac 2D, 3D, and 4D SPECT applications and how these affect the image quality mirroring the diagnostic accuracy of SPECT images. Several filters, including the Hanning, Butterworth, and Parzen filters, were evaluated in combination with the two reconstruction methods as well as with a specified MatLab program. Results showed that for both 3D and 4D cardiac SPECT the Butterworth filter, for different critical frequencies and orders, produced the best results. Between the two reconstruction methods, the iterative one might be more appropriate for cardiac SPECT, since it improves lesion detectability due to the significant improvement of image contrast. PMID:24804144

  2. Visualizing 2D Probability Distributions from Satellite Image-Derived Data

    NASA Technical Reports Server (NTRS)

    Kao, David; Dungan, Jennifer; Pang, Alex; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Creating maps of biophysical and geophysical variables using Earth Observing System (EOS) satellite image data is an important component of Earth science. These 2D maps have a single value at every location and standard techniques are used to visualize them. Current tools fall short, however, when it is necessary to describe a distribution of values at each location. Distributions may represent a frequency of occurrence over time, frequency of occurrence from multiple runs of an ensemble forecast or possible values from an uncertainty model. 'Distribution data sets' are described, then a case study is presented to visualize such 2D distributions. Distribution data sets are different from multivariate data sets in the sense that the values are for a single variable instead of multiple variables. Our case study data consists of multiple realizations of percent forest cover, generated using a geostatistical technique that combines ground measurements and satellite imagery to model uncertainty about forest cover. We present several approaches for analyzing and visualizing such data sets. The first is a pixel-wise analysis of the probability density functions for the 2D image while the second is an analysis of features identified within the image. Such pixel-wise and feature-wise views will give Earth scientists a more complete understanding of distribution data sets.

  3. 2D-pattern matching image and video compression: theory, algorithms, and experiments.

    PubMed

    Alzina, Marc; Szpankowski, Wojciech; Grama, Ananth

    2002-01-01

    In this paper, we propose a lossy data compression framework based on an approximate two-dimensional (2D) pattern matching (2D-PMC) extension of the Lempel-Ziv (1977, 1978) lossless scheme. This framework forms the basis upon which higher level schemes relying on differential coding, frequency domain techniques, prediction, and other methods can be built. We apply our pattern matching framework to image and video compression and report on theoretical and experimental results. Theoretically, we show that the fixed database model used for video compression leads to suboptimal but computationally efficient performance. The compression ratio of this model is shown to tend to the generalized entropy. For image compression, we use a growing database model for which we provide an approximate analysis. The implementation of 2D-PMC is a challenging problem from the algorithmic point of view. We use a range of techniques and data structures such as k-d trees, generalized run length coding, adaptive arithmetic coding, and variable and adaptive maximum distortion level to achieve good compression ratios at high compression speeds. We demonstrate bit rates in the range of 0.25-0.5 bpp for high-quality images and data rates in the range of 0.15-0.5 Mbps for a baseline video compression scheme that does not use any prediction or interpolation. We also demonstrate that this asymmetric compression scheme is capable of extremely fast decompression making it particularly suitable for networked multimedia applications.

  4. Alternative representations of an image via the 2D wavelet transform: application to character recognition

    NASA Astrophysics Data System (ADS)

    Antoine, Jean-Pierre; Vandergheynst, Pierre; Bouyoucef, Karim; Murenzi, Romain

    1995-06-01

    Both in 1D (signal analysis) and 2D (image processing), the wavelet transform (WT) has become by now a standard tool. Although the discrete version, based on multiresolution analysis, is probably better known, the continous WT (CWT) plays a crucial role for the detection and analysis of particular features in a signal, and we will focus here on the latter. In 2D however, one faces a practical problem. Indeed, the full parameter space of the wavelet transform of an image is 4D. It yields a representation of the image in position parameters (range and perception angle), as well as scale and anisotropy angle. The real challenge is to compute and visualize the full continuous wavelet transform in all four variables--obviously a demanding task. Thus, in order to obtain a manageable tool, some of the variables must be frozen. In other words, one must limit oneself to sections of the parameter space, usually 2D or 3D. For 2D sections, two variables are fixed and the transform is viewed as a function of the two remaing ones, and similarly for 3D sections. Among the six possible 2D sections, two play a privileged role. They yield respectively the position representation, which is the standard one, and the scale-angle representation, which has been proposed and studied systematically by two of us in a number of works. In this paper we will review these results and investigate the four remaining 2D representations. We will also make some comments on possible applications of 3D sections. The most spectacular property of the CWT is its ability at detecting discontinuities in a signal. In an image, this means in particular the sharp boundary between two regions of different luminosity, that is, a contour or an edge. Even more prominent in the transform are the corners of a given contour, for instance the contour of a letter. In a second part, we will exploit this property of the CWT and describe how one may design an algorithm for automatic character recognition (here we

  5. Accelerated short-TE 3D proton echo-planar spectroscopic imaging using 2D-SENSE with a 32-channel array coil.

    PubMed

    Otazo, Ricardo; Tsai, Shang-Yueh; Lin, Fa-Hsuan; Posse, Stefan

    2007-12-01

    MR spectroscopic imaging (MRSI) with whole brain coverage in clinically feasible acquisition times still remains a major challenge. A combination of MRSI with parallel imaging has shown promise to reduce the long encoding times and 2D acceleration with a large array coil is expected to provide high acceleration capability. In this work a very high-speed method for 3D-MRSI based on the combination of proton echo planar spectroscopic imaging (PEPSI) with regularized 2D-SENSE reconstruction is developed. Regularization was performed by constraining the singular value decomposition of the encoding matrix to reduce the effect of low-value and overlapped coil sensitivities. The effects of spectral heterogeneity and discontinuities in coil sensitivity across the spectroscopic voxels were minimized by unaliasing the point spread function. As a result the contamination from extracranial lipids was reduced 1.6-fold on average compared to standard SENSE. We show that the acquisition of short-TE (15 ms) 3D-PEPSI at 3 T with a 32 x 32 x 8 spatial matrix using a 32-channel array coil can be accelerated 8-fold (R = 4 x 2) along y-z to achieve a minimum acquisition time of 1 min. Maps of the concentrations of N-acetyl-aspartate, creatine, choline, and glutamate were obtained with moderate reduction in spatial-spectral quality. The short acquisition time makes the method suitable for volumetric metabolite mapping in clinical studies.

  6. Interpolated Compressed Sensing for 2D Multiple Slice Fast MR Imaging

    PubMed Central

    2013-01-01

    Sparse MRI has been introduced to reduce the acquisition time and raw data size by undersampling the k-space data. However, the image quality, particularly the contrast to noise ratio (CNR), decreases with the undersampling rate. In this work, we proposed an interpolated Compressed Sensing (iCS) method to further enhance the imaging speed or reduce data size without significant sacrifice of image quality and CNR for multi-slice two-dimensional sparse MR imaging in humans. This method utilizes the k-space data of the neighboring slice in the multi-slice acquisition. The missing k-space data of a highly undersampled slice are estimated by using the raw data of its neighboring slice multiplied by a weighting function generated from low resolution full k-space reference images. In-vivo MR imaging in human feet has been used to investigate the feasibility and the performance of the proposed iCS method. The results show that by using the proposed iCS reconstruction method, the average image error can be reduced and the average CNR can be improved, compared with the conventional sparse MRI reconstruction at the same undersampling rate. PMID:23409130

  7. JetCurry: Modeling 3D geometry of AGN jets from 2D images

    NASA Astrophysics Data System (ADS)

    Kosak, Katie; Li, KunYang; Avachat, Sayali S.; Perlman, Eric S.

    2017-02-01

    Written in Python, JetCurry models the 3D geometry of jets from 2-D images. JetCurry requires NumPy and SciPy and incorporates emcee (ascl:1303.002) and AstroPy (ascl:1304.002), and optionally uses VPython. From a defined initial part of the jet that serves as a reference point, JetCurry finds the position of highest flux within a bin of data in the image matrix and fits along the x axis for the general location of the bends in the jet. A spline fitting is used to smooth out the resulted jet stream.

  8. 2D-CELL: image processing software for extraction and analysis of 2-dimensional cellular structures

    NASA Astrophysics Data System (ADS)

    Righetti, F.; Telley, H.; Leibling, Th. M.; Mocellin, A.

    1992-01-01

    2D-CELL is a software package for the processing and analyzing of photographic images of cellular structures in a largely interactive way. Starting from a binary digitized image, the programs extract the line network (skeleton) of the structure and determine the graph representation that best models it. Provision is made for manually correcting defects such as incorrect node positions or dangling bonds. Then a suitable algorithm retrieves polygonal contours which define individual cells — local boundary curvatures are neglected for simplicity. Using elementary analytical geometry relations, a range of metric and topological parameters describing the population are then computed, organized into statistical distributions and graphically displayed.

  9. JetCurry: Modeling 3D geometry of AGN jets from 2D images

    NASA Astrophysics Data System (ADS)

    Li, Kunyang; Kosak, Katie; Avachat, Sayali S.; Perlman, Eric S.

    2017-02-01

    Written in Python, JetCurry models the 3D geometry of AGN jets from 2-D images. JetCurry requires NumPy and SciPy and incorporates emcee (ascl:1303.002) and AstroPy (ascl:1304.002), and optionally uses VPython. From a defined initial part of the jet that serves as a reference point, JetCurry finds the position of highest flux within a bin of data in the image matrix and fits along the x axis for the general location of the bends in the jet. A spline fitting is used to smooth out the resulted jet stream.

  10. The application of high permittivity piezoelectric ceramics to 2D array transducers for medical imaging.

    PubMed

    Felix, N; Tran-Huu-Hue, L P; Walker, L; Millar, C; Lethiecq, M

    2000-03-01

    Two-dimensional (2D) array transducers have become of great interest in the last few years, in view of real-time volumetric ultrasonic imaging. The electrical matching between the high electrical impedance of elements and the standard cables and electronics is one of the key issues in 2D array design. The use of high-permittivity ceramics such as PNNZT either in bulk configuration or in 1-3 piezocomposites decreases the electrical impedance. In this paper, bulk samples of PNNZT and PZT ceramics are characterised, and results are compared. 2D array elements are then manufactured and their electrical impedances measured. Theoretical predictions of homogenisation models for 1-3 piezocomposites allow the simulation of the electroacoustic behaviour of 2D array elements. Results for both piezocomposite and bulk materials can be obtained. Calculations of the input impedance, the sensitivity and the bandwidth of the different configurations are compared and discussed. These results demonstrate the advantages of the PNNZT compositions over standard PZT.

  11. Breast density measurement: 3D cone beam computed tomography (CBCT) images versus 2D digital mammograms

    NASA Astrophysics Data System (ADS)

    Han, Tao; Lai, Chao-Jen; Chen, Lingyun; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Yang, Wei T.; Shaw, Chris C.

    2009-02-01

    Breast density has been recognized as one of the major risk factors for breast cancer. However, breast density is currently estimated using mammograms which are intrinsically 2D in nature and cannot accurately represent the real breast anatomy. In this study, a novel technique for measuring breast density based on the segmentation of 3D cone beam CT (CBCT) images was developed and the results were compared to those obtained from 2D digital mammograms. 16 mastectomy breast specimens were imaged with a bench top flat-panel based CBCT system. The reconstructed 3D CT images were corrected for the cupping artifacts and then filtered to reduce the noise level, followed by using threshold-based segmentation to separate the dense tissue from the adipose tissue. For each breast specimen, volumes of the dense tissue structures and the entire breast were computed and used to calculate the volumetric breast density. BI-RADS categories were derived from the measured breast densities and compared with those estimated from conventional digital mammograms. The results show that in 10 of 16 cases the BI-RADS categories derived from the CBCT images were lower than those derived from the mammograms by one category. Thus, breasts considered as dense in mammographic examinations may not be considered as dense with the CBCT images. This result indicates that the relation between breast cancer risk and true (volumetric) breast density needs to be further investigated.

  12. 2D image classification for 3D anatomy localization: employing deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    de Vos, Bob D.; Wolterink, Jelmer M.; de Jong, Pim A.; Viergever, Max A.; Išgum, Ivana

    2016-03-01

    Localization of anatomical regions of interest (ROIs) is a preprocessing step in many medical image analysis tasks. While trivial for humans, it is complex for automatic methods. Classic machine learning approaches require the challenge of hand crafting features to describe differences between ROIs and background. Deep convolutional neural networks (CNNs) alleviate this by automatically finding hierarchical feature representations from raw images. We employ this trait to detect anatomical ROIs in 2D image slices in order to localize them in 3D. In 100 low-dose non-contrast enhanced non-ECG synchronized screening chest CT scans, a reference standard was defined by manually delineating rectangular bounding boxes around three anatomical ROIs -- heart, aortic arch, and descending aorta. Every anatomical ROI was automatically identified using a combination of three CNNs, each analyzing one orthogonal image plane. While single CNNs predicted presence or absence of a specific ROI in the given plane, the combination of their results provided a 3D bounding box around it. Classification performance of each CNN, expressed in area under the receiver operating characteristic curve, was >=0.988. Additionally, the performance of ROI localization was evaluated. Median Dice scores for automatically determined bounding boxes around the heart, aortic arch, and descending aorta were 0.89, 0.70, and 0.85 respectively. The results demonstrate that accurate automatic 3D localization of anatomical structures by CNN-based 2D image classification is feasible.

  13. 4-D flow magnetic resonance imaging: blood flow quantification compared to 2-D phase-contrast magnetic resonance imaging and Doppler echocardiography

    PubMed Central

    Gabbour, Maya; Schnell, Susanne; Jarvis, Kelly; Robinson, Joshua D.; Markl, Michael

    2015-01-01

    Background Doppler echocardiography (echo) is the reference standard for blood flow velocity analysis, and two-dimensional (2-D) phase-contrast magnetic resonance imaging (MRI) is considered the reference standard for quantitative blood flow assessment. However, both clinical standard-of-care techniques are limited by 2-D acquisitions and single-direction velocity encoding and may make them inadequate to assess the complex three-dimensional hemodynamics seen in congenital heart disease. Four-dimensional flow MRI (4-D flow) enables qualitative and quantitative analysis of complex blood flow in the heart and great arteries. Objectives The objectives of this study are to compare 4-D flow with 2-D phase-contrast MRI for quantification of aortic and pulmonary flow and to evaluate the advantage of 4-D flow-based volumetric flow analysis compared to 2-D phase-contrast MRI and echo for peak velocity assessment in children and young adults. Materials and methods Two-dimensional phase-contrast MRI of the aortic root, main pulmonary artery (MPA), and right and left pulmonary arteries (RPA, LPA) and 4-D flow with volumetric coverage of the aorta and pulmonary arteries were performed in 50 patients (mean age: 13.1±6.4 years). Four-dimensional flow analyses included calculation of net flow and regurgitant fraction with 4-D flow analysis planes similarly positioned to 2-D planes. In addition, 4-D flow volumetric assessment of aortic root/ascending aorta and MPA peak velocities was performed and compared to 2-D phase-contrast MRI and echo. Results Excellent correlation and agreement were found between 2-D phase-contrast MRI and 4-D flow for net flow (r=0.97, P<0.001) and excellent correlation with good agreement was found for regurgitant fraction (r= 0.88, P<0.001) in all vessels. Two-dimensional phase-contrast MRI significantly underestimated aortic (P= 0.032) and MPA (P<0.001) peak velocities compared to echo, while volumetric 4-D flow analysis resulted in higher (aortic: P=0

  14. X-Ray Phase-Contrast Imaging with Three 2D Gratings

    PubMed Central

    Jiang, Ming; Wyatt, Christopher Lee; Wang, Ge

    2008-01-01

    X-ray imaging is of paramount importance for clinical and preclinical imaging but it is fundamentally restricted by the attenuation-based contrast mechanism, which has remained essentially the same since Roentgen's discovery a century ago. Recently, based on the Talbot effect, groundbreaking work was reported using 1D gratings for X-ray phase-contrast imaging with a hospital-grade X-ray tube instead of a synchrotron or microfocused source. In this paper, we report an extension using 2D gratings that reduces the imaging time and increases the accuracy and robustness of phase retrieval compared to current grating-based phase-contrast techniques. Feasibility is demonstrated via numerical simulation. PMID:18401460

  15. Electron Microscopy: From 2D to 3D Images with Special Reference to Muscle

    PubMed Central

    2015-01-01

    This is a brief and necessarily very sketchy presentation of the evolution in electron microscopy (EM) imaging that was driven by the necessity of extracting 3-D views from the essentially 2-D images produced by the electron beam. The lens design of standard transmission electron microscope has not been greatly altered since its inception. However, technical advances in specimen preparation, image collection and analysis gradually induced an astounding progression over a period of about 50 years. From the early images that redefined tissues, cell and cell organelles at the sub-micron level, to the current nano-resolution reconstructions of organelles and proteins the step is very large. The review is written by an investigator who has followed the field for many years, but often from the sidelines, and with great wonder. Her interest in muscle ultrastructure colors the writing. More specific detailed reviews are presented in this issue. PMID:26913146

  16. Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Pan, Shumin; Cheng, Shan; Zhou, Zhihong

    2016-08-01

    Most image encryption algorithms based on low-dimensional chaos systems bear security risks and suffer encryption data expansion when adopting nonlinear transformation directly. To overcome these weaknesses and reduce the possible transmission burden, an efficient image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing is proposed. The original image is measured by the measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the cycle shift operation controlled by a hyper-chaotic system. Cycle shift operation can change the values of the pixels efficiently. The proposed cryptosystem decreases the volume of data to be transmitted and simplifies the keys distribution simultaneously as a nonlinear encryption system. Simulation results verify the validity and the reliability of the proposed algorithm with acceptable compression and security performance.

  17. 2D dose distribution images of a hybrid low field MRI-γ detector

    NASA Astrophysics Data System (ADS)

    Abril, A.; Agulles-Pedrós, L.

    2016-07-01

    The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the 99mTc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.

  18. A software tool for automatic classification and segmentation of 2D/3D medical images

    NASA Astrophysics Data System (ADS)

    Strzelecki, Michal; Szczypinski, Piotr; Materka, Andrzej; Klepaczko, Artur

    2013-02-01

    Modern medical diagnosis utilizes techniques of visualization of human internal organs (CT, MRI) or of its metabolism (PET). However, evaluation of acquired images made by human experts is usually subjective and qualitative only. Quantitative analysis of MR data, including tissue classification and segmentation, is necessary to perform e.g. attenuation compensation, motion detection, and correction of partial volume effect in PET images, acquired with PET/MR scanners. This article presents briefly a MaZda software package, which supports 2D and 3D medical image analysis aiming at quantification of image texture. MaZda implements procedures for evaluation, selection and extraction of highly discriminative texture attributes combined with various classification, visualization and segmentation tools. Examples of MaZda application in medical studies are also provided.

  19. 2D dose distribution images of a hybrid low field MRI-γ detector

    SciTech Connect

    Abril, A. Agulles-Pedrós, L.

    2016-07-07

    The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the {sup 99m}Tc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.

  20. Clinical Assessment of 2D/3D Registration Accuracy in 4 Major Anatomic Sites Using On-Board 2D Kilovoltage Images for 6D Patient Setup

    PubMed Central

    Li, Guang; Yang, T. Jonathan; Furtado, Hugo; Birkfellner, Wolfgang; Ballangrud, Åse; Powell, Simon N.; Mechalakos, James

    2015-01-01

    To provide a comprehensive assessment of patient setup accuracy in 6 degrees of freedom (DOFs) using 2-dimensional/3-dimensional (2D/3D) image registration with on-board 2-dimensional kilovoltage (OB-2DkV) radiographic images, we evaluated cranial, head and neck (HN), and thoracic and abdominal sites under clinical conditions. A fast 2D/3D image registration method using graphics processing unit GPU was modified for registration between OB-2DkV and 3D simulation computed tomography (simCT) images, with 3D/3D registration as the gold standard for 6DOF alignment. In 2D/3D registration, body roll rotation was obtained solely by matching orthogonal OB-2DkV images with a series of digitally reconstructed radiographs (DRRs) from simCT with a small rotational increment along the gantry rotation axis. The window/level adjustments for optimal visualization of the bone in OB-2DkV and DRRs were performed prior to registration. Ideal patient alignment at the isocenter was calculated and used as an initial registration position. In 3D/3D registration, cone-beam CT (CBCT) was aligned to simCT on bony structures using a bone density filter in 6DOF. Included in this retrospective study were 37 patients treated in 55 fractions with frameless stereotactic radiosurgery or stereotactic body radiotherapy for cranial and paraspinal cancer. A cranial phantom was used to serve as a control. In all cases, CBCT images were acquired for patient setup with subsequent OB-2DkV verification. It was found that the accuracy of the 2D/3D registration was 0.0 ± 0.5 mm and 0.1° ± 0.4° in phantom. In patient, it is site dependent due to deformation of the anatomy: 0.2 ± 1.6 mm and −0.4° ± 1.2° on average for each dimension for the cranial site, 0.7 ± 1.6 mm and 0.3° ± 1.3° for HN, 0.7 ± 2.0 mm and −0.7° ± 1.1° for the thorax, and 1.1 ± 2.6 mm and −0.5° ± 1.9° for the abdomen. Anatomical deformation and presence of soft tissue in 2D/3D registration affect the consistency with

  1. Clinical Assessment of 2D/3D Registration Accuracy in 4 Major Anatomic Sites Using On-Board 2D Kilovoltage Images for 6D Patient Setup.

    PubMed

    Li, Guang; Yang, T Jonathan; Furtado, Hugo; Birkfellner, Wolfgang; Ballangrud, Åse; Powell, Simon N; Mechalakos, James

    2015-06-01

    To provide a comprehensive assessment of patient setup accuracy in 6 degrees of freedom (DOFs) using 2-dimensional/3-dimensional (2D/3D) image registration with on-board 2-dimensional kilovoltage (OB-2 DkV) radiographic images, we evaluated cranial, head and neck (HN), and thoracic and abdominal sites under clinical conditions. A fast 2D/3D image registration method using graphics processing unit GPU was modified for registration between OB-2 DkV and 3D simulation computed tomography (simCT) images, with 3D/3D registration as the gold standard for 6 DOF alignment. In 2D/3D registration, body roll rotation was obtained solely by matching orthogonal OB-2 DkV images with a series of digitally reconstructed radiographs (DRRs) from simCT with a small rotational increment along the gantry rotation axis. The window/level adjustments for optimal visualization of the bone in OB-2 DkV and DRRs were performed prior to registration. Ideal patient alignment at the isocenter was calculated and used as an initial registration position. In 3D/3D registration, cone-beam CT (CBCT) was aligned to simCT on bony structures using a bone density filter in 6DOF. Included in this retrospective study were 37 patients treated in 55 fractions with frameless stereotactic radiosurgery or stereotactic body radiotherapy for cranial and paraspinal cancer. A cranial phantom was used to serve as a control. In all cases, CBCT images were acquired for patient setup with subsequent OB-2 DkV verification. It was found that the accuracy of the 2D/3D registration was 0.0 ± 0.5 mm and 0.1° ± 0.4° in phantom. In patient, it is site dependent due to deformation of the anatomy: 0.2 ± 1.6 mm and -0.4° ± 1.2° on average for each dimension for the cranial site, 0.7 ± 1.6 mm and 0.3° ± 1.3° for HN, 0.7 ± 2.0 mm and -0.7° ± 1.1° for the thorax, and 1.1 ± 2.6 mm and -0.5° ± 1.9° for the abdomen. Anatomical deformation and presence of soft tissue in 2D/3D registration affect the consistency with

  2. 2D Imaging in a Lightweight Portable MRI Scanner without Gradient Coils

    PubMed Central

    Cooley, Clarissa Zimmerman; Stockmann, Jason P.; Armstrong, Brandon D.; Sarracanie, Mathieu; Lev, Michael H.; Rosen, Matthew S.; Wald, Lawrence L.

    2014-01-01

    Purpose As the premiere modality for brain imaging, MRI could find wider applicability if lightweight, portable systems were available for siting in unconventional locations such as Intensive Care Units, physician offices, surgical suites, ambulances, emergency rooms, sports facilities, or rural healthcare sites. Methods We construct and validate a truly portable (<100kg) and silent proof-of-concept MRI scanner which replaces conventional gradient encoding with a rotating lightweight cryogen-free, low-field magnet. When rotated about the object, the inhomogeneous field pattern is used as a rotating Spatial Encoding Magnetic field (rSEM) to create generalized projections which encode the iteratively reconstructed 2D image. Multiple receive channels are used to disambiguate the non-bijective encoding field. Results The system is validated with experimental images of 2D test phantoms. Similar to other non-linear field encoding schemes, the spatial resolution is position dependent with blurring in the center, but is shown to be likely sufficient for many medical applications. Conclusion The presented MRI scanner demonstrates the potential for portability by simultaneously relaxing the magnet homogeneity criteria and eliminating the gradient coil. This new architecture and encoding scheme shows convincing proof of concept images that are expected to be further improved with refinement of the calibration and methodology. PMID:24668520

  3. Volumetric synthetic aperture imaging with a piezoelectric 2D row-column probe

    NASA Astrophysics Data System (ADS)

    Bouzari, Hamed; Engholm, Mathias; Christiansen, Thomas Lehrmann; Beers, Christopher; Lei, Anders; Stuart, Matthias Bo; Nikolov, Svetoslav Ivanov; Thomsen, Erik Vilain; Jensen, Jørgen Arendt

    2016-04-01

    The synthetic aperture (SA) technique can be used for achieving real-time volumetric ultrasound imaging using 2-D row-column addressed transducers. This paper investigates SA volumetric imaging performance of an in-house prototyped 3 MHz λ/2-pitch 62+62 element piezoelectric 2-D row-column addressed transducer array. Utilizing single element transmit events, a volume rate of 90 Hz down to 14 cm deep is achieved. Data are obtained using the experimental ultrasound scanner SARUS with a 70 MHz sampling frequency and beamformed using a delay-and-sum (DAS) approach. A signal-to-noise ratio of up to 32 dB is measured on the beamformed images of a tissue mimicking phantom with attenuation of 0.5 dB cm-1 MHz-1, from the surface of the probe to the penetration depth of 300λ. Measured lateral resolution as Full-Width-at-Half-Maximum (FWHM) is between 4λ and 10λ for 18% to 65% of the penetration depth from the surface of the probe. The averaged contrast is 13 dB for the same range. The imaging performance assessment results may represent a reference guide for possible applications of such an array in different medical fields.

  4. Augmented depth perception visualization in 2D/3D image fusion.

    PubMed

    Wang, Jian; Kreiser, Matthias; Wang, Lejing; Navab, Nassir; Fallavollita, Pascal

    2014-12-01

    2D/3D image fusion applications are widely used in endovascular interventions. Complaints from interventionists about existing state-of-art visualization software are usually related to the strong compromise between 2D and 3D visibility or the lack of depth perception. In this paper, we investigate several concepts enabling improvement of current image fusion visualization found in the operating room. First, a contour enhanced visualization is used to circumvent hidden information in the X-ray image. Second, an occlusion and depth color-coding scheme is considered to improve depth perception. To validate our visualization technique both phantom and clinical data are considered. An evaluation is performed in the form of a questionnaire which included 24 participants: ten clinicians and fourteen non-clinicians. Results indicate that the occlusion correction method provides 100% correctness when determining the true position of an aneurysm in X-ray. Further, when integrating an RGB or RB color-depth encoding in the image fusion both perception and intuitiveness are improved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Designing of sparse 2D arrays for Lamb wave imaging using coarray concept

    NASA Astrophysics Data System (ADS)

    Ambroziński, Łukasz; Stepinski, Tadeusz; Uhl, Tadeusz

    2015-03-01

    2D ultrasonic arrays have considerable application potential in Lamb wave based SHM systems, since they enable equivocal damage imaging and even in some cases wave-mode selection. Recently, it has been shown that the 2D arrays can be used in SHM applications in a synthetic focusing (SF) mode, which is much more effective than the classical phase array mode commonly used in NDT. The SF mode assumes a single element excitation of subsequent transmitters and off-line processing the acquired data. In the simplest implementation of the technique, only single multiplexed input and output channels are required, which results in significant hardware simplification. Application of the SF mode for 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process, however, it enables sparse array designs with performance similar to that of the fully populated dense arrays. In this paper we present the coarray concept to facilitate synthesis process of an array's aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum coarray is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual sub-arrays' elements locations. The coarray framework will be presented here using a an example of a star-shaped array. The approach will be discussed in terms of beampatterns of the resulting imaging systems. Both simulated and experimental results will be included.

  6. Designing of sparse 2D arrays for Lamb wave imaging using coarray concept

    SciTech Connect

    Ambroziński, Łukasz Stepinski, Tadeusz Uhl, Tadeusz

    2015-03-31

    2D ultrasonic arrays have considerable application potential in Lamb wave based SHM systems, since they enable equivocal damage imaging and even in some cases wave-mode selection. Recently, it has been shown that the 2D arrays can be used in SHM applications in a synthetic focusing (SF) mode, which is much more effective than the classical phase array mode commonly used in NDT. The SF mode assumes a single element excitation of subsequent transmitters and off-line processing the acquired data. In the simplest implementation of the technique, only single multiplexed input and output channels are required, which results in significant hardware simplification. Application of the SF mode for 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process, however, it enables sparse array designs with performance similar to that of the fully populated dense arrays. In this paper we present the coarray concept to facilitate synthesis process of an array’s aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum coarray is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual sub-arrays’ elements locations. The coarray framework will be presented here using a an example of a star-shaped array. The approach will be discussed in terms of beampatterns of the resulting imaging systems. Both simulated and experimental results will be included.

  7. Imaging and Analysis of Human Vocal Fold Vibration Using Two-Dimensional (2D) Scanning Videokymography.

    PubMed

    Park, Hee-June; Cha, Wonjae; Kim, Geun-Hyo; Jeon, Gye-Rok; Lee, Byung Joo; Shin, Bum-Joo; Choi, Yang-Gyu; Wang, Soo-Geun

    2016-05-01

    Laryngeal videokymography and high-speed digital kymography are the currently available techniques for studying aperiodic vibration of the vocal folds. However, videokymography has a fundamental limitation that only linear portions of the vocal fold mucosa can be visualized, whereas high-speed digital kymography has the disadvantages of lack of immediate feedback during examination and considerable waiting time before kymographic visualization. We developed a new system, two-dimensional (2D) scanning videokymography, that provides a possible alternative for evaluation of the vibratory pattern of the vocal folds. Herein, we report the application of 2D scanning videokymography for visualization of vocal fold vibration in humans and an analysis of its parameters. Two young healthy volunteers (one man and one woman) took part in this study. The vibratory patterns of their vocal folds were evaluated using 2D scanning videokymography and laryngeal stroboscopy. Two-dimensional scanning videokymography provided a high-definition image of the vibratory movements of the vocal folds. In analysis of the images acquired by the device, various parameters including fundamental frequency; ratio of the vibratory phases; phase, amplitude, and glottal area symmetry; and cycle-to-cycle variability were extracted. Our results indicate that 2D scanning videokymography is a useful and promising tool for visualization of the vibratory movement of the vocal folds. This new technique might improve our understanding of the mechanism of vocal fold vibration and contribute to voice research as well as clinical practice. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  8. Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples.

    PubMed

    Gopinath, T; Mote, Kaustubh R; Veglia, Gianluigi

    2015-05-01

    We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living (15)N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through (15)N-(15)N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish (15)N-(15)N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI-HETCOR and 3D PISEMAI-HETCOR-mixing experiments.

  9. 3D Materials image segmentation by 2D propagation: a graph-cut approach considering homomorphism.

    PubMed

    Waggoner, Jarrell; Zhou, Youjie; Simmons, Jeff; De Graef, Marc; Wang, Song

    2013-12-01

    Segmentation propagation, similar to tracking, is the problem of transferring a segmentation of an image to a neighboring image in a sequence. This problem is of particular importance to materials science, where the accurate segmentation of a series of 2D serial-sectioned images of multiple, contiguous 3D structures has important applications. Such structures may have distinct shape, appearance, and topology, which can be considered to improve segmentation accuracy. For example, some materials images may have structures with a specific shape or appearance in each serial section slice, which only changes minimally from slice to slice, and some materials may exhibit specific inter-structure topology that constrains their neighboring relations. Some of these properties have been individually incorporated to segment specific materials images in prior work. In this paper, we develop a propagation framework for materials image segmentation where each propagation is formulated as an optimal labeling problem that can be efficiently solved using the graph-cut algorithm. Our framework makes three key contributions: 1) a homomorphic propagation approach, which considers the consistency of region adjacency in the propagation; 2) incorporation of shape and appearance consistency in the propagation; and 3) a local non-homomorphism strategy to handle newly appearing and disappearing substructures during this propagation. To show the effectiveness of our framework, we conduct experiments on various 3D materials images, and compare the performance against several existing image segmentation methods.

  10. Functional MRI using regularized parallel imaging acquisition.

    PubMed

    Lin, Fa-Hsuan; Huang, Teng-Yi; Chen, Nan-Kuei; Wang, Fu-Nien; Stufflebeam, Steven M; Belliveau, John W; Wald, Lawrence L; Kwong, Kenneth K

    2005-08-01

    Parallel MRI techniques reconstruct full-FOV images from undersampled k-space data by using the uncorrelated information from RF array coil elements. One disadvantage of parallel MRI is that the image signal-to-noise ratio (SNR) is degraded because of the reduced data samples and the spatially correlated nature of multiple RF receivers. Regularization has been proposed to mitigate the SNR loss originating due to the latter reason. Since it is necessary to utilize static prior to regularization, the dynamic contrast-to-noise ratio (CNR) in parallel MRI will be affected. In this paper we investigate the CNR of regularized sensitivity encoding (SENSE) acquisitions. We propose to implement regularized parallel MRI acquisitions in functional MRI (fMRI) experiments by incorporating the prior from combined segmented echo-planar imaging (EPI) acquisition into SENSE reconstructions. We investigated the impact of regularization on the CNR by performing parametric simulations at various BOLD contrasts, acceleration rates, and sizes of the active brain areas. As quantified by receiver operating characteristic (ROC) analysis, the simulations suggest that the detection power of SENSE fMRI can be improved by regularized reconstructions, compared to unregularized reconstructions. Human motor and visual fMRI data acquired at different field strengths and array coils also demonstrate that regularized SENSE improves the detection of functionally active brain regions.

  11. Functional MRI Using Regularized Parallel Imaging Acquisition

    PubMed Central

    Lin, Fa-Hsuan; Huang, Teng-Yi; Chen, Nan-Kuei; Wang, Fu-Nien; Stufflebeam, Steven M.; Belliveau, John W.; Wald, Lawrence L.; Kwong, Kenneth K.

    2013-01-01

    Parallel MRI techniques reconstruct full-FOV images from undersampled k-space data by using the uncorrelated information from RF array coil elements. One disadvantage of parallel MRI is that the image signal-to-noise ratio (SNR) is degraded because of the reduced data samples and the spatially correlated nature of multiple RF receivers. Regularization has been proposed to mitigate the SNR loss originating due to the latter reason. Since it is necessary to utilize static prior to regularization, the dynamic contrast-to-noise ratio (CNR) in parallel MRI will be affected. In this paper we investigate the CNR of regularized sensitivity encoding (SENSE) acquisitions. We propose to implement regularized parallel MRI acquisitions in functional MRI (fMRI) experiments by incorporating the prior from combined segmented echo-planar imaging (EPI) acquisition into SENSE reconstructions. We investigated the impact of regularization on the CNR by performing parametric simulations at various BOLD contrasts, acceleration rates, and sizes of the active brain areas. As quantified by receiver operating characteristic (ROC) analysis, the simulations suggest that the detection power of SENSE fMRI can be improved by regularized reconstructions, compared to unregularized reconstructions. Human motor and visual fMRI data acquired at different field strengths and array coils also demonstrate that regularized SENSE improves the detection of functionally active brain regions. PMID:16032694

  12. Simultaneous functional MRI acquisition of distributed brain regions with high temporal resolution using a 2D-selective radiofrequency excitation.

    PubMed

    Finsterbusch, Jürgen

    2015-02-01

    To perform simultaneous functional MRI of multiple, distributed brain regions at high temporal resolution using a 2D-selective radiofrequency (2DRF) excitation. A tailored 2DRF excitation is used to excite several, small regions-of-interest distributed in the brain. They are acquired in a single projection image with an appropriately chosen orientation such that the different regions-of-interest can be discriminated by their position in the projection plane. Thus, they are excited and acquired simultaneously with a temporal resolution comparable to that of a single-slice measurement. The feasibility of this approach for functional neuroimaging (in-plane resolution 2 × 2 mm(2) ) at high temporal resolution (80 ms) is demonstrated in healthy volunteers for regions-of-interest in the visual and motor system using checkerboard and finger tapping block-design paradigms. Task-related brain activation could be observed in both the visual and the motor system simultaneously with a high temporal resolution. For an onset shift of 240 ms for half of the checkerboard, a delay of the hemodynamic response in the corresponding hemisphere of the visual cortex could be detected. Limiting the excited magnetization to the desired target regions with a 2DRF excitation reduces the imaging sampling requirements which can improve the temporal resolution significantly. © 2014 Wiley Periodicals, Inc.

  13. 2D and 3D visualization methods of endoscopic panoramic bladder images

    NASA Astrophysics Data System (ADS)

    Behrens, Alexander; Heisterklaus, Iris; Müller, Yannick; Stehle, Thomas; Gross, Sebastian; Aach, Til

    2011-03-01

    While several mosaicking algorithms have been developed to compose endoscopic images of the internal urinary bladder wall into panoramic images, the quantitative evaluation of these output images in terms of geometrical distortions have often not been discussed. However, the visualization of the distortion level is highly desired for an objective image-based medical diagnosis. Thus, we present in this paper a method to create quality maps from the characteristics of transformation parameters, which were applied to the endoscopic images during the registration process of the mosaicking algorithm. For a global first view impression, the quality maps are laid over the panoramic image and highlight image regions in pseudo-colors according to their local distortions. This illustration supports then surgeons to identify geometrically distorted structures easily in the panoramic image, which allow more objective medical interpretations of tumor tissue in shape and size. Aside from introducing quality maps in 2-D, we also discuss a visualization method to map panoramic images onto a 3-D spherical bladder model. Reference points are manually selected by the surgeon in the panoramic image and the 3-D model. Then the panoramic image is mapped by the Hammer-Aitoff equal-area projection onto the 3-D surface using texture mapping. Finally the textured bladder model can be freely moved in a virtual environment for inspection. Using a two-hemisphere bladder representation, references between panoramic image regions and their corresponding space coordinates within the bladder model are reconstructed. This additional spatial 3-D information thus assists the surgeon in navigation, documentation, as well as surgical planning.

  14. Acquisition and applications of 3D images

    NASA Astrophysics Data System (ADS)

    Sterian, Paul; Mocanu, Elena

    2007-08-01

    The moiré fringes method and their analysis up to medical and entertainment applications are discussed in this paper. We describe the procedure of capturing 3D images with an Inspeck Camera that is a real-time 3D shape acquisition system based on structured light techniques. The method is a high-resolution one. After processing the images, using computer, we can use the data for creating laser fashionable objects by engraving them with a Q-switched Nd:YAG. In medical field we mention the plastic surgery and the replacement of X-Ray especially in pediatric use.

  15. Evaluation of the channelized Hotelling observer for signal detection in 2D tomographic imaging

    NASA Astrophysics Data System (ADS)

    LaRoque, Samuel J.; Sidky, Emil Y.; Edwards, Darrin C.; Pan, Xiaochuan

    2007-03-01

    Signal detection by the channelized Hotelling (ch-Hotelling) observer is studied for tomographic application by employing a small, tractable 2D model of a computed tomography (CT) system. The primary goal of this manuscript is to develop a practical method for evaluating the ch-Hotelling observer that can generalize to larger 3D cone-beam CT systems. The use of the ch-Hotelling observer for evaluating tomographic image reconstruction algorithms is also demonstrated. For a realistic model for CT, the ch-Hotelling observer can be a good approximation to the ideal observer. The ch-Hotelling observer is applied to both the projection data and the reconstructed images. The difference in signal-to-noise ratio for signal detection in both of these domains provides a metric for evaluating the image reconstruction algorithm.

  16. Registration of dynamic multiview 2D ultrasound and late gadolinium enhanced images of the heart: Application to hypertrophic cardiomyopathy characterization.

    PubMed

    Betancur, Julián; Simon, Antoine; Halbert, Edgar; Tavard, François; Carré, François; Hernández, Alfredo; Donal, Erwan; Schnell, Frédéric; Garreau, Mireille

    2016-02-01

    Describing and analyzing heart multiphysics requires the acquisition and fusion of multisensor cardiac images. Multisensor image fusion enables a combined analysis of these heterogeneous modalities. We propose to register intra-patient multiview 2D+t ultrasound (US) images with multiview late gadolinium-enhanced (LGE) images acquired during cardiac magnetic resonance imaging (MRI), in order to fuse mechanical and tissue state information. The proposed procedure registers both US and LGE to cine MRI. The correction of slice misalignment and the rigid registration of multiview LGE and cine MRI are studied, to select the most appropriate similarity measure. It showed that mutual information performs the best for LGE slice misalignment correction and for LGE and cine registration. Concerning US registration, dynamic endocardial contours resulting from speckle tracking echocardiography were exploited in a geometry-based dynamic registration. We propose the use of an adapted dynamic time warping procedure to synchronize cardiac dynamics in multiview US and cine MRI. The registration of US and LGE MRI was evaluated on a dataset of patients with hypertrophic cardiomyopathy. A visual assessment of 330 left ventricular regions from US images of 28 patients resulted in 92.7% of regions successfully aligned with cardiac structures in LGE. Successfully-aligned regions were then used to evaluate the abilities of strain indicators to predict the presence of fibrosis. Longitudinal peak-strain and peak-delay of aligned left ventricular regions were computed from corresponding regional strain curves from US. The Mann-Withney test proved that the expected values of these indicators change between the populations of regions with and without fibrosis (p < 0.01). ROC curves otherwise proved that the presence of fibrosis is one factor amongst others which modifies longitudinal peak-strain and peak-delay.

  17. Digital acquisition system for high-speed 3-D imaging

    NASA Astrophysics Data System (ADS)

    Yafuso, Eiji

    1997-11-01

    High-speed digital three-dimensional (3-D) imagery is possible using multiple independent charge-coupled device (CCD) cameras with sequentially triggered acquisition and individual field storage capability. The system described here utilizes sixteen independent cameras, providing versatility in configuration and image acquisition. By aligning the cameras in nearly coincident lines-of-sight, a sixteen frame two-dimensional (2-D) sequence can be captured. The delays can be individually adjusted lo yield a greater number of acquired frames during the more rapid segments of the event. Additionally, individual integration periods may be adjusted to ensure adequate radiometric response while minimizing image blur. An alternative alignment and triggering scheme arranges the cameras into two angularly separated banks of eight cameras each. By simultaneously triggering correlated stereo pairs, an eight-frame sequence of stereo images may be captured. In the first alignment scheme the camera lines-of-sight cannot be made precisely coincident. Thus representation of the data as a monocular sequence introduces the issue of independent camera coordinate registration with the real scene. This issue arises more significantly using the stereo pair method to reconstruct quantitative 3-D spatial information of the event as a function of time. The principal development here will be the derivation and evaluation of a solution transform and its inverse for the digital data which will yield a 3-D spatial mapping as a function of time.

  18. Material appearance acquisition from a single image

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Cui, Shulin; Cui, Hanwen; Yang, Lin; Wu, Tao

    2017-01-01

    The scope of this paper is to present a method of material appearance acquisition(MAA) from a single image. In this paper, material appearance is represented by spatially varying bidirectional reflectance distribution function(SVBRDF). Therefore, MAA can be reduced to the problem of recovery of each pixel's BRDF parameters from an original input image, which include diffuse coefficient, specular coefficient, normal and glossiness based on the Blinn-Phone model. In our method, the workflow of MAA includes five main phases: highlight removal, estimation of intrinsic images, shape from shading(SFS), initialization of glossiness and refining SVBRDF parameters based on IPOPT. The results indicate that the proposed technique can effectively extract the material appearance from a single image.

  19. GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration.

    PubMed

    Dorgham, Osama M; Laycock, Stephen D; Fisher, Mark H

    2012-09-01

    Recent advances in programming languages for graphics processing units (GPUs) provide developers with a convenient way of implementing applications which can be executed on the CPU and GPU interchangeably. GPUs are becoming relatively cheap, powerful, and widely available hardware components, which can be used to perform intensive calculations. The last decade of hardware performance developments shows that GPU-based computation is progressing significantly faster than CPU-based computation, particularly if one considers the execution of highly parallelisable algorithms. Future predictions illustrate that this trend is likely to continue. In this paper, we introduce a way of accelerating 2-D/3-D image registration by developing a hybrid system which executes on the CPU and utilizes the GPU for parallelizing the generation of digitally reconstructed radiographs (DRRs). Based on the advancements of the GPU over the CPU, it is timely to exploit the benefits of many-core GPU technology by developing algorithms for DRR generation. Although some previous work has investigated the rendering of DRRs using the GPU, this paper investigates approximations which reduce the computational overhead while still maintaining a quality consistent with that needed for 2-D/3-D registration with sufficient accuracy to be clinically acceptable in certain applications of radiation oncology. Furthermore, by comparing implementations of 2-D/3-D registration on the CPU and GPU, we investigate current performance and propose an optimal framework for PC implementations addressing the rigid registration problem. Using this framework, we are able to render DRR images from a 256×256×133 CT volume in ~24 ms using an NVidia GeForce 8800 GTX and in ~2 ms using NVidia GeForce GTX 580. In addition to applications requiring fast automatic patient setup, these levels of performance suggest image-guided radiation therapy at video frame rates is technically feasible using relatively low cost PC

  20. Development of ultra-fast 2D ion Doppler tomography using image intensified CMOS fast camera

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroshi; Kuwahata, Akihiro; Yamanaka, Haruki; Inomoto, Michiaki; Ono, Yasushi; TS-group Team

    2015-11-01

    The world fastest novel time-resolved 2D ion Doppler tomography diagnostics has been developed using fast camera with high-speed gated image intensifier (frame rate: 200kfps. phosphor decay time: ~ 1 μ s). Time evolution of line-integrated spectra are diffracted from a f=1m, F/8.3 and g=2400L/mm Czerny-Turner polychromator, whose output is intensified and recorded to a high-speed camera with spectral resolution of ~0.005nm/pixel. The system can accommodate up to 36 (9 ×4) spatial points recorded at 5 μs time resolution, tomographic reconstruction is applied for the line-integrated spectra, time-resolved (5 μs/frame) local 2D ion temperature measurement has been achieved without any assumption of shot repeatability. Ion heating during intermittent reconnection event which tends to happen during high guide field merging tokamak was measured around diffusion region in UTST. The measured 2D profile shows ion heating inside the acceleration channel of reconnection outflow jet, stagnation point and downstream region where reconnected field forms thick closed flux surface as in MAST. Achieved maximum ion temperature increases as a function of Brec2 and shows good fit with MAST experiment, demonstrating promising CS-less startup scenario for spherical tokamak. This work is supported by JSPS KAKENHI Grant Number 15H05750 and 15K20921.

  1. De-Li-DAQ-2D - a new data acquisition system for position-sensitive neutron detectors with delay-line readout

    NASA Astrophysics Data System (ADS)

    Levchanovskiy, F. V.; Murashkevich, S. M.

    2016-09-01

    Software for a data acquisition system of modern one- and two-dimensional position-sensitive detectors with delay-line readout, which includes a software interface to a new electronic module De-Li-DAQ-2D with a USB interface, is presented. The new system after successful tests on the stand and on several spectrometers of the IBR-2 reactor has been integrated into the software complex SONIX+ [1]. The De-Li- DAQ-2D module [2] contains an 8-channel time-code converter (TDC-GPX) with a time resolution of 80 ps, field programmable gate array (FPGA), 1 Gbyte histogram memory and high-speed interface with a fiber-optic communication line. A real count rate is no less than 106 events/s. The De-Li-DAQ-2D module is implemented in the NIM standard. The De-Li-DAQ-2D module can operate in two modes: histogram mode and list mode.

  2. Wideband 2-D Array Design Optimization With Fabrication Constraints for 3-D US Imaging.

    PubMed

    Roux, Emmanuel; Ramalli, Alessandro; Liebgott, Herve; Cachard, Christian; Robini, Marc C; Tortoli, Piero

    2017-01-01

    Ultrasound (US) 2-D arrays are of increasing interest due to their electronic steering capability to investigate 3-D regions without requiring any probe movement. These arrays are typically populated by thousands of elements that, ideally, should be individually driven by the companion scanner. Since this is not convenient, the so-called microbeamforming methods, yielding a prebeamforming stage performed in the probe handle by suitable custom integrated circuits, have so far been implemented in a few commercial high-end scanners. A possible approach to implement relatively cheap and efficient 3-D US imaging systems is using 2-D sparse arrays in which a limited number of elements can be coupled to an equal number of independent transmit/receive channels. In order to obtain US beams with adequate characteristics all over the investigated volume, the layout of such arrays must be carefully designed. This paper provides guidelines to design, by using simulated annealing optimization, 2-D sparse arrays capable of fitting specific applications or fabrication/implementation constraints. In particular, an original energy function based on multidepth 3-D analysis of the beam pattern is also exploited. A tutorial example is given, addressed to find the N e elements that should be activated in a 2-D fully populated array to yield efficient acoustic radiating performance over the entire volume. The proposed method is applied to a 32 ×32 array centered at 3 MHz to select the 128, 192, and 256 elements that provide the best acoustic performance. It is shown that the 256-element optimized array yields sidelobe levels even lower (by 5.7 dB) than that of the reference 716-element circular and (by 10.3 dB) than that of the reference 1024-element array.

  3. Computer-aided 2D and 3D quantification of human stem cell fate from in vitro samples using Volocity high performance image analysis software.

    PubMed

    Piltti, Katja M; Haus, Daniel L; Do, Eileen; Perez, Harvey; Anderson, A J; Cummings, B J

    2011-11-01

    Accurate automated cell fate analysis of immunostained human stem cells from 2- and 3-dimensional (2D-3D) images would improve efficiency in the field of stem cell research. Development of an accurate and precise tool that reduces variability and the time needed for human stem cell fate analysis will improve productivity and interpretability of the data across research groups. In this study, we have created protocols for high performance image analysis software Volocity® to classify and quantify cytoplasmic and nuclear cell fate markers from 2D-3D images of human neural stem cells after in vitro differentiation. To enhance 3D image capture efficiency, we optimized the image acquisition settings of an Olympus FV10i® confocal laser scanning microscope to match our quantification protocols and improve cell fate classification. The methods developed in this study will allow for a more time efficient and accurate software based, operator validated, stem cell fate classification and quantification from 2D and 3D images, and yield the highest ≥94.4% correspondence with human recognized objects.

  4. Toward 2D and 3D imaging of magnetic nanoparticles using EPR measurements

    SciTech Connect

    Coene, A. Crevecoeur, G.; Dupré, L.; Leliaert, J.

    2015-09-15

    Purpose: Magnetic nanoparticles (MNPs) are an important asset in many biomedical applications. An effective working of these applications requires an accurate knowledge of the spatial MNP distribution. A promising, noninvasive, and sensitive technique to visualize MNP distributions in vivo is electron paramagnetic resonance (EPR). Currently only 1D MNP distributions can be reconstructed. In this paper, the authors propose extending 1D EPR toward 2D and 3D using computer simulations to allow accurate imaging of MNP distributions. Methods: To find the MNP distribution belonging to EPR measurements, an inverse problem needs to be solved. The solution of this inverse problem highly depends on the stability of the inverse problem. The authors adapt 1D EPR imaging to realize the imaging of multidimensional MNP distributions. Furthermore, the authors introduce partial volume excitation in which only parts of the volume are imaged to increase stability of the inverse solution and to speed up the measurements. The authors simulate EPR measurements of different 2D and 3D MNP distributions and solve the inverse problem. The stability is evaluated by calculating the condition measure and by comparing the actual MNP distribution to the reconstructed MNP distribution. Based on these simulations, the authors define requirements for the EPR system to cope with the added dimensions. Moreover, the authors investigate how EPR measurements should be conducted to improve the stability of the associated inverse problem and to increase reconstruction quality. Results: The approach used in 1D EPR can only be employed for the reconstruction of small volumes in 2D and 3D EPRs due to numerical instability of the inverse solution. The authors performed EPR measurements of increasing cylindrical volumes and evaluated the condition measure. This showed that a reduction of the inherent symmetry in the EPR methodology is necessary. By reducing the symmetry of the EPR setup, quantitative images of

  5. 2D aperture synthesis for Lamb wave imaging using co-arrays

    NASA Astrophysics Data System (ADS)

    Ambrozinski, Lukasz; Stepinski, Tadeusz; Uhl, Tadeusz

    2014-03-01

    2D ultrasonic arrays in Lamb wave based SHM systems can operate in the phased array (PA) or synthetic focusing (SF) mode. In the real-time PA approach, multiple electronically delayed signals excite transmitting elements to form the desired wave-front, whereas receiving elements are used to sense scattered waves. Due to that, the PA mode requires multi channeled hardware and multiple excitations at numerous azimuths to scan the inspected region of interest. To the contrary, the SF mode, assumes a single element excitation of subsequent transmitters and off-line processing of the acquired data. In the simplest implementation of the SF technique, a single multiplexed input and output channels are required, which results in significant hardware simplification. Performance of a 2D imaging array depends on many parameters, such as, its topology, number of its transducers and their spacing in terms of wavelength as well as the type of weighting function (apodization). Moreover, it is possible to use sparse arrays, which means that not all array elements are used for transmitting and/ or receiving. In this paper the co-array concept is applied to facilitate the synthesis process of an array's aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum co-array is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual elements' locations in the sub-arrays used for imaging. The coarray framework will be presented here using two different array topologies, aID uniform linear array and a cross-shaped array that will result in a square coarray. The approach will be discussed in terms of array patterns and beam patterns of the resulting imaging systems. Both, theoretical and experimental results will be given.

  6. Visualizing 3D Objects from 2D Cross Sectional Images Displayed "In-Situ" versus "Ex-Situ"

    ERIC Educational Resources Information Center

    Wu, Bing; Klatzky, Roberta L.; Stetten, George

    2010-01-01

    The present research investigates how mental visualization of a 3D object from 2D cross sectional images is influenced by displacing the images from the source object, as is customary in medical imaging. Three experiments were conducted to assess people's ability to integrate spatial information over a series of cross sectional images in order to…

  7. Visualizing 3D Objects from 2D Cross Sectional Images Displayed "In-Situ" versus "Ex-Situ"

    ERIC Educational Resources Information Center

    Wu, Bing; Klatzky, Roberta L.; Stetten, George

    2010-01-01

    The present research investigates how mental visualization of a 3D object from 2D cross sectional images is influenced by displacing the images from the source object, as is customary in medical imaging. Three experiments were conducted to assess people's ability to integrate spatial information over a series of cross sectional images in order to…

  8. MONSOON: Image Acquisition System or "Pixel Server"

    NASA Astrophysics Data System (ADS)

    Starr, Barry M.; Buchholz, Nick C.; Rahmer, Gustavo; Penegor, Gerald; Schmidt, Ricardo E.; Warner, Michael; Merrill, Michael; Claver, Charles F.; Ho, Y.; Chopra, K. N.; Shroff, C.; Shroff, D.

    2003-03-01

    The MONSOON Image Acquisition System has been designed to meet the need for scalable, multichannel, high-speed image acquisition required for the next-generation optical and infared detectors and mosaic projects currently under development at NOAO as described in other papers at this proceeding such as ORION, NEWFIRM, QUOTA, ODI and LSST. These new systems with their large scale (64 to 2000 channels) and high performance (up to 1Gbyte/s) raise new challenges in terms of communication bandwidth, data storage and data processing requirements which are not adequately met by existing astronomical controllers. In order to meet this demand, new techniques for not only a new detector controller, but rather a new image acquisition architecture, have been defined. These extremely large scale imaging systems also raise less obvious concerns in previously neglected areas of controller design such as physical size and form factor issues, power dissipation and cooling near the telescope, system assembly/test/ integration time, reliability, and total cost of ownership. At NOAO we have taken efforts to look outside of the astronomical community for solutions found in other disciplines to similar classes of problems. A large number of the challenges raised by these system needs are already successfully being faced in other areas such as telecommunications, instrumentation and aerospace. Efforts have also been made to use true commercial off the shelf (COTS) system elements, and find truly technology independent solutions for a number of system design issues whenever possible. The Monsoon effort is a full-disclosure development effort by NOAO in collaboration with the CARA ASTEROID project for the benefit of the astronomical community.

  9. 3D localized 2D ultrafast J-resolved magnetic resonance spectroscopy: in vitro study on a 7 T imaging system.

    PubMed

    Roussel, T; Giraudeau, P; Ratiney, H; Akoka, S; Cavassila, S

    2012-02-01

    2D Magnetic Resonance Spectroscopy (MRS) is a well known tool for the analysis of complicated and overlapped MR spectra and was therefore originally used for structural analysis. It also presents a potential for biomedical applications as shown by an increasing number of works related to localized in vivo experiments. However, 2D MRS suffers from long acquisition times due to the necessary collection of numerous increments in the indirect dimension (t(1)). This paper presents the first 3D localized 2D ultrafast J-resolved MRS sequence, developed on a small animal imaging system, allowing the acquisition of a 3D localized 2D J-resolved MRS spectrum in a single scan. Sequence parameters were optimized regarding Signal-to-Noise ratio and spectral resolution. Sensitivity and spatial localization properties were characterized and discussed. An automatic post-processing method allowing the reduction of artifacts inherent to ultrafast excitation is also presented. This sequence offers an efficient signal localization and shows a great potential for in vivo dynamic spectroscopy.

  10. Diesel combustion and emissions formation using multiple 2-D imaging diagnostics

    SciTech Connect

    Dec, J.E.

    1997-12-31

    Understanding how emissions are formed during diesel combustion is central to developing new engines that can comply with increasingly stringent emission standards while maintaining or improving performance levels. Laser-based planar imaging diagnostics are uniquely capable of providing the temporally and spatially resolved information required for this understanding. Using an optically accessible research engine, a variety of two-dimensional (2-D) imaging diagnostics have been applied to investigators of direct-injection (DI) diesel combustion and emissions formation. These optical measurements have included the following laser-sheet imaging data: Mie scattering to determine liquid-phase fuel distributions, Rayleigh scattering for quantitative vapor-phase-fuel/air mixture images, laser induced incandescence (LII) for relative soot concentrations, simultaneous LII and Rayleigh scattering for relative soot particle-size distributions, planar laser-induced fluorescence (PLIF) to obtain early PAH (polyaromatic hydrocarbon) distributions, PLIF images of the OH radical that show the diffusion flame structure, and PLIF images of the NO radical showing the onset of NO{sub x} production. In addition, natural-emission chemiluminescence images were obtained to investigate autoignition. The experimental setup is described, and the image data showing the most relevant results are presented. Then the conceptual model of diesel combustion is summarized in a series of idealized schematics depicting the temporal and spatial evolution of a reacting diesel fuel jet during the time period investigated. Finally, recent PLIF images of the NO distribution are presented and shown to support the timing and location of NO formation hypothesized from the conceptual model.

  11. Beamforming of Ultrasound Signals from 1-D and 2-D Arrays under Challenging Imaging Conditions

    NASA Astrophysics Data System (ADS)

    Jakovljevic, Marko

    Beamforming of ultrasound signals in the presence of clutter, or partial aperture blockage by an acoustic obstacle can lead to reduced visibility of the structures of interest and diminished diagnostic value of the resulting image. We propose new beamforming methods to recover the quality of ultrasound images under such challenging conditions. Of special interest are the signals from large apertures, which are more susceptible to partial blockage, and from commercial matrix arrays that suffer from low sensitivity due to inherent design/hardware limitations. A coherence-based beamforming method designed for suppressing the in vivo clutter, namely Short-lag Spatial Coherence (SLSC) Imaging, is first implemented on a 1-D array to enhance visualization of liver vasculature in 17 human subjects. The SLSC images show statistically significant improvements in vessel contrast and contrast-to-noise ratio over the matched B-mode images. The concept of SLSC imaging is then extended to matrix arrays, and the first in vivo demonstration of volumetric SLSC imaging on a clinical ultrasound system is presented. The effective suppression of clutter via volumetric SLSC imaging indicates it could potentially compensate for the low sensitivity associated with most commercial matrix arrays. The rest of the dissertation assesses image degradation due to elements blocked by ribs in a transthoracic scan. A method to detect the blocked elements is demonstrated using simulated, ex vivo, and in vivo data from the fully-sampled 2-D apertures. The results show that turning off the blocked elements both reduces the near-field clutter and improves visibility of anechoic/hypoechoic targets. Most importantly, the ex vivo data from large synthetic apertures indicates that the adaptive weighing of the non-blocked elements can recover the loss of focus quality due to periodic rib structure, allowing large apertures to realize their full resolution potential in transthoracic ultrasound.

  12. Encrypting 2D/3D image using improved lensless integral imaging in Fresnel domain

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Wei; Wang, Qiong-Hua; Kim, Seok-Tae; Lee, In-Kwon

    2016-12-01

    We propose a new image encryption technique, for the first time to our knowledge, combined Fresnel transform with the improved lensless integral imaging technique. In this work, before image encryption, the input image is first recorded into an elemental image array (EIA) by using the improved lensless integral imaging technique. The recorded EIA is encrypted into random noise by use of two phase masks located in the Fresnel domain. The positions of phase masks and operation wavelength, as well as the integral imaging system parameters are used as encryption keys that can ensure security. Compared with previous works, the main novelty of this proposed method resides in the fact that the elemental images possess distributed memory characteristic, which greatly improved the robustness of the image encryption algorithm. Meanwhile, the proposed pixel averaging algorithm can effectively address the overlapping problem existing in the computational integral imaging reconstruction process. Numerical simulations are presented to demonstrate the feasibility and effectiveness of the proposed method. Results also indicate the high robustness against data loss attacks.

  13. SNARK09 - a software package for reconstruction of 2D images from 1D projections.

    PubMed

    Klukowska, Joanna; Davidi, Ran; Herman, Gabor T

    2013-06-01

    The problem of reconstruction of slices and volumes from 1D and 2D projections has arisen in a large number of scientific fields (including computerized tomography, electron microscopy, X-ray microscopy, radiology, radio astronomy and holography). Many different methods (algorithms) have been suggested for its solution. In this paper we present a software package, SNARK09, for reconstruction of 2D images from their 1D projections. In the area of image reconstruction, researchers often desire to compare two or more reconstruction techniques and assess their relative merits. SNARK09 provides a uniform framework to implement algorithms and evaluate their performance. It has been designed to treat both parallel and divergent projection geometries and can either create test data (with or without noise) for use by reconstruction algorithms or use data collected by another software or a physical device. A number of frequently-used classical reconstruction algorithms are incorporated. The package provides a means for easy incorporation of new algorithms for their testing, comparison and evaluation. It comes with tools for statistical analysis of the results and ten worked examples.

  14. Groundwater Exploration Using 2-D Resistivity Imaging Technique in Marang, Terengganu, Malaysia

    NASA Astrophysics Data System (ADS)

    Kadri, Muhammad; Nawawi, M. N. M.

    2010-07-01

    Surface water is critically important in supplying water to streams and wetlands, and in providing water for irrigation, manufacturing, electricity power and other uses and it is an important source of water supply especially in various regions in Malaysia and it become ever more important with an increasing population. However groundwater can be an alternative source of water to the ever increasing population. Groundwater is water located beneath the ground surface in soil pore spaces and in the fractures of lithologic water formations. This would provide alternative freshwater source. In order to determine the existence of usable groundwater for agriculture purposes in Marang Terengganu, 2-D resistivity imaging technique was utilized. Three lines were surveyed at the site. The 2-D resistivity imaging technique utilized the Pole -dipole array because of relatively good horizontal coverage but it has significantly higher signal strength. The total length of the survey lines is 400 meters. Three lines were surveyed for groundwater delineation purpose. At Marang, the survey site shows the existence of groundwater. The maximum depth of investigations for the surveys is 125 meters. In general the results show that the subsurface is made up of sand and clay (resistivity value of less 100 ohm-m) and sandstone with resistivity of more than 2000 ohm-m in all the sections. This zone can be a source of groundwater.

  15. Groundwater exploration using 2D Resistivity Imaging in Pagoh, Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Kadri, Muhammad; Nawawi, M. N. M.

    2010-12-01

    Groundwater is a very important component of water resources in nature. Since the demand of groundwater increases with population growth, it is necessary to explore groundwater more intensively. In Malaysia only less than 2% of the present water used is developed from groundwater. In order to determine the existence of usable groundwater for irrigation and drinking purposes in Pagoh, 2D resistivity imaging technique was utilized. The 2-D resistivity imaging technique utilized the Wenner—Schlumberger electrode array configuration because this array is moderately sensitive to both horizontal and vertical structures. Three lines were surveyed for groundwater delineation purpose The length for each survey lines are 400 meters. At Pagoh, the survey site shows the existence of groundwater. It is indicated by the resistivity values about 10-100 ohm-m. The maximum depth of investigation survey is 77 meters. In general the results show that the subsurface is made up of alluvium and clay and the high resistivity values of more than 1000 ohm-m near the surface is due laterite and the end of the depth can be interpreted as mixture of weathered material or bedrock.

  16. Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Pan, X. M.; Yang, Z. J.; Ma, X. D.; Zhu, Y. L.; Luhmann, N. C.; Domier, C. W.; Ruan, B. W.; Zhuang, G.

    2016-11-01

    A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.

  17. High-accuracy biaxial optical extensometer based on 2D digital image correlation

    NASA Astrophysics Data System (ADS)

    Zhu, Feipeng; Gong, Yan; Bai, Pengxiang; Jiang, Zhencheng; Lei, Dong

    2017-08-01

    In two-dimensional digital image correlation (2D-DIC), the optical axis of the camera must be exactly perpendicular to the object surface to avoid the generation of out-of-plane displacement, which leads to low strain accuracy. In this work, we first studied the strain accuracy of a common optical extensometer when the optical axis of the camera is not perpendicular to the specimen surface. Derivation reveals that even a very small oblique angle θ will introduce a considerable strain error and that an opposite oblique angle θ generates an opposite strain error of the same magnitude. Therefore, taking the strain average of these two optical extensometers can almost entirely eliminate such effect of non-perpendicularity, which has the same form as the optical extensometer realized by dual-reflector imaging. Because the transverse strain of a specimen is less than its axial strain, the measurement of transverse strain requires higher strain-measurement accuracy. With the aid of a self-designed right-angled apparatus, we conveniently extend this 1D extensometer to a 2D situation, which is called the biaxial optical extensometer. Uniaxial tensile tests of a stainless-steel specimen are conducted to evaluate the strain accuracy of the biaxial optical extensometer quantitatively. Experimental results show that the transverse and axial strains obtained using the proposed biaxial extensometer are in good agreement with those obtained using strain gauges and that the proposed extensometer achieves higher strain accuracy compared to the 3D-DIC extensometer.

  18. 2D Feature Recognition And 3d Reconstruction In Solar Euv Images

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.

    2005-05-01

    EUV images show the solar corona in a typical temperature range of T >rsim 1 MK, which encompasses the most common coronal structures: loops, filaments, and other magnetic structures in active regions, the quiet Sun, and coronal holes. Quantitative analysis increasingly demands automated 2D feature recognition and 3D reconstruction, in order to localize, track, and monitor the evolution of such coronal structures. We discuss numerical tools that “fingerprint” curvi-linear 1D features (e.g., loops and filaments). We discuss existing finger-printing algorithms, such as the brightness-gradient method, the oriented-connectivity method, stereoscopic methods, time-differencing, and space time feature recognition. We discuss improved 2D feature recognition and 3D reconstruction techniques that make use of additional a priori constraints, using guidance from magnetic field extrapolations, curvature radii constraints, and acceleration and velocity constraints in time-dependent image sequences. Applications of these algorithms aid the analysis of SOHO/EIT, TRACE, and STEREO/SECCHI data, such as disentangling, 3D reconstruction, and hydrodynamic modeling of coronal loops, postflare loops, filaments, prominences, and 3D reconstruction of the coronal magnetic field in general.

  19. Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak

    SciTech Connect

    Pan, X. M.; Yang, Z. J. Ma, X. D.; Ruan, B. W.; Zhuang, G.; Zhu, Y. L.; Luhmann, N. C.; Domier, C. W.

    2016-11-15

    A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.

  20. Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak.

    PubMed

    Pan, X M; Yang, Z J; Ma, X D; Zhu, Y L; Luhmann, N C; Domier, C W; Ruan, B W; Zhuang, G

    2016-11-01

    A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.

  1. Evaluation of 2D resistivity imaging technique for delineating subsurface seepage of hydrocarbon-contaminated water southeast of Karbala city, Iraq.

    PubMed

    Al-Menshed, Firas H; Thabit, Jassim M

    2017-03-01

    2D imaging technique was applied in (8) transects near a pit of contaminated water near contaminated well southeast of Karbala city, Iraq. Each transect was 30 m long with 1 m electrode spacing. Data acquisition was fulfilled by using Wenner electrode array. The resistivity of water-contaminated zone is found less than 3Ω.m and the top dry zone recorded relatively high resistivity (more than 170Ω.m). It is found that the greatest amount of seepage was found moving towards northeast direction coincided with groundwater movement direction, whereas there was no movement towards northwest and southeast directions and restricted on the closest areas to the pit location. The outcomes suggested that the 2D imaging technique is a successful and powerful tool in separating contaminated zone from clear one and in detecting underground seepage depth and moving direction.

  2. Optical image acquisition system for colony analysis

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Jin, Wenbiao

    2006-02-01

    For counting of both colonies and plaques, there is a large number of applications including food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing, AMES testing, pharmaceuticals, paints, sterile fluids and fungal contamination. Recently, many researchers and developers have made efforts for this kind of systems. By investigation, some existing systems have some problems since they belong to a new technology product. One of the main problems is image acquisition. In order to acquire colony images with good quality, an illumination box was constructed as: the box includes front lightning and back lightning, which can be selected by users based on properties of colony dishes. With the illumination box, lightning can be uniform; colony dish can be put in the same place every time, which make image processing easy. A digital camera in the top of the box connected to a PC computer with a USB cable, all the camera functions are controlled by the computer.

  3. Rock fracture image acquisition and analysis

    NASA Astrophysics Data System (ADS)

    Wang, W.; Zongpu, Jia; Chen, Liwan

    2007-12-01

    As a cooperation project between Sweden and China, this paper presents: rock fracture image acquisition and analysis. Rock fracture images are acquired by using UV light illumination and visible optical illumination. To present fracture network reasonable, we set up some models to characterize the network, based on the models, we used Best fit Ferret method to auto-determine fracture zone, then, through skeleton fractures to obtain endpoints, junctions, holes, particles, and branches. Based on the new parameters and a part of common parameters, the fracture network density, porosity, connectivity and complexities can be obtained, and the fracture network is characterized. In the following, we first present a basic consideration and basic parameters for fractures (Primary study of characteristics of rock fractures), then, set up a model for fracture network analysis (Fracture network analysis), consequently to use the model to analyze fracture network with different images (Two dimensional fracture network analysis based on slices), and finally give conclusions and suggestions.

  4. Constructing a Database from Multiple 2D Images for Camera Pose Estimation and Robot Localization

    NASA Technical Reports Server (NTRS)

    Wolf, Michael; Ansar, Adnan I.; Brennan, Shane; Clouse, Daniel S.; Padgett, Curtis W.

    2012-01-01

    The LMDB (Landmark Database) Builder software identifies persistent image features (landmarks) in a scene viewed multiple times and precisely estimates the landmarks 3D world positions. The software receives as input multiple 2D images of approximately the same scene, along with an initial guess of the camera poses for each image, and a table of features matched pair-wise in each frame. LMDB Builder aggregates landmarks across an arbitrarily large collection of frames with matched features. Range data from stereo vision processing can also be passed to improve the initial guess of the 3D point estimates. The LMDB Builder aggregates feature lists across all frames, manages the process to promote selected features to landmarks, and iteratively calculates the 3D landmark positions using the current camera pose estimations (via an optimal ray projection method), and then improves the camera pose estimates using the 3D landmark positions. Finally, it extracts image patches for each landmark from auto-selected key frames and constructs the landmark database. The landmark database can then be used to estimate future camera poses (and therefore localize a robotic vehicle that may be carrying the cameras) by matching current imagery to landmark database image patches and using the known 3D landmark positions to estimate the current pose.

  5. A 2D MTF approach to evaluate and guide dynamic imaging developments.

    PubMed

    Chao, Tzu-Cheng; Chung, Hsiao-Wen; Hoge, W Scott; Madore, Bruno

    2010-02-01

    As the number and complexity of partially sampled dynamic imaging methods continue to increase, reliable strategies to evaluate performance may prove most useful. In the present work, an analytical framework to evaluate given reconstruction methods is presented. A perturbation algorithm allows the proposed evaluation scheme to perform robustly without requiring knowledge about the inner workings of the method being evaluated. A main output of the evaluation process consists of a two-dimensional modulation transfer function, an easy-to-interpret visual rendering of a method's ability to capture all combinations of spatial and temporal frequencies. Approaches to evaluate noise properties and artifact content at all spatial and temporal frequencies are also proposed. One fully sampled phantom and three fully sampled cardiac cine datasets were subsampled (R = 4 and 8) and reconstructed with the different methods tested here. A hybrid method, which combines the main advantageous features observed in our assessments, was proposed and tested in a cardiac cine application, with acceleration factors of 3.5 and 6.3 (skip factors of 4 and 8, respectively). This approach combines features from methods such as k-t sensitivity encoding, unaliasing by Fourier encoding the overlaps in the temporal dimension-sensitivity encoding, generalized autocalibrating partially parallel acquisition, sensitivity profiles from an array of coils for encoding and reconstruction in parallel, self, hybrid referencing with unaliasing by Fourier encoding the overlaps in the temporal dimension and generalized autocalibrating partially parallel acquisition, and generalized autocalibrating partially parallel acquisition-enhanced sensitivity maps for sensitivity encoding reconstructions.

  6. Rotationally symmetric triangulation sensor with integrated object imaging using only one 2D detector

    NASA Astrophysics Data System (ADS)

    Eckstein, Johannes; Lei, Wang; Becker, Jonathan; Jun, Gao; Ott, Peter

    2006-04-01

    In this paper a distance measurement sensor is introduced, equipped with two integrated optical systems, the first one for rotationally symmetric triangulation and the second one for imaging the object while using only one 2D detector for both purposes. Rotationally symmetric triangulation, introduced in [1], eliminates some disadvantages of classical triangulation sensors, especially at steps or strong curvatures of the object, wherefore the measurement result depends not any longer on the angular orientation of the sensor. This is achieved by imaging the scattered light from an illuminated object point to a centered and sharp ring on a low cost area detector. The diameter of the ring is proportional to the distance of the object. The optical system consists of two off axis aspheric reflecting surfaces. This system allows for integrating a second optical system in order to capture images of the object at the same 2D detector. A mock-up was realized for the first time which consists of the reflecting optics for triangulation manufactured by diamond turning. A commercially available appropriate small lens system for imaging was mechanically integrated in the reflecting optics. Alternatively, some designs of retrofocus lens system for larger field of views were investigated. The optical designs allow overlying the image of the object and the ring for distance measurement in the same plane. In this plane a CCD detector is mounted, centered to the optical axis for both channels. A fast algorithm for the evaluation of the ring is implemented. The characteristics, i.e. the ring diameter versus object distance shows very linear behavior. For illumination of the object point for distance measurement, the beam of a red laser diode system is reflected by a wavelength bandpath filter on the axis of the optical system in. Additionally, the surface of the object is illuminated by LED's in the green spectrum. The LED's are located on the outside rim of the reflecting optics. The

  7. Applications Of Digital Image Acquisition In Anthropometry

    NASA Astrophysics Data System (ADS)

    Woolford, Barbara; Lewis, James L.

    1981-10-01

    Anthropometric data on reach and mobility have traditionally been collected by time consuming and relatively inaccurate manual methods. Three dimensional digital image acquisition promises to radically increase the speed and ease of data collection and analysis. A three-camera video anthropometric system for collecting position, velocity, and force data in real time is under development for the Anthropometric Measurement Laboratory at NASA's Johnson Space Center. The use of a prototype of this system for collecting data on reach capabilities and on lateral stability is described. Two extensions of this system are planned.

  8. New automated iris image acquisition method.

    PubMed

    Park, Kang Ryoung

    2005-02-10

    I propose a new iris image acquisition method based on wide- and narrow-view iris cameras. The narrow-view camera has the functionalities of automatic zooming, focusing, panning, and tilting based on the two-dimensional and three-dimensional eye positions detected from the wide- and narrow-view stereo cameras. By using the wide- and narrow-view iris cameras, I compute the user's gaze position, which is used for aligning the X-Y position of the user's eye, and I use the visible-light illuminator for fake-eye detection.

  9. TU-CD-207-08: Intrinsic Image Quality Comparison of Synthesized 2-D and FFDM Images

    SciTech Connect

    Nelson, J; Wells, J; Samei, E

    2015-06-15

    Purpose: With the combined interest of managing patient dose, maintaining or improving image quality, and maintaining or improving the diagnostic utility of mammographic data, this study aims to compare the intrinsic image quality of Hologic’s synthesized 2-D (C-View) and 2-D FFDM images in terms of resolution, contrast, and noise. Methods: This study utilized a novel 3-D printed anthropomorphic breast phantom in addition to the American College of Radiology (ACR) mammography accreditation phantom. Analysis of the 3-D anthropomorphic phantom included visual assessment of resolution and analysis of the normalized noise power spectrum. Analysis of the ACR phantom included both visual inspection and objective automated analysis using in-house software. The software incorporates image- and object-specific CNR visibility thresholds which account for image characteristics such as noise texture which affect object visualization. T- test statistical analysis was also performed on ACR phantom scores. Results: The spatial resolution of C-View images is markedly lower (at least 50% worse) than that of FFDM. And while this is generally associated with the benefit of reduced relative noise magnitude, the noise in C-View images tends to have a more mottled (predominantly low-frequency) texture. In general, for high contrast objects, C-View provides superior visualization over FFDM; however this benefit diminishes for low contrast objects and is applicable only to objects that are sufficiently larger than the spatial resolution threshold. Based on both observer and automated ACR phantom analysis, between 50–70% of C-View images failed to meet ACR minimum accreditation requirements – primarily due to insufficient (unbroken) fiber visibility. Conclusion: Compared to FFDM, C-View offers better depiction of objects of certain size and contrast, but provides poorer overall resolution and noise properties. Based on these findings, the utilization of C-View images in the clinical

  10. A survey among Brazilian thoracic surgeons about the use of preoperative 2D and 3D images

    PubMed Central

    Cipriano, Federico Enrique Garcia; Arcêncio, Livia; Dessotte, Lycio Umeda; Rodrigues, Alfredo José; Vicente, Walter Villela de Andrade

    2016-01-01

    Background Describe the characteristics of how the thoracic surgeon uses the 2D/3D medical imaging to perform surgical planning, clinical practice and teaching in thoracic surgery and check the initial choice and the final choice of the Brazilian Thoracic surgeon as the 2D and 3D models pictures before and after acquiring theoretical knowledge on the generation, manipulation and interactive 3D views. Methods A descriptive research type Survey cross to data provided by the Brazilian Thoracic Surgeons (members of the Brazilian Society of Thoracic Surgery) who responded to the online questionnaire via the internet on their computers or personal devices. Results Of the 395 invitations visualized distributed by email, 107 surgeons completed the survey. There was no statically difference when comparing the 2D vs. 3D models pictures for the following purposes: diagnosis, assessment of the extent of disease, preoperative surgical planning, and communication among physicians, resident training, and undergraduate medical education. Regarding the type of tomographic image display routinely used in clinical practice (2D or 3D or 2D–3D model image) and the one preferred by the surgeon at the end of the questionnaire. Answers surgeons for exclusive use of 2D images: initial choice =50.47% and preferably end =14.02%. Responses surgeons to use 3D models in combination with 2D images: initial choice =48.60% and preferably end =85.05%. There was a significant change in the final selection of 3D models used together with the 2D images (P<0.0001). Conclusions There is a lack of knowledge of the 3D imaging, as well as the use and interactive manipulation in dedicated 3D applications, with consequent lack of uniformity in the surgical planning based on CT images. These findings certainly confirm in changing the preference of thoracic surgeons of 2D views of technologies for 3D images. PMID:27621874

  11. Coronary CTA: image acquisition and interpretation.

    PubMed

    Kerl, Josef Matthias; Hofmann, Lars K; Thilo, Christian; Vogl, Thomas J; Costello, Philip; Schoepf, U Joseph

    2007-02-01

    Computed tomography (CT) of the heart, because of ongoing technical refinement and intense scientific and clinical evaluation, has left the research realm and has matured into a clinical application that is about to fulfill its promise to replace invasive cardiac catheterization in some patient populations. By nature of its target, the continuously moving heart, CT coronary angiography is technically more challenging than other CT applications. Also, rapid technical development requires constant adaptation of acquisition protocols. Those challenges, however, are in no way insurmountable for users with knowledge of general CT technique. The intent of this communication is to provide for those interested in and involved with coronary CT angiography a step-by-step manual, introducing our approach to performing coronary CT angiography. Included are considerations regarding appropriate patient selection, patient medication, radiation protection, contrast enhancement, acquisition and reconstruction parameters, image display and analysis techniques and also the radiology report. Our recommendations are based on our experience which spans the evolution of multidetector-row CT for cardiac applications from its beginnings to the most current iterations of advanced acquisition modalities, which we believe herald the entrance of this test into routine clinical practice.

  12. 2D and 3D MALDI-imaging: conceptual strategies for visualization and data mining.

    PubMed

    Thiele, Herbert; Heldmann, Stefan; Trede, Dennis; Strehlow, Jan; Wirtz, Stefan; Dreher, Wolfgang; Berger, Judith; Oetjen, Janina; Kobarg, Jan Hendrik; Fischer, Bernd; Maass, Peter

    2014-01-01

    3D imaging has a significant impact on many challenges in life sciences, because biology is a 3-dimensional phenomenon. Current 3D imaging-technologies (various types MRI, PET, SPECT) are labeled, i.e. they trace the localization of a specific compound in the body. In contrast, 3D MALDI mass spectrometry-imaging (MALDI-MSI) is a label-free method imaging the spatial distribution of molecular compounds. It complements 3D imaging labeled methods, immunohistochemistry, and genetics-based methods. However, 3D MALDI-MSI cannot tap its full potential due to the lack of statistical methods for analysis and interpretation of large and complex 3D datasets. To overcome this, we established a complete and robust 3D MALDI-MSI pipeline combined with efficient computational data analysis methods for 3D edge preserving image denoising, 3D spatial segmentation as well as finding colocalized m/z values, which will be reviewed here in detail. Furthermore, we explain, why the integration and correlation of the MALDI imaging data with other imaging modalities allows to enhance the interpretation of the molecular data and provides visualization of molecular patterns that may otherwise not be apparent. Therefore, a 3D data acquisition workflow is described generating a set of 3 different dimensional images representing the same anatomies. First, an in-vitro MRI measurement is performed which results in a three-dimensional image modality representing the 3D structure of the measured object. After sectioning the 3D object into N consecutive slices, all N slices are scanned using an optical digital scanner, enabling for performing the MS measurements. Scanning the individual sections results into low-resolution images, which define the base coordinate system for the whole pipeline. The scanned images conclude the information from the spatial (MRI) and the mass spectrometric (MALDI-MSI) dimension and are used for the spatial three-dimensional reconstruction of the object performed by image

  13. On the use of steady-state signal equations for 2D TrueFISP imaging.

    PubMed

    Coolen, Bram F; Heijman, Edwin; Nicolay, Klaas; Strijkers, Gustav J

    2009-07-01

    To explain the signal behavior in 2D-TrueFISP imaging, a slice excitation profile should be considered that describes a variation of effective flip angles and magnetization phases after excitation. These parameters can be incorporated into steady-state equations to predict the final signal within a pixel. The use of steady-state equations assumes that excitation occurs instantaneously, although in reality this is a nonlinear process. In addition, often the flip angle variation within the slice excitation profile is solely considered when using steady-state equations, while TrueFISP is especially known for its sensitivity to phase variations. The purpose of this study was therefore to evaluate the precision of steady-state equations in calculating signal intensities in 2D TrueFISP imaging. To that end, steady-state slice profiles and corresponding signal intensities were calculated as function of flip angle, RF phase advance and pulse shape. More complex Bloch simulations were considered as a gold standard, which described every excitation within the sequence until steady state was reached. They were used to analyze two different methods based on steady-state equations. In addition, measurements on phantoms were done with corresponding imaging parameters. Although the Bloch simulations described the steady-state slice profile formation better than methods based on steady-state equations, the latter performed well in predicting the steady-state signal resulting from it. In certain cases the phase variation within the slice excitation profile did not even have to be taken into account.

  14. 2D Seismic Imaging of Elastic Parameters by Frequency Domain Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Brossier, R.; Virieux, J.; Operto, S.

    2008-12-01

    Thanks to recent advances in parallel computing, full waveform inversion is today a tractable seismic imaging method to reconstruct physical parameters of the earth interior at different scales ranging from the near- surface to the deep crust. We present a massively parallel 2D frequency-domain full-waveform algorithm for imaging visco-elastic media from multi-component seismic data. The forward problem (i.e. the resolution of the frequency-domain 2D PSV elastodynamics equations) is based on low-order Discontinuous Galerkin (DG) method (P0 and/or P1 interpolations). Thanks to triangular unstructured meshes, the DG method allows accurate modeling of both body waves and surface waves in case of complex topography for a discretization of 10 to 15 cells per shear wavelength. The frequency-domain DG system is solved efficiently for multiple sources with the parallel direct solver MUMPS. The local inversion procedure (i.e. minimization of residuals between observed and computed data) is based on the adjoint-state method which allows to efficiently compute the gradient of the objective function. Applying the inversion hierarchically from the low frequencies to the higher ones defines a multiresolution imaging strategy which helps convergence towards the global minimum. In place of expensive Newton algorithm, the combined use of the diagonal terms of the approximate Hessian matrix and optimization algorithms based on quasi-Newton methods (Conjugate Gradient, LBFGS, ...) allows to improve the convergence of the iterative inversion. The distribution of forward problem solutions over processors driven by a mesh partitioning performed by METIS allows to apply most of the inversion in parallel. We shall present the main features of the parallel modeling/inversion algorithm, assess its scalability and illustrate its performances with realistic synthetic case studies.

  15. Development of a 2D Image Reconstruction and Viewing System for Histological Images from Multiple Tissue Blocks: Towards High-Resolution Whole-Organ 3D Histological Images.

    PubMed

    Hashimoto, Noriaki; Bautista, Pinky A; Haneishi, Hideaki; Snuderl, Matija; Yagi, Yukako

    2016-01-01

    High-resolution 3D histology image reconstruction of the whole brain organ starts from reconstructing the high-resolution 2D histology images of a brain slice. In this paper, we introduced a method to automatically align the histology images of thin tissue sections cut from the multiple paraffin-embedded tissue blocks of a brain slice. For this method, we employed template matching and incorporated an optimization technique to further improve the accuracy of the 2D reconstructed image. In the template matching, we used the gross image of the brain slice as a reference to the reconstructed 2D histology image of the slice, while in the optimization procedure, we utilized the Jaccard index as the metric of the reconstruction accuracy. The results of our experiment on the initial 3 different whole-brain tissue slices showed that while the method works, it is also constrained by tissue deformations introduced during the tissue processing and slicing. The size of the reconstructed high-resolution 2D histology image of a brain slice is huge, and designing an image viewer that makes particularly efficient use of the computing power of a standard computer used in our laboratories is of interest. We also present the initial implementation of our 2D image viewer system in this paper. © 2016 S. Karger AG, Basel.

  16. Singular value decomposition-based 2D image reconstruction for computed tomography.

    PubMed

    Liu, Rui; He, Lu; Luo, Yan; Yu, Hengyong

    2017-01-01

    Singular value decomposition (SVD)-based 2D image reconstruction methods are developed and evaluated for a broad class of inverse problems for which there are no analytical solutions. The proposed methods are fast and accurate for reconstructing images in a non-iterative fashion. The multi-resolution strategy is adopted to reduce the size of the system matrix to reconstruct large images using limited memory capacity. A modified high-contrast Shepp-Logan phantom, a low-contrast FORBILD head phantom, and a physical phantom are employed to evaluate the proposed methods with different system configurations. The results show that the SVD methods can accurately reconstruct images from standard scan and interior scan projections and that they outperform other benchmark methods. The general SVD method outperforms the other SVD methods. The truncated SVD and Tikhonov regularized SVD methods accurately reconstruct a region-of-interest (ROI) from an internal scan with a known sub-region inside the ROI. Furthermore, the SVD methods are much faster and more flexible than the benchmark algorithms, especially in the ROI reconstructions in our experiments.

  17. Embedded morphological dilation coding for 2D and 3D images

    NASA Astrophysics Data System (ADS)

    Lazzaroni, Fabio; Signoroni, Alberto; Leonardi, Riccardo

    2002-01-01

    Current wavelet-based image coders obtain high performance thanks to the identification and the exploitation of the statistical properties of natural images in the transformed domain. Zerotree-based algorithms, as Embedded Zerotree Wavelets (EZW) and Set Partitioning In Hierarchical Trees (SPIHT), offer high Rate-Distortion (RD) coding performance and low computational complexity by exploiting statistical dependencies among insignificant coefficients on hierarchical subband structures. Another possible approach tries to predict the clusters of significant coefficients by means of some form of morphological dilation. An example of a morphology-based coder is the Significance-Linked Connected Component Analysis (SLCCA) that has shown performance which are comparable to the zerotree-based coders but is not embedded. A new embedded bit-plane coder is proposed here based on morphological dilation of significant coefficients and context based arithmetic coding. The algorithm is able to exploit both intra-band and inter-band statistical dependencies among wavelet significant coefficients. Moreover, the same approach is used both for two and three-dimensional wavelet-based image compression. Finally we the algorithms are tested on some 2D images and on a medical volume, by comparing the RD results to those obtained with the state-of-the-art wavelet-based coders.

  18. Injectable Colloidal Gold for Use in Intrafractional 2D Image-Guided Radiation Therapy.

    PubMed

    Jølck, Rasmus I; Rydhög, Jonas S; Christensen, Anders N; Hansen, Anders E; Bruun, Linda M; Schaarup-Jensen, Henrik; von Wenck, Asger Stevner; Børresen, Betina; Kristensen, Annemarie T; Clausen, Mads H; Kjaer, Andreas; Conradsen, Knut; Larsen, Rasmus; Af Rosenschöld, Per Munck; Andresen, Thomas L

    2015-04-22

    In the western world, approximately 50% of all cancer patients receive radiotherapy alone or in combination with surgery or chemotherapy. Image-guided radiotherapy (IGRT) has in recent years been introduced to enhance precision of the delivery of radiation dose to tumor tissue. Fiducial markers are often inserted inside the tumor to improve IGRT precision and to enable monitoring of the tumor position during radiation therapy. In the present article, a liquid fiducial tissue marker is presented, which can be injected into tumor tissue using thin and flexible needles. The liquid fiducial has high radio-opacity, which allows for marker-based image guidance in 2D and 3D X-ray imaging during radiation therapy. This is achieved by surface-engineering gold nanoparticles to be highly compatible with a carbohydrate-based gelation matrix. The new fiducial marker is investigated in mice where they are highly biocompatible and stable after implantation. To investigate the clinical potential, a study is conducted in a canine cancer patient with spontaneous developed solid tumor in which the marker is successfully injected and used to align and image-guide radiation treatment of the canine patient. It is concluded that the new fiducial marker has highly interesting properties that warrant investigations in cancer patients. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Tracking contrast agents using real-time 2D photoacoustic imaging system for cardiac applications

    NASA Astrophysics Data System (ADS)

    Olafsson, Ragnar; Montilla, Leonardo; Ingram, Pier; Witte, Russell S.

    2009-02-01

    Photoacoustic (PA) imaging is a rapidly developing imaging modality that can detect optical contrast agents with high sensitivity. While detectors in PA imaging have traditionally been single element ultrasound transducers, use of array systems is desirable because they potentially provide high frame rates to capture dynamic events, such as injection and distribution of contrast in clinical applications. We present preliminary data consisting of 40 second sequences of coregistered pulse-echo (PE) and PA images acquired simultaneously in real time using a clinical ultrasonic machine. Using a 7 MHz linear array, the scanner allowed simultaneous acquisition of inphase-quadrature (IQ) data on 64 elements at a rate limited by the illumination source (Q-switched laser at 20 Hz) with spatial resolution determined to be 0.6 mm (axial) and 0.4 mm (lateral). PA images had a signal-to-noise ratio of approximately 35 dB without averaging. The sequences captured the injection and distribution of an infrared-absorbing contrast agent into a cadaver rat heart. From these data, a perfusion time constant of 0.23 s-1 was estimated. After further refinement, the system will be tested in live animals. Ultimately, an integrated system in the clinic could facilitate inexpensive molecular screening for coronary artery disease.

  20. Integrated circuits for volumetric ultrasound imaging with 2-D CMUT arrays.

    PubMed

    Bhuyan, Anshuman; Choe, Jung Woo; Lee, Byung Chul; Wygant, Ira O; Nikoozadeh, Amin; Oralkan, Ömer; Khuri-Yakub, Butrus T

    2013-12-01

    Real-time volumetric ultrasound imaging systems require transmit and receive circuitry to generate ultrasound beams and process received echo signals. The complexity of building such a system is high due to requirement of the front-end electronics needing to be very close to the transducer. A large number of elements also need to be interfaced to the back-end system and image processing of a large dataset could affect the imaging volume rate. In this work, we present a 3-D imaging system using capacitive micromachined ultrasonic transducer (CMUT) technology that addresses many of the challenges in building such a system. We demonstrate two approaches in integrating the transducer and the front-end electronics. The transducer is a 5-MHz CMUT array with an 8 mm × 8 mm aperture size. The aperture consists of 1024 elements (32 × 32) with an element pitch of 250 μm. An integrated circuit (IC) consists of a transmit beamformer and receive circuitry to improve the noise performance of the overall system. The assembly was interfaced with an FPGA and a back-end system (comprising of a data acquisition system and PC). The FPGA provided the digital I/O signals for the IC and the back-end system was used to process the received RF echo data (from the IC) and reconstruct the volume image using a phased array imaging approach. Imaging experiments were performed using wire and spring targets, a ventricle model and a human prostrate. Real-time volumetric images were captured at 5 volumes per second and are presented in this paper.

  1. Real-time respiratory phase matching between 2D fluoroscopic images and 3D CT images for precise percutaneous lung biopsy.

    PubMed

    Weon, Chijun; Kim, Mina; Park, Chang Min; Ra, Jong Beom

    2017-08-20

    A 3D CT image is used along with real-time 2D fluoroscopic images in the state-of-the-art cone-beam CT system to guide percutaneous lung biopsy (PLB). To improve the guiding accuracy by compensating for respiratory motion, we propose an algorithm for real-time matching of 2D fluoroscopic images to multiple 3D CT images of different respiratory phases that is robust to the small movement and deformation due to cardiac motion. Based on the transformations obtained from non-rigid registration between two 3D CT images acquired at expiratory and inspiratory phases, we first generate sequential 3D CT images (or a 4D CT image) and the corresponding 2D digitally reconstructed radiographs (DRRs) of vessels. We then determine 3D CT images corresponding to each real-time 2D fluoroscopic image, by matching the 2D fluoroscopic image to a 2D DRR. Quantitative evaluations performed with 20 clinical datasets show that registration errors of anatomical features between a 2D fluoroscopic image and its matched 2D DRR are less than 3mm on average. Registration errors of a target lesion are determined to be roughly 3mm on average for 10 datasets. We propose a real-time matching algorithm to compensate for respiratory motion between a 2D fluoroscopic image and 3D CT images of the lung, regardless of cardiac motion, based on a newly improved matching measure. The proposed algorithm can improve the accuracy of a guiding system for the PLB by providing 3D images precisely registered to 2D fluoroscopic images in real-time, without time-consuming respiratory gated or cardiac gated CT images. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Ambient Vehicular Noise recorded on a 2D Distributed Fiber Optic Sensing Array :Applications to Permafrost Thaw Detection and Imaging

    NASA Astrophysics Data System (ADS)

    Ajo Franklin, J. B.; Lindsey, N.; Wagner, A. M.; Dou, S.; Martin, E. R.; Ekblaw, I.; Ulrich, C.; James, S. R.; Freifeld, B. M.; Daley, T. M.

    2016-12-01

    Distributed Acoustic Sensing (DAS) is a recently developed technique that allows the spatially dense ( 1m) continuous recording of seismic signals on long strands of commercial fiber optic cables. The availability of continuous recording on dense arrays offers unique possibilities for long-term timelapse monitoring of environmental processes in arctic environments. In the absence of a repeatable semi-permanent seismic source, the use of ambient surface wave noise from infrastructure use (e.g. moving vehicles) for seismic imaging allows tomographic monitoring of evolving subsurface systems. Challenges in such scenarios include (1) the processing requirements for dense (1000+ channel) arrays recording weeks to months of seismic data, (2) appropriate methods to retrieve empirical noise correlation functions (NCFs) in environments with non-optimal array geometries and both coherent as well as incoherent noise, and (3) semi-automated approaches to invert timelapse NCFs for near-surface soil properties.We present an exploratory study of data from a sparse 2D DAS array acquisition on 4000 linear meters of trenched fiber deployed in 10 crossing profiles. The dataset, collected during July and August of 2016, covers a zone of permafrost undergoing a controlled thaw induced by an array of resistive heaters. The site, located near a heavily used road, has a high level of infrastructure noise but exhibits distance-dependent variation in both noise amplitude and spectrum. We apply seismic interferometry to retrieve the empirical NCF across array subsections, and use collocated geophone and broadband sensors to measure the NCF against the true impulse response function of the medium. We demonstrate that the combination of vehicle tracking and data windowing allows improved reconstruction of stable NCFs appropriate for dispersion analysis and inversion. We also show both spatial and temporal patterns of background noise at the site using 2D beamforming and spectral analysis. Our

  3. High-resolution 2D NMR spectra in inhomogeneous fields based on intermolecular multiple-quantum coherences with efficient acquisition schemes

    NASA Astrophysics Data System (ADS)

    Lin, Meijin; Huang, Yuqing; Chen, Xi; Cai, Shuhui; Chen, Zhong

    2011-01-01

    High-resolution 2D NMR spectra in inhomogeneous fields can be achieved by the use of intermolecular multiple-quantum coherences and shearing reconstruction of 3D data. However, the long acquisition time of 3D spectral data is generally unbearable for invivo applications. To overcome this problem, two pulse sequences dubbed as iDH-COSY and iDH-JRES were proposed in this paper. Although 3D acquisition is still required for the new sequences, the high-resolution 2D spectra can be obtained with a relatively short scanning time utilizing the manipulation of indirect evolution period and sparse sampling. The intermolecular multiple-quantum coherence treatment combined with the raising and lowering operators was applied to derive analytical signal expressions for the new sequences. And the experimental observations agree with the theoretical predictions. Our results show that the new sequences possess bright perspective in the applications on invivo localized NMR spectroscopy.

  4. A 2D/3D hybrid integral imaging display by using fast switchable hexagonal liquid crystal lens array

    NASA Astrophysics Data System (ADS)

    Lee, Hsin-Hsueh; Huang, Ping-Ju; Wu, Jui-Yi; Hsieh, Po-Yuan; Huang, Yi-Pai

    2017-05-01

    The paper proposes a new display which could switch 2D and 3D images on a monitor, and we call it as Hybrid Display. In 3D display technologies, the reduction of image resolution is still an important issue. The more angle information offer to the observer, the less spatial resolution would offer to image resolution because of the fixed panel resolution. Take it for example, in the integral photography system, the part of image without depth, like background, will reduce its resolution by transform from 2D to 3D image. Therefore, we proposed a method by using liquid crystal component to quickly switch the 2D image and 3D image. Meanwhile, the 2D image is set as a background to compensate the resolution.. In the experiment, hexagonal liquid crystal lens array would be used to take the place of fixed lens array. Moreover, in order to increase lens power of the hexagonal LC lens array, we applied high resistance (Hi-R) layer structure on the electrode. Hi-R layer would make the gradient electric field and affect the lens profile. Also, we use panel with 801 PPI to display the integral image in our system. Hence, the consequence of full resolution 2D background with the 3D depth object forms the Hybrid Display.

  5. List-Mode Likelihood: EM Algorithm and Image Quality Estimation Demonstrated on 2-D PET

    PubMed Central

    Barrett, Harrison H.

    2010-01-01

    Using a theory of list-mode maximum-likelihood (ML) source reconstruction presented recently by Barrett et al. [1], this paper formulates a corresponding expectation-maximization (EM) algorithm, as well as a method for estimating noise properties at the ML estimate. List-mode ML is of interest in cases where the dimensionality of the measurement space impedes a binning of the measurement data. It can be advantageous in cases where a better forward model can be obtained by including more measurement coordinates provided by a given detector. Different figures of merit for the detector performance can be computed from the Fisher information matrix (FIM). This paper uses the observed FIM, which requires a single data set, thus, avoiding costly ensemble statistics. The proposed techniques are demonstrated for an idealized two-dimensional (2-D) positron emission tomography (PET) [2-D PET] detector. We compute from simulation data the improved image quality obtained by including the time of flight of the coincident quanta. PMID:9688154

  6. Fast Rotary Nonlinear Spatial Acquisition (FRONSAC) Imaging

    PubMed Central

    Wang, Haifeng; Tam, Leo K.; Constable, R. Todd; Galiana, Gigi

    2015-01-01

    Purpose Nonlinear spatial encoding magnetic fields (SEMs) have been studied to reconstruct images from a minimum number of echoes. Previous work has also explored single shot trajectories in nonlinear SEMs. However, the search continues for optimal schemes that apply nonlinear SEMs to improve spatial encoding efficiency and image quality. Theory and Methods We enhance the encoding efficiency of standard linear gradient trajectories by adding a rapidly rotating nonlinear SEM of moderate amplitude, the so called FRONSAC (Fast ROtary Nonlinear Spatial ACquisition) imaging. This additional gradient greatly improves the image quality of highly undersampled single-shot trajectories, including EPI, Spiral, and Rosette trajectories. Results Our simulations, including noise and dephasing effects, test the effect of adding FRONSAC gradients, demonstrating the applicability of this approach. Performance is explained by demonstrating the additional k-space sampling the nonlinear gradient provides. Studies of the optimal amplitude and frequency of the additional FRONSAC field are presented, and the role of enhanced sampling during the readout demonstrated. Dynamic field mapping in a second-order gradient system shows the proposed gradient waveforms are feasible. Conclusions Images resulting from highly undersampled existing k-space trajectories, such as EPI, Spiral and Rosette, are greatly enhanced simply by adding a rotating nonlinear SEM field. PMID:25950279

  7. Fast rotary nonlinear spatial acquisition (FRONSAC) imaging.

    PubMed

    Wang, Haifeng; Tam, Leo K; Constable, R Todd; Galiana, Gigi

    2016-03-01

    Nonlinear spatial encoding magnetic fields (SEMs) have been studied to reconstruct images from a minimum number of echoes. Previous work has also explored single shot trajectories in nonlinear SEMs. However, the search continues for optimal schemes that apply nonlinear SEMs to improve spatial encoding efficiency and image quality. We enhance the encoding efficiency of standard linear gradient trajectories by adding a rapidly rotating nonlinear SEM of moderate amplitude, the so called FRONSAC (Fast ROtary Nonlinear Spatial ACquisition) imaging. This additional gradient greatly improves the image quality of highly undersampled single-shot trajectories, including EPI, Spiral, and Rosette trajectories. Our simulations, including noise and dephasing effects, test the effect of adding FRONSAC gradients, demonstrating the applicability of this approach. Performance is explained by demonstrating the additional k-space sampling the nonlinear gradient provides. Studies of the optimal amplitude and frequency of the additional FRONSAC field are presented, and the role of enhanced sampling during the readout demonstrated. Dynamic field mapping in a second-order gradient system shows the proposed gradient waveforms are feasible. Images resulting from highly undersampled existing k-space trajectories, such as EPI, Spiral, and Rosette, are greatly enhanced simply by adding a rotating nonlinear SEM field. © 2015 Wiley Periodicals, Inc.

  8. A 2D to 3D ultrasound image registration algorithm for robotically assisted laparoscopic radical prostatectomy

    NASA Astrophysics Data System (ADS)

    Esteghamatian, Mehdi; Pautler, Stephen E.; McKenzie, Charles A.; Peters, Terry M.

    2011-03-01

    Robotically assisted laparoscopic radical prostatectomy (RARP) is an effective approach to resect the diseased organ, with stereoscopic views of the targeted tissue improving the dexterity of the surgeons. However, since the laparoscopic view acquires only the surface image of the tissue, the underlying distribution of the cancer within the organ is not observed, making it difficult to make informed decisions on surgical margins and sparing of neurovascular bundles. One option to address this problem is to exploit registration to integrate the laparoscopic view with images of pre-operatively acquired dynamic contrast enhanced (DCE) MRI that can demonstrate the regions of malignant tissue within the prostate. Such a view potentially allows the surgeon to visualize the location of the malignancy with respect to the surrounding neurovascular structures, permitting a tissue-sparing strategy to be formulated directly based on the observed tumour distribution. If the tumour is close to the capsule, it may be determined that the adjacent neurovascular bundle (NVB) needs to be sacrificed within the surgical margin to ensure that any erupted tumour was resected. On the other hand, if the cancer is sufficiently far from the capsule, one or both NVBs may be spared. However, in order to realize such image integration, the pre-operative image needs to be fused with the laparoscopic view of the prostate. During the initial stages of the operation, the prostate must be tracked in real time so that the pre-operative MR image remains aligned with patient coordinate system. In this study, we propose and investigate a novel 2D to 3D ultrasound image registration algorithm to track the prostate motion with an accuracy of 2.68+/-1.31mm.

  9. Image acquisition system for traffic monitoring applications

    NASA Astrophysics Data System (ADS)

    Auty, Glen; Corke, Peter I.; Dunn, Paul; Jensen, Murray; Macintyre, Ian B.; Mills, Dennis C.; Nguyen, Hao; Simons, Ben

    1995-03-01

    An imaging system for monitoring traffic on multilane highways is discussed. The system, named Safe-T-Cam, is capable of operating 24 hours per day in all but extreme weather conditions and can capture still images of vehicles traveling up to 160 km/hr. Systems operating at different remote locations are networked to allow transmission of images and data to a control center. A remote site facility comprises a vehicle detection and classification module (VCDM), an image acquisition module (IAM) and a license plate recognition module (LPRM). The remote site is connected to the central site by an ISDN communications network. The remote site system is discussed in this paper. The VCDM consists of a video camera, a specialized exposure control unit to maintain consistent image characteristics, and a 'real-time' image processing system that processes 50 images per second. The VCDM can detect and classify vehicles (e.g. cars from trucks). The vehicle class is used to determine what data should be recorded. The VCDM uses a vehicle tracking technique to allow optimum triggering of the high resolution camera of the IAM. The IAM camera combines the features necessary to operate consistently in the harsh environment encountered when imaging a vehicle 'head-on' in both day and night conditions. The image clarity obtained is ideally suited for automatic location and recognition of the vehicle license plate. This paper discusses the camera geometry, sensor characteristics and the image processing methods which permit consistent vehicle segmentation from a cluttered background allowing object oriented pattern recognition to be used for vehicle classification. The image capture of high resolution images and the image characteristics required for the LPRMs automatic reading of vehicle license plates, is also discussed. The results of field tests presented demonstrate that the vision based Safe-T-Cam system, currently installed on open highways, is capable of producing automatic

  10. MR phase imaging with bipolar acquisition.

    PubMed

    Dagher, Joseph; Nael, Kambiz

    2017-04-01

    We have previously proposed a novel magnetic resonance (MR) phase imaging framework (MAGPI) based on a three-echo sequence that demonstrated substantial gains in phase signal-to-noise ratio (SNR). We improve upon the performance of MAGPI by extending the formulation to handle (i) an alternating gradient polarity (bipolar) readout scheme and (ii) an arbitrary number of echoes. We formulate the phase-imaging problem using maximum-likelihood (ML) estimation. The acquisition uses an optimized multi-echo gradient echo (MEGE) sequence. The tissue-phase estimation algorithm is a voxel-per-voxel approach, which requires no reference scans, no phase unwrapping and no spatial denoising. Unlike other methods, our bipolar readout model is general and does not make simplifying assumptions about the even-odd echo phase errors. The results show that (a) our proposed bipolar MAGPI approach improves on the phase SNR gains achieved with monopolar MAGPI and (b) the phase SNR converges with the number of echoes more rapidly with bipolar MAGPI. Importantly, bipolar MAGPI enables phase imaging in severely SNR-constrained scenarios, where monopolar MAGPI is unable to find solutions. The substantial phase SNR gains achieved with our framework are used here to (a) accelerate acquisitions (full brain 0.89 mm in-plane resolution in 2 min 30 sec) and (b) enable high-contrast high-resolution phase imaging (310 µm in-plane resolution) at clinical field strengths. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Flicker image comparison of 2-D gel images for putative protein identification using the 2DWG meta-database.

    PubMed

    Lemkin, P F; Thornwall, G

    1999-09-01

    With the availability of two-dimensional (2-D) gel electrophoresis databases that have many characterized proteins, it may be possible to compare a researcher's gel images with those in relevant databases. This may lead to the putative identification of unknown protein spots in a researcher's gel with those characterized in a given database, saving the researcher time and money by suggesting monoclonal antibodies to try in confirming these identifications. We have developed two tools to help with this comparison: (1) Flicker, http:/(/)www.lecb.ncifcrf.gov/flicker/, a Java applet program running in the researcher's Web browser, to visually compare their gels against gels on the Internet; and (2) the 2DWG meta-database, http:/(/)www.lecb.ncifcrf.gov/2dwgDB /, a searchable database of locations of 2-D electrophoretic gel images found on the Internet. Recent additions to Flicker allow users to click on a protein spot in a gel that is linked to a federated 2D gel database, such as SWISS-2DPAGE, and have it retrieve a report from that Web database for that protein.

  12. A high speed 2D time-to-impact algorithm targeted for smart image sensors

    NASA Astrophysics Data System (ADS)

    Åström, Anders; Forchheimer, Robert

    2014-03-01

    In this paper we present a 2D extension of a previously described 1D method for a time-to-impact sensor [5][6]. As in the earlier paper, the approach is based on measuring time instead of the apparent motion of points in the image plane to obtain data similar to the optical flow. The specific properties of the motion field in the time-to-impact application are used, such as using simple feature points which are tracked from frame to frame. Compared to the 1D case, the features will be proportionally fewer which will affect the quality of the estimation. We give a proposal on how to solve this problem. Results obtained are as promising as those obtained from the 1D sensor.

  13. Investigation of fast particle driven instabilities by 2D electron cyclotron emission imaging on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Classen, I. G. J.; Lauber, Ph; Curran, D.; Boom, J. E.; Tobias, B. J.; Domier, C. W.; Luhmann, N. C., Jr.; Park, H. K.; Garcia Munoz, M.; Geiger, B.; Maraschek, M.; Van Zeeland, M. A.; da Graça, S.; ASDEX Upgrade Team

    2011-12-01

    Detailed measurements of the 2D mode structure of Alfvén instabilities in the current ramp-up phase of neutral beam heated discharges were performed on ASDEX Upgrade, using the electron cyclotron emission imaging (ECEI) diagnostic. This paper focuses on the observation of reversed shear Alfvén eigenmodes (RSAEs) and bursting modes that, with the use of the information from ECEI, have been identified as beta-induced Alfvén eigenmodes (BAEs). Both RSAEs with first and second radial harmonic mode structures were observed. Calculations with the linear gyro-kinetic code LIGKA revealed that the ratio of the damping rates and the frequency difference between the first and second harmonic modes strongly depended on the shape of the q-profile. The bursting character of the BAE type modes, which were radially localized to rational q surfaces, was observed to sensitively depend on the plasma parameters, ranging from strongly bursting to almost steady state.

  14. Nonrigid 2D registration of fluoroscopic coronary artery image sequence with layered motion

    NASA Astrophysics Data System (ADS)

    Park, Taewoo; Jung, Hoyup; Yun, Il Dong

    2016-03-01

    We present a new method for nonrigid registration of coronary artery models with layered motion information. 2D nonrigid registration method is proposed that brings layered motion information into correspondence with fluoroscopic angiograms. The registered model is overlaid on top of interventional angiograms to provide surgical assistance during image-guided chronic total occlusion procedures. The proposed methodology is divided into two parts: layered structures alignments and local nonrigid registration. In the first part, inpainting method is used to estimate a layered rigid transformation that aligns layered motion information. In the second part, a nonrigid registration method is implemented and used to compensate for any local shape discrepancy. Experimental evaluation conducted on a set of 7 fluoroscopic angiograms results in a reduced target registration error, which showed the effectiveness of the proposed method over single layered approach.

  15. Uncooled Terahertz real-time imaging 2D arrays developed at LETI: present status and perspectives

    NASA Astrophysics Data System (ADS)

    Simoens, François; Meilhan, Jérôme; Dussopt, Laurent; Nicolas, Jean-Alain; Monnier, Nicolas; Sicard, Gilles; Siligaris, Alexandre; Hiberty, Bruno

    2017-05-01

    As for other imaging sensor markets, whatever is the technology, the commercial spread of terahertz (THz) cameras has to fulfil simultaneously the criteria of high sensitivity and low cost and SWAP (size, weight and power). Monolithic silicon-based 2D sensors integrated in uncooled THz real-time cameras are good candidates to meet these requirements. Over the past decade, LETI has been studying and developing such arrays with two complimentary technological approaches, i.e. antenna-coupled silicon bolometers and CMOS Field Effect Transistors (FET), both being compatible to standard silicon microelectronics processes. LETI has leveraged its know-how in thermal infrared bolometer sensors in developing a proprietary architecture for THz sensing. High technological maturity has been achieved as illustrated by the demonstration of fast scanning of large field of view and the recent birth of a commercial camera. In the FET-based THz field, recent works have been focused on innovative CMOS read-out-integrated circuit designs. The studied architectures take advantage of the large pixel pitch to enhance the flexibility and the sensitivity: an embedded in-pixel configurable signal processing chain dramatically reduces the noise. Video sequences at 100 frames per second using our 31x31 pixels 2D Focal Plane Arrays (FPA) have been achieved. The authors describe the present status of these developments and perspectives of performance evolutions are discussed. Several experimental imaging tests are also presented in order to illustrate the capabilities of these arrays to address industrial applications such as non-destructive testing (NDT), security or quality control of food.

  16. Flow and Transport of Radionuclides in the Rhizosphere: Imaging and Measurements in a 2D System

    NASA Astrophysics Data System (ADS)

    Pales, Ashley; Darnault, Christophe; Li, Biting; Clifford, Heather; Montgomery, Dawn; Moysey, Stephen; Powell, Brian; DeVol, Tim; Erdmann, Bryan; Edayilam, Nimisha; Tharayil, Nishanth; Dogan, Mine; Martinez, Nicole

    2017-04-01

    This research aims to build upon past 2D tank light transmission methods to quantify real-time flow in unsaturated porous media, understand how exudates effect unstable flow patterns, and understand radionuclide mobility and dispersion in the subsurface. A 2D tank light transmission method was created using a transparent flow through tank coupled with a random rainfall simulator; a commercial LED light and a CMOS DSLR Nikon D5500 camera were used to capture the real-time flow images. The images were broken down from RGB into HVI and analyzed in Matlab to produce quantifiable data about finger formation and water saturation distribution. Radionuclide locations were determined via handheld gamma scanner. Water saturation along the vertical and horizontal profile (Matlab) was used to quantify the finger more objectively than by eye assessment alone. The changes in finger formation and speed of propagation between the control rain water (0.01M NaCl) and the solutions containing plant exudates illustrates that the plant exudates increased the wettability (mobility) of water moving through unsaturated porous media. This understanding of plant exudates effect on unsaturated flow is important for works studying how plants, their roots and exudates, may affect the mobility of radionuclides in unsaturated porous media. As there is an increase in exudate concentration, the mobility of the radionuclides due to changing flow pattern and available water content in porous media may be improved causing more dispersion in the porous media and intake into the plant. Changes in plant root exudation impact the distribution and density of radionuclides in the rhizosphere and vadose zone.

  17. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)

    1999-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: ##EQU1## wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absoption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  18. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Gayen, Swapan K. (Inventor)

    2000-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absorption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  19. Automatic ultrasound image enhancement for 2D semi-automatic breast-lesion segmentation

    NASA Astrophysics Data System (ADS)

    Lu, Kongkuo; Hall, Christopher S.

    2014-03-01

    Breast cancer is the fastest growing cancer, accounting for 29%, of new cases in 2012, and second leading cause of cancer death among women in the United States and worldwide. Ultrasound (US) has been used as an indispensable tool for breast cancer detection/diagnosis and treatment. In computer-aided assistance, lesion segmentation is a preliminary but vital step, but the task is quite challenging in US images, due to imaging artifacts that complicate detection and measurement of the suspect lesions. The lesions usually present with poor boundary features and vary significantly in size, shape, and intensity distribution between cases. Automatic methods are highly application dependent while manual tracing methods are extremely time consuming and have a great deal of intra- and inter- observer variability. Semi-automatic approaches are designed to counterbalance the advantage and drawbacks of the automatic and manual methods. However, considerable user interaction might be necessary to ensure reasonable segmentation for a wide range of lesions. This work proposes an automatic enhancement approach to improve the boundary searching ability of the live wire method to reduce necessary user interaction while keeping the segmentation performance. Based on the results of segmentation of 50 2D breast lesions in US images, less user interaction is required to achieve desired accuracy, i.e. < 80%, when auto-enhancement is applied for live-wire segmentation.

  20. Image inpainting on the basis of spectral structure from 2-D nonharmonic analysis.

    PubMed

    Hasegawa, Masaya; Kako, Takahiro; Hirobayashi, Shigeki; Misawa, Tadanobu; Yoshizawa, Toshio; Inazumi, Yasuhiro

    2013-08-01

    The restoration of images by digital inpainting is an active field of research and such algorithms are, in fact, now widely used. Conventional methods generally apply textures that are most similar to the areas around the missing region or use a large image database. However, this produces discontinuous textures and thus unsatisfactory results. Here, we propose a new technique to overcome this limitation by using signal prediction based on the nonharmonic analysis (NHA) technique proposed by the authors. NHA can be used to extract accurate spectra, irrespective of the window function, and its frequency resolution is less than that of the discrete Fourier transform. The proposed method sequentially generates new textures on the basis of the spectrum obtained by NHA. Missing regions from the spectrum are repaired using an improved cost function for 2D NHA. The proposed method is evaluated using the standard images Lena, Barbara, Airplane, Pepper, and Mandrill. The results show an improvement in MSE of about 10-20 compared with the examplar-based method and good subjective quality.

  1. Extending Ripley’s K-Function to Quantify Aggregation in 2-D Grayscale Images

    PubMed Central

    Amgad, Mohamed; Itoh, Anri; Tsui, Marco Man Kin

    2015-01-01

    In this work, we describe the extension of Ripley’s K-function to allow for overlapping events at very high event densities. We show that problematic edge effects introduce significant bias to the function at very high densities and small radii, and propose a simple correction method that successfully restores the function’s centralization. Using simulations of homogeneous Poisson distributions of events, as well as simulations of event clustering under different conditions, we investigate various aspects of the function, including its shape-dependence and correspondence between true cluster radius and radius at which the K-function is maximized. Furthermore, we validate the utility of the function in quantifying clustering in 2-D grayscale images using three modalities: (i) Simulations of particle clustering; (ii) Experimental co-expression of soluble and diffuse protein at varying ratios; (iii) Quantifying chromatin clustering in the nuclei of wt and crwn1 crwn2 mutant Arabidopsis plant cells, using a previously-published image dataset. Overall, our work shows that Ripley’s K-function is a valid abstract statistical measure whose utility extends beyond the quantification of clustering of non-overlapping events. Potential benefits of this work include the quantification of protein and chromatin aggregation in fluorescent microscopic images. Furthermore, this function has the potential to become one of various abstract texture descriptors that are utilized in computer-assisted diagnostics in anatomic pathology and diagnostic radiology. PMID:26636680

  2. New float equivalent calibration method for 2D image measuring system

    NASA Astrophysics Data System (ADS)

    Gou, Jiansong; Wang, Zhong; Lu, Ruijun; Shen, Xinlan

    2015-08-01

    Pixel equivalent is an important parameter to describe the relationship between pixels of digital images and actual size of measured piece in a 2D image measuring system. It is mainly calibrated with the standard component method, which is traditionally off-line and requires measuring conditions and attitude of devices to remain constant while measuring and calibrating. To overcome above limitations, a new calibration method is proposed in this paper which is defined as the float equivalent method. This method requires the standard component and measured piece be placed in image measuring system simultaneously. Everytime before measuring, no matter aiming at the same measuring point or not, the pixel equivalent is calibrated for this specific time, specific condition, specific measuring point, and specific object distance. This method has the advantage of reducing the influence of conditions changing on the accuracy without additional calibration equipment or operations. The steel tape verification system is taken as an example to testify the effectiveness of the method.

  3. Capabilities of seismic and georadar 2D/3D imaging of shallow subsurface of transport route using the Seismobile system

    NASA Astrophysics Data System (ADS)

    Pilecki, Zenon; Isakow, Zbigniew; Czarny, Rafał; Pilecka, Elżbieta; Harba, Paulina; Barnaś, Maciej

    2017-08-01

    In this work, the capabilities of the Seismobile system for shallow subsurface imaging of transport routes, such as roads, railways, and airport runways, in different geological conditions were presented. The Seismobile system combines the advantages of seismic profiling using landstreamer and georadar (GPR) profiling. It consists of up to four seismic measuring lines and carriage with a suspended GPR antenna. Shallow subsurface recognition may be achieved to a maximum width of 10.5 m for a distance of 3.5 m between the measurement lines. GPR measurement is performed in the axis of the construction. Seismobile allows the measurement time, labour and costs to be reduced due to easy technique of its installation, remote data transmission from geophones to accompanying measuring modules, automated location of the system based on GPS and a highly automated method of seismic wave excitation. In this paper, the results of field tests carried out in different geological conditions were presented. The methodologies of acquisition, processing and interpretation of seismic and GPR measurements were broadly described. Seismograms and its spectrum registered by Seismobile system were compared to the ones registered by Geode seismograph of Geometrix. Seismic data processing and interpretation software allows for the obtaining of 2D/3D models of P- and S-wave velocities. Combined seismic and GPR results achieved sufficient imaging of shallow subsurface to a depth of over a dozen metres. The obtained geophysical information correlated with geological information from the boreholes with good quality. The results of performed tests proved the efficiency of the Seismobile system in seismic and GPR imaging of a shallow subsurface of transport routes under compound conditions.

  4. Web-based interactive 2D/3D medical image processing and visualization software.

    PubMed

    Mahmoudi, Seyyed Ehsan; Akhondi-Asl, Alireza; Rahmani, Roohollah; Faghih-Roohi, Shahrooz; Taimouri, Vahid; Sabouri, Ahmad; Soltanian-Zadeh, Hamid

    2010-05-01

    There are many medical image processing software tools available for research and diagnosis purposes. However, most of these tools are available only as local applications. This limits the accessibility of the software to a specific machine, and thus the data and processing power of that application are not available to other workstations. Further, there are operating system and processing power limitations which prevent such applications from running on every type of workstation. By developing web-based tools, it is possible for users to access the medical image processing functionalities wherever the internet is available. In this paper, we introduce a pure web-based, interactive, extendable, 2D and 3D medical image processing and visualization application that requires no client installation. Our software uses a four-layered design consisting of an algorithm layer, web-user-interface layer, server communication layer, and wrapper layer. To compete with extendibility of the current local medical image processing software, each layer is highly independent of other layers. A wide range of medical image preprocessing, registration, and segmentation methods are implemented using open source libraries. Desktop-like user interaction is provided by using AJAX technology in the web-user-interface. For the visualization functionality of the software, the VRML standard is used to provide 3D features over the web. Integration of these technologies has allowed implementation of our purely web-based software with high functionality without requiring powerful computational resources in the client side. The user-interface is designed such that the users can select appropriate parameters for practical research and clinical studies.

  5. Absorption and scattering 2-D volcano images from numerically calculated space-weighting functions

    NASA Astrophysics Data System (ADS)

    Del Pezzo, Edoardo; Ibañez, Jesus; Prudencio, Janire; Bianco, Francesca; De Siena, Luca

    2016-08-01

    Short-period small magnitude seismograms mainly comprise scattered waves in the form of coda waves (the tail part of the seismogram, starting after S waves and ending when the noise prevails), spanning more than 70 per cent of the whole seismogram duration. Corresponding coda envelopes provide important information about the earth inhomogeneity, which can be stochastically modeled in terms of distribution of scatterers in a random medium. In suitable experimental conditions (i.e. high earth heterogeneity), either the two parameters describing heterogeneity (scattering coefficient), intrinsic energy dissipation (coefficient of intrinsic attenuation) or a combination of them (extinction length and seismic albedo) can be used to image Earth structures. Once a set of such parameter couples has been measured in a given area and for a number of sources and receivers, imaging their space distribution with standard methods is straightforward. However, as for finite-frequency and full-waveform tomography, the essential problem for a correct imaging is the determination of the weighting function describing the spatial sensitivity of observable data to scattering and absorption anomalies. Due to the nature of coda waves, the measured parameter couple can be seen as a weighted space average of the real parameters characterizing the rock volumes illuminated by the scattered waves. This paper uses the Monte Carlo numerical solution of the Energy Transport Equation to find approximate but realistic 2-D space-weighting functions for coda waves. Separate images for scattering and absorption based on these sensitivity functions are then compared with those obtained with commonly used sensitivity functions in an application to data from an active seismic experiment carried out at Deception Island (Antarctica). Results show that these novel functions are based on a reliable and physically grounded method to image magnitude and shape of scattering and absorption anomalies. Their

  6. Image acquisition in laparoscopic and endoscopic surgery

    NASA Astrophysics Data System (ADS)

    Gill, Brijesh S.; Georgeson, Keith E.; Hardin, William D., Jr.

    1995-04-01

    Laparoscopic and endoscopic surgery rely uniquely on high quality display of acquired images, but a multitude of problems plague the researcher who attempts to reproduce such images for educational purposes. Some of these are intrinsic limitations of current laparoscopic/endoscopic visualization systems, while others are artifacts solely of the process used to acquire and reproduce such images. Whatever the genesis of these problems, a glance at current literature will reveal the extent to which endoscopy suffers from an inability to reproduce what the surgeon sees during a procedure. The major intrinsic limitation to the acquisition of high-quality still images from laparoscopic procedures lies in the inability to couple directly a camera to the laparoscope. While many systems have this capability, this is useful mostly for otolaryngologists, who do not maintain a sterile field around their scopes. For procedures in which a sterile field must be maintained, one trial method has been to use a beam splitter to send light both to the still camera and the digital video camera. This is no solution, however, since this results in low quality still images as well as a degradation of the image that the surgeon must use to operate, something no surgeon tolerates lightly. Researchers thus must currently rely on other methods for producing images from a laparoscopic procedure. Most manufacturers provide an optional slide or print maker that provides a hardcopy output from the processed composite video signal. The results achieved from such devices are marginal, to say the least. This leaves only one avenue for possible image production, the videotape record of an endoscopic or laparoscopic operation. Video frame grabbing is at least a problem to which industry has applied considerable time and effort to solving. Our own experience with computerized enhancement of videotape frames has been very promising. Computer enhancement allows the researcher to correct several of the

  7. Model-based segmentation and quantification of subcellular structures in 2D and 3D fluorescent microscopy images

    NASA Astrophysics Data System (ADS)

    Wörz, Stefan; Heinzer, Stephan; Weiss, Matthias; Rohr, Karl

    2008-03-01

    We introduce a model-based approach for segmenting and quantifying GFP-tagged subcellular structures of the Golgi apparatus in 2D and 3D microscopy images. The approach is based on 2D and 3D intensity models, which are directly fitted to an image within 2D circular or 3D spherical regions-of-interest (ROIs). We also propose automatic approaches for the detection of candidates, for the initialization of the model parameters, and for adapting the size of the ROI used for model fitting. Based on the fitting results, we determine statistical information about the spatial distribution and the total amount of intensity (fluorescence) of the subcellular structures. We demonstrate the applicability of our new approach based on 2D and 3D microscopy images.

  8. Assessment of prosthesis alignment after revision total knee arthroplasty using EOS 2D and 3D imaging: a reliability study.

    PubMed

    Meijer, Marrigje F; Boerboom, Alexander L; Stevens, Martin; Bulstra, Sjoerd K; Reininga, Inge H F

    2014-01-01

    A new low-dose X-ray device, called EOS, has been introduced for determining lower-limb alignment in 2D and 3D. Reliability has not yet been assessed when using EOS on lower limbs containing a knee prosthesis. Therefore purpose of this study was to determine intraobserver and interobserver reliability of EOS 2D and 3D knee prosthesis alignment measurements after revision total knee arthroplasty (rTKA). Forty anteroposterior and lateral images of 37 rTKA patients were included. Two observers independently performed measurements on these images twice. Varus/valgus angles were measured in 2D (VV2D) and 3D (VV3D). Intraclass correlation coefficients and the Bland and Altman method were used to determine reliability. T-tests were used to test potential differences. Intraobserver and interobserver reliability were excellent for VV2D and VV3D. No significant difference or bias between the first and second measurements or the two observers was found. A significant mean and absolute difference of respectively 1.00° and 1.61° existed between 2D and 3D measurements. EOS provides reliable varus/valgus measurements in 2D and 3D for the alignment of the knee joint with a knee prosthesis. However, significant differences exist between varus/valgus measurements in 2D and 3D.

  9. Black-blood multicontrast imaging of carotid arteries with DANTE-prepared 2D and 3D MR imaging.

    PubMed

    Li, Linqing; Chai, Joshua T; Biasiolli, Luca; Robson, Matthew D; Choudhury, Robin P; Handa, Ashok I; Near, Jamie; Jezzard, Peter

    2014-11-01

    To prospectively compare the black-blood ( BB black blood ) imaging efficiency of a delay alternating with nutation for tailored excitation ( DANTE delay alternating with nutation for tailored excitation ) preparation module with conventional double inversion-recovery ( DIR double inversion recovery ) and motion-sensitive driven equilibrium ( MSDE motion-sensitive driven equilibrium ) preparation modules and to introduce a new three-dimensional ( 3D three-dimensional ) T1-weighted magnetic resonance (MR) imaging sequence. Carotid artery wall imaging was performed in 10 healthy volunteers and 15 patients in accordance with an institutional review board-approved protocol. Two-dimensional ( 2D two-dimensional ) turbo spin-echo ( TSE turbo spin echo ) and 3D three-dimensional fast low-angle shot ( FLASH fast low-angle shot ) sequences served as readout modules. DANTE delay alternating with nutation for tailored excitation -prepared T1-, T2-, and proton density-weighted 2D two-dimensional TSE turbo spin echo images, as well as T1-weighted 3D three-dimensional DANTE delay alternating with nutation for tailored excitation -prepared FLASH fast low-angle shot (hereafter, 3D three-dimensional DASH DANTE-prepared FLASH ) images, were acquired in the region of the carotid artery bifurcation. For comparison, 2D two-dimensional DIR double inversion recovery -prepared, 2D two-dimensional MSDE motion-sensitive driven equilibrium -prepared multicontrast TSE turbo spin echo , and 3D three-dimensional MSDE motion-sensitive driven equilibrium -prepared FLASH fast low-angle shot (hereafter, 3D three-dimensional MERGE MSDE-prepared FLASH ) MR images were also acquired. The effective contrast-to-noise ratio ( CNReff effective contrast-to-noise ratio ) per unit time was calculated for all sequences. Paired t tests were performed to test within-group differences in vessel wall CNReff effective contrast-to-noise ratio . The CNReff effective contrast-to-noise ratio of DANTE delay alternating

  10. Measurement of food volume based on single 2-D image without conventional camera calibration.

    PubMed

    Yue, Yaofeng; Jia, Wenyan; Sun, Mingui

    2012-01-01

    Food portion size measurement combined with a database of calories and nutrients is important in the study of metabolic disorders such as obesity and diabetes. In this work, we present a convenient and accurate approach to the calculation of food volume by measuring several dimensions using a single 2-D image as the input. This approach does not require the conventional checkerboard based camera calibration since it is burdensome in practice. The only prior requirements of our approach are: 1) a circular container with a known size, such as a plate, a bowl or a cup, is present in the image, and 2) the picture is taken under a reasonable assumption that the camera is always held level with respect to its left and right sides and its lens is tilted down towards foods on the dining table. We show that, under these conditions, our approach provides a closed form solution to camera calibration, allowing convenient measurement of food portion size using digital pictures.

  11. Ultrasound 2D strain estimator based on image registration for ultrasound elastography

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Torres, Mylin; Kirkpatrick, Stephanie; Curran, Walter J.; Liu, Tian

    2014-03-01

    In this paper, we present a new approach to calculate 2D strain through the registration of the pre- and post-compression (deformation) B-mode image sequences based on an intensity-based non-rigid registration algorithm (INRA). Compared with the most commonly used cross-correlation (CC) method, our approach is not constrained to any particular set of directions, and can overcome displacement estimation errors introduced by incoherent motion and variations in the signal under high compression. This INRA method was tested using phantom and in vivo data. The robustness of our approach was demonstrated in the axial direction as well as the lateral direction where the standard CC method frequently fails. In addition, our approach copes well under large compression (over 6%). In the phantom study, we computed the strain image under various compressions and calculated the signal-to-noise (SNR) and contrast-to-noise (CNS) ratios. The SNR and CNS values of the INRA method were much higher than those calculated from the CC-based method. Furthermore, the clinical feasibility of our approach was demonstrated with the in vivo data from patients with arm lymphedema.

  12. 2D magnetotelluric inversion using reflection seismic images as constraints and application in the COSC project

    NASA Astrophysics Data System (ADS)

    Kalscheuer, Thomas; Yan, Ping; Hedin, Peter; Garcia Juanatey, Maria d. l. A.

    2017-04-01

    We introduce a new constrained 2D magnetotelluric (MT) inversion scheme, in which the local weights of the regularization operator with smoothness constraints are based directly on the envelope attribute of a reflection seismic image. The weights resemble those of a previously published seismic modification of the minimum gradient support method introducing a global stabilization parameter. We measure the directional gradients of the seismic envelope to modify the horizontal and vertical smoothness constraints separately. An appropriate choice of the new stabilization parameter is based on a simple trial-and-error procedure. Our proposed constrained inversion scheme was easily implemented in an existing Gauss-Newton inversion package. From a theoretical perspective, we compare our new constrained inversion to similar constrained inversion methods, which are based on image theory and seismic attributes. Successful application of the proposed inversion scheme to the MT field data of the Collisional Orogeny in the Scandinavian Caledonides (COSC) project using constraints from the envelope attribute of the COSC reflection seismic profile (CSP) helped to reduce the uncertainty of the interpretation of the main décollement. Thus, the new model gave support to the proposed location of a future borehole COSC-2 which is supposed to penetrate the main décollement and the underlying Precambrian basement.

  13. Coronary arteries motion modeling on 2D x-ray images

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Sundar, Hari

    2012-02-01

    During interventional procedures, 3D imaging modalities like CT and MRI are not commonly used due to interference with the surgery and radiation exposure concerns. Therefore, real-time information is usually limited and building models of cardiac motion are difficult. In such case, vessel motion modeling based on 2-D angiography images become indispensable. Due to issues with existing vessel segmentation algorithms and the lack of contrast in occluded vessels, manual segmentation of certain branches is usually necessary. In addition, such occluded branches are the most important vessels during coronary interventions and obtaining motion models for these can greatly help in reducing the procedure time and radiation exposure. Segmenting different cardiac phases independently does not guarantee temporal consistency and is not efficient for occluded branches required manual segmentation. In this paper, we propose a coronary motion modeling system which extracts the coronary tree for every cardiac phase, maintaining the segmentation by tracking the coronary tree during the cardiac cycle. It is able to map every frame to the specific cardiac phase, thereby inferring the shape information of the coronary arteries using the model corresponding to its phase. Our experiments show that our motion modeling system can achieve promising results with real-time performance.

  14. Pulmonary vein imaging: comparison of 3D magnetic resonance angiography with 2D cine MRI for characterizing anatomy and size.

    PubMed

    Syed, Mushabbar A; Peters, Dana C; Rashid, Haroon; Arai, Andrew E

    2005-01-01

    Pulmonary vein imaging is integral for planning atrial fibrillation ablation procedures. We tested the feasibility of quantifying pulmonary vein ostial diameter using two-dimensional cine cardiac magnetic resonance (2D cine CMR) and three-dimensional magnetic resonance angiography (3D MRA). Nine patients with a history of atrial fibrillation and 20 normal volunteers underwent 2D cine CMR and contrast-enhanced 3D MRA of pulmonary veins on a 1.5 T scanner. Pulmonary vein ostial diameters were measured and pulmonary vein vessel border sharpness was graded qualitatively. Both techniques provided excellent pulmonary vein imaging; however, 3D MRA was faster to perform. The average difference between the systolic and diastolic pulmonary vein diameter was 2.5 mm (23.2%, p < 0.0001) in normal volunteers and 2.2 mm (16.9%, p < 0.0001) in atrial fibrillation patients. The ostial diameter measurements by 3D MRA were significantly larger than on 2D cine CMR. Additionally, the pulmonary vein borders appeared sharper with 2D cine CMR compared to 3D MRA. In conclusion, the 2D images can resolve differences in diameter across the cardiac cycle, while the 3D images provide high quality anatomical depiction but blur borders due to pulsatile motion. We suggest a protocol combining 2D cine CMR and 3D MRA for comprehensive evaluation of pulmonary veins.

  15. Image acquisition and image processing for the intraocular vision aid.

    PubMed

    Krisch, I; Hijazi, N; Hosticka, B J

    2002-01-01

    The contribution describes an "intraocular vision aid (IOVA)" system for patients suffering from corneal opacification. In order to gain patients' acceptance the system has to be miniaturized to a magnitude that image acquisition, image processing, and power supply can be integrated into a portable unit. A CMOS camera whose dynamic range covers more than 100 dB takes pictures of the scenery. Its image sensor has a resolution of 380 x 300 pixel. In order to reduce fixed pattern noise correlated double sampling is implemented on-chip. In addition, this sensor stands out for low power consumption, random pixel access, and local brightness adaptation. An analog-digital-converter allows direct coupling to an external signal processor or a monolithically integrated unit for image processing to compress data.

  16. Reproducing 2D breast mammography images with 3D printed phantoms

    NASA Astrophysics Data System (ADS)

    Clark, Matthew; Ghammraoui, Bahaa; Badal, Andreu

    2016-03-01

    Mammography is currently the standard imaging modality used to screen women for breast abnormalities and, as a result, it is a tool of great importance for the early detection of breast cancer. Physical phantoms are commonly used as surrogates of breast tissue to evaluate some aspects of the performance of mammography systems. However, most phantoms do not reproduce the anatomic heterogeneity of real breasts. New fabrication technologies, such as 3D printing, have created the opportunity to build more complex, anatomically realistic breast phantoms that could potentially assist in the evaluation of mammography systems. The primary objective of this work is to present a simple, easily reproducible methodology to design and print 3D objects that replicate the attenuation profile observed in real 2D mammograms. The secondary objective is to evaluate the capabilities and limitations of the competing 3D printing technologies, and characterize the x-ray properties of the different materials they use. Printable phantoms can be created using the open-source code introduced in this work, which processes a raw mammography image to estimate the amount of x-ray attenuation at each pixel, and outputs a triangle mesh object that encodes the observed attenuation map. The conversion from the observed pixel gray value to a column of printed material with equivalent attenuation requires certain assumptions and knowledge of multiple imaging system parameters, such as x-ray energy spectrum, source-to-object distance, compressed breast thickness, and average breast material attenuation. A detailed description of the new software, a characterization of the printed materials using x-ray spectroscopy, and an evaluation of the realism of the sample printed phantoms are presented.

  17. Dynamic tracking of a deformable tissue based on 3D-2D MR-US image registration

    NASA Astrophysics Data System (ADS)

    Marami, Bahram; Sirouspour, Shahin; Fenster, Aaron; Capson, David W.

    2014-03-01

    Real-time registration of pre-operative magnetic resonance (MR) or computed tomography (CT) images with intra-operative Ultrasound (US) images can be a valuable tool in image-guided therapies and interventions. This paper presents an automatic method for dynamically tracking the deformation of a soft tissue based on registering pre-operative three-dimensional (3D) MR images to intra-operative two-dimensional (2D) US images. The registration algorithm is based on concepts in state estimation where a dynamic finite element (FE)- based linear elastic deformation model correlates the imaging data in the spatial and temporal domains. A Kalman-like filtering process estimates the unknown deformation states of the soft tissue using the deformation model and a measure of error between the predicted and the observed intra-operative imaging data. The error is computed based on an intensity-based distance metric, namely, modality independent neighborhood descriptor (MIND), and no segmentation or feature extraction from images is required. The performance of the proposed method is evaluated by dynamically deforming 3D pre-operative MR images of a breast phantom tissue based on real-time 2D images obtained from an US probe. Experimental results on different registration scenarios showed that deformation tracking converges in a few iterations. The average target registration error on the plane of 2D US images for manually selected fiducial points was between 0.3 and 1.5 mm depending on the size of deformation.

  18. Self-calibration of cone-beam CT geometry using 3D–2D image registration

    PubMed Central

    Ouadah, S; Stayman, J W; Gang, G J; Ehtiati, T; Siewerdsen, J H

    2016-01-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM = 0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p < 0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE = 0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p < 0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional

  19. Self-calibration of cone-beam CT geometry using 3D-2D image registration.

    PubMed

    Ouadah, S; Stayman, J W; Gang, G J; Ehtiati, T; Siewerdsen, J H

    2016-04-07

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a 'self-calibration' of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM-e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  <  0.001). Similar improvements were measured in RPE-e.g. on the robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is

  20. Self-calibration of cone-beam CT geometry using 3D-2D image registration

    NASA Astrophysics Data System (ADS)

    Ouadah, S.; Stayman, J. W.; Gang, G. J.; Ehtiati, T.; Siewerdsen, J. H.

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  <  0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is

  1. High-performance GPU-based rendering for real-time, rigid 2D/3D-image registration and motion prediction in radiation oncology

    PubMed Central

    Spoerk, Jakob; Gendrin, Christelle; Weber, Christoph; Figl, Michael; Pawiro, Supriyanto Ardjo; Furtado, Hugo; Fabri, Daniella; Bloch, Christoph; Bergmann, Helmar; Gröller, Eduard; Birkfellner, Wolfgang

    2012-01-01

    A common problem in image-guided radiation therapy (IGRT) of lung cancer as well as other malignant diseases is the compensation of periodic and aperiodic motion during dose delivery. Modern systems for image-guided radiation oncology allow for the acquisition of cone-beam computed tomography data in the treatment room as well as the acquisition of planar radiographs during the treatment. A mid-term research goal is the compensation of tumor target volume motion by 2D/3D registration. In 2D/3D registration, spatial information on organ location is derived by an iterative comparison of perspective volume renderings, so-called digitally rendered radiographs (DRR) from computed tomography volume data, and planar reference x-rays. Currently, this rendering process is very time consuming, and real-time registration, which should at least provide data on organ position in less than a second, has not come into existence. We present two GPU-based rendering algorithms which generate a DRR of 512 × 512 pixels size from a CT dataset of 53 MB size at a pace of almost 100 Hz. This rendering rate is feasible by applying a number of algorithmic simplifications which range from alternative volume-driven rendering approaches – namely so-called wobbled splatting – to sub-sampling of the DRR-image by means of specialized raycasting techniques. Furthermore, general purpose graphics processing unit (GPGPU) programming paradigms were consequently utilized. Rendering quality and performance as well as the influence on the quality and performance of the overall registration process were measured and analyzed in detail. The results show that both methods are competitive and pave the way for fast motion compensation by rigid and possibly even non-rigid 2D/3D registration and, beyond that, adaptive filtering of motion models in IGRT. PMID:21782399

  2. Determining ice water content from 2D crystal images in convective cloud systems

    NASA Astrophysics Data System (ADS)

    Leroy, Delphine; Coutris, Pierre; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter

    2016-04-01

    Cloud microphysical in-situ instrumentation measures bulk parameters like total water content (TWC) and/or derives particle size distributions (PSD) (utilizing optical spectrometers and optical array probes (OAP)). The goal of this work is to introduce a comprehensive methodology to compute TWC from OAP measurements, based on the dataset collected during recent HAIC (High Altitude Ice Crystals)/HIWC (High Ice Water Content) field campaigns. Indeed, the HAIC/HIWC field campaigns in Darwin (2014) and Cayenne (2015) provide a unique opportunity to explore the complex relationship between cloud particle mass and size in ice crystal environments. Numerous mesoscale convective systems (MCSs) were sampled with the French Falcon 20 research aircraft at different temperature levels from -10°C up to 50°C. The aircraft instrumentation included an IKP-2 (isokinetic probe) to get reliable measurements of TWC and the optical array probes 2D-S and PIP recording images over the entire ice crystal size range. Based on the known principle relating crystal mass and size with a power law (m=α•Dβ), Fontaine et al. (2014) performed extended 3D crystal simulations and thereby demonstrated that it is possible to estimate the value of the exponent β from OAP data, by analyzing the surface-size relationship for the 2D images as a function of time. Leroy et al. (2015) proposed an extended version of this method that produces estimates of β from the analysis of both the surface-size and perimeter-size relationships. Knowing the value of β, α then is deduced from the simultaneous IKP-2 TWC measurements for the entire HAIC/HIWC dataset. The statistical analysis of α and β values for the HAIC/HIWC dataset firstly shows that α is closely linked to β and that this link changes with temperature. From these trends, a generalized parameterization for α is proposed. Finally, the comparison with the initial IKP-2 measurements demonstrates that the method is able to predict TWC values

  3. Craniosynostosis: prenatal diagnosis by 2D/3D ultrasound, magnetic resonance imaging and computed tomography.

    PubMed

    Helfer, Talita Micheletti; Peixoto, Alberto Borges; Tonni, Gabriele; Araujo Júnior, Edward

    2016-09-01

    Craniosynostosis is defined as the process of premature fusion of one or more of the cranial sutures. It is a common condition that occurs in about 1 to 2,000 live births. Craniosynostosis may be classified in primary or secondary. It is also classified as nonsyndromic or syndromic. According to suture commitment, craniosynostosis may affect a single suture or multiple sutures. There is a wide range of syndromes involving craniosynostosis and the most common are Apert, Pffeifer, Crouzon, Shaethre-Chotzen and Muenke syndromes. The underlying etiology of nonsyndromic craniosynostosis is unknown. Mutations in the fibroblast growth factor (FGF) signalling pathway play a crucial role in the etiology of craniosynostosis syndromes. Prenatal ultrasound`s detection rate of craniosynostosis is low. Nowadays, different methods can be applied for prenatal diagnosis of craniosynostosis, such as two-dimensional (2D) and three-dimensional (3D) ultrasound, magnetic resonance imaging (MRI), computed tomography (CT) scan and, finally, molecular diagnosis. The presence of craniosynostosis may affect the birthing process. Fetuses with craniosynostosis also have higher rates of perinatal complications. In order to avoid the risks of untreated craniosynostosis, children are usually treated surgically soon after postnatal diagnosis.

  4. Large resistive 2D Micromegas with genetic multiplexing and some imaging applications

    NASA Astrophysics Data System (ADS)

    Bouteille, S.; Attié, D.; Baron, P.; Calvet, D.; Magnier, P.; Mandjavidze, I.; Procureur, S.; Riallot, M.

    2016-10-01

    The performance of the first large resistive Micromegas detectors with 2D readout and genetic multiplexing is presented. These detectors have a 50 × 50cm2 active area and are equipped with 1024 strips both in X- and Y-directions. The same genetic multiplexing pattern is applied on both coordinates, resulting in the compression of signals on 2 × 61 readout channels. Four such detectors have been built at CERN, and extensively tested with cosmics. The resistive strip film allows for very high gain operation, compensating for the charge spread on the 2 dimensions as well as the S / N loss due to the huge, 1 nF input capacitance. This film also creates a significantly different signal shape in the X- and Y-coordinates due to the charge evacuation along the resistive strips. All in all a detection efficiency above 95% is achieved with a 1 cm drift gap. Though not yet optimal, the measured 300 μm spatial resolution allows for very precise imaging in the field of muon tomography, and some applications of these detectors are presented.

  5. Image Outlier Detection and Feature Extraction via L1-Norm-Based 2D Probabilistic PCA.

    PubMed

    Ju, Fujiao; Sun, Yanfeng; Gao, Junbin; Hu, Yongli; Yin, Baocai

    2015-12-01

    This paper introduces an L1-norm-based probabilistic principal component analysis model on 2D data (L1-2DPPCA) based on the assumption of the Laplacian noise model. The Laplacian or L1 density function can be expressed as a superposition of an infinite number of Gaussian distributions. Under this expression, a Bayesian inference can be established based on the variational expectation maximization approach. All the key parameters in the probabilistic model can be learned by the proposed variational algorithm. It has experimentally been demonstrated that the newly introduced hidden variables in the superposition can serve as an effective indicator for data outliers. Experiments on some publicly available databases show that the performance of L1-2DPPCA has largely been improved after identifying and removing sample outliers, resulting in more accurate image reconstruction than the existing PCA-based methods. The performance of feature extraction of the proposed method generally outperforms other existing algorithms in terms of reconstruction errors and classification accuracy.

  6. A Microcomputer Based Charge Coupled Device (CCD) Imaging System For Clinical 2D Electrophoretic Gel Analysis

    NASA Astrophysics Data System (ADS)

    Craine, Brian L.; Craine, Eric R.; Engel, John R.; Wemple, Neil T.

    1988-06-01

    We have developed a prototype microcomputer based gel reader for the digitization and semi-automatic analysis of two dimensional polyacrylamide electrophoretic gels. The system uses a 2D charge coupled device (CCD) detector and operates as a peripheral to an IBM PC XT/AT type host computer. The system incorporates a comprehensive software package which lends itself to highly structured clinical applications as well as a wide range of image processing functions for use in the research laboratory. The system is undergoing further development in order to arrive at a comprehensive, low cost, early disease screening device. Electrophoretic gel samples of protein components obtained from subject patients are digitized and searched for anomalous features. These features are located using a digital reference library of disease related protein features and a probability of detection of the disease related protein is computed. The system then presents the physician with a report advising him of the results of the analysis. We describe the hardware and software system and present results of a sample gel analysis.

  7. Depth map resolution enhancement for 2D/3D imaging system via compressive sensing

    NASA Astrophysics Data System (ADS)

    Han, Juanjuan; Loffeld, Otmar; Hartmann, Klaus

    2011-08-01

    This paper introduces a novel approach for post-processing of depth map which enhances the depth map resolution in order to achieve visually pleasing 3D models from a new monocular 2D/3D imaging system consists of a Photonic mixer device (PMD) range camera and a standard color camera. The proposed method adopts the revolutionary inversion theory framework called Compressive Sensing (CS). The depth map of low resolution is considered as the result of applying blurring and down-sampling techniques to that of high-resolution. Based on the underlying assumption that the high-resolution depth map is compressible in frequency domain and recent theoretical work on CS, the high-resolution version can be estimated and furthermore reconstructed via solving non-linear optimization problem. And therefore the improved depth map reconstruction provides a useful help to build an improved 3D model of a scene. The experimental results on the real data are presented. In the meanwhile the proposed scheme opens new possibilities to apply CS to a multitude of potential applications on various multimodal data analysis and processing.

  8. Trilogy possible meteorite impact crater at Bukit Bunuh, Malaysia using 2-D electrical resistivity imaging

    NASA Astrophysics Data System (ADS)

    Jinmin, M.; Rosli, S.; Nordiana, M. M.; Mokhtar, S.

    2017-07-01

    Bukit Bunuh situated in Lenggong (Perak) is one of Malaysia's most important areas for archeology that revealed many traces of Malaysia's prehistory. Geophysical method especially 2-D electrical resistivity imaging method is non-destructive which is applied in geo-subsurface study for meteorite impact. The study consists of two stages which are regional and detail study with a total of fourteen survey lines. The survey lines were conducted using Pole-dipole array with 5 m minimum electrode spacing. The results of each stage are correlated and combined to produce detail subsurface resistivity distribution of the study area. It shows that the area consists of two main layers which are overburden and granitic bedrock. The first layer is overburden mix with boulders with resistivity value of 10-800 Ωm while the second layer is granitic bedrock with resistivity value of >1500 Ωm. This study also shows few spotted possibility of uplift (rebound) due to the high impact which suspected from meteorite. A lot of fracture were found within the survey area which could be one of the effect of meteorite impact. The result suggest that Bukit Bunuh is under layer by a complex crater with diameter of crater rim is approximately 5-6 km.

  9. Stochastic rank correlation: a robust merit function for 2D/3D registration of image data obtained at different energies.

    PubMed

    Birkfellner, Wolfgang; Stock, Markus; Figl, Michael; Gendrin, Christelle; Hummel, Johann; Dong, Shuo; Kettenbach, Joachim; Georg, Dietmar; Bergmann, Helmar

    2009-08-01

    In this article, the authors evaluate a merit function for 2D/3D registration called stochastic rank correlation (SRC). SRC is characterized by the fact that differences in image intensity do not influence the registration result; it therefore combines the numerical advantages of cross correlation (CC)-type merit functions with the flexibility of mutual-information-type merit functions. The basic idea is that registration is achieved on a random subset of the image, which allows for an efficient computation of Spearman's rank correlation coefficient. This measure is, by nature, invariant to monotonic intensity transforms in the images under comparison, which renders it an ideal solution for intramodal images acquired at different energy levels as encountered in intrafractional kV imaging in image-guided radiotherapy. Initial evaluation was undertaken using a 2D/3D registration reference image dataset of a cadaver spine. Even with no radiometric calibration, SRC shows a significant improvement in robustness and stability compared to CC. Pattern intensity, another merit function that was evaluated for comparison, gave rather poor results due to its limited convergence range. The time required for SRC with 5% image content compares well to the other merit functions; increasing the image content does not significantly influence the algorithm accuracy. The authors conclude that SRC is a promising measure for 2D/3D registration in IGRT and image-guided therapy in general.

  10. Substorm development as observed by Interball UV imager and 2-D magnetic array

    NASA Astrophysics Data System (ADS)

    Lyatsky, W.; Cogger, L. L.; Jackel, B.; Hamza, A. M.; Hughes, W. J.; Murr, D.; Rasmussen, O.

    2001-10-01

    Results of the study of two substorms from Interball auroral UV measurements and two-dimensional patterns of equivalent ionospheric currents derived from the MACCS/CANOPUS and Greenland magnetometer arrays are presented. Substorm development in 2-D equivalent ionospheric current patterns may be described in terms of the formation of two vortices in the equivalent currents: a morning vortex related to downward field-aligned current and an evening vortex related to upward field-aligned current. Poleward propagation of the magnetic disturbances during substorm expansive phase was found to be associated mainly with a poleward displacement of the morning vortex, whereas the evening vortex remained approximately at the same position. As a result, the initial quasi-azimuthal separation of the vortices was replaced by their quasi-meridional separation at substorm maximum. Interball UV images during this period showed the formation of a bright auroral border at the poleward edge of substorm auroral bulge. The auroral UV images showed also that the auroral distribution in the region between the polar border and the main auroral oval tends to have a form of bubbles or petals growing from a bright protuberant region on the equatorward boundary of the auroral oval. However, the resolution of the UV imager was not sufficient for the reliable separation of such the structures, therefore, this result should be considered as preliminary. Overlapping of the auroral UV images onto equivalent current patterns shows that the bright substorm surge was well collocated with the evening vortex whereas the poleward auroral border did not coincide with any evident feature in equivalent ionospheric currents and was located several degrees equatorward of the morning current vortex center related to downward field-aligned current. The ground-based magnetic array allowing us to obtain instantaneous patterns of equivalent ionospheric currents gives a possibility to propose a new index for

  11. Parametric phase information based 2D Cepstrum PSF estimation method for blind de-convolution of ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Kang, Jooyoung; Park, Sung-Chan; Kim, Jung-ho; Song, Jongkeun

    2014-02-01

    In the ultrasound imaging system, blurring which occurs after passing through ultrasound scanner system, represents point spread function (PSF) that describes the response of the ultrasound imaging system to a point source distribution. So, de-blurring can be achieved by de-convolving the ultrasound images with an estimated of corresponding PSF. However, it is hard to attain an accurate estimation of PSF due to the unknown properties of the tissues of the human body through the ultrasound signal propagates. In this paper, we present a new method for PSF estimation in the Fourier domain (FD) based on parametric minimum phase information, and simultaneously, it performs fast 2D de-convolution in the ultrasound imaging system. Although most of complex cepstrum methods [14], are obtained using complex 2D phase unwrapping [18] [19] in order to estimate the FD-phase information of PSF, our algorithm estimates the 2D PSF using 2D FD-phase information with the parametric weighting factor α and β. They affect the feature of PSF shapes.This makes the computations much simpler and the estimation more accurate. Our algorithm works on the beam-formed uncompressed radio-frequency data, with pre-measured and estimated 2D PSFs database from actual probe used. We have tested our algorithm with vera-sonic system and commercial ultrasound scanner (Philips C4-2), in known speed of sound phantoms and unknown speeds in vivo scans.

  12. 2D and 3D GPR imaging of structural ceilings in historic and existing constructions

    NASA Astrophysics Data System (ADS)

    Colla, Camilla

    2014-05-01

    GPR applications in civil engineering are to date quite diversified. With respect to civil constructions and monumental buildings, detection of voids, cavities, layering in structural elements, variation of geometry, of moisture content, of materials, areas of decay, defects, cracks have been reported in timber, concrete and masonry elements. Nonetheless, many more fields of investigation remain unexplored. This contribution gives an account of a variety of examples of structural ceilings investigation by GPR radar in reflection mode, either as 2D or 3D data acquisition and visualisation. Ceilings have a pre-eminent role in buildings as they contribute to a good structural behaviour of the construction. Primarily, the following functions can be listed for ceilings: a) they carry vertical dead and live loads on floors and distribute such loads to the vertical walls; b) they oppose to external horizontal forces such as wind loads and earthquakes helping to transfer such forces from the loaded element to the other walls; c) they contribute to create the box skeleton and behaviour of a building, connecting the different load bearing walls and reducing the slenderness and flexural instability of such walls. Therefore, knowing how ceilings are made in specific buildings is of paramount importance for architects and structural engineers. According to the type of building and age of construction, ceilings may present very different solutions and materials. Moreover, in existing constructions, ceilings may have been substituted, modified or strengthened due to material decay or to change of use of the building. These alterations may often go unrecorded in technical documentation or technical drawings may be unavailable. In many cases, the position, orientation and number of the load carrying elements in ceilings may be hidden or not be in sight, due for example to the presence of false ceilings or to technical plants. GPR radar can constitute a very useful tool for

  13. Wound Measurement Techniques: Comparing the Use of Ruler Method, 2D Imaging and 3D Scanner

    PubMed Central

    Shah, Aj; Wollak, C.; Shah, J.B.

    2015-01-01

    The statistics on the growing number of non-healing wounds is alarming. In the United States, chronic wounds affect 6.5 million patients. An estimated US $25 billion is spent annually on treatment of chronic wounds and the burden is rapidly growing due to increasing health care costs, an aging population and a sharp rise in the incidence of diabetes and obesity worldwide.1 Accurate wound measurement techniques will help health care personnel to monitor the wounds which will indirectly help improving care.7,9 The clinical practice of measuring wounds has not improved even today.2,3 A common method like the ruler method to measure wounds has poor interrater and intrarater reliability.2,3 Measuring the greatest length by the greatest width perpendicular to the greatest length, the perpendicular method, is more valid and reliable than other ruler based methods.2 Another common method like acetate tracing is more accurate than the ruler method but still has its disadvantages. These common measurement techniques are time consuming with variable inaccuracies. In this study, volumetric measurements taken with a non-contact 3-D scanner are benchmarked against the common ruler method, acetate grid tracing, and 2-D image planimetry volumetric measurement technique. A liquid volumetric fill method is used as the control volume. Results support the hypothesis that the 3-D scanner consistently shows accurate volumetric measurements in comparison to standard volumetric measurements obtained by the waterfill technique (average difference of 11%). The 3-D scanner measurement technique was found more reliable and valid compared to other three techniques, the ruler method (average difference of 75%), acetate grid tracing (average difference of 41%), and 2D planimetric measurements (average difference of 52%). Acetate tracing showed more accurate measurements compared to the ruler method (average difference of 41% (acetate tracing) compared to 75% (ruler method)). Improving the

  14. Analysis of 2-d ultrasound cardiac strain imaging using joint probability density functions.

    PubMed

    Ma, Chi; Varghese, Tomy

    2014-06-01

    Ultrasound frame rates play a key role for accurate cardiac deformation tracking. Insufficient frame rates lead to an increase in signal de-correlation artifacts resulting in erroneous displacement and strain estimation. Joint probability density distributions generated from estimated axial strain and its associated signal-to-noise ratio provide a useful approach to assess the minimum frame rate requirements. Previous reports have demonstrated that bi-modal distributions in the joint probability density indicate inaccurate strain estimation over a cardiac cycle. In this study, we utilize similar analysis to evaluate a 2-D multi-level displacement tracking and strain estimation algorithm for cardiac strain imaging. The effect of different frame rates, final kernel dimensions and a comparison of radio frequency and envelope based processing are evaluated using echo signals derived from a 3-D finite element cardiac model and five healthy volunteers. Cardiac simulation model analysis demonstrates that the minimum frame rates required to obtain accurate joint probability distributions for the signal-to-noise ratio and strain, for a final kernel dimension of 1 λ by 3 A-lines, was around 42 Hz for radio frequency signals. On the other hand, even a frame rate of 250 Hz with envelope signals did not replicate the ideal joint probability distribution. For the volunteer study, clinical data was acquired only at a 34 Hz frame rate, which appears to be sufficient for radio frequency analysis. We also show that an increase in the final kernel dimensions significantly affect the strain probability distribution and joint probability density function generated, with a smaller effect on the variation in the accumulated mean strain estimated over a cardiac cycle. Our results demonstrate that radio frequency frame rates currently achievable on clinical cardiac ultrasound systems are sufficient for accurate analysis of the strain probability distribution, when a multi-level 2-D

  15. Wound Measurement Techniques: Comparing the Use of Ruler Method, 2D Imaging and 3D Scanner.

    PubMed

    Shah, Aj; Wollak, C; Shah, J B

    2013-12-01

    The statistics on the growing number of non-healing wounds is alarming. In the United States, chronic wounds affect 6.5 million patients. An estimated US $25 billion is spent annually on treatment of chronic wounds and the burden is rapidly growing due to increasing health care costs, an aging population and a sharp rise in the incidence of diabetes and obesity worldwide.(1) Accurate wound measurement techniques will help health care personnel to monitor the wounds which will indirectly help improving care.(7,9) The clinical practice of measuring wounds has not improved even today.(2,3) A common method like the ruler method to measure wounds has poor interrater and intrarater reliability.(2,3) Measuring the greatest length by the greatest width perpendicular to the greatest length, the perpendicular method, is more valid and reliable than other ruler based methods.(2) Another common method like acetate tracing is more accurate than the ruler method but still has its disadvantages. These common measurement techniques are time consuming with variable inaccuracies. In this study, volumetric measurements taken with a non-contact 3-D scanner are benchmarked against the common ruler method, acetate grid tracing, and 2-D image planimetry volumetric measurement technique. A liquid volumetric fill method is used as the control volume. Results support the hypothesis that the 3-D scanner consistently shows accurate volumetric measurements in comparison to standard volumetric measurements obtained by the waterfill technique (average difference of 11%). The 3-D scanner measurement technique was found more reliable and valid compared to other three techniques, the ruler method (average difference of 75%), acetate grid tracing (average difference of 41%), and 2D planimetric measurements (average difference of 52%). Acetate tracing showed more accurate measurements compared to the ruler method (average difference of 41% (acetate tracing) compared to 75% (ruler method)). Improving

  16. Correlation between a 2D simple image analysis method and 3D bony motion during the pivot shift test.

    PubMed

    Arilla, Fabio V; Rahnemai-Azar, Amir Ata; Yacuzzi, Carlos; Guenther, Daniel; Engel, Benjamin S; Fu, Freddie H; Musahl, Volker; Debski, Richard E

    2016-12-01

    The pivot shift test is the most specific clinical test to detect anterior cruciate ligament injury. The purpose of this study was to determine the correlation between the 2D simple image analysis method and the 3D bony motion of the knee during the pivot shift test and assess the intra- and inter-examiner agreements. Three orthopedic surgeons performed three trials of the standardized pivot shift test in seven knees. Two devices were used to measure motion of the lateral knee compartment simultaneously: 1) 2D simple image analysis method: translation was determined using a tablet computer with custom motion tracking software that quantified movement of three markers attached to skin over bony landmarks; 2) 3D bony motion: electromagnetic tracking system was used to measure movement of the same bony landmarks. The 2D simple image analysis method demonstrated a good correlation with the 3D bony motion (Pearson correlation: 0.75, 0.76 and 0.79). The 3D bony translation increased by 2.7 to 3.5 times for every unit increase measured by the 2D simple image analysis method. The mean intra-class correlation coefficients for the three examiners were 0.6 and 0.75, respectively for 3D bony motion and 2D image analyses, while the inter-examiner agreement was 0.65 and 0.73, respectively. The 2D simple image analysis method results are related to 3D bony motion of the lateral knee compartment, even with skin artifact present. This technique is a non-invasive and repeatable tool to quantify the motion of the lateral knee compartment during the pivot shift test. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Multifractal and Singularity Maps of soil surface moisture distribution derived from 2D image analysis.

    NASA Astrophysics Data System (ADS)

    Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria

    2016-04-01

    methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Cumbrera, R., Ana M. Tarquis, Gabriel Gascó, Humberto Millán (2012) Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images. Journal of Hydrology (452-453), 205-212. Martin Sotoca; J.J. Antonio Saa-Requejo, Juan Grau and Ana M. Tarquis (2016). Segmentation of singularity maps in the context of soil porosity. Geophysical Research Abstracts, 18, EGU2016-11402. Millán, H., Cumbrera, R. and Ana M. Tarquis (2016) Multifractal and Levy-stable statistics of soil surface moisture distribution derived from 2D image analysis. Applied Mathematical Modelling, 40(3), 2384-2395.

  18. Graphical user interface for image acquisition and processing

    DOEpatents

    Goldberg, Kenneth A.

    2002-01-01

    An event-driven GUI-based image acquisition interface for the IDL programming environment designed for CCD camera control and image acquisition directly into the IDL environment where image manipulation and data analysis can be performed, and a toolbox of real-time analysis applications. Running the image acquisition hardware directly from IDL removes the necessity of first saving images in one program and then importing the data into IDL for analysis in a second step. Bringing the data directly into IDL creates an opportunity for the implementation of IDL image processing and display functions in real-time. program allows control over the available charge coupled device (CCD) detector parameters, data acquisition, file saving and loading, and image manipulation and processing, all from within IDL. The program is built using IDL's widget libraries to control the on-screen display and user interface.

  19. Application of conformal map theory for design of 2-D ultrasonic array structure for NDT imaging application: a feasibility study.

    PubMed

    Ramadas, Sivaram N; Jackson, Joseph C; Dziewierz, Jerzy; O'Leary, Richard; Gachagan, Anthony

    2014-03-01

    Two-dimensional ultrasonic phased arrays are becoming increasingly popular in nondestructive evaluation (NDE). Sparse array element configurations are required to fully exploit the potential benefits of 2-D phased arrays. This paper applies the conformal mapping technique as a means of designing sparse 2-D array layouts for NDE applications. Modeling using both Huygens' field prediction theory and 2-D fast Fourier transformation is employed to study the resulting new structure. A conformal power map was used that, for fixed beam width, was shown in simulations to have a greater contrast than rectangular or random arrays. A prototype aperiodic 2-D array configuration for direct contact operation in steel, with operational frequency ~3 MHz, was designed using the array design principle described in this paper. Experimental results demonstrate a working sparse-array transducer capable of performing volumetric imaging.

  20. Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-03-01

    Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensional (3D) magnetic resonance diffusion tensor imaging (MR-DTI) volume to the 2D ultrasound image. It utilizes a 2D/3D intensity based registration procedure including rigid, log-demons, and affine transformations to search the best similar slice from the template volume. After registration, the cardiac fiber orientations are mapped to the 2D ultrasound image via fiber relocations and reorientations. This method was validated by six images of rat hearts ex vivo. The evaluation results indicated that the final Dice similarity coefficient (DSC) achieved more than 90% after geometric registrations; and the inclination angle errors (IAE) between the mapped fiber orientations and the gold standards were less than 15 degree. This method may provide a practical tool for cardiologists to examine cardiac fiber orientations on ultrasound images and have the potential to supply additional information for diagnosis of cardiac diseases.

  1. 2D harmonic filtering of MR phase images in multicenter clinical setting: toward a magnetic signature of cerebral microbleeds.

    PubMed

    Kaaouana, Takoua; de Rochefort, Ludovic; Samaille, Thomas; Thiery, Nathalie; Dufouil, Carole; Delmaire, Christine; Dormont, Didier; Chupin, Marie

    2015-01-01

    Cerebral microbleeds (CMBs) have emerged as a new imaging marker of small vessel disease. Composed of hemosiderin, CMBs are paramagnetic and can be detected with MRI sequences sensitive to magnetic susceptibility (typically, gradient recalled echo T2* weighted images). Nevertheless, their identification remains challenging on T2* magnitude images because of confounding structures and lesions. In this context, T2* phase image may play a key role in better characterizing CMBs because of its direct relationship with local magnetic field variations due to magnetic susceptibility difference. To address this issue, susceptibility-based imaging techniques were proposed, such as Susceptibility Weighted Imaging (SWI) and Quantitative Susceptibility Mapping (QSM). But these techniques have not yet been validated for 2D clinical data in multicenter settings. Here, we introduce 2DHF, a fast 2D phase processing technique embedding both unwrapping and harmonic filtering designed for data acquired in 2D, even with slice-to-slice inconsistencies. This method results in internal field maps which reveal local field details due to magnetic inhomogeneity within the region of interest only. This technique is based on the physical properties of the induced magnetic field and should yield consistent results. A synthetic phantom was created for numerical simulations. It simulates paramagnetic and diamagnetic lesions within a 'brain-like' tissue, within a background. The method was evaluated on both this synthetic phantom and multicenter 2D datasets acquired in standardized clinical setting, and compared with two state-of-the-art methods. It proved to yield consistent results on synthetic images and to be applicable and robust on patient data. As a proof-of-concept, we finally illustrate that it is possible to find a magnetic signature of CMBs and CMCs on internal field maps generated with 2DHF on 2D clinical datasets that give consistent results with CT-scans in a subsample of 10 subjects

  2. Effect of segmentation errors on 3D-to-2D registration of implant models in X-ray images.

    PubMed

    Mahfouz, Mohamed R; Hoff, William A; Komistek, Richard D; Dennis, Douglas A

    2005-02-01

    In many biomedical applications, it is desirable to estimate the three-dimensional (3D) position and orientation (pose) of a metallic rigid object (such as a knee or hip implant) from its projection in a two-dimensional (2D) X-ray image. If the geometry of the object is known, as well as the details of the image formation process, then the pose of the object with respect to the sensor can be determined. A common method for 3D-to-2D registration is to first segment the silhouette contour from the X-ray image; that is, identify all points in the image that belong to the 2D silhouette and not to the background. This segmentation step is then followed by a search for the 3D pose that will best match the observed contour with a predicted contour. Although the silhouette of a metallic object is often clearly visible in an X-ray image, adjacent tissue and occlusions can make the exact location of the silhouette contour difficult to determine in places. Occlusion can occur when another object (such as another implant component) partially blocks the view of the object of interest. In this paper, we argue that common methods for segmentation can produce errors in the location of the 2D contour, and hence errors in the resulting 3D estimate of the pose. We show, on a typical fluoroscopy image of a knee implant component, that interactive and automatic methods for segmentation result in segmented contours that vary significantly. We show how the variability in the 2D contours (quantified by two different metrics) corresponds to variability in the 3D poses. Finally, we illustrate how traditional segmentation methods can fail completely in the (not uncommon) cases of images with occlusion.

  3. EOS 2D/3D X-ray imaging system: a systematic review and economic evaluation.

    PubMed

    McKenna, C; Wade, R; Faria, R; Yang, H; Stirk, L; Gummerson, N; Sculpher, M; Woolacott, N

    2012-01-01

    EOS is a biplane X-ray imaging system manufactured by EOS Imaging (formerly Biospace Med, Paris, France). It uses slot-scanning technology to produce a high-quality image with less irradiation than standard imaging techniques. To determine the clinical effectiveness and cost-effectiveness of EOS two-dimensional (2D)/three-dimensional (3D) X-ray imaging system for the evaluation and monitoring of scoliosis and other relevant orthopaedic conditions. For the systematic review of EOS, electronic databases (MEDLINE, Allied and Complementary Medicine Database, BIOSIS Previews, Cumulative Index to Nursing and Allied Health Literature, The Cochrane Library, EMBASE, Health Management Information Consortium, Inspec, ISI Science Citation Index and PASCAL), clinical trials registries and the manufacturer's website were searched from 1993 to November 2010. A systematic review of studies comparing EOS with standard X-ray [film, computed radiography (CR) or digital radiography] in any orthopaedic condition was performed. A narrative synthesis was undertaken. A decision-analytic model was developed to assess the cost-effectiveness of EOS in the relevant indications compared with standard X-ray and incorporated the clinical effectiveness of EOS and the adverse effects of radiation. The model incorporated a lifetime horizon to estimate outcomes in terms of quality-adjusted life-years (QALYs) and costs from the perspective of the NHS. Three studies met the inclusion criteria for the review. Two studies compared EOS with film X-ray and one study compared EOS with CR. The three included studies were small and of limited quality. One study used an earlier version of the technology, the Charpak system. Both studies comparing EOS with film X-ray found image quality to be comparable or better with EOS overall. Radiation dose was considerably lower with EOS: ratio of means for posteroanterior spine was 5.2 (13.1 for the study using the Charpak system); ratio of means for the lateral spine

  4. Reproducible high-resolution multispectral image acquisition in dermatology

    NASA Astrophysics Data System (ADS)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  5. Age of Acquisition and Imageability: A Cross-Task Comparison

    ERIC Educational Resources Information Center

    Ploetz, Danielle M.; Yates, Mark

    2016-01-01

    Previous research has reported an imageability effect on visual word recognition. Words that are high in imageability are recognised more rapidly than are those lower in imageability. However, later researchers argued that imageability was confounded with age of acquisition. In the current research, these two factors were manipulated in a…

  6. Age of Acquisition and Imageability: A Cross-Task Comparison

    ERIC Educational Resources Information Center

    Ploetz, Danielle M.; Yates, Mark

    2016-01-01

    Previous research has reported an imageability effect on visual word recognition. Words that are high in imageability are recognised more rapidly than are those lower in imageability. However, later researchers argued that imageability was confounded with age of acquisition. In the current research, these two factors were manipulated in a…

  7. Image Acquisition and Model Selection for Multi-View Stereo

    NASA Astrophysics Data System (ADS)

    Wenzel, K.; Rothermel, M.; Fritsch, D.; Haala, N.

    2013-02-01

    Dense image matching methods enable efficient 3D data acquisition. Digital cameras are available at high resolution, high geometric and radiometric quality and high image repetition rate. They can be used to acquire imagery for photogrammetric purposes in short time. Photogrammetric image processing methods deliver 3D information. For example, Structure from Motion reconstruction methods can be used to derive orientations and sparse surface information. In order to retrieve complete surfaces with high precision, dense image matching methods can be applied. However, a key challenge is the selection of images, since the image network geometry directly impacts the accuracy, as well as the completeness of the point cloud. Thus, the image stations and the image scale have to be selected according carefully to the accuracy requirements. Furthermore, most dense image matching solutions are based on multi-view stereo algorithms, where the matching is performed between selected pairs of images. Thus, stereo models have to be selected from the available dataset in respect to geometric conditions, which influence completeness, precision and processing time. Within the paper, the selection of images and the selection of optimal stereo models are discussed according to to photogrammetric surface acquisition using dense image matching. For this purpose, impacts of the acquisition geometry are evaluated for several datasets. Based on the results, a guideline for the acquisition of imagery for photogrammetric surface acquisition is presented. The simple and efficient capturing approach with "One panorama each step" ensures complete coverage and sufficiently redundant observations for a surface reconstruction with high precision and reliability.

  8. Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2013-05-01

    We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils.

  9. Spectroscopic-tomography of biological membrane with high-spatial resolution by the imaging-type 2D Fourier spectroscopy

    NASA Astrophysics Data System (ADS)

    Inui, Asuka; Tsutsumi, Ryosuke; Qi, Wei; Takuma, Takashi; Ishimaru, Ichirou

    2011-07-01

    We proposed the imaging-type 2-dimensional Fourier spectroscopy that is the phase-shift interferometry between the objective lights. The proposed method can measure the 2D spectral image at the limited depth. Because of the imaging optical system, the 2D spectral images can be measured in high spatial resolution. And in the depth direction, we can get the spectral distribution only in the focal plane. In this report, we mention about the principle of the proposed wide field imaging-type 2D Fourier spectroscopy. And, we obtained the spectroscopic tomography of biological tissue of mouse's ear. In the visible region, we confirmed the difference of spectral characteristics between blood vessel region and other region. In the near infrared region (λ=900nm~1700nm), we can obtain the high-contrast blood vessel image of mouse's ear in the deeper part by InGaAs camera. Furthermore, in the middle infrared region(λ=8μ~14μm), we have successfully measured the radiation spectroscopic-imaging with wild field of view by the infrared module, such as the house plants. Additionally, we propose correction geometrical model that can convert the mechanical phase-shift value into the substantial phase difference in each oblique optical axes. We successfully verified the effectiveness of the proposed correction geometrical model and can reduce the spectral error into the error range into +/-3nm using the He-Ne laser whose wavelength 632.8nm.

  10. The Identification of Seulimeum Fault System in Iejue Aceh Besar (Indonesia) Using 2-D Resistivity Imaging Method

    NASA Astrophysics Data System (ADS)

    Taqiuddin, Z. M.; Nordiana, M. M.; Rosli, S.

    2017-04-01

    2-D resistivity imaging method is widely used to delineate fault zones. The fault referred as a rock fractures or discontinuity in rock volume due to relative displacement caused by the earth movement. In this study, 2-D resistivity imaging survey conducted in Iejue, Aceh Besar locality with the aim to delineate the Seulimeum fault system for this locality. Two survey lines L1 and L2, with a total length of 1200 m each, conducted across the suspected fault using ABEM SAS4000 system with Pole-dipole array and 10 m minimum electrodes spacing. 2-D resistivity imaging profile shows the exploration depth of >320 m with resistivity range of 1-1800 Ωm. The contrast in resistivity values for both lines L1 and L2 indicates the suspected fault at distance of 550-600 m and 500-550 m respectively. Correlation of 2-D resistivity imaging analyses with a geological map of the area shows that the fault is trending in the NW-SE direction with fault lineament approaching the resistivity result. Two distinct resistivity zones identified for each survey line; a saturated zone starting at distance of 600 m toward the end of the line and high resistivity zone at distance of 0 m to 550 m. This saturated zone interpreted as a ground fluid, while the high resistivity zone represents as existing alluvium, sandstones, and volcanic sediments.

  11. Acquisition order and motional artifact reduction in spin warp images.

    PubMed

    Dixon, W T; Brummer, M E; Malko, J A

    1988-01-01

    Multiple averaging can be a powerful tool against motional artifacts if significant motion occurs between the redundant acquisitions taken at a given gradient strength. However, if the time delay between these redundant measurements is too short, data or images depicting the patient is exactly the same position will be combined. Pooling such identical data has no effect on motional artifacts. This problem can be solved by increasing TR, increasing the number of redundant acquisitions, or changing the order in which acquisitions are taken. Usually all acquisitions at a particular value of the warp gradient are taken before proceeding to the next gradient value. This order minimizes motion between redundant acquisitions and so maximizes artifacts. The effect of other acquisition orders on both periodic and nonrepetitive motion is discussed. Human images for breathing and phantom results for single-occurrence motions are presented.

  12. Accelerated dynamic EPR imaging using fast acquisition and compressive recovery

    NASA Astrophysics Data System (ADS)

    Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L.

    2016-12-01

    Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques.

  13. Accelerated dynamic EPR imaging using fast acquisition and compressive recovery.

    PubMed

    Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L

    2016-12-01

    Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques.

  14. Acquisition of a single EZH2 D1 domain mutation confers acquired resistance to EZH2-targeted inhibitors

    PubMed Central

    Baker, Theresa; Nerle, Sujata; Pritchard, Justin; Zhao, Boyang; Rivera, Victor M.

    2015-01-01

    Although targeted therapies have revolutionized cancer treatment, overcoming acquired resistance remains a major clinical challenge. EZH2 inhibitors (EZH2i), EPZ-6438 and GSK126, are currently in the early stages of clinical evaluation and the first encouraging signs of efficacy have recently emerged in the clinic. To anticipate mechanisms of resistance to EZH2i, we used a forward genetic platform combining a mutagenesis screen with next generation sequencing technology and identified a hotspot of secondary mutations in the EZH2 D1 domain (Y111 and I109). Y111D mutation within the WT or A677G EZH2 allele conferred robust resistance to both EPZ-6438 and GSK126, but it only drove a partial resistance within the Y641F allele. EZH2 mutants required histone methyltransferase (HMT) catalytic activity and the polycomb repressive complex 2 (PRC2) components, SUZ12 and EED, to drive drug resistance. Furthermore, D1 domain mutations not only blocked the ability of EZH2i to bind to WT and A677G mutant, but also abrogated drug binding to the Y641F mutant. These data provide the first cellular validation of the mechanistic model underpinning the oncogenic function of WT and mutant EZH2. Importantly, our findings suggest that acquired-resistance to EZH2i may arise in WT and mutant EZH2 patients through a single mutation that remains targetable by second generation EZH2i. PMID:26360609

  15. Pose-aware C-arm for automatic re-initialization of interventional 2D/3D image registration.

    PubMed

    Fotouhi, Javad; Fuerst, Bernhard; Johnson, Alex; Lee, Sing Chun; Taylor, Russell; Osgood, Greg; Navab, Nassir; Armand, Mehran

    2017-07-01

    In minimally invasive interventions assisted by C-arm imaging, there is a demand to fuse the intra-interventional 2D C-arm image with pre-interventional 3D patient data to enable surgical guidance. The commonly used intensity-based 2D/3D registration has a limited capture range and is sensitive to initialization. We propose to utilize an opto/X-ray C-arm system which allows to maintain the registration during intervention by automating the re-initialization for the 2D/3D image registration. Consequently, the surgical workflow is not disrupted and the interaction time for manual initialization is eliminated. We utilize two distinct vision-based tracking techniques to estimate the relative poses between different C-arm arrangements: (1) global tracking using fused depth information and (2) RGBD SLAM system for surgical scene tracking. A highly accurate multi-view calibration between RGBD and C-arm imaging devices is achieved using a custom-made multimodal calibration target. Several in vitro studies are conducted on pelvic-femur phantom that is encased in gelatin and covered with drapes to simulate a clinically realistic scenario. The mean target registration errors (mTRE) for re-initialization using depth-only and RGB [Formula: see text] depth are 13.23 mm and 11.81 mm, respectively. 2D/3D registration yielded 75% success rate using this automatic re-initialization, compared to a random initialization which yielded only 23% successful registration. The pose-aware C-arm contributes to the 2D/3D registration process by globally re-initializing the relationship of C-arm image and pre-interventional CT data. This system performs inside-out tracking, is self-contained, and does not require any external tracking devices.

  16. Real-time registration of 3D to 2D ultrasound images for image-guided prostate biopsy.

    PubMed

    Gillies, Derek J; Gardi, Lori; De Silva, Tharindu; Zhao, Shuang-Ren; Fenster, Aaron

    2017-09-01

    During image-guided prostate biopsy, needles are targeted at tissues that are suspicious of cancer to obtain specimen for histological examination. Unfortunately, patient motion causes targeting errors when using an MR-transrectal ultrasound (TRUS) fusion approach to augment the conventional biopsy procedure. This study aims to develop an automatic motion correction algorithm approaching the frame rate of an ultrasound system to be used in fusion-based prostate biopsy systems. Two modes of operation have been investigated for the clinical implementation of the algorithm: motion compensation using a single user initiated correction performed prior to biopsy, and real-time continuous motion compensation performed automatically as a background process. Retrospective 2D and 3D TRUS patient images acquired prior to biopsy gun firing were registered using an intensity-based algorithm utilizing normalized cross-correlation and Powell's method for optimization. 2D and 3D images were downsampled and cropped to estimate the optimal amount of image information that would perform registrations quickly and accurately. The optimal search order during optimization was also analyzed to avoid local optima in the search space. Error in the algorithm was computed using target registration errors (TREs) from manually identified homologous fiducials in a clinical patient dataset. The algorithm was evaluated for real-time performance using the two different modes of clinical implementations by way of user initiated and continuous motion compensation methods on a tissue mimicking prostate phantom. After implementation in a TRUS-guided system with an image downsampling factor of 4, the proposed approach resulted in a mean ± std TRE and computation time of 1.6 ± 0.6 mm and 57 ± 20 ms respectively. The user initiated mode performed registrations with in-plane, out-of-plane, and roll motions computation times of 108 ± 38 ms, 60 ± 23 ms, and 89 ± 27 ms, respectively, and corresponding

  17. Diffeomorphic Multi-Frame Non-Rigid Registration of Cell Nuclei in 2D and 3D Live Cell Images.

    PubMed

    Tektonidis, Marco; Rohr, Karl

    2017-03-01

    To gain a better understanding of cellular and molecular processes, it is important to quantitatively analyze the motion of subcellular particles in live cell microscopy image sequences. Since, generally, the subcellular particles move and cell nuclei move as well as deform, it is important to decouple the movement of particles from that of the cell nuclei using non-rigid registration methods. We have developed a diffeomorphic multi-frame approach for non-rigid registration of cell nuclei in 2D and 3D live cell fluorescence microscopy images. Our non-rigid registration approach is based on local optic flow estimation, exploits information from multiple consecutive image frames, and determines diffeomorphic transformations in the log-domain, which allows efficient computation of the inverse transformations. To register single images of an image sequence to a reference image, we use a temporally weighted mean image, which is constructed based on inverse transformations and multiple consecutive frames. Using multiple consecutive frames improves the registration accuracy compared to pairwise registration, and using a temporally weighted mean image significantly reduces the computation time compared with previous work. In addition, we use a flow boundary preserving method for regularization of computed deformation vector fields, which prevents from over-smoothing compared to standard Gaussian filtering. Our approach has been successfully applied to 2D and 3D synthetic as well as real live cell microscopy image sequences, and an experimental comparison with non-rigid pairwise, multi-frame, and temporal groupwise registration has been carried out.

  18. 2D Non-Separable Block-Lifting Structure and Its Application to M-Channel Perfect Reconstruction Filter Banks for Lossy-to-Lossless Image Coding.

    PubMed

    Suzuki, Taizo; Kudo, Hiroyuki

    2015-12-01

    We propose a 2D non-separable block-lifting structure (2D-NSBL) that is easily formulated from the 1D separable block-lifting structure (1D-SBL) and 2D non-separable lifting structure (2D-NSL). The 2D-NSBL can be regarded as an extension of the 2D-NSL, because a two-channel 2D-NSBL is completely equivalent to a 2D-NSL. We apply the 2D-NSBL to M-channel ( M=2(n), n ∈ N) perfect reconstruction filter banks (PRFBs). The 2D-NSBL-based PRFBs outperform 1D-SBL-based PRFBs at lossy-to-lossless coding, whose image quality is scalable from lossless data to high compressed lossy data, because their rounding errors are reduced by merging many rounding operations.

  19. 3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images.

    PubMed

    Chen, Xueli; Gao, Xinbo; Chen, Duofang; Ma, Xiaopeng; Zhao, Xiaohui; Shen, Man; Li, Xiangsi; Qu, Xiaochao; Liang, Jimin; Ripoll, Jorge; Tian, Jie

    2010-09-13

    Optical tomography can demonstrate accurate three-dimensional (3D) imaging that recovers the 3D spatial distribution and concentration of the luminescent probes in biological tissues, compared with planar imaging. However, the tomographic approach is extremely difficult to implement due to the complexity in the reconstruction of 3D surface flux distribution from multi-view two dimensional (2D) measurements on the subject surface. To handle this problem, a novel and effective method is proposed in this paper to determine the surface flux distribution from multi-view 2D photographic images acquired by a set of non-contact detectors. The method is validated with comparison experiments involving both regular and irregular surfaces. Reconstruction of the inside probes based on the reconstructed surface flux distribution further demonstrates the potential of the proposed method in its application in optical tomography.

  20. Development of 2-D horn-antenna millimeter-wave imaging device (HMID) for the plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Nagayama, Y.; Ito, N.; Kuwahara, D.; Tsuchiya, H.; Yamaguchi, S.

    2017-04-01

    The two-dimensional (2-D) Horn-antenna Millimeter-wave Imaging Device (HMID) has been developed for the O-mode Microwave Imaging Reflectometry (O-MIR) in the Large Helical Device (LHD). The detectable frequency range of the HMID is 23-33 GHz, which corresponds to the cutoff electron density of 0.8-1.5 × 1019 m-3 in the O-MIR. The HMID is a 2-D imaging device that improves on the horn-antenna mixer array, which had been developed for the X-mode MIR in the LHD. In the HMID, the signal (RF) wave from the horn antenna is transmitted to the microstrip line by the finline transmitter, and this is mixed by the double-balanced-mixer with the local oscillation wave that is fed by a coaxial cable. By using the HMID, the MIR optical system can be significantly simplified.

  1. Estimation of 3-D pore network coordination number of rocks from watershed segmentation of a single 2-D image

    NASA Astrophysics Data System (ADS)

    Rabbani, Arash; Ayatollahi, Shahab; Kharrat, Riyaz; Dashti, Nader

    2016-08-01

    In this study, we have utilized 3-D micro-tomography images of real and synthetic rocks to introduce two mathematical correlations which estimate the distribution parameters of 3-D coordination number using a single 2-D cross-sectional image. By applying a watershed segmentation algorithm, it is found that the distribution of 3-D coordination number is acceptably predictable by statistical analysis of the network extracted from 2-D images. In this study, we have utilized 25 volumetric images of rocks in order to propose two mathematical formulas. These formulas aim to approximate the average and standard deviation of coordination number in 3-D pore networks. Then, the formulas are applied for five independent test samples to evaluate the reliability. Finally, pore network flow modeling is used to find the error of absolute permeability prediction using estimated and measured coordination numbers. Results show that the 2-D images are considerably informative about the 3-D network of the rocks and can be utilized to approximate the 3-D connectivity of the porous spaces with determination coefficient of about 0.85 that seems to be acceptable considering the variety of the studied samples.

  2. 2D Transducer Array for High-Speed 3D Imaging System

    DTIC Science & Technology

    2007-11-02

    low voltage differential signaling ( LVDS ) interface and a peripheral component interconnect (PCI) bus. The maximum numbers of transmission and...32-channel analog to digital converter (ADC) was attached to the developed transducer array. LVDS 2D Array Front End D a t a A c q u i s i t i o

  3. Assessment of some problematic factors in facial image identification using a 2D/3D superimposition technique.

    PubMed

    Atsuchi, Masaru; Tsuji, Akiko; Usumoto, Yosuke; Yoshino, Mineo; Ikeda, Noriaki

    2013-09-01

    The number of criminal cases requiring facial image identification of a suspect has been increasing because a surveillance camera is installed everywhere in the city and furthermore, the intercom with the recording function is installed in the home. In this study, we aimed to analyze the usefulness of a 2D/3D facial image superimposition system for image identification when facial aging, facial expression, and twins are under consideration. As a result, the mean values of the average distances calculated from the 16 anatomical landmarks between the 3D facial images of the 50s groups and the 2D facial images of the 20s, 30s, and 40s groups were 2.6, 2.3, and 2.2mm, respectively (facial aging). The mean values of the average distances calculated from 12 anatomical landmarks between the 3D normal facial images and four emotional expressions were 4.9 (laughter), 2.9 (anger), 2.9 (sadness), and 3.6mm (surprised), respectively (facial expressions). The average distance obtained from 11 anatomical landmarks between the same person in twins was 1.1mm, while the average distance between different person in twins was 2.0mm (twins). Facial image identification using the 2D/3D facial image superimposition system demonstrated adequate statistical power and identified an individual with high accuracy, suggesting its usefulness. However, computer technology concerning video image processing and superimpose progress, there is a need to keep familiar with the morphology and anatomy as its base.

  4. Simultaneous acquisition of differing image types

    DOEpatents

    Demos, Stavros G

    2012-10-09

    A system in one embodiment includes an image forming device for forming an image from an area of interest containing different image components; an illumination device for illuminating the area of interest with light containing multiple components; at least one light source coupled to the illumination device, the at least one light source providing light to the illumination device containing different components, each component having distinct spectral characteristics and relative intensity; an image analyzer coupled to the image forming device, the image analyzer decomposing the image formed by the image forming device into multiple component parts based on type of imaging; and multiple image capture devices, each image capture device receiving one of the component parts of the image. A method in one embodiment includes receiving an image from an image forming device; decomposing the image formed by the image forming device into multiple component parts based on type of imaging; receiving the component parts of the image; and outputting image information based on the component parts of the image. Additional systems and methods are presented.

  5. Integration of 3D and 2D imaging data for assured navigation in unknown environments: initial steps

    NASA Astrophysics Data System (ADS)

    Dill, Evan; Uijt de Haag, Maarten

    2009-05-01

    This paper discusses the initial steps of the development of a novel navigation method that integrates three-dimensional (3D) point cloud data, two-dimensional (2D) gray-level (intensity), and data from an Inertial Measurement Unit (IMU). A time-of-flight camera such as MESA's Swissranger will output both the 3D and 2D data. The target application is position and attitude determination of unmanned aerial vehicles (UAV) and autonomous ground vehicles (AGV) in urban or indoor environments. In urban and indoor environments a GPS position capability may not only be unavailable due to shadowing, significant signal attenuation or multipath, but also due to intentional denial or deception. The proposed algorithm extracts key features such as planar surfaces, lines and corner-points from both the 3D (point-cloud) and 2D (intensity) imagery. Consecutive observations of corresponding features in the 3D and 2D image frames are then used to compute estimates of position and orientation changes. Since the use of 3D image features for positioning suffers from limited feature observability resulting in deteriorated position accuracies, and the 2D imagery suffers from an unknown depth when estimating the pose from consecutive image frames, it is expected that the integration of both data sets will alleviate the problems with the individual methods resulting in an position and attitude determination method with a high level of assurance. An Inertial Measurement Unit (IMU) is used to set up the tracking gates necessary to perform data association of the features in consecutive frames. Finally, the position and orientation change estimates can be used to correct for the IMU drift errors.

  6. SU-E-T-431: Feasiblity of Using CT Scout Images for 2D LDR Brachytherpay Planning

    SciTech Connect

    Ha, J; Weaver, R

    2015-06-15

    Purpose: i) To show the feasibility of using CT scout images for 2D low-dose rate brachytherapy planning with BrachyVision (version 10.4); ii) to show their advantages and disadvantages over DRRs. Methods: A phantom was constructed to house a Fletcher-Suite applicator. The phantom is made of Styrofoam with metal BBs positioned at well-defined separations. These markers are used to assess the image distortion in the scout images. Unlike DRRs, scout images are distorted only in the direction normal to the couch direction; therefore, they needed to be scaled unidirectionally prior to importing into BrachyVision. In addition to confirming the scaling is performed correctly by measuring distances between well-positioned BB, we also compare a LDR plan using scout images to a 3D CT-based plan. Results: There is no distortion of the image along the couch direction due to the collimation of the CT scanner. The distortion in the transverse plane can be corrected by multiplying by the ratio of distances between source-to-isocenter and source-to-detector. The results show the distance separations between BBs as measured in scout images and by a caliber are within a few millimeters. Dosimetrically, the difference between the dose rates to points A and B based on scout images and on 3D CT are less than a few percents. The accuracy can be improved by correcting for the distortion on the transverse plane. Conclusion: It is possible to use CT scout images for 2D planning in BrachyVision. This is an advantage because scout images have no metal artifacts often present in CT images or DRRs. Another advantage is the lack of distortion in the couch direction. One major disadvantage is that the image distortion due to beam divergence can be large. This is due to the inherent short distance between source-to-isocenter and source-to-detector on a CT scanner.

  7. Tracking objects outside the line of sight using 2D intensity images

    PubMed Central

    Klein, Jonathan; Peters, Christoph; Martín, Jaime; Laurenzis, Martin; Hullin, Matthias B.

    2016-01-01

    The observation of objects located in inaccessible regions is a recurring challenge in a wide variety of important applications. Recent work has shown that using rare and expensive optical setups, indirect diffuse light reflections can be used to reconstruct objects and two-dimensional (2D) patterns around a corner. Here we show that occluded objects can be tracked in real time using much simpler means, namely a standard 2D camera and a laser pointer. Our method fundamentally differs from previous solutions by approaching the problem in an analysis-by-synthesis sense. By repeatedly simulating light transport through the scene, we determine the set of object parameters that most closely fits the measured intensity distribution. We experimentally demonstrate that this approach is capable of following the translation of unknown objects, and translation and orientation of a known object, in real time. PMID:27577969

  8. 2-D/3-D ECE imaging data for validation of turbulence simulations

    NASA Astrophysics Data System (ADS)

    Choi, Minjun; Lee, Jaehyun; Yun, Gunsu; Lee, Woochang; Park, Hyeon K.; Park, Young-Seok; Sabbagh, Steve A.; Wang, Weixing; Luhmann, Neville C., Jr.

    2015-11-01

    The 2-D/3-D KSTAR ECEI diagnostic can provide a local 2-D/3-D measurement of ECE intensity. Application of spectral analysis techniques to the ECEI data allows local estimation of frequency spectra S (f) , wavenumber spectra S (k) , wavernumber and frequency spectra S (k , f) , and bispectra b (f1 ,f2) of ECE intensity over the 2-D/3-D space, which can be used to validate turbulence simulations. However, the minimum detectable fluctuation amplitude and the maximum detectable wavenumber are limited by the temporal and spatial resolutions of the diagnostic system, respectively. Also, the finite measurement area of the diagnostic channel could introduce uncertainty in the spectra estimation. The limitations and accuracy of the ECEI estimated spectra have been tested by a synthetic ECEI diagnostic with the model and/or fluctuations calculated by GTS. Supported by the NRF of Korea under Contract No. NRF-2014M1A7A1A03029881 and NRF-2014M1A7A1A03029865 and by U.S. DOE grant DE-FG02-99ER54524.

  9. Two-dimensional fast imaging employing steady-state acquisition (FIESTA) cine acquisition of fetal non-central nervous system abnormalities.

    PubMed

    Shen, Shu-Huei; Guo, Wan-Yuo; Hung, Jeng-Hsiu

    2007-09-01

    To evaluate the value of two-dimensional fast imaging employing steady-state acquisition (2D FIESTA) cine MR with parallel imaging techniques in the diagnosis of fetal non-central nervous system (CNS) anomalies. A total of 28 pregnant women were referred for further MR evaluation on fetuses after abnormal sonographic results. A total of 33 fetal MR examinations were performed by a 1.5 T MR scanner with eight-channel phase-arrayed body coils. Single-shot fast spin-echo (SSFSE(R), GE) of three orthogonal planes and 2D FIESTA for cine fetal MR of three sagittal planes (midsagittal and 10 mm off midline on left and right) were routinely acquired. Additional planes on target organs with variable imaging frames were added if indicated. Nine of the 33 examinations (9/33; 27.3%) had motion artifacts obscuring the detail in SSFSE imaging; 2D FIESTA imaging provided motion-artifact-free imaging in all of them. Cine 2D FIESTA imaging provided additional information on the visceral peristalsis. The information helped in differentiating dilated gastrointestinal (GI) tract from other intraabdominal cystic lesions and in confirming the nature and level of GI tract obstruction. With sub-half-second temporal resolution of the 2D FIESTA sequences, fetal movement is no longer problematic. In addition to the anatomical information also provided by conventional SSFSE sequences, 2D FIESTA demonstrates information on motility and peristalsis of hollow organs and helps the diagnosis of fetal visceral anomalies. (c) 2007 Wiley-Liss, Inc.

  10. 2-D Fused Image Reconstruction approach for Microwave Tomography: a theoretical assessment using FDTD Model.

    PubMed

    Bindu, G; Semenov, S

    2013-01-01

    This paper describes an efficient two-dimensional fused image reconstruction approach for Microwave Tomography (MWT). Finite Difference Time Domain (FDTD) models were created for a viable MWT experimental system having the transceivers modelled using thin wire approximation with resistive voltage sources. Born Iterative and Distorted Born Iterative methods have been employed for image reconstruction with the extremity imaging being done using a differential imaging technique. The forward solver in the imaging algorithm employs the FDTD method of solving the time domain Maxwell's equations with the regularisation parameter computed using a stochastic approach. The algorithm is tested with 10% noise inclusion and successful image reconstruction has been shown implying its robustness.

  11. Comparison of simultaneous and sequential two-view registration for 3D/2D registration of vascular images.

    PubMed

    Pathak, Chetna; Van Horn, Mark; Weeks, Susan; Bullitt, Elizabeth

    2005-01-01

    Accurate 3D/2D vessel registration is complicated by issues of image quality, occlusion, and other problems. This study performs a quantitative comparison of 3D/2D vessel registration in which vessels segmented from preoperative CT or MR are registered with biplane x-ray angiograms by either a) simultaneous two-view registration with advance calculation of the relative pose of the two views, or b) sequential registration with each view. We conclude on the basis of phantom studies that, even in the absence of image errors, simultaneous two-view registration is more accurate than sequential registration. In more complex settings, including clinical conditions, the relative accuracy of simultaneous two-view registration is even greater.

  12. A new multi-modal similarity measure for fast gradient-based 2D-3D image registration.

    PubMed

    Pickering, Mark R; Muhit, Abdullah A; Scarvell, Jennie M; Smith, Paul N

    2009-01-01

    2D-3D image registration has been adopted in many clinical applications such as image-guided surgery and the kinematic analysis of bones in knee and ankle joints. In this paper we propose a new single-plane 2D-3D registration algorithm which requires far less iteration than previous techniques. The new algorithm includes a new multi-modal similarity measure and a novel technique for the analytic calculation of the required gradients. Our experimental results show that, when compared to existing gradient and non-gradient based techniques, the proposed algorithm has a wider range of initial poses for which registration can be achieved and requires significantly fewer iterations to converge to the true 3D position of the anatomical structure.

  13. Comparison of DP3 Signals Evoked by Comfortable 3D Images and 2D Images - an Event-Related Potential Study using an Oddball Task.

    PubMed

    Ye, Peng; Wu, Xiang; Gao, Dingguo; Liang, Haowen; Wang, Jiahui; Deng, Shaozhi; Xu, Ningsheng; She, Juncong; Chen, Jun

    2017-02-22

    The horizontal binocular disparity is a critical factor for the visual fatigue induced by watching stereoscopic TVs. Stereoscopic images that possess the disparity within the 'comfort zones' and remain still in the depth direction are considered comfortable to the viewers as 2D images. However, the difference in brain activities between processing such comfortable stereoscopic images and 2D images is still less studied. The DP3 (differential P3) signal refers to an event-related potential (ERP) component indicating attentional processes, which is typically evoked by odd target stimuli among standard stimuli in an oddball task. The present study found that the DP3 signal elicited by the comfortable 3D images exhibits the delayed peak latency and enhanced peak amplitude over the anterior and central scalp regions compared to the 2D images. The finding suggests that compared to the processing of the 2D images, more attentional resources are involved in the processing of the stereoscopic images even though they are subjectively comfortable.

  14. Comparison of DP3 Signals Evoked by Comfortable 3D Images and 2D Images — an Event-Related Potential Study using an Oddball Task

    PubMed Central

    Ye, Peng; Wu, Xiang; Gao, Dingguo; Liang, Haowen; Wang, Jiahui; Deng, Shaozhi; Xu, Ningsheng; She, Juncong; Chen, Jun

    2017-01-01

    The horizontal binocular disparity is a critical factor for the visual fatigue induced by watching stereoscopic TVs. Stereoscopic images that possess the disparity within the ‘comfort zones’ and remain still in the depth direction are considered comfortable to the viewers as 2D images. However, the difference in brain activities between processing such comfortable stereoscopic images and 2D images is still less studied. The DP3 (differential P3) signal refers to an event-related potential (ERP) component indicating attentional processes, which is typically evoked by odd target stimuli among standard stimuli in an oddball task. The present study found that the DP3 signal elicited by the comfortable 3D images exhibits the delayed peak latency and enhanced peak amplitude over the anterior and central scalp regions compared to the 2D images. The finding suggests that compared to the processing of the 2D images, more attentional resources are involved in the processing of the stereoscopic images even though they are subjectively comfortable. PMID:28225044

  15. Comparison of DP3 Signals Evoked by Comfortable 3D Images and 2D Images — an Event-Related Potential Study using an Oddball Task

    NASA Astrophysics Data System (ADS)

    Ye, Peng; Wu, Xiang; Gao, Dingguo; Liang, Haowen; Wang, Jiahui; Deng, Shaozhi; Xu, Ningsheng; She, Juncong; Chen, Jun

    2017-02-01

    The horizontal binocular disparity is a critical factor for the visual fatigue induced by watching stereoscopic TVs. Stereoscopic images that possess the disparity within the ‘comfort zones’ and remain still in the depth direction are considered comfortable to the viewers as 2D images. However, the difference in brain activities between processing such comfortable stereoscopic images and 2D images is still less studied. The DP3 (differential P3) signal refers to an event-related potential (ERP) component indicating attentional processes, which is typically evoked by odd target stimuli among standard stimuli in an oddball task. The present study found that the DP3 signal elicited by the comfortable 3D images exhibits the delayed peak latency and enhanced peak amplitude over the anterior and central scalp regions compared to the 2D images. The finding suggests that compared to the processing of the 2D images, more attentional resources are involved in the processing of the stereoscopic images even though they are subjectively comfortable.

  16. The bias of a 2D view: Comparing 2D and 3D mesophyll surface area estimates using non-invasive imaging

    USDA-ARS?s Scientific Manuscript database

    The surface area of the leaf mesophyll exposed to intercellular airspace per leaf area (Sm) is closely associated with CO2 diffusion and photosynthetic rates. Sm is typically estimated from two-dimensional (2D) leaf sections and corrected for the three-dimensional (3D) geometry of mesophyll cells, l...

  17. Quantification and geometric analysis of coiling patterns in gastropod shells based on 3D and 2D image data.

    PubMed

    Noshita, Koji

    2014-12-21

    The morphology of gastropod shells has been a focus of analyses in ecology and evolution. It has recently emerged as an important issue in developmental biology, thanks to recent advancements in molecular biological techniques. The growing tube model is a theoretical morphological model for describing various coiling patterns of molluscan shells, and it is a useful theoretical tool to relate local tissue growth with global shell morphology. However, the growing tube model has rarely been adopted in empirical research owing to the difficulty in estimating the parameters of the model from morphological data. In this article, I solve this problem by developing methods of parameter estimation when (1) 3D Computed Tomography (CT) data are available and (2) only 2D image data (such as photographs) are available. When 3D CT data are available, the parameters can be estimated by fitting an analytical solution of the growing tube model to the data. When only 2D image data are available, we first fit Raup׳s model to the 2D image data and then convert the parameters of Raup׳s model to those of the growing tube model. To illustrate the use of these methods, I apply them to data generated by a computer simulation of the model. Both methods work well, except when shells grow without coiling. I also demonstrate the effectiveness of the methods by applying the model to actual 3D CT data and 2D image data of land snails. I conclude that the method proposed in this article can reconstruct the coiling pattern from observed data.

  18. Applying 2-D resistivity imaging and ground penetrating radar (GPR) methods to identify infiltration of water in the ground surface

    NASA Astrophysics Data System (ADS)

    Yusof, Azim Hilmy Mohamad; Azman, Muhamad Iqbal Mubarak Faharul; Ismail, Nur Azwin; Ismail, Noer El Hidayah

    2017-07-01

    Infiltration of water into the soil mostly happens in area near to the ocean or area where rain occurred frequently. This paper explains about the water infiltration process that occurred vertically and horizontally at the subsurface layer. Infiltration act as an indicator of the soil's ability to allow water movement into and through the soil profile. This research takes place at Teluk Kumbar, Pulau Pinang, area that located near to the sea. Thus, infiltration process occurs actively. The study area consists of unconsolidated marine clay, sand and gravel deposits. Furthermore, the methods used for this research is 2-D Resistivity Imaging by using Wenner-Schlumberger array with 2.5 m minimum electrode spacing, and the second method is Ground Penetrating Radar (GPR) with antenna frequency of 250MHz. 2-D Resistivity Imaging is used to investigate the subsurface layer of the soil. Other than that, this method can also be used to investigate the water infiltration that happens horizontally. GPR is used to investigate shallow subsurface layer and to investigate the water infiltration from above. The results of inversion model of 2-D Resistivity Imaging shows that the subsurface layer at distance of 0 m to 20 m are suspected to be salt water intrusion zone due to the resistivity value of 0 Ω.m to 1 Ω.m. As for the radargram results from the GPR, the anomaly seems to be blurry and unclear, and EM waves signal can only penetrate up to 1.5 m depth. This feature shows that the subsurface layer is saturated with salt water. Applying 2-D resistivity imaging and GPR method were implemented to each other in identifying infiltration of water in the ground surface.

  19. Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging

    NASA Astrophysics Data System (ADS)

    Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas

    2016-03-01

    In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.

  20. Adaptive clutter filter in 2-D color flow imaging based on in vivo I/Q signal.

    PubMed

    Zhou, Xiaoming; Zhang, Congyao; Liu, Dong C

    2014-01-01

    Color flow imaging has been well applied in clinical diagnosis. For the high quality color flow images, clutter filter is important to separate the Doppler signals from blood and tissue. Traditional clutter filters, such as finite impulse response, infinite impulse response and regression filters, were applied, which are based on the hypothesis that the clutter signal is stationary or tissue moves slowly. However, in realistic clinic color flow imaging, the signals are non-stationary signals because of accelerated moving tissue. For most related papers, simulated RF signals are widely used without in vivo I/Q signal. Hence, in this paper, adaptive polynomial regression filter, which is down mixing with instantaneous clutter frequency, was proposed based on in vivo carotid I/Q signal in realistic color flow imaging. To get the best performance, the optimal polynomial order of polynomial regression filter and the optimal polynomial order for estimation of instantaneous clutter frequency respectively were confirmed. Finally, compared with the mean blood velocity and quality of 2-D color flow image, the experiment results show that adaptive polynomial regression filter, which is down mixing with instantaneous clutter frequency, can significantly enhance the mean blood velocity and get high quality 2-D color flow image.

  1. 2D wavelet-analysis-based calibration technique for flat-panel imaging detectors: application in cone beam volume CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Ning, Ruola; Yu, Rongfeng; Conover, David L.

    1999-05-01

    The application of the newly developed flat panel x-ray imaging detector in cone beam volume CT has attracted increasing interest recently. Due to an imperfect solid state array manufacturing process, however, defective elements, gain non-uniformity and offset image unavoidably exist in all kinds of flat panel x-ray imaging detectors, which will cause severe streak and ring artifacts in a cone beam reconstruction image and severely degrade image quality. A calibration technique, in which the artifacts resulting from the defective elements, gain non-uniformity and offset image can be reduced significantly, is presented in this paper. The detection of defective elements is distinctively based upon two-dimensional (2D) wavelet analysis. Because of its inherent localizability in recognizing singularities or discontinuities, wavelet analysis possesses the capability of detecting defective elements over a rather large x-ray exposure range, e.g., 20% to approximately 60% of the dynamic range of the detector used. Three-dimensional (3D) images of a low-contrast CT phantom have been reconstructed from projection images acquired by a flat panel x-ray imaging detector with and without calibration process applied. The artifacts caused individually by defective elements, gain non-uniformity and offset image have been separated and investigated in detail, and the correlation with each other have also been exposed explicitly. The investigation is enforced by quantitative analysis of the signal to noise ratio (SNR) and the image uniformity of the cone beam reconstruction image. It has been demonstrated that the ring and streak artifacts resulting from the imperfect performance of a flat panel x-ray imaging detector can be reduced dramatically, and then the image qualities of a cone beam reconstruction image, such as contrast resolution and image uniformity are improved significantly. Furthermore, with little modification, the calibration technique presented here is also applicable

  2. Calibration model of a dual gain flat panel detector for 2D and 3D x-ray imaging

    SciTech Connect

    Schmidgunst, C.; Ritter, D.; Lang, E.

    2007-09-15

    The continuing research and further development in flat panel detector technology have led to its integration into more and more medical x-ray systems for two-dimensional (2D) and three-dimensional (3D) imaging, such as fixed or mobile C arms. Besides the obvious advantages of flat panel detectors, like the slim design and the resulting optimum accessibility to the patient, their success is primarily a product of the image quality that can be achieved. The benefits in the physical and performance-related features as opposed to conventional image intensifier systems (e.g., distortion-free reproduction of imaging information or almost linear signal response over a large dynamic range) can be fully exploited, however, only if the raw detector images are correctly calibrated and postprocessed. Previous procedures for processing raw data contain idealizations that, in the real world, lead to artifacts or losses in image quality. Thus, for example, temperature dependencies or changes in beam geometry, as can occur with mobile C arm systems, have not been taken into account up to this time. Additionally, adverse characteristics such as image lag or aging effects have to be compensated to attain the best possible image quality. In this article a procedure is presented that takes into account the important dependencies of the individual pixel sensitivity of flat panel detectors used in 2D or 3D imaging and simultaneously minimizes the work required for an extensive recalibration. It is suitable for conventional detectors with only one gain mode as well as for the detectors specially developed for 3D imaging with dual gain read-out technology.

  3. Calibration model of a dual gain flat panel detector for 2D and 3D x-ray imaging.

    PubMed

    Schmidgunst, C; Ritter, D; Lang, E

    2007-09-01

    The continuing research and further development in flat panel detector technology have led to its integration into more and more medical x-ray systems for two-dimensional (2D) and three-dimensional (3D) imaging, such as fixed or mobile C arms. Besides the obvious advantages of flat panel detectors, like the slim design and the resulting optimum accessibility to the patient, their success is primarily a product of the image quality that can be achieved. The benefits in the physical and performance-related features as opposed to conventional image intensifier systems, (e.g., distortion-free reproduction of imaging information or almost linear signal response over a large dynamic range) can be fully exploited, however, only if the raw detector images are correctly calibrated and postprocessed. Previous procedures for processing raw data contain idealizations that, in the real world, lead to artifacts or losses in image quality. Thus, for example, temperature dependencies or changes in beam geometry, as can occur with mobile C arm systems, have not been taken into account up to this time. Additionally, adverse characteristics such as image lag or aging effects have to be compensated to attain the best possible image quality. In this article a procedure is presented that takes into account the important dependencies of the individual pixel sensitivity of flat panel detectors used in 2D or 3D imaging and simultaneously minimizes the work required for an extensive recalibration. It is suitable for conventional detectors with only one gain mode as well as for the detectors specially developed for 3D imaging with dual gain read-out technology.

  4. Segmentation of 2D fetal ultrasound images by exploiting context information using conditional random fields.

    PubMed

    Gupta, Lalit; Sisodia, Rajendra Singh; Pallavi, V; Firtion, Celine; Ramachandran, Ganesan

    2011-01-01

    This paper proposes a novel approach for segmenting fetal ultrasound images. This problem presents a variety of challenges including high noise, low contrast, and other US imaging properties such as similarity between texture and gray levels of two organs/ tissues. In this paper, we have proposed a Conditional Random Field (CRF) based framework to handle challenges in segmenting fetal ultrasound images. Clinically, it is known that fetus is surrounded by specific maternal tissues, amniotic fluid and placenta. We exploit this context information using CRFs for segmenting the fetal images accurately. The proposed CRF framework uses wavelet based texture features for representing the ultrasound image and Support Vector Machines (SVM) for initial label prediction. Initial results on a limited dataset of real world ultrasound images of fetus are promising. Results show that proposed method could handle the noise and similarity between fetus and its surroundings in ultrasound images.

  5. Reconstruction of four-dimensional computed tomography images during treatment time using electronic portal imaging device images based on a dynamic 2D/3D registration

    NASA Astrophysics Data System (ADS)

    Nakamoto, T.; Arimura, H.; Hirose, T. A.; Ohga, S.; Umezu, Y.; Nakamura, Y.; Honda, H.; Sasaki, T.

    2017-03-01

    The goal of our study was to develop a computational framework for reconstruction of four-dimensional computed tomography (4D-CT) images during treatment time using electronic portal imaging device (EPID) images based on a dynamic 2D/3D registration. The 4D-CT images during treatment time ("treatment" 4D-CT images) were reconstructed by performing an affine transformation-based dynamic 2D/3D registration between dynamic clinical portal dose images (PDIs) derived from the EPID images with planning CT images through planning PDIs for all frames. Elements of the affine transformation matrices (transformation parameters) were optimized using a Levenberg-Marquardt (LM) algorithm so that the planning PDIs could be similar to the dynamic clinical PDIs for all frames. Initial transformation parameters in each frame should be determined for finding optimum transformation parameters in the LM algorithm. In this study, the optimum transformation parameters in a frame employed as the initial transformation parameters for optimizing the transformation parameter in the consecutive frame. Gamma pass rates (3 mm/3%) were calculated for evaluating a similarity of the dose distributions between the dynamic clinical PDIs and "treatment" PDIs, which were calculated from "treatment" 4D-CT images, for all frames. The framework was applied to eight lung cancer patients who were treated with stereotactic body radiation therapy (SBRT). A mean of the average gamma pass rates between the dynamic clinical PDIs and the "treatment" PDIs for all frames was 98.3+/-1.2% for eight cases. In conclusion, the proposed framework makes it possible to dynamically monitor patients' movement during treatment time.

  6. Sensor fusion of 2D and 3D data for the processing of images of dental imprints

    NASA Astrophysics Data System (ADS)

    Methot, Jean-Francois; Mokhtari, Marielle; Laurendeau, Denis; Poussart, Denis

    1993-08-01

    This paper presents a computer vision system for the acquisition and processing of 3-D images of wax dental imprints. The ultimate goal of the system is to measure a set of 10 orthodontic parameters that will be fed to an expert system for automatic diagnosis of occlusion problems. An approach for the acquisition of range images of both sides of the imprint is presented. Range is obtained from a shape-from-absorption technique applied to a pair of grey-level images obtained at two different wavelengths. The accuracy of the range values is improved using sensor fusion between the initial range image and a reflectance image from the pair of grey-level images. The improved range image is segmented in order to find the interstices between teeth and, following further processing, the type of each tooth on the profile. Once each tooth has been identified, its accurate location on the imprint is found using a region- growing approach and its shape is reconstructed with third degree polynomial functions. The reconstructed shape will be later used by the system to find specific features that are needed to estimate the orthodontic parameters.

  7. Compensation of inhomogeneous fluorescence signal distribution in 2D images acquired by confocal microscopy.

    PubMed

    Michálek, Jan; Capek, Martin; Kubínová, Lucie

    2011-09-01

    In images acquired by confocal laser scanning microscopy (CLSM), regions corresponding to the same concentration of fluorophores in the specimen should be mapped to the same grayscale levels. However, in practice, due to multiple distortion effects, CLSM images of even homogeneous specimen regions suffer from irregular brightness variations, e.g., darkening of image edges and lightening of the center. The effects are yet more pronounced in images of real biological specimens. A spatially varying grayscale map complicates image postprocessing, e.g., in alignment of overlapping regions of two images and in 3D reconstructions, since measures of similarity usually assume a spatially independent grayscale map. We present a fast correction method based on estimating a spatially variable illumination gain, and multiplying acquired CLSM images by the inverse of the estimated gain. The method does not require any special calibration of reference images since the gain estimate is extracted from the CLSM image being corrected itself. The proposed approach exploits two types of morphological filters: the median filter and the upper Lipschitz cover. The presented correction method, tested on images of both artificial (homogeneous fluorescent layer) and real biological specimens, namely sections of a rat embryo and a rat brain, proved to be very fast and yielded a significant visual improvement. Copyright © 2010 Wiley-Liss, Inc.

  8. Iterative Stable Alignment and Clustering of 2D Transmission Electron Microscope Images

    PubMed Central

    Yang, Zhengfan; Fang, Jia; Chittuluru, Johnathan; Asturias, Francisco J.; Penczek, Pawel A.

    2012-01-01

    SUMMARY Identification of homogeneous subsets of images in a macromolecular electron microscopy (EM) image data set is a critical step in single-particle analysis. The task is handled by iterative algorithms, whose performance is compromised by the compounded limitations of image alignment and K-means clustering. Here we describe an approach, iterative stable alignment and clustering (ISAC) that, relying on a new clustering method and on the concepts of stability and reproducibility, can extract validated, homogeneous subsets of images. ISAC requires only a small number of simple parameters and, with minimal human intervention, can eliminate bias from two-dimensional image clustering and maximize the quality of group averages that can be used for ab initio three-dimensional structural determination and analysis of macromolecular conformational variability. Repeated testing of the stability and reproducibility of a solution within ISAC eliminates heterogeneous or incorrect classes and introduces critical validation to the process of EM image clustering. PMID:22325773

  9. Infrared imaging of 2-D temperature distribution during cryogen spray cooling.

    PubMed

    Choi, Bernard; Welch, Ashley J

    2002-12-01

    Cryogen spray cooling (CSC) is used in conjunction with pulsed laser irradiation for treatment of dermatologic indications. The main goal of this study was to determine the radial temperature distribution created by CSC and evaluate the importance of radial temperature gradients upon the subsequent analysis of tissue cooling throughout the skin. Since direct measurement of surface temperatures during CSC are hindered by the formation of a liquid cryogen layer, temperature distributions were estimated using a thin, black aluminum sheet. An infrared focal plane array camera was used to determine the 2-D backside temperature distribution during a cryogen spurt, which preliminary measurements have shown is a good indicator of the front-side temperature distribution. The measured temperature distribution was approximately gaussian in shape. Next, the transient temperature distributions in skin were calculated for two cases: 1) the standard 1-D solution which assumes a uniform cooling temperature distribution, and 2) a 2-D solution using a nonuniform surface cooling temperature distribution based upon the back-side infrared temperature measurements. At the end of a 100-ms cryogen spurt, calculations showed that, for the two cases, large discrepancies in temperatures at the surface and at a 60-micron depth were found at radii greater than 2.5 mm. These results suggest that it is necessary to consider radial temperature gradients during cryogen spray cooling of tissue.

  10. Secondary flow vortices and flow separation of 2-D turning diffuser via particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Nordin, N.; Seri, S. M.; Taib, I.; Mohammed, A. N.; Abdullah, M. K.; Sapit, A.

    2017-08-01

    It is often necessary in fluid flow systems to simultaneously decelerate and turn the flow. This can be achieved by employing turning diffusers in the fluid flow systems. The flow through a turning diffuser is complex, apparently due to the expansion and inflexion introduced along the direction of flow. In the present work, the flow characteristics of 2-D turning diffuser by means of varying inflow Reynolds number are investigated. The flow characteristics within the outlet cross-section and longitudinal section were examined respectively by the 3-D stereoscopic PIV and 2-D PIV. The flow uniformity is affected with the increase of inflow Reynolds number due to the dispersion of the core flow throughout the outlet cross-section. It becomes even worse with the presences of secondary flow of 22% to 28%. The secondary flow vortices occur almost the same scale at both left and right sides of the outlet. The flow separation takes place within the inner wall region early on half of the inner wall length and is gradually resolved with the increase of inflow Reynolds number.

  11. Soft-tissues Image Processing: Comparison of Traditional Segmentation Methods with 2D active Contour Methods

    NASA Astrophysics Data System (ADS)

    Mikulka, J.; Gescheidtova, E.; Bartusek, K.

    2012-01-01

    The paper deals with modern methods of image processing, especially image segmentation, classification and evaluation of parameters. It focuses primarily on processing medical images of soft tissues obtained by magnetic resonance tomography (MR). It is easy to describe edges of the sought objects using segmented images. The edges found can be useful for further processing of monitored object such as calculating the perimeter, surface and volume evaluation or even three-dimensional shape reconstruction. The proposed solutions can be used for the classification of healthy/unhealthy tissues in MR or other imaging. Application examples of the proposed segmentation methods are shown. Research in the area of image segmentation focuses on methods based on solving partial differential equations. This is a modern method for image processing, often called the active contour method. It is of great advantage in the segmentation of real images degraded by noise with fuzzy edges and transitions between objects. In the paper, results of the segmentation of medical images by the active contour method are compared with results of the segmentation by other existing methods. Experimental applications which demonstrate the very good properties of the active contour method are given.

  12. Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques.

    PubMed

    Parmar, Biren J; Longsine, Whitney; Sabonghy, Eric P; Han, Arum; Tasciotti, Ennio; Weiner, Bradley K; Ferrari, Mauro; Righetti, Raffaella

    2010-08-21

    Ultrasound is emerging as an attractive alternative modality to standard x-ray and CT methods for bone assessment applications. As of today, however, there is a lack of systematic studies that investigate the performance of diagnostic ultrasound techniques in bone imaging applications. This study aims at understanding the performance limitations of new ultrasound techniques for imaging bones in controlled experiments in vitro. Experiments are performed on samples of mammalian and non-mammalian bones with controlled defects with size ranging from 400 microm to 5 mm. Ultrasound findings are statistically compared with those obtained from the same samples using standard x-ray imaging modalities and optical microscopy. The results of this study demonstrate that it is feasible to use diagnostic ultrasound imaging techniques to assess sub-millimeter bone defects in real time and with high accuracy and precision. These results also demonstrate that ultrasound imaging techniques perform comparably better than x-ray imaging and optical imaging methods, in the assessment of a wide range of controlled defects both in mammalian and non-mammalian bones. In the future, ultrasound imaging techniques might provide a cost-effective, real-time, safe and portable diagnostic tool for bone imaging applications.

  13. Multi-imaging capabilities of a 2D diffraction grating in combination with digital holography.

    PubMed

    Paturzo, Melania; Merola, Francesco; Ferraro, Pietro

    2010-04-01

    In this Letter we report on an alternative approach to get multiple images in microscopy, exploiting the capabilities of both a lithium niobate diffraction grating and digital holographic technique. We demonstrate that multi-imaging can be achieved in a lensless configuration by using a hexagonal diffraction grating but overcoming, thanks to digital holography (DH), the many constrains imposed by the grating parameters in multi-imaging with Talbot effect or Talbot array illuminators. In fact, DH permits the numerical reconstruction of the optical field diffracted by the grating, thus obtaining in-focus multiple images in a plane different from the fractional or entire Talbot ones.

  14. Diagnostic algorithm: how to make use of new 2D, 3D and 4D ultrasound technologies in breast imaging.

    PubMed

    Weismann, C F; Datz, L

    2007-11-01

    The aim of this publication is to present a time saving diagnostic algorithm consisting of two-dimensional (2D), three-dimensional (3D) and four-dimensional (4D) ultrasound (US) technologies. This algorithm of eight steps combines different imaging modalities and render modes which allow a step by step analysis of 2D, 3D and 4D diagnostic criteria. Advanced breast US systems with broadband high frequency linear transducers, full digital data management and high resolution are the actual basis for two-dimensional breast US studies in order to detect early breast cancer (step 1). The continuous developments of 2D US technologies including contrast resolution imaging (CRI) and speckle reduction imaging (SRI) have a direct influence on the high quality of three-dimensional and four-dimensional presentation of anatomical breast structures and pathological details. The diagnostic options provided by static 3D volume datasets according to US BI-RADS analogue assessment, concerning lesion shape, orientation, margin, echogenic rim sign, lesion echogenicity, acoustic transmission, associated calcifications, 3D criteria of the coronal plane, surrounding tissue composition (step 2) and lesion vascularity (step 6) are discussed. Static 3D datasets offer the combination of long axes distance measurements and volume calculations, which are the basis for an accurate follow-up in BI-RADS II and BI-RADS III lesions (step 3). Real time 4D volume contrast imaging (VCI) is able to demonstrate tissue elasticity (step 5). Glass body rendering is a static 3D tool which presents greyscale and colour information to study the vascularity and the vascular architecture of a lesion (step 6). Tomographic ultrasound imaging (TUI) is used for a slice by slice documentation in different investigation planes (A-,B- or C-plane) (steps 4 and 7). The final step 8 uses the panoramic view technique (XTD-View) to document the localisation within the breast and to make the position of a lesion simply

  15. 2D-3D registration for prostate radiation therapy based on a statistical model of transmission images

    SciTech Connect

    Munbodh, Reshma; Tagare, Hemant D.; Chen Zhe; Jaffray, David A.; Moseley, Douglas J.; Knisely, Jonathan P. S.; Duncan, James S.

    2009-10-15

    Purpose: In external beam radiation therapy of pelvic sites, patient setup errors can be quantified by registering 2D projection radiographs acquired during treatment to a 3D planning computed tomograph (CT). We present a 2D-3D registration framework based on a statistical model of the intensity values in the two imaging modalities. Methods: The model assumes that intensity values in projection radiographs are independently but not identically distributed due to the nonstationary nature of photon counting noise. Two probability distributions are considered for the intensity values: Poisson and Gaussian. Using maximum likelihood estimation, two similarity measures, maximum likelihood with a Poisson (MLP) and maximum likelihood with Gaussian (MLG), distribution are derived. Further, we investigate the merit of the model-based registration approach for data obtained with current imaging equipment and doses by comparing the performance of the similarity measures derived to that of the Pearson correlation coefficient (ICC) on accurately collected data of an anthropomorphic phantom of the pelvis and on patient data. Results: Registration accuracy was similar for all three similarity measures and surpassed current clinical requirements of 3 mm for pelvic sites. For pose determination experiments with a kilovoltage (kV) cone-beam CT (CBCT) and kV projection radiographs of the phantom in the anterior-posterior (AP) view, registration accuracies were 0.42 mm (MLP), 0.29 mm (MLG), and 0.29 mm (ICC). For kV CBCT and megavoltage (MV) AP portal images of the same phantom, registration accuracies were 1.15 mm (MLP), 0.90 mm (MLG), and 0.69 mm (ICC). Registration of a kV CT and MV AP portal images of a patient was successful in all instances. Conclusions: The results indicate that high registration accuracy is achievable with multiple methods including methods that are based on a statistical model of a 3D CT and 2D projection images.

  16. Standardization of techniques for using planar (2D) imaging for aerosol deposition assessment of orally inhaled products.

    PubMed

    Newman, Stephen; Bennett, William D; Biddiscombe, Martyn; Devadason, Sunalene G; Dolovich, Myrna B; Fleming, John; Haeussermann, Sabine; Kietzig, Claudius; Kuehl, Philip J; Laube, Beth L; Sommerer, Knut; Taylor, Glyn; Usmani, Omar S; Zeman, Kirby L

    2012-12-01

    Two-dimensional (2D or planar) imaging with (99m)Tc radiolabels enables quantification of whole-lung and regional lung depositions for orally inhaled drug products. This article recommends standardized methodology for 2D imaging studies. Simultaneous anterior and posterior imaging with a dual-headed gamma camera is preferred, but imaging with a single-headed gamma camera is also acceptable. Correction of raw data for the effects of gamma ray attenuation is considered essential for accurate quantification, for instance, using transmission scanning with a flood-field source of (99m)Tc or (57)Co. Evidence should be provided of the accuracy of the quantification method, for instance, by determining "mass balance." Lung deposition may be expressed as a percentage of ex-valve or ex-device dose, but should also be given as mass of drug when possible. Assessment of regional lung deposition requires delineation of the lung borders, using X-ray computed tomography, radioactive gas scans ((133)Xe or (81m)Kr), or transmission scans. When quantifying regional lung deposition, the lung should be divided into outer (O) and inner (I) zones. A penetration index should be calculated, as the O/I ratio for aerosol, normalized to that for a radioactive gas or transmission scan. A variety of methods can be used to assess lung deposition and distribution. Methodology and results should be documented in detail, so that data from different centers may be compared. The use of appropriate methodology will provide greater confidence in the results of 2D imaging studies, and should allay concerns that such studies are qualitative or semiquantitative in nature.

  17. Nonrigid Registration of 2-D and 3-D Dynamic Cell Nuclei Images for Improved Classification of Subcellular Particle Motion

    PubMed Central

    Kim, Il-Han; Chen, Yi-Chun M.; Spector, David L.; Eils, Roland; Rohr, Karl

    2012-01-01

    The observed motion of subcellular particles in fluorescence microscopy image sequences of live cells is generally a superposition of the motion and deformation of the cell and the motion of the particles. Decoupling the two types of movements to enable accurate classification of the particle motion requires the application of registration algorithms. We have developed an intensity-based approach for nonrigid registration of multi-channel microscopy image sequences of cell nuclei. First, based on 3-D synthetic images we demonstrate that cell nucleus deformations change the observed motion types of particles and that our approach allows to recover the original motion. Second, we have successfully applied our approach to register 2-D and 3-D real microscopy image sequences. A quantitative experimental comparison with previous approaches for nonrigid registration of cell microscopy has also been performed. PMID:20840894

  18. High speed image acquisition system of absolute encoder

    NASA Astrophysics Data System (ADS)

    Liao, Jianxiang; Chen, Xin; Chen, Xindu; Zhang, Fangjian; Wang, Han

    2017-01-01

    Absolute optical encoder as a product of optical, mechanical and electronic integration has been widely used in displacement measuring fields. However, how to improve the measurement velocity and reduce the manufacturing cost of absolute optical encoder is the key problem to be solved. To improve the measurement speed, a novel absolute optical encoder image acquisition system is proposed. The proposed acquisition system includes a linear CCD sensor is applied for capturing coding pattern images, an optical magnifying system is used for enlarging the grating stripes, an analog-digital conversion(ADC) module is used for processing the CCD analogy signal, a field programmable gate array(FPGA) device and other peripherals perform driving task. An absolute position measurement experiment was set up to verify and evaluate the proposed image acquisition system. The experimental result indicates that the proposed absolute optical encoder image acquisition system has the image acquisition speed of more than 9500fp/s with well reliability and lower manufacture cost.

  19. 2D and 3D imaging resolution trade-offs in quantifying pore throats for prediction of permeability

    SciTech Connect

    Beckingham, Lauren E.; Peters, Catherine A.; Um, Wooyong; Jones, Keith W.; Lindquist, W.Brent

    2013-09-03

    Although the impact of subsurface geochemical reactions on porosity is relatively well understood, changes in permeability remain difficult to estimate. In this work, pore-network modeling was used to predict permeability based on pore- and pore-throat size distributions determined from analysis of 2D scanning electron microscopy (SEM) images of thin sections and 3D X-ray computed microtomography (CMT) data. The analyzed specimens were a Viking sandstone sample from the Alberta sedimentary basin and an experimental column of reacted Hanford sediments. For the column, a decrease in permeability due to mineral precipitation was estimated, but the permeability estimates were dependent on imaging technique and resolution. X-ray CT imaging has the advantage of reconstructing a 3D pore network while 2D SEM imaging can easily analyze sub-grain and intragranular variations in mineralogy. Pore network models informed by analyses of 2D and 3D images at comparable resolutions produced permeability esti- mates with relatively good agreement. Large discrepancies in predicted permeabilities resulted from small variations in image resolution. Images with resolutions 0.4 to 4 lm predicted permeabilities differ- ing by orders of magnitude. While lower-resolution scans can analyze larger specimens, small pore throats may be missed due to resolution limitations, which in turn overestimates permeability in a pore-network model in which pore-to-pore conductances are statistically assigned. Conversely, high-res- olution scans are capable of capturing small pore throats, but if they are not actually flow-conducting predicted permeabilities will be below expected values. In addition, permeability is underestimated due to misinterpreting surface-roughness features as small pore throats. Comparison of permeability pre- dictions with expected and measured permeability values showed that the largest discrepancies resulted from the highest resolution images and the best predictions of

  20. Registration of 2D C-Arm and 3D CT Images for a C-Arm Image-Assisted Navigation System for Spinal Surgery

    PubMed Central

    Chang, Chih-Ju; Lin, Geng-Li; Tse, Alex; Chu, Hong-Yu; Tseng, Ching-Shiow

    2015-01-01

    C-Arm image-assisted surgical navigation system has been broadly applied to spinal surgery. However, accurate path planning on the C-Arm AP-view image is difficult. This research studies 2D-3D image registration methods to obtain the optimum transformation matrix between C-Arm and CT image frames. Through the transformation matrix, the surgical path planned on preoperative CT images can be transformed and displayed on the C-Arm images for surgical guidance. The positions of surgical instruments will also be displayed on both CT and C-Arm in the real time. Five similarity measure methods of 2D-3D image registration including Normalized Cross-Correlation, Gradient Correlation, Pattern Intensity, Gradient Difference Correlation, and Mutual Information combined with three optimization methods including Powell's method, Downhill simplex algorithm, and genetic algorithm are applied to evaluate their performance in converge range, efficiency, and accuracy. Experimental results show that the combination of Normalized Cross-Correlation measure method with Downhill simplex algorithm obtains maximum correlation and similarity in C-Arm and Digital Reconstructed Radiograph (DRR) images. Spine saw bones are used in the experiment to evaluate 2D-3D image registration accuracy. The average error in displacement is 0.22 mm. The success rate is approximately 90% and average registration time takes 16 seconds. PMID:27018859

  1. Comparison of registration techniques for speckle suppression in 2D ladar image sequences

    NASA Astrophysics Data System (ADS)

    MacDonald, Adam; Armstrong, Ernest; Cain, Stephen C.

    2004-11-01

    Registration of individual images remains a significant problem in the generation of accurate images collected using coherent imaging systems. An investigation of the performance of eight distinct image registration algorithms was conducted using data collected from a coherent optical imaging system developed by the Air Force Research Laboratories, Sensors Division, ARFL/SNJT. A total of 400 images of three distinct scenes were collected by SRJT and made available to the Air Force Institute of Technology (AFIT) for this study. Scenery was collected at 3 and 10 kilometers of wheeled vehicles supporting resolution and uniform target boards. The algorithms under study were developed by scientists and engineers at AFRL, and had varying levels of performance in terms of image miss-registration and execution time. These eight algorithms were implemented on a general-purpose computer running the MATLAB simulation environment. The algorithms compared included: block-match, cross-correlation, cross-search, directional-search, gradient-based, hierarchical-block, three-step, and vector-block methods. It was found that the cross-correlation, gradient-based and vector-block search techniques typically had the lowest error metric. The vector-block and cross-correlation methods proved to have the fastest execution times, while not suffering significant error degradation when estimating the registration shift of the test images.

  2. Experimental validation of 2D uncertainty quantification for digital image correlation.

    SciTech Connect

    Reu, Phillip L.

    2010-03-01

    Because digital image correlation (DIC) has become such an important and standard tool in the toolbox of experimental mechanicists, a complete uncertainty quantification of the method is needed. It should be remembered that each DIC setup and series of images will have a unique uncertainty based on the calibration quality and the image and speckle quality of the analyzed images. Any pretest work done with a calibrated DIC stereo-rig to quantify the errors using known shapes and translations, while useful, do not necessarily reveal the uncertainty of a later test. This is particularly true with high-speed applications where actual test images are often less than ideal. Work has previously been completed on the mathematical underpinnings of DIC uncertainty quantification and is already published, this paper will present corresponding experimental work used to check the validity of the uncertainty equations.

  3. Enhanced 2D-image upconversion using solid-state lasers.

    PubMed

    Pedersen, Christian; Karamehmedović, Emir; Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter

    2009-11-09

    Based on enhanced upconversion, we demonstrate a highly efficient method for converting a full image from one part of the electromagnetic spectrum into a new desired wavelength region. By illuminating a metal transmission mask with a 765 nm Gaussian beam to create an image and subsequently focusing the image inside a nonlinear PPKTP crystal located in the high intra-cavity field of a 1342 nm solid-state Nd:YVO(4) laser, an upconverted image at 488 nm is generated. We have experimentally achieved an upconversion efficiency of 40% under CW conditions. The proposed technique can be further adapted for high efficiency mid-infrared image upconversion where direct and fast detection is difficult or impossible to perform with existing detector technologies.

  4. Prior Image Constrained Compressed Sensing Metal Artifact Reduction (PICCS-MAR): 2D and 3D Image Quality Improvement with Hip Prostheses at CT Colonography

    PubMed Central

    Bannas, Peter; Li, Yinsheng; Motosugi, Utaroh; Li, Ke; Lubner, Meghan; Chen, Guang-Hong; Pickhardt, Perry J.

    2015-01-01

    Purpose To assess the effect of the prior-image-constrained-compressed-sensing based metal-artefactreduction (PICCS-MAR) algorithm on streak artefact reduction and 2D and 3D-image quality improvement in patients with total hip arthroplasty (THA) undergoing CT colonography (CTC). Material and Methods PICCS-MAR was applied to filtered-back-projection (FBP)-reconstructed DICOM CTC-images in 52 patients with THA (unilateral, n=30; bilateral, n=22). For FBP and PICCS-MAR series, ROI-measurements of CT-numbers were obtained at predefined levels for fat, muscle, air, and the most severe artefact. Two radiologists independently reviewed 2D and 3D CTC-images and graded artefacts and image quality using a five-point-scale (1=severe streak/no-diagnostic confidence, 5=no streak/excellent image-quality, high-confidence). Results were compared using paired and unpaired t-tests, Wilcoxon signed-ranks and Mann-Whitney-tests. Results Streak artefacts and image quality scores for FBP versus PICCS-MAR 2D-images (median: 1 vs. 3 and 2 vs. 3, respectively) and 3D images (median: 2 vs. 4 and 3 vs. 4, respectively) showed significant improvement after PICCS-MAR (all P<.001). PICCS-MAR significantly improved the accuracy of mean CT numbers for fat, muscle and the area with the most severe artefact (all P<.001). Conclusion PICCS-MAR substantially reduces streak artefacts related to THA on DICOM images, thereby enhancing visualization of anatomy on 2D and 3D CTC images and increasing diagnostic confidence. PMID:26521266

  5. Prior Image Constrained Compressed Sensing Metal Artifact Reduction (PICCS-MAR): 2D and 3D Image Quality Improvement with Hip Prostheses at CT Colonography.

    PubMed

    Bannas, Peter; Li, Yinsheng; Motosugi, Utaroh; Li, Ke; Lubner, Meghan; Chen, Guang-Hong; Pickhardt, Perry J

    2016-07-01

    To assess the effect of the prior-image-constrained-compressed-sensing-based metal-artefact-reduction (PICCS-MAR) algorithm on streak artefact reduction and 2D and 3D-image quality improvement in patients with total hip arthroplasty (THA) undergoing CT colonography (CTC). PICCS-MAR was applied to filtered-back-projection (FBP)-reconstructed DICOM CTC-images in 52 patients with THA (unilateral, n = 30; bilateral, n = 22). For FBP and PICCS-MAR series, ROI-measurements of CT-numbers were obtained at predefined levels for fat, muscle, air, and the most severe artefact. Two radiologists independently reviewed 2D and 3D CTC-images and graded artefacts and image quality using a five-point-scale (1 = severe streak/no-diagnostic confidence, 5 = no streak/excellent image-quality, high-confidence). Results were compared using paired and unpaired t-tests and Wilcoxon signed-rank and Mann-Whitney-tests. Streak artefacts and image quality scores for FBP versus PICCS-MAR 2D-images (median: 1 vs. 3 and 2 vs. 3, respectively) and 3D images (median: 2 vs. 4 and 3 vs. 4, respectively) showed significant improvement after PICCS-MAR (all P < 0.001). PICCS-MAR significantly improved the accuracy of mean CT numbers for fat, muscle and the area with the most severe artefact (all P < 0.001). PICCS-MAR substantially reduces streak artefacts related to THA on DICOM images, thereby enhancing visualization of anatomy on 2D and 3D CTC images and increasing diagnostic confidence. • PICCS-MAR significantly reduces streak artefacts associated with total hip arthroplasty on 2D and 3D CTC. • PICCS-MAR significantly improves 2D and 3D CTC image quality and diagnostic confidence. • PICCS-MAR can be applied retrospectively to DICOM images from single-kVp CT.

  6. The concept of 2D gated imaging for particle sizing in a laminar diffusion flame

    NASA Astrophysics Data System (ADS)

    Hadef, Redjem; Geigle, Klaus Peter; Zerbs, Jochen; Sawchuk, Robert A.; Snelling, David R.

    2013-09-01

    In this work, time-resolved laser-induced incandescence (TiRe LII) has been employed to measure primary particle diameters of soot in an atmospheric laminar ethylene diffusion flame. The generated data set complements existing data determined in one single location and takes advantage of the good spatial resolution of the ICCD detection. Time resolution is achieved by shifting the camera gate along the LII decay. One key input parameter for the analysis of time-resolved LII is the local flame temperature. This was determined on a grid throughout the flame by coherent anti-Stokes Raman scattering. The accurate temperature data, in combination with other published data from this flame, are well suited for soot model validation purposes while we showed feasibility of a shifted gate approach to deduce 2D particle sizes in the chosen standard flame.

  7. Spatially selective 2D RF inner field of view (iFOV) diffusion kurtosis imaging (DKI) of the pediatric spinal cord

    PubMed Central

    Conklin, Chris J.; Middleton, Devon M.; Alizadeh, Mahdi; Finsterbusch, Jürgen; Raunig, David L.; Faro, Scott H.; Shah, Pallav; Krisa, Laura; Sinko, Rebecca; Delalic, Joan Z.; Mulcahey, M.J.; Mohamed, Feroze B.

    2016-01-01

    Magnetic resonance based diffusion imaging has been gaining more utility and clinical relevance over the past decade. Using conventional echo planar techniques, it is possible to acquire and characterize water diffusion within the central nervous system (CNS); namely in the form of Diffusion Weighted Imaging (DWI) and Diffusion Tensor Imaging (DTI). While each modality provides valuable clinical information in terms of the presence of diffusion and its directionality, both techniques are limited to assuming an ideal Gaussian distribution for water displacement with no intermolecular interactions. This assumption neglects pathological processes that are not Gaussian therefore reducing the amount of potentially clinically relevant information. Additions to the Gaussian distribution measured by the excess kurtosis, or peakedness, of the probabilistic model provide a better understanding of the underlying cellular structure. The objective of this work is to provide mathematical and experimental evidence that Diffusion Kurtosis Imaging (DKI) can offer additional information about the micromolecular environment of the pediatric spinal cord. This is accomplished by a more thorough characterization of the nature of random water displacement within the cord. A novel DKI imaging sequence based on a tilted 2D spatially selective radio frequency pulse providing reduced field of view (FOV) imaging was developed, implemented, and optimized on a 3 Tesla MRI scanner, and tested on pediatric subjects (healthy subjects: 15; patients with spinal cord injury (SCI):5). Software was developed and validated for post processing of the DKI images and estimation of the tensor parameters. The results show statistically significant differences in mean kurtosis (p < 0.01) and radial kurtosis (p < 0.01) between healthy subjects and subjects with SCI. DKI provides incremental and novel information over conventional diffusion acquisitions when coupled with higher order estimation algorithms

  8. Solid H2/D2 Particle Seeding and Injection System for Particle Image Velocimetry (PIV) Measurement of He II

    SciTech Connect

    Xu, T.; Van Sciver, S. W.

    2006-04-27

    Solid particles of the mixture of hydrogen and deuterium have certain advantages for use in Particle Image Velocimetry (PIV) of He II flow. The H2/D2 particles are near neutrally buoyant in He II and will vaporize with the helium as the experimental apparatus is warmed to room temperature. Progress of the construction of a H2/D2 particle seeding and injection system is reported in this paper. A cryogenic pulse valve is used to inject the mixture of helium, hydrogen and deuterium gas directly into a He II bath. Experiments show that the seeding quality is dependent on the back pressure, the mix ratio of the deuterium and helium gases and valve open duration. The effects of these parameters on the solid deuterium particle distribution are also discussed.

  9. Assessing 3D tunnel position in ACL reconstruction using a novel single image 3D-2D registration

    NASA Astrophysics Data System (ADS)

    Kang, X.; Yau, W. P.; Otake, Y.; Cheung, P. Y. S.; Hu, Y.; Taylor, R. H.

    2012-02-01

    The routinely used procedure for evaluating tunnel positions following anterior cruciate ligament (ACL) reconstructions based on standard X-ray images is known to pose difficulties in terms of obtaining accurate measures, especially in providing three-dimensional tunnel positions. This is largely due to the variability in individual knee joint pose relative to X-ray plates. Accurate results were reported using postoperative CT. However, its extensive usage in clinical routine is hampered by its major requirement of having CT scans of individual patients, which is not available for most ACL reconstructions. These difficulties are addressed through the proposed method, which aligns a knee model to X-ray images using our novel single-image 3D-2D registration method and then estimates the 3D tunnel position. In the proposed method, the alignment is achieved by using a novel contour-based 3D-2D registration method wherein image contours are treated as a set of oriented points. However, instead of using some form of orientation weighting function and multiplying it with a distance function, we formulate the 3D-2D registration as a probability density estimation using a mixture of von Mises-Fisher-Gaussian (vMFG) distributions and solve it through an expectation maximization (EM) algorithm. Compared with the ground-truth established from postoperative CT, our registration method in an experiment using a plastic phantom showed accurate results with errors of (-0.43°+/-1.19°, 0.45°+/-2.17°, 0.23°+/-1.05°) and (0.03+/-0.55, -0.03+/-0.54, -2.73+/-1.64) mm. As for the entry point of the ACL tunnel, one of the key measurements, it was obtained with high accuracy of 0.53+/-0.30 mm distance errors.

  10. Known-Component 3D-2D Registration for Image Guidance and Quality Assurance in Spine Surgery Pedicle Screw Placement

    PubMed Central

    Uneri, A.; Stayman, J. W.; De Silva, T.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Wolinsky, J.-P.; Gokaslan, Z. L.; Siewerdsen, J. H.

    2015-01-01

    Purpose To extend the functionality of radiographic/fluoroscopic imaging systems already within standard spine surgery workflow to: 1) provide guidance of surgical device analogous to an external tracking system; and 2) provide intraoperative quality assurance (QA) of the surgical product. Methods Using fast, robust 3D-2D registration in combination with 3D models of known components (surgical devices), the 3D pose determination was solved to relate known components to 2D projection images and 3D preoperative CT in near-real-time. Exact and parametric models of the components were used as input to the algorithm to evaluate the effects of model fidelity. The proposed algorithm employs the covariance matrix adaptation evolution strategy (CMA-ES) to maximize gradient correlation (GC) between measured projections and simulated forward projections of components. Geometric accuracy was evaluated in a spine phantom in terms of target registration error at the tool tip (TREx), and angular deviation (TREϕ) from planned trajectory. Results Transpedicle surgical devices (probe tool and spine screws) were successfully guided with TREx <2 mm and TREϕ<0.5° given projection views separated by at least >30° (easily accommodated on a mobile C-arm). QA of the surgical product based on 3D-2D registration demonstrated the detection of pedicle screw breach with TREx <1 mm, demonstrating a trend of improved accuracy correlated to the fidelity of the component model employed. Conclusions 3D-2D registration combined with 3D models of known surgical components provides a novel method for near-real-time guidance and quality assurance using a mobile C-arm without external trackers or fiducial markers. Ongoing work includes determination of optimal views based on component shape and trajectory, improved robustness to anatomical deformation, and expanded preclinical testing in spine and intracranial surgeries. PMID:26028805

  11. Known-component 3D-2D registration for image guidance and quality assurance in spine surgery pedicle screw placement

    NASA Astrophysics Data System (ADS)

    Uneri, A.; Stayman, J. W.; De Silva, T.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Wolinsky, J.-P.; Gokaslan, Z. L.; Siewerdsen, J. H.

    2015-03-01

    Purpose. To extend the functionality of radiographic / fluoroscopic imaging systems already within standard spine surgery workflow to: 1) provide guidance of surgical device analogous to an external tracking system; and 2) provide intraoperative quality assurance (QA) of the surgical product. Methods. Using fast, robust 3D-2D registration in combination with 3D models of known components (surgical devices), the 3D pose determination was solved to relate known components to 2D projection images and 3D preoperative CT in near-real-time. Exact and parametric models of the components were used as input to the algorithm to evaluate the effects of model fidelity. The proposed algorithm employs the covariance matrix adaptation evolution strategy (CMA-ES) to maximize gradient correlation (GC) between measured projections and simulated forward projections of components. Geometric accuracy was evaluated in a spine phantom in terms of target registration error at the tool tip (TREx), and angular deviation (TREΦ) from planned trajectory. Results. Transpedicle surgical devices (probe tool and spine screws) were successfully guided with TREx<2 mm and TREΦ <0.5° given projection views separated by at least >30° (easily accommodated on a mobile C-arm). QA of the surgical product based on 3D-2D registration demonstrated the detection of pedicle screw breach with TREx<1 mm, demonstrating a trend of improved accuracy correlated to the fidelity of the component model employed. Conclusions. 3D-2D registration combined with 3D models of known surgical components provides a novel method for near-real-time guidance and quality assurance using a mobile C-arm without external trackers or fiducial markers. Ongoing work includes determination of optimal views based on component shape and trajectory, improved robustness to anatomical deformation, and expanded preclinical testing in spine and intracranial surgeries.

  12. Preparation of 2D sequences of corneal images for 3D model building.

    PubMed

    Elbita, Abdulhakim; Qahwaji, Rami; Ipson, Stanley; Sharif, Mhd Saeed; Ghanchi, Faruque

    2014-04-01

    A confocal microscope provides a sequence of images, at incremental depths, of the various corneal layers and structures. From these, medical practioners can extract clinical information on the state of health of the patient's cornea. In this work we are addressing problems associated with capturing and processing these images including blurring, non-uniform illumination and noise, as well as the displacement of images laterally and in the anterior-posterior direction caused by subject movement. The latter may cause some of the captured images to be out of sequence in terms of depth. In this paper we introduce automated algorithms for classification, reordering, registration and segmentation to solve these problems. The successful implementation of these algorithms could open the door for another interesting development, which is the 3D modelling of these sequences.

  13. Registration of 2D to 3D joint images using phase-based mutual information

    NASA Astrophysics Data System (ADS)

    Dalvi, Rupin; Abugharbieh, Rafeef; Pickering, Mark; Scarvell, Jennie; Smith, Paul

    2007-03-01

    Registration of two dimensional to three dimensional orthopaedic medical image data has important applications particularly in the area of image guided surgery and sports medicine. Fluoroscopy to computer tomography (CT) registration is an important case, wherein digitally reconstructed radiographs derived from the CT data are registered to the fluoroscopy data. Traditional registration metrics such as intensity-based mutual information (MI) typically work well but often suffer from gross misregistration errors when the image to be registered contains a partial view of the anatomy visible in the target image. Phase-based MI provides a robust alternative similarity measure which, in addition to possessing the general robustness and noise immunity that MI provides, also employs local phase information in the registration process which makes it less susceptible to the aforementioned errors. In this paper, we propose using the complex wavelet transform for computing image phase information and incorporating that into a phase-based MI measure for image registration. Tests on a CT volume and 6 fluoroscopy images of the knee are presented. The femur and the tibia in the CT volume were individually registered to the fluoroscopy images using intensity-based MI, gradient-based MI and phase-based MI. Errors in the coordinates of fiducials present in the bone structures were used to assess the accuracy of the different registration schemes. Quantitative results demonstrate that the performance of intensity-based MI was the worst. Gradient-based MI performed slightly better, while phase-based MI results were the best consistently producing the lowest errors.

  14. Visualizing 3D objects from 2D cross sectional images displayed in-situ versus ex-situ.

    PubMed

    Wu, Bing; Klatzky, Roberta L; Stetten, George

    2010-03-01

    The present research investigates how mental visualization of a 3D object from 2D cross sectional images is influenced by displacing the images from the source object, as is customary in medical imaging. Three experiments were conducted to assess people's ability to integrate spatial information over a series of cross sectional images in order to visualize an object posed in 3D space. Participants used a hand-held tool to reveal a virtual rod as a sequence of cross-sectional images, which were displayed either directly in the space of exploration (in-situ) or displaced to a remote screen (ex-situ). They manipulated a response stylus to match the virtual rod's pitch (vertical slant), yaw (horizontal slant), or both. Consistent with the hypothesis that spatial colocation of image and source object facilitates mental visualization, we found that although single dimensions of slant were judged accurately with both displays, judging pitch and yaw simultaneously produced differences in systematic error between in-situ and ex-situ displays. Ex-situ imaging also exhibited errors such that the magnitude of the response was approximately correct but the direction was reversed. Regression analysis indicated that the in-situ judgments were primarily based on spatiotemporal visualization, while the ex-situ judgments relied on an ad hoc, screen-based heuristic. These findings suggest that in-situ displays may be useful in clinical practice by reducing error and facilitating the ability of radiologists to visualize 3D anatomy from cross sectional images.

  15. 2D hybrid analysis: Approach for building three-dimensional atomic model by electron microscopy image matching.

    PubMed

    Matsumoto, Atsushi; Miyazaki, Naoyuki; Takagi, Junichi; Iwasaki, Kenji

    2017-03-23

    In this study, we develop an approach termed "2D hybrid analysis" for building atomic models by image matching from electron microscopy (EM) images of biological molecules. The key advantage is that it is applicable to flexible molecules, which are difficult to analyze by 3DEM approach. In the proposed approach, first, a lot of atomic models with different conformations are built by computer simulation. Then, simulated EM images are built from each atomic model. Finally, they are compared with the experimental EM image. Two kinds of models are used as simulated EM images: the negative stain model and the simple projection model. Although the former is more realistic, the latter is adopted to perform faster computations. The use of the negative stain model enables decomposition of the averaged EM images into multiple projection images, each of which originated from a different conformation or orientation. We apply this approach to the EM images of integrin to obtain the distribution of the conformations, from which the pathway of the conformational change of the protein is deduced.

  16. Applying a 2D based CAD scheme for detecting micro-calcification clusters using digital breast tomosynthesis images: an assessment

    NASA Astrophysics Data System (ADS)

    Park, Sang Cheol; Zheng, Bin; Wang, Xiao-Hui; Gur, David

    2008-03-01

    Digital breast tomosynthesis (DBT) has emerged as a promising imaging modality for screening mammography. However, visually detecting micro-calcification clusters depicted on DBT images is a difficult task. Computer-aided detection (CAD) schemes for detecting micro-calcification clusters depicted on mammograms can achieve high performance and the use of CAD results can assist radiologists in detecting subtle micro-calcification clusters. In this study, we compared the performance of an available 2D based CAD scheme with one that includes a new grouping and scoring method when applied to both projection and reconstructed DBT images. We selected a dataset involving 96 DBT examinations acquired on 45 women. Each DBT image set included 11 low dose projection images and a varying number of reconstructed image slices ranging from 18 to 87. In this dataset 20 true-positive micro-calcification clusters were visually detected on the projection images and 40 were visually detected on the reconstructed images, respectively. We first applied the CAD scheme that was previously developed in our laboratory to the DBT dataset. We then tested a new grouping method that defines an independent cluster by grouping the same cluster detected on different projection or reconstructed images. We then compared four scoring methods to assess the CAD performance. The maximum sensitivity level observed for the different grouping and scoring methods were 70% and 88% for the projection and reconstructed images with a maximum false-positive rate of 4.0 and 15.9 per examination, respectively. This preliminary study demonstrates that (1) among the maximum, the minimum or the average CAD generated scores, using the maximum score of the grouped cluster regions achieved the highest performance level, (2) the histogram based scoring method is reasonably effective in reducing false-positive detections on the projection images but the overall CAD sensitivity is lower due to lower signal-to-noise ratio

  17. Simultaneous acquisition of physiological data and nuclear medicine images

    SciTech Connect

    Rosenthal, M.S.; Klein, H.A.; Orenstein, S.R.

    1988-11-01

    A technique has been developed that allows the simultaneous acquisition of both image and physiological data into a standard nuclear medicine computer system. The physiological data can be displayed along with the nuclear medicine images allowing temporal correlation between the two. This technique has been used to acquire images of gastroesophageal reflux simultaneously with the intraluminal esophageal pH. The resulting data are displayed either as a standard dynamic sequence with the physiological data appearing in a corner of the image or as condensed dynamic images.

  18. Image Acquisition and Quality in Digital Radiography.

    PubMed

    Alexander, Shannon

    2016-09-01

    Medical imaging has undergone dramatic changes and technological breakthroughs since the introduction of digital radiography. This article presents information on the development of digital radiography and types of digital radiography systems. Aspects of image quality and radiation exposure control are highlighted as well. In addition, the article includes related workplace changes and medicolegal considerations in the digital radiography environment. ©2016 American Society of Radiologic Technologists.

  19. Imaging geological contact utilizing 2D resistivity method for light rail transit (LRT) track alignment

    NASA Astrophysics Data System (ADS)

    Ali, Nisa'; Saad, Rosli; Muztaza, Nordiana M.; Ismail, Noer E. H.

    2013-05-01

    The purpose of this study was to locate the geological contact using 2D resistivity method for Light Rail Transit (LRT) track alignment. The resistivity method was conducted on eight survey lines with the length of line 1 was 600m. The length of line 2, 3, 4, 5, 6, and 7 were 200m each while line 8 is 115m. All the survey used minimum electrode spacing of 5m and using Pole-dipole array with minimum current is 2mA and maximum was 20mA. The result obtained from the pseudosection showed that the area generally divided into three main zones, fill materials/residual soil with a resistivity value of <500 Ωm, saturated zone with a resistivity value of 30-100 Ωm and bedrock with a resistivity value of >2000 Ωm. Three fractured zones were detected along line L1 and a lot of boulders were detected at L1, L3, L4, L5 and L6. The geological contact was between the residual soil and granite bedrock.

  20. A design of camera simulator for photoelectric image acquisition system

    NASA Astrophysics Data System (ADS)

    Cai, Guanghui; Liu, Wen; Zhang, Xin

    2015-02-01

    In the process of developing the photoelectric image acquisition equipment, it needs to verify the function and performance. In order to make the photoelectric device recall the image data formerly in the process of debugging and testing, a design scheme of the camera simulator is presented. In this system, with FPGA as the control core, the image data is saved in NAND flash trough USB2.0 bus. Due to the access rate of the NAND, flash is too slow to meet the requirement of the sytsem, to fix the problem, the pipeline technique and the High-Band-Buses technique are applied in the design to improve the storage rate. It reads image data out from flash in the control logic of FPGA and output separately from three different interface of Camera Link, LVDS and PAL, which can provide image data for photoelectric image acquisition equipment's debugging and algorithm validation. However, because the standard of PAL image resolution is 720*576, the resolution is different between PAL image and input image, so the image can be output after the resolution conversion. The experimental results demonstrate that the camera simulator outputs three format image sequence correctly, which can be captured and displayed by frame gather. And the three-format image data can meet test requirements of the most equipment, shorten debugging time and improve the test efficiency.

  1. Extraction and comparison of gene expression patterns from 2D RNA in situ hybridization images.

    PubMed

    Mace, Daniel L; Varnado, Nicole; Zhang, Weiping; Frise, Erwin; Ohler, Uwe

    2010-03-15

    Recent advancements in high-throughput imaging have created new large datasets with tens of thousands of gene expression images. Methods for capturing these spatial and/or temporal expression patterns include in situ hybridization or fluorescent reporter constructs or tags, and results are still frequently assessed by subjective qualitative comparisons. In order to deal with available large datasets, fully automated analysis methods must be developed to properly normalize and model spatial expression patterns. We have developed image segmentation and registration methods to identify and extract spatial gene expression patterns from RNA in situ hybridization experiments of Drosophila embryos. These methods allow us to normalize and extract expression information for 78,621 images from 3724 genes across six time stages. The similarity between gene expression patterns is computed using four scoring metrics: mean squared error, Haar wavelet distance, mutual information and spatial mutual information (SMI). We additionally propose a strategy to calculate the significance of the similarity between two expression images, by generating surrogate datasets with similar spatial expression patterns using a Monte Carlo swap sampler. On data from an early development time stage, we show that SMI provides the most biologically relevant metric of comparison, and that our significance testing generalizes metrics to achieve similar performance. We exemplify the application of spatial metrics on the well-known Drosophila segmentation network. A Java webstart application to register and compare patterns, as well as all source code, are available from: http://tools.genome.duke.edu/generegulation/image_analysis/insitu uwe.ohler@duke.edu Supplementary data are available at Bioinformatics online.

  2. Heterogeneity of Particle Deposition by Pixel Analysis of 2D Gamma Scintigraphy Images.

    PubMed

    Bennett, William D; Xie, Miao; Zeman, Kirby; Hurd, Harry; Donaldson, Scott

    2015-06-01

    Heterogeneity of inhaled particle deposition in airways disease may be a sensitive indicator of physiologic changes in the lungs. Using planar gamma scintigraphy, we developed new methods to locate and quantify regions of high (hot) and low (cold) particle deposition in the lungs. Initial deposition and 24 hour retention images were obtained from healthy (n=31) adult subjects and patients with mild cystic fibrosis lung disease (CF) (n=14) following inhalation of radiolabeled particles (Tc99m-sulfur colloid, 5.4 μm MMAD) under controlled breathing conditions. The initial deposition image of the right lung was normalized to (i.e., same median pixel value), and then divided by, a transmission (Tc99m) image in the same individual to obtain a pixel-by-pixel ratio image. Hot spots were defined where pixel values in the deposition image were greater than 2X those of the transmission, and cold spots as pixels where the deposition image was less than 0.5X of the transmission. The number ratio (NR) of the hot and cold pixels to total lung pixels, and the sum ratio (SR) of total counts in hot pixels to total lung counts were compared between healthy and CF subjects. Other traditional measures of regional particle deposition, nC/P and skew of the pixel count histogram distribution, were also compared. The NR of cold spots was greater in mild CF, 0.221±0.047(CF) vs. 0.186±0.038 (healthy) (p<0.005) and was significantly correlated with FEV1 %pred in the patients (R=-0.70). nC/P (central to peripheral count ratio), skew of the count histogram, and hot NR or SR were not different between the healthy and mild CF patients. These methods may provide more sensitive measures of airway function and localization of deposition that might be useful for assessing treatment efficacy in these patients.

  3. 3D/2D model-to-image registration applied to TIPS surgery.

    PubMed

    Jomier, Julien; Bullitt, Elizabeth; Van Horn, Mark; Pathak, Chetna; Aylward, Stephen R

    2006-01-01

    We have developed a novel model-to-image registration technique which aligns a 3-dimensional model of vasculature with two semiorthogonal fluoroscopic projections. Our vascular registration method is used to intra-operatively initialize the alignment of a catheter and a preoperative vascular model in the context of image-guided TIPS (Transjugular, Intrahepatic, Portosystemic Shunt formation) surgery. Registration optimization is driven by the intensity information from the projection pairs at sample points along the centerlines of the model. Our algorithm shows speed, accuracy and consistency given clinical data.

  4. A 2-d active appearance model for prostate segmentation in ultrasound images.

    PubMed

    Medina, R; Bravo, A; Windyga, P; Toro, J; Yan, P; Onik, G

    2005-01-01

    In this research we use an active appearance model (AAM) as the core of a robust segmentation algorithm that combines contour and texture information to learn shape variability through a training procedure in trans-rectal ultrasound (TRUS) images of the prostate. Training was carried out using a dataset of 95 images which are preprocessed using gray-level mathematical morphology operators. Preliminary results are promising. The segmentation can provide shapes that have an overlap with respect to a ground truth shape, traced by an expert, of up to 96%, and an average distance from point to curve of up to 1.3 pixels.

  5. 2D and 3D Refraction Based X-ray Imaging Suitable for Clinical and Pathological Diagnosis

    NASA Astrophysics Data System (ADS)

    Ando, Masami; Bando, Hiroko; Chen, Zhihua; Chikaura, Yoshinori; Choi, Chang-Hyuk; Endo, Tokiko; Esumi, Hiroyasu; Gang, Li; Hashimoto, Eiko; Hirano, Keiichi; Hyodo, Kazuyuki; Ichihara, Shu; Jheon, SangHoon; Kim, HongTae; Kim, JongKi; Kimura, Tatsuro; Lee, ChangHyun; Maksimenko, Anton; Ohbayashi, Chiho; Park, SungHwan; Shimao, Daisuke; Sugiyama, Hiroshi; Tang, Jintian; Ueno, Ei; Yamasaki, Katsuhito; Yuasa, Tetsuya

    2007-01-01

    The first observation of micro papillary (MP) breast cancer by x-ray dark-field imaging (XDFI) and the first observation of the 3D x-ray internal structure of another breast cancer, ductal carcinoma in-situ (DCIS), are reported. The specimen size for the sheet-shaped MP was 26 mm × 22 mm × 2.8 mm, and that for the rod-shaped DCIS was 3.6 mm in diameter and 4.7 mm in height. The experiment was performed at the Photon Factory, KEK: High Energy Accelerator Research Organization. We achieved a high-contrast x-ray image by adopting a thickness-controlled transmission-type angular analyzer that allows only refraction components from the object for 2D imaging. This provides a high-contrast image of cancer-cell nests, cancer cells and stroma. For x-ray 3D imaging, a new algorithm due to the refraction for x-ray CT was created. The angular information was acquired by x-ray optics diffraction-enhanced imaging (DEI). The number of data was 900 for each reconstruction. A reconstructed CT image may include ductus lactiferi, micro calcification and the breast gland. This modality has the possibility to open up a new clinical and pathological diagnosis using x-ray, offering more precise inspection and detection of early signs of breast cancer.

  6. Magnetic resonance image reconstruction using trained geometric directions in 2D redundant wavelets domain and non-convex optimization.

    PubMed

    Ning, Bende; Qu, Xiaobo; Guo, Di; Hu, Changwei; Chen, Zhong

    2013-11-01

    Reducing scanning time is significantly important for MRI. Compressed sensing has shown promising results by undersampling the k-space data to speed up imaging. Sparsity of an image plays an important role in compressed sensing MRI to reduce the image artifacts. Recently, the method of patch-based directional wavelets (PBDW) which trains geometric directions from undersampled data has been proposed. It has better performance in preserving image edges than conventional sparsifying transforms. However, obvious artifacts are presented in the smooth region when the data are highly undersampled. In addition, the original PBDW-based method does not hold obvious improvement for radial and fully 2D random sampling patterns. In this paper, the PBDW-based MRI reconstruction is improved from two aspects: 1) An efficient non-convex minimization algorithm is modified to enhance image quality; 2) PBDW are extended into shift-invariant discrete wavelet domain to enhance the ability of transform on sparsifying piecewise smooth image features. Numerical simulation results on vivo magnetic resonance images demonstrate that the proposed method outperforms the original PBDW in terms of removing artifacts and preserving edges.

  7. 2D and 3D Refraction Based X-ray Imaging Suitable for Clinical and Pathological Diagnosis

    SciTech Connect

    Ando, Masami; Bando, Hiroko; Ueno, Ei

    2007-01-19

    The first observation of micro papillary (MP) breast cancer by x-ray dark-field imaging (XDFI) and the first observation of the 3D x-ray internal structure of another breast cancer, ductal carcinoma in-situ (DCIS), are reported. The specimen size for the sheet-shaped MP was 26 mm x 22 mm x 2.8 mm, and that for the rod-shaped DCIS was 3.6 mm in diameter and 4.7 mm in height. The experiment was performed at the Photon Factory, KEK: High Energy Accelerator Research Organization. We achieved a high-contrast x-ray image by adopting a thickness-controlled transmission-type angular analyzer that allows only refraction components from the object for 2D imaging. This provides a high-contrast image of cancer-cell nests, cancer cells and stroma. For x-ray 3D imaging, a new algorithm due to the refraction for x-ray CT was created. The angular information was acquired by x-ray optics diffraction-enhanced imaging (DEI). The number of data was 900 for each reconstruction. A reconstructed CT image may include ductus lactiferi, micro calcification and the breast gland. This modality has the possibility to open up a new clinical and pathological diagnosis using x-ray, offering more precise inspection and detection of early signs of breast cancer.

  8. Biomechanical properties and microarchitecture parameters of trabecular bone are correlated with stochastic measures of 2D projection images

    PubMed Central

    Dong, Xuanliang N.; Shirvaikar, Mukul; Wang, Xiaodu

    2013-01-01

    It is well known that loss of bone mass, quantified by areal bone mineral density (aBMD) using DXA, is associated with the increasing risk of bone fractures. However, bone mineral density alone cannot fully explain changes in fracture risks. On top of bone mass, bone architecture has been identified as another key contributor to fracture risk. In this study, we used a novel stochastic approach to assess the distribution of aBMD from 2D projection images of Micro-CT scans of trabecular bone specimens at a resolution comparable to DXA images. Sill variance, a stochastic measure of distribution of aBMD, had significant relationships with microarchitecture parameters of trabecular bone, including bone volume fraction, bone surface-to-volume ratio, trabecular thickness, trabecular number, trabecular separation and anisotropy. Accordingly, it showed significantly positive correlations with strength and elastic modulus of trabecular bone. Moreover, a combination of aBMD and sill variance derived from the 2D projection images (R2=0.85) predicted bone strength better than using aBMD alone (R2=0.63). Thus, it would be promising to extend the stochastic approach to routine DXA scans to assess the distribution of aBMD, offering a more clinically significant technique for predicting risks of bone fragility fractures. PMID:23756232

  9. 3D information from 2D images recorded in the European Modular Cultivation System on the ISS

    NASA Astrophysics Data System (ADS)

    Solheim, B. G. B.

    2009-12-01

    The European Modular Cultivation System (EMCS) on the ISS allows long-term biological experiments, e.g. on plants. Video cameras provide near real-time 2D images from these experiments. A method to obtain 3D coordinates and stereoscopic images from these 2D images has been developed and is described in this paper. The procedure was developed to enhance the data output of the MULTIGEN-1 experiment in 2007. One of the main objectives of the experiment was to study growth movements of the Arabidopsis plants and the effect of gravity on these. 3D data were important during parts of the experiment and the paper presents the method developed to acquire 3D data, the accuracy of the data, limitations to the technique and ways to improve the accuracy. Sequences of 3D data obtained from the MULTIGEN-1 experiment are used to illustrate the potential of this newfound capability of the EMCS. In the experiment setup, a positional depth accuracy of about ±0.4 mm for relative object distances and an absolute depth accuracy of about ±1.4 mm for time dependent phenomena was reached. The ability to both view biological specimens in 3D as well as obtaining quantitative 3D data added greatly to the scientific output of the MULTIGEN-1 experiment. The uses of the technique to other researchers and their experiments are discussed.

  10. 2D multi-parameter elastic seismic imaging by frequency-domain L1-norm full waveform inversion

    NASA Astrophysics Data System (ADS)

    Brossier, Romain; Operto, Stéphane; Virieux, Jean

    2010-05-01

    Full waveform inversion (FWI) is becoming a powerful and efficient tool to derive high-resolution quantitative models of the subsurface. In the frequency-domain, computationally efficient FWI algorithms can be designed for wide-aperture acquisition geometries by limiting inversion to few discrete frequencies. However, FWI remains an ill-posed and highly non-linear data-fitting procedure that is sensitive to noise, inaccuracies of the starting model and definition of multiparameter classes. The footprint of the noise in seismic imaging is conventionally mitigated by stacking highly redundant multifold data. However, when the data redundancy is decimated in the framework of efficient frequency-domain FWI, it is essential to assess the sensitivity of the inversion to noise. The impact of the noise in FWI, when applied to decimated data sets, has been marginally illustrated in the past and least-squares minimisation has remained the most popular approach. We investigate in this study the sensitivity of frequency-domain elastic FWI to noise for realistic onshore and offshore synthetic data sets contaminated by ambient random white noise. Four minimisation functionals are assessed in the framework of frequency domain FWI of decimated data: the classical least-square norm (L2), the least-absolute-values norm (L1), and some combinations of both (the Huber and the so-called Hybrid criteria). These functionals are implemented in a massively-parallel, 2D elastic frequency-domain FWI algorithm. A two-level hierarchical algorithm is implemented to mitigate the non-linearity of the inversion in complex environments. The first outer level consists of successive inversions of frequency groups of increasing high-frequency content. This level defines a multi-scale approach while preserving some data redundancy by means of simultaneous inversion of multiple frequencies. The second inner level used complex-valued frequencies for data preconditioning. This preconditioning controls the

  11. Single-snapshot 2D color measurement by plenoptic imaging system

    NASA Astrophysics Data System (ADS)

    Masuda, Kensuke; Yamanaka, Yuji; Maruyama, Go; Nagai, Sho; Hirai, Hideaki; Meng, Lingfei; Tosic, Ivana

    2014-03-01

    Plenoptic cameras enable capture of directional light ray information, thus allowing applications such as digital refocusing, depth estimation, or multiband imaging. One of the most common plenoptic camera architectures contains a microlens array at the conventional image plane and a sensor at the back focal plane of the microlens array. We leverage the multiband imaging (MBI) function of this camera and develop a single-snapshot, single-sensor high color fidelity camera. Our camera is based on a plenoptic system with XYZ filters inserted in the pupil plane of the main lens. To achieve high color measurement precision of this system, we perform an end-to-end optimization of the system model that includes light source information, object information, optical system information, plenoptic image processing and color estimation processing. Optimized system characteristics are exploited to build an XYZ plenoptic colorimetric camera prototype that achieves high color measurement precision. We describe an application of our colorimetric camera to color shading evaluation of display and show that it achieves color accuracy of ΔE<0.01.

  12. Learning-based roof style classification in 2D satellite images

    NASA Astrophysics Data System (ADS)

    Zang, Andi; Zhang, Xi; Chen, Xin; Agam, Gady

    2015-05-01

    Accurately recognizing building roof style leads to a much more realistic 3D building modeling and rendering. In this paper, we propose a novel system for image based roof style classification using machine learning technique. Our system is capable of accurately recognizing four individual roof styles and a complex roof which is composed of multiple parts. We make several novel contributions in this paper. First, we propose an algorithm that segments a complex roof to parts which enable our system to recognize the entire roof based on recognition of each part. Second, to better characterize a roof image, we design a new feature extracted from a roof edge image. We demonstrate that this feature has much better performance compared to recognition results generated by Histogram of Oriented Gradient (HOG), Scale-invariant Feature Transform (SIFT) and Local Binary Patterns (LBP). Finally, to generate a classifier, we propose a learning scheme that trains the classifier using both synthetic and real roof images. Experiment results show that our classifier performs well on several test collections.

  13. Membrane-mirror-based display for viewing 2D and 3D images

    NASA Astrophysics Data System (ADS)

    McKay, Stuart; Mason, Steven; Mair, Leslie S.; Waddell, Peter; Fraser, Simon M.

    1999-05-01

    Stretchable Membrane Mirrors (SMMs) have been developed at the University of Strathclyde as a cheap, lightweight and variable focal length alternative to conventional fixed- curvature glass based optics. A SMM uses a thin sheet of aluminized polyester film which is stretched over a specially shaped frame, forming an airtight cavity behind the membrane. Removal of air from that cavity causes the resulting air pressure difference to force the membrane back into a concave shape. Controlling the pressure difference acting over the membrane now controls the curvature or f/No. of the mirror. Mirrors from 0.15-m to 1.2-m in diameter have been constructed at the University of Strathclyde. The use of lenses and mirrors to project real images in space is perhaps one of the simplest forms of 3D display. When using conventional optics however, there are severe financial restrictions on what size of image forming element may be used, hence the appeal of a SMM. The mirrors have been used both as image forming elements and directional screens in volumetric, stereoscopic and large format simulator displays. It was found that the use of these specular reflecting surfaces greatly enhances the perceived image quality of the resulting magnified display.

  14. Application and further development of diffusion based 2D chemical imaging techniques in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Hoefer, Christoph; Santner, Jakob; Borisov, Sergey; Kreuzeder, Andreas; Wenzel, Walter; Puschenreiter, Markus

    2015-04-01

    Two dimensional chemical imaging of root processes refers to novel in situ methods to investigate and map solutes at a high spatial resolution (sub-mm). The visualization of these solutes reveals new insights in soil biogeochemistry and root processes. We derive chemical images by using data from DGT-LA-ICP-MS (Diffusive Gradients in Thin Films and Laser Ablation Inductively Coupled Plasma Mass Spectrometry) and POS (Planar Optode Sensors). Both technologies have shown promising results when applied in aqueous environment but need to be refined and improved for imaging at the soil-plant interface. Co-localized mapping using combined DGT and POS technologies and the development of new gel combinations are in our focus. DGTs are smart and thin (<0.4 mm) hydrogels; containing a binding resin for the targeted analytes (e.g. trace metals, phosphate, sulphide or radionuclides). The measurement principle is passive and diffusion based. The present analytes are diffusing into the gel and are bound by the resin. Thereby, the resin acts as zero sink. After application, DGTs are retrieved, dried, and analysed using LA-ICP-MS. The data is then normalized by an internal standard (e.g. 13C), calibrated using in-house standards and chemical images of the target area are plotted using imaging software. POS are, similar to DGT, thin sensor foils containing a fluorophore coating depending on the target analyte. The measurement principle is based on excitation of the flourophore by a specific wavelength and emission of the fluorophore depending on the presence of the analyte. The emitted signal is captured using optical filters and a DSLR camera. While DGT analysis is destructive, POS measurements can be performed continuously during the application. Both semi-quantitative techniques allow an in situ application to visualize chemical processes directly at the soil-plant interface. Here, we present a summary of results from rhizotron experiments with different plants in metal

  15. A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging.

    PubMed

    Gallio, Elena; Rampado, Osvaldo; Gianaria, Elena; Bianchi, Silvio Diego; Ropolo, Roberto

    2015-01-01

    Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies.

  16. A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging

    PubMed Central

    Gallio, Elena; Rampado, Osvaldo; Gianaria, Elena; Bianchi, Silvio Diego; Ropolo, Roberto

    2015-01-01

    Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies. PMID:26545097

  17. The distribution of D2/D3 receptor binding in the adolescent rhesus monkey using small animal PET imaging

    PubMed Central

    Christian, BT; Vandehey, NT; Fox, AS; Murali, D; Oakes, TR; Converse, AK; Nickles, RJ; Shelton, SE; Davidson, RJ; Kalin, NH

    2009-01-01

    PET imaging of the neuroreceptor systems in the brain has earned a prominent role in studying normal development, neuropsychiatric illness and developing targeted drugs. The dopaminergic system is of particular interest due to its role in the development of cognitive function and mood as well as its suspected involvement in neuropsychiatric illness. Nonhuman primate animal models provide a valuable resource for relating neurochemical changes to behavior. To facilitate comparison within and between primate models, we report in vivo D2/D3 binding in a large cohort of adolescent rhesus monkeys. Methods In this work, the in vivo D2/D3 dopamine receptor availability was measured in a cohort of 33 rhesus monkeys in the adolescent stage of development (3.2 – 5.3 years). Both striatal and extrastriatal D2/D3 binding were measured using [F-18]fallypride with a high resolution small animal PET scanner. The distribution volume ratio (DVR) was measured for all subjects and group comparisons of D2/D3 binding among the cohort were made based on age and sex. Because two sequential studies were acquired from a single [F-18]fallypride batch, the effect of competing (unlabeled) ligand mass was also investigated. Results Among this cohort, the rank order of regional D2/D3 receptor binding did not vary from previous studies with adult rhesus monkeys, with: putamen > caudate > ventral striatum > amygdala ~ substantia nigra > medial dorsal thalamus > lateral temporal cortex ~ frontal cortex. The DVR coefficient of variation ranged from 14% – 26%, with the greatest variance seen in the head of the caudate. There were significant sex differences in [F-18]fallypride kinetics in the pituitary gland, but this was not observed for regions within the blood-brain barrier. Furthermore, no regions in the brain showed significant sex or age related differences in DVR within this small age range. Based on a wide range of injected fallypride mass across the cohort, significant competition

  18. Heterogeneity of Particle Deposition by Pixel Analysis of 2D Gamma Scintigraphy Images

    PubMed Central

    Xie, Miao; Zeman, Kirby; Hurd, Harry; Donaldson, Scott

    2015-01-01

    Abstract Background: Heterogeneity of inhaled particle deposition in airways disease may be a sensitive indicator of physiologic changes in the lungs. Using planar gamma scintigraphy, we developed new methods to locate and quantify regions of high (hot) and low (cold) particle deposition in the lungs. Methods: Initial deposition and 24 hour retention images were obtained from healthy (n=31) adult subjects and patients with mild cystic fibrosis lung disease (CF) (n=14) following inhalation of radiolabeled particles (Tc99m-sulfur colloid, 5.4 μm MMAD) under controlled breathing conditions. The initial deposition image of the right lung was normalized to (i.e., same median pixel value), and then divided by, a transmission (Tc99m) image in the same individual to obtain a pixel-by-pixel ratio image. Hot spots were defined where pixel values in the deposition image were greater than 2X those of the transmission, and cold spots as pixels where the deposition image was less than 0.5X of the transmission. The number ratio (NR) of the hot and cold pixels to total lung pixels, and the sum ratio (SR) of total counts in hot pixels to total lung counts were compared between healthy and CF subjects. Other traditional measures of regional particle deposition, nC/P and skew of the pixel count histogram distribution, were also compared. Results: The NR of cold spots was greater in mild CF, 0.221±0.047(CF) vs. 0.186±0.038 (healthy) (p<0.005) and was significantly correlated with FEV1 %pred in the patients (R=−0.70). nC/P (central to peripheral count ratio), skew of the count histogram, and hot NR or SR were not different between the healthy and mild CF patients. Conclusions: These methods may provide more sensitive measures of airway function and localization of deposition that might be useful for assessing treatment efficacy in these patients. PMID:25393109

  19. A universal and ultrasensitive vectorial nanomechanical sensor for imaging 2D force fields

    NASA Astrophysics Data System (ADS)

    de Lépinay, Laure Mercier; Pigeau, Benjamin; Besga, Benjamin; Vincent, Pascal; Poncharal, Philippe; Arcizet, Olivier

    2016-10-01

    The miniaturization of force probes into nanomechanical oscillators enables ultrasensitive investigations of forces on dimensions smaller than their characteristic length scales. It also unravels the vectorial character of the force field and how its topology impacts the measurement. Here we present an ultrasensitive method for imaging two-dimensional vectorial force fields by optomechanically following the bidimensional Brownian motion of a singly clamped nanowire. This approach relies on angular and spectral tomography of its quasi-frequency-degenerated transverse mechanical polarizations: immersing the nanoresonator in a vectorial force field not only shifts its eigenfrequencies but also rotates the orientation of the eigenmodes, as a nanocompass. This universal method is employed to map a tunable electrostatic force field whose spatial gradients can even dominate the intrinsic nanowire properties. Enabling vectorial force field imaging with demonstrated sensitivities of attonewton variations over the nanoprobe Brownian trajectory will have a strong impact on scientific exploration at the nanoscale.

  20. Segmentation-free image processing and analysis of precipitate shapes in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Bales, Ben; Pollock, Tresa; Petzold, Linda

    2017-06-01

    Segmentation based image analysis techniques are routinely employed for quantitative analysis of complex microstructures containing two or more phases. The primary advantage of these approaches is that spatial information on the distribution of phases is retained, enabling subjective judgements of the quality of the segmentation and subsequent analysis process. The downside is that computing micrograph segmentations with data from morphologically complex microstructures gathered with error-prone detectors is challenging and, if no special care is taken, the artifacts of the segmentation will make any subsequent analysis and conclusions uncertain. In this paper we demonstrate, using a two phase nickel-base superalloy microstructure as a model system, a new methodology for analysis of precipitate shapes using a segmentation-free approach based on the histogram of oriented gradients feature descriptor, a classic tool in image analysis. The benefits of this methodology for analysis of microstructure in two and three-dimensions are demonstrated.

  1. Label free biochemical 2D and 3D imaging using secondary ion mass spectrometry.

    PubMed

    Fletcher, John S; Vickerman, John C; Winograd, Nicholas

    2011-10-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) provides a method for the detection of native and exogenous compounds in biological samples on a cellular scale. Through the development of novel ion beams the amount of molecular signal available from the sample surface has been increased. Through the introduction of polyatomic ion beams, particularly C(60), ToF-SIMS can now be used to monitor molecular signals as a function of depth as the sample is eroded thus proving the ability to generate 3D molecular images. Here we describe how this new capability has led to the development of novel instrumentation for 3D molecular imaging while also highlighting the importance of sample preparation and discuss the challenges that still need to be overcome to maximise the impact of the technique.

  2. Region-Based Feature Interpretation for Recognizing 3D Models in 2D images

    DTIC Science & Technology

    1991-06-01

    Likewise, if two model lines are colinear or are connected at their endpoints, they must do the same in the image (again, within some bounds, to account...not well defined. Is a flowerpot part of the plant object? The answer depends on the vision task, and even then may be ambiguous or allow overlapping...However, not all have been tried, either in psychological tests or in vision systems. Proximity: Features are close to each other. Edge Connectivity

  3. Distributed Computing Architecture for Image-Based Wavefront Sensing and 2 D FFTs

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey S.; Dean, Bruce H.; Haghani, Shadan

    2006-01-01

    Image-based wavefront sensing (WFS) provides significant advantages over interferometric-based wavefi-ont sensors such as optical design simplicity and stability. However, the image-based approach is computational intensive, and therefore, specialized high-performance computing architectures are required in applications utilizing the image-based approach. The development and testing of these high-performance computing architectures are essential to such missions as James Webb Space Telescope (JWST), Terrestial Planet Finder-Coronagraph (TPF-C and CorSpec), and Spherical Primary Optical Telescope (SPOT). The development of these specialized computing architectures require numerous two-dimensional Fourier Transforms, which necessitate an all-to-all communication when applied on a distributed computational architecture. Several solutions for distributed computing are presented with an emphasis on a 64 Node cluster of DSPs, multiple DSP FPGAs, and an application of low-diameter graph theory. Timing results and performance analysis will be presented. The solutions offered could be applied to other all-to-all communication and scientifically computationally complex problems.

  4. Sequential functional analysis of left ventricle from 2D-echocardiography images.

    PubMed

    Chacko, Rani; Singh, Megha

    2014-06-01

    The sequential changes in shape of left ventricle (LV), which are the result of cellular interactions and their levels of organizational complexity, in its long axis view during one cardiac cycle are obtained. The changes are presented in terms of shape descriptors by processing of images obtained from a normal subject and two patients with dilated left ventricular cardio-myopathy. These images are processed, frame by frame, by a semi-automatic algorithm developed by MATLAB. This is consisting of gray scale conversion, the LV contour extraction by application of median and SRAD filters, and morphological operations. By filling the identified region with pixels and number of pixels along its contour the area and perimeter are calculated, respectively. From these the changes in LV volume and shape index are calculated. Based on these the stroke volume (SV) and ejection fraction (EF) are calculated. The changes in LV area, perimeter, volume and shape index in cardiac patients are less than that of normal subject. The calculated SV and EF of normal subject are within the range as obtained by various imaging procedures.

  5. Distributed computing architecture for image-based wavefront sensing and 2D FFTs

    NASA Astrophysics Data System (ADS)

    Smith, Jeffrey S.; Dean, Bruce H.; Haghani, Shadan

    2006-06-01

    Image-based wavefront sensing provides significant advantages over interferometric-based wavefront sensors such as optical design simplicity and stability. However, the image-based approach is computationally intensive, and therefore, applications utilizing the image-based approach gain substantial benefits using specialized high-performance computing architectures. The development and testing of these computing architectures are essential to missions such as James Webb Space Telescope (JWST), Terrestrial Planet Finder-Coronagraph (TPF-C and CorSpec), and the Spherical Primary Optical Telescope (SPOT). The algorithms implemented on these specialized computing architectures make use of numerous two-dimensional Fast Fourier Transforms (FFTs) which necessitate an all-to-all communication when applied on a distributed computational architecture. Several solutions for distributed computing are presented with an emphasis on a 64 Node cluster of digital signal processors (DSPs) and multiple DSP field programmable gate arrays (FPGAs), offering a novel application of low-diameter graph theory. Timing results and performance analysis are presented. The solutions offered could be applied to other computationally complex all-to-all communication problems.

  6. Pre-stack depth migration for improved imaging under seafloor canyons: 2D case study of Browse Basin, Australia*

    NASA Astrophysics Data System (ADS)

    Debenham, Helen 124Westlake, Shane

    2014-06-01

    In the Browse Basin, as in many areas of the world, complex seafloor topography can cause problems with seismic imaging. This is related to complex ray paths, and sharp lateral changes in velocity. This paper compares ways in which 2D Kirchhoff imaging can be improved below seafloor canyons, using both time and depth domain processing. In the time domain, to improve on standard pre-stack time migration (PSTM) we apply removable seafloor static time shifts in order to reduce the push down effect under seafloor canyons before migration. This allows for better event continuity in the seismic imaging. However this approach does not fully solve the problem, still giving sub-optimal imaging, leaving amplitude shadows and structural distortion. Only depth domain processing with a migration algorithm that honours the paths of the seismic energy as well as a detailed velocity model can provide improved imaging under these seafloor canyons, and give confidence in the structural components of the exploration targets in this area. We therefore performed depth velocity model building followed by pre-stack depth migration (PSDM), the result of which provided a step change improvement in the imaging, and provided new insights into the area.

  7. Aquifer Characterization using 2D Electrical Resistivity Imaging in Kidangpananjung, Cililin District, West Java

    NASA Astrophysics Data System (ADS)

    Marsan, Dery; Azimmah, Azizatun; Patera Adli, Dida; Muthi'a, J. M.; Yuantoro, Ethis; Fatkhan

    2017-04-01

    Water shortage is a big problem for those who live in the region with unsustainable water resource like in Kidangpananjung - a village in Cililin district West Java. With elevation of 1070 m above mean sea level, Kidangpananjung stands on crest of a hill with the geographical coordinate of 113.5° BT, 6.97° LS. Based on geological survey, the outcrop which found in Kidangpananjung indicates that this region consists of pyroclastic rock such as fresh tuff and andesitic breccia. Four springs are found in the foothills with elevation of ± 1040 m above mean sea level which indicates the location of water table. To map the groundwater distribution more precisely and understand the aquifer rock more accurately, geo-electrical approach was conducted. This method is chosen based on the principle that the survey target, the water saturated rock, would give a relatively low resistivity contrast than its surrounding rocks. The target aquifer is considered as confined aquifer at 30m - 40m beneath Kidangpananjung. The data acquisition was designed with two lines of wenner-alpha arrays with 235 meters length each. Two lines of profiling were chosen in order to map the underground layer and its resistivity and thicknesses. The resistivity measurements were carefully interpreted by using least-square inversion technique by using RES2DINV program. The purpose of this research is to understand the characteristics and depth of Kidangpananjung aquifer. Therefore, it can be used to be a reference in groundwater drilling in order to improve the living of the inhabitants of Kidangpananjung

  8. 2-D Precise Radiation Mapping of Sedimentary Core Using Imaging Plate

    NASA Astrophysics Data System (ADS)

    Sugihara, M.; Tsuchiya, N.

    2006-12-01

    The imaging plate (IP) is a storage film coated with photostimulated phosphor (BaFBr: Eu2+), and the latent images produced by irradiation of the imaging plate are read by superficial scanning with stimulation light and are reconstructed as two-dimensional dot images on a computer display. It has an excellent performance for radiation detection, and its advantages include an ease of use, a high position resolution (up to 25ƒÊm), a large detection area (up to 35'43cm2), a high detection sensitivity with high signal-to- noise ratio, an extremely wide dynamic range of dose, a sensitivity to several kinds of radiation, and an erasing capability for reuse (Hareyama et al., 2000). In this study, in order to develop a nondestructive, precise and large area evaluation method of sedimentary structure, an application of autoradiography using IP is attempted to marine sediments. Imaging plate (BAS-MS2040 Fujifilm Co. Ltd., 20'~40 cm2) was cut into rectangular five pieces (4'~40 cm2). Whole round marine sedimentary cores were divided into two half for duplicate and they were covered with a plastic wrap. The rectangular IP were put along the center line of plane side of half round. The exposure in the low temperature was for 48 hours in a shield box. The latent images produced by irradiation of the IP were read out by using the BAS-2500 imaging analyzer (Fujifilm Co. Ltd.). Radiation dose of IP is output as PSL value, that is unique dose units and quantities of IP system. Position resolution was set to 50ƒÊm. Marine sedimentary cores including volcanic ash layer were measured using IP and Natural Gamma Logger (NGL), which is measuring instrument for marine sediments in practice use, to compare their measuring ability. As a result of experiment, it becomes clear that high dose distribution is found at volcanic ash layer with IP, meanwhile it can't be found with NGL. The content of radiation source in volcanic ash layer is supposed to be high compared with other layers

  9. 2-D tomographic imaging of continental crust and relic slab beneath Baja California

    NASA Astrophysics Data System (ADS)

    Brothers, D. S.; Harding, A. J.; Kent, G.; Driscoll, N.

    2009-12-01

    Rifting of Baja California from the margin of North America began as, or sometime before, subduction of the Farallon plate ceased (~12 Ma). Many have speculated that increased coupling between the subducted Farallon slab and overriding plate caused the young upper part of the subducted plate to detach from the older, colder, sinking slab. Then as the fragments of the Farallon plate took on Pacific plate motion, traction forces between the relic slab and Baja influenced rift localization in the Gulf of California. To better understand the processes that led to rifting of the Baja peninsula a 350 km seismic refraction/reflection profile was collected in 2002 in an effort to constrain the crustal thickness, the extent of relic slab beneath Baja California and the upper mantle P-wave velocities. The line spans the Baja Peninsula from the paleo-trench to the central Gulf of California, between the Farallon and Pescadero basins. 13 Ocean-Bottom Seismometers and 8 onshore Ref-Tek portable seismometers recorded 35,504 airgun shots from the R/V Ewing. Multichannel seismic (MCS) reflection profiles were collected on either side of the peninsula, providing information on the upper crustal structure and style of post-subduction deformation, particularly along the Tosco-Abreojos and Santa Margarita-San Lazaro fault systems. Here we present the integrated results of the MCS profiles and 2-D travel time tomography. Ray tracing was performed on 13,388 arrival picks, including Pg, Pn and PmP arrivals. Initial tomographic inversions reveal a crustal root beneath Baja California with an average velocity of 6.0 km/s. Continental crust thins to the east into the Gulf of California and has a velocity structure consistent with that of the Alarcon segment of the PESCADOR experiment. Perhaps the most significant observation is an ~6 km thick, 8° east-dipping high velocity zone (mean of 6.7 km/s) that underplates the western Baja margin and extends at least 60 km from the former trench

  10. A digital image acquisition system for skin lesions

    NASA Astrophysics Data System (ADS)

    Maglogiannis, Ilias G.; Kosmopoulos, Dimitrios I.

    2003-05-01

    A major issue concerning the design and implementation of an acquisition system for digital images of skin lesions is the ability of capturing reproducible images. The reproducibility is considered essential for image analysis classification and for the comparison of sequential images during follow-up studies. This paper describes a complete image acquisition system used for the collection of reproducible images of patients having melanoma and compares them with images displaying dysplastic nevus for diagnostic purposes. The system includes a standardized illumination and capturing geometry with polarizing filters and a series of software corrections: Calibration to Black, White, Internal and External camera parameters, Shading correction and Median filtering. The validity of the calibration procedure and the ability of the implemented system to produce reproducible images were tested by capturing sample images in 3 different lighting conditions of the surrounding environment: dark, medium and intense lighting. For each case the average values of the three-color planes RGB and their standard deviations were calculated and the measured error differences ranged between 0,4 and 13,2 (in the 0-255 scale). Preliminary experiments for stereo measurements provided repeatability of about 0.3mm. The above numbers demonstrate the reproducibility of the captured images at a satisfactory level.

  11. Automatic Evaluation of Scan Adequacy and Dysplasia Metrics in 2-D Ultrasound Images of the Neonatal Hip.

    PubMed

    Quader, Niamul; Hodgson, Antony J; Mulpuri, Kishore; Schaeffer, Emily; Abugharbieh, Rafeef

    2017-03-21

    Ultrasound (US) imaging of an infant's hip joint is widely used for early detection of developmental dysplasia of the hip. In current US-based diagnosis of developmental dysplasia of the hip, trained clinicians acquire US images and, if they judge them to be adequate (i.e., to contain relevant hip joint structures), analyze them manually to extract clinically useful dysplasia metrics. However, both the scan adequacy classification and dysplasia metrics extraction steps exhibit significant variability within and between both clinicians and institutions, which can result in significant over- and undertreatment rates. To reduce the subjectivity resulting from this variability, we propose a computational image analysis technique that automatically identifies adequate images and subsequently extracts dysplasia metrics from these 2-D US images. Our automatic method uses local phase symmetry-based image measures to robustly identify intensity-invariant geometric features of bone/cartilage boundaries from the US images. Using the extracted geometric features, we trained a random forest classifier to classify images as adequate or inadequate, and in the adequate images we used a subset of the geometric features to calculate key dysplasia metrics. We validated our method on a data set of 693 US scans collected from 35 infants. Our approach produces excellent agreement with clinician adequacy classifications (area under the receiver operating characteristic curve = 0.985) and in reducing variability in the measured developmental dysplasia of the hip metrics (p < 0.05). The automatically computed dysplasia metrics appear to be slightly biased toward higher Graf categories than the manually estimated metrics, which could potentially reduce missed early diagnoses.

  12. Application of Compressed Sensing to 2-D Ultrasonic Propagation Imaging System data

    SciTech Connect

    Mascarenas, David D.; Farrar, Charles R.; Chong, See Yenn; Lee, J.R.; Park, Gyu Hae; Flynn, Eric B.

    2012-06-29

    The Ultrasonic Propagation Imaging (UPI) System is a unique, non-contact, laser-based ultrasonic excitation and measurement system developed for structural health monitoring applications. The UPI system imparts laser-induced ultrasonic excitations at user-defined locations on a structure of interest. The response of these excitations is then measured by piezoelectric transducers. By using appropriate data reconstruction techniques, a time-evolving image of the response can be generated. A representative measurement of a plate might contain 800x800 spatial data measurement locations and each measurement location might be sampled at 500 instances in time. The result is a total of 640,000 measurement locations and 320,000,000 unique measurements. This is clearly a very large set of data to collect, store in memory and process. The value of these ultrasonic response images for structural health monitoring applications makes tackling these challenges worthwhile. Recently compressed sensing has presented itself as a candidate solution for directly collecting relevant information from sparse, high-dimensional measurements. The main idea behind compressed sensing is that by directly collecting a relatively small number of coefficients it is possible to reconstruct the original measurement. The coefficients are obtained from linear combinations of (what would have been the original direct) measurements. Often compressed sensing research is simulated by generating compressed coefficients from conventionally collected measurements. The simulation approach is necessary because the direct collection of compressed coefficients often requires compressed sensing analog front-ends that are currently not commercially available. The ability of the UPI system to make measurements at user-defined locations presents a unique capability on which compressed measurement techniques may be directly applied. The application of compressed sensing techniques on this data holds the potential to

  13. 2D and 3D Terahertz Imaging and X-Rays CT for Sigillography Study

    NASA Astrophysics Data System (ADS)

    Fabre, M.; Durand, R.; Bassel, L.; Recur, B.; Balacey, H.; Bou Sleiman, J.; Perraud, J.-B.; Mounaix, P.

    2017-04-01

    Seals are part of our cultural heritage but the study of these objects is limited because of their fragility. Terahertz and X-Ray imaging are used to analyze a collection of wax seals from the fourteenth to eighteenth centuries. In this work, both techniques are compared in order to discuss their advantages and limits and their complementarity for conservation state study of the samples. Thanks to 3D analysis and reconstructions, defects and fractures are detected with an estimation of their depth position. The path from the parchment tongue inside the seals is also detected.

  14. 2D and 3D Terahertz Imaging and X-Rays CT for Sigillography Study

    NASA Astrophysics Data System (ADS)

    Fabre, M.; Durand, R.; Bassel, L.; Recur, B.; Balacey, H.; Bou Sleiman, J.; Perraud, J.-B.; Mounaix, P.

    2017-01-01

    Seals are part of our cultural heritage but the study of these objects is limited because of their fragility. Terahertz and X-Ray imaging are used to analyze a collection of wax seals from the fourteenth to eighteenth centuries. In this work, both techniques are compared in order to discuss their advantages and limits and their complementarity for conservation state study of the samples. Thanks to 3D analysis and reconstructions, defects and fractures are detected with an estimation of their depth position. The path from the parchment tongue inside the seals is also detected.

  15. Recognizing 3 D Objects from 2D Images Using Structural Knowledge Base of Genetic Views

    DTIC Science & Technology

    1988-08-31

    principles of percep- .3 tual organization were described by Wertheimer [WER23] and have been discussed with respect to computer vision[LOW85,MAR82,ROS86...R(sl.,s2) - (and (mmn-u 4 u 4 max -u) (mmn-v 9 v A max -v) (min-alpha & alpha a max -alpha) (mmn-s & s 4 max -s) Figure...34Geometric grouping of straight lines". Proc. DARPA Image Understan ding Workshop, Miami Beach, FL, pp. 443- 447, 1985. [WER231 M. Wertheimer