Science.gov

Sample records for 2d incompressible navier-stokes

  1. Self-similarity in incompressible Navier-Stokes equations.

    PubMed

    Ercan, Ali; Kavvas, M Levent

    2015-12-01

    The self-similarity conditions of the 3-dimensional (3D) incompressible Navier-Stokes equations are obtained by utilizing one-parameter Lie group of point scaling transformations. It is found that the scaling exponents of length dimensions in i = 1, 2, 3 coordinates in 3-dimensions are not arbitrary but equal for the self-similarity of 3D incompressible Navier-Stokes equations. It is also shown that the self-similarity in this particular flow process can be achieved in different time and space scales when the viscosity of the fluid is also scaled in addition to other flow variables. In other words, the self-similarity of Navier-Stokes equations is achievable under different fluid environments in the same or different gravity conditions. Self-similarity criteria due to initial and boundary conditions are also presented. Utilizing the proposed self-similarity conditions of the 3D hydrodynamic flow process, the value of a flow variable at a specified time and space can be scaled to a corresponding value in a self-similar domain at the corresponding time and space. PMID:26723165

  2. Spectral element methods for the incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Maday, Yvon; Patera, Anthony T.

    1989-01-01

    Spectral element methods are high-order weighted-residual techniques for partial differential equations that combine the geometric flexibility of finite element techniques with the rapid convergence rate of spectral schemes. The theoretical foundations and numerical implementation of spectral element methods for the incompressible Navier-Stokes equations are presented, considering the construction and analysis of optimal-order spectral element discretizations for elliptic and saddle (Stokes) problems, as well as the efficient solution of the resulting discrete equations by rapidly convergent tensor-product-based iterative procedures. Several examples of spectral element simulation of moderate Reynolds number unsteady flow in complex geometry are presented.

  3. Exponential integrators for the incompressible Navier-Stokes equations.

    SciTech Connect

    Newman, Christopher K.

    2004-07-01

    We provide an algorithm and analysis of a high order projection scheme for time integration of the incompressible Navier-Stokes equations (NSE). The method is based on a projection onto the subspace of divergence-free (incompressible) functions interleaved with a Krylov-based exponential time integration (KBEI). These time integration methods provide a high order accurate, stable approach with many of the advantages of explicit methods, and can reduce the computational resources over conventional methods. The method is scalable in the sense that the computational costs grow linearly with problem size. Exponential integrators, used typically to solve systems of ODEs, utilize matrix vector products of the exponential of the Jacobian on a vector. For large systems, this product can be approximated efficiently by Krylov subspace methods. However, in contrast to explicit methods, KBEIs are not restricted by the time step. While implicit methods require a solution of a linear system with the Jacobian, KBEIs only require matrix vector products of the Jacobian. Furthermore, these methods are based on linearization, so there is no non-linear system solve at each time step. Differential-algebraic equations (DAEs) are ordinary differential equations (ODEs) subject to algebraic constraints. The discretized NSE constitute a system of DAEs, where the incompressibility condition is the algebraic constraint. Exponential integrators can be extended to DAEs with linear constraints imposed via a projection onto the constraint manifold. This results in a projected ODE that is integrated by a KBEI. In this approach, the Krylov subspace satisfies the constraint, hence the solution at the advanced time step automatically satisfies the constraint as well. For the NSE, the projection onto the constraint is typically achieved by a projection induced by the L{sup 2} inner product. We examine this L{sup 2} projection and an H{sup 1} projection induced by the H{sup 1} semi-inner product. The H

  4. The Minkowski dimension of interior singular points in the incompressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Koh, Youngwoo; Yang, Minsuk

    2016-09-01

    We study the possible interior singular points of suitable weak solutions to the three dimensional incompressible Navier-Stokes equations. We present an improved parabolic upper Minkowski dimension of the possible singular set, which is bounded by 95/63. The result also continue to hold for the three dimensional incompressible magnetohydrodynamic equations without any difficulty.

  5. Stochastic least-action principle for the incompressible Navier-Stokes equation

    NASA Astrophysics Data System (ADS)

    Eyink, Gregory L.

    2010-07-01

    We formulate a stochastic least-action principle for solutions of the incompressible Navier-Stokes equation, which formally reduces to Hamilton’s principle for the incompressible Euler solutions in the case of zero viscosity. We use this principle to give a new derivation of a stochastic Kelvin Theorem for the Navier-Stokes equation, recently established by Constantin and Iyer, which shows that this stochastic conservation law arises from particle-relabelling symmetry of the action. We discuss issues of irreversibility, energy dissipation, and the inviscid limit of Navier-Stokes solutions in the framework of the stochastic variational principle. In particular, we discuss the connection of the stochastic Kelvin Theorem with our previous “martingale hypothesis” for fluid circulations in turbulent solutions of the incompressible Euler equations.

  6. Simulations of incompressible Navier Stokes equations on curved surfaces using discrete exterior calculus

    NASA Astrophysics Data System (ADS)

    Samtaney, Ravi; Mohamed, Mamdouh; Hirani, Anil

    2015-11-01

    We present examples of numerical solutions of incompressible flow on 2D curved domains. The Navier-Stokes equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. A conservative discretization of Navier-Stokes equations on simplicial meshes is developed based on discrete exterior calculus (DEC). The discretization is then carried out by substituting the corresponding discrete operators based on the DEC framework. By construction, the method is conservative in that both the discrete divergence and circulation are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step. Numerical examples include Taylor vortices on a sphere, Stuart vortices on a sphere, and flow past a cylinder on domains with varying curvature. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1401-01.

  7. On pressure boundary conditions for the incompressible Navier-Stokes equations using nonstaggered grids

    NASA Technical Reports Server (NTRS)

    Biringen, S.; Cook, C.

    1988-01-01

    Pressure boundary conditions satisfying the normal momentum equation at solid boundaries with second-order accuracy are developed. Implementation of these conditions in an explicit numerical procedure for the two-dimensional incompressible Navier-Stokes equations enables convergent and accurate solutions for the driven cavity problem provided that the integral constraint of the Neumann boundary condtions is satisfied.

  8. Progress in incompressible Navier-Stokes computations for propulsion flows and its dual-use applications

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin

    1995-01-01

    Development of an incompressible Navier-Stokes solution procedure was performed for the analysis of a liquid rocket engine pump components and for the mechanical heart assist devices. The solution procedure for the propulsion systems is applicable to incompressible Navier-Stokes flows in a steadily rotating frame of reference for any general complex configurations. The computer codes were tested on different complex configurations such as liquid rocket engine inducer and impellers. As a spin-off technology from the turbopump component simulations, the flow analysis for an axial heart pump was conducted. The baseline Left Ventricular Assist Device (LVAD) design was improved by adding an inducer geometry by adapting from the liquid rocket engine pump. The time-accurate mode of the incompressible Navier-Stokes code was validated with flapping foil experiment by using different domain decomposition methods. In the flapping foil experiment, two upstream NACA 0025 foils perform high-frequency synchronized motion and generate unsteady flow conditions for a downstream larger stationary foil. Fairly good agreement was obtained between unsteady experimental data and numerical results from two different moving boundary procedures. Incompressible Navier-Stokes code (INS3D) has been extended for heat transfer applications. The temperature equation was written for both forced and natural convection phenomena. Flow in a square duct case was used for the validation of the code in both natural and forced convection.

  9. A dynamically adaptive multigrid algorithm for the incompressible Navier-Stokes equations: Validation and model problems

    NASA Technical Reports Server (NTRS)

    Thompson, C. P.; Leaf, G. K.; Vanrosendale, J.

    1991-01-01

    An algorithm is described for the solution of the laminar, incompressible Navier-Stokes equations. The basic algorithm is a multigrid based on a robust, box-based smoothing step. Its most important feature is the incorporation of automatic, dynamic mesh refinement. This algorithm supports generalized simple domains. The program is based on a standard staggered-grid formulation of the Navier-Stokes equations for robustness and efficiency. Special grid transfer operators were introduced at grid interfaces in the multigrid algorithm to ensure discrete mass conservation. Results are presented for three models: the driven-cavity, a backward-facing step, and a sudden expansion/contraction.

  10. Conformal Field Theory as Microscopic Dynamics of Incompressible Euler and Navier-Stokes Equations

    SciTech Connect

    Fouxon, Itzhak; Oz, Yaron

    2008-12-31

    We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them.

  11. Comparison of Implicit Schemes for the Incompressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.

    1995-01-01

    For a computational flow simulation tool to be useful in a design environment, it must be very robust and efficient. To develop such a tool for incompressible flow applications, a number of different implicit schemes are compared for several two-dimensional flow problems in the current study. The schemes include Point-Jacobi relaxation, Gauss-Seidel line relaxation, incomplete lower-upper decomposition, and the generalized minimum residual method preconditioned with each of the three other schemes. The efficiency of the schemes is measured in terms of the computing time required to obtain a steady-state solution for the laminar flow over a backward-facing step, the flow over a NACA 4412 airfoil, and the flow over a three-element airfoil using overset grids. The flow solver used in the study is the INS2D code that solves the incompressible Navier-Stokes equations using the method of artificial compressibility and upwind differencing of the convective terms. The results show that the generalized minimum residual method preconditioned with the incomplete lower-upper factorization outperforms all other methods by at least a factor of 2.

  12. Incomplete Augmented Lagrangian Preconditioner for Steady Incompressible Navier-Stokes Equations

    PubMed Central

    Tan, Ning-Bo; Huang, Ting-Zhu; Hu, Ze-Jun

    2013-01-01

    An incomplete augmented Lagrangian preconditioner, for the steady incompressible Navier-Stokes equations discretized by stable finite elements, is proposed. The eigenvalues of the preconditioned matrix are analyzed. Numerical experiments show that the incomplete augmented Lagrangian-based preconditioner proposed is very robust and performs quite well by the Picard linearization or the Newton linearization over a wide range of values of the viscosity on both uniform and stretched grids. PMID:24235888

  13. INS3D: An incompressible Navier-Stokes code in generalized three-dimensional coordinates

    NASA Technical Reports Server (NTRS)

    Rogers, S. E.; Kwak, D.; Chang, J. L. C.

    1987-01-01

    The operation of the INS3D code, which computes steady-state solutions to the incompressible Navier-Stokes equations, is described. The flow solver utilizes a pseudocompressibility approach combined with an approximate factorization scheme. This manual describes key operating features to orient new users. This includes the organization of the code, description of the input parameters, description of each subroutine, and sample problems. Details for more extended operations, including possible code modifications, are given in the appendix.

  14. An Edge-Based Method for the Incompressible Navier-Stokes Equations on Polygonal Meshes

    NASA Astrophysics Data System (ADS)

    Wright, Jeffrey A.; Smith, Richard W.

    2001-05-01

    A pressure-based method is presented for discretizing the unsteady incompressible Navier-Stokes equations using hybrid unstructured meshes. The edge-based data structure and assembly procedure adopted lead naturally to a strictly conservative discretization, which is valid for meshes composed of n-sided polygons. Particular attention is given to the construction of a pressure-velocity coupling procedure which is supported by edge data, resulting in a relatively simple numerical method that is consistent with the boundary and initial conditions required by the incompressible Navier-Stokes equations. Edge formulas are presented for assembling the momentum equations, which are based on an upwind-biased linear reconstruction of the velocity field. Similar formulas are presented for assembling the pressure equation. The method is demonstrated to be second-order accurate in space and time for two Navier-Stokes problems admitting an exact solution. Results for several other well-known problems are also presented, including lid-driven cavity flow, impulsively started cylinder flow, and unsteady vortex shedding from a circular cylinder. Although the method is by construction minimalist, it is shown to be accurate and robust for the problems considered.

  15. Evaluation of a Multigrid Scheme for the Incompressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.

    2004-01-01

    A fast multigrid solver for the steady, incompressible Navier-Stokes equations is presented. The multigrid solver is based upon a factorizable discrete scheme for the velocity-pressure form of the Navier-Stokes equations. This scheme correctly distinguishes between the advection-diffusion and elliptic parts of the operator, allowing efficient smoothers to be constructed. To evaluate the multigrid algorithm, solutions are computed for flow over a flat plate, parabola, and a Karman-Trefftz airfoil. Both nonlifting and lifting airfoil flows are considered, with a Reynolds number range of 200 to 800. Convergence and accuracy of the algorithm are discussed. Using Gauss-Seidel line relaxation in alternating directions, multigrid convergence behavior approaching that of O(N) methods is achieved. The computational efficiency of the numerical scheme is compared with that of Runge-Kutta and implicit upwind based multigrid methods.

  16. A fully vectorized numerical solution of the incompressible Navier-Stokes equations. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Patel, N.

    1983-01-01

    A vectorizable algorithm is presented for the implicit finite difference solution of the incompressible Navier-Stokes equations in general curvilinear coordinates. The unsteady Reynolds averaged Navier-Stokes equations solved are in two dimension and non-conservative primitive variable form. A two-layer algebraic eddy viscosity turbulence model is used to incorporate the effects of turbulence. Two momentum equations and a Poisson pressure equation, which is obtained by taking the divergence of the momentum equations and satisfying the continuity equation, are solved simultaneously at each time step. An elliptic grid generation approach is used to generate a boundary conforming coordinate system about an airfoil. The governing equations are expressed in terms of the curvilinear coordinates and are solved on a uniform rectangular computational domain. A checkerboard SOR, which can effectively utilize the computer architectural concept of vector processing, is used for iterative solution of the governing equations.

  17. A least-squares finite element method for incompressible Navier-Stokes problems

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan

    1992-01-01

    A least-squares finite element method, based on the velocity-pressure-vorticity formulation, is developed for solving steady incompressible Navier-Stokes problems. This method leads to a minimization problem rather than to a saddle-point problem by the classic mixed method and can thus accommodate equal-order interpolations. This method has no parameter to tune. The associated algebraic system is symmetric, and positive definite. Numerical results for the cavity flow at Reynolds number up to 10,000 and the backward-facing step flow at Reynolds number up to 900 are presented.

  18. A deflation based parallel algorithm for spectral element solution of the incompressible Navier-Stokes equations

    SciTech Connect

    Fischer, P.F.

    1996-12-31

    Efficient solution of the Navier-Stokes equations in complex domains is dependent upon the availability of fast solvers for sparse linear systems. For unsteady incompressible flows, the pressure operator is the leading contributor to stiffness, as the characteristic propagation speed is infinite. In the context of operator splitting formulations, it is the pressure solve which is the most computationally challenging, despite its elliptic origins. We seek to improve existing spectral element iterative methods for the pressure solve in order to overcome the slow convergence frequently observed in the presence of highly refined grids or high-aspect ratio elements.

  19. On the smallest scale for the incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Henshaw, W. D.; Kreiss, H. O.; Reyna, L. G.

    1988-01-01

    It is proven that for solutions to the two- and three-dimensional incompressible Navier-Stokes equations the minimum scale is inversely proportional to the square root of the Reynolds number based on the kinematic viscosity and the maximum of the velocity gradients. The bounds on the velocity gradients can be obtained for two-dimensional flows, but have to be assumed to be three-dimensional. Numerical results in two dimensions are given which illustrate and substantiate the features of the proof. Implications of the minimum scale result to the decay rate of the energy spectrum are discussed.

  20. On the smallest scale for the incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Henshaw, W. D.; Reyna, L. G.; Kreiss, H. O.

    1989-01-01

    It is proven that for solutions to the two-and three-dimensional incompressible Navier-Stokes equations, the minimum scale is inversely proportional to the square root of the Reynolds number based on the kinematic viscosity and the maximum of the velocity gradients. The bounds on the velocity gradients can be obtained for two-dimensional flows, but have to be assumed to be three-dimensional. Numerical results in two dimensions are given which illustrate and substantiate the features of the proof. Implications of the minimum scale result to the decay rate of the energy spectrum are discussed.

  1. Preconditioned upwind methods to solve 3-D incompressible Navier-Stokes equations for viscous flows

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Chen, Y.-M.; Liu, C. H.

    1990-01-01

    A computational method for calculating low-speed viscous flowfields is developed. The method uses the implicit upwind-relaxation finite-difference algorithm with a nonsingular eigensystem to solve the preconditioned, three-dimensional, incompressible Navier-Stokes equations in curvilinear coordinates. The technique of local time stepping is incorporated to accelerate the rate of convergence to a steady-state solution. An extensive study of optimizing the preconditioned system is carried out for two viscous flow problems. Computed results are compared with analytical solutions and experimental data.

  2. Spectral solution of the incompressible Navier-Stokes equations on the connection machine 2. Final report

    SciTech Connect

    Tomboulian, S.; Streett, C.; Macaraeg, M.

    1989-01-01

    The issue of solving the time-dependent incompressible Navier-Stokes equations on the Connection Machine 2 is addressed, for the problem of transition to turbulence of the steady flow in a channel. The spectral algorithm used serially requires O(N(4)) operations when solving the equations on an N x N x N grid; using the massive parallelism of the CM, it becomes an O(N(2)) problem. Preliminary timings of the code, written in LISP, are included and compared with a corresponding code optimized for the Cray-2 for a 128 x 128 x 101 grid.

  3. Least-squares finite element solution of 3D incompressible Navier-Stokes problems

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Lin, Tsung-Liang; Povinelli, Louis A.

    1992-01-01

    Although significant progress has been made in the finite element solution of incompressible viscous flow problems. Development of more efficient methods is still needed before large-scale computation of 3D problems becomes feasible. This paper presents such a development. The most popular finite element method for the solution of incompressible Navier-Stokes equations is the classic Galerkin mixed method based on the velocity-pressure formulation. The mixed method requires the use of different elements to interpolate the velocity and the pressure in order to satisfy the Ladyzhenskaya-Babuska-Brezzi (LBB) condition for the existence of the solution. On the other hand, due to the lack of symmetry and positive definiteness of the linear equations arising from the mixed method, iterative methods for the solution of linear systems have been hard to come by. Therefore, direct Gaussian elimination has been considered the only viable method for solving the systems. But, for three-dimensional problems, the computer resources required by a direct method become prohibitively large. In order to overcome these difficulties, a least-squares finite element method (LSFEM) has been developed. This method is based on the first-order velocity-pressure-vorticity formulation. In this paper the LSFEM is extended for the solution of three-dimensional incompressible Navier-Stokes equations written in the following first-order quasi-linear velocity-pressure-vorticity formulation.

  4. A comparison of two incompressible Navier-Stokes algorithms for unsteady internal flow

    NASA Technical Reports Server (NTRS)

    Wiltberger, N. Lyn; Rogers, Stuart E.; Kwak, Dochan

    1993-01-01

    A comparative study of two different incompressible Navier-Stokes algorithms for solving an unsteady, incompressible, internal flow problem is performed. The first algorithm uses an artificial compressibility method coupled with upwind differencing and a line relaxation scheme. The second algorithm uses a fractional step method with a staggered grid, finite volume approach. Unsteady, viscous, incompressible, internal flow through a channel with a constriction is computed using the first algorithm. A grid resolution study and parameter studies on the artificial compressibility coefficient and the maximum allowable residual of the continuity equation are performed. The periodicity of the solution is examined and several periodic data sets are generated using the first algorithm. These computational results are compared with previously published results computed using the second algorithm and experimental data.

  5. Velocity-correction schemes for the incompressible Navier-Stokes equations in general coordinate systems

    NASA Astrophysics Data System (ADS)

    Serson, D.; Meneghini, J. R.; Sherwin, S. J.

    2016-07-01

    This paper presents methods of including coordinate transformations into the solution of the incompressible Navier-Stokes equations using the velocity-correction scheme, which is commonly used in the numerical solution of unsteady incompressible flows. This is important when the transformation leads to symmetries that allow the use of more efficient numerical techniques, like employing a Fourier expansion to discretize a homogeneous direction. Two different approaches are presented: in the first approach all the influence of the mapping is treated explicitly, while in the second the mapping terms related to convection are treated explicitly, with the pressure and viscous terms treated implicitly. Through numerical results, we demonstrate how these methods maintain the accuracy of the underlying high-order method, and further apply the discretisation strategy to problems where mixed Fourier-spectral/hp element discretisations can be applied, thereby extending the usefulness of this discretisation technique.

  6. Controlling the Dynamics of the 2-D Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Smaoui, Nejib; Zribi, Mohamed

    2012-11-01

    The dynamics of the two-dimensional (2-d) Navier-Stokes (N-S) equations with spatially periodic and temporally steady forcing f = (1/Re k3 sinky , 0) is analyzed. First, a system of nine-dimensional nonlinear dynamical system is obtained by a truncation of the 2-d N-S equations for various values of k. We show that for k = 4 , the dynamics transforms from periodic solutions to chaotic attractors through a sequence of bifurcations including a period doubling scenarios. Then, a state feedback control is designed to drive the state of the system to any desired state.

  7. Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes

    NASA Astrophysics Data System (ADS)

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2016-05-01

    A conservative discretization of incompressible Navier-Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.

  8. A least-squares finite element method for 3D incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Lin, T. L.; Hou, Lin-Jun; Povinelli, Louis A.

    1993-01-01

    The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations, and results in symmetric, positive definite algebraic system. An additional compatibility equation, i.e., the divergence of vorticity vector should be zero, is included to make the first-order system elliptic. The Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. The flow in a half of 3D cubic cavity is calculated at Re = 100, 400, and 1,000 with 50 x 52 x 25 trilinear elements. The Taylor-Gortler-like vortices are observed at Re = 1,000.

  9. Boundary treatment for fourth-order staggered mesh discretizations of the incompressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Sanderse, B.; Verstappen, R. W. C. P.; Koren, B.

    2014-01-01

    Harlow and Welch [Phys. Fluids 8 (1965) 2182-2189] introduced a discretization method for the incompressible Navier-Stokes equations conserving the secondary quantities kinetic energy and vorticity, besides the primary quantities mass and momentum. This method was extended to fourth order accuracy by several researchers [25,14,21]. In this paper we propose a new consistent boundary treatment for this method, which is such that continuous integration-by-parts identities (including boundary contributions) are mimicked in a discrete sense. In this way kinetic energy is exactly conserved even in case of non-zero tangential boundary conditions. We show that requiring energy conservation at the boundary conflicts with order of accuracy conditions, and that the global accuracy of the fourth order method is limited to second order in the presence of boundaries. We indicate how non-uniform grids can be employed to obtain full fourth order accuracy.

  10. Global Solution to the Incompressible Inhomogeneous Navier-Stokes Equations with Some Large Initial Data

    NASA Astrophysics Data System (ADS)

    Xu, Huan; Li, Yongsheng; Chen, Fei

    2016-07-01

    In this paper, we prove that the incompressible inhomogeneous Navier-Stokes equations have a unique global solution with initial data {(a_0,u_0)} in critical Besov spaces {dot{B}_{q,1}^{n/q}({R}n)×dot{B}_{p,1}^{n/p-1}({R}n)} satisfying a nonlinear smallness condition for all {(p,q)in[1,2n)×[1,∞)} , {-1/n ≤ 1/p - 1/q ≤ 1/n} and {1/p + 1/q > 1/n} . We also construct an initial data satisfying that nonlinear smallness condition, but the norm of each component of the initial velocity field can be arbitrarily large in {dot{B}_{p,1}^{n/p-1}({R}n)} with {n < p < 2n}.

  11. Efficient, adaptive energy stable schemes for the incompressible Cahn-Hilliard Navier-Stokes phase-field models

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Shen, Jie

    2016-03-01

    In this paper we develop a fully adaptive energy stable scheme for Cahn-Hilliard Navier-Stokes system, which is a phase-field model for two-phase incompressible flows, consisting a Cahn-Hilliard-type diffusion equation and a Navier-Stokes equation. This scheme, which is decoupled and unconditionally energy stable based on stabilization, involves adaptive mesh, adaptive time and a nonlinear multigrid finite difference method. Numerical experiments are carried out to validate the scheme for problems with matched density and non-matched density, and also demonstrate that CPU time can be significantly reduced with our adaptive approach.

  12. Towards A Fast High-Order Method for Unsteady Incompressible Navier-Stokes Equations using FR/CPR

    NASA Astrophysics Data System (ADS)

    Cox, Christopher; Liang, Chunlei; Plesniak, Michael

    2014-11-01

    A high-order compact spectral difference method for solving the 2D incompressible Navier-Stokes equations on unstructured grids is currently being developed. This method employs the gGA correction of Huynh, and falls under the class of methods now refered to as Flux Reconstruction/Correction Procedure via Reconstruction. This method and the artificial compressibility method are integrated along with a dual time-integration scheme to model unsteady incompressible viscous flows. A lower-upper symmetric Gauss-Seidel scheme and a backward Euler scheme are used to efficiently march the solution in pseudo time and physical time, respectively. We demonstrate order of accuracy with steady Taylor-Couette flow at Re = 10. We further validate the solver with steady flow past a NACA0012 airfoil at zero angle of attack at Re = 1850 and unsteady flow past a circle at Re = 100. The implicit time-integration scheme for the pseudo time derivative term is proved efficient and effective for the classical artificial compressibility treatment to achieve the divergence-free condition of the continuity equation. We greatly acknowledge financial support from The George Washington University under the Presidential Merit Fellowship.

  13. Numerical solution of the Navier-Stokes equations for high Reynolds number incompressible turbulent flow. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, D. S.

    1980-01-01

    The full Navier-Stokes equations for incompressible turbulent flow must be solved to accurately represent all flow phenomena which occur in a high Reynolds number incompressible flow. A two layer algebraic eddy viscosity turbulence model is used to represent the Reynolds stress in the primitive variable formulation. The development of the boundary-fitted coordinate systems makes the numerical solution of these equations feasible for arbitrarily shaped bodies. The nondimensional time averaged Navier-Stokes equations, including the turbulence mode, are represented by finite difference approximations in the transformed plane. The resulting coupled system of nonlinear algebraic equations is solved using a point successive over relaxation iteration. The test case considered was a NACA 64A010 airfoil section at an angle of attack of two degrees and a Reynolds number of 2,000,000.

  14. High resolution upwind schemes for the three-dimensional incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Hartwich, PETER-M.; Hsu, Chung-Hao

    1987-01-01

    Based on flux-difference splitting, implicit high resolution schemes are constructed for efficient computations of steady-state solutions to the three-dimensional, incompressible Navier-Stokes equations in curvilinear coordinates. These schemes use first-order accurate Euler backward-time differencing and second-order central differencing for the viscous shear fluxes. Up to third-order accurate upwind differencing is achieved through a reconstruction of the solution from its cell averages. The reconstruction is accomplished by linear interpolation, where the node stencils are selected such that in regions of smooth solution the flow is highly resolved while spurious oscillations in regions of rapid changes in gradient are still suppressed. Fairly rapid convergence to steady-state solutions is attained with a completely vectorizable hybrid time-marching method. Flows around a sharp-edged delta wing are computed with the maximum accuracy of the upwind-differencing restricted to first-, second-, and third-order, to illustrate the effect of accuracy on the global and on the local vortical flow fields. The results are validated with experimental data.

  15. Approximate factorization for incompressible flow. Ph.D. Thesis; [Navier-Stokes equation

    NASA Technical Reports Server (NTRS)

    Bernard, R. S.

    1981-01-01

    For computational solution of the incompressible Navier-Stokes equations, the approximate factorization (AF) algorithm is used to solve the vectorized momentum equation in delta form based on the pressure calculated in the previous time step. The newly calculated velocities are substituted into the pressure equation (obtained from a linear combination of the continuity and momentum equation), which is then solved by means of line SOR. Computational results are presented for the NACA 66 sub 3 018 airfoil at Reynolds numbers of 1000 and 40,000 and attack angles of 0 and 6 degrees. Comparison with wind tunnel data for Re = 40,000 indicates good qualitative agreement between measured and calculated pressure distributions. Quantitative agreement is only fair, however, with the calculations somewhat displaced from the measurements. Furthermore, the computed velocity profiles are unrealistically thick around the airfoil, due to the excessive amount of artificial viscosity needed for stability. Based on the performance of the algorithm with regard to stability, it is concluded that AF/SOR is suitable for calculations at Reynolds numbers less than 10,000. Speedwise, the method is faster than point SOR by at least a factor of two.

  16. A discontinuous Petrov-Galerkin methodology for adaptive solutions to the incompressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Roberts, Nathan V.; Demkowicz, Leszek; Moser, Robert

    2015-11-01

    The discontinuous Petrov-Galerkin methodology with optimal test functions (DPG) of Demkowicz and Gopalakrishnan [18,20] guarantees the optimality of the solution in an energy norm, and provides several features facilitating adaptive schemes. Whereas Bubnov-Galerkin methods use identical trial and test spaces, Petrov-Galerkin methods allow these function spaces to differ. In DPG, test functions are computed on the fly and are chosen to realize the supremum in the inf-sup condition; the method is equivalent to a minimum residual method. For well-posed problems with sufficiently regular solutions, DPG can be shown to converge at optimal rates-the inf-sup constants governing the convergence are mesh-independent, and of the same order as those governing the continuous problem [48]. DPG also provides an accurate mechanism for measuring the error, and this can be used to drive adaptive mesh refinements. We employ DPG to solve the steady incompressible Navier-Stokes equations in two dimensions, building on previous work on the Stokes equations, and focusing particularly on the usefulness of the approach for automatic adaptivity starting from a coarse mesh. We apply our approach to a manufactured solution due to Kovasznay as well as the lid-driven cavity flow, backward-facing step, and flow past a cylinder problems.

  17. A Discontinuous Petrov-Galerkin Methodology for Adaptive Solutions to the Incompressible Navier-Stokes Equations

    SciTech Connect

    Roberts, Nathan V.; Demkowiz, Leszek; Moser, Robert

    2015-11-15

    The discontinuous Petrov-Galerkin methodology with optimal test functions (DPG) of Demkowicz and Gopalakrishnan [18, 20] guarantees the optimality of the solution in an energy norm, and provides several features facilitating adaptive schemes. Whereas Bubnov-Galerkin methods use identical trial and test spaces, Petrov-Galerkin methods allow these function spaces to differ. In DPG, test functions are computed on the fly and are chosen to realize the supremum in the inf-sup condition; the method is equivalent to a minimum residual method. For well-posed problems with sufficiently regular solutions, DPG can be shown to converge at optimal rates—the inf-sup constants governing the convergence are mesh-independent, and of the same order as those governing the continuous problem [48]. DPG also provides an accurate mechanism for measuring the error, and this can be used to drive adaptive mesh refinements. We employ DPG to solve the steady incompressible Navier-Stokes equations in two dimensions, building on previous work on the Stokes equations, and focusing particularly on the usefulness of the approach for automatic adaptivity starting from a coarse mesh. We apply our approach to a manufactured solution due to Kovasznay as well as the lid-driven cavity flow, backward-facing step, and flow past a cylinder problems.

  18. A fast Poisson solver for unsteady incompressible Navier-Stokes equations on the half-staggered grid

    NASA Technical Reports Server (NTRS)

    Golub, G. H.; Huang, L. C.; Simon, H.; Tang, W. -P.

    1995-01-01

    In this paper, a fast Poisson solver for unsteady, incompressible Navier-Stokes equations with finite difference methods on the non-uniform, half-staggered grid is presented. To achieve this, new algorithms for diagonalizing a semi-definite pair are developed. Our fast solver can also be extended to the three dimensional case. The motivation and related issues in using this second kind of staggered grid are also discussed. Numerical testing has indicated the effectiveness of this algorithm.

  19. A high order Discontinuous Galerkin - Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes

    NASA Astrophysics Data System (ADS)

    Ferrer, Esteban; Willden, Richard H. J.

    2012-08-01

    We present the development of a sliding mesh capability for an unsteady high order (order ⩾ 3) h/p Discontinuous Galerkin solver for the three-dimensional incompressible Navier-Stokes equations. A high order sliding mesh method is developed and implemented for flow simulation with relative rotational motion of an inner mesh with respect to an outer static mesh, through the use of curved boundary elements and mixed triangular-quadrilateral meshes. A second order stiffly stable method is used to discretise in time the Arbitrary Lagrangian-Eulerian form of the incompressible Navier-Stokes equations. Spatial discretisation is provided by the Symmetric Interior Penalty Galerkin formulation with modal basis functions in the x-y plane, allowing hanging nodes and sliding meshes without the requirement to use mortar type techniques. Spatial discretisation in the z-direction is provided by a purely spectral method that uses Fourier series and allows computation of spanwise periodic three-dimensional flows. The developed solver is shown to provide high order solutions, second order in time convergence rates and spectral convergence when solving the incompressible Navier-Stokes equations on meshes where fixed and rotating elements coexist. In addition, an exact implementation of the no-slip boundary condition is included for curved edges; circular arcs and NACA 4-digit airfoils, where analytic expressions for the geometry are used to compute the required metrics. The solver capabilities are tested for a number of two dimensional problems governed by the incompressible Navier-Stokes equations on static and rotating meshes: the Taylor vortex problem, a static and rotating symmetric NACA0015 airfoil and flows through three bladed cross-flow turbines. In addition, three dimensional flow solutions are demonstrated for a three bladed cross-flow turbine and a circular cylinder shadowed by a pitching NACA0012 airfoil.

  20. Basins of attraction for a discrete dynamical system derived from the 2-D Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Bible, Stewart A.; McDonough, J. M.

    2000-11-01

    It has previously been shown that a system of coupled logistic maps can be derived via Fourier analysis of the 2-D incompressible Navier-Stokes equations. Numerical studies of this 2-D discrete dynamical system (DDS) have demonstrated that uniqueness of solutions found for the usual 1-D logistic map no longer holds in 2-D, in accord with analytical results. If such DDSs are to be used as components of LES subgrid-scale models (as proposed in Hylin & McDonough, Int. J. Fluid Mech. Res. 26, 539, 1999), it is necessary to obtain an accurate delineation of the basins of attraction for each of their regimes. This presentation reports results of a preliminary study aimed at providing such information. In the current work we will present results for a restricted set of bifurcation parameter values selected from ``interesting'' regions of the overall regime map constructed by McDonough & Huang (submitted to Phys. Fluids, 2000). A not unexpected result has been the identification of ``holes'' and ``islands'' (see Abraham et al., Chaos in Discrete Dynamical Systems, 1997) for this regime map associated with sets of initial data having (apparently) nonzero measure. Implications of this in the context of model construction will be discussed.

  1. A new positive-definite regularization of incompressible Navier-Stokes equations discretized with Q1/P0 finite element

    NASA Astrophysics Data System (ADS)

    Eguchi, Yuzuru

    2003-03-01

    A new regularization method is proposed for the Galerkin approximation of the incompressible Navier-Stokes equations with Q1/P0 element, by newly introducing a square-type linear form into the variational divergence-free constraint regularized with the global pressure jump (GPJ) method. The addition of the square-type linear form is intended to eliminate the hydrostatic pressure mode appearing in confined flows, and to make the discretized matrix positive definite and then non-singular without the pressure pegging trick. Effects of the free parameters for the regularization on the solutions are numerically examined with a 2-D driven cavity flow problem. Furthermore, the convergences in the conjugate gradient iteration for the solution of the pressure Poisson equation are compared among the mixed method, the GPJ method and the present method for both leaky and non-leaky 3-D driven cavity flows. Finally, the non-leaky 3-D cavity flows at different Re numbers are solved to compare with the literature data and to demonstrate the accuracy of the proposed method.

  2. ARC2D - EFFICIENT SOLUTION METHODS FOR THE NAVIER-STOKES EQUATIONS (DEC RISC ULTRIX VERSION)

    NASA Technical Reports Server (NTRS)

    Biyabani, S. R.

    1994-01-01

    ARC2D is a computational fluid dynamics program developed at the NASA Ames Research Center specifically for airfoil computations. The program uses implicit finite-difference techniques to solve two-dimensional Euler equations and thin layer Navier-Stokes equations. It is based on the Beam and Warming implicit approximate factorization algorithm in generalized coordinates. The methods are either time accurate or accelerated non-time accurate steady state schemes. The evolution of the solution through time is physically realistic; good solution accuracy is dependent on mesh spacing and boundary conditions. The mathematical development of ARC2D begins with the strong conservation law form of the two-dimensional Navier-Stokes equations in Cartesian coordinates, which admits shock capturing. The Navier-Stokes equations can be transformed from Cartesian coordinates to generalized curvilinear coordinates in a manner that permits one computational code to serve a wide variety of physical geometries and grid systems. ARC2D includes an algebraic mixing length model to approximate the effect of turbulence. In cases of high Reynolds number viscous flows, thin layer approximation can be applied. ARC2D allows for a variety of solutions to stability boundaries, such as those encountered in flows with shocks. The user has considerable flexibility in assigning geometry and developing grid patterns, as well as in assigning boundary conditions. However, the ARC2D model is most appropriate for attached and mildly separated boundary layers; no attempt is made to model wake regions and widely separated flows. The techniques have been successfully used for a variety of inviscid and viscous flowfield calculations. The Cray version of ARC2D is written in FORTRAN 77 for use on Cray series computers and requires approximately 5Mb memory. The program is fully vectorized. The tape includes variations for the COS and UNICOS operating systems. Also included is a sample routine for CONVEX

  3. ARC2D - EFFICIENT SOLUTION METHODS FOR THE NAVIER-STOKES EQUATIONS (CRAY VERSION)

    NASA Technical Reports Server (NTRS)

    Pulliam, T. H.

    1994-01-01

    ARC2D is a computational fluid dynamics program developed at the NASA Ames Research Center specifically for airfoil computations. The program uses implicit finite-difference techniques to solve two-dimensional Euler equations and thin layer Navier-Stokes equations. It is based on the Beam and Warming implicit approximate factorization algorithm in generalized coordinates. The methods are either time accurate or accelerated non-time accurate steady state schemes. The evolution of the solution through time is physically realistic; good solution accuracy is dependent on mesh spacing and boundary conditions. The mathematical development of ARC2D begins with the strong conservation law form of the two-dimensional Navier-Stokes equations in Cartesian coordinates, which admits shock capturing. The Navier-Stokes equations can be transformed from Cartesian coordinates to generalized curvilinear coordinates in a manner that permits one computational code to serve a wide variety of physical geometries and grid systems. ARC2D includes an algebraic mixing length model to approximate the effect of turbulence. In cases of high Reynolds number viscous flows, thin layer approximation can be applied. ARC2D allows for a variety of solutions to stability boundaries, such as those encountered in flows with shocks. The user has considerable flexibility in assigning geometry and developing grid patterns, as well as in assigning boundary conditions. However, the ARC2D model is most appropriate for attached and mildly separated boundary layers; no attempt is made to model wake regions and widely separated flows. The techniques have been successfully used for a variety of inviscid and viscous flowfield calculations. The Cray version of ARC2D is written in FORTRAN 77 for use on Cray series computers and requires approximately 5Mb memory. The program is fully vectorized. The tape includes variations for the COS and UNICOS operating systems. Also included is a sample routine for CONVEX

  4. Numerical Solution of Incompressible Navier-Stokes Equations Using a Fractional-Step Approach

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Kwak, Dochan

    1999-01-01

    A fractional step method for the solution of steady and unsteady incompressible Navier-Stokes equations is outlined. The method is based on a finite volume formulation and uses the pressure in the cell center and the mass fluxes across the faces of each cell as dependent variables. Implicit treatment of convective and viscous terms in the momentum equations enables the numerical stability restrictions to be relaxed. The linearization error in the implicit solution of momentum equations is reduced by using three subiterations in order to achieve second order temporal accuracy for time-accurate calculations. In spatial discretizations of the momentum equations, a high-order (3rd and 5th) flux-difference splitting for the convective terms and a second-order central difference for the viscous terms are used. The resulting algebraic equations are solved with a line-relaxation scheme which allows the use of large time step. A four color ZEBRA scheme is employed after the line-relaxation procedure in the solution of the Poisson equation for pressure. This procedure is applied to a Couette flow problem using a distorted computational grid to show that the method minimizes grid effects. Additional benchmark cases include the unsteady laminar flow over a circular cylinder for Reynolds Numbers of 200, and a 3-D, steady, turbulent wingtip vortex wake propagation study. The solution algorithm does a very good job in resolving the vortex core when 5th-order upwind differencing and a modified production term in the Baldwin-Barth one-equation turbulence model are used with adequate grid resolution.

  5. Least-squares solution of incompressible Navier-Stokes equations with the p-version of finite elements

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Sonnad, Vijay

    1991-01-01

    A p-version of the least squares finite element method, based on the velocity-pressure-vorticity formulation, is developed for solving steady state incompressible viscous flow problems. The resulting system of symmetric and positive definite linear equations can be solved satisfactorily with the conjugate gradient method. In conjunction with the use of rapid operator application which avoids the formation of either element of global matrices, it is possible to achieve a highly compact and efficient solution scheme for the incompressible Navier-Stokes equations. Numerical results are presented for two-dimensional flow over a backward facing step. The effectiveness of simple outflow boundary conditions is also demonstrated.

  6. Symmetry breaking and uniqueness for the incompressible Navier-Stokes equations

    SciTech Connect

    Dascaliuc, Radu; Thomann, Enrique; Waymire, Edward C.; Michalowski, Nicholas

    2015-07-15

    The present article establishes connections between the structure of the deterministic Navier-Stokes equations and the structure of (similarity) equations that govern self-similar solutions as expected values of certain naturally associated stochastic cascades. A principle result is that explosion criteria for the stochastic cascades involved in the probabilistic representations of solutions to the respective equations coincide. While the uniqueness problem itself remains unresolved, these connections provide interesting problems and possible methods for investigating symmetry breaking and the uniqueness problem for Navier-Stokes equations. In particular, new branching Markov chains, including a dilogarithmic branching random walk on the multiplicative group (0, ∞), naturally arise as a result of this investigation.

  7. An efficient non-linear multigrid procedure for the incompressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Sivaloganathan, S.; Shaw, G. J.

    An efficient Full Approximation multigrid scheme for finite volume discretizations of the Navier-Stokes equations is presented. The algorithm is applied to the driven cavity test problem. Numerical results are presented and a comparison made with PACE, a Rolls-Royce industrial code, which uses the SIMPLE pressure correction method as an iterative solver.

  8. Reynolds-Averaged Navier-Stokes Simulation of a 2D Circulation Control Wind Tunnel Experiment

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Jones, Greg; Lin, John C.

    2011-01-01

    Numerical simulations are performed using a Reynolds-averaged Navier-Stokes (RANS) flow solver for a circulation control airfoil. 2D and 3D simulation results are compared to a circulation control wind tunnel test conducted at the NASA Langley Basic Aerodynamics Research Tunnel (BART). The RANS simulations are compared to a low blowing case with a jet momentum coefficient, C(sub u), of 0:047 and a higher blowing case of 0.115. Three dimensional simulations of the model and tunnel walls show wall effects on the lift and airfoil surface pressures. These wall effects include a 4% decrease of the midspan sectional lift for the C(sub u) 0.115 blowing condition. Simulations comparing the performance of the Spalart Allmaras (SA) and Shear Stress Transport (SST) turbulence models are also made, showing the SST model compares best to the experimental data. A Rotational/Curvature Correction (RCC) to the turbulence model is also evaluated demonstrating an improvement in the CFD predictions.

  9. Numerical study of a multigrid method with four smoothing methods for the incompressible Navier-Stokes equations in general coordinates

    NASA Technical Reports Server (NTRS)

    Zeng, S.; Wesseling, P.

    1993-01-01

    The performance of a linear multigrid method using four smoothing methods, called SCGS (Symmetrical Coupled GauBeta-Seidel), CLGS (Collective Line GauBeta-Seidel), SILU (Scalar ILU), and CILU (Collective ILU), is investigated for the incompressible Navier-Stokes equations in general coordinates, in association with Galerkin coarse grid approximation. Robustness and efficiency are measured and compared by application to test problems. The numerical results show that CILU is the most robust, SILU the least, with CLGS and SCGS in between. CLGS is the best in efficiency, SCGS and CILU follow, and SILU is the worst.

  10. Random attractors for stochastic 2D-Navier-Stokes equations in some unbounded domains

    NASA Astrophysics Data System (ADS)

    Brzeźniak, Z.; Caraballo, T.; Langa, J. A.; Li, Y.; Łukaszewicz, G.; Real, J.

    We show that the stochastic flow generated by the 2-dimensional Stochastic Navier-Stokes equations with rough noise on a Poincaré-like domain has a unique random attractor. One of the technical problems associated with the rough noise is overcomed by the use of the corresponding Cameron-Martin (or reproducing kernel Hilbert) space. Our results complement the result by Brzeźniak and Li (2006) [10] who showed that the corresponding flow is asymptotically compact and also generalize Caraballo et al. (2006) [12] who proved existence of a unique attractor for the time-dependent deterministic Navier-Stokes equations.

  11. A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations.

    SciTech Connect

    Shadid, John Nicolas; Elman, Howard; Shuttleworth, Robert R.; Howle, Victoria E.; Tuminaro, Raymond Stephen

    2007-04-01

    In recent years, considerable effort has been placed on developing efficient and robust solution algorithms for the incompressible Navier-Stokes equations based on preconditioned Krylov methods. These include physics-based methods, such as SIMPLE, and purely algebraic preconditioners based on the approximation of the Schur complement. All these techniques can be represented as approximate block factorization (ABF) type preconditioners. The goal is to decompose the application of the preconditioner into simplified sub-systems in which scalable multi-level type solvers can be applied. In this paper we develop a taxonomy of these ideas based on an adaptation of a generalized approximate factorization of the Navier-Stokes system first presented in [25]. This taxonomy illuminates the similarities and differences among these preconditioners and the central role played by efficient approximation of certain Schur complement operators. We then present a parallel computational study that examines the performance of these methods and compares them to an additive Schwarz domain decomposition (DD) algorithm. Results are presented for two and three-dimensional steady state problems for enclosed domains and inflow/outflow systems on both structured and unstructured meshes. The numerical experiments are performed using MPSalsa, a stabilized finite element code.

  12. Theoretical study of the incompressible Navier-Stokes equations by the least-squares method

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Loh, Ching Y.; Povinelli, Louis A.

    1994-01-01

    Usually the theoretical analysis of the Navier-Stokes equations is conducted via the Galerkin method which leads to difficult saddle-point problems. This paper demonstrates that the least-squares method is a useful alternative tool for the theoretical study of partial differential equations since it leads to minimization problems which can often be treated by an elementary technique. The principal part of the Navier-Stokes equations in the first-order velocity-pressure-vorticity formulation consists of two div-curl systems, so the three-dimensional div-curl system is thoroughly studied at first. By introducing a dummy variable and by using the least-squares method, this paper shows that the div-curl system is properly determined and elliptic, and has a unique solution. The same technique then is employed to prove that the Stokes equations are properly determined and elliptic, and that four boundary conditions on a fixed boundary are required for three-dimensional problems. This paper also shows that under four combinations of non-standard boundary conditions the solution of the Stokes equations is unique. This paper emphasizes the application of the least-squares method and the div-curl method to derive a high-order version of differential equations and additional boundary conditions. In this paper, an elementary method (integration by parts) is used to prove Friedrichs' inequalities related to the div and curl operators which play an essential role in the analysis.

  13. Incompressible limit of all-time solutions to 3-D full Navier-Stokes equations for perfect gas with well-prepared initial condition

    NASA Astrophysics Data System (ADS)

    Ren, Dandan; Ou, Yaobin

    2016-08-01

    In this paper, we prove the incompressible limit of all-time strong solutions to the three-dimensional full compressible Navier-Stokes equations. Here the velocity field and temperature satisfy the Dirichlet boundary condition and convective boundary condition, respectively. The uniform estimates in both the Mach number {ɛin(0,overline{ɛ}]} and time {tin[0,∞)} are established by deriving a differential inequality with decay property, where {overline{ɛ} in(0,1]} is a constant. Based on these uniform estimates, the global solution of full compressible Navier-Stokes equations with "well-prepared" initial conditions converges to the one of isentropic incompressible Navier-Stokes equations as the Mach number goes to zero.

  14. A rapid implicit-explicit solution to the two-dimensional time dependent incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Davis, J. E.

    1980-01-01

    A second-order time-accurate and spatially factored algorithm was used in a finite difference scheme for the numerical solution of the time-dependent, incompressible, two dimensional Navier-Stokes equations in conservation-law form using vorticity and stream function variables. The systems of equations are solved at each time step by an iterative technique. Numerical results were obtained for a circular cylinder at a Reynolds number of 15, and an NACA 0012 airfoil at zero angle of attack at Reynolds numbers of 10 to the third and 10 to the fourth powers. The results are in agreement with another numerical technique, and the computing time required to obtain the steady state solution at the Reynolds number of 10 to the 4th power was 49.7 sec on CDC 7600 computer using a 65 x 84 computational grind.

  15. Effective filtering and interpolation of 2D discrete velocity fields with Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Saumier, Louis-Philippe; Khouider, Boualem; Agueh, Martial

    2016-11-01

    We introduce a new variational technique to interpolate and filter a two-dimensional velocity vector field which is discretely sampled in a region of {{{R}}}2 and sampled only once at a time, on a small time-interval [0,{{Δ }}t]. The main idea is to find a solution of the Navier-Stokes equations that is closest to a prescribed field in the sense that it minimizes the l 2 norm of the difference between this solution and the target field. The minimization is performed on the initial vorticity by expanding it into radial basis functions of Gaussian type, with a fixed size expressed by a parameter ɛ. In addition, a penalty term with parameter k e is added to the minimizing functional in order to select a solution with a small kinetic energy. This additional term makes the minimizing functional strongly convex, and therefore ensures that the minimization problem is well-posed. The interplay between the parameters k e and ɛ effectively contributes to smoothing the discrete velocity field, as demonstrated by the numerical experiments on synthetic and real data.

  16. A well-posed and stable stochastic Galerkin formulation of the incompressible Navier-Stokes equations with random data

    NASA Astrophysics Data System (ADS)

    Pettersson, Per; Nordström, Jan; Doostan, Alireza

    2016-02-01

    We present a well-posed stochastic Galerkin formulation of the incompressible Navier-Stokes equations with uncertainty in model parameters or the initial and boundary conditions. The stochastic Galerkin method involves representation of the solution through generalized polynomial chaos expansion and projection of the governing equations onto stochastic basis functions, resulting in an extended system of equations. A relatively low-order generalized polynomial chaos expansion is sufficient to capture the stochastic solution for the problem considered. We derive boundary conditions for the continuous form of the stochastic Galerkin formulation of the velocity and pressure equations. The resulting problem formulation leads to an energy estimate for the divergence. With suitable boundary data on the pressure and velocity, the energy estimate implies zero divergence of the velocity field. Based on the analysis of the continuous equations, we present a semi-discretized system where the spatial derivatives are approximated using finite difference operators with a summation-by-parts property. With a suitable choice of dissipative boundary conditions imposed weakly through penalty terms, the semi-discrete scheme is shown to be stable. Numerical experiments in the laminar flow regime corroborate the theoretical results and we obtain high-order accurate results for the solution variables and the velocity divergence converges to zero as the mesh is refined.

  17. Global well-posedness to the 3-D incompressible inhomogeneous Navier-Stokes equations with a class of large velocity

    NASA Astrophysics Data System (ADS)

    Zhai, Cuili; Zhang, Ting

    2015-09-01

    In this article, we consider the global well-posedness to the 3-D incompressible inhomogeneous Navier-Stokes equations with a class of large velocity. More precisely, assuming a 0 ∈ B˙ q , 1 /3 q ( R 3 ) and u 0 = ( u0 h , u0 3 ) ∈ B˙ p , 1 - 1 + /3 p ( R 3 ) for p, q ∈ (1, 6) with sup ( /1 p , /1 q ) ≤ /1 3 + inf ( /1 p , /1 q ) , we prove that if C a↑0↑ B˙q1/3 q α (↑u0 3↑ B˙ p , 1 - 1 + /3 p/μ + 1 ) ≤ 1 , /C μ (↑u0 h↑ B˙ p , 1 - 1 + /3 p + ↑u03↑ B˙ p , 1 - 1 + /3 p 1 - α ↑u0h↑ B˙ p , 1 - 1 + /3 p α) ≤ 1 , then the system has a unique global solution a ∈ C ˜ ( [ 0 , ∞ ) ; B˙ q , 1 /3 q ( R 3 ) ) , u ∈ C ˜ ( [ 0 , ∞ ) ; B˙ p , 1 - 1 + /3 p ( R 3 ) ) ∩ L 1 ( R + ; B˙ p , 1 1 + /3 p ( R 3 ) ) . It improves the recent result of M. Paicu and P. Zhang [J. Funct. Anal. 262, 3556-3584 (2012)], where the exponent form of the initial smallness condition is replaced by a polynomial form.

  18. CCM Continuity Constraint Method: A finite-element computational fluid dynamics algorithm for incompressible Navier-Stokes fluid flows

    SciTech Connect

    Williams, P.T.

    1993-09-01

    As the field of computational fluid dynamics (CFD) continues to mature, algorithms are required to exploit the most recent advances in approximation theory, numerical mathematics, computing architectures, and hardware. Meeting this requirement is particularly challenging in incompressible fluid mechanics, where primitive-variable CFD formulations that are robust, while also accurate and efficient in three dimensions, remain an elusive goal. This dissertation asserts that one key to accomplishing this goal is recognition of the dual role assumed by the pressure, i.e., a mechanism for instantaneously enforcing conservation of mass and a force in the mechanical balance law for conservation of momentum. Proving this assertion has motivated the development of a new, primitive-variable, incompressible, CFD algorithm called the Continuity Constraint Method (CCM). The theoretical basis for the CCM consists of a finite-element spatial semi-discretization of a Galerkin weak statement, equal-order interpolation for all state-variables, a 0-implicit time-integration scheme, and a quasi-Newton iterative procedure extended by a Taylor Weak Statement (TWS) formulation for dispersion error control. Original contributions to algorithmic theory include: (a) formulation of the unsteady evolution of the divergence error, (b) investigation of the role of non-smoothness in the discretized continuity-constraint function, (c) development of a uniformly H{sup 1} Galerkin weak statement for the Reynolds-averaged Navier-Stokes pressure Poisson equation, (d) derivation of physically and numerically well-posed boundary conditions, and (e) investigation of sparse data structures and iterative methods for solving the matrix algebra statements generated by the algorithm.

  19. Velocity boundary conditions for vorticity formulations of the incompressible Navier-Stokes equations

    SciTech Connect

    Kempka, S.N.; Strickland, J.H.; Glass, M.W.; Peery, J.S.; Ingber, M.S.

    1995-04-01

    formulation to satisfy velocity boundary conditions for the vorticity form of the incompressible, viscous fluid momentum equations is presented. The tangential and normal components of the velocity boundary condition are satisfied simultaneously by creating vorticity adjacent to boundaries. The newly created vorticity is determined using a kinematical formulation which is a generalization of Helmholtz` decomposition of a vector field. Though it has not been generally recognized, these formulations resolve the over-specification issue associated with creating voracity to satisfy velocity boundary conditions. The generalized decomposition has not been widely used, apparently due to a lack of a useful physical interpretation. An analysis is presented which shows that the generalized decomposition has a relatively simple physical interpretation which facilitates its numerical implementation. The implementation of the generalized decomposition is discussed in detail. As an example the flow in a two-dimensional lid-driven cavity is simulated. The solution technique is based on a Lagrangian transport algorithm in the hydrocode ALEGRA. ALEGRA`s Lagrangian transport algorithm has been modified to solve the vorticity transport equation and the generalized decomposition, thus providing a new, accurate method to simulate incompressible flows. This numerical implementation and the new boundary condition formulation allow vorticity-based formulations to be used in a wider range of engineering problems.

  20. Velocity boundary conditions for vorticity formulations of the incompressible Navier-Stokes equations

    SciTech Connect

    Kempka, S.N.; Strickland, J.H.; Glass, M.W.; Peery, J.S.; Ingber, M.S.

    1995-03-01

    Velocity boundary conditions for the vorticity form of the incompressible, viscous fluid momentum equations are presented. Vorticity is created on boundaries to simultaneously satisfy the tangential and normal components of the velocity boundary condition. The newly created vorticity is specified by a kinematical formulation which is a generalization of Helmholtz decomposition of a vector field. Related forms of the decomposition were developed by Bykhovskiy and Smirnov in 1983, and Wu and Thompson in 1973. Though it has not been generally recognized as such, these formulations resolve the over-specification issues associated with determining a velocity field from velocity boundary conditions and a vorticity field. The generalized decomposition has not been widely used, however, apparently due to a general lack of a useful physical interpretation. An analysis is presented which shows that the generalized decomposition has a relatively simple physical interpretation which facilitates its numerical implementation. The implementation of the generalized decomposition for the normal and tangential velocity boundary conditions is discussed in detail. As an example of the use of this boundary condition, the flow in a lid-driven cavity is simulated. The solution technique is based on a Lagrangian transport algorithm in the hydrocode ALEGRE. ALEGRE`s Lagrangian transport algorithm has been modified to solve the vorticity transport equation, thus providing a new, accurate method to simulate incompressible flows. This numerical implementation and the new boundary condition formulation allow vorticity-based formulations to be used in a wider range of engineering problems.

  1. A numerical method for solving the 3D unsteady incompressible Navier Stokes equations in curvilinear domains with complex immersed boundaries

    NASA Astrophysics Data System (ADS)

    Ge, Liang; Sotiropoulos, Fotis

    2007-08-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow

  2. Incompressible Navier-Stokes Solvers in Primative Variables and their Applications to Steady and Unsteady Flow Simulations

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Kwak, Dochan; Rogers, Stuart E.

    2002-01-01

    This paper reviews recent progress made in incompressible Navier-Stokes simulation procedures and their application to problems of engineering interest. Discussions are focused on the methods designed for complex geometry applications in three dimensions, and thus are limited to primitive variable formulation. A summary of efforts in flow solver development is given followed by numerical studies of a few example problems of current interest. Both steady and unsteady solution algorithms and their salient features are discussed. Solvers discussed here are based on a structured-grid approach using either a finite -difference or a finite-volume frame work. As a grand-challenge application of these solvers, an unsteady turbopump flow simulation procedure has been developed which utilizes high performance computing platforms. In the paper, the progress toward the complete simulation capability of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of two parallel computing algorithms that have been implemented in the INS3D code. The relative motion of the grid systems for the rotorstator interaction was obtained using overact grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on SCSI Origin 3000 systems at NASA Ames Research Center. The same procedure has been extended to the development of NASA-DeBakey Ventricular Assist Device (VAD) that is based on an axial blood pump. Computational, and clinical analysis of this device are presented.

  3. Numerical solution of the incompressible Navier-Stokes equations. Ph.D. Thesis - Stanford Univ., Mar. 1989

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.

    1990-01-01

    The current work is initiated in an effort to obtain an efficient, accurate, and robust algorithm for the numerical solution of the incompressible Navier-Stokes equations in two- and three-dimensional generalized curvilinear coordinates for both steady-state and time-dependent flow problems. This is accomplished with the use of the method of artificial compressibility and a high-order flux-difference splitting technique for the differencing of the convective terms. Time accuracy is obtained in the numerical solutions by subiterating the equations in psuedo-time for each physical time step. The system of equations is solved with a line-relaxation scheme which allows the use of very large pseudo-time steps leading to fast convergence for steady-state problems as well as for the subiterations of time-dependent problems. Numerous laminar test flow problems are computed and presented with a comparison against analytically known solutions or experimental results. These include the flow in a driven cavity, the flow over a backward-facing step, the steady and unsteady flow over a circular cylinder, flow over an oscillating plate, flow through a one-dimensional inviscid channel with oscillating back pressure, the steady-state flow through a square duct with a 90 degree bend, and the flow through an artificial heart configuration with moving boundaries. An adequate comparison with the analytical or experimental results is obtained in all cases. Numerical comparisons of the upwind differencing with central differencing plus artificial dissipation indicates that the upwind differencing provides a much more robust algorithm, which requires significantly less computing time. The time-dependent problems require on the order of 10 to 20 subiterations, indicating that the elliptical nature of the problem does require a substantial amount of computing effort.

  4. Adaptive parallel multigrid for Euler and incompressible Navier-Stokes equations

    SciTech Connect

    Trottenberg, U.; Oosterlee, K.; Ritzdorf, H.

    1996-12-31

    The combination of (1) very efficient solution methods (Multigrid), (2) adaptivity, and (3) parallelism (distributed memory) clearly is absolutely necessary for future oriented numerics but still regarded as extremely difficult or even unsolved. We show that very nice results can be obtained for real life problems. Our approach is straightforward (based on {open_quotes}MLAT{close_quotes}). But, of course, reasonable refinement and load-balancing strategies have to be used. Our examples are 2D, but 3D is on the way.

  5. Global existence of strong solutions to the three- dimensional incompressible Navier-Stokes equations with special boundary conditions

    NASA Astrophysics Data System (ADS)

    Riley, Douglas A.

    We study the three-dimensional incompressible Navier- Stokes equations in a domain of the form W'×(0,e) . First, we assume W' is a C3 bounded domain and impose no-slip boundary conditions on 6W'×(0,e ) , and periodic conditions on W'×0,e . Physically, this models fluid flow through a pipe with cross-section W' where the inlet and outlet conditions are assumed periodic. Secondly, we assume W'=(0,l4) ×(0,l5) and impose periodic boundary conditions. This problem is of interest mathematically, and has been more widely considered than the pipe flow problem. For both sets of boundary conditions, we show that a strong solution exists for all time with conditions on the initial data and forcing. We start by recalling that if the forcing function and initial condition do not depend on x3, then a global strong solution exists which also does not depend on x3. Here (x1,x2,x3) ∈W≡W'×( 0,e) . With this observation as motivation, and using an additive decomposition introduced by Raugel and Sell, we split the initial data and forcing into a portion independent of x3 and a remainder. In our first result, we impose a smallness condition on the remainder and assume the forcing function is square- integrable in time as a function into L2(W) . With these assumptions, we prove a global existence theorem that does not require a smallness condition on e or on the portion of the initial condition and forcing independent of x3. However, these quantities do affect the allowable size of the remainder. For our second result, we assume the forcing is only bounded in time as a function into L2(W) . In this case, we need a smallness condition on the initial data, the forcing, and e to obtain global existence. The interesting observation is that the allowable sizes for the initial data and forcing grow as e-->0 . Thus, we obtain a `thin-domain' result as originally obtained by Raugel and Sell. In fact, our results allow the portion of the initial data and

  6. A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes

    NASA Astrophysics Data System (ADS)

    Tavelli, Maurizio; Dumbser, Michael

    2016-08-01

    In this paper we propose a novel arbitrary high order accurate semi-implicit space-time discontinuous Galerkin method for the solution of the three-dimensional incompressible Navier-Stokes equations on staggered unstructured curved tetrahedral meshes. As is typical for space-time DG schemes, the discrete solution is represented in terms of space-time basis functions. This allows to achieve very high order of accuracy also in time, which is not easy to obtain for the incompressible Navier-Stokes equations. Similarly to staggered finite difference schemes, in our approach the discrete pressure is defined on the primary tetrahedral grid, while the discrete velocity is defined on a face-based staggered dual grid. While staggered meshes are state of the art in classical finite difference schemes for the incompressible Navier-Stokes equations, their use in high order DG schemes is still quite rare. A very simple and efficient Picard iteration is used in order to derive a space-time pressure correction algorithm that achieves also high order of accuracy in time and that avoids the direct solution of global nonlinear systems. Formal substitution of the discrete momentum equation on the dual grid into the discrete continuity equation on the primary grid yields a very sparse five-point block system for the scalar pressure, which is conveniently solved with a matrix-free GMRES algorithm. From numerical experiments we find that the linear system seems to be reasonably well conditioned, since all simulations shown in this paper could be run without the use of any preconditioner, even up to very high polynomial degrees. For a piecewise constant polynomial approximation in time and if pressure boundary conditions are specified at least in one point, the resulting system is, in addition, symmetric and positive definite. This allows us to use even faster iterative solvers, like the conjugate gradient method. The flexibility and accuracy of high order space-time DG methods on curved

  7. Stabilizing a solution of the 2D Navier-Stokes system in the exterior of a bounded domain by means of a control on the boundary

    SciTech Connect

    Gorshkov, Aleksei V

    2012-09-30

    The problem of stabilizing a solution of the 2D Navier-Stokes system defined in the exterior of a bounded domain with smooth boundary is investigated. For a given initial velocity field a control on the boundary of the domain must be constructed such that the solution stabilizes to a prescribed vortex solution or trivial solution at the rate of 1/t{sup k}. On the way, related questions are investigated, concerning the behaviour of the spectrum of an operator under a relatively compact perturbation and the existence of attracting invariant manifolds. Bibliography: 21 titles.

  8. Comparative Analysis of Natural Convection Flows Simulated by both the Conservation and Incompressible Forms of the Navier-Stokes Equations in a Differentially-Heated Square Cavity

    SciTech Connect

    Richard C. Martineau; Ray A. Berry; Aurélia Esteve; Kurt D. Hamman; Dana A. Knoll; Ryosuke Park; William Taitano

    2009-01-01

    This report illustrates a comparative study to analyze the physical differences between numerical simulations obtained with both the conservation and incompressible forms of the Navier-Stokes equations for natural convection flows in simple geometries. The purpose of this study is to quantify how the incompressible flow assumption (which is based upon constant density advection, divergence-free flow, and the Boussinesq gravitational body force approximation) differs from the conservation form (which only assumes that the fluid is a continuum) when solving flows driven by gravity acting upon density variations resulting from local temperature gradients. Driving this study is the common use of the incompressible flow assumption in fluid flow simulations for nuclear power applications in natural convection flows subjected to a high heat flux (large temperature differences). A series of simulations were conducted on two-dimensional, differentially-heated rectangular geometries and modeled with both hydrodynamic formulations. From these simulations, the selected characterization parameters of maximum Nusselt number, average Nusselt number, and normalized pressure reduction were calculated. Comparisons of these parameters were made with available benchmark solutions for air with the ideal gas assumption at both low and high heat fluxes. Additionally, we generated body force, velocity, and divergence of velocity distributions to provide a basis for further analysis. The simulations and analysis were then extended to include helium at the Very High Temperature gas-cooled Reactor (VHTR) normal operating conditions. Our results show that the consequences of incorporating the incompressible flow assumption in high heat flux situations may lead to unrepresentative results. The results question the use of the incompressible flow assumption for simulating fluid flow in an operating nuclear reactor, where large temperature variations are present. The results show that the use of

  9. Implementation of multigrid methods for solving Navier-Stokes equations on a multiprocessor system

    NASA Technical Reports Server (NTRS)

    Naik, Vijay K.; Taasan, Shlomo

    1987-01-01

    Presented are schemes for implementing multigrid algorithms on message based MIMD multiprocessor systems. To address the various issues involved, a nontrivial problem of solving the 2-D incompressible Navier-Stokes equations is considered as the model problem. Three different multigrid algorithms are considered. Results from implementing these algorithms on an Intel iPSC are presented.

  10. Generalized modification in the lattice Bhatnagar-Gross-Krook model for incompressible Navier-Stokes equations and convection-diffusion equations.

    PubMed

    Yang, Xuguang; Shi, Baochang; Chai, Zhenhua

    2014-07-01

    In this paper, two modified lattice Boltzmann Bhatnagar-Gross-Krook (LBGK) models for incompressible Navier-Stokes equations and convection-diffusion equations are proposed via the addition of correction terms in the evolution equations. Utilizing this modification, the value of the dimensionless relaxation time in the LBGK model can be kept in a proper range, and thus the stability of the LBGK model can be improved. Although some gradient operators are included in the correction terms, they can be computed efficiently using local computational schemes such that the present LBGK models still retain the intrinsic parallelism characteristic of the lattice Boltzmann method. Numerical studies of the steady Poiseuille flow and unsteady Womersley flow show that the modified LBGK model has a second-order convergence rate in space, and the compressibility effect in the common LBGK model can be eliminated. In addition, to test the stability of the present models, we also performed some simulations of the natural convection in a square cavity, and we found that the results agree well with those reported in the previous work, even at a very high Rayleigh number (Ra = 10(12)).

  11. A Cell-Centered Adaptive Projection Method for the IncompressibleNavier-Stokes Equations in Three Dimensions

    SciTech Connect

    Martin, D.F.; Colella, P.; Graves, D.T.

    2007-09-25

    We present a method for computing incompressible viscousflows in three dimensions using block-structured local refinement in bothspace and time. This method uses a projection formulation based on acell-centered approximate projection, combined with the systematic use ofmultilevel elliptic solvers to compute increments in the solutiongenerated at boundaries between refinement levels due to refinement intime. We use an L_0-stable second-order semi-implicit scheme to evaluatethe viscous terms. Results are presentedto demonstrate the accuracy andeffectiveness of this approach.

  12. Three-Dimensional Incompressible Navier-Stokes Flow Computations about Complete Configurations Using a Multiblock Unstructured Grid Approach

    NASA Technical Reports Server (NTRS)

    Sheng, Chunhua; Hyams, Daniel G.; Sreenivas, Kidambi; Gaither, J. Adam; Marcum, David L.; Whitfield, David L.

    2000-01-01

    A multiblock unstructured grid approach is presented for solving three-dimensional incompressible inviscid and viscous turbulent flows about complete configurations. The artificial compressibility form of the governing equations is solved by a node-based, finite volume implicit scheme which uses a backward Euler time discretization. Point Gauss-Seidel relaxations are used to solve the linear system of equations at each time step. This work employs a multiblock strategy to the solution procedure, which greatly improves the efficiency of the algorithm by significantly reducing the memory requirements by a factor of 5 over the single-grid algorithm while maintaining a similar convergence behavior. The numerical accuracy of solutions is assessed by comparing with the experimental data for a submarine with stem appendages and a high-lift configuration.

  13. Existence and Uniqueness of Solutions to Heat Equations with Hysteresis Coupled with Navier-Stokes Equations in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Tsuzuki, Yutaka

    2015-09-01

    This paper is concerned with a system of heat equations with hysteresis and Navier-Stokes equations. In Tsuzuki (J Math Anal Appl 423:877-897, 2015) an existence result is obtained for the problem in a 2-dimensional domain with the Navier-Stokes equation in a weak sense. However the result does not include uniqueness for the problem due to the low regularity for solutions. This paper establishes existence and uniqueness in 2- and 3-dimensional domains with the Navier-Stokes equation in a stronger sense. Moreover this work decides required height of regularity for the initial data by introducing the fractional power of the Stokes operator.

  14. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries

    PubMed Central

    Ge, Liang; Sotiropoulos, Fotis

    2008-01-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus. PMID:19194533

  15. On Parametric Sensitivity of Reynolds-Averaged Navier-Stokes SST Turbulence Model: 2D Hypersonic Shock-Wave Boundary Layer Interactions

    NASA Technical Reports Server (NTRS)

    Brown, James L.

    2014-01-01

    Examined is sensitivity of separation extent, wall pressure and heating to variation of primary input flow parameters, such as Mach and Reynolds numbers and shock strength, for 2D and Axisymmetric Hypersonic Shock Wave Turbulent Boundary Layer interactions obtained by Navier-Stokes methods using the SST turbulence model. Baseline parametric sensitivity response is provided in part by comparison with vetted experiments, and in part through updated correlations based on free interaction theory concepts. A recent database compilation of hypersonic 2D shock-wave/turbulent boundary layer experiments extensively used in a prior related uncertainty analysis provides the foundation for this updated correlation approach, as well as for more conventional validation. The primary CFD method for this work is DPLR, one of NASA's real-gas aerothermodynamic production RANS codes. Comparisons are also made with CFL3D, one of NASA's mature perfect-gas RANS codes. Deficiencies in predicted separation response of RANS/SST solutions to parametric variations of test conditions are summarized, along with recommendations as to future turbulence approach.

  16. INS3D - NUMERICAL SOLUTION OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN THREE-DIMENSIONAL GENERALIZED CURVILINEAR COORDINATES (IBM VERSION)

    NASA Technical Reports Server (NTRS)

    Kwak, D.

    1994-01-01

    INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far

  17. A Cartesian grid finite-difference method for 2D incompressible viscous flows in irregular geometries

    NASA Astrophysics Data System (ADS)

    Sanmiguel-Rojas, Enrique; Ortega-Casanova, Joaquin; del Pino, Carlos; Fernandez-Feria, Ramon

    2004-11-01

    A method for generating a non-uniform cartesian grid for irregular two-dimensional (2D) geometries such that all the boundary points are regular mesh points is given. The resulting non-uniform grid is used to discretize the Navier-Stokes equations for 2D incompressible viscous flows using finite difference approximations. To that end, finite-difference approximations of the derivatives on a non-uniform mesh are given. We test the method with two different examples: the shallow water flow on a lake with irregular contour, and the pressure driven flow through an irregular array of circular cylinders.

  18. Higher-order in time "quasi-unconditionally stable" ADI solvers for the compressible Navier-Stokes equations in 2D and 3D curvilinear domains

    NASA Astrophysics Data System (ADS)

    Bruno, Oscar P.; Cubillos, Max

    2016-02-01

    This paper introduces alternating-direction implicit (ADI) solvers of higher order of time-accuracy (orders two to six) for the compressible Navier-Stokes equations in two- and three-dimensional curvilinear domains. The higher-order accuracy in time results from 1) An application of the backward differentiation formulae time-stepping algorithm (BDF) in conjunction with 2) A BDF-like extrapolation technique for certain components of the nonlinear terms (which makes use of nonlinear solves unnecessary), as well as 3) A novel application of the Douglas-Gunn splitting (which greatly facilitates handling of boundary conditions while preserving higher-order accuracy in time). As suggested by our theoretical analysis of the algorithms for a variety of special cases, an extensive set of numerical experiments clearly indicate that all of the BDF-based ADI algorithms proposed in this paper are "quasi-unconditionally stable" in the following sense: each algorithm is stable for all couples (h , Δt)of spatial and temporal mesh sizes in a problem-dependent rectangular neighborhood of the form (0 ,Mh) × (0 ,Mt). In other words, for each fixed value of Δt below a certain threshold, the Navier-Stokes solvers presented in this paper are stable for arbitrarily small spatial mesh-sizes. The second-order formulation has further been rigorously shown to be unconditionally stable for linear hyperbolic and parabolic equations in two-dimensional space. Although implicit ADI solvers for the Navier-Stokes equations with nominal second-order of temporal accuracy have been proposed in the past, the algorithms presented in this paper are the first ADI-based Navier-Stokes solvers for which second-order or better accuracy has been verified in practice under non-trivial (non-periodic) boundary conditions.

  19. On multigrid methods for the Navier-Stokes Computer

    NASA Technical Reports Server (NTRS)

    Nosenchuck, D. M.; Krist, S. E.; Zang, T. A.

    1988-01-01

    The overall architecture of the multipurpose parallel-processing Navier-Stokes Computer (NSC) being developed by Princeton and NASA Langley (Nosenchuck et al., 1986) is described and illustrated with extensive diagrams, and the NSC implementation of an elementary multigrid algorithm for simulating isotropic turbulence (based on solution of the incompressible time-dependent Navier-Stokes equations with constant viscosity) is characterized in detail. The present NSC design concept calls for 64 nodes, each with the performance of a class VI supercomputer, linked together by a fiber-optic hypercube network and joined to a front-end computer by a global bus. In this configuration, the NSC would have a storage capacity of over 32 Gword and a peak speed of over 40 Gflops. The multigrid Navier-Stokes code discussed would give sustained operation rates of about 25 Gflops.

  20. A dual potential formulation of the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Gegg, S. G.; Pletcher, R. H.; Steger, J. L.

    1989-01-01

    A dual potential formulation for numerically solving the Navier-Stokes equations is developed and presented. The velocity field is decomposed using a scalar and vector potential. Vorticity and dilatation are used as the dependent variables in the momentum equations. Test cases in two dimensions verify the capability to solve flows using approximations from potential flow to full Navier-Stokes simulations. A three-dimensional incompressible flow formulation is also described. An interesting feature of this approach to solving the Navier-Stokes equations is the decomposition of the velocity field into a rotational part (vector potential) and an irrotational part (scalar potential). The Helmholtz decomposition theorem allows this splitting of the velocity field. This approach has had only limited use since it increases the number of dependent variables in the solution. However, it has often been used for incompressible flows where the solution scheme is known to be fast and accurate. This research extends the usage of this method to fully compressible Navier-Stokes simulations by using the dilatation variable along with vorticity. A time-accurate, iterative algorithm is used for the uncoupled solution of the governing equations. Several levels of flow approximation are available within the framework of this method. Potential flow, Euler and full Navier-Stokes solutions are possible using the dual potential formulation. Solution efficiency can be enhanced in a straightforward way. For some flows, the vorticity and/or dilatation may be negligible in certain regions (e.g., far from a viscous boundary in an external flow). It is possible to drop the calculation of these variables then and optimize the solution speed. Also, efficient Poisson solvers are available for the potentials. The relative merits of non-primitive variables versus primitive variables for solution of the Navier-Stokes equations are also discussed.

  1. A locally stabilized immersed boundary method for the compressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Brehm, C.; Hader, C.; Fasel, H. F.

    2015-08-01

    A higher-order immersed boundary method for solving the compressible Navier-Stokes equations is presented. The distinguishing feature of this new immersed boundary method is that the coefficients of the irregular finite-difference stencils in the vicinity of the immersed boundary are optimized to obtain improved numerical stability. This basic idea was introduced in a previous publication by the authors for the advection step in the projection method used to solve the incompressible Navier-Stokes equations. This paper extends the original approach to the compressible Navier-Stokes equations considering flux vector splitting schemes and viscous wall boundary conditions at the immersed geometry. In addition to the stencil optimization procedure for the convective terms, this paper discusses other key aspects of the method, such as imposing flux boundary conditions at the immersed boundary and the discretization of the viscous flux in the vicinity of the boundary. Extensive linear stability investigations of the immersed scheme confirm that a linearly stable method is obtained. The method of manufactured solutions is used to validate the expected higher-order accuracy and to study the error convergence properties of this new method. Steady and unsteady, 2D and 3D canonical test cases are used for validation of the immersed boundary approach. Finally, the method is employed to simulate the laminar to turbulent transition process of a hypersonic Mach 6 boundary layer flow over a porous wall and subsonic boundary layer flow over a three-dimensional spherical roughness element.

  2. From Petrov-Einstein to Navier-Stokes

    NASA Astrophysics Data System (ADS)

    Lysov, Vyacheslav

    The fluid/gravity correspondence relates solutions of the incompressible Navier-Stokes equation to metrics which solve the Einstein equations. We propose propose two possible approaches to establish this correspondence: perturbative expansion for shear modes and large mean curvature expansion for algebraically special metrics. We show by explicit construction that for every solution of the incompressible Navier-Stokes equation in p+1 dimensions, there is an associated "dual" solution of the vacuum Einstein equations in p+2 dimensions. The dual geometry has an intrinsically flat time-like boundary segment whose extrinsic curvature is given by the stress tensor of the Navier-Stokes fluid. We consider a "near-horizon" limit in which hypersurface becomes highly accelerated. The near-horizon expansion in gravity is shown to be mathematically equivalent to the hydrodynamic expansion in fluid dynamics, and the Einstein equation reduces to the incompressible Navier-Stokes equation. It is shown that imposing a Petrov type I condition on the hypersurface geometry reduces the degrees of freedom in the extrinsic curvature to those of a fluid. Moreover, expanding around a limit in which the mean curvature of the embedding diverges, the leading-order Einstein constraint equations on hypersurface are shown to reduce to the non-linear incompressible Navier-Stokes equation for a fluid moving in hypersurface. We extend the fluid/gravity correspondence to include the magnetohydrodynamics/gravity correspondence, which translates solutions of the equations of magnetohydrodynamics (describing charged fluids) into geometries that satisfy the Einstein-Maxwell equations. We present an explicit example of this new correspondence in the context of flat Minkowski space. We show that a perturbative deformation of the Rindler wedge satisfies the Einstein-Maxwell equations provided that the parameters appearing in the expansion, which we interpret as fluid fields, satisfy the

  3. A multi-moment finite volume method for incompressible Navier-Stokes equations on unstructured grids: Volume-average/point-value formulation

    NASA Astrophysics Data System (ADS)

    Xie, Bin; , Satoshi, Ii; Ikebata, Akio; Xiao, Feng

    2014-11-01

    A robust and accurate finite volume method (FVM) is proposed for incompressible viscous fluid dynamics on triangular and tetrahedral unstructured grids. Differently from conventional FVM where the volume integrated average (VIA) value is the only computational variable, the present formulation treats both VIA and the point value (PV) as the computational variables which are updated separately at each time step. The VIA is computed from a finite volume scheme of flux form, and is thus numerically conservative. The PV is updated from the differential form of the governing equation that does not have to be conservative but can be solved in a very efficient way. Including PV as the additional variable enables us to make higher-order reconstructions over compact mesh stencil to improve the accuracy, and moreover, the resulting numerical model is more robust for unstructured grids. We present the numerical formulations in both two and three dimensions on triangular and tetrahedral mesh elements. Numerical results of several benchmark tests are also presented to verify the proposed numerical method as an accurate and robust solver for incompressible flows on unstructured grids.

  4. A high-order solver for unsteady incompressible Navier-Stokes equations using the flux reconstruction method on unstructured grids with implicit dual time stepping

    NASA Astrophysics Data System (ADS)

    Cox, Christopher; Liang, Chunlei; Plesniak, Michael W.

    2016-06-01

    We report development of a high-order compact flux reconstruction method for solving unsteady incompressible flow on unstructured grids with implicit dual time stepping. The method falls under the class of methods now referred to as flux reconstruction/correction procedure via reconstruction. The governing equations employ Chorin's classic artificial compressibility formulation with dual time stepping to solve unsteady flow problems. An implicit non-linear lower-upper symmetric Gauss-Seidel scheme with backward Euler discretization is used to efficiently march the solution in pseudo time, while a second-order backward Euler discretization is used to march in physical time. We verify and validate implementation of the high-order method coupled with our implicit time stepping scheme using both steady and unsteady incompressible flow problems. The current implicit time stepping scheme is proven effective in satisfying the divergence-free constraint on the velocity field in the artificial compressibility formulation within the context of the high-order flux reconstruction method. This compact high-order method is very suitable for parallel computing and can easily be extended to moving and deforming grids.

  5. Flow Solver for Incompressible 2-D Drive Cavity

    NASA Technical Reports Server (NTRS)

    Kalb, Virginia L.

    2008-01-01

    This software solves the Navier-Stokes equations for the incompressible driven cavity flow problem. The code uses second-order finite differencing on a staggered grid using the Chorin projection method. The resulting intermediate Poisson equation is efficiently solved using the fast Fourier transform. Time stepping is done using fourth-order Runge-Kutta for stability at high Reynolds numbers. Features include check-pointing, periodic field snapshots, ongoing reporting of kinetic energy and changes between time steps, time histories at selected points, and optional streakline generation.

  6. On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Pokorný, Milan

    2009-12-01

    We improve the regularity criterion for the incompressible Navier-Stokes equations in the full three-dimensional space involving the gradient of one velocity component. The method is based on recent results of Cao and Titi [see "Regularity criteria for the three dimensional Navier-Stokes equations," Indiana Univ. Math. J. 57, 2643 (2008)] and Kukavica and Ziane [see "Navier-Stokes equations with regularity in one direction," J. Math. Phys. 48, 065203 (2007)]. In particular, for s ɛ[2,3], we get that the solution is regular if ∇u3ɛLt(0,T;Ls(R3)), 2/t+3/s≤23/12.

  7. Navier-Stokes computations of horseshoe vortex flows

    NASA Astrophysics Data System (ADS)

    Deng, G. B.; Piquet, J.

    1992-07-01

    Computation of the incompressible 3D turbulent viscous flow about an aerofoil/flat plate junction is reviewed. An iterative, fully decoupled technique is applied to the Reynolds-averaged Navier-Stokes equations written in a nonorthogonal curvilinear body-fitted coordinate system. The existing experimental databases are used to compare the numerical outputs of the computational method with experimental results involving massive separation.

  8. Navier Stokes Theorem in Hydrology

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2005-12-01

    In a paper presented at the 2004 AGU International Conference, the author outlined and stressed the importance of studying and teaching certain important mathematical techniques while developing a course in Hydrology and Fluid Mechanics. The Navier-Stokes equations are the foundation of fluid mechanics, and Stokes' theorem is used in nearly every branch of mechanics as well as electromagnetics. Stokes' Theorem also plays a vital role in many secondary theorems such as those pertaining to vorticity and circulation. Mathematically expressed, Stokes' theorem can be expressed by considering a surface S having a bounding curve C. Here, V is any sufficiently smooth vector field defined on the surface and its bounding curve C. In an article entitled "Corrections to Fluid Dynamics" R. F. Streater, (Open Systems and Information Dynamics, 10, 3-30, 2003.) proposes a kinetic model of a fluid in which five macroscopic fields, the mass, energy, and three components of momentum, are conserved. The dynamics is constructed using the methods of statistical dynamics, and results in a non-linear discrete-time Markov chain for random fields on a lattice. In the continuum limit he obtains a non-linear coupled parabolic system of field equations, showing a correction to the Navier-Stokes equations. In 2001, David Hoff published an article in Journees Equations aux derivees partielles. (Art. No. 7, 9 p.). His paper is entitled : Dynamics of Singularity Surfaces for Compressible Navier-Stokes Flows in Two Space Dimensions. In his paper, David Hoff proves the global existence of solutions of the Navier-Stokes equations of compressible, barotropic flow in two space dimensions with piecewise smooth initial data. These solutions remain piecewise smooth for all time, retaining simple jump discontinuities in the density and in the divergence of the velocity across a smooth curve, which is convected with the flow. The strengths of these discontinuities are shown to decay exponentially in time

  9. A high-order solver for unsteady incompressible Navier-Stokes equations using the flux reconstruction method on unstructured grids with implicit dual time stepping

    NASA Astrophysics Data System (ADS)

    Cox, Christopher; Liang, Chunlei; Plesniak, Michael

    2015-11-01

    This paper reports development of a high-order compact method for solving unsteady incompressible flow on unstructured grids with implicit time stepping. The method falls under the class of methods now referred to as flux reconstruction/correction procedure via reconstruction. The governing equations employ the classical artificial compressibility treatment, where dual time stepping is needed to solve unsteady flow problems. An implicit non-linear lower-upper symmetric Gauss-Seidel scheme with backward Euler discretization is used to efficiently march the solution in pseudo time, while a second-order backward Euler discretization is used to march in physical time. We verify and validate implementation of the high-order method coupled with our implicit time-stepping scheme. Three-dimensional results computed on many processing elements will be presented. The high-order method is very suitable for parallel computing and can easily be extended to moving and deforming grids. The current implicit time stepping scheme is proven effective in satisfying the divergence-free constraint on the velocity field in the artificial compressibility formulation within the context of the high-order flux reconstruction method. Financial support provided under the GW Presidential Merit Fellowship.

  10. An investigation of DTNS2D for use as an incompressible turbulence modelling test-bed

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.

    1992-01-01

    This paper documents an investigation of a two dimensional, incompressible Navier-Stokes solver for use as a test-bed for turbulence modelling. DTNS2D is the code under consideration for use at the Center for Modelling of Turbulence and Transition (CMOTT). This code was created by Gorski at the David Taylor Research Center and incorporates the pseudo compressibility method. Two laminar benchmark flows are used to measure the performance and implementation of the method. The classical solution of the Blasius boundary layer is used for validating the flat plate flow, while experimental data is incorporated in the validation of backward facing step flow. Velocity profiles, convergence histories, and reattachment lengths are used to quantify these calculations. The organization and adaptability of the code are also examined in light of the role as a numerical test-bed.

  11. Attractors of three-dimensional fast-rotating Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Trahe, Markus

    The three-dimensional (3-D) rotating Navier-Stokes equations describe the dynamics of rotating, incompressible, viscous fluids. In this work, they are considered with smooth, time-independent forces and the original statements implied by the classical "Taylor-Proudman Theorem" of geophysics are rigorously proved. It is shown that fully developed turbulence of 3-D fast-rotating fluids is essentially characterized by turbulence of two-dimensional (2-D) fluids in terms of numbers of degrees of freedom. In this context, the 3-D nonlinear "resonant limit equations", which arise in a non-linear averaging process as the rotation frequency O → infinity, are studied and optimal (2-D-type) upper bounds for fractal box and Hausdorff dimensions of the global attractor as well as upper bounds for box dimensions of exponential attractors are determined. Then, the convergence of exponential attractors for the full 3-D rotating Navier-Stokes equations to exponential attractors for the resonant limit equations as O → infinity in the sense of full Hausdorff-metric distances is established. This provides upper and lower semi-continuity of exponential attractors with respect to the rotation frequency and implies that the number of degrees of freedom (attractor dimension) of 3-D fast-rotating fluids is close to that of 2-D fluids. Finally, the algebraic-geometric structure of the Poincare curves, which control the resonances and small divisor estimates for partial differential equations, is further investigated; the 3-D nonlinear limit resonant operators are characterized by three-wave interactions governed by these curves. A new canonical transformation between those curves is constructed; with far-reaching consequences on the density of the latter.

  12. Parallelization of a Transient Method of Lines Navier-Stokes Code

    NASA Astrophysics Data System (ADS)

    Erşahin, Cem; Tarhan, Tanil; Tuncer, Ismail H.; Selçuk, Nevin

    2004-01-01

    Parallel implementation of a serial code, namely method of lines (MOL) solution for momentum equations (MOLS4ME), previously developed for the solution of transient Navier-Stokes equations for incompressible separated internal flows in regular and complex geometries, is described.

  13. First-Order System Least-Squares for the Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Bochev, P.; Cai, Z.; Manteuffel, T. A.; McCormick, S. F.

    1996-01-01

    This paper develops a least-squares approach to the solution of the incompressible Navier-Stokes equations in primitive variables. As with our earlier work on Stokes equations, we recast the Navier-Stokes equations as a first-order system by introducing a velocity flux variable and associated curl and trace equations. We show that the resulting system is well-posed, and that an associated least-squares principle yields optimal discretization error estimates in the H(sup 1) norm in each variable (including the velocity flux) and optimal multigrid convergence estimates for the resulting algebraic system.

  14. Is Navier-Stokes turbulence chaotic?

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1986-01-01

    Whether turbulent solutions of the Navier-Stokes equations are chaotic is considered. Initially neighboring solutions for a low-Reynolds-number fully developed turbulence are compared. The turbulence is sustained by a nonrandom time-independent external force. The solutions separate exponentially with time, having a positive Liapunov characteristic exponent. Thus the turbulence is characterized as chaotic.

  15. Time-accurate Navier-Stokes calculations with multigrid acceleration

    NASA Technical Reports Server (NTRS)

    Melson, N. D.; Sanetrik, Mark D.; Atkins, Harold L.

    1993-01-01

    An efficient method for calculating unsteady flows is presented, with emphasis on a modified version of the thin-layer Navier-Stokes equations. Fourier stability analysis is used to illustrate the effect of treating the source term implicitly instead of explicity, as well as to illustrate other algorithmic choices. A 2D circular cylinder (with a Reynolds number of 1200 and a Mach number of 0.3) is calculated. The present scheme requires only about 10 percent of the computer time required by global minimum time stepping.

  16. Involution and Difference Schemes for the Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Gerdt, Vladimir P.; Blinkov, Yuri A.

    In the present paper we consider the Navier-Stokes equations for the two-dimensional viscous incompressible fluid flows and apply to these equations our earlier designed general algorithmic approach to generation of finite-difference schemes. In doing so, we complete first the Navier-Stokes equations to involution by computing their Janet basis and discretize this basis by its conversion into the integral conservation law form. Then we again complete the obtained difference system to involution with eliminating the partial derivatives and extracting the minimal Gröbner basis from the Janet basis. The elements in the obtained difference Gröbner basis that do not contain partial derivatives of the dependent variables compose a conservative difference scheme. By exploiting arbitrariness in the numerical integration approximation we derive two finite-difference schemes that are similar to the classical scheme by Harlow and Welch. Each of the two schemes is characterized by a 5×5 stencil on an orthogonal and uniform grid. We also demonstrate how an inconsistent difference scheme with a 3×3 stencil is generated by an inappropriate numerical approximation of the underlying integrals.

  17. Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations.

    PubMed

    Vorobev, Anatoliy

    2010-11-01

    We use the Cahn-Hilliard approach to model the slow dissolution dynamics of binary mixtures. An important peculiarity of the Cahn-Hilliard-Navier-Stokes equations is the necessity to use the full continuity equation even for a binary mixture of two incompressible liquids due to dependence of mixture density on concentration. The quasicompressibility of the governing equations brings a short time-scale (quasiacoustic) process that may not affect the slow dynamics but may significantly complicate the numerical treatment. Using the multiple-scale method we separate the physical processes occurring on different time scales and, ultimately, derive the equations with the filtered-out quasiacoustics. The derived equations represent the Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations. This approximation can be further employed as a universal theoretical model for an analysis of slow thermodynamic and hydrodynamic evolution of the multiphase systems with strongly evolving and diffusing interfacial boundaries, i.e., for the processes involving dissolution/nucleation, evaporation/condensation, solidification/melting, polymerization, etc. PMID:21230581

  18. Algorithms for the Euler and Navier-Stokes equations for supercomputers

    NASA Technical Reports Server (NTRS)

    Turkel, E.

    1985-01-01

    The steady state Euler and Navier-Stokes equations are considered for both compressible and incompressible flow. Methods are found for accelerating the convergence to a steady state. This acceleration is based on preconditioning the system so that it is no longer time consistent. In order that the acceleration technique be scheme-independent, this preconditioning is done at the differential equation level. Applications are presented for very slow flows and also for the incompressible equations.

  19. Automatic differentiation and Navier-Stokes.

    SciTech Connect

    Bischof, C.; Hovland, P.; Mohammadi, B.

    1997-12-17

    We describe the use of automatic differentiation (AD) to enhance a compressible Navier-Stokes model. With the solver, AD is used to accelerate convergence by more than an order of magnitude. Outside the solver, AD is used to compute the derivatives needed for optimization. We emphasize the potential for performance gains if the programmer does not treat AD as a black box, but instead utilizes high-level knowledge about the nature of the application.

  20. Global existence of strong solution for the Cucker-Smale-Navier-Stokes system

    NASA Astrophysics Data System (ADS)

    Bae, Hyeong-Ohk; Choi, Young-Pil; Ha, Seung-Yeal; Kang, Moon-Jin

    2014-09-01

    We present a global existence theory for strong solution to the Cucker-Smale-Navier-Stokes system in a periodic domain, when initial data is sufficiently small. To model interactions between flocking particles and an incompressible viscous fluid, we couple the kinetic Cucker-Smale model and the incompressible Navier-Stokes system using a drag force mechanism that is responsible for the global flocking between particles and fluids. We also revisit the emergence of time-asymptotic flocking via new functionals measuring local variances of particles and fluid around their local averages and the distance between local averages velocities. We show that the particle and fluid velocities are asymptotically aligned to the common velocity, when the viscosity of the incompressible fluid is sufficiently large compared to the sup-norm of the particles' local mass density.

  1. Towards Optimal Multigrid Efficiency for the Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.

    2001-01-01

    A fast multigrid solver for the steady incompressible Navier-Stokes equations is presented. Unlike time-marching schemes, this approach uses relaxation of the steady equations. Application of this method results in a discretization that correctly distinguishes between the advection and elliptic parts of the operator, allowing efficient smoothers to be constructed. Numerical solutions are shown for flow over a flat plate and a Karman-Trefftz airfoil. Using collective Gauss-Seidel line relaxation in both the vertical and horizontal directions, multigrid convergence behavior approaching that of O(N) methods is achieved. The computational efficiency of the numerical scheme is compared with that of a Runge-Kutta based multigrid method.

  2. Numerical solutions of the complete Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Hassan, H. A.

    1988-01-01

    The physical phenomena within supersonic flows that sustain chemical reactions are investigated. An earlier study to develop accurate physical models for supersonic reacting flowfields focused on 2-D laminar shear layers. The objective is to examine the mixing and subsequent combustion within turbulent reacting shear layers. To conduct this study, a computer program has been written to solve the axisymmetric Reynolds averaged Navier-Stokes equations. The numerical method uses a cell-centered finite volume approach and a Runge Kutta time stepping scheme. The Reynolds averaged equations are closed using the eddy viscosity concept. Several zero-equation models have been tested by making calculations for an H2-air nonreacting coaxial jet flow. Comparisons made with experimental data show that Cohen's eddy viscosity model provides best agreement. The finite rate chemistry model used in the study of 2-D laminar shear layers is incorporated into the computer program and data is compared from a recent experiment performed at NASA Langley.

  3. The energy balance relation for weak solutions of the density-dependent Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Leslie, T. M.; Shvydkoy, R.

    2016-09-01

    We consider the incompressible inhomogeneous Navier-Stokes equations with constant viscosity coefficient and density which is bounded and bounded away from zero. We show that the energy balance relation for this system holds for weak solutions if the velocity, density, and pressure belong to a range of Besov spaces of smoothness 1/3. A density-dependent version of the classical Kármán-Howarth-Monin relation is derived.

  4. An Anisotropic Partial Regularity Criterion for the Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Kukavica, Igor; Rusin, Walter; Ziane, Mohammed

    2016-07-01

    In this paper, we address the partial regularity of suitable weak solutions of the incompressible Navier-Stokes equations. We prove an interior regularity criterion involving only one component of the velocity. Namely, if (u, p) is a suitable weak solution and a certain scale-invariant quantity involving only u 3 is small on a space-time cylinder {{Qr^{*}}(x_0,t_0)} , then u is regular at (x 0, t 0).

  5. An incremental block-line-Gauss-Seidel method for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Napolitano, M.; Walters, R. W.

    1985-01-01

    A block-line-Gauss-Seidel (LGS) method is developed for solving the incompressible and compressible Navier-Stokes equations in two dimensions. The method requires only one block-tridiagonal solution process per iteration and is consequently faster per step than the linearized block-ADI methods. Results are presented for both incompressible and compressible separated flows: in all cases the proposed block-LGS method is more efficient than the block-ADI methods. Furthermore, for high Reynolds number weakly separated incompressible flow in a channel, which proved to be an impossible task for a block-ADI method, solutions have been obtained very efficiently by the new scheme.

  6. On the Inviscid Limit for the Compressible Navier-Stokes System in an Impermeable Bounded Domain

    NASA Astrophysics Data System (ADS)

    Sueur, Franck

    2014-03-01

    In this paper we investigate the issue of the inviscid limit for the compressible Navier-Stokes system in an impermeable fixed bounded domain. We consider two kinds of boundary conditions. The first one is the no-slip condition. In this case we extend the famous conditional result (Kato, T.: Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary. In: Seminar on nonlinear partial differential equations, vol. 2, pp. 85-98. Math. Sci. Res. Inst. Publ., Berkeley 1984) obtained by Kato in the homogeneous incompressible case. Kato proved that if the energy dissipation rate of the viscous flow in a boundary layer of width proportional to the viscosity vanishes then the solutions of the incompressible Navier-Stokes equations converge to some solutions of the incompressible Euler equations in the energy space. We provide here a natural extension of this result to the compressible case. The other case is the Navier condition which encodes that the fluid slips with some friction on the boundary. In this case we show that the convergence to the Euler equations holds true in the energy space, as least when the friction is not too large. In both cases we use in a crucial way some relative energy estimates proved recently by Feireisl et al. in J. Math. Fluid Mech. 14:717-730 (2012).

  7. The maximum principle for the Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Akysh, Abdigali Sh.

    2016-08-01

    New connections were established between extreme values of the velocity, the density of kinetic energy (in particular local maximum) and the pressure of the Navier-Stokes equations. Validity of the maximum principle was shown for nonlinear Navier-Stokes equations using these connections, that is fundamentally-key from the mathematical point of view.

  8. Multigrid solution of the Navier-Stokes equations on highly stretched grids with defect correction

    NASA Technical Reports Server (NTRS)

    Sockol, Peter M.

    1993-01-01

    Relaxation-based multigrid solvers for the steady incompressible Navier-Stokes equations are examined to determine their computational speed and robustness. Four relaxation methods with a common discretization have been used as smoothers in a single tailored multigrid procedure. The equations are discretized on a staggered grid with first order upwind used for convection in the relaxation process on all grids and defect correction to second order central on the fine grid introduced once per multigrid cycle. A fixed W(1,1) cycle with full weighting of residuals is used in the FAS multigrid process. The resulting solvers have been applied to three 2D flow problems, over a range of Reynolds numbers, on both uniform and highly stretched grids. In all cases the L(sub 2) norm of the velocity changes is reduced to 10(exp -6) in a few 10's of fine grid sweeps. The results from this study are used to draw conclusions on the strengths and weaknesses of the individual relaxation schemes as well as those of the overall multigrid procedure when used as a solver on highly stretched grids.

  9. A finite element solution algorithm for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1974-01-01

    A finite element solution algorithm is established for the two-dimensional Navier-Stokes equations governing the steady-state kinematics and thermodynamics of a variable viscosity, compressible multiple-species fluid. For an incompressible fluid, the motion may be transient as well. The primitive dependent variables are replaced by a vorticity-streamfunction description valid in domains spanned by rectangular, cylindrical and spherical coordinate systems. Use of derived variables provides a uniformly elliptic partial differential equation description for the Navier-Stokes system, and for which the finite element algorithm is established. Explicit non-linearity is accepted by the theory, since no psuedo-variational principles are employed, and there is no requirement for either computational mesh or solution domain closure regularity. Boundary condition constraints on the normal flux and tangential distribution of all computational variables, as well as velocity, are routinely piecewise enforceable on domain closure segments arbitrarily oriented with respect to a global reference frame.

  10. Simulations of transition and turbulence on the Navier-Stokes computer

    NASA Technical Reports Server (NTRS)

    Krist, S. E.; Zang, T. A.

    1987-01-01

    The Navier-Stokes Computer (NSC) consists of multiple local memory parallel processors interconnected in a hypercube network. Efficient implementation of algorithms on the NSC thus requires the effective utilization of both the coarse and fine grain paralelism inherent in the architectural design. The basic approach to implementing an algorithm on the NSC is presented herein. The particular finite-difference algorithm considered was developed for performing transition and turbulence simulations by direct solution of the time-dependent incompressible Navier-Stokes equations. The suitability of this algorithm for performing simulations of the isotropic turbulence problem is verified from computations performed on a Cray 2. Projected timing results for the algorithm on the NSC itself are presented for both the isotropic turbulence and laminar turbulent transition problems.

  11. The Navier-Stokes Equations Under a Unilateral Boundary Condition of Signorini's Type

    NASA Astrophysics Data System (ADS)

    Zhou, Guanyu; Saito, Norikazu

    2016-09-01

    We propose a new outflow boundary condition, a unilateral condition of Signorini's type, for the incompressible Navier-Stokes equations. The condition is a generalization of the standard free-traction condition. Its variational formulation is given by a variational inequality. We also consider a penalty approximation, a kind of the Robin condition, to deduce a suitable formulation for numerical computations. Under those conditions, we can obtain energy inequalities that are key features for numerical computations. The main contribution of this paper is to establish the well-posedness of the Navier-Stokes equations under those boundary conditions. Particularly, we prove the unique existence of strong solutions of Ladyzhenskaya's class using the standard Galerkin's method. For the proof of the existence of pressures, however, we offer a new method of analysis.

  12. Solution of the Navier-Stokes equations for a driven cavity

    NASA Technical Reports Server (NTRS)

    Semeraro, B. D.; Sameh, Ahmed

    1991-01-01

    The flow field in a lid driven cavity is determined by integration of the incompressible Navier-Stokes equations. The numerical integration is accomplished via an operator splitting method known as the theta-scheme. This splitting separates the problem into the solution of a quasi-stokes problem and a nonlinear convection problem. Some details of solution methods used for the two subproblems and results obtained for the driven cavity are described. The schemes developed for the quasi-Stokes problem are more advanced at this stage than those for the nonlinear problem. However, the approaches used for both parts are outlined. As a model problem, a two dimensional square cavity with sides of unit length and a lid moving with unit velocity from left to right is considered. The Navier-Stokes equations are discretized in space on a uniform staggered or MAC mesh. The time discretization is accomplished via the theta-scheme.

  13. Aerodynamic Design Optimization on Unstructured Meshes Using the Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Anderson, W. Kyle

    1998-01-01

    A discrete adjoint method is developed and demonstrated for aerodynamic design optimization on unstructured grids. The governing equations are the three-dimensional Reynolds-averaged Navier-Stokes equations coupled with a one-equation turbulence model. A discussion of the numerical implementation of the flow and adjoint equations is presented. Both compressible and incompressible solvers are differentiated and the accuracy of the sensitivity derivatives is verified by comparing with gradients obtained using finite differences. Several simplifying approximations to the complete linearization of the residual are also presented, and the resulting accuracy of the derivatives is examined. Demonstration optimizations for both compressible and incompressible flows are given.

  14. Navier-Stokes Computations on Commodity Computers

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Faulkner, Thomas R.

    1998-01-01

    In this paper we discuss and demonstrate the feasibility of solving high-fidelity, nonlinear computational fluid dynamics (CFD) problems of practical interest on commodity machines, namely Pentium Pro PC's. Such calculations have now become possible due to the progress in computational power and memory of the off-the-shelf commodity computers, along with the growth in bandwidth and communication speeds of networks. A widely used CFD code known as TLNS3D, which was developed originally on large shared memory computers was selected for this effort. This code has recently been ported to massively parallel processor (MPP) type machines, where natural partitioning along grid blocks is adopted in which one or more blocks are distributed to each of the available processors. In this paper, a similar approach is adapted to port this code to a cluster of Pentium Pro computers. The message passing among the processors is accomplished through the use of standard message passing interface (MPI) libraries. Scaling studies indicate fairly high level of parallelism on such clusters of commodity machines, thus making solutions to Navier-Stokes equations for practical problems more affordable.

  15. Chaos Synchronization in Navier-Stokes Turbulence

    NASA Astrophysics Data System (ADS)

    Lalescu, Cristian; Meneveau, Charles; Eyink, Gregory

    2013-03-01

    Chaos synchronization (CS) has been studied for some time now (Pecora & Carroll 1990), for systems with only a few degrees of freedom as well as for systems described by partial differential equations (Boccaletti et al 2002). CS in general is said to be present in coupled dynamical systems when a specific property of each system has the same time evolution for all, even though the evolution itself is chaotic. The Navier-Stokes (NS) equations describe the velocity for a wide range of fluids, and their solutions are usually called turbulent if fluctuation amplitudes decrease as a power of their wavenumber. There have been some studies of CS for continuous systems (Kocarev et al 1997), but CS for NS turbulence seems not to have been investigated so far. We focus on the synchronization of the small scales of a turbulent flow for which the time history of large scales is prescribed. Our DNS results show that high-wavenumbers in turbulence are fully slaved to modes with wavenumbers up to a critical fraction of the Kolmogorov dissipation wavenumber. The motivation for our work is to study deeply sub-Kolmogorov scales in fully developed turbulence (Schumacher 2007), which we found to be recoverable even at very high Reynolds number from simulations with moderate resolutions. This work is supported by the National Science Foundation's CDI-II program, project CMMI-0941530

  16. Chaos Synchronization in Navier-Stokes Turbulence

    NASA Astrophysics Data System (ADS)

    Lalescu, Cristian C.; Meneveau, Charles; Eyink, Gregory L.

    2012-11-01

    Chaos synchronization (CS) has been studied for some time now (Pecora & Carroll 1990), for systems with only a few degrees of freedom as well as for systems described by partial differential equations (Boccaletti et al. 2002). CS in general is said to be present in a pair of coupled dynamical systems when a specific property of each system has the same time evolution for both, even though the evolution itself is chaotic. There have been some studies of CS for systems with an infinite number of degrees of freedom (Kocarev et al. 1997), but CS for Navier-Stokes (NS) turbulence seems not to have been investigated so far. We focus on the synchronization of the small scales of a turbulent flow for which the time history of large scales is prescribed. We present DNS results which show that high-wavenumbers in turbulence are fully slaved to modes with wavenumbers up to a critical fraction of the Kolmogorov dissipation wavenumber. We compare our results with related ideas of ``approximate inertial manifolds.'' The motivation for our work is to study deeply sub-Kolmogorov scales in fully developed turbulence (Schumacher 2007), which we show are recoverable even at very high Reynolds number from simulations that only resolve down to about the Kolmogorov scale. This work is supported by the National Science Foundation's CDI-II program, project CMMI-0941530.

  17. Vectorizable implicit algorithms for the flux-difference split, three-dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Hartwich, P. M.; Hsu, C.-H.; Liu, C. H.

    1987-01-01

    The computational efficiency of four vectorizable implicit algorithms is assessed when applied to calculate steady-state solutions to the three-dimensional, incompressible Navier-Stokes equations in general coordinates. Two of these algorithms are characterized as hybrid schemes; that is, they combine some approximate factorization in two coordinate directions with relaxation in the remaining spatial direction. The other two algorithms utilize an approximate factorization approach which yields two-factor algorithms for three-dimensional systems. All four algorithms are implemented in identical high-resolution upwind schemes for the flux-difference split Navier-Stokes equations. These highly nonlinear schemes are obtained by extending an implicit Total Variation Diminishing (TVD) scheme recently developed for linear one-dimensional systems of hyperbolic conservation laws to the three-dimensional Navier-Stokes equations. The computation of vortical flow over a sharp-edged, thin delta wing has been chosen as a common numerical test case. The convergence of the algorithms is discussed and the accuracy of the computed flow-field results is assessed. The validity of the present results are demonstrated by a comparison with experimental data.

  18. Navier-Stokes computations for circulation control airfoils

    NASA Technical Reports Server (NTRS)

    Pulliam, Thomas H.; Jespersen, Dennis C.; Barth, Timothy J.

    1987-01-01

    Navier-Stokes computations of subsonic to transonic flow past airfoils with augmented lift due to rearward jet blowing over a curved trailing edge are presented. The approach uses a spiral grid topology. Solutions are obtained using a Navier-Stokes code which employs an implicit finite difference method, an algebraic turbulence model, and developments which improve stability, convergence, and accuracy. Results are compared against experiments for no jet blowing and moderate jet pressures and demonstrate the capability to compute these complicated flows.

  19. Developing A Navier-Stokes Algorithm For Supercomputers

    NASA Technical Reports Server (NTRS)

    Swisshelm, Julie M.

    1992-01-01

    Report discusses development of algorithm for solution of Navier-Stokes equations of flow on parallel-processing supercomputers. Involves combination of prior techniques to form algorithm to compute flows in complicated three-dimensional configurations. Includes explicit finite-difference numerical-integration scheme applicable to flows represented by hierarchy of mathematical models ranging from Euler to full Navier-Stokes. Of interest to researchers looking for ways to structure problems for greater computational efficiency.

  20. On relaxation times in the Navier-Stokes-Voigt model

    NASA Astrophysics Data System (ADS)

    Layton, William J.; Rebholz, Leo G.

    2013-03-01

    We study analytically and numerically the relaxation time of flow evolution governed by the Navier-Stokes-Voigt (NSV) model. We first show that for the Taylor-Green vortex decay problem, NSV admits an exact solution which evolves slower than true fluid flow. Secondly, we show numerically for a channel flow test problem using standard discretisation methods that although NSV provides more regular solutions compared to usual Navier-Stokes solutions, NSV approximations take significantly longer to reach the steady state.

  1. Navier-Stokes computations for circulation controlled airfoils

    NASA Technical Reports Server (NTRS)

    Pulliam, T. H.; Jesperen, D. C.; Barth, T. J.

    1986-01-01

    Navier-Stokes computations of subsonic to transonic flow past airfoils with augmented lift due to rearward jet blowing over a curved trailing edge are presented. The approach uses a spiral grid topology. Solutions are obtained using a Navier-Stokes code which employs an implicit finite difference method, an algebraic turbulence model, and developments which improve stability, convergence, and accuracy. Results are compared against experiments for no jet blowing and moderate jet pressures and demonstrate the capability to compute these complicated flows.

  2. Navier-Stokes turbine heat transfer predictions using two-equation turbulence closures

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.; Arnone, Andrea

    1992-01-01

    Navier-Stokes calculations were carried out in order to predict the heat-transfer rates on turbine blades. The calculations were performed using TRAF2D which is a k-epsilon, explicit, finite volume mass-averaged Navier-Stokes solver. Turbulence was modeled using Coakley's q-omega and Chien's k-epsilon two-equation models and the Baldwin-Lomax algebraic model. The model equations along with the flow equations were solved explicitly on a nonperiodic C grid. Implicit residual smoothing (IRS) or a combination of multigrid technique and IRS was applied to enhance convergence rates. Calculations were performed to predict the Stanton number distributions on the first stage vane and blade row as well as the second stage vane row of the SSME high-pressure fuel turbine. The comparison serves to highlight the weaknesses of the turbulence models for use in turbomachinery heat-transfer calculations.

  3. Distributed Relaxation Multigrid and Defect Correction Applied to the Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Thomas, J. L.; Diskin, B.; Brandt, A.

    1999-01-01

    The distributed-relaxation multigrid and defect- correction methods are applied to the two- dimensional compressible Navier-Stokes equations. The formulation is intended for high Reynolds number applications and several applications are made at a laminar Reynolds number of 10,000. A staggered- grid arrangement of variables is used; the coupled pressure and internal energy equations are solved together with multigrid, requiring a block 2x2 matrix solution. Textbook multigrid efficiencies are attained for incompressible and slightly compressible simulations of the boundary layer on a flat plate. Textbook efficiencies are obtained for compressible simulations up to Mach numbers of 0.7 for a viscous wake simulation.

  4. On a particular solution to the 3D Navier-Stokes equations for liquids with cavitation

    NASA Astrophysics Data System (ADS)

    Rabinowitch, Alexander S.

    2016-08-01

    The 3D Navier-Stokes equations for incompressible viscous liquids are examined. In the axially symmetric case, they are represented in the form of three nonlinear partial differential equations. These equations are studied and their particular solution is found. In it, the velocity components are sinusoidal in the direction of their axis of symmetry. As to the pressure, it can reach a sufficiently small value at which the phenomenon of cavitation takes place in a liquid. The found solution describes some flows of viscous liquids outside vapor-filled regions in them.

  5. Simulation of separated flow past a bluff body using Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Ghia, K. N.; Ghia, U.; Osswald, G. A.; Liu, C. A.

    1987-01-01

    Two-dimensional flow past a bluff body is presently simulated on the basis of an analysis that employs the incompressible, unsteady Navier-Stokes equations in terms of vorticity and stream function. The fully implicit, time-marching, alternating-direction, implicit-block Gaussian elimination used is a direct method with second-order spatial accuracy; this allows it to avoid the introduction of any artificial viscosity. Attention is given to the simulation of flow past a circular cylinder with and without symmetry, requiring the use of either the half or the full cylinder, respectively.

  6. On a Modified Form of Navier-Stokes Equations for Three-Dimensional Flows

    PubMed Central

    Venetis, J.

    2015-01-01

    A rephrased form of Navier-Stokes equations is performed for incompressible, three-dimensional, unsteady flows according to Eulerian formalism for the fluid motion. In particular, we propose a geometrical method for the elimination of the nonlinear terms of these fundamental equations, which are expressed in true vector form, and finally arrive at an equivalent system of three semilinear first order PDEs, which hold for a three-dimensional rectangular Cartesian coordinate system. Next, we present the related variational formulation of these modified equations as well as a general type of weak solutions which mainly concern Sobolev spaces. PMID:25918743

  7. Navier-Stokes simulations of WECS airfoil flowfields

    SciTech Connect

    Homicz, G.F.

    1994-06-01

    Sandia National Laboratories has initiated an effort to apply Computational Fluid Dynamics (CFD) to the study of WECS aerodynamics. Preliminary calculations are presented for the flow past a SAND 0018/50 airfoil. The flow solver used is F3D, an implicitly, finite-difference code which solves the Thin-Layer Navier-airfoil. The flow solver used is F3D, an implicit, finite-difference code which solves the Thin-Layer Navier-Stokes equations. 2D steady-state calculations are presented at various angles of attack, {alpha}. Sectional lift and drag coefficient, as well as surface pressure distributions, are compared with wind tunnel data, and exhibit reasonable agreement at low to moderate angles of attack. At high {alpha}, where the airfoil is stalled, a converged solution to the steady-state equations could not be obtained. The flowfield continued to change with successive iterations, which is consistent with the fact that the actual flow is inherently transient, and requires the solution of the full unsteady form of the equations.

  8. Implementation and Validation of the Chien k-epsilon Turbulence Model in the Wind Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Yoder, Dennis A.; Georgiadis, Nicholas J.

    1999-01-01

    The two equation k-epsilon turbulence model of Chien has been implemented in the WIND Navier-Stokes flow solver. Details of the numerical solution algorithm, initialization procedure, and stability enhancements are described. Results obtained with this version of the model are compared with those from the Chien k-epsilon model in the NPARC Navier-Stokes code and from the WIND SST model for three validation cases: the incompressible flow over a smooth flat plate, the incompressible flow over a backward facing step, and the shock-induced flow separation inside a transonic diffuser. The k-epsilon model results indicate that the WIND model functions very similarly to that in NPARC, though the WIND code appears to he slightly more accurate in the treatment of the near-wall region. Comparisons of the k-epsilon model results with those from the SST model were less definitive, as each model exhibited strengths and weaknesses for each particular case.

  9. Stochastic Lagrangian Particle Approach to Fractal Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Zhang, Xicheng

    2012-04-01

    In this article we study the fractal Navier-Stokes equations by using the stochastic Lagrangian particle path approach in Constantin and Iyer (Comm Pure Appl Math LXI:330-345, 2008). More precisely, a stochastic representation for the fractal Navier-Stokes equations is given in terms of stochastic differential equations driven by Lévy processes. Based on this representation, a self-contained proof for the existence of a local unique solution for the fractal Navier-Stokes equation with initial data in {{mathbb W}^{1,p}} is provided, and in the case of two dimensions or large viscosity, the existence of global solutions is also obtained. In order to obtain the global existence in any dimensions for large viscosity, the gradient estimates for Lévy processes with time dependent and discontinuous drifts are proved.

  10. Navier-Stokes calculations of scramjet-nozzle-afterbody flowfields

    NASA Astrophysics Data System (ADS)

    Baysal, Oktay

    1991-07-01

    A comprehensive computational fluid dynamics effort was conducted from 1987 to 1990 to properly design a nozzle and lower aft end of a generic hypersonic vehicle powered by a scramjet engine. The interference of the exhaust on the control surfaces of the vehicle can have adverse effects on its stability. Two-dimensional Navier-Stokes computations were performed, where the exhaust gas was assumed to be air behaving as a perfect gas. Then the exhaust was simulated by a mixture of Freon-12 and argon, which required solving the Navier-Stokes equations for four species: (nitrogen, oxygen, Freon-12, and argon). This allowed gamma to be a field variable during the mixing of the multispecies gases. Two different mixing models were used and comparisons between them as well as the perfect gas air calculations were made to assess their relative merits. Finally, the three dimensional Navier-Stokes computations were made for the full-span scramjet nozzle afterbody module.

  11. What do the Navier-Stokes equations mean?

    NASA Astrophysics Data System (ADS)

    Schneiderbauer, Simon; Krieger, Michael

    2014-01-01

    The Navier-Stokes equations are nonlinear partial differential equations describing the motion of fluids. Due to their complicated mathematical form they are not part of secondary school education. A detailed discussion of fundamental physics—the conservation of mass and Newton’s second law—may, however, increase the understanding of the behaviour of fluids. Based on these principles the Navier-Stokes equations can be derived. This article attempts to make these equations available to a wider readership, especially teachers and undergraduate students. Therefore, in this article a derivation restricted to simple differential calculus is presented. Finally, we try to give answers to the questions ‘what is a fluid?’ and ‘what do the Navier-Stokes equations mean?’.

  12. Some recent applications of Navier-Stokes codes to rotorcraft

    NASA Technical Reports Server (NTRS)

    Mccroskey, W. J.

    1992-01-01

    Many operational limitations of helicopters and other rotary-wing aircraft are due to nonlinear aerodynamic phenomena incuding unsteady, three-dimensional transonic and separated flow near the surfaces and highly vortical flow in the wakes of rotating blades. Modern computational fluid dynamics (CFD) technology offers new tools to study and simulate these complex flows. However, existing Euler and Navier-Stokes codes have to be modified significantly for rotorcraft applications, and the enormous computational requirements presently limit their use in routine design applications. Nevertheless, the Euler/Navier-Stokes technology is progressing in anticipation of future supercomputers that will enable meaningful calculations to be made for complete rotorcraft configurations.

  13. Algorithm implementation on the Navier-Stokes computer

    NASA Technical Reports Server (NTRS)

    Krist, Steven E.; Zang, Thomas A.

    1987-01-01

    The Navier-Stokes Computer is a multi-purpose parallel-processing supercomputer which is currently under development at Princeton University. It consists of multiple local memory parallel processors, called Nodes, which are interconnected in a hypercube network. Details of the procedures involved in implementing an algorithm on the Navier-Stokes computer are presented. The particular finite difference algorithm considered in this analysis was developed for simulation of laminar-turbulent transition in wall bounded shear flows. Projected timing results for implementing this algorithm indicate that operation rates in excess of 42 GFLOPS are feasible on a 128 Node machine.

  14. Pseudo-time algorithms for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Turkel, E.

    1986-01-01

    A pseudo-time method is introduced to integrate the compressible Navier-Stokes equations to a steady state. This method is a generalization of a method used by Crocco and also by Allen and Cheng. We show that for a simple heat equation that this is just a renormalization of the time. For a convection-diffusion equation the renormalization is dependent only on the viscous terms. We implement the method for the Navier-Stokes equations using a Runge-Kutta type algorithm. This permits the time step to be chosen based on the inviscid model only. We also discuss the use of residual smoothing when viscous terms are present.

  15. Navier-Stokes computations useful in aircraft design

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1990-01-01

    Large scale Navier-Stokes computations about aircraft components as well as reasonably complete aircraft configurations are presented and discussed. Speed and memory requirements are described for various general problem classes, which in some cases are already being used in the industrial design environment. Recent computed results, with experimental comparisons when available, are included to highlight the presentation. Finally, prospects for the future are described and recommendations for areas of concentrated research are indicated. The future of Navier-Stokes computations is seen to be rapidly expanding across a broad front of applications, which includes the entire subsonic-to-hypersonic speed regime.

  16. Factorization of the Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas W.

    2005-01-01

    The Navier-Stokes equations for a Newtonian ideal gas are examined to determine the factorizable form of the equations relevant to the construction of a factorizable relaxation scheme. The principal linearization of the equations is found by examining the relative magnitude of the terms for short-wavelength errors. The principal part of the operator is then found. Comparison of the factors of the Navier-Stokes and Euler equations differ qualitatively because of the coupling of entropy and pressure through thermal diffusion. Special cases of the factorization are considered.

  17. The Mean-Field Limit for Solid Particles in a Navier-Stokes Flow

    NASA Astrophysics Data System (ADS)

    Desvillettes, Laurent; Golse, François; Ricci, Valeria

    2008-06-01

    We propose a mathematical derivation of Brinkman's force for a cloud of particles immersed in an incompressible viscous fluid. Specifically, we consider the Stokes or steady Navier-Stokes equations in a bounded domain Ω⊂ℝ3 for the velocity field u of an incompressible fluid with kinematic viscosity ν and density 1. Brinkman's force consists of a source term 6 π ν j where j is the current density of the particles, and of a friction term 6 π ν ρ u where ρ is the number density of particles. These additional terms in the motion equation for the fluid are obtained from the Stokes or steady Navier-Stokes equations set in Ω minus the disjoint union of N balls of radius ɛ=1/ N in the large N limit with no-slip boundary condition. The number density ρ and current density j are obtained from the limiting phase space empirical measure 1/Nsum_{1le kle N}δ_{xk,vk} , where x k is the center of the k-th ball and v k its instantaneous velocity. This can be seen as a generalization of Allaire's result in [Arch. Ration. Mech. Anal. 113:209-259, [1991

  18. Cavitation Modeling in Euler and Navier-Stokes Codes

    NASA Technical Reports Server (NTRS)

    Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    Many previous researchers have modeled sheet cavitation by means of a constant pressure solution in the cavity region coupled with a velocity potential formulation for the outer flow. The present paper discusses the issues involved in extending these cavitation models to Euler or Navier-Stokes codes. The approach taken is to start from a velocity potential model to ensure our results are compatible with those of previous researchers and available experimental data, and then to implement this model in both Euler and Navier-Stokes codes. The model is then augmented in the Navier-Stokes code by the inclusion of the energy equation which allows the effect of subcooling in the vicinity of the cavity interface to be modeled to take into account the experimentally observed reduction in cavity pressures that occurs in cryogenic fluids such as liquid hydrogen. Although our goal is to assess the practicality of implementing these cavitation models in existing three-dimensional, turbomachinery codes, the emphasis in the present paper will center on two-dimensional computations, most specifically isolated airfoils and cascades. Comparisons between velocity potential, Euler and Navier-Stokes implementations indicate they all produce consistent predictions. Comparisons with experimental results also indicate that the predictions are qualitatively correct and give a reasonable first estimate of sheet cavitation effects in both cryogenic and non-cryogenic fluids. The impact on CPU time and the code modifications required suggests that these models are appropriate for incorporation in current generation turbomachinery codes.

  19. Algorithmic Enhancements for the VULCAN Navier-Stokes Solver

    NASA Technical Reports Server (NTRS)

    Edwards, Jack R.

    2004-01-01

    Work performed over the last three years has resulted in the addition of several new algorithms to the VULCAN code, NASA's standard for Navier-Stokes calculations in high-speed aeropropulsion devices. This final report describes the new techniques in brief and presents sample results from their use.

  20. Upwind relaxation algorithms for Euler/Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Thomas, J. L.; Walters, R. W.; Rudy, D. H.; Swanson, R. C.

    1986-01-01

    A description of and results from a solution algorithm for the compressible Navier-Stokes equations are presented. The main features of the algorithm are second or third order accurate upwind discretization of the convection and pressure derivatives and a relaxation scheme for the unfactored implicit backward Euler time method, implemented in a finite-volume formulation. Upwind methods were successfully used to obtain solutions to the Euler equations for flows with strong shock waves. The particular upwind method being used is based on the flux vector splitting technique developed by Van Leer and both second and third order accurate discretizations were developed. Currently, the most widely used implicit solution technique for the Navier-Stokes equations use approximate factorization (AF) methods to treat multidimensional problems. The time integration scheme being used in the present algorithm corresponds to a line Gauss-Seidel relaxation method. This method produces good convergence rates for steady-state flows, and most of the algorithm was vectorized on the NASA Langley VPS 32 computer. The Navier-Stokes algorithm was tested for several two-dimensional flow problems. Solutions for the problems gave excellent results. The presented effort is directed toward the extension of the scheme to the full three-dimensional Navier-Stokes equations.

  1. Symmetric approximations of the Navier-Stokes equations

    SciTech Connect

    Kobel'kov, G M

    2002-08-31

    A new method for the symmetric approximation of the non-stationary Navier-Stokes equations by a Cauchy-Kovalevskaya-type system is proposed. Properties of the modified problem are studied. In particular, the convergence as {epsilon}{yields}0 of the solutions of the modified problem to the solutions of the original problem on an infinite interval is established.

  2. Symmetric approximations of the Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Kobel'kov, G. M.

    2002-08-01

    A new method for the symmetric approximation of the non-stationary Navier-Stokes equations by a Cauchy-Kovalevskaya-type system is proposed. Properties of the modified problem are studied. In particular, the convergence as \\varepsilon\\to0 of the solutions of the modified problem to the solutions of the original problem on an infinite interval is established.

  3. A solution of the Navier-Stokes equations by a mixed finite element method

    NASA Astrophysics Data System (ADS)

    Bredif, M.

    1981-09-01

    The numerical treatment of steady state, two-dimensional Navier-Stokes equations in the incompressible case is studied. The approximation method retained is the mixed finite element method, as regards stream function and vortex function. The improvements to this formulation are: possibility of choice of boundary conditions of various types; introduction of a finite element formulation of the stagnation pressure calculation; definition of a corrected formulation with a view to studying laminar flows in the case of large Reynolds numbers. The chosen formulation is discussed theoretically, encompassing the aspects mentioned. A solution algorithm is presented, based on a general conjugate gradient method; numerical results are presented for various cases of viscous, incompressible, laminar flows: (1) in a square cavity; (2) around a circular cylinder: and (3) around a NACA 0018 profile at zero angle of attack for Reynolds numbers up to 5000.

  4. A solution of the Navier-Stokes equations by a mixed finite element method

    NASA Astrophysics Data System (ADS)

    Bredif, M.

    The numerical treatment of steady state, two-dimensional Navier-Stokes equations in the incompressible case is studied. The approximation method retained is the "mixed" finite element method, as regards stream function and vortex function. The improvements to this formulation are: possibility of choice of boundary conditions of various types; introduction of a finite element formulation of the stagnation pressure calculation; definition of a corrected formulation with a view to studying laminar flows in the case of large Reynolds numbers. The chosen formulation is discussed theoretically, encompassing the aspects mentioned. A solution algorithm is presented, based on a general conjugate gradient method; numerical results are presented for various cases of viscous, incompressible, laminar flows: (1) in a square cavity; (2) around a circular cylinder; and (3) around a NACA 0018 profile at zero angle of attack for Reynolds numbers up to 5000.

  5. The space-time solution element method: A new numerical approach for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Chang, Sin-Chung

    1995-01-01

    This paper is one of a series of papers describing the development of a new numerical method for the Navier-Stokes equations. Unlike conventional numerical methods, the current method concentrates on the discrete simulation of both the integral and differential forms of the Navier-Stokes equations. Conservation of mass, momentum, and energy in space-time is explicitly provided for through a rigorous enforcement of both the integral and differential forms of the governing conservation laws. Using local polynomial expansions to represent the discrete primitive variables on each cell, fluxes at cell interfaces are evaluated and balanced using exact functional expressions. No interpolation or flux limiters are required. Because of the generality of the current method, it applies equally to the steady and unsteady Navier-Stokes equations. In this paper, we generalize and extend the authors' 2-D, steady state implicit scheme. A general closure methodology is presented so that all terms up through a given order in the local expansions may be retained. The scheme is also extended to nonorthogonal Cartesian grids. Numerous flow fields are computed and results are compared with known solutions. The high accuracy of the scheme is demonstrated through its ability to accurately resolve developing boundary layers on coarse grids. Finally, we discuss applications of the current method to the unsteady Navier-Stokes equations.

  6. Development of multiphase Navier-Stokes simulation capability for turbulent gas flow over laminar liquid for Cartesian grids

    NASA Astrophysics Data System (ADS)

    Miao, Sha; Hendrickson, Kelli; Liu, Yuming; Subramani, Hariprasad

    2015-11-01

    This work presents a novel and efficient Cartesian-grid based simulation capability for the study of an incompressible, turbulent gas layer over a liquid flow with disparate Reynolds numbers in two phases. This capability couples a turbulent gas-flow solver and a liquid-layer based on a second-order accurate Boundary Data Immersion Method (BDIM) at the deformable interface. The turbulent gas flow solver solves the incompressible Navier-Stokes equations via direct numerical simulation or through turbulence closure (unsteady Reynolds-Averaged Navier-Stokes Models) for Reynolds numbers O(106). In this application, a laminar liquid layer solution is obtained from depth-integrated Navier-Stokes equations utilizing shallow water wave assumptions. The immersed boundary method (BDIM) enforces the coupling at the deformable interface, the boundary conditions to turbulence closure equations and defines the domain geometry on the Cartesian grid. Validations are made for the turbulent gas channel flow over high-viscosity liquid. This simulation capability can be applied to problems in the oil and industrial sector such as channel and pipe flows with heavy oils as well as wind wave generation in shallow waters. Sponsored by the Chevron Energy Technology Company.

  7. Space-Time Error Representation and Estimation in Navier-Stokes Calculations

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2006-01-01

    The mathematical framework for a-posteriori error estimation of functionals elucidated by Eriksson et al. [7] and Becker and Rannacher [3] is revisited in a space-time context. Using these theories, a hierarchy of exact and approximate error representation formulas are presented for use in error estimation and mesh adaptivity. Numerical space-time results for simple model problems as well as compressible Navier-Stokes flow at Re = 300 over a 2D circular cylinder are then presented to demonstrate elements of the error representation theory for time-dependent problems.

  8. Navier-Stokes symmetry in the phenomenological transport theory for bacterial chemotaxis

    NASA Astrophysics Data System (ADS)

    Rosen, Gerald

    1984-05-01

    It is observed that the Navier-Stokes space-time dilatation invariance (x-->-->λx-->,t-->λ2t) implies that the random motility and chemotactic flux function take the forms observed experimentally for motile Escherichia coli attracted by low concentrations of oxygen; moreover, the rate function for E. coli consumption of dissolved oxygen is required to have the form (const) × (local oxygen concentration)2/3. It is also noteworthy that the Schrödinger-Bloch function for redistribution of chemotactic bacteria cells is invariant under the space-time dilatation transformations if and only if the chemotactic flux coefficient-random motility ratio equals 2, a value in the range 1.1 to 2.5 observed experimentally by Holz and Chen in the oxygen chemotaxis of motile E. coli. Suitably specialized governing equations for the phenomenological transport theory also admit a Galilean transformation invariance symmetry if and only if the chemotactic flux coefficient-critical substrate diffusivity ratio equals -2 and the consumption rate function is simply linear in the local oxygen concentration. Applicable to the regime of viscous incompressible flows with Reynolds numbers much less than unity, the Navier-Stokes superposition invariance may also give rise to a corresponding invariance symmetry in equivalent but linear phenomenological transport equations.

  9. Dynamical systems characterization of the poor man's Navier--Stokes equations

    NASA Astrophysics Data System (ADS)

    Polly, J. B.; McDonough, J. M.

    2011-11-01

    The Navier-Stokes (N.-S.) equations governing fluid flow consist of a system of time-dependent, multi-dimensional, non-linear partial differential equations (PDEs) which cannot be solved in real time using current, or near-term foreseeable, computing hardware. The poor man's Navier-Stokes (PMNS) equations comprise a discrete dynamical system (DDS) that is algebraic--hence, easily (and rapidly) solved--and yet which retains many (possibly all) of the temporal behaviors of the full (PDE) N.-S. system at specific spatial locations. In this investigation we outline the derivation of the PMNS equations beginning with the incompressible N.-S. equations. We then consider common techniques to understand the DDS sensitivity to initial conditions (SIC) through calculation of bifurcation diagrams, Lyapunov exponents, and fractal dimension. These techniques are studied with consideration of their ease of computation, and ability to characterize and describe system behavior. The time series generated by the DDS are used to obtain power spectral densities (PSDs) which can be used to categorize most system behaviors. Some chaotic behaviors, however, can be difficult to distinguish via PSD analysis alone; thus we investigate the ability of other methods to characterize the system response.

  10. Implementation and analysis of a Navier-Stokes algorithm on parallel computers

    NASA Technical Reports Server (NTRS)

    Fatoohi, Raad A.; Grosch, Chester E.

    1988-01-01

    The results of the implementation of a Navier-Stokes algorithm on three parallel/vector computers are presented. The object of this research is to determine how well, or poorly, a single numerical algorithm would map onto three different architectures. The algorithm is a compact difference scheme for the solution of the incompressible, two-dimensional, time-dependent Navier-Stokes equations. The computers were chosen so as to encompass a variety of architectures. They are the following: the MPP, an SIMD machine with 16K bit serial processors; Flex/32, an MIMD machine with 20 processors; and Cray/2. The implementation of the algorithm is discussed in relation to these architectures and measures of the performance on each machine are given. The basic comparison is among SIMD instruction parallelism on the MPP, MIMD process parallelism on the Flex/32, and vectorization of a serial code on the Cray/2. Simple performance models are used to describe the performance. These models highlight the bottlenecks and limiting factors for this algorithm on these architectures. Finally, conclusions are presented.

  11. Navier-Stokes predictions of multifunction nozzle flows

    NASA Technical Reports Server (NTRS)

    Wilmoth, Richard G.; Leavitt, Laurence D.

    1987-01-01

    A two-dimensional, Navier-Stokes code developed by Imlay based on the implicit, finite-volume method of MacCormack has been applied to the prediction of the flow fields and performance of several nonaxisymmetric, convergent-divergent nozzles with and without thrust vectoring. Comparisons of predictions with experiment show that the Navier-Stokes code can accurately predict both the flow fields and performance for nonaxisymmetric nozzles where the flow is predominantly two-dimensional and at nozzle pressure ratios at or above the design values. Discrepancies between predictions and experiment are noted at lower nozzle pressure ratios where separation typically occurs in portions of the nozzle. The overall trends versus parameters such as nozzle pressure ratio, flap angle, and vector angle were generally predicted correctly.

  12. Navier-Stokes predictions of multifunction nozzle flows

    NASA Astrophysics Data System (ADS)

    Wilmoth, Richard G.; Leavitt, Laurence D.

    1987-10-01

    A two-dimensional, Navier-Stokes code developed by Imlay based on the implicit, finite-volume method of MacCormack has been applied to the prediction of the flow fields and performance of several nonaxisymmetric, convergent-divergent nozzles with and without thrust vectoring. Comparisons of predictions with experiment show that the Navier-Stokes code can accurately predict both the flow fields and performance for nonaxisymmetric nozzles where the flow is predominantly two-dimensional and at nozzle pressure ratios at or above the design values. Discrepancies between predictions and experiment are noted at lower nozzle pressure ratios where separation typically occurs in portions of the nozzle. The overall trends versus parameters such as nozzle pressure ratio, flap angle, and vector angle were generally predicted correctly.

  13. Parallel computation of Euler and Navier-Stokes flows

    SciTech Connect

    Swisshelm, J.M.; Johnson, G.M.; Kumar, S.P.

    1986-07-01

    A multigrid technique useful for accelerating the convergence of Euler and Navier-Stokes flow computations has been restructured to improve its performance on both SIMD and MIMD computers. The new algorithm allows both the construction of longer coarse-grid vectors and the multitasking of entire grids. Computational results are presented for the CDC Cyber 205, Cray X-MP, and Denelcor HEP I. 15 references.

  14. Density of global trajectories for filtered Navier Stokes equations

    NASA Astrophysics Data System (ADS)

    Vukadinovic, Jesenko

    2004-05-01

    For two-dimensional periodic Kelvin-filtered Navier-Stokes systems, both positively and negatively invariant sets {\\cal M}_n , consisting of initial data for which solutions exist for all negative times and exhibiting a certain asymptotic behaviour backwards in time, are investigated. They are proven to be rich in the sense that they project orthogonally onto the sets of lower modes corresponding to the first n distinct eigenvalues of the Stokes operator. In general, this yields the density in the phase space of trajectories of global solutions, but with respect to a weaker norm. This result applies equally to the two-dimensional periodic Navier-Stokes equations (NSEs) and the two-dimensional periodic Navier-Stokes-agr model. We designate a subclass of filters for which the density follows in the strong topology induced by the (energy) norm of the phase space, as originally conjectured for the NSEs by Bardos and Tartar (1973 Arch. Ration. Mech. Anal. 50 10-25). This work was partially supported by the NSF grant DMS-0074460 while the author was a graduate student at Indiana University.

  15. A new flux conserving Newton's method scheme for the two-dimensional, steady Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Chang, Sin-Chung

    1993-01-01

    A new numerical method is developed for the solution of the two-dimensional, steady Navier-Stokes equations. The method that is presented differs in significant ways from the established numerical methods for solving the Navier-Stokes equations. The major differences are described. First, the focus of the present method is on satisfying flux conservation in an integral formulation, rather than on simulating conservation laws in their differential form. Second, the present approach provides a unified treatment of the dependent variables and their unknown derivatives. All are treated as unknowns together to be solved for through simulating local and global flux conservation. Third, fluxes are balanced at cell interfaces without the use of interpolation or flux limiters. Fourth, flux conservation is achieved through the use of discrete regions known as conservation elements and solution elements. These elements are not the same as the standard control volumes used in the finite volume method. Fifth, the discrete approximation obtained on each solution element is a functional solution of both the integral and differential form of the Navier-Stokes equations. Finally, the method that is presented is a highly localized approach in which the coupling to nearby cells is only in one direction for each spatial coordinate, and involves only the immediately adjacent cells. A general third-order formulation for the steady, compressible Navier-Stokes equations is presented, and then a Newton's method scheme is developed for the solution of incompressible, low Reynolds number channel flow. It is shown that the Jacobian matrix is nearly block diagonal if the nonlinear system of discrete equations is arranged approximately and a proper pivoting strategy is used. Numerical results are presented for Reynolds numbers of 100, 1000, and 2000. Finally, it is shown that the present scheme can resolve the developing channel flow boundary layer using as few as six to ten cells per channel

  16. Accuracy of least-squares methods for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Bochev, Pavel B.; Gunzburger, Max D.

    1993-01-01

    Recently there has been substantial interest in least-squares finite element methods for velocity-vorticity-pressure formulations of the incompressible Navier-Stokes equations. The main cause for this interest is the fact that algorithms for the resulting discrete equations can be devised which require the solution of only symmetric, positive definite systems of algebraic equations. On the other hand, it is well-documented that methods using the vorticity as a primary variable often yield very poor approximations. Thus, here we study the accuracy of these methods through a series of computational experiments, and also comment on theoretical error estimates. It is found, despite the failure of standard methods for deriving error estimates, that computational evidence suggests that these methods are, at the least, nearly optimally accurate. Thus, in addition to the desirable matrix properties yielded by least-squares methods, one also obtains accurate approximations.

  17. Multigrid-based grid-adaptive solution of the Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Michelsen, Jess

    A finite volume scheme for solution of the incompressible Navier-Stokes equations in two dimensions and axisymmetry is described. Solutions are obtained on nonorthogonal, solution adaptive BFC grids, based on the Brackbill-Saltzman generator. Adaptivity is achieved by the use of a single control function based on the local kinetic energy production. Nonstaggered allocation of pressure and Cartesian velocity components avoids the introduction of curvature terms associated with the use of a grid-direction vector-base. A special interpolation of the pressure correction equation in the SIMPLE algorithm ensures firm coupling between velocity and pressure field. Steady-state solutions are accelerated by a full approximation multigrid scheme working on the decoupled grid-flow problem, while an algebraic multigrid scheme is employed for the pressure correction equation.

  18. Preconditioning for the Navier-Stokes equations with finite-rate chemistry

    NASA Technical Reports Server (NTRS)

    Godfrey, Andrew G.; Walters, Robert W.; Van Leer, Bram

    1993-01-01

    The preconditioning procedure for generalized finite-rate chemistry and the proper preconditioning for the one-dimensional Navier-Stokes equations are presented. Eigenvalue stiffness is resolved and convergence-rate acceleration is demonstrated over the entire Mach-number range from the incompressible to the hypersonic. Specific benefits are realized at low and transonic flow speeds. The extended preconditioning matrix accounts for thermal and chemical non-equilibrium and its implementation is explained for both explicit and implicit time marching. The effect of higher-order spatial accuracy and various flux splittings is investigated. Numerical analysis reveals the possible theoretical improvements from using proconditioning at all Mach numbers. Numerical results confirm the expectations from the numerical analysis. Representative test cases include flows with previously troublesome embedded high-condition-number regions.

  19. Numerical solution of the time-dependent compressible Navier-Stokes equations in inlet regions

    NASA Technical Reports Server (NTRS)

    Olson, L. E.; Mcgowan, P. R.; Maccormack, R. W.

    1974-01-01

    The results of a study to determine the effects of compressibility on the viscous flow through channels that have straight, parallel walls are presented. Two channel configurations are considered, the flow between two semi-infinite flat plates with uniform flow prescribed at the inlet plane and a cascade of semi-infinite flat plates with uniform flow introduced upstream. The flow field is modeled by using the time dependent, compressible Navier-Stokes equations. Time dependent solutions are obtained by using an explicit finite difference technique which advances the pressure on near field subsonic boundaries such that accurate steady state solutions are obtained. Steady state results at Reynolds number 20 and 150 are presented for Mach numbers between 0.09 and 0.36 and compared with the incompressible solutions of previous studies.

  20. A Modular Approach to Model Oscillating Control Surfaces Using Navier Stokes Equations

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; Lee, Henry

    2014-01-01

    The use of active controls for rotorcraft is becoming more important for modern aerospace configurations. Efforts to reduce the vibrations of helicopter blades with use of active-controls are in progress. Modeling oscillating control surfaces using the linear aerodynamics theory is well established. However, higher-fidelity methods are needed to account for nonlinear effects, such as those that occur in transonic flow. The aeroelastic responses of a wing with an oscillating control surface, computed using the transonic small perturbation (TSP) theory, have been shown to cause important transonic flow effects such as a reversal of control surface effectiveness that occurs as the shock wave crosses the hinge line. In order to account for flow complexities such as blade-vortex interactions of rotor blades higher-fidelity methods based on the Navier-Stokes equations are used. Reference 6 presents a procedure that uses the Navier-Stokes equations with moving-sheared grids and demonstrates up to 8 degrees of control-surface amplitude, using a single grid. Later, this procedure was extended to accommodate larger amplitudes, based on sliding grid zones. The sheared grid method implemented in EulerlNavier-Stokes-based aeroelastic code ENS AERO was successfully applied to active control design by industry. Recently there are several papers that present results for oscillating control surface using Reynolds Averaged Navier-Stokes (RANS) equations. References 9 and 10 report 2-D cases by filling gaps with overset grids. Reference 9 compares integrated forces with the experiment at low oscillating frequencies whereas Ref. 10 reports parametric studies but with no validation. Reference II reports results for a 3D case by modeling the gap region with a deformed grid and compares force results with the experiment only at the mid-span of flap. In Ref. II grid is deformed to match the control surface deflections at the section where the measurements are made. However, there is no

  1. Micron scale simulations of a Kelvin-Helmholtz instability: a direct comparison between molecular dynamics and Navier-Stokes hydrodynamics.

    NASA Astrophysics Data System (ADS)

    Caspersen, Kyle; Rudd, Robert; Richards, David; Glosli, Jim; Cabot, William; Miller, Paul; Streitz, Fred

    2009-03-01

    The modeling of hydrodynamic phenomena has largely been the purview of continuum mechanics, such as through the solution of the Navier-Stokes equations. Nevertheless, at small length scales, where atomistic effects become important, it is not clear that this continuum approach provides a complete description of fluid behavior. To understand the effects of atomistics, we have performed a 9 billion atom quasi-2D molecular dynamics simulation, and the corresponding Navier-Stokes hydrodynamic simulation, of an interface of copper and aluminum in a strong shear layer. The applied shear flow of 2 km/s produces complex phenomena associated with a Kelvin-Helmholtz (KH) instability. In this presentation we compare and contrast the initiation and early evolution of the KH instability modeled both by molecular dynamics and continuum hydrodynamics.

  2. An implicit stabilized finite element method for the compressible Navier-Stokes equations using finite calculus

    NASA Astrophysics Data System (ADS)

    Kouhi, Mohammad; Oñate, Eugenio

    2015-07-01

    A new implicit stabilized formulation for the numerical solution of the compressible Navier-Stokes equations is presented. The method is based on the finite calculus (FIC) scheme using the Galerkin finite element method (FEM) on triangular grids. Via the FIC formulation, two stabilization terms, called streamline term and transverse term, are added to the original conservation equations in the space-time domain. The non-linear system of equations resulting from the spatial discretization is solved implicitly using a damped Newton method benefiting from the exact Jacobian matrix. The matrix system is solved at each iteration with a preconditioned GMRES method. The efficiency of the proposed stabilization technique is checked out in the solution of 2D inviscid and laminar viscous flow problems where appropriate solutions are obtained especially near the boundary layer and shock waves. The work presented here can be considered as a follow up of a previous work of the authors Kouhi, Oñate (Int J Numer Methods Fluids 74:872-897, 2014). In that paper, the stabilized Galerkin FEM based on the FIC formulation was derived for the Euler equations together with an explicit scheme. In the present paper, the extension of this work to the Navier-Stokes equations using an implicit scheme is presented.

  3. On the convergence of the two-dimensional second grade fluid model to the Navier-Stokes equation

    NASA Astrophysics Data System (ADS)

    Arada, Nadir

    2016-02-01

    We consider the equations governing the motion of incompressible second grade fluids in a bounded two-dimensional domain with Navier-slip boundary conditions. We first prove that the corresponding solutions are uniformly bounded with respect to the normal stress modulus α in the L∞-H1 and the L2-H2 time-space norms. Next, we study their asymptotic behavior when α tends to zero, prove that they converge to regular solutions of the Navier-Stokes equations and give the rate of convergence in terms of α.

  4. A fully conservative mimetic discretization of the Navier-Stokes equations in cylindrical coordinates with associated singularity treatment

    NASA Astrophysics Data System (ADS)

    Oud, G. T.; van der Heul, D. R.; Vuik, C.; Henkes, R. A. W. M.

    2016-11-01

    We present a finite difference discretization of the incompressible Navier-Stokes equations in cylindrical coordinates. This currently is, to the authors' knowledge, the only scheme available that is demonstrably capable of conserving mass, momentum and kinetic energy (in the absence of viscosity) on both uniform and non-uniform grids. Simultaneously, we treat the inherent discretization issues that arise due to the presence of the coordinate singularity at the polar axis. We demonstrate the validity of the conservation claims by performing a number of numerical experiments with the proposed scheme, and we show that it is second order accurate in space using the Method of Manufactured Solutions.

  5. Application of Aeroelastic Solvers Based on Navier Stokes Equations

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2001-01-01

    The propulsion element of the NASA Advanced Subsonic Technology (AST) initiative is directed towards increasing the overall efficiency of current aircraft engines. This effort requires an increase in the efficiency of various components, such as fans, compressors, turbines etc. Improvement in engine efficiency can be accomplished through the use of lighter materials, larger diameter fans and/or higher-pressure ratio compressors. However, each of these has the potential to result in aeroelastic problems such as flutter or forced response. To address the aeroelastic problems, the Structural Dynamics Branch of NASA Glenn has been involved in the development of numerical capabilities for analyzing the aeroelastic stability characteristics and forced response of wide chord fans, multi-stage compressors and turbines. In order to design an engine to safely perform a set of desired tasks, accurate information of the stresses on the blade during the entire cycle of blade motion is required. This requirement in turn demands that accurate knowledge of steady and unsteady blade loading is available. To obtain the steady and unsteady aerodynamic forces for the complex flows around the engine components, for the flow regimes encountered by the rotor, an advanced compressible Navier-Stokes solver is required. A finite volume based Navier-Stokes solver has been developed at Mississippi State University (MSU) for solving the flow field around multistage rotors. The focus of the current research effort, under NASA Cooperative Agreement NCC3- 596 was on developing an aeroelastic analysis code (entitled TURBO-AE) based on the Navier-Stokes solver developed by MSU. The TURBO-AE code has been developed for flutter analysis of turbomachine components and delivered to NASA and its industry partners. The code has been verified. validated and is being applied by NASA Glenn and by aircraft engine manufacturers to analyze the aeroelastic stability characteristics of modem fans, compressors

  6. Navier-Stokes analysis of cold scramjet-afterbody flows

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Engelund, Walter C.; Eleshaky, Mohamed E.

    1989-01-01

    The progress of two efforts in coding solutions of Navier-Stokes equations is summarized. The first effort concerns a 3-D space marching parabolized Navier-Stokes (PNS) code being modified to compute the supersonic mixing flow through an internal/external expansion nozzle with multicomponent gases. The 3-D PNS equations, coupled with a set of species continuity equations, are solved using an implicit finite difference scheme. The completed work is summarized and includes code modifications for four chemical species, computing the flow upstream of the upper cowl for a theoretical air mixture, developing an initial plane solution for the inner nozzle region, and computing the flow inside the nozzle for both a N2/O2 mixture and a Freon-12/Ar mixture, and plotting density-pressure contours for the inner nozzle region. The second effort concerns a full Navier-Stokes code. The species continuity equations account for the diffusion of multiple gases. This 3-D explicit afterbody code has the ability to use high order numerical integration schemes such as the 4th order MacCormack, and the Gottlieb-MacCormack schemes. Changes to the work are listed and include, but are not limited to: (1) internal/external flow capability; (2) new treatments of the cowl wall boundary conditions and relaxed computations around the cowl region and cowl tip; (3) the entering of the thermodynamic and transport properties of Freon-12, Ar, O, and N; (4) modification to the Baldwin-Lomax turbulence model to account for turbulent eddies generated by cowl walls inside and external to the nozzle; and (5) adopting a relaxation formula to account for the turbulence in the mixing shear layer.

  7. Smooth solutions of the Navier-Stokes equations

    SciTech Connect

    Pokhozhaev, S I

    2014-02-28

    We consider smooth solutions of the Cauchy problem for the Navier-Stokes equations on the scale of smooth functions which are periodic with respect to x∈R{sup 3}. We obtain existence theorems for global (with respect to t>0) and local solutions of the Cauchy problem. The statements of these depend on the smoothness and the norm of the initial vector function. Upper bounds for the behaviour of solutions in both classes, which depend on t, are also obtained. Bibliography: 10 titles.

  8. Towards an ideal preconditioner for linearized Navier-Stokes problems

    SciTech Connect

    Murphy, M.F.

    1996-12-31

    Discretizing certain linearizations of the steady-state Navier-Stokes equations gives rise to nonsymmetric linear systems with indefinite symmetric part. We show that for such systems there exists a block diagonal preconditioner which gives convergence in three GMRES steps, independent of the mesh size and viscosity parameter (Reynolds number). While this {open_quotes}ideal{close_quotes} preconditioner is too expensive to be used in practice, it provides a useful insight into the problem. We then consider various approximations to the ideal preconditioner, and describe the eigenvalues of the preconditioned systems. Finally, we compare these preconditioners numerically, and present our conclusions.

  9. Dual Variational Principles for 3-D Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Liu, G. L.

    Just recently the exact variational principles (VP) of the full 3-D Navier-Stokes equations of viscous flow have been successfully established for the first time by the present author by means of a systematic reversed deduction method via the undetermined function. As a continuation and further development of that - a pair of new dual (reciprocal)VP is generated herein by means of the Friedrichs involutory transformation. These VP have the advantage over the previous ones that they possess apparent physical meaning of energy, providing a new rigorous theoretical basis for the finite element analysis of 3-D viscous flow.

  10. Navier-Stokes analysis of radial turbine rotor performance

    NASA Technical Reports Server (NTRS)

    Larosiliere, L. M.

    1993-01-01

    An analysis of flow through a radial turbine rotor using the three-dimensional, thin-layer Navier-Stokes code RVC3D is described. The rotor is a solid version of an air-cooled metallic radial turbine having thick trailing edges, shroud clearance, and scalloped-backface clearance. Results are presented at the nominal operating condition using both a zero-clearance model and a model simulating the effects of the shroud and scalloped-backface clearance flows. A comparison with the available test data is made and details of the internal flow physics are discussed, allowing a better understanding of the complex flow distribution within the rotor.

  11. A visual programming environment for the Navier-Stokes computer

    NASA Technical Reports Server (NTRS)

    Tomboulian, Sherryl; Crockett, Thomas W.; Middleton, David

    1988-01-01

    The Navier-Stokes computer is a high-performance, reconfigurable, pipelined machine designed to solve large computational fluid dynamics problems. Due to the complexity of the architecture, development of effective, high-level language compilers for the system appears to be a very difficult task. Consequently, a visual programming methodology has been developed which allows users to program the system at an architectural level by constructing diagrams of the pipeline configuration. These schematic program representations can then be checked for validity and automatically translated into machine code. The visual environment is illustrated by using a prototype graphical editor to program an example problem.

  12. On the emergence of the Navier-Stokes-α model for turbulent channel flows

    NASA Astrophysics Data System (ADS)

    Foias, Ciprian; Tian, Jing; Zhang, Bingsheng

    2016-08-01

    In a series of papers (see Foias et al. [J. Dyn. Differ. Equations 14(1), 1-35 (2002)] and the pertinent references therein), the 3D Navier-Stokes-α model was shown to be a useful complement to the 3D Navier-Stokes equations, and in particular, to be a good Reynolds version of the latter equations. In this work, we introduce a simple Reynolds averaging which, due to the wall roughness, transforms the Navier-Stokes equations into the Navier-Stokes-α model.

  13. On Bi-Grid Local Mode Analysis of Solution Techniques for 3-D Euler and Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Ibraheem, S. O.; Demuren, A. O.

    1994-01-01

    A procedure is presented for utilizing a bi-grid stability analysis as a practical tool for predicting multigrid performance in a range of numerical methods for solving Euler and Navier-Stokes equations. Model problems based on the convection, diffusion and Burger's equation are used to illustrate the superiority of the bi-grid analysis as a predictive tool for multigrid performance in comparison to the smoothing factor derived from conventional von Neumann analysis. For the Euler equations, bi-grid analysis is presented for three upwind difference based factorizations, namely Spatial, Eigenvalue and Combination splits, and two central difference based factorizations, namely LU and ADI methods. In the former, both the Steger-Warming and van Leer flux-vector splitting methods are considered. For the Navier-Stokes equations, only the Beam-Warming (ADI) central difference scheme is considered. In each case, estimates of multigrid convergence rates from the bi-grid analysis are compared to smoothing factors obtained from single-grid stability analysis. Effects of grid aspect ratio and flow skewness are examined. Both predictions are compared with practical multigrid convergence rates for 2-D Euler and Navier-Stokes solutions based on the Beam-Warming central scheme.

  14. Prediction and control of asymmetric vortical flows around slender bodies using Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Wong, Tin-Chee

    Steady and unsteady vortex-dominated flows around slender bodies at high angles of attack are solved by using the unsteady, compressible Navier-Stokes equations. An implicit upwind, finite-volume scheme is used for numerical computations. For supersonic flows past pointed bodies, the locally-conical flow assumption was used. Asymmetric flows past five-degree semi-apex cones using the thin-layer Navier-Stokes equations at different angles of attack, freestream Mach numbers, Reynolds numbers, grid fineness, computational domain size, sources of disturbances, and cross-section shapes were studied. The onset of flow asymmetry occurs when the relative incidence of pointed forebodies exceeds certain critical values. At these critical values of relative incidence, asymmetric flow develops irrespective of the sources of disturbances. The results of unsteady asymmetric flows show that periodic vortex shedding exists at larger angles of attack and it is independent of the numerical schemes used. Passive control of steady and unsteady asymmetric vortical flows around cones using vertical fins and side-strakes were also studied. Side-strikes control of flow asymmetry over a wide range of angles of attack requires shorter strake heights than those of the vertical-fin control and produces higher lift for the same cone. Three-dimensional, incompressible flows past a prolate spheroid and a tangent-ogive cylinder are solved and compared with experimental data for validation of the numerical scheme. Three-dimensional supersonic asymmetric flows around a five degree semi-apex angle circular cone at different angles of attack and Reynolds numbers are presented. Flow asymmetry was obtained using short-duration disturbances. The flow asymmetry becomes stronger as the Reynolds number and angle of attack are increased. The asymmetric solutions show spatial vortex shedding which is qualitatively similar to the temporal vortex shedding of the unsteady locally-conical flow.

  15. Pressure moderation and effective pressure in Navier-Stokes flows

    NASA Astrophysics Data System (ADS)

    Tran, Chuong V.; Yu, Xinwei

    2016-10-01

    We study the Cauchy problem of the Navier-Stokes equations by both semi-analytic and classical energy methods. The former approach provides a physical picture of how viscous effects may or may not be able to suppress singularity development. In the latter approach, we examine the pressure term that drives the dynamics of the velocity norms \\parallel u{{\\parallel}{{Lq}}} , for q≥slant 3 . A key idea behind this investigation is due to the fact that the pressure p in this term is determined up to a function of both space and |u| , say P(x,|u|) , which may assume relatively broad forms. This allows us to use P as a pressure moderator in the evolution equation for \\parallel u{{\\parallel}{{Lq}}} , whereby optimal regularity criteria can be sought by varying P within its admissible classes. New regularity criteria are derived with and without making use of the moderator. The results obtained in the absence of the moderator feature some improvement over existing criteria in the literature. Several criteria are derived in terms of the moderated (effective) pressure p+P . A simple moderation scheme and the plausibility of the present approach to the problem of Navier-Stokes regularity are discussed.

  16. Algorithmic Enhancements to the VULCAN Navier-Stokes Solver

    NASA Technical Reports Server (NTRS)

    Litton, D. K.; Edwards, J. R.; White, J. A.

    2003-01-01

    VULCAN (Viscous Upwind aLgorithm for Complex flow ANalysis) is a cell centered, finite volume code used to solve high speed flows related to hypersonic vehicles. Two algorithms are presented for expanding the range of applications of the current Navier-Stokes solver implemented in VULCAN. The first addition is a highly implicit approach that uses subiterations to enhance block to block connectivity between adjacent subdomains. The addition of this scheme allows more efficient solution of viscous flows on highly-stretched meshes. The second algorithm addresses the shortcomings associated with density-based schemes by the addition of a time-derivative preconditioning strategy. High speed, compressible flows are typically solved with density based schemes, which show a high level of degradation in accuracy and convergence at low Mach numbers (M less than or equal to 0.1). With the addition of preconditioning and associated modifications to the numerical discretization scheme, the eigenvalues will scale with the local velocity, and the above problems will be eliminated. With these additions, VULCAN now has improved convergence behavior for multi-block, highly-stretched meshes and also can solve the Navier-Stokes equations for very low Mach numbers.

  17. Modeling Vortex Generators in a Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.

    2011-01-01

    A source-term model that simulates the effects of vortex generators was implemented into the Wind-US Navier-Stokes code. The source term added to the Navier-Stokes equations simulates the lift force that would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, subsonic flow in an S-duct with 22 corotating vortex generators, and supersonic flow in a rectangular duct with a counter-rotating vortex-generator pair. The model was also used to successfully simulate microramps in supersonic flow by treating each microramp as a pair of vanes with opposite angles of incidence. The validation results indicate that the source-term vortex-generator model provides a useful tool for screening vortex-generator configurations and gives comparable results to solutions computed using gridded vanes.

  18. Navier-Stokes analysis of turbine flowfield and external heat transfer

    NASA Technical Reports Server (NTRS)

    Luo, J.; Lakshminarayana, B.

    1993-01-01

    An explicit 2D Navier-Stokes code has been modified and used to analyze the aerodynamics and heat transfer of a transonic turbine cascade. This code is based on a four-stage Runge-Kutta scheme. An algebraic Reynolds stress model (ARSM) and two versions of low Reynolds number (LRN) two-equation turbulence models, Chien's (1982) LRN k-epsilon model and Coakley's (1983) LRN q-omega model, have been employed in the computations. The surface pressure distributions and wake profiles are predicted well by all the models. The k-epsilon model and the k-epsilon/ARSM model yield better predictions of heat transfer than the q-omega model. The k-epsilon/ARSM solutions show some significant, though not dramatic, differences in the predicted skin friction coefficients, heat transfer rates, and performance parameters, as compared to the k-epsilon model. The predicted semiwake width is consistent with the measurement and correlation.

  19. Multigrid Solution of the Navier-Stokes Equations at Low Speeds with Large Temperature Variations

    NASA Technical Reports Server (NTRS)

    Sockol, Peter M.

    2002-01-01

    Multigrid methods for the Navier-Stokes equations at low speeds and large temperature variations are investigated. The compressible equations with time-derivative preconditioning and preconditioned flux-difference splitting of the inviscid terms are used. Three implicit smoothers have been incorporated into a common multigrid procedure. Both full coarsening and semi-coarsening with directional fine-grid defect correction have been studied. The resulting methods have been tested on four 2D laminar problems over a range of Reynolds numbers on both uniform and highly stretched grids. Two of the three methods show efficient and robust performance over the entire range of conditions. In addition none of the methods have any difficulty with the large temperature variations.

  20. A comparative study of full Navier-Stokes and Reduced Navier-Stokes analyses for separating flows within a diffusing inlet S-duct

    NASA Astrophysics Data System (ADS)

    Anderson, B. H.; Reddy, D. R.; Kapoor, K.

    1993-06-01

    A three-dimensional implicit Full Navier-Stokes (FNS) analysis and a 3D Reduced Navier-Stokes (RNS) initial value space marching solution technique has been applied to a class of separate flow problems within a diffusing S-duct configuration characterized as vortex-liftoff. Both Full Navier-Stokes and Reduced Navier-Stokes solution techniques were able to capture the overall flow physics of vortex lift-off, however more consideration must be given to the development of turbulence models for the prediction of the locations of separation and reattachment. This accounts for some of the discrepancies in the prediction of the relevant inlet distortion descriptors, particularly circumferential distortion. The 3D RNS solution technique adequately described the topological structure of flow separation associated with vortex lift-off.

  1. Investigation of Navier-Stokes code verification and design optimization

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, Rajkumar

    With rapid progress made in employing computational techniques for various complex Navier-Stokes fluid flow problems, design optimization problems traditionally based on empirical formulations and experiments are now being addressed with the aid of computational fluid dynamics (CFD). To be able to carry out an effective CFD-based optimization study, it is essential that the uncertainty and appropriate confidence limits of the CFD solutions be quantified over the chosen design space. The present dissertation investigates the issues related to code verification, surrogate model-based optimization and sensitivity evaluation. For Navier-Stokes (NS) CFD code verification a least square extrapolation (LSE) method is assessed. This method projects numerically computed NS solutions from multiple, coarser base grids onto a finer grid and improves solution accuracy by minimizing the residual of the discretized NS equations over the projected grid. In this dissertation, the finite volume (FV) formulation is focused on. The interplay between the concepts and the outcome of LSE, and the effects of solution gradients and singularities, nonlinear physics, and coupling of flow variables on the effectiveness of LSE are investigated. A CFD-based design optimization of a single element liquid rocket injector is conducted with surrogate models developed using response surface methodology (RSM) based on CFD solutions. The computational model consists of the NS equations, finite rate chemistry, and the k-epsilonturbulence closure. With the aid of these surrogate models, sensitivity and trade-off analyses are carried out for the injector design whose geometry (hydrogen flow angle, hydrogen and oxygen flow areas and oxygen post tip thickness) is optimized to attain desirable goals in performance (combustion length) and life/survivability (the maximum temperatures on the oxidizer post tip and injector face and a combustion chamber wall temperature). A preliminary multi

  2. Investigation of Navier-Stokes Code Verification and Design Optimization

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Rajkumar

    2004-01-01

    With rapid progress made in employing computational techniques for various complex Navier-Stokes fluid flow problems, design optimization problems traditionally based on empirical formulations and experiments are now being addressed with the aid of computational fluid dynamics (CFD). To be able to carry out an effective CFD-based optimization study, it is essential that the uncertainty and appropriate confidence limits of the CFD solutions be quantified over the chosen design space. The present dissertation investigates the issues related to code verification, surrogate model-based optimization and sensitivity evaluation. For Navier-Stokes (NS) CFD code verification a least square extrapolation (LSE) method is assessed. This method projects numerically computed NS solutions from multiple, coarser base grids onto a freer grid and improves solution accuracy by minimizing the residual of the discretized NS equations over the projected grid. In this dissertation, the finite volume (FV) formulation is focused on. The interplay between the xi concepts and the outcome of LSE, and the effects of solution gradients and singularities, nonlinear physics, and coupling of flow variables on the effectiveness of LSE are investigated. A CFD-based design optimization of a single element liquid rocket injector is conducted with surrogate models developed using response surface methodology (RSM) based on CFD solutions. The computational model consists of the NS equations, finite rate chemistry, and the k-6 turbulence closure. With the aid of these surrogate models, sensitivity and trade-off analyses are carried out for the injector design whose geometry (hydrogen flow angle, hydrogen and oxygen flow areas and oxygen post tip thickness) is optimized to attain desirable goals in performance (combustion length) and life/survivability (the maximum temperatures on the oxidizer post tip and injector face and a combustion chamber wall temperature). A preliminary multi-objective optimization

  3. Viscous-inviscid interaction computations using a pseudo Navier-Stokes approach

    NASA Technical Reports Server (NTRS)

    Whitfield, D. L.

    1985-01-01

    A new method is presented for the computation of viscous-inviscid interaction. The idea is to treat rotational inviscid flow (of which flows are almost entirely composed) in a thorough manner, and accept an approximation treatment of vorticity as introduced by viscous effects. The approach is to numerically solve the Navier-Stokes equations with the viscous terms determined from an inverse boundary-layer solution. The method falls somewhere between a Navier-Stokes approach and an Euler and boundary-layer equation coupling approach; consequently, it is referred to as a pseudo Navier-Stokes approach. Results from both the Navier-Stokes equations and the pseudo Navier-Stokes approach are presented.

  4. Implementation/validation of a low Reynolds number two-equation turbulence model in the Proteus Navier-Stokes code: Two-dimensional/axisymmetric

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.

    1992-01-01

    The implementation and validation of the Chien low Reynolds number k-epsilon turbulence model in the two dimensional axisymmetric version Proteus, a compressible Navier-Stokes computer code, are presented. The set of k-epsilon equations are solved by marching in time using a coupled alternating direction implicit (ADI) solution procedure with generalized first or second order time differencing. To validate Proteus and the k-epsilon turbulence model, laminar and turbulent computations were done for several benchmark test cases: incompressible fully developed 2-D channel flow; fully developed axisymmetric pipe flow; boundary layer flow over a flat plate; and turbulent Sajben subsonic transonic diffuser flows. Proteus results from these test cases showed good agreement with analytical results and experimental data. Detailed comparisons of both mean flow and turbulent quantities showed that the Chien k-epsilon turbulence model given good results over a wider range of turbulent flow than the Baldwin-Lomax turbulence model in the Proteus code with no significant CPU time penalty for more complicated flow cases.

  5. Implementation/validation of a low Reynolds number two-equation turbulence model in the Proteus Navier-Stokes code: Two-dimensional/axisymmetric

    NASA Astrophysics Data System (ADS)

    Bui, Trong T.

    1992-04-01

    The implementation and validation of the Chien low Reynolds number k-epsilon turbulence model in the two dimensional axisymmetric version Proteus, a compressible Navier-Stokes computer code, are presented. The set of k-epsilon equations are solved by marching in time using a coupled alternating direction implicit (ADI) solution procedure with generalized first or second order time differencing. To validate Proteus and the k-epsilon turbulence model, laminar and turbulent computations were done for several benchmark test cases: incompressible fully developed 2-D channel flow; fully developed axisymmetric pipe flow; boundary layer flow over a flat plate; and turbulent Sajben subsonic transonic diffuser flows. Proteus results from these test cases showed good agreement with analytical results and experimental data. Detailed comparisons of both mean flow and turbulent quantities showed that the Chien k-epsilon turbulence model given good results over a wider range of turbulent flow than the Baldwin-Lomax turbulence model in the Proteus code with no significant CPU time penalty for more complicated flow cases.

  6. Finite volume TVD Runge Kutta scheme for Navier Stokes computations

    NASA Astrophysics Data System (ADS)

    Bassi, F.; Grasso, F.; Savini, M.

    A numerical procedure for the solution of the Navier-Stokes equations for compressible flows is described and demonstrated. In this finite-volume approach, an upwind-biased second-order TVD scheme based on the method of Harten (1983) is employed for the inviscid (Euler) part of the flow; the viscous contribution is obtained by central differencing; and time integration of the resulting system of ODEs is achieved using a Runge-Kutta algorithm. Results are presented graphically for (1) laminar flow in a double-throat nozzle at Re = 1600; (2) turbulent flow on an RAE2822 airfoil at freestream Mach number 0.75, alpha = 2.70, and Re = 6.2 x 10 to the 6th; and (3) turbulent flow in an LS59TG cascade at M(2is) = 1.31, alpha(1) = 30, and Re(1) = 600,000. Good agreement with published experimental data is demonstrated.

  7. Navier-Stokes Dynamics by a Discrete Boltzmann Model

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robet

    2010-01-01

    This work investigates the possibility of particle-based algorithms for the Navier-Stokes equations and higher order continuum approximations of the Boltzmann equation; such algorithms would generalize the well-known Pullin scheme for the Euler equations. One such method is proposed in the context of a discrete velocity model of the Boltzmann equation. Preliminary results on shock structure are consistent with the expectation that the shock should be much broader than the near discontinuity predicted by the Pullin scheme, yet narrower than the prediction of the Boltzmann equation. We discuss the extension of this essentially deterministic method to a stochastic particle method that, like DSMC, samples the distribution function rather than resolving it completely.

  8. Navier-Stokes computations of cavity aeroacoustics with suppression devices

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Yen, Guan-Wei; Fouladi, Kamran

    1992-01-01

    Effectiveness of two devices to suppress the cavity acoustics was computationally investigated. Two dimensional, computational simulations were performed for the transonic, turbulent flows past a cavity, which was first equipped with a rear face ramp and then with a spoiler. The Reynolds-averaged, unsteady, compressible, full Navier-Stokes equations were solved time accurately by a second-order accurate, implicit, upwind, finite-volume method. The effect of turbulence was included through a Baldwin-Lomax model with modifications for the multiple-wall effects and for the highly vortical flow with a shear layer. The results included instantaneous and time-averaged flow properties, and time-series analyses of the pressure inside the cavity, which compared favorably with the available experimental data. These results were also contrasted with the computed aeroacoustics of the same cavity (length-to-depth ratio of 4.5), but without a device, to demonstrate the suppression effectiveness.

  9. Iterative methods for compressible Navier-Stokes and Euler equations

    SciTech Connect

    Tang, W.P.; Forsyth, P.A.

    1996-12-31

    This workshop will focus on methods for solution of compressible Navier-Stokes and Euler equations. In particular, attention will be focused on the interaction between the methods used to solve the non-linear algebraic equations (e.g. full Newton or first order Jacobian) and the resulting large sparse systems. Various types of block and incomplete LU factorization will be discussed, as well as stability issues, and the use of Newton-Krylov methods. These techniques will be demonstrated on a variety of model transonic and supersonic airfoil problems. Applications to industrial CFD problems will also be presented. Experience with the use of C++ for solution of large scale problems will also be discussed. The format for this workshop will be four fifteen minute talks, followed by a roundtable discussion.

  10. Perturbation of eigenvalues of preconditioned Navier-Stokes operators

    SciTech Connect

    Elman, H.C.

    1996-12-31

    We study the sensitivity of algebraic eigenvalue problems associated with matrices arising from linearization and discretization of the steady-state Navier-Stokes equations. In particular, for several choices of preconditioners applied to the system of discrete equations, we derive upper bounds on perturbations of eigenvalues as functions of the viscosity and discretization mesh size. The bounds suggest that the sensitivity of the eigenvalues is at worst linear in the inverse of the viscosity and quadratic in the inverse of the mesh size, and that scaling can be used to decrease the sensitivity in some cases. Experimental results supplement these results and confirm the relatively mild dependence on viscosity. They also indicate a dependence on the mesh size of magnitude smaller than the analysis suggests.

  11. Navier-Stokes analysis of turbine blade heat transfer

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.

    1990-01-01

    Comparisons with experimental heat transfer and surface pressures were made for seven turbine vane and blade geometries using a quasi-three-dimensional thin-layer Navier-Stokes analysis. Comparisons are made for cases with both separated and unseparated flow over a range of Reynolds numbers and freestream turbulence intensities. The analysis used a modified Baldwin-Lomax turbulent eddy viscosity mode. Modifications were made to account for the effects of: (1) freestream turbulence on both transition and leading edge heat transfer; (2) strong favorable pressure gradients on relaminarization; and (3) variable turbulent Prandtl number heat transfer. In addition, the effect of heat transfer on the near wall model of Deissler is compared with the Van Driest model.

  12. Aerodynamics of thrust vectoring by Navier-Stokes solutions

    NASA Technical Reports Server (NTRS)

    Tseng, Jing-Biau; Lan, C. Edward

    1991-01-01

    Induced aerodynamics from thrust vectoring are investigated by a computational fluid dynamic method. A thin-layer Reynolds-averaged Navier-Stokes code with multiblock capability is used. Jet properties are specified on the nozzle exit plane to simulate the jet momentum. Results for a rectangular jet in a cross flow are compared with data to verify the code. Further verification of the calculation is made by comparing the numerical results with transonic data for a wing-body combination. Additional calculations were performed to elucidate the following thrust vectoring effects: the thrust vectoring effect on shock and expansion waves, induced effects on nearby surfaces, and the thrust vectoring effect on the leading edge vortex.

  13. Navier-Stokes analysis of transonic cascade flow

    NASA Technical Reports Server (NTRS)

    Arnone, A.; Liou, M.-S.; Povinelli, L.

    1990-01-01

    A new kind of C-type grid is proposed, this grid is non-periodic on the wake and allows minimum skewness for cascades with high turning and large camber. Reynolds-averaged Navier-Stokes equations are solved on this type of grid using a finite volume discretization and a full multigrid method which uses Runge-Kutta stepping as the driving scheme. The Baldwin-Lomax eddy-viscosity model is used for turbulence closure. A detailed numerical study is proposed for a highly loaded transonic blade. A grid independence analysis is presented in terms of pressure distribution, exit flow angles, and loss coefficient. Comparison with experiments clearly demonstrates the capability of the proposed procedure.

  14. Time Integration Schemes for the Unsteady Navier-stokes Equations

    NASA Technical Reports Server (NTRS)

    Bijl, Hester; Carpenter, Mark H.; Vatsa, Veer N.

    2001-01-01

    The efficiency and accuracy of several time integration schemes are investigated for the unsteady Navier-Stokes equations. This study focuses on the efficiency of higher-order Runge-Kutta schemes in comparison with the popular Backward Differencing Formulations. For this comparison an unsteady two-dimensional laminar flow problem is chosen, i.e., flow around a circular cylinder at Re = 1200. It is concluded that for realistic error tolerances (smaller than 10(exp -1)) fourth-and fifth-order Runge-Kutta schemes are the most efficient. For reasons of robustness and computer storage, the fourth-order Runge-Kutta method is recommended. The efficiency of the fourth-order Runge-Kutta scheme exceeds that of second-order Backward Difference Formula by a factor of 2.5 at engineering error tolerance levels (10(exp -1) to 10(exp -2)). Efficiency gains are more dramatic at smaller tolerances.

  15. Navier-Stokes and viscous shock-layer solutions for radiating hypersonic flows

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.

    1987-01-01

    Results are presented from the Navier-Stokes and viscous shock-layer (VSL) calculations with nonequilibrium and equilibrium chemistry, respectively. These calculations contain coupling to the Aerotherm radiation code RAD. A simplified form of the electron energy equation is used to obtain an electron temperature in the Navier-Stokes calculations. The radiation in the flowfield is calculated using this temperature. The Navier-Stokes code is used at high altitude only, whereas the VSL code is employed for the entire entry period to make estimates of the radiative and convective heating to the Fire II vehicle. Results from the Navier-Stokes code have also been compared with the predictions of Lee and Kawamura, who used gray-gas radiation model and thin-layer Navier-Stokes equations. Quite good agreement is obtained between the measured and computed values of radiative and convective heating from the VSL code in th medium-to-low altitude flight regime of the Fire II vehicle. At high altitudes, the Navier-Stokes calculations considerably overpredict the Fire II flight data for radiative intensity. This is attributed to the deficiencies in the Aerotherm radiation model when used for low-density flight conditions. This model contains the thermal equilibrium assumption and precludes accounting for the collision-limiting phenomenon at high altitudes. Present Navier-Stokes calculations highlight the effect of these assumptions on radiative heating calculations for such conditions.

  16. Navier-Stokes equations in 3D thin domains with Navier friction boundary condition

    NASA Astrophysics Data System (ADS)

    Hu, Changbing

    In this article we study the 3D Navier-Stokes equations with Navier friction boundary condition in thin domains. We prove the global existence of strong solutions to the 3D Navier-Stokes equations when the initial data and external forces are in large sets as the thickness of the domain is small. We generalize the techniques developed to study the 3D Navier-Stokes equations in thin domains, see [G. Raugel, G. Sell, Navier-Stokes equations on thin 3D domains I: Global attractors and global regularity of solutions, J. Amer. Math. Soc. 6 (1993) 503-568; G. Raugel, G. Sell, Navier-Stokes equations on thin 3D domains II: Global regularity of spatially periodic conditions, in: Nonlinear Partial Differential Equations and Their Application, College de France Seminar, vol. XI, Longman, Harlow, 1994, pp. 205-247; R. Temam, M. Ziane, Navier-Stokes equations in three-dimensional thin domains with various boundary conditions, Adv. Differential Equations 1 (1996) 499-546; R. Temam, M. Ziane, Navier-Stokes equations in thin spherical shells, in: Optimization Methods in Partial Differential Equations, in: Contemp. Math., vol. 209, Amer. Math. Soc., Providence, RI, 1996, pp. 281-314], to the Navier friction boundary condition by introducing a new average operator M in the thin direction according to the spectral decomposition of the Stokes operator A. Our analysis hinges on the refined investigation of the eigenvalue problem corresponding to the Stokes operator A with Navier friction boundary condition.

  17. Approximating the trajectory attractor of the 3D Navier-Stokes system using various \\alpha-models of fluid dynamics

    NASA Astrophysics Data System (ADS)

    Chepyzhov, V. V.

    2016-04-01

    We study the limit as α\\to 0{+} of the long-time dynamics for various approximate α-models of a viscous incompressible fluid and their connection with the trajectory attractor of the exact 3D Navier-Stokes system. The α-models under consideration are divided into two classes depending on the orthogonality properties of the nonlinear terms of the equations generating every particular α-model. We show that the attractors of α-models of class I have stronger properties of attraction for their trajectories than the attractors of α-models of class II. We prove that for both classes the bounded families of trajectories of the α-models considered here converge in the corresponding weak topology to the trajectory attractor A_0 of the exact 3D Navier-Stokes system as time t tends to infinity. Furthermore, we establish that the trajectory attractor A_α of every α-model converges in the same topology to the attractor A_0 as α\\to 0{+}. We construct the minimal limits A\\min\\subseteqA_0 of the trajectory attractors A_α for all α-models as α\\to 0{+}. We prove that every such set A\\min is a compact connected component of the trajectory attractor A_0, and all the A\\min are strictly invariant under the action of the translation semigroup.Bibliography: 39 titles.

  18. Some practical turbulence modeling options for Reynolds-averaged full Navier-Stokes calculations of three-dimensional flows

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.

    1993-01-01

    New turbulence modeling options recently implemented for the 3-D version of Proteus, a Reynolds-averaged compressible Navier-Stokes code, are described. The implemented turbulence models include: the Baldwin-Lomax algebraic model, the Baldwin-Barth one-equation model, the Chien k-epsilon model, and the Launder-Sharma k-epsilon model. Features of this turbulence modeling package include: well documented and easy to use turbulence modeling options, uniform integration of turbulence models from different classes, automatic initialization of turbulence variables for calculations using one- or two-equation turbulence models, multiple solid boundaries treatment, and fully vectorized L-U solver for one- and two-equation models. Validation test cases include the incompressible and compressible flat plate turbulent boundary layers, turbulent developing S-duct flow, and glancing shock wave/turbulent boundary layer interaction. Good agreement is obtained between the computational results and experimental data. Sensitivity of the compressible turbulent solutions with the method of y(sup +) computation, the turbulent length scale correction, and some compressibility corrections are examined in detail. The test cases show that the highly optimized one-and two-equation turbulence models can be used in routine 3-D Navier-Stokes computations with no significant increase in CPU time as compared with the Baldwin-Lomax algebraic model.

  19. On the Global Regularity of a Helical-Decimated Version of the 3D Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Biferale, Luca; Titi, Edriss S.

    2013-06-01

    We study the global regularity, for all time and all initial data in H 1/2, of a recently introduced decimated version of the incompressible 3D Navier-Stokes (dNS) equations. The model is based on a projection of the dynamical evolution of Navier-Stokes (NS) equations into the subspace where helicity (the L 2-scalar product of velocity and vorticity) is sign-definite. The presence of a second (beside energy) sign-definite inviscid conserved quadratic quantity, which is equivalent to the H 1/2-Sobolev norm, allows us to demonstrate global existence and uniqueness, of space-periodic solutions, together with continuity with respect to the initial conditions, for this decimated 3D model. This is achieved thanks to the establishment of two new estimates, for this 3D model, which show that the H 1/2 and the time average of the square of the H 3/2 norms of the velocity field remain finite. Such two additional bounds are known, in the spirit of the work of H. Fujita and T. Kato (Arch. Ration. Mech. Anal. 16:269-315, 1964; Rend. Semin. Mat. Univ. Padova 32:243-260, 1962), to be sufficient for showing well-posedness for the 3D NS equations. Furthermore, they are directly linked to the helicity evolution for the dNS model, and therefore with a clear physical meaning and consequences.

  20. An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Chae, Dongho; Constantin, Peter; Wu, Jiahong

    2014-09-01

    We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.

  1. Calculations of High-Temperature Jet Flow Using Hybrid Reynolds-Average Navier-Stokes Formulations

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Elmiligui, Alaa; Giriamaji, Sharath S.

    2008-01-01

    Two multiscale-type turbulence models are implemented in the PAB3D solver. The models are based on modifying the Reynolds-averaged Navier Stokes equations. The first scheme is a hybrid Reynolds-averaged- Navier Stokes/large-eddy-simulation model using the two-equation k(epsilon) model with a Reynolds-averaged-Navier Stokes/large-eddy-simulation transition function dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the partially averaged Navier Stokes model in which the unresolved kinetic energy parameter f(sub k) is allowed to vary as a function of grid spacing and the turbulence length scale. This parameter is estimated based on a novel two-stage procedure to efficiently estimate the level of scale resolution possible for a given flow on a given grid for partially averaged Navier Stokes. It has been found that the prescribed scale resolution can play a major role in obtaining accurate flow solutions. The parameter f(sub k) varies between zero and one and is equal to one in the viscous sublayer and when the Reynolds-averaged Navier Stokes turbulent viscosity becomes smaller than the large-eddy-simulation viscosity. The formulation, usage methodology, and validation examples are presented to demonstrate the enhancement of PAB3D's time-accurate turbulence modeling capabilities. The accurate simulations of flow and turbulent quantities will provide a valuable tool for accurate jet noise predictions. Solutions from these models are compared with Reynolds-averaged Navier Stokes results and experimental data for high-temperature jet flows. The current results show promise for the capability of hybrid Reynolds-averaged Navier Stokes and large eddy simulation and partially averaged Navier Stokes in simulating such flow phenomena.

  2. Navier-Stokes simulations of unsteady transonic flow phenomena

    NASA Technical Reports Server (NTRS)

    Atwood, C. A.

    1992-01-01

    Numerical simulations of two classes of unsteady flows are obtained via the Navier-Stokes equations: a blast-wave/target interaction problem class and a transonic cavity flow problem class. The method developed for the viscous blast-wave/target interaction problem assumes a laminar, perfect gas implemented in a structured finite-volume framework. The approximately factored implicit scheme uses Newton subiterations to obtain the spatially and temporally second-order accurate time history of the blast-waves with stationary targets. The inviscid flux is evaluated using either of two upwind techniques, while the full viscous terms are computed by central differencing. Comparisons of unsteady numerical, analytical, and experimental results are made in two- and three-dimensions for Couette flows, a starting shock-tunnel, and a shock-tube blockage study. The results show accurate wave speed resolution and nonoscillatory discontinuity capturing of the predominantly inviscid flows. Viscous effects were increasingly significant at large post-interaction times. While the blast-wave/target interaction problem benefits from high-resolution methods applied to the Euler terms, the transonic cavity flow problem requires the use of an efficient scheme implemented in a geometrically flexible overset mesh environment. Hence, the Reynolds averaged Navier-Stokes equations implemented in a diagonal form are applied to the cavity flow class of problems. Comparisons between numerical and experimental results are made in two-dimensions for free shear layers and both rectangular and quieted cavities, and in three-dimensions for Stratospheric Observatory For Infrared Astronomy (SOFIA) geometries. The acoustic behavior of the rectangular and three-dimensional cavity flows compare well with experiment in terms of frequency, magnitude, and quieting trends. However, there is a more rapid decrease in computed acoustic energy with frequency than observed experimentally owing to numerical

  3. Stable boundary conditions and difference schemes for Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Dutt, P.

    1985-01-01

    The Navier-Stokes equations can be viewed as an incompletely elliptic perturbation of the Euler equations. By using the entropy function for the Euler equations as a measure of energy for the Navier-Stokes equations, it was possible to obtain nonlinear energy estimates for the mixed initial boundary value problem. These estimates are used to derive boundary conditions which guarantee L2 boundedness even when the Reynolds number tends to infinity. Finally, a new difference scheme for modelling the Navier-Stokes equations in multidimensions for which it is possible to obtain discrete energy estimates exactly analogous to those we obtained for the differential equation was proposed.

  4. Mathematical analysis of the Navier-Stokes equations with non standard boundary conditions

    NASA Technical Reports Server (NTRS)

    Tidriri, M. D.

    1995-01-01

    One of the major applications of the domain decomposition time marching algorithm is the coupling of the Navier-Stokes systems with Boltzmann equations in order to compute transitional flows. Another important application is the coupling of a global Navier-Stokes problem with a local one in order to use different modelizations and/or discretizations. Both of these applications involve a global Navier-Stokes system with nonstandard boundary conditions. The purpose of this work is to prove, using the classical Leray-Schauder theory, that these boundary conditions are admissible and lead to a well posed problem.

  5. On Nonlocal Cahn-Hilliard-Navier-Stokes Systems in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Frigeri, Sergio; Gal, Ciprian G.; Grasselli, Maurizio

    2016-08-01

    We consider a diffuse interface model which describes the motion of an incompressible isothermal mixture of two immiscible fluids. This model consists of the Navier-Stokes equations coupled with a convective nonlocal Cahn-Hilliard equation. Several results were already proven by two of the present authors. However, in the two-dimensional case, the uniqueness of weak solutions was still open. Here we establish such a result even in the case of degenerate mobility and singular potential. Moreover, we show the weak-strong uniqueness in the case of viscosity depending on the order parameter, provided that either the mobility is constant and the potential is regular or the mobility is degenerate and the potential is singular. In the case of constant viscosity, on account of the uniqueness results, we can deduce the connectedness of the global attractor whose existence was obtained in a previous paper. The uniqueness technique can be adapted to show the validity of a smoothing property for the difference of two trajectories which is crucial to establish the existence of an exponential attractor. The latter is established even in the case of variable viscosity, constant mobility and regular potential.

  6. A determining form for the two-dimensional Navier-Stokes equations: The Fourier modes case

    NASA Astrophysics Data System (ADS)

    Foias, Ciprian; Jolly, Michael S.; Kravchenko, Rostyslav; Titi, Edriss S.

    2012-11-01

    The determining modes for the two-dimensional incompressible Navier-Stokes equations (NSE) are shown to satisfy an ordinary differential equation (ODE) of the form dv/dt = F(v), in the Banach space, X, of all bounded continuous functions of the variable sin {R} with values in certain finite-dimensional linear space. This new evolution ODE, named determining form, induces an infinite-dimensional dynamical system in the space X which is noteworthy for two reasons. One is that F is globally Lipschitz from X into itself. The other is that the long-term dynamics of the determining form contains that of the NSE; the traveling wave solutions of the determining form, i.e., those of the form v(t, s) = v0(t + s), correspond exactly to initial data v0 that are projections of solutions of the global attractor of the NSE onto the determining modes. The determining form is also shown to be dissipative; an estimate for the radius of an absorbing ball is derived in terms of the number of determining modes and the Grashof number (a dimensionless physical parameter).

  7. Hypersonic Navier Stokes Comparisons to Orbiter Flight Data

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.; Nompelis, Ioannis; Candler, Graham; Barnhart, Michael; Yoon, Seokkwan

    2009-01-01

    Hypersonic chemical nonequilibrium simulations of low earth orbit entry flow fields are becoming increasingly commonplace as software and computational capabilities become more capable. However, development of robust and accurate software to model these environments will always encounter a significant barrier in developing a suite of high quality calibration cases. The US3D hypersonic nonequilibrium Navier Stokes analysis capability has been favorably compared to a number of wind tunnel test cases. Extension of the calibration basis for this software to Orbiter flight conditions will provide an incremental increase in confidence. As part of the Orbiter Boundary Layer Transition Flight Experiment and the Hypersonic Thermodynamic Infrared Measurements project, NASA is performing entry flight testing on the Orbiter to provide valuable aerothermodynamic heating data. An increase in interest related to orbiter entry environments is resulting from this activity. With the advent of this new data, comparisons of the US3D software to the new flight testing data is warranted. This paper will provide information regarding the framework of analyses that will be applied with the US3D analysis tool. In addition, comparisons will be made to entry flight testing data provided by the Orbiter BLT Flight Experiment and HYTHIRM projects. If data from digital scans of the Orbiter windward surface become available, simulations will also be performed to characterize the difference in surface heating between the CAD reference OML and the digitized surface provided by the surface scans.

  8. Disentangling the triadic interactions in Navier-Stokes equations.

    PubMed

    Sahoo, Ganapati; Biferale, Luca

    2015-10-01

    We study the role of helicity in the dynamics of energy transfer in a modified version of the Navier-Stokes equations with explicit breaking of the mirror symmetry. We select different set of triads participating in the dynamics on the basis of their helicity content. In particular, we remove the negative helically polarized Fourier modes at all wave numbers except for those falling on a localized shell of wave number, |k| ~ k(m). Changing k(m) to be above or below the forcing scale, k(f), we are able to assess the energy transfer of triads belonging to different interaction classes. We observe that when the negative helical modes are present only at a wave number smaller than the forced wave numbers, an inverse energy cascade develops with an accumulation of energy on a stationary helical condensate. Vice versa, when negative helical modes are present only at a wave number larger than the forced wave numbers, a transition from backward to forward energy transfer is observed in the regime when the minority modes become energetic enough.

  9. A Data Parallel Multizone Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Jespersen, Dennis C.; Levit, Creon; Kwak, Dochan (Technical Monitor)

    1995-01-01

    We have developed a data parallel multizone compressible Navier-Stokes code on the Connection Machine CM-5. The code is set up for implicit time-stepping on single or multiple structured grids. For multiple grids and geometrically complex problems, we follow the "chimera" approach, where flow data on one zone is interpolated onto another in the region of overlap. We will describe our design philosophy and give some timing results for the current code. The design choices can be summarized as: 1. finite differences on structured grids; 2. implicit time-stepping with either distributed solves or data motion and local solves; 3. sequential stepping through multiple zones with interzone data transfer via a distributed data structure. We have implemented these ideas on the CM-5 using CMF (Connection Machine Fortran), a data parallel language which combines elements of Fortran 90 and certain extensions, and which bears a strong similarity to High Performance Fortran (HPF). One interesting feature is the issue of turbulence modeling, where the architecture of a parallel machine makes the use of an algebraic turbulence model awkward, whereas models based on transport equations are more natural. We will present some performance figures for the code on the CM-5, and consider the issues involved in transitioning the code to HPF for portability to other parallel platforms.

  10. Navier-Stokes solutions for flows related to store separation

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Stallings, Robert L., Jr.; Plentovich, Elizabeth B.

    1989-01-01

    The objective is developing CFD capabilities to obtain solutions for viscous flows about generic configurations of internally and externally carried stores. The emphasis is placed on the supersonic flow regime with extensions being made to the transonic regime. The project is broken into four steps: (1) Cavity flows for internal carriage configurations; (2) High angle of attack flows, which may be experienced during the separation of the stores: (3) Flows about a body near a flat plate for external carriage configurations; and (4) Flows about a body inside or in the proximity of a cavity. Three-dimensional unsteady cavity flow solutions are obtained by an explicit, MacCormack algorithm, EMCAV3, for open, close, and transitional cavities. High angle of attack flows past cylinders are solved by an implicit, upwind algorithm. All the results compare favorably with the experimental data. For flows about multiple body configurations, the Chimera embedding scheme is modified for finite-volume and multigrid algorithms, MaGGiE. Then a finite volume, implicit, upwind, multigrid Navier-Stokes solver which uses on overlapped/embedded and zonal grids, VUMXZ3, is developed from the CFL3D code. Supersonic flows past a cylinder near a flat plate are computed using this code. The results are compared with the experimental data. Currently the VUMXZ3 code is being modified to accomplish step 4 of this project. Wind tunnel experiments are also being conducted for validation purposes.

  11. Intermittency and local Reynolds number in Navier-Stokes turbulence: A cross-over scale in the Caffarelli-Kohn-Nirenberg integral

    NASA Astrophysics Data System (ADS)

    Dowker, Mark; Ohkitani, Koji

    2012-11-01

    We study space-time integrals, which appear in the Caffarelli-Kohn-Nirenberg (CKN) theory for the Navier-Stokes equations analytically and numerically. The key quantity is written in standard notations δ (r)=1/(ν r)int _{Q_r}left|nabla {u}right|^2 d{{x}} dt, which can be regarded as a local Reynolds number over a parabolic cylinder Qr. First, by re-examining the CKN integral, we identify a cross-over scale r_* ∝ Lleft( overline{Vert nabla {u} Vert ^2_{L^2}} /Vert nabla {u Vert ^2_{L^infty }} right)^{1/3}, at which the CKN Reynolds number δ(r) changes its scaling behavior. This reproduces a result on the minimum scale rmin in turbulence: r_min^2 Vert nabla {u}Vert _infty ∝ ν , consistent with a result of Henshaw et al. ["On the smallest scale for the incompressible Navier-Stokes equations," Theor. Comput. Fluid Dyn. 1, 65 (1989), 10.1007/BF00272138]. For the energy spectrum E(k) ∝ k-q (1 < q < 3), we show that r* ∝ νa with a=4/3(3-q)-1. Parametric representations are then obtained as Vert nabla {u}Vert _infty ∝ ν ^{-(1+3a)/2} and rmin ∝ ν3(a+1)/4. By the assumptions of the regularity and finite energy dissipation rate in the inviscid limit, we derive lim _{p rArr infty }ζ _p/p=1 - ζ _2 for any phenomenological models on intermittency, where ζp is the exponent of pth order (longitudinal) velocity structure function. It follows that ζp ⩽ (1 - ζ2)(p - 3) + 1 for any p ⩾ 3 without invoking fractal energy cascade. Second, we determine the scaling behavior of δ(r) in direct numerical simulations of the Navier-Stokes equations. In isotropic turbulence around Rλ ≈ 100 starting from random initial conditions, we have found that δ(r) ∝ r4throughout the inertial range. This can be explained by the smallness of a ≈ 0.26,with a result that r* is in the energy-containing range. If the β-model is perfectly correct, the intermittency parameter a must be related to the dissipation correlation exponent μ as μ =4a/1+a ≈ 0.8, which is larger

  12. The meshless local Petrov-Galerkin method based on moving Kriging interpolation for solving the time fractional Navier-Stokes equations.

    PubMed

    Thamareerat, N; Luadsong, A; Aschariyaphotha, N

    2016-01-01

    In this paper, we present a numerical scheme used to solve the nonlinear time fractional Navier-Stokes equations in two dimensions. We first employ the meshless local Petrov-Galerkin (MLPG) method based on a local weak formulation to form the system of discretized equations and then we will approximate the time fractional derivative interpreted in the sense of Caputo by a simple quadrature formula. The moving Kriging interpolation which possesses the Kronecker delta property is applied to construct shape functions. This research aims to extend and develop further the applicability of the truly MLPG method to the generalized incompressible Navier-Stokes equations. Two numerical examples are provided to illustrate the accuracy and efficiency of the proposed algorithm. Very good agreement between the numerically and analytically computed solutions can be observed in the verification. The present MLPG method has proved its efficiency and reliability for solving the two-dimensional time fractional Navier-Stokes equations arising in fluid dynamics as well as several other problems in science and engineering. PMID:27099822

  13. Correct contractions stationary Navier-Stokes equations and boundary conditions for the setting pressure

    NASA Astrophysics Data System (ADS)

    Otelbaev, Mukhtarbay; Koshanov, Bakytbek D.

    2016-08-01

    This paper describes the correct narrowing of the Navier-Stokes equations in a stationary three-dimensional cube and clarified the correct formulation of the boundary conditions for the pressure in the environment.

  14. Separation-bubble flow solution using Euler/Navier-Stokes zonal approach with downstream compatibility conditions

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Wong, T. C.; Kandil, O. A.

    1988-01-01

    The two-dimensional flow over a blunt leading-edge plate is simulated on the basis of an Euler/Navier-Stokes zonal scheme. The scheme uses an implicit upwind finite-volume scheme, which is based on the van Leer flux-vector splitting. It is shown that the Euler/Navier-Stokes zonal scheme with downstream boundary-layer compatibility conditions is accurate and efficient.

  15. Alpha models for rotating Navier-Stokes equations in geophysics with nonlinear dispersive regularization

    NASA Astrophysics Data System (ADS)

    Kim, Bong-Sik

    Three dimensional (3D) Navier-Stokes-alpha equations are considered for uniformly rotating geophysical fluid flows (large Coriolis parameter f = 2O). The Navier-Stokes-alpha equations are a nonlinear dispersive regularization of usual Navier-Stokes equations obtained by Lagrangian averaging. The focus is on the existence and global regularity of solutions of the 3D rotating Navier-Stokes-alpha equations and the uniform convergence of these solutions to those of the original 3D rotating Navier-Stokes equations for large Coriolis parameters f as alpha → 0. Methods are based on fast singular oscillating limits and results are obtained for periodic boundary conditions for all domain aspect ratios, including the case of three wave resonances which yields nonlinear "2½-dimensional" limit resonant equations for f → 0. The existence and global regularity of solutions of limit resonant equations is established, uniformly in alpha. Bootstrapping from global regularity of the limit equations, the existence of a regular solution of the full 3D rotating Navier-Stokes-alpha equations for large f for an infinite time is established. Then, the uniform convergence of a regular solution of the 3D rotating Navier-Stokes-alpha equations (alpha ≠ 0) to the one of the original 3D rotating NavierStokes equations (alpha = 0) for f large but fixed as alpha → 0 follows; this implies "shadowing" of trajectories of the limit dynamical systems by those of the perturbed alpha-dynamical systems. All the estimates are uniform in alpha, in contrast with previous estimates in the literature which blow up as alpha → 0. Finally, the existence of global attractors as well as exponential attractors is established for large f and the estimates are uniform in alpha.

  16. Navier-Stokes solutions of flowfield characteristics produced by ice accretion

    NASA Technical Reports Server (NTRS)

    Scott, J. N.; Gielda, T. P.; Hankey, W. L.

    1988-01-01

    The flowfield and resultant heat transfer rates over a series of ice accretion shapes have been obtained through numerical solutions of the Navier-Stokes equations. The influence of roughness is modeled by including blockage, form drag and stagnation heating effects as source terms in the governing equations. Using the flowfield information obtained from the Navier-Stokes equations the droplet impingement efficiencies are computed using a PNS-type solving scheme. Good agreement is achieved between the numerical results and experimental data.

  17. Uniform Regularity and Vanishing Viscosity Limit for the Free Surface Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Masmoudi, Nader; Rousset, Frederic

    2016-09-01

    We study the inviscid limit of the free boundary Navier-Stokes equations. We prove the existence of solutions on a uniform time interval by using a suitable functional framework based on Sobolev conormal spaces. This allows us to use a strong compactness argument to justify the inviscid limit. Our approach does not rely on the justification of asymptotic expansions. In particular, we get a new existence result for the Euler equations with free surface from the one for Navier-Stokes.

  18. Existence of weak solutions for compressible Navier-Stokes equations with entropy transport

    NASA Astrophysics Data System (ADS)

    Maltese, David; Michálek, Martin; Mucha, Piotr B.; Novotný, Antonin; Pokorný, Milan; Zatorska, Ewelina

    2016-10-01

    We consider the compressible Navier-Stokes system with variable entropy. The pressure is a nonlinear function of the density and the entropy/potential temperature which, unlike in the Navier-Stokes-Fourier system, satisfies only the transport equation. We provide existence results within three alternative weak formulations of the corresponding classical problem. Our constructions hold for the optimal range of the adiabatic coefficients from the point of view of the nowadays existence theory.

  19. Single-grid spectral collocation for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Bernardi, Christine; Canuto, Claudio; Maday, Yvon; Metivet, Brigitte

    1988-01-01

    The aim of the paper is to study a collocation spectral method to approximate the Navier-Stokes equations: only one grid is used, which is built from the nodes of a Gauss-Lobatto quadrature formula, either of Legendre or of Chebyshev type. The convergence is proven for the Stokes problem provided with inhomogeneous Dirichlet conditions, then thoroughly analyzed for the Navier-Stokes equations. The practical implementation algorithm is presented, together with numerical results.

  20. Navier-Stokes and potential theory solutions for ahelicopter fuselage and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Chaffin, Mark S.; Berry, John D.

    1994-01-01

    A thin-layer Navier-Stokes code and a panel method code are used to predict the flow over a generic helicopter fuselage. The computational results are compared with pressure data at four experimental conditions. Both methods produce results that agree with the experimental pressure data. However, separation patterns and other viscous flow features from the Navier-Stokes code solution are shown that cannot be easily modeled with the panel method.

  1. Use of numerically generated body-fitted coordinate systems for solution of the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Mastin, C. W.; Thames, F. C.; Shanks, S. P.

    1975-01-01

    A procedure for numerical solution of the time-dependent, two-dimensional incompressible Navier-Stokes equations that can treat the unsteady laminar flow about bodies of arbitrary shape, such as two-dimensional airfoils, multiple airfoils, and submerged hydrofoils, as naturally as it can deal with the flow about simple bodies. The solution is based on a method of automatic numerical generation of a general curvilinear coordinate system with coordinate lines coincident with all boundaries of a general multiconnected region containing any number of arbitrarily shaped bodies. The curvilinear coordinates are generated as the solution of two elliptical partial differential equations with Dirichlet boundary conditions, one coordinate being specified to be constant on each of the boundaries, and a distribution of the other being specified along the boundaries. The solution compares excellently with the Blasius boundary layer solution for the flow past a semiinfinite flat plate.

  2. Quasi-3D Navier-Stokes model for a rotating airfoil

    SciTech Connect

    Shen, W.Z.; Soerensen, J.N.

    1999-04-10

    The design of blade shapes for wind turbines is typically based on employing the blade-element momentum-theory (BEM) with lift and drag forces determined from 2D measurements. The results obtained are reasonable in the vicinity of the design point, but in stalled conditions the BEM is known to underpredict the forces acting on the blades. Here, a quasi-3D model of the unsteady Navier-Stokes equations in a rotating frame of reference has been developed. The equations governing the flow past a rotating blade are approximated using an order of magnitude analysis on the spanwise derivatives. The model takes into account rotational effects and spanwise outflow at computing expenses in the order of what is typical for similar 2D calculations. Results are presented for both laminar and turbulent flows past blades in pure rotation. In the turbulent case the influence of small-scale turbulence is modelled by the one-equation Baldwin-Barth turbulence model. The computations demonstrate that the main influence of rotation is to increase the maximum lift.

  3. Global smooth flows for compressible Navier-Stokes-Maxwell equations

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Cao, Hongmei

    2016-08-01

    Umeda et al. (Jpn J Appl Math 1:435-457, 1984) considered a rather general class of symmetric hyperbolic-parabolic systems: A0zt+sum_{j=1}nAjz_{xj}+Lz=sum_{j,k=1}nB^{jk}z_{xjxk} and showed optimal decay rates with certain dissipative assumptions. In their results, the dissipation matrices {L} and {B^{jk}(j,k=1,ldots,n)} are both assumed to be real symmetric. So far there are no general results in case that {L} and {B^{jk}} are not necessarily symmetric, which is left open now. In this paper, we investigate compressible Navier-Stokes-Maxwell (N-S-M) equations arising in plasmas physics, which is a concrete example of hyperbolic-parabolic composite systems with non-symmetric dissipation. It is observed that the Cauchy problem for N-S-M equations admits the dissipative mechanism of regularity-loss type. Consequently, extra higher regularity is usually needed to obtain the optimal decay rate of {L1({mathbb{R}}^3)}-{L^2({mathbb{R}}^3)} type, in comparison with that for the global-in-time existence of smooth solutions. In this paper, we obtain the minimal decay regularity of global smooth solutions to N-S-M equations, with aid of {L^p({mathbb{R}}^n)}-{Lq({mathbb{R}}^n)}-{Lr({mathbb{R}}^n)} estimates. It is worth noting that the relation between decay derivative orders and the regularity index of initial data is firstly found in the optimal decay estimates.

  4. Collective molecular dissipation on Navier-Stokes macroscopic scales: Accretion disc viscous modeling in SPH

    NASA Astrophysics Data System (ADS)

    Lanzafame, Giuseppe

    2015-02-01

    In the nonlinear Navier-Stokes viscous flow dynamics, physical damping is mathematically accomplished by a braking term in the momentum equation, corresponding to a heating term in the energy equation, both responsible of the conversion of mechanical energy into heat. In such two terms, it is essential the role of the viscous stress tensor, relative to contiguous macroscopic moving flow components, depending on the macroscopic viscosity coefficient ν. A working formulation for ν can always be found analytically, tuning some arbitrary parameters in the current known formulations, according to the geometry, morphology and physics of the flow. Instead, in this paper, we write an alternative hybrid formulation for ν, where molecular parameters are also included. Our expression for ν has a more physical interpretation of the internal damping in dilute gases because the macroscopic viscosity is related to the small scale molecular dissipation, not strictly dependent on the flow morphology, as well as it is free of any arbitrary parameter. Results for some basic 2D tests are shown in the smoothed particle hydrodynamics (SPH) framework. An application to the 3D accretion disc modeling for low mass cataclysmic variables is also discussed. Consequences of the macroscopic viscosity coefficient reformulation in a more strictly physical terms on the thermal conductivity coefficient for dilute gases are also discussed.

  5. Navier-Stokes computation of compressible turbulent flows with a second order closure, part 1

    NASA Technical Reports Server (NTRS)

    Haminh, Hieu; Kollmann, Wolfgang; Vandromme, Dany

    1990-01-01

    A second order closure turbulence model for compressible flows is developed and implemented in a 2D Reynolds-averaged Navier-Stokes solver. From the beginning where a kappa-epsilon turbulence model was implemented in the bidiagonal implicit method of MACCORMACK (referred to as the MAC3 code) to the final stage of implementing a full second order closure in the efficient line Gauss-Seidel algorithm, numerous work was done, individually and collectively. Besides the collaboration itself, the final product of this work is a second order closure derived from the Launder, Reece, and Rodi model to account for near wall effects, which has been called FRAME model, which stands for FRench-AMerican-Effort. During the reporting period, two different problems were worked out. The first was to provide Ames researchers with a reliable compressible boundary layer code including a wide collection of turbulence models for quick testing of new terms, both in two equations and in second order closure (LRR and FRAME). The second topic was to complete the implementation of the FRAME model in the MAC5 code. The work related to these two different contributions is reported. dilatation in presence of stron shocks. This work, which has been conducted during a work at the Center for Turbulence Research with Zeman aimed also to cros-check earlier assumptions by Rubesin and Vandromme.

  6. A variational level set method for the topology optimization of steady-state Navier Stokes flow

    NASA Astrophysics Data System (ADS)

    Zhou, Shiwei; Li, Qing

    2008-12-01

    The smoothness of topological interfaces often largely affects the fluid optimization and sometimes makes the density-based approaches, though well established in structural designs, inadequate. This paper presents a level-set method for topology optimization of steady-state Navier-Stokes flow subject to a specific fluid volume constraint. The solid-fluid interface is implicitly characterized by a zero-level contour of a higher-order scalar level set function and can be naturally transformed to other configurations as its host moves. A variational form of the cost function is constructed based upon the adjoint variable and Lagrangian multiplier techniques. To satisfy the volume constraint effectively, the Lagrangian multiplier derived from the first-order approximation of the cost function is amended by the bisection algorithm. The procedure allows evolving initial design to an optimal shape and/or topology by solving the Hamilton-Jacobi equation. Two classes of benchmarking examples are presented in this paper: (1) periodic microstructural material design for the maximum permeability; and (2) topology optimization of flow channels for minimizing energy dissipation. A number of 2D and 3D examples well demonstrated the feasibility and advantage of the level-set method in solving fluid-solid shape and topology optimization problems.

  7. Enhancing finite differences with radial basis functions: Experiments on the Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Flyer, Natasha; Barnett, Gregory A.; Wicker, Louis J.

    2016-07-01

    Polynomials are used together with polyharmonic spline (PHS) radial basis functions (RBFs) to create local RBF-finite-difference (RBF-FD) weights on different node layouts for spatial discretizations that can be viewed as enhancements of the classical finite differences (FD). The presented method replicates the convergence properties of FD but for arbitrary node layouts. It is tested on the 2D compressible Navier-Stokes equations at low Mach number, relevant to atmospheric flows. Test cases are taken from the numerical weather prediction community and solved on bounded domains. Thus, attention is given on how to handle boundaries with the RBF-FD method, as well as a novel implementation for hyperviscosity. Comparisons are done on Cartesian, hexagonal, and quasi-uniform node layouts. Consideration and guidelines are given on PHS order, polynomial degree and stencil size. The main advantages of the present method are: 1) capturing the basic physics of the problem surprisingly well, even at very coarse resolutions, 2) high-order accuracy without the need of tuning a shape parameter, and 3) the inclusion of polynomials eliminates stagnation (saturation) errors. A MATLAB code is given to calculate the differentiation weights for this novel approach.

  8. Convergence Acceleration of Runge-Kutta Schemes for Solving the Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Swanson, Roy C., Jr.; Turkel, Eli; Rossow, C.-C.

    2007-01-01

    The convergence of a Runge-Kutta (RK) scheme with multigrid is accelerated by preconditioning with a fully implicit operator. With the extended stability of the Runge-Kutta scheme, CFL numbers as high as 1000 can be used. The implicit preconditioner addresses the stiffness in the discrete equations associated with stretched meshes. This RK/implicit scheme is used as a smoother for multigrid. Fourier analysis is applied to determine damping properties. Numerical dissipation operators based on the Roe scheme, a matrix dissipation, and the CUSP scheme are considered in evaluating the RK/implicit scheme. In addition, the effect of the number of RK stages is examined. Both the numerical and computational efficiency of the scheme with the different dissipation operators are discussed. The RK/implicit scheme is used to solve the two-dimensional (2-D) and three-dimensional (3-D) compressible, Reynolds-averaged Navier-Stokes equations. Turbulent flows over an airfoil and wing at subsonic and transonic conditions are computed. The effects of the cell aspect ratio on convergence are investigated for Reynolds numbers between 5:7 x 10(exp 6) and 100 x 10(exp 6). It is demonstrated that the implicit preconditioner can reduce the computational time of a well-tuned standard RK scheme by a factor between four and ten.

  9. Navier-Stokes analysis of airfoils with leading edge ice accretions

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark G.

    1993-01-01

    A numerical analysis of the flowfield characteristics and the performance degradation of an airfoil with leading edge ice accretions was performed. The important fluid dynamic processes were identified and calculated. Among these were the leading edge separation bubble at low angles of attack, complete separation on the low pressure surface resulting in premature shell, drag rise due to the ice shape, and the effects of angle of attack on the separated flow field. Comparisons to experimental results were conducted to confirm these calculations. A computer code which solves the Navier-Stokes equations in two dimensions, ARC2D, was used to perform the calculations. A Modified Mixing Length turbulence model was developed to produce grids for several ice shape and airfoil combinations. Results indicate that the ability to predict overall performance characteristics, such as lift and drag, at low angles of attack is excellent. Transition location is important for accurately determining separation bubble shape. Details of the flowfield in and downstream of the separated regions requires some modifications. Calculations for the stalled airfoil indicate periodic shedding of vorticity that was generated aft of the ice accretion. Time averaged pressure values produce results which compare favorably with experimental information. A turbulence model which accounts for the history effects in the flow may be justified.

  10. A study of infrasound propagation based on high-order finite difference solutions of the Navier-Stokes equations.

    PubMed

    Marsden, O; Bogey, C; Bailly, C

    2014-03-01

    The feasibility of using numerical simulation of fluid dynamics equations for the detailed description of long-range infrasound propagation in the atmosphere is investigated. The two dimensional (2D) Navier Stokes equations are solved via high fidelity spatial finite differences and Runge-Kutta time integration, coupled with a shock-capturing filter procedure allowing large amplitudes to be studied. The accuracy of acoustic prediction over long distances with this approach is first assessed in the linear regime thanks to two test cases featuring an acoustic source placed above a reflective ground in a homogeneous and weakly inhomogeneous medium, solved for a range of grid resolutions. An atmospheric model which can account for realistic features affecting acoustic propagation is then described. A 2D study of the effect of source amplitude on signals recorded at ground level at varying distances from the source is carried out. Modifications both in terms of waveforms and arrival times are described. PMID:24606252

  11. Comparison of two- and three-dimensional Navier-Stokes solutions with NASA experimental data for CAST-10 airfoil

    NASA Technical Reports Server (NTRS)

    Swanson, R. Charles; Radespiel, Rolf; Mccormick, V. Edward

    1989-01-01

    The two-dimensional (2-D) and three-dimensional Navier-Stokes equations are solved for flow over a NAE CAST-10 airfoil model. Recently developed finite-volume codes that apply a multistage time stepping scheme in conjunction with steady state acceleration techniques are used to solve the equations. Two-dimensional results are shown for flow conditions uncorrected and corrected for wind tunnel wall interference effects. Predicted surface pressures from 3-D simulations are compared with those from 2-D calculations. The focus of the 3-D computations is the influence of the sidewall boundary layers. Topological features of the 3-D flow fields are indicated. Lift and drag results are compared with experimental measurements.

  12. Fast solvers for finite difference approximations for the Stokes and Navier-Stokes equations

    SciTech Connect

    Shin, D.

    1992-01-01

    The authors consider several methods for solving the linear equations arising from finite difference discretizations of the Stokes equations. The pressure equation method presented here for the first time, apparently, and the method, presented by Bramble and Pasciak, are shown to have computational effort that grows slowly with the number of grid points. The methods work with second-order accurate discretizations. Computational results are shown for both the Stokes and incompressible Navier-Stokes at low Reynolds number. The inf-sup conditions resulting from three finite difference approximations of the Stokes equations are proven. These conditions are used to prove that the Schur complement Q[sub h] of the linear system generated by each of these approximations is bounded uniformly away from zero. For the pressure equation method, this guarantees that the conjugate gradient method applied to Q[sub h] converges in a finite number of iterations which is independent of mesh size. The fact that Q[sub h] is bounded below is used to prove convergence estimates for the solutions generated by these finite difference approximations. One of the estimates is for a staggered grid and the estimate of the scheme shows that both the pressure and the velocity parts of the solution are second-order accurate. Iterative methods are compared by the use of the regularized central differencing introduced by Strikwerda. Several finite difference approximations of the Stokes equations by the SOR method are compared and the excellence of the approximations by the regularized central differencing over the other finite difference approximation is mentioned. This difference gives rise to a linear equation with a matrix which is slightly non-symmetric. The convergence of the typical steepest descent method and conjugate gradient method, which is almost as same as the typical conjugate gradient method, applied to slightly non-symmetric positive definite matrices are proven.

  13. A gas-kinetic BGK scheme for the compressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Xu, Kun

    2000-01-01

    This paper presents an improved gas-kinetic scheme based on the Bhatnagar-Gross-Krook (BGK) model for the compressible Navier-Stokes equations. The current method extends the previous gas-kinetic Navier-Stokes solver developed by Xu and Prendergast by implementing a general nonequilibrium state to represent the gas distribution function at the beginning of each time step. As a result, the requirement in the previous scheme, such as the particle collision time being less than the time step for the validity of the BGK Navier-Stokes solution, is removed. Therefore, the applicable regime of the current method is much enlarged and the Navier-Stokes solution can be obtained accurately regardless of the ratio between the collision time and the time step. The gas-kinetic Navier-Stokes solver developed by Chou and Baganoff is the limiting case of the current method, and it is valid only under such a limiting condition. Also, in this paper, the appropriate implementation of boundary condition for the kinetic scheme, different kinetic limiting cases, and the Prandtl number fix are presented. The connection among artificial dissipative central schemes, Godunov-type schemes, and the gas-kinetic BGK method is discussed. Many numerical tests are included to validate the current method.

  14. Euler/Navier-Stokes calculations of transonic flow past fixed- and rotary-wing aircraft configurations

    NASA Technical Reports Server (NTRS)

    Deese, J. E.; Agarwal, R. K.

    1989-01-01

    Computational fluid dynamics has an increasingly important role in the design and analysis of aircraft as computer hardware becomes faster and algorithms become more efficient. Progress is being made in two directions: more complex and realistic configurations are being treated and algorithms based on higher approximations to the complete Navier-Stokes equations are being developed. The literature indicates that linear panel methods can model detailed, realistic aircraft geometries in flow regimes where this approximation is valid. As algorithms including higher approximations to the Navier-Stokes equations are developed, computer resource requirements increase rapidly. Generation of suitable grids become more difficult and the number of grid points required to resolve flow features of interest increases. Recently, the development of large vector computers has enabled researchers to attempt more complex geometries with Euler and Navier-Stokes algorithms. The results of calculations for transonic flow about a typical transport and fighter wing-body configuration using thin layer Navier-Stokes equations are described along with flow about helicopter rotor blades using both Euler/Navier-Stokes equations.

  15. A frequency domain linearized Navier-Stokes method including acoustic damping by eddy viscosity using RANS

    NASA Astrophysics Data System (ADS)

    Holmberg, Andreas; Kierkegaard, Axel; Weng, Chenyang

    2015-06-01

    In this paper, a method for including damping of acoustic energy in regions of strong turbulence is derived for a linearized Navier-Stokes method in the frequency domain. The proposed method is validated and analyzed in 2D only, although the formulation is fully presented in 3D. The result is applied in a study of the linear interaction between the acoustic and the hydrodynamic field in a 2D T-junction, subject to grazing flow at Mach 0.1. Part of the acoustic energy at the upstream edge of the junction is shed as harmonically oscillating disturbances, which are conveyed across the shear layer over the junction, where they interact with the acoustic field. As the acoustic waves travel in regions of strong shear, there is a need to include the interaction between the background turbulence and the acoustic field. For this purpose, the oscillation of the background turbulence Reynold's stress, due to the acoustic field, is modeled using an eddy Newtonian model assumption. The time averaged flow is first solved for using RANS along with a k-ε turbulence model. The spatially varying turbulent eddy viscosity is then added to the spatially invariant kinematic viscosity in the acoustic set of equations. The response of the 2D T-junction to an incident acoustic field is analyzed via a plane wave scattering matrix model, and the result is compared to experimental data for a T-junction of rectangular ducts. A strong improvement in the agreement between calculation and experimental data is found when the modification proposed in this paper is implemented. Discrepancies remaining are likely due to inaccuracies in the selected turbulence model, which is known to produce large errors e.g. for flows with significant rotation, which the grazing flow across the T-junction certainly is. A natural next step is therefore to test the proposed methodology together with more sophisticated turbulence models.

  16. Navier-Stokes Analysis of the Flowfield Characteristics of an Ice Contaminated Aircraft Wing

    NASA Technical Reports Server (NTRS)

    Chung, J.; Choo, Y.; Reehorst, A.; Potapczuk, M.; Slater, J.

    1999-01-01

    An analytical study was performed as part of the NASA Lewis support of a National Transportation Safety Board (NTSB) aircraft accident investigation. The study was focused on the performance degradation associated with ice contamination on the wing of a commercial turbo-prop-powered aircraft. Based upon the results of an earlier numerical study conducted by the authors, a prominent ridged-ice formation on the subject aircraft wing was selected for detailed flow analysis using 2-dimensional (2-D), as well as, 3-dimensional (3-D) Navier-Stokes computations. This configuration was selected because it caused the largest lift decrease and drag increase among all the ice shapes investigated in the earlier study. A grid sensitivity test was performed to find out the influence of grid spacing on the lift, drag, and associated angle-of-attack for the maximum lift (C(sub lmax)). This study showed that grid resolution is important and a sensitivity analysis is an essential element of the process in order to assure that the final solution is independent of the grid. The 2-D results suggested that a severe stability and control difficulty could have occurred at a slightly higher angle-of-attack (AOA) than the one recorded by the Flight Data Recorder (FDR). This stability and control problem was thought to have resulted from a decreased differential lift on the wings with respect to the normal loading for the configuration. The analysis also indicated that this stability and control problem could have occurred whether or not natural ice shedding took place. Numerical results using an assumed 3-D ice shape showed an increase of the angle at which this phenomena occurred of about 4 degrees. As it occurred with the 2-D case, the trailing edge separation was observed but started only when the AOA was very close to the angle at which the maximum lift occurred.

  17. Partially-Averaged Navier Stokes Model for Turbulence: Implementation and Validation

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.; Abdol-Hamid, Khaled S.

    2005-01-01

    Partially-averaged Navier Stokes (PANS) is a suite of turbulence closure models of various modeled-to-resolved scale ratios ranging from Reynolds-averaged Navier Stokes (RANS) to Navier-Stokes (direct numerical simulations). The objective of PANS, like hybrid models, is to resolve large scale structures at reasonable computational expense. The modeled-to-resolved scale ratio or the level of physical resolution in PANS is quantified by two parameters: the unresolved-to-total ratios of kinetic energy (f(sub k)) and dissipation (f(sub epsilon)). The unresolved-scale stress is modeled with the Boussinesq approximation and modeled transport equations are solved for the unresolved kinetic energy and dissipation. In this paper, we first present a brief discussion of the PANS philosophy followed by a description of the implementation procedure and finally perform preliminary evaluation in benchmark problems.

  18. Existence and Regularity of the Pressure for the Stochastic Navier-Stokes Equations

    SciTech Connect

    Langa, Jose A. Real, Jose Simon, Jacques

    2003-10-15

    We prove, on one hand, that for a convenient body force with value sin the distribution space (H{sup -1}(D)){sup d}, where D is the geometric domain of the fluid, there exist a velocity u and a pressure p solution of the stochastic Navier-Stokes equation in dimension 2, 3 or 4. On the other hand, we prove that, for a body force with values in the dual space V' of the divergence free subspace V of (H{sup 1}{sub 0}(D)){sup d},in general it is not possible to solve the stochastic Navier-Stokes equations. More precisely, although such body forces have been considered, there is no topological space in which Navier-Stokes equations could be meaningful for them.

  19. Shape Optimization for Navier-Stokes Equations with Algebraic Turbulence Model: Existence Analysis

    SciTech Connect

    Bulicek, Miroslav Haslinger, Jaroslav Malek, Josef Stebel, Jan

    2009-10-15

    We study a shape optimization problem for the paper machine headbox which distributes a mixture of water and wood fibers in the paper making process. The aim is to find a shape which a priori ensures the given velocity profile on the outlet part. The mathematical formulation leads to an optimal control problem in which the control variable is the shape of the domain representing the header, the state problem is represented by a generalized stationary Navier-Stokes system with nontrivial mixed boundary conditions. In this paper we prove the existence of solutions both to the generalized Navier-Stokes system and to the shape optimization problem.

  20. A stable penalty method for the compressible Navier-Stokes equations. 1: Open boundary conditions

    NASA Technical Reports Server (NTRS)

    Hesthaven, J. S.; Gottlieb, D.

    1994-01-01

    The purpose of this paper is to present asymptotically stable open boundary conditions for the numerical approximation of the compressible Navier-Stokes equations in three spatial dimensions. The treatment uses the conservation form of the Navier-Stokes equations and utilizes linearization and localization at the boundaries based on these variables. The proposed boundary conditions are applied through a penalty procedure, thus ensuring correct behavior of the scheme as the Reynolds number tends to infinity. The versatility of this method is demonstrated for the problem of a compressible flow past a circular cylinder.

  1. Numerical solution of 3D Navier-Stokes equations with upwind implicit schemes

    NASA Technical Reports Server (NTRS)

    Marx, Yves P.

    1990-01-01

    An upwind MUSCL type implicit scheme for the three-dimensional Navier-Stokes equations is presented. Comparison between different approximate Riemann solvers (Roe and Osher) are performed and the influence of the reconstructions schemes on the accuracy of the solution as well as on the convergence of the method is studied. A new limiter is introduced in order to remove the problems usually associated with non-linear upwind schemes. The implementation of a diagonal upwind implicit operator for the three-dimensional Navier-Stokes equations is also discussed. Finally the turbulence modeling is assessed. Good prediction of separated flows are demonstrated if a non-equilibrium turbulence model is used.

  2. Falling paper: Navier-Stokes solutions, model of fluid forces, and center of mass elevation.

    PubMed

    Pesavento, Umberto; Wang, Z Jane

    2004-10-01

    We investigate the problem of falling paper by solving the two dimensional Navier-Stokes equations subject to the motion of a free-falling body at Reynolds numbers around 10(3). The aerodynamic lift on a tumbling plate is found to be dominated by the product of linear and angular velocities rather than velocity squared, as appropriate for an airfoil. This coupling between translation and rotation provides a mechanism for a brief elevation of center of mass near the cusplike turning points. The Navier-Stokes solutions further provide the missing quantity in the classical theory of lift, the instantaneous circulation, and suggest a revised model for the fluid forces.

  3. Decoupling the Stationary Navier-Stokes-Darcy System with the Beavers-Joseph-Saffman Interface Condition

    DOE PAGES

    Cao, Yong; Chu, Yuchuan; He, Xiaoming; Wei, Mingzhen

    2013-01-01

    This paper proposes a domain decomposition method for the coupled stationary Navier-Stokes and Darcy equations with the Beavers-Joseph-Saffman interface condition in order to improve the efficiency of the finite element method. The physical interface conditions are directly utilized to construct the boundary conditions on the interface and then decouple the Navier-Stokes and Darcy equations. Newton iteration will be used to deal with the nonlinear systems. Numerical results are presented to illustrate the features of the proposed method.

  4. Navier-Stokes Neutral and Plasma Fluid Modelling in 3D

    SciTech Connect

    Riemann, J; Borchardt, M; Schneider, R; Mutzke, A; Rognlien, T; Umansky, M

    2004-05-17

    The 3D finite volume transport code BoRiS is applied to a system of coupled plasma and neutral fluid equations in a slab. Demonstrating easy implementation of new equations, a new parallel BoRiS version is tested on three different models for the neutral fluid - diffusive, parallel Navier-Stokes and full Navier-Stokes - and the results are compared to each other. Typical effects like density enhancement by ionization of recycled neutrals in front of a target plate can be seen and differences are linked to the neutral models in use.

  5. An adaptive-mesh finite-difference solution method for the Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Luchini, Paolo

    1987-02-01

    An adjustable variable-spacing grid is presented which permits the addition or deletion of single points during iterative solutions of the Navier-Stokes equations by finite difference methods. The grid is designed for application to two-dimensional steady-flow problems which can be described by partial differential equations whose second derivatives are constrained to the Laplacian operator. An explicit Navier-Stokes equations solution technique defined for use with the grid incorporates a hybrid form of the convective terms. Three methods are developed for automatic modifications of the mesh during calculations.

  6. An Exact Mapping from Navier-Stokes Equation to Schr"odinger Equation via Riccati Equation

    NASA Astrophysics Data System (ADS)

    Christianto, Vic; Smarandache, Florentin

    2010-03-01

    In the present article we argue that it is possible to write down Schr"odinger representation of Navier-Stokes equation via Riccati equation. The proposed approach, while differs appreciably from other method such as what is proposed by R. M. Kiehn, has an advantage, i.e. it enables us extend further to quaternionic and biquaternionic version of Navier-Stokes equation, for instance via Kravchenko's and Gibbon's route. Further observation is of course recommended in order to refute or verify this proposition.

  7. Weighted bounds for the velocity and the vorticity for the Navier Stokes equations

    NASA Astrophysics Data System (ADS)

    Kukavica, Igor; Torres, J. J.

    2006-02-01

    We study decay in space and time for derivatives of solutions of the Navier-Stokes equations in {\\Bbb R}^{n} . The main results concern the ranges of exponents b, c and d for validity of the bounds \\[ \\begin{equation*}\\Vert |x|^{b}\\partial_\\alpha u\\Vert_{L^p} \\le \\frac{C} {(1+t)^{c}}\\end{equation*} \\] and \\[ \\begin{equation*}\\Vert |x|^{b}\\partial_\\alpha \\omega\\Vert_{L^p} \\le \\frac{C}{(1+t)^{d}},\\end{equation*} \\] where u is a solution of the Navier-Stokes equation and ω is its vorticity.

  8. Comparisons of Monte-Carlo and PNS (Parabolized Navier-Stokes) calculations for rarefied flow over reentry vehicle configurations

    SciTech Connect

    Bartel, T.J.; Walker, M.A.; Homicz, G.F.

    1988-01-01

    This paper compares the hypersonic flow field solutions obtained from both a kinetic and a continuum model of the rarefied flow about geometries typical of those found in aerospace applications. Experimental data, where available, are also compared to the predictions. The kinetic model used is Bird's Direct-Simulation Monte-Carlo (DSMC) algorithm. The continuum model is based on the widely-used Parabolized Navier-Stokes (PNS) equations. The configurations include a sharped cone, and spherically-blunted biconic and triconic configurations; all assume 2-D axisymmetric flow at zero angle-of-attack. The Knudsen number of the flows, based on freestream conditions, varied from approximately 10/sup -3/ to 1. While the comparisons with experimental data are limited to global quantities such as the drag coefficient, numerical results are also presented for surface distributions of pressure and heat transfer, and density and temperature profiles in the flow field. Difficulties encountered with both solution procedures are discussed.

  9. A new scheme for the Navier-Stokes equations employing alternating-direction operator splitting and domain decomposition

    NASA Astrophysics Data System (ADS)

    Spyropoulos, John T.

    This thesis extends earlier research in numerical analysis and computational fluid dynamics (CFD) to obtain a novel finite element method for the transient, 3-D, incompressible Navier-Stokes equations, along with efficient, parallelizable algorithms to carry out an implementation of the method in such a fashion as to be useful in mainstream industrial settings. This new finite element procedure employs alternating-direction operator splittings to model problems of increasing complexity in a step-by-step and natural manner. The scheme employs a characteristic-Galerkin method for the numerical treatment of the nonlinear advection operator. Non-overlapping domain decomposition schemes are employed for the solution of linear Stokes-type subproblems and for the matching of the inviscid and viscous solutions in different subdomains. These problems are solved by Bramble-Pasciak-Schatz wirebasket domain decomposition methods in a stabilized mixed finite element method formulation. The scheme is coupled to an existing grid generator code that provides globally unstructured, but locally structured grids, within each subdomain. Numerical results obtained include incompressible viscous flows over a backward facing steps at various Reynolds numbers and show very good to excellent agreement with experiments as well as other published numerical results.

  10. An Explicit Upwind Algorithm for Solving the Parabolized Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Korte, John J.

    1991-01-01

    An explicit, upwind algorithm was developed for the direct (noniterative) integration of the 3-D Parabolized Navier-Stokes (PNS) equations in a generalized coordinate system. The new algorithm uses upwind approximations of the numerical fluxes for the pressure and convection terms obtained by combining flux difference splittings (FDS) formed from the solution of an approximate Riemann (RP). The approximate RP is solved using an extension of the method developed by Roe for steady supersonic flow of an ideal gas. Roe's method is extended for use with the 3-D PNS equations expressed in generalized coordinates and to include Vigneron's technique of splitting the streamwise pressure gradient. The difficulty associated with applying Roe's scheme in the subsonic region is overcome. The second-order upwind differencing of the flux derivatives are obtained by adding FDS to either an original forward or backward differencing of the flux derivative. This approach is used to modify an explicit MacCormack differencing scheme into an upwind differencing scheme. The second order upwind flux approximations, applied with flux limiters, provide a method for numerically capturing shocks without the need for additional artificial damping terms which require adjustment by the user. In addition, a cubic equation is derived for determining Vegneron's pressure splitting coefficient using the updated streamwise flux vector. Decoding the streamwise flux vector with the updated value of Vigneron's pressure splitting improves the stability of the scheme. The new algorithm is applied to 2-D and 3-D supersonic and hypersonic laminar flow test cases. Results are presented for the experimental studies of Holden and of Tracy. In addition, a flow field solution is presented for a generic hypersonic aircraft at a Mach number of 24.5 and angle of attack of 1 degree. The computed results compare well to both experimental data and numerical results from other algorithms. Computational times required

  11. Incompressible Limit for Compressible Fluids with Stochastic Forcing

    NASA Astrophysics Data System (ADS)

    Breit, Dominic; Feireisl, Eduard; Hofmanová, Martina

    2016-11-01

    We study the asymptotic behavior of the isentropic Navier-Stokes system driven by a multiplicative stochastic forcing in the compressible regime, where the Mach number approaches zero. Our approach is based on the recently developed concept of a weak martingale solution to the primitive system, uniform bounds derived from a stochastic analogue of the modulated energy inequality, and careful analysis of acoustic waves. A stochastic incompressible Navier-Stokes system is identified as the limit problem.

  12. A Navier-Stokes solver using the LU-SSOR TVD algorithm

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan

    1987-01-01

    A new Navier-Stokes solver is developed by combining the efficiency of the LU-SSOR scheme and the accuracy of the flux-limited dissipation scheme. Application to laminar and turbulent flows and hypersonic flows proves the reliability of the new algorithm.

  13. A Reconstructed Discontinuous Galerkin Method for the Compressible Navier-Stokes Equations on Arbitrary Grids

    SciTech Connect

    Hong Luo; Luqing Luo; Robert Nourgaliev; Vincent A. Mousseau

    2010-01-01

    A reconstruction-based discontinuous Galerkin (RDG) method is presented for the solution of the compressible Navier-Stokes equations on arbitrary grids. The RDG method, originally developed for the compressible Euler equations, is extended to discretize viscous and heat fluxes in the Navier-Stokes equations using a so-called inter-cell reconstruction, where a smooth solution is locally reconstructed using a least-squares method from the underlying discontinuous DG solution. Similar to the recovery-based DG (rDG) methods, this reconstructed DG method eliminates the introduction of ad hoc penalty or coupling terms commonly found in traditional DG methods. Unlike rDG methods, this RDG method does not need to judiciously choose a proper form of a recovered polynomial, thus is simple, flexible, and robust, and can be used on arbitrary grids. The developed RDG method is used to compute a variety of flow problems on arbitrary meshes to demonstrate its accuracy, efficiency, robustness, and versatility. The numerical results indicate that this RDG method is able to deliver the same accuracy as the well-known Bassi-Rebay II scheme, at a half of its computing costs for the discretization of the viscous fluxes in the Navier-Stokes equations, clearly demonstrating its superior performance over the existing DG methods for solving the compressible Navier-Stokes equations.

  14. Relativistic Navier-Stokes equations in the Meixner-Prigogine scheme

    NASA Astrophysics Data System (ADS)

    Sandoval-Villalbazo, Alfredo; García-Colín, L. S.

    1997-02-01

    Viscous effects are included in the relativistic Meixner-Prigogine scheme (see: A. Sandoval-Villalbazo, L.S. García-Colín, Physica A 234 (1996) 358). A relativistic generalization of the Navier-Stokes equations is obtained within this framework. The system obtained is analyzed and compared with related work.

  15. A Comparison of Three Navier-Stokes Solvers for Exhaust Nozzle Flowfields

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Yoder, Dennis A.; Debonis, James R.

    1999-01-01

    A comparison of the NPARC, PAB, and WIND (previously known as NASTD) Navier-Stokes solvers is made for two flow cases with turbulent mixing as the dominant flow characteristic, a two-dimensional ejector nozzle and a Mach 1.5 elliptic jet. The objective of the work is to determine if comparable predictions of nozzle flows can be obtained from different Navier-Stokes codes employed in a multiple site research program. A single computational grid was constructed for each of the two flows and used for all of the Navier-Stokes solvers. In addition, similar k-e based turbulence models were employed in each code, and boundary conditions were specified as similarly as possible across the codes. Comparisons of mass flow rates, velocity profiles, and turbulence model quantities are made between the computations and experimental data. The computational cost of obtaining converged solutions with each of the codes is also documented. Results indicate that all of the codes provided similar predictions for the two nozzle flows. Agreement of the Navier-Stokes calculations with experimental data was good for the ejector nozzle. However, for the Mach 1.5 elliptic jet, the calculations were unable to accurately capture the development of the three dimensional elliptic mixing layer.

  16. Simulation of Unsteady Flows Using an Unstructured Navier-Stokes Solver on Moving and Stationary Grids

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Vatsa, Veer N.; Atkins, Harold L.

    2005-01-01

    We apply an unsteady Reynolds-averaged Navier-Stokes (URANS) solver for unstructured grids to unsteady flows on moving and stationary grids. Example problems considered are relevant to active flow control and stability and control. Computational results are presented using the Spalart-Allmaras turbulence model and are compared to experimental data. The effect of grid and time-step refinement are examined.

  17. Martingale solutions and Markov selection of stochastic 3D Navier-Stokes equations with jump

    NASA Astrophysics Data System (ADS)

    Dong, Zhao; Zhai, Jianliang

    2011-03-01

    In this paper, we study the existence of martingale solutions of stochastic 3D Navier-Stokes equations with jump, and following Flandoli and Romito (2008) [7] and Goldys et al. (2009) [8], we prove the existence of Markov selections for the martingale solutions.

  18. Turbomachinery Heat Transfer and Loss Modeling for 3D Navier-Stokes Codes

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Ameri, Ali

    2005-01-01

    This report's contents focus on making use of NASA Glenn on-site computational facilities,to develop, validate, and apply models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes to enhance the capability to compute heat transfer and losses in turbomachiney.

  19. Remark on boundary data for inverse boundary value problems for the Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Imanuvilov, O. Yu; Yamamoto, M.

    2015-10-01

    In this note, we prove that for the Navier-Stokes equations, a pair of Dirichlet and Neumann data and pressure uniquely correspond to a pair of Dirichlet data and surface stress on the boundary. Hence the two inverse boundary value problems in Imanuvilov and Yamamoto (2015 Inverse Probl. 31 035004) and Lai et al (Arch. Rational Mech. Anal.) are the same.

  20. Properties of the Residual Stress of the Temporally Filtered Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Pruett, C. D.; Gatski, T. B.; Grosch, C. E.; Thacker, W. D.

    2002-01-01

    The development of a unifying framework among direct numerical simulations, large-eddy simulations, and statistically averaged formulations of the Navier-Stokes equations, is of current interest. Toward that goal, the properties of the residual (subgrid-scale) stress of the temporally filtered Navier-Stokes equations are carefully examined. Causal time-domain filters, parameterized by a temporal filter width 0 less than Delta less than infinity, are considered. For several reasons, the differential forms of such filters are preferred to their corresponding integral forms; among these, storage requirements for differential forms are typically much less than for integral forms and, for some filters, are independent of Delta. The behavior of the residual stress in the limits of both vanishing and in infinite filter widths is examined. It is shown analytically that, in the limit Delta to 0, the residual stress vanishes, in which case the Navier-Stokes equations are recovered from the temporally filtered equations. Alternately, in the limit Delta to infinity, the residual stress is equivalent to the long-time averaged stress, and the Reynolds-averaged Navier-Stokes equations are recovered from the temporally filtered equations. The predicted behavior at the asymptotic limits of filter width is further validated by numerical simulations of the temporally filtered forced, viscous Burger's equation. Finally, finite filter widths are also considered, and a priori analyses of temporal similarity and temporal approximate deconvolution models of the residual stress are conducted.

  1. Applications of the contravariant form of the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Katsanis, T.

    1983-01-01

    The contravariant Navier-Stokes equations in weak conservation form are well suited to certain fluid flow analysis problems. Three dimensional contravariant momentum equations may be used to obtain Navier-Stokes equations in weak conservation form on a nonplanar two dimensional surface with varying streamsheet thickness. Thus a three dimensional flow can be simulated with two dimensional equations to obtain a quasi-three dimensional solution for viscous flow. When the Navier-Stokes equations on the two dimensional nonplanar surface are transformed to a generalized body fitted mesh coordinate system, the resulting equations are similar to the equations for a body fitted mesh coordinate system on the Euclidean plane. Contravariant momentum components are also useful for analyzing compressible, three dimensional viscous flow through an internal duct by parabolic marching. This type of flow is efficiently analyzed by parabolic marching methods, where the streamwise momentum equation is uncoupled from the two crossflow momentum equations. This can be done, even for ducts with a large amount of turning, if the Navier-Stokes equations are written with contravariant components.

  2. Entropy density of spacetime and the Navier-Stokes fluid dynamics of null surfaces

    NASA Astrophysics Data System (ADS)

    Padmanabhan, T.

    2011-02-01

    It has been known for several decades that Einstein’s field equations, when projected onto a null surface, exhibit a structure very similar to the nonrelativistic Navier-Stokes equation. I show that this result arises quite naturally when gravitational dynamics is viewed as an emergent phenomenon. Extremizing the spacetime entropy density associated with the null surfaces leads to a set of equations which, when viewed in the local inertial frame, becomes identical to the Navier-Stokes equation. This is in contrast to the usual description of the Damour-Navier-Stokes equation in a general coordinate system, in which there appears a Lie derivative rather than a convective derivative. I discuss this difference, its importance, and why it is more appropriate to view the equation in a local inertial frame. The viscous force on fluid, arising from the gradient of the viscous stress-tensor, involves the second derivatives of the metric and does not vanish in the local inertial frame, while the viscous stress-tensor itself vanishes so that inertial observers detect no dissipation. We thus provide an entropy extremization principle that leads to the Damour-Navier-Stokes equation, which makes the hydrodynamical analogy with gravity completely natural and obvious. Several implications of these results are discussed.

  3. Conservative multizonal interface algorithm for the 3-D Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Klopfer, G. H.; Molvik, G. A.

    1991-01-01

    A conservative zonal interface algorithm using features of both structured and unstructured mesh CFD technology is presented. The flow solver within each of the zones is based on structured mesh CFD technology. The interface algorithm was implemented into two three-dimensional Navier-Stokes finite volume codes and was found to yield good results.

  4. Stationary Stokes, Oseen and Navier-Stokes Equations with Singular Data

    NASA Astrophysics Data System (ADS)

    Amrouche, Chérif; Rodríguez-Bellido, M. Ángeles

    2011-02-01

    The concept of very weak solution introduced by Giga (Math Z 178:287-329, 1981) for the Stokes equations has hardly been studied in recent years for either the Navier-Stokes equations or the Navier-Stokes type equations. We treat the stationary Stokes, Oseen and Navier-Stokes systems in the case of a bounded open set, connected of class {mathcal{C}^{1,1}} of {mathbb{R}^3}. Taking up once again the duality method introduced by Lions and Magenes (Problèmes aus limites non-homogènes et applications, vols. 1 & 2, Dunod, Paris, 1968) and Giga (Math Z 178:287-329, 1981) for open sets of class {mathcal{C}^{infty}} [see also chapter 4 of Necas (Les méthodes directes en théorie des équations elliptiques. (French) Masson et Cie, Éd., Paris; Academia, Éditeurs, Prague, 1967), which considers the Hilbertian case p = 2 for general elliptic operators], we give a simpler proof of the existence of a very weak solution for stationary Oseen and Navier-Stokes equations when data are not regular enough, based on density arguments and a functional framework adequate for defining more rigourously the traces of non-regular vector fields. In the stationary Navier-Stokes case, the results will be valid for external forces not necessarily small, which lets us extend the uniqueness class of solutions for these equations. Considering more regular data, regularity results in fractional Sobolev spaces will also be discussed for the three systems. All these results can be extended to other dimensions.

  5. A Newton-Krylov method with approximate Jacobian for implicit solution of Navier-Stokes on staggered overset-curvilinear grids with immersed boundaries

    NASA Astrophysics Data System (ADS)

    Asgharzadeh, Hafez; Borazjani, Iman

    2014-11-01

    Time step-size restrictions and low convergence rates are major bottle necks for implicit solution of the Navier-Stokes in simulations involving complex geometries with moving boundaries. Newton-Krylov method (NKM) is a combination of a Newton-type method for super-linearly convergent solution of nonlinear equations and Krylov subspace methods for solving the Newton correction equations, which can theoretically address both bottle necks. The efficiency of this method vastly depends on the Jacobian forming scheme e.g. automatic differentiation is very expensive and Jacobian-free methods slow down as the mesh is refined. A novel, computationally efficient analytical Jacobian for NKM was developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered curvilinear grids with immersed boundaries. The NKM was validated and verified against Taylor-Green vortex and pulsatile flow in a 90 degree bend and efficiently handles complex geometries such as an intracranial aneurysm with multiple overset grids, pulsatile inlet flow and immersed boundaries. The NKM method is shown to be more efficient than the semi-implicit Runge-Kutta methods and Jabobian-free Newton-Krylov methods. We believe NKM can be applied to many CFD techniques to decrease the computational cost. This work was supported partly by the NIH Grant R03EB014860, and the computational resources were partly provided by Center for Computational Research (CCR) at University at Buffalo.

  6. Calculation of AGARD Wing 445.6 Flutter Using Navier-Stokes Aerodynamics

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, Elizabeth M.; Batina, John T.

    1993-01-01

    The flutter characteristics of the first AGARD standard aeroelastic configuration for dynamic response, Wing 445.6, are studied using an unsteady Navier-Stokes algorithm in order to investigate a previously noted discrepancy between Euler flutter characteristics and the experimental data. The algorithm, which is a three-dimensional, implicit, upwind Euler/Navier-Stokes code (CFL3D Version 2.1), was previously modified for the time-marching, aeroelastic analysis of wings using the unsteady Euler equations. These modifications include the incorporation of a deforming mesh algorithm and the addition of the structural equations of motion for their simultaneous time integration with the governing flow equations. In this paper, the aeroelastic method is extended and evaluated for applications that use the Navier- Stokes aerodynamics. The paper presents a brief description of the aeroelastic method and presents unsteady calculations which verify this method for Navier-Stokes calculations. A linear stability analysis and a time-marching aeroelastic analysis are used to determine the flutter characteristics of the isolated 45 deg. swept-back wing. Effects of fluid viscosity, structural damping, and number of modes in the structural model are investigated. For the linear stability analysis, the unsteady generalized aerodynamic forces of the wing are computed for a range of reduced frequencies using the pulse transfer-function approach. The flutter characteristics of the wing are determined using these unsteady generalized aerodynamic forces in a traditional V-g analysis. This stability analysis is used to determine the flutter characteristics of the wing at free-stream Mach numbers of 0.96 and 1.141 using the generalized aerodynamic forces generated by solving the Euler equations and the Navier-Stokes equations. Time-marching aeroelastic calculations are performed at a free-stream Mach number of 1.141 using the Euler and Navier-Stokes equations to compare with the linear V

  7. Perturbation solution of the Navier-Stokes equations and its relation to the Lighthill-Curle solution of aerodynamic sound

    NASA Technical Reports Server (NTRS)

    Pan, Y. S.

    1975-01-01

    The aerodynamic sound described by the Lighthill-Curle solution is reexamined using a method of matched asymptotic expansions. The governing Navier-Stokes equations written in nondimensional form are expanded for a small Mach number. First- and second-order solutions for the pressure field are obtained, and the singular nature of the expansion at large distances is indicated. The nearfield pressure is governed by the Poisson equation, whereas the farfield equations describe a linear wave system in a dissipative medium. The pseudosound is related to the incompressible Reynolds stresses associated with a solenoidal velocity field, the velocity, the pressure perturbation, and their derivatives on the boundaries. A uniformly valid first-order solution for the pressure is obtained. It is shown that viscosity, thermal conductivity, and entropy in the flow do not contribute to the first-order noise generation, while the viscous stress contributes to noise only from some boundaries. The application of the proposed perturbation method to a subsonically moving surface and a hot jet is discussed.

  8. Application of the method of lines for solutions of the Navier-Stokes equations using a nonuniform grid distribution

    NASA Technical Reports Server (NTRS)

    Abolhassani, J. S.; Tiwari, S. N.

    1983-01-01

    The feasibility of the method of lines for solutions of physical problems requiring nonuniform grid distributions is investigated. To attain this, it is also necessary to investigate the stiffness characteristics of the pertinent equations. For specific applications, the governing equations considered are those for viscous, incompressible, two dimensional and axisymmetric flows. These equations are transformed from the physical domain having a variable mesh to a computational domain with a uniform mesh. The two governing partial differential equations are the vorticity and stream function equations. The method of lines is used to solve the vorticity equation and the successive over relaxation technique is used to solve the stream function equation. The method is applied to three laminar flow problems: the flow in ducts, curved-wall diffusers, and a driven cavity. Results obtained for different flow conditions are in good agreement with available analytical and numerical solutions. The viability and validity of the method of lines are demonstrated by its application to Navier-Stokes equations in the physical domain having a variable mesh.

  9. Singular initial data and uniform global bounds for the hyper-viscous Navier-Stokes equation with periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Avrin, Joel

    In the hyper-viscous Navier-Stokes equations of incompressible flow, the operator A=- Δ is replaced by Aα, a, b≡ aAα+ bA for real numbers α, a, b with α⩾1 and b⩾0. We treat here the case a>0 and equip A (and hence Aα, a, b) with periodic boundary conditions over a rectangular solid Ω⊂R n. For initial data in L p(Ω) with α⩾ n/(2 p)+1/2 we establish local existence and uniqueness of strong solutions, generalizing a result of Giga/Miyakawa for α=1 and b=0. Specializing to the case p=2, which holds a particular physical relevance in terms of the total energy of the system, it is somewhat interesting to note that the condition α⩾ n/4+1/2 is sufficient also to establish global existence of these unique regular solutions and uniform higher-order bounds. For the borderline case α= n/4+1/2 we generalize standard existing (for n=3) "folklore" results and use energy techniques and Gronwall's inequality to obtain first a time-dependent Hα-bound, and then convert to a time-independent global exponential Hα-bound. This is to be expected, given that uniform bounds already exist for n=2, α=1 ([6, pp. 78-79]), and the folklore bounds already suggest that the α⩾ n/4+1/2 cases for n⩾3 should behave as well as the n=2 case. What is slightly less expected is that the n⩾3 cases are easier to prove and give better bounds, e.g. the uniform bound for n⩾3 depends on the square of the data in the exponential rather than the fourth power for n=2. More significantly, for α> n/4+1/2 we use our own entirely semigroup techniques to obtain uniform global bounds which bootstrap directly from the uniform L2-estimate and are algebraic in terms of the uniform L2-bounds on the initial and forcing data. The integer powers on the square of the data increase without bound as α↓ n/4+1/2, thus "anticipating" the exponential bound in the borderline case α= n/4+1/2. We prove our results for the case a=1 and b=0; the general case with a>0 and b⩾0 can be recovered by

  10. A gridless Euler/Navier-Stokes solution algorithm for complex two-dimensional applications

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    1992-01-01

    The development of a gridless computational fluid dynamics (CFD) method for the solution of the two-dimensional Euler and Navier-Stokes equations is described. The method uses only clouds of points and does not require that the points be connected to form a grid as is necessary in conventional CFD algorithms. The gridless CFD approach appears to resolve the problems and inefficiencies encountered with structured or unstructured grid methods. As a result, the method offers the greatest potential for accurately and efficiently solving viscous flows about complex aircraft configurations. The method is described in detail, and calculations are presented for standard Euler and Navier-Stokes cases to assess the accuracy and efficiency of the capability.

  11. Study of the Navier-Stokes regularity problem with critical norms

    NASA Astrophysics Data System (ADS)

    Ohkitani, Koji

    2016-04-01

    We study the basic problems of regularity of the Navier-Stokes equations. The blowup criteria on the basis of the critical {H}1/2-norm, is bounded from above by a logarithmic function, (Robinson et al 2012 J. Math. Phys. 53 115618). Assuming that the Cauchy-Schwarz inequality for the {H}1/2-norm is not an overestimate, we replace it by a square-root of a product of the energy and the enstrophy. We carry out a simple asymptotic analysis to determine the time evolution of the energy. This generalises the (already ruled-out) self-similar blowup ansatz. Some numerical results are also presented, which support the above-mentioned replacement. We carry out a similar analysis for the four-dimensional Navier-Stokes equations.

  12. Bypass Transitional Flow Calculations Using a Navier-Stokes Solver and Two-Equation Models

    NASA Technical Reports Server (NTRS)

    Liuo, William W.; Shih, Tsan-Hsing; Povinelli, L. A. (Technical Monitor)

    2000-01-01

    Bypass transitional flows over a flat plate were simulated using a Navier-Stokes solver and two equation models. A new model for the bypass transition, which occurs in cases with high free stream turbulence intensity (TI), is described. The new transition model is developed by including an intermittency correction function to an existing two-equation turbulence model. The advantages of using Navier-Stokes equations, as opposed to boundary-layer equations, in bypass transition simulations are also illustrated. The results for two test flows over a flat plate with different levels of free stream turbulence intensity are reported. Comparisons with the experimental measurements show that the new model can capture very well both the onset and the length of bypass transition.

  13. A comparison of numerical flux formulas for the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Van Leer, Bram; Thomas, James L.; Roe, Philip L.; Newsome, Richard W.

    1987-01-01

    Numerical flux formulas for the convection terms in the Euler or Navier-Stokes equations are analyzed with regard to their accuracy in representing steady nonlinear and linear waves (shocks and entropy/shear waves, respectively). Numerical results are obtained for a one-dimensional conical Navier-Stokes flow including both a shock and a boundary layer. Analysis and experiments indicate that for an accurate representation of both layers the flux formula must include information about all different waves by which neighboring cells interact, as in Roe's flux-difference splitting. In comparison, Van Leer's flux-vector splitting, which ignores the linear waves, badly diffuses the boundary layer. The results of MacCormack's scheme, if properly tuned, are significantly better. The use of a sufficiently detailed flux formula appears to reduce the number of cells required to resolve a boundary layer by a factor 1/2 to 1/4 and thus pays off.

  14. Indicial response approach derived from Navier-Stokes equations. Part 1: Time-invariant equilibrium state

    NASA Technical Reports Server (NTRS)

    Truong, K. V.; Tobak, M.

    1990-01-01

    The indicial response approach is recast in a form appropriate to the study of vortex induced oscillations phenomena. An appropriate form is demonstrated for the indicial response of the velocity field which may be derived directly from the Navier-Stokes equations. On the basis of the Navier-Stokes equations, it is demonstrated how a form of the velocity response to an arbitrary motion may be determined. To establish its connection with the previous work, the new approach is applied first to the simple situation wherein the indicial response has a time invariant equilibrium state. Results for the aerodynamic response to an arbitrary motion are shown to confirm to the form obtained previously.

  15. Numerical solution of transonic wing flows using an Euler/Navier-Stokes zonal approach

    NASA Technical Reports Server (NTRS)

    Holst, T. L.; Gundy, K. L.; Thomas, S. D.; Chaderjian, N. M.; Flores, J.

    1985-01-01

    Transonic flow fields about wing geometries are computed using an Euler/Navier-Stokes approach in which the flow field is divided into several zones. The grid zones immediately adjacent to the wing surface are suitably clustered and solved with the Navier-Stokes equations. Grid zones removed from the wing are less finely clustered and are solved with the Euler equations. Wind tunnel wall effects are easily and accurately modeled with the new grid-zoning algorithm because the wind tunnel grid is constructed as an exact subset of the corresponding free-air grid. Solutions are obtained that are in good agreement with experiment, including cases with significant wind tunnel wall effects and shock-induced separation on the upper wing surface.

  16. Three-Dimensional Navier-Stokes Calculations Using the Modified Space-Time CESE Method

    NASA Technical Reports Server (NTRS)

    Chang, Chau-lyan

    2007-01-01

    The space-time conservation element solution element (CESE) method is modified to address the robustness issues of high-aspect-ratio, viscous, near-wall meshes. In this new approach, the dependent variable gradients are evaluated using element edges and the corresponding neighboring solution elements while keeping the original flux integration procedure intact. As such, the excellent flux conservation property is retained and the new edge-based gradients evaluation significantly improves the robustness for high-aspect ratio meshes frequently encountered in three-dimensional, Navier-Stokes calculations. The order of accuracy of the proposed method is demonstrated for oblique acoustic wave propagation, shock-wave interaction, and hypersonic flows over a blunt body. The confirmed second-order convergence along with the enhanced robustness in handling hypersonic blunt body flow calculations makes the proposed approach a very competitive CFD framework for 3D Navier-Stokes simulations.

  17. High-order ENO methods for the unsteady compressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Atkins, H. L.

    1991-01-01

    The adaptive stencil concepts of ENO (Essentially Non-Oscillatory) methods are applied to the laminar Navier-Stokes equations to yield a high-order, time-accurate algorithm with a shock-capturing capability. The method targets problems in the areas of nonlinear acoustics, compressible transition, and turbulence which, due to the presence of shocks or complex geometries, are not easily solved by spectral methods. The present approach has been implemented and tested for the full three-dimensional Navier-Stokes equations in a transformed curvilinear coordinate system. Validation results are presented for a variety of problems which verify the method's accuracy properties and shock capturing capabilities, as well as demonstrate its use as a direct simulation tool.

  18. An iterative implicit DDADI algorithm for solving the Navier-Stokes equation. [upwind split flux technique

    NASA Technical Reports Server (NTRS)

    Chen, S. C.; Liu, N. S.; Kim, H. D.

    1992-01-01

    An algorithm utilizing a first order upwind split flux technique and the diagonally dominant treatment is proposed to be the temporal operator for solving the Navier-Stokes equations. Given the limit of a five point stencil, the right hand side flux derivatives are formulated by several commonly used central and upwind schemes. Their performances are studied through a test case of free vortex convection in a uniform stream. From these results, a superior treatment for evaluating the flux term is proposed and compared with the rest. The application of the proposed algorithm to the full Navier-Stokes equations is demonstrated through a calculation of flow over a backward facing step. Results are compared against the calculation done by using the fourth order central differencing scheme with artificial damping.

  19. Development of a grid generator to support 3-D multizone Navier-Stokes analysis

    NASA Astrophysics Data System (ADS)

    Holcomb, J. E.

    1987-01-01

    A three-dimensional grid generation code has been developed to support multizone Navier-Stokes analysis of flowfields associated with complex geometries. The code includes a number of features necessary for this task, including the definition of arbitrary zonal boundary surfaces using the output from a separate surface geometry program. The interior of each zone is gridded by an efficient parabolic/elliptic partial differential equation algorithm. To test the new grid generation code, grids were successfully generated for a finned missile configuration, for a hypersonic vehicle, for a fluid dynamic vortex valve, and for a three-dimensional rocket base/nozzle/plume configuration. Navier-Stokes calculations were run on these grids, with satisfactory results. The new code is expected to provide a solid basis for the extension to optimized and solution-adaptive grid generation in the future.

  20. Prediction of Business Jet Airloads Using The Overflow Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Bounajem, Elias; Buning, Pieter G.

    2001-01-01

    The objective of this work is to evaluate the application of Navier-Stokes computational fluid dynamics technology, for the purpose of predicting off-design condition airloads on a business jet configuration in the transonic regime. The NASA Navier-Stokes flow solver OVERFLOW with Chimera overset grid capability, availability of several numerical schemes and convergence acceleration techniques was selected for this work. A set of scripts which have been compiled to reduce the time required for the grid generation process are described. Several turbulence models are evaluated in the presence of separated flow regions on the wing. Computed results are compared to available wind tunnel data for two Mach numbers and a range of angles-of-attack. Comparisons of wing surface pressure from numerical simulation and wind tunnel measurements show good agreement up to fairly high angles-of-attack.

  1. Navier-Stokes calculations on multi-element airfoils using a chimera-based solver

    NASA Technical Reports Server (NTRS)

    Jasper, Donald W.; Agrawal, Shreekant; Robinson, Brian A.

    1993-01-01

    A study of Navier-Stokes calculations of flows about multielement airfoils using a chimera grid approach is presented. The chimera approach utilizes structured, overlapped grids which allow great flexibility of grid arrangement and simplifies grid generation. Calculations are made for two-, three-, and four-element airfoils, and modeling of the effect of gap distance between elements is demonstrated for a two element case. Solutions are obtained using the thin-layer form of the Reynolds averaged Navier-Stokes equations with turbulence closure provided by the Baldwin-Lomax algebraic model or the Baldwin-Barth one equation model. The Baldwin-Barth turbulence model is shown to provide better agreement with experimental data and to dramatically improve convergence rates for some cases. Recently developed, improved farfield boundary conditions are incorporated into the solver for greater efficiency. Computed results show good comparison with experimental data which include aerodynamic forces, surface pressures, and boundary layer velocity profiles.

  2. Time-accurate Navier-Stokes computations of classical two-dimensional edge tone flow fields

    NASA Technical Reports Server (NTRS)

    Liu, B. L.; O'Farrell, J. M.; Jones, Jess H.

    1990-01-01

    Time-accurate Navier-Stokes computations were performed to study a Class II (acoustic) whistle, the edge tone, and gain knowledge of the vortex-acoustic coupling mechanisms driving production of these tones. Results were obtained by solving the full Navier-Stokes equations for laminar compressible air flow of a two-dimensional jet issuing from a slit interacting with a wedge. Cases considered were determined by varying the distance from the slit to the edge. Flow speed was kept constant at 1750 cm/sec as was the slit thickness of 0.1 cm, corresponding to conditions in the experiments of Brown. Excellent agreement was obtained in all four edge tone stage cases between the present computational results and the experimentally obtained results of Brown. Specific edge tone generated phenomena and further confirmation of certain theories concerning these phenomena were brought to light in this analytical simulation of edge tones.

  3. Development of an Aeroelastic Code Based on an Euler/Navier-Stokes Aerodynamic Solver

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Srivastava, Rakesh; Keith, Theo G., Jr.; Stefko, George L.; Janus, Mark J.

    1996-01-01

    This paper describes the development of an aeroelastic code (TURBO-AE) based on an Euler/Navier-Stokes unsteady aerodynamic analysis. A brief review of the relevant research in the area of propulsion aeroelasticity is presented. The paper briefly describes the original Euler/Navier-Stokes code (TURBO) and then details the development of the aeroelastic extensions. The aeroelastic formulation is described. The modeling of the dynamics of the blade using a modal approach is detailed, along with the grid deformation approach used to model the elastic deformation of the blade. The work-per-cycle approach used to evaluate aeroelastic stability is described. Representative results used to verify the code are presented. The paper concludes with an evaluation of the development thus far, and some plans for further development and validation of the TURBO-AE code.

  4. Computational aspects of zonal algorithms for solving the compressible Navier-Stokes equations in three dimensions

    NASA Technical Reports Server (NTRS)

    Holst, T. L.; Thomas, S. D.; Kaynak, U.; Gundy, K. L.; Flores, J.; Chaderjian, N. M.

    1985-01-01

    Transonic flow fields about wing geometries are computed using an Euler/Navier-Stokes approach in which the flow field is divided into several zones. The flow field immediately adjacent to the wing surface is resolved with fine grid zones and solved using a Navier-Stokes algorithm. Flow field regions removed from the wing are resolved with less finely clustered grid zones and are solved with an Euler algorithm. Computational issues associated with this zonal approach, including data base management aspects, are discussed. Solutions are obtained that are in good agreement with experiment, including cases with significant wind tunnel wall effects. Additional cases with significant shock induced separation on the upper wing surface are also presented.

  5. Advanced transonic fan design procedure based on a Navier-Stokes method

    NASA Astrophysics Data System (ADS)

    Rhie, C. M.; Zacharias, R. M.; Hobbs, D. E.; Sarathy, K. P.; Biederman, B. P.; Lejambre, C. R.; Spear, D. A.

    1994-04-01

    A fan performance analysis method based upon three-dimensional steady Navier-Stokes equations is presented in this paper. Its accuracy is established through extensive code validation effort. Validation data comparisons ranging from a two-dimensional compressor cascade to three-dimensional fans are shown in this paper to highlight the accuracy and reliability of the code. The overall fan design procedure using this code is then presented. Typical results of this design process are shown for a current engine fan design. This new design method introduces a major improvement over the conventional design methods based on inviscid flow and boundary layer concepts. Using the Navier-Stokes design method, fan designers can confidently refine their designs prior to rig testing. This results in reduced rig testing and cost savings as the bulk of the iteration between design and experimental verification is transferred to an iteration between design and computational verification.

  6. Application of the implicit MacCormack scheme to the parabolized Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Lawrence, J. L.; Tannehill, J. C.; Chaussee, D. S.

    1984-01-01

    MacCormack's implicit finite-difference scheme was used to solve the two-dimensional parabolized Navier-Stokes (PNS) equations. This method for solving the PNS equations does not require the inversion of block tridiagonal systems of algebraic equations and permits the original explicit MacCormack scheme to be employed in those regions where implicit treatment is not needed. The advantages and disadvantages of the present adaptation are discussed in relation to those of the conventional Beam-Warming scheme for a flat plate boundary layer test case. Comparisons are made for accuracy, stability, computer time, computer storage, and ease of implementation. The present method was also applied to a second test case of hypersonic laminar flow over a 15% compression corner. The computed results compare favorably with experiment and a numerical solution of the complete Navier-Stokes equations.

  7. Parabolized Navier-Stokes solutions of separation and trailing-edge flows

    NASA Technical Reports Server (NTRS)

    Brown, J. L.

    1983-01-01

    A robust, iterative solution procedure is presented for the parabolized Navier-Stokes or higher order boundary layer equations as applied to subsonic viscous-inviscid interaction flows. The robustness of the present procedure is due, in part, to an improved algorithmic formulation. The present formulation is based on a reinterpretation of stability requirements for this class of algorithms and requires only second order accurate backward or central differences for all streamwise derivatives. Upstream influence is provided for through the algorithmic formulation and iterative sweeps in x. The primary contribution to robustness, however, is the boundary condition treatment, which imposes global constraints to control the convergence path. Discussed are successful calculations of subsonic, strong viscous-inviscid interactions, including separation. These results are consistent with Navier-Stokes solutions and triple deck theory.

  8. Three-dimensional Navier-Stokes heat transfer predictions for turbine blade rows

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Giel, Paul W.

    1992-01-01

    Results are shown for a three-dimensional Navier-Stokes analysis of both the flow and the surface heat transfer for turbine applications. Heat transfer comparisons are made with the experimental shock-tunnel data of Dunn and Kim, and with the data of Blair for the rotor of the large scale rotating turbine. The analysis was done using the steady-state, three-dimensional, thin-layer Navier-Stokes code developed by Chima, which uses a multistage Runge-Kutta scheme with implicit residual smoothing. An algebraic mixing length turbulence model is used to calculate turbulent eddy viscosity. The variation in heat transfer due to variations in grid parameters is examined. The effects of rotation, tip clearance, and inlet boundary layer thickness variation on the predicted blade and endwall heat transfer are examined.

  9. Renumbering Methods to Unleash Multi-Threaded Approaches for a General Navier-Stokes Implementation

    NASA Astrophysics Data System (ADS)

    Vezolle, Pascal; Fournier, Yvan; Tallet, Nicolas; Heymans, Jerrold; D'Amora, Bruce

    2010-09-01

    Our investigation leverages the general industrial Navier-Stokes open-source Computational Fluid Dynamics (CFD) application, Code_Saturne, developed by Électricité de France (EDF). We deal with how to take advantage of the emerging processor features such as many-cores, Simultaneous Multi-Threading (SMT) and Thread Level Speculation (TLS), through a mixed MPI/multithreads approach. We focus here on the per-node performance improvements and present the constraints for a multithreads implementation to solve the general 3D Navier-Stokes equations using a finite volume discretization into polyhedral cells. We describe a simple and efficient mesh numbering scheme allowing us to introduce OpenMP and Thread Level Speculation implementations with minimal impact to overall code structure.

  10. Turbomachinery blade design using a Navier-Stokes solver and artificial neural network

    SciTech Connect

    Pierret, S.; Van den Braembussche, R.A.

    1999-04-01

    This paper describes a knowledge-based method for the automatic design of more efficient turbine blades. An Artificial Neural Network (ANN) is used to construct an approximate model (response surface) using a database containing Navier-Stokes solutions for all previous designs. This approximate model is used for the optimization, by means of Simulated Annealing (SA), of the blade geometry, which is then analyzed by a Navier-Stokes solver. This procedure results in a considerable speed-up of the design process by reducing both the interventions of the operator and the computational effort. It is also shown how such a method allows the design of more efficient blades while satisfying both the aerodynamic and mechanical constraints. The method has been applied to different types of two-dimensional turbine blades, of which three examples are presented in this paper.

  11. Chemical nonequilibrium Navier-Stokes solutions for hypersonic flow over an ablating graphite nosetip

    NASA Technical Reports Server (NTRS)

    Chen, Y. K.; Henline, W. D.

    1993-01-01

    The general boundary conditions including mass and energy balances of chemically equilibrated or nonequilibrated gas adjacent to ablating surfaces have been derived. A computer procedure based on these conditions was developed and interfaced with the Navier-Stokes solver for predictions of the flow field, surface temperature, and surface ablation rates over re-entry space vehicles with ablating Thermal Protection Systems (TPS). The Navier-Stokes solver with general surface thermochemistry boundary conditions can predict more realistic solutions and provide useful information for the design of TPS. A test case with a proposed hypersonic test vehicle configuration and associated free stream conditions was developed. Solutions with various surface boundary conditions were obtained, and the effect of nonequilibrium gas as well as surface chemistry on surface heating and ablation rate were examined. The solutions of the GASP code with complete ablating surface conditions were compared with those of the ASC code. The direction of future work is also discussed.

  12. A p-adaptive LCP formulation for the compressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Cagnone, J. S.; Vermeire, B. C.; Nadarajah, S.

    2013-01-01

    This paper presents a polynomial-adaptive lifting collocation penalty (LCP) formulation for the compressible Navier-Stokes equations. The LCP formulation is a high-order nodal scheme in differential form. This format, although computationally efficient, complicates the treatment of non-uniform polynomial approximations. In Cagnone and Nadarajah (2012) [9], we proposed to circumvent this difficulty by employing specially designed elements inserted at the interface where the interpolation degree varies. In the present study we examine the applicability of this approach to the discretization of the Navier-Stokes equations, with focus put on the treatment of the viscous fluxes. The stability of the scheme is analyzed with the scalar diffusion equation and the merits of the approach are demonstrated with various p-adaptive simulations.

  13. The Cauchy problem for the pressureless Euler/isentropic Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Choi, Young-Pil; Kwon, Bongsuk

    2016-07-01

    We present a new hydrodynamic model consisting of the pressureless Euler equations and the isentropic compressible Navier-Stokes equations where the coupling of two systems is through the drag force. This coupled system can be derived, in the hydrodynamic limit, from the particle-fluid equations that are frequently used to study the medical sprays, aerosols and sedimentation problems. For the proposed system, we first construct the local-in-time classical solutions in an appropriate L2 Sobolev space. We also establish the a priori large-time behavior estimate by constructing a Lyapunov functional measuring the fluctuation of momentum and mass from the averaged quantities, and using this together with the bootstrapping argument, we obtain the global classical solution. The large-time behavior estimate asserts that the velocity functions of the pressureless Euler and the compressible Navier-Stokes equations are aligned exponentially fast as time tends to infinity.

  14. Large-time behavior for the Vlasov/compressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Choi, Young-Pil

    2016-07-01

    We establish the large-time behavior for the coupled kinetic-fluid equations. More precisely, we consider the Vlasov equation coupled to the compressible isentropic Navier-Stokes equations through a drag forcing term. For this system, the large-time behavior shows the exponential alignment between particles and fluid velocities as time evolves. This improves the previous result by Bae et al. [Discrete Contin. Dyn. Syst. 34, 4419-4458 (2014)] in which they considered the Vlasov/Navier-Stokes equations with nonlocal velocity alignment forces for particles. Employing a new Lyapunov functional measuring the fluctuations of momentum and mass from the averaged quantities, we refine assumptions for the large-time behavior of the solutions to that system.

  15. A hybrid Navier-Stokes/full-potential method for the prediction of iced wing aerodynamics

    NASA Technical Reports Server (NTRS)

    Mello, O. A. F.; Sankar, L. N.

    1994-01-01

    A hybrid method for computing compressible viscous flows is presented. This method divides the computational domain into two zones. In the outer zone, the unsteady full-potential equation (FPE) is solved. In the inner zone, the Navier-Stokes equations are solved. The two zones are tightly coupled so that steady and unsteady flows may be efficiently solved. The resulting CPU times are less than 50 percent of the required for a full-blown Navier-Stokes analysis. Sample applications of the method to an unswept iced wing at 4 deg and 8 deg angle of attack are presented. Surface pressures are in good agreement with the measurements obtained by Bragg et al. at the University of Illinois.

  16. Programming the Navier-Stokes computer: An abstract machine model and a visual editor

    NASA Technical Reports Server (NTRS)

    Middleton, David; Crockett, Tom; Tomboulian, Sherry

    1988-01-01

    The Navier-Stokes computer is a parallel computer designed to solve Computational Fluid Dynamics problems. Each processor contains several floating point units which can be configured under program control to implement a vector pipeline with several inputs and outputs. Since the development of an effective compiler for this computer appears to be very difficult, machine level programming seems necessary and support tools for this process have been studied. These support tools are organized into a graphical program editor. A programming process is described by which appropriate computations may be efficiently implemented on the Navier-Stokes computer. The graphical editor would support this programming process, verifying various programmer choices for correctness and deducing values such as pipeline delays and network configurations. Step by step details are provided and demonstrated with two example programs.

  17. Transonic Navier-Stokes solutions of three-dimensional afterbody flows

    NASA Technical Reports Server (NTRS)

    Compton, William B., III; Thomas, James L.; Abeyounis, William K.; Mason, Mary L.

    1989-01-01

    The performance of a three-dimensional Navier-Stokes solution technique in predicting the transonic flow past a nonaxisymmetric nozzle was investigated. The investigation was conducted at free-stream Mach numbers ranging from 0.60 to 0.94 and an angle of attack of 0 degrees. The numerical solution procedure employs the three-dimensional, unsteady, Reynolds-averaged Navier-Stokes equations written in strong conservation form, a thin layer assumption, and the Baldwin-Lomax turbulence model. The equations are solved by using the finite-volume principle in conjunction with an approximately factored upwind-biased numerical algorithm. In the numerical procedure, the jet exhaust is represented by a solid sting. Wind-tunnel data with the jet exhaust simulated by high pressure air were also obtained to compare with the numerical calculations.

  18. Numerical study of singularity formation in a class of Euler and Navier-Stokes flows

    NASA Astrophysics Data System (ADS)

    Ohkitani, Koji; Gibbon, John D.

    2000-12-01

    We study numerically a class of stretched solutions of the three-dimensional Euler and Navier-Stokes equations identified by Gibbon, Fokas, and Doering (1999). Pseudo-spectral computations of a Euler flow starting from a simple smooth initial condition suggests a breakdown in finite time. Moreover, this singularity apparently persists in the Navier-Stokes case. Independent evidence for the existence of a singularity is given by a Taylor series expansion in time. The mechanism underlying the formation of this singularity is the two-dimensionalization of the vorticity vector under strong compression; that is, the intensification of the azimuthal components associated with the diminishing of the axial component. It is suggested that the hollowing of the vortex accompanying this phenomenon may have some relevance to studies in vortex breakdown.

  19. Application of multi-grid methods for solving the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1989-01-01

    The application of a class of multi-grid methods to the solution of the Navier-Stokes equations for two-dimensional laminar flow problems is discussed. The methods consist of combining the full approximation scheme-full multi-grid technique (FAS-FMG) with point-, line-, or plane-relaxation routines for solving the Navier-Stokes equations in primitive variables. The performance of the multi-grid methods is compared to that of several single-grid methods. The results show that much faster convergence can be procured through the use of the multi-grid approach than through the various suggestions for improving single-grid methods. The importance of the choice of relaxation scheme for the multi-grid method is illustrated.

  20. Application of multi-grid methods for solving the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1989-01-01

    This paper presents the application of a class of multi-grid methods to the solution of the Navier-Stokes equations for two-dimensional laminar flow problems. The methods consists of combining the full approximation scheme-full multi-grid technique (FAS-FMG) with point-, line- or plane-relaxation routines for solving the Navier-Stokes equations in primitive variables. The performance of the multi-grid methods is compared to those of several single-grid methods. The results show that much faster convergence can be procured through the use of the multi-grid approach than through the various suggestions for improving single-grid methods. The importance of the choice of relaxation scheme for the multi-grid method is illustrated.

  1. Inviscid Limit for Damped and Driven Incompressible Navier-Stokes Equations in mathbb R^2

    NASA Astrophysics Data System (ADS)

    Ramanah, D.; Raghunath, S.; Mee, D. J.; Rösgen, T.; Jacobs, P. A.

    2007-08-01

    Experiments to demonstrate the use of the background-oriented schlieren (BOS) technique in hypersonic impulse facilities are reported. BOS uses a simple optical set-up consisting of a structured background pattern, an electronic camera with a high shutter speed and a high intensity light source. The visualization technique is demonstrated in a small reflected shock tunnel with a Mach 4 conical nozzle, nozzle supply pressure of 2.2 MPa and nozzle supply enthalpy of 1.8 MJ/kg. A 20° sharp circular cone and a model of the MUSES-C re-entry body were tested. Images captured were processed using PIV-style image analysis to visualize variations in the density field. The shock angle on the cone measured from the BOS images agreed with theoretical calculations to within 0.5°. Shock standoff distances could be measured from the BOS image for the re-entry body. Preliminary experiments are also reported in higher enthalpy facilities where flow luminosity can interfere with imaging of the background pattern.

  2. A new mixed basis Navier-Stokes formulation for incompressible flows over complex geometries

    NASA Astrophysics Data System (ADS)

    Murali, Avinaash; Rajagopalan, R. G.

    2016-02-01

    Numerical modeling of complex geometries necessitates the use of curvilinear body fitted coordinates. This article proposes a novel mixed basis formulation of the governing conservation equations for general curvilinear non-orthogonal grids with the physical covariant velocity as the primary solution variable. This results in an algorithm which has many advantages of orthogonal equations. The conservation equations written in this form retains the diagonal dominance of the pressure equation. The newly formed conservation equations are solved on a structured grid using the SIMPLER algorithm and are shown to converge well for non-orthogonal grids. Standard K-ɛ model is used for the turbulence closure.

  3. Simulation of large turbulent structures with the parabolic Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Rakich, J. V.; Davis, R. T.; Barnett, M.

    1982-01-01

    The theoretical basis for well posed marching of a Parabolic Navier-Stokes (PNS) computational technique for supersonic flow is discussed and examples given to verify the analysis. It is demonstrated that stable computations can be made even with very small steps in the marching direction. The method is applied to cones at large angle of attack in high Reynolds number, supersonic flow. Streamline trajectories generated from the numerical solutions demonstrate the development of vortex structures on the lee side of the cone.

  4. AIC Computations Using Navier-Stokes Equations on Single Image Supercomputers For Design Optimization

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru

    2004-01-01

    A procedure to accurately generate AIC using the Navier-Stokes solver including grid deformation is presented. Preliminary results show good comparisons between experiment and computed flutter boundaries for a rectangular wing. A full wing body configuration of an orbital space plane is selected for demonstration on a large number of processors. In the final paper the AIC of full wing body configuration will be computed. The scalability of the procedure on supercomputer will be demonstrated.

  5. A time-accurate high-resolution TVD scheme for solving the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Dae; Liu, Nan-Suey

    1992-01-01

    A total variation diminishing (TVD) scheme has been developed and incorporated into an existing time-accurate high-resolution Navier-Stokes code. The accuracy and the robustness of the resulting solution procedure have been assessed by performing many calculations in four different areas: shock tube flows, regular shock reflection, supersonic boundary layer, and shock boundary layer interactions. These numerical results compare well with corresponding exact solutions or experimental data.

  6. A time-accurate high-resolution TVD scheme for solving the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Kim, Hyun D.; Liu, Nan-Suey

    1993-01-01

    A total variation diminishing (TVD) scheme has been developed and incorporated into an existing time-accurate high-resolution Navier-Stokes code. The accuracy and the robustness of the resulting solution procedure have been assessed by performing many calculations in four different areas: shock tube flows, regular shock reflection, supersonic boundary layer, and shock boundary layer interactions. These numerical results compare well with corresponding exact solutions or experimental data.

  7. Complete Galilean-Invariant Lattice BGK Models for the Navier-Stokes Equation

    NASA Technical Reports Server (NTRS)

    Qian, Yue-Hong; Zhou, Ye

    1998-01-01

    Galilean invariance has been an important issue in lattice-based hydrodynamics models. Previous models concentrated on the nonlinear advection term. In this paper, we take into account the nonlinear response effect in a systematic way. Using the Chapman-Enskog expansion up to second order, complete Galilean invariant lattice BGK models in one dimension (theta = 3) and two dimensions (theta = 1) for the Navier-Stokes equation have been obtained.

  8. Time-Filtered Navier-Stokes Approach and Emulation of Turbulence-Chemistry Interaction

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Wey, Thomas; Shih, Tsan-Hsing

    2013-01-01

    This paper describes the time-filtered Navier-Stokes approach capable of capturing unsteady flow structures important for turbulent mixing and an accompanying subgrid model directly accounting for the major processes in turbulence-chemistry interaction. They have been applied to the computation of two-phase turbulent combustion occurring in a single-element lean-direct-injection combustor. Some of the preliminary results from this computational effort are presented in this paper.

  9. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method

    NASA Technical Reports Server (NTRS)

    Chen, Hudong; Chen, Shiyi; Matthaeus, William H.

    1992-01-01

    A lattice Boltzmann model is presented which gives the complete Navier-Stokes equation and may provide an efficient parallel numerical method for solving various fluid problems. The model uses the single-time relaxation approximation and a particular Maxwell-type distribution. The model eliminates exactly (1) the non-Galilean invariance caused by a density-dependent coefficient in the convection term and (2) a velocity-dependent equation of state.

  10. On Energy Cascades in the Forced 3D Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Dascaliuc, R.; Grujić, Z.

    2016-06-01

    We show—in the framework of physical scales and (K_1,K_2)-averages—that Kolmogorov's dissipation law combined with the smallness condition on a Taylor length scale is sufficient to guarantee energy cascades in the forced Navier-Stokes equations. Moreover, in the periodic case we establish restrictive scaling laws—in terms of Grashof number—for kinetic energy, energy flux, and energy dissipation rate. These are used to improve our sufficient condition for forced cascades in physical scales.

  11. Numerical Prediction Methods (Reynolds-Averaged Navier-Stokes Simulations of Transonic Separated Flows)

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel; Lomax, Harvard

    1981-01-01

    During the past five years, numerous pioneering archival publications have appeared that have presented computer solutions of the mass-weighted, time-averaged Navier-Stokes equations for transonic problems pertinent to the aircraft industry. These solutions have been pathfinders of developments that could evolve into a major new technological capability, namely the computational Navier-Stokes technology, for the aircraft industry. So far these simulations have demonstrated that computational techniques, and computer capabilities have advanced to the point where it is possible to solve forms of the Navier-Stokes equations for transonic research problems. At present there are two major shortcomings of the technology: limited computer speed and memory, and difficulties in turbulence modelling and in computation of complex three-dimensional geometries. These limitations and difficulties are the pacing items of the continuing developments, although the one item that will most likely turn out to be the most crucial to the progress of this technology is turbulence modelling. The objective of this presentation is to discuss the state of the art of this technology and suggest possible future areas of research. We now discuss some of the flow conditions for which the Navier-Stokes equations appear to be required. On an airfoil there are four different types of interaction of a shock wave with a boundary layer: (1) shock-boundary-layer interaction with no separation, (2) shock-induced turbulent separation with immediate reattachment (we refer to this as a shock-induced separation bubble), (3) shock-induced turbulent separation without reattachment, and (4) shock-induced separation bubble with trailing edge separation.

  12. Generalized INF-SUP condition for Chebyshev approximation of the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Bernardi, Christine; Canuto, Claudio; Maday, Yvon

    1986-01-01

    An abstract mixed problem and its approximation are studied; both are well-posed if and only if several inf-sup conditions are satisfied. These results are applied to a spectral Galerkin method for the Stokes problem in a square, when it is formulated in Chebyshev weighted Sobolev spaces. Finally, a collocation method for the Navier-Stokes equations at Chebyshev nodes is analyzed.

  13. Entropy Stable Spectral Collocation Schemes for the Navier-Stokes Equations: Discontinuous Interfaces

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Fisher, Travis C.; Nielsen, Eric J.; Frankel, Steven H.

    2013-01-01

    Nonlinear entropy stability and a summation-by-parts framework are used to derive provably stable, polynomial-based spectral collocation methods of arbitrary order. The new methods are closely related to discontinuous Galerkin spectral collocation methods commonly known as DGFEM, but exhibit a more general entropy stability property. Although the new schemes are applicable to a broad class of linear and nonlinear conservation laws, emphasis herein is placed on the entropy stability of the compressible Navier-Stokes equations.

  14. A combined geometric approach for solving the Navier-Stokes equations on dynamic grids

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    1995-01-01

    A combined geometric approach for solving the Navier-Stokes equations is presented for the analysis of planar, unsteady flow about mechanisms with components in moderate relative motion. The approach emphasizes the relationships between the geometry model, grid, and flow model for the benefit of the total dynamics problem. One application is the analysis of the restart operation of a variable-geometry, high-speed inlet.

  15. Relative advantages of thin-layer Navier-Stokes and interactive boundary-layer procedures

    NASA Technical Reports Server (NTRS)

    Mehta, U.; Chang, K. C.; Cebeci, T.

    1985-01-01

    Numerical procedures for solving the thin-shear-layer Navier-Stokes equations and for the interaction of solutions to inviscid and boundary-layer equations are described and evaluated. To allow appraisal of the numerical and fluid dynamic abilities of the two schemes, they have been applied to one airfoil as a function of angle of attack at two slightly different Reynolds numbers. The NACA 0012 airfoil has been chosen because it allows comparison with measured lift, drag, and moment and with surface-pressure distributions. Calculations have been performed with algebraic eddy-viscosity formulations, and they include consideration of transition. The results are presented in a form that allows easy appraisal of the accuracy of both procedures and of the relative costs. The interactive procedure is computationally efficient but restrictive relative to the thin-layer Navier-Stokes procedure. The latter procedure does a better job of predicting drag than does the former. In both procedures, the location of transition is crucial for accurate or detailed computations, particularly at high angles of attack. When the upstream influence of pressure field through the shear layer is important, the thin-layer Navier-Stokes procedure has an edge over the interactive procedure.

  16. Entropy Stable Staggered Grid Spectral Collocation for the Burgers' and Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Parsani, Matteo; Fisher, Travis C.; Nielsen, Eric J.

    2015-01-01

    Staggered grid, entropy stable discontinuous spectral collocation operators of any order are developed for Burgers' and the compressible Navier-Stokes equations on unstructured hexahedral elements. This generalization of previous entropy stable spectral collocation work [1, 2], extends the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to a combination of tensor product Legendre-Gauss (LG) and LGL points. The new semi-discrete operators discretely conserve mass, momentum, energy and satisfy a mathematical entropy inequality for both Burgers' and the compressible Navier-Stokes equations in three spatial dimensions. They are valid for smooth as well as discontinuous flows. The staggered LG and conventional LGL point formulations are compared on several challenging test problems. The staggered LG operators are significantly more accurate, although more costly to implement. The LG and LGL operators exhibit similar robustness, as is demonstrated using test problems known to be problematic for operators that lack a nonlinearly stability proof for the compressible Navier-Stokes equations (e.g., discontinuous Galerkin, spectral difference, or flux reconstruction operators).

  17. An implicit solution of the three-dimensional Navier-Stokes equations for an airfoil spanning a wind tunnel. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Moitra, A.

    1982-01-01

    An implicit finite-difference algorithm is developed for the numerical solution of the incompressible three dimensional Navier-Stokes equations in the non-conservative primitive-variable formulation. The flow field about an airfoil spanning a wind-tunnel is computed. The coordinate system is generated by an extension of the two dimensional body-fitted coordinate generation techniques of Thompson, as well as that of Sorenson, into three dimensions. Two dimensional grids are stacked along a spanwise coordinate defined by a simple analytical function. A Poisson pressure equation for advancing the pressure in time is arrived at by performing a divergence operation on the momentum equations. The pressure at each time-step is calculated on the assumption that continuity be unconditionally satisfied. An eddy viscosity coefficient, computed according to the algebraic turbulence formulation of Baldwin and Lomax, simulates the effects of turbulence.

  18. Implementation of the Vanka-type multigrid solver for the finite element approximation of the Navier-Stokes equations on GPU

    NASA Astrophysics Data System (ADS)

    Bauer, Petr; Klement, Vladimír; Oberhuber, Tomáš; Žabka, Vítězslav

    2016-03-01

    We present a complete GPU implementation of a geometric multigrid solver for the numerical solution of the Navier-Stokes equations for incompressible flow. The approximate solution is constructed on a two-dimensional unstructured triangular mesh. The problem is discretized by means of the mixed finite element method with semi-implicit timestepping. The linear saddle-point problem arising from the scheme is solved by the geometric multigrid method with a Vanka-type smoother. The parallel solver is based on the red-black coloring of the mesh triangles. We achieved a speed-up of 11 compared to a parallel (4 threads) code based on OpenMP and 19 compared to a sequential code.

  19. AN IMMERSED BOUNDARY METHOD FOR COMPLEX INCOMPRESSIBLE FLOWS

    EPA Science Inventory

    An immersed boundary method for time-dependant, three- dimensional, incompressible flows is presented in this paper. The incompressible Navier-Stokes equations are discretized using a low-diffusion flux splitting method for the inviscid fluxes and a second order central differenc...

  20. Well-Posedness of the Multidimensional Fractional Stochastic Navier-Stokes Equations on the Torus and on Bounded Domains

    NASA Astrophysics Data System (ADS)

    Debbi, Latifa

    2016-03-01

    In this work, we introduce and study the well-posedness of the multidimensional fractional stochastic Navier-Stokes equations on bounded domains and on the torus (briefly dD-FSNSE). For the subcritical regime, we establish thresholds for which a maximal local mild solution exists and satisfies required space and time regularities. We prove that under conditions of Beale-Kato-Majda type, these solutions are global and unique. These conditions are automatically satisfied for the 2D-FSNSE on the torus if the initial data has H 1-regularity and the diffusion term satisfies growth and Lipschitz conditions corresponding to H 1-spaces. The case of 2D-FSNSE on the torus is studied separately. In particular, we established thresholds for the global existence, uniqueness, space and time regularities of the weak (strong in probability) solutions in the subcritical regime. For the general regime, we prove the existence of a martingale solution and we establish the uniqueness under a condition of Serrin's type on the fractional Sobolev spaces.

  1. A lattice-Boltzmann scheme of the Navier-Stokes equations on a 3D cuboid lattice

    NASA Astrophysics Data System (ADS)

    Min, Haoda; Peng, Cheng; Wang, Lian-Ping

    2015-11-01

    The standard lattice-Boltzmann method (LBM) for fluid flow simulation is based on a square (in 2D) or cubic (in 3D) lattice grids. Recently, two new lattice Boltzmann schemes have been developed on a 2D rectangular grid using the MRT (multiple-relaxation-time) collision model, by adding a free parameter in the definition of moments or by extending the equilibrium moments. Here we developed a lattice Boltzmann model on 3D cuboid lattice, namely, a lattice grid with different grid lengths in different spatial directions. We designed our MRT-LBM model by matching the moment equations from the Chapman-Enskog expansion with the Navier-Stokes equations. The model guarantees correct hydrodynamics. A second-order term is added to the equilibrium moments in order to restore the isotropy of viscosity on a cuboid lattice. The form and the coefficients of the extended equilibrium moments are determined through an inverse design process. An additional benefit of the model is that the viscosity can be adjusted independent of the stress-moment relaxation parameter, thus improving the numerical stability of the model. The resulting cuboid MRT-LBM model is then validated through benchmark simulations using laminar channel flow, turbulent channel flow, and the 3D Taylor-Green vortex flow.

  2. Proteus two-dimensional Navier-Stokes computer code, version 2.0. Volume 2: User's guide

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Bui, Trong T.

    1993-01-01

    A computer code called Proteus 2D was developed to solve the two-dimensional planar or axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort was to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The governing equations are solved in generalized nonorthogonal body-fitted coordinates, by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. This is the User's Guide, and describes the program's features, the input and output, the procedure for setting up initial conditions, the computer resource requirements, the diagnostic messages that may be generated, the job control language used to run the program, and several test cases.

  3. Proteus two-dimensional Navier-Stokes computer code, version 2.0. Volume 3: Programmer's reference

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Bui, Trong T.

    1993-01-01

    A computer code called Proteus 2D was developed to solve the two-dimensional planar or axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort was to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The governing equations are solved in generalized nonorthogonal body-fitted coordinates, by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. The Programmer's Reference contains detailed information useful when modifying the program. The program structure, the Fortran variables stored in common blocks, and the details of each subprogram are described.

  4. PROTEUS two-dimensional Navier-Stokes computer code, version 1.0. Volume 3: Programmer's reference

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Benson, Thomas J.; Suresh, Ambady

    1990-01-01

    A new computer code was developed to solve the 2-D or axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The thin-layer or Euler equations may also be solved. Turbulence is modeled using an algebraic eddy viscosity model. The objective was to develop a code for aerospace applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The equations are written in nonorthogonal body-fitted coordinates, and solved by marching in time using a fully-coupled alternating-direction-implicit procedure with generalized first- or second-order time differencing. All terms are linearized using second-order Taylor series. The boundary conditions are treated implicitly, and may be steady, unsteady, or spatially periodic. Simple Cartesian or polar grids may be generated internally by the program. More complex geometries require an externally generated computational coordinate system. The documentation is divided into three volumes. Volume 3 is the Programmer's Reference, and describes the program structure, the FORTRAN variables stored in common blocks, and the details of each subprogram.

  5. Proteus two-dimensional Navier-Stokes computer code, version 2.0. Volume 1: Analysis description

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Bui, Trong T.

    1993-01-01

    A computer code called Proteus 2D was developed to solve the two-dimensional planar or axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort was to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The governing equations are solved in generalized nonorthogonal body-fitted coordinates, by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. This is the Analysis Description, and presents the equations and solution procedure. The governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models are described in detail.

  6. Proteus two-dimensional Navier-Stokes computer code, version 2.0. Volume 3: Programmer's reference

    NASA Astrophysics Data System (ADS)

    Towne, Charles E.; Schwab, John R.; Bui, Trong T.

    1993-10-01

    A computer code called Proteus 2D was developed to solve the two-dimensional planar or axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort was to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The governing equations are solved in generalized nonorthogonal body-fitted coordinates, by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. The Programmer's Reference contains detailed information useful when modifying the program. The program structure, the Fortran variables stored in common blocks, and the details of each subprogram are described.

  7. Proteus two-dimensional Navier-Stokes computer code, version 2.0. Volume 2: User's guide

    NASA Astrophysics Data System (ADS)

    Towne, Charles E.; Schwab, John R.; Bui, Trong T.

    1993-10-01

    A computer code called Proteus 2D was developed to solve the two-dimensional planar or axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort was to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The governing equations are solved in generalized nonorthogonal body-fitted coordinates, by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. This is the User's Guide, and describes the program's features, the input and output, the procedure for setting up initial conditions, the computer resource requirements, the diagnostic messages that may be generated, the job control language used to run the program, and several test cases.

  8. Evaluation of a research circulation control airfoil using Navier-Stokes methods

    NASA Technical Reports Server (NTRS)

    Shrewsbury, George D.

    1987-01-01

    The compressible Reynolds time averaged Navier-Stokes equations were used to obtain solutions for flows about a two dimensional circulation control airfoil. The governing equations were written in conservation form for a body-fitted coordinate system and solved using an Alternating Direction Implicit (ADI) procedure. A modified algebraic eddy viscosity model was used to define the turbulent characteristics of the flow, including the wall jet flow over the Coanda surface at the trailing edge. Numerical results are compared to experimental data obtained for a research circulation control airfoil geometry. Excellent agreement with the experimental results was obtained.

  9. Navier-Stokes simulation of 3-D hypersonic equilibrium air flow

    NASA Technical Reports Server (NTRS)

    Nagaraj, N.; Lombard, C. K.; Bardina, J.

    1988-01-01

    A computationally efficient three-dimensional conservative supracharacteristic Navier-Stokes method has been extended to simulate complex external chemically reacting flows of hypersonic reentry vehicles at angle-of-attack. Numerical simulation results of the flow around a sphere-cone-cone-flare reentry vehicle at 10 deg angle-of-attack are presented, in addition to the results of a well-validated two-dimensional code with which the 0-deg axisymmetric flow has been computed. A method for obtaining compositions of species in equilibrium ionized air is proposed.

  10. Nonlinear Aeroelastic Analysis Using a Time-Accurate Navier-Stokes Equations Solver

    NASA Technical Reports Server (NTRS)

    Kuruvila, Geojoe; Bartels, Robert E.; Hong, Moeljo S.; Bhatia, G.

    2007-01-01

    A method to simulate limit cycle oscillation (LCO) due to control surface freeplay using a modified CFL3D, a time-accurate Navier-Stokes computational fluid dynamics (CFD) analysis code with structural modeling capability, is presented. This approach can be used to analyze aeroelastic response of aircraft with structural behavior characterized by nonlinearity in the force verses displacement curve. A limited validation of the method, using very low Mach number experimental data for a three-degrees-of-freedom (pitch/plunge/flap deflection) airfoil model with flap freeplay, is also presented.

  11. Shape Optimization for Navier-Stokes Equations with Algebraic Turbulence Model: Numerical Analysis and Computation

    SciTech Connect

    Haslinger, Jaroslav; Stebel, Jan

    2011-04-15

    We study the shape optimization problem for the paper machine headbox which distributes a mixture of water and wood fibers in the paper making process. The aim is to find a shape which a priori ensures the given velocity profile on the outlet part. The mathematical formulation leads to the optimal control problem in which the control variable is the shape of the domain representing the header, the state problem is represented by the generalized Navier-Stokes system with nontrivial boundary conditions. This paper deals with numerical aspects of the problem.

  12. Nearly Interactive Parabolized Navier-Stokes Solver for High Speed Forebody and Inlet Flows

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.; Liou, May-Fun; Jones, William H.; Trefny, Charles J.

    2009-01-01

    A system of computer programs is being developed for the preliminary design of high speed inlets and forebodies. The system comprises four functions: geometry definition, flow grid generation, flow solver, and graphics post-processor. The system runs on a dedicated personal computer using the Windows operating system and is controlled by graphical user interfaces written in MATLAB (The Mathworks, Inc.). The flow solver uses the Parabolized Navier-Stokes equations to compute millions of mesh points in several minutes. Sample two-dimensional and three-dimensional calculations are demonstrated in the paper.

  13. Iterative solvers for Navier-Stokes equations: Experiments with turbulence model

    SciTech Connect

    Page, M.; Garon, A.

    1994-12-31

    In the framework of developing software for the prediction of flows in hydraulic turbine components, Reynolds averaged Navier-Stokes equations coupled with {kappa}-{omega} two-equation turbulence model are discretized by finite element method. Since the resulting matrices are large, sparse and nonsymmetric, strategies based on CG-type iterative methods must be devised. A segregated solution strategy decouples the momentum equation, the {kappa} transport equation and the {omega} transport equation. These sets of equations must be solved while satisfying constraint equations. Experiments with orthogonal projection method are presented for the imposition of essential boundary conditions in a weak sense.

  14. Thrust chamber performance using Navier-Stokes solution. [space shuttle main engine viscous nozzle calculation

    NASA Technical Reports Server (NTRS)

    Chan, J. S.; Freeman, J. A.

    1984-01-01

    The viscous, axisymmetric flow in the thrust chamber of the space shuttle main engine (SSME) was computed on the CRAY 205 computer using the general interpolants method (GIM) code. Results show that the Navier-Stokes codes can be used for these flows to study trends and viscous effects as well as determine flow patterns; but further research and development is needed before they can be used as production tools for nozzle performance calculations. The GIM formulation, numerical scheme, and computer code are described. The actual SSME nozzle computation showing grid points, flow contours, and flow parameter plots is discussed. The computer system and run times/costs are detailed.

  15. Prediction of Unsteady Transitional Layers in Turbomachinery Using Navier Stokes Equations

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Chernobrovkin, A.; Kang, D. J.

    1998-01-01

    The objective of the research reported in this presentation is to develop computational techniques for the prediction of unsteady transitional flows associated with the rotor stator interaction in turbomachinery. Three low-Reynolds number turbulence models are incorporated in two unsteady Navier-Stokes codes (one is pressure based and the other is time marching with Runge-Kutta time stepping) and evaluated for accuracy in predicting the onset and the end of unsteady transitional patches due to wake passing. The best model is then used for modification and improvement for the leading edge effect. An existing steady Navier-Stokes code was modified to include pseudo-time stepping, which provided acceleration from 5 to 25 times that of the original code. A systematic validation procedure was implemented to assess the effects of the grid, artificial dissipation, physical, and the pseudo-time step for an accurate prediction of transitional flows resulting from the rotor-stator interaction. The ability of the Navier-Stokes code to predict the unsteady transitional flow on a turbomachinery blade is demonstrated. The unsteady pressure and velocity fields are in good agreement with the experimental data and the prediction from the Euler/boundary layer approach. The numerical solver was able to capture all zones (wake induced transitional strip, wake induced turbulent strip, calmed region, etc.) associated with wake induced transition in a compressor cascade. Another significant step is the assessment of k-epsilon turbulence models, including the leading edge modifications. Best results were obtained from the FLB model. The LB model predicted earlier inception of the transition and shorter transition length. Modification of the k-epsilon model was found to be essential for an accurate prediction of the unsteady transitional flow in a compressor cascade. The CH model failed to predict the unsteady transitional flow. Predicted boundary layer was turbulent from the leading edge

  16. Stochastic Galerkin methods for the steady-state Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Sousedík, Bedřich; Elman, Howard C.

    2016-07-01

    We study the steady-state Navier-Stokes equations in the context of stochastic finite element discretizations. Specifically, we assume that the viscosity is a random field given in the form of a generalized polynomial chaos expansion. For the resulting stochastic problem, we formulate the model and linearization schemes using Picard and Newton iterations in the framework of the stochastic Galerkin method, and we explore properties of the resulting stochastic solutions. We also propose a preconditioner for solving the linear systems of equations arising at each step of the stochastic (Galerkin) nonlinear iteration and demonstrate its effectiveness for solving a set of benchmark problems.

  17. 3-D Navier-Stokes Analysis of Blade Root Aerodynamics for a Tiltrotor Aircraft In Cruise

    NASA Technical Reports Server (NTRS)

    Romander, Ethan

    2006-01-01

    The blade root area of a tiltrotor aircraft's rotor is constrained by a great many factors, not the least of which is aerodynamic performance in cruise. For this study, Navier-Stokes CFD techniques are used to study the aerodynamic performance in cruise of a rotor design as a function of airfoil thickness along the blade and spinner shape. Reducing airfoil thickness along the entire blade will be shown to have the greatest effect followed by smaller but still significant improvements achieved by reducing the thickness of root airfoils only. Furthermore, altering the shape of the spinner will be illustrated as a tool to tune the aerodynamic performance very near the blade root.

  18. Quasiconservation laws for compressible three-dimensional Navier-Stokes flow.

    PubMed

    Gibbon, J D; Holm, D D

    2012-10-01

    We formulate the quasi-Lagrangian fluid transport dynamics of mass density ρ and the projection q=ω·∇ρ of the vorticity ω onto the density gradient, as determined by the three-dimensional compressible Navier-Stokes equations for an ideal gas, although the results apply for an arbitrary equation of state. It turns out that the quasi-Lagrangian transport of q cannot cross a level set of ρ. That is, in this formulation, level sets of ρ (isopycnals) are impermeable to the transport of the projection q.

  19. A three dimensional multigrid multiblock multistage time stepping scheme for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa; Cannizzaro, Frank; Melson, N. D.

    1991-01-01

    A general multiblock method for the solution of the three-dimensional, unsteady, compressible, thin-layer Navier-Stokes equations has been developed. The convective and pressure terms are spatially discretized using Roe's flux differencing technique while the viscous terms are centrally differenced. An explicit Runge-Kutta method is used to advance the solution in time. Local time stepping, adaptive implicit residual smoothing, and the Full Approximation Storage (FAS) multigrid scheme are added to the explicit time stepping scheme to accelerate convergence to steady state. Results for three-dimensional test cases are presented and discussed.

  20. Navier-Stokes Simulation of Homogeneous Turbulence on the CYBER 205

    NASA Technical Reports Server (NTRS)

    Wu, C. T.; Ferziger, J. H.; Chapman, D. R.; Rogallo, R. S.

    1984-01-01

    A computer code which solves the Navier-Stokes equations for three dimensional, time-dependent, homogenous turbulence has been written for the CYBER 205. The code has options for both 64-bit and 32-bit arithmetic. With 32-bit computation, mesh sizes up to 64 (3) are contained within core of a 2 million 64-bit word memory. Computer speed timing runs were made for various vector lengths up to 6144. With this code, speeds a little over 100 Mflops have been achieved on a 2-pipe CYBER 205. Several problems encountered in the coding are discussed.

  1. Explicit and implicit solution of the Navier-Stokes equations on a massively parallel computer

    NASA Technical Reports Server (NTRS)

    Levit, Creon; Jespersen, Dennis

    1988-01-01

    The design, implementation, and performance of a two-dimensional time-accurate Navier-Stokes solver for the CM2 supercomputer are described. The program uses a single processor for each grid point. Two different time-stepping methods have so far been implemented: an explicit third-order Runge-Kutta method and an implicit approximation-factorization method. The CM2 results are checked against those of a mature well-vectorized Cray 2 program, both for correctness and performance. The code is found to be correct, and the performance in some cases is up to several times that of the Cray 2.

  2. Three-dimensional computational study of asymmetric flows using Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Cheung, Y. K. (Editor); Lee, J. H. W. (Editor); Leung, A. Y. T. (Editor); Wong, Tin-Chee; Kandil, Osama A.; Liu, C. H.

    1992-01-01

    The unsteady, compressible, thin-layer Navier-Stokes equations are used to obtain three-dimensional, asymmetric, vortex-flow solutions around cones and cone-cylinder configurations. The equations are solved using an implicit, upwind, flux-difference splitting, finite-volume scheme. The computational applications cover asymmetric flows around a 5 semi-apex angle cone of unit length at various Reynolds number. Next, a cylindrical afterbody of various length is added to the conical forebody to study the effect of the length of cylindrical afterbody on the flow asymmetry. All the asymmetric flow solutions are obtained by using a short-duration side-slip disturbance.

  3. Hypersonic nonequilibrium Navier-Stokes solutions over an ablating graphite nosetip

    SciTech Connect

    Chen, Y.K.; Henline, W.D.

    1994-09-01

    The general boundary conditions, including mass and energy balances, of chemically equilibrated or nonequilibrated gas adjacent to ablating surfaces have been derived. A computer procedure based on these conditions was developed and interfaced with the Navier-Stokes solver GASP (General Aerodynamics Simulation Program). A test case with a proposed hypersonic test-vehicle configuration and associated freestream conditions was developed. The solutions of the GASP code with various surface boundary conditions were obtained and compared with those of the ASCC (ABRES Shape Change) code, and the effect of nonequilibrium gas as well as surface chemistry on surface heating and ablation rate were examined. 22 refs.

  4. Hypersonic nonequilibrium Navier-Stokes solutions over an ablating graphite nosetip

    NASA Astrophysics Data System (ADS)

    Chen, Y.-K.; Henline, W. D.

    1994-09-01

    The general boundary conditions, including mass and energy balances, of chemically equilibrated or nonequilibrated gas adjacent to ablating surfaces have been derived. A computer procedure based on these conditions was developed and interfaced with the Navier-Stokes solver GASP (General Aerodynamics Simulation Program). A test case with a proposed hypersonic test-vehicle configuration and associated freestream conditions was developed. The solutions of the GASP code with various surface boundary conditions were obtained and compared with those of the ASCC (ABRES Shape Change) code, and the effect of nonequilibrium gas as well as surface chemistry on surface heating and ablation rate were examined.

  5. Application of a Scalable, Parallel, Unstructured-Grid-Based Navier-Stokes Solver

    NASA Technical Reports Server (NTRS)

    Parikh, Paresh

    2001-01-01

    A parallel version of an unstructured-grid based Navier-Stokes solver, USM3Dns, previously developed for efficient operation on a variety of parallel computers, has been enhanced to incorporate upgrades made to the serial version. The resultant parallel code has been extensively tested on a variety of problems of aerospace interest and on two sets of parallel computers to understand and document its characteristics. An innovative grid renumbering construct and use of non-blocking communication are shown to produce superlinear computing performance. Preliminary results from parallelization of a recently introduced "porous surface" boundary condition are also presented.

  6. Navier-Stokes analysis of scale effects on ablation in carbon-carbon rocket nozzles

    NASA Astrophysics Data System (ADS)

    Bianchi, D.; Nasuti, F.; Martelli, E.; Onofri, M.

    2012-01-01

    A study is conducted to predict carbon-carbon nozzle recession behavior in solid rocket motors (SRM) for wide variations of propellant formulations and motor operating conditions. The numerical model considers the solution of Reynolds averaged Navier-Stokes (RANS) equations in the nozzle, heterogeneous chemical reactions at the nozzle surface, variable transport and thermodynamic properties, and heat conduction in the nozzle material. Results show that the ablation rate is affected by the dimension of the nozzle as well as by the boundary layer thickness at the nozzle entrance. The combined effect of both scale and boundary layer thickness at the nozzle entrance is also analyzed.

  7. Upwind differencing and LU factorization for chemical non-equilibrium Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun

    1992-01-01

    By means of either the Roe or the Van Leer flux-splittings for inviscid terms, in conjunction with central differencing for viscous terms in the explicit operator and the Steger-Warming splitting and lower-upper approximate factorization for the implicit operator, the present, robust upwind method for solving the chemical nonequilibrium Navier-Stokes equations yields formulas for finite-volume discretization in general coordinates. Numerical tests in the illustrative cases of a hypersonic blunt body, a ramped duct, divergent nozzle flows, and shock wave/boundary layer interactions, establish the method's efficiency.

  8. Propulsion-related flowfields using the preconditioned Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Venkateswaran, S.; Weiss, J. M.; Merkle, C. L.; Choi, Y.-H.

    1992-01-01

    A previous time-derivative preconditioning procedure for solving the Navier-Stokes is extended to the chemical species equations. The scheme is implemented using both the implicit ADI and the explicit Runge-Kutta algorithms. A new definition for time-step is proposed to enable grid-independent convergence. Several examples of both reacting and non-reacting propulsion-related flowfields are considered. In all cases, convergence that is superior to conventional methods is demonstrated. Accuracy is verified using the example of a backward facing step. These results demonstrate that preconditioning can enhance the capability of density-based methods over a wide range of Mach and Reynolds numbers.

  9. An investigation of cell centered and cell vertex multigrid schemes for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Radespiel, R.; Swanson, R. C.

    1989-01-01

    Two efficient and robust finite-volume multigrid schemes for solving the Navier-Stokes equations are investigated. These schemes employ either a cell centered or a cell vertex discretization technique. An explicit Runge-Kutta algorithm is used to advance the solution in time. Acceleration techniques are applied to obtain faster steady-state convergence. Accuracy and convergence of the schemes are examined. Computational results for transonic airfoil flows are essentially the same, even for a coarse mesh. Both schemes exhibit good convergence rates for a broad range of artificial dissipation coefficients.

  10. Reynolds-Averaged Navier-Stokes Analysis of Zero Efflux Flow Control over a Hump Model

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2006-01-01

    The unsteady flow over a hump model with zero efflux oscillatory flow control is modeled computationally using the unsteady Reynolds-averaged Navier-Stokes equations. Three different turbulence models produce similar results, and do a reasonably good job predicting the general character of the unsteady surface pressure coefficients during the forced cycle. However, the turbulent shear stresses are underpredicted in magnitude inside the separation bubble, and the computed results predict too large a (mean) separation bubble compared with experiment. These missed predictions are consistent with earlier steady-state results using no-flow-control and steady suction, from a 2004 CFD validation workshop for synthetic jets.

  11. Reynolds-Averaged Navier-Stokes Analysis of Zero Efflux Flow Control Over a Hump Model

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2006-01-01

    The unsteady flow over a hump model with zero efflux oscillatory flow control is modeled computationally using the unsteady Reynolds-averaged Navier-Stokes equations. Three different turbulence models produce similar results, and do a reasonably good job predicting the general character of the unsteady surface pressure coefficients during the forced cycle. However, the turbulent shear stresses are underpredicted in magnitude inside the separation bubble, and the computed results predict too large a (mean) separation bubble compared with experiment. These missed predictions are consistent with earlier steady-state results using no-flow-control and steady suction, from a 2004 CFD validation workshop for synthetic jets.

  12. Parallelization of Unsteady Adaptive Mesh Refinement for Unstructured Navier-Stokes Solvers

    NASA Technical Reports Server (NTRS)

    Schwing, Alan M.; Nompelis, Ioannis; Candler, Graham V.

    2014-01-01

    This paper explores the implementation of the MPI parallelization in a Navier-Stokes solver using adaptive mesh re nement. Viscous and inviscid test problems are considered for the purpose of benchmarking, as are implicit and explicit time advancement methods. The main test problem for comparison includes e ects from boundary layers and other viscous features and requires a large number of grid points for accurate computation. Ex- perimental validation against double cone experiments in hypersonic ow are shown. The adaptive mesh re nement shows promise for a staple test problem in the hypersonic com- munity. Extension to more advanced techniques for more complicated ows is described.

  13. Formulation of boundary conditions for the multigrid acceleration of the Euler and Navier Stokes equations

    NASA Technical Reports Server (NTRS)

    Jentink, Thomas Neil; Usab, William J., Jr.

    1990-01-01

    An explicit, Multigrid algorithm was written to solve the Euler and Navier-Stokes equations with special consideration given to the coarse mesh boundary conditions. These are formulated in a manner consistent with the interior solution, utilizing forcing terms to prevent coarse-mesh truncation error from affecting the fine-mesh solution. A 4-Stage Hybrid Runge-Kutta Scheme is used to advance the solution in time, and Multigrid convergence is further enhanced by using local time-stepping and implicit residual smoothing. Details of the algorithm are presented along with a description of Jameson's standard Multigrid method and a new approach to formulating the Multigrid equations.

  14. Simulation of Synthetic Jets in Quiescent Air Using Unsteady Reynolds Averaged Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Turkel, Eli

    2006-01-01

    We apply an unsteady Reynolds-averaged Navier-Stokes (URANS) solver for the simulation of a synthetic jet created by a single diaphragm piezoelectric actuator in quiescent air. This configuration was designated as Case 1 for the CFDVAL2004 workshop held at Williamsburg, Virginia, in March 2004. Time-averaged and instantaneous data for this case were obtained at NASA Langley Research Center, using multiple measurement techniques. Computational results for this case using one-equation Spalart-Allmaras and two-equation Menter's turbulence models are presented along with the experimental data. The effect of grid refinement, preconditioning and time-step variation are also examined in this paper.

  15. Navier-Stokes, dynamics and aeroelastic computations for vortical flows, buffet and flutter applications

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1993-01-01

    Research on Navier-Stokes, dynamics, and aeroelastic computations for vortical flows, buffet, and flutter applications was performed. Progress during the period from 1 Oct. 1992 to 30 Sep. 1993 is included. Papers on the following topics are included: vertical tail buffet in vortex breakdown flows; simulation of tail buffet using delta wing-vertical tail configuration; shock-vortex interaction over a 65-degree delta wing in transonic flow; supersonic vortex breakdown over a delta wing in transonic flow; and prediction and control of slender wing rock.

  16. A Navier-Stokes phase-field crystal model for colloidal suspensions

    SciTech Connect

    Praetorius, Simon Voigt, Axel

    2015-04-21

    We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.

  17. A Cartesian Embedded Boundary Method for the Compressible Navier-Stokes Equations

    SciTech Connect

    Kupiainen, M; Sjogreen, B

    2008-03-21

    We here generalize the embedded boundary method that was developed for boundary discretizations of the wave equation in second order formulation in [6] and for the Euler equations of compressible fluid flow in [11], to the compressible Navier-Stokes equations. We describe the method and we implement it on a parallel computer. The implementation is tested for accuracy and correctness. The ability of the embedded boundary technique to resolve boundary layers is investigated by computing skin-friction profiles along the surfaces of the embedded objects. The accuracy is assessed by comparing the computed skin-friction profiles with those obtained by a body fitted discretization.

  18. Navier-Stokes computations for water drops falling in air: intermediate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Pearlstein, Arne; Shiue, Min-Po; Feng, James

    2006-11-01

    We report Navier-Stokes computations, using a finite-element technique, of the steady descent of a deformable water drop through air. Variations in drop shape, internal circulation, and drag coefficient with Reynolds number are discussed in terms of simple physical mechanisms. Discrepancies between the computational results and the experimental data of Beard and Pruppacher, obtained in an open-return vertical wind tunnel, are interpreted in terms of scavenging from the polluted atmosphere of surfactants, as measured by Kawamura et al. in collected rainwater samples several hundred meters southeast of the wind-tunnel intake.

  19. A fourth-order scheme for the unsteady compressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Parikh, P.; Maestrello, L.; Turkel, E.

    1985-01-01

    A computational scheme is described which is second-order accurate in time and fourth-order accurate in space (2-4). This method is applied to study the stability of compressible boundary layers. The laminar compressible Navier-Stokes equations are solved with a time harmonic inflow superimposed on the steady state solution. This results in spatially unstable modes. It is shown that the second-order methods are inefficient for calculating the growth rates and phases of the unstable modes. In contrast the fourth-order method yields accurate results on relatively course meshes.

  20. Calculation of AGARD Wing 445.6 flutter using Navier-Stokes aerodynamics

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, Elizabeth M.; Batina, John T.

    1993-01-01

    An unsteady, 3D, implicit upwind Euler/Navier-Stokes algorithm is here used to compute the flutter characteristics of Wing 445.6, the AGARD standard aeroelastic configuration for dynamic response, with a view to the discrepancy between Euler characteristics and experimental data. Attention is given to effects of fluid viscosity, structural damping, and number of structural model nodes. The flutter characteristics of the wing are determined using these unsteady generalized aerodynamic forces in a traditional V-g analysis. The V-g analysis indicates that fluid viscosity has a significant effect on the supersonic flutter boundary for this wing.

  1. On the Two-Dimensional Navier-Stokes Equations with the Free Boundary Condition

    SciTech Connect

    Ziane, M.

    1998-07-15

    In this article we consider the two-dimensional Navier-Stokes equations with free boundary condition (open surface), and derive a number of different results: a new orthogonal property for the nonlinear term, improved a priori estimates on the solution, an upper bound on the dimension of the attractor which agrees with the conventional theory of turbulence; finally, for elongated rectangular domains, an improved Lieb-Thirring (collective Sobolev) inequality leads to an upper bound on the dimension of the attractor which might be optimal.

  2. Quasiconservation laws for compressible three-dimensional Navier-Stokes flow.

    PubMed

    Gibbon, J D; Holm, D D

    2012-10-01

    We formulate the quasi-Lagrangian fluid transport dynamics of mass density ρ and the projection q=ω·∇ρ of the vorticity ω onto the density gradient, as determined by the three-dimensional compressible Navier-Stokes equations for an ideal gas, although the results apply for an arbitrary equation of state. It turns out that the quasi-Lagrangian transport of q cannot cross a level set of ρ. That is, in this formulation, level sets of ρ (isopycnals) are impermeable to the transport of the projection q. PMID:23214709

  3. Comparisons between DSMC and the Navier-Stokes equations for reentry flows

    NASA Technical Reports Server (NTRS)

    Olynick, David R.; Taylor, Jeff C.; Hassan, H. A.

    1993-01-01

    A detailed comparison is made between Navier-Stokes and DSMC calculations for flows near the continuum limit to assess the accuracy of the continuum equations in this regime. Meaningful comparisons require the use of similar physical models. This necessitates the inclusion of a separate rotational energy equation and use of slip boundary conditions. Inclusion of slip boundary conditions resulted in improved agreement between surface properties. Moreover, good agreement was obtained for the various temperatures in the nonequilibrium portion of the flow field that does not contain the shock region. Departures are noted in the shock region and in regions where thermal diffusion effects are important.

  4. Large Scale Flutter Data for Design of Rotating Blades Using Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2012-01-01

    A procedure to compute flutter boundaries of rotating blades is presented; a) Navier-Stokes equations. b) Frequency domain method compatible with industry practice. Procedure is initially validated: a) Unsteady loads with flapping wing experiment. b) Flutter boundary with fixed wing experiment. Large scale flutter computation is demonstrated for rotating blade: a) Single job submission script. b) Flutter boundary in 24 hour wall clock time with 100 cores. c) Linearly scalable with number of cores. Tested with 1000 cores that produced data in 25 hrs for 10 flutter boundaries. Further wall-clock speed-up is possible by performing parallel computations within each case.

  5. Exact self-similarity solution of the Navier-Stokes equations for a porous channel with orthogonally moving walls

    NASA Astrophysics Data System (ADS)

    Dauenhauer, Eric C.; Majdalani, Joseph

    2003-06-01

    This article describes a self-similarity solution of the Navier-Stokes equations for a laminar, incompressible, and time-dependent flow that develops within a channel possessing permeable, moving walls. The case considered here pertains to a channel that exhibits either injection or suction across two opposing porous walls while undergoing uniform expansion or contraction. Instances of direct application include the modeling of pulsating diaphragms, sweat cooling or heating, isotope separation, filtration, paper manufacturing, irrigation, and the grain regression during solid propellant combustion. To start, the stream function and the vorticity equation are used in concert to yield a partial differential equation that lends itself to a similarity transformation. Following this similarity transformation, the original problem is reduced to solving a fourth-order differential equation in one similarity variable η that combines both space and time dimensions. Since two of the four auxiliary conditions are of the boundary value type, a numerical solution becomes dependent upon two initial guesses. In order to achieve convergence, the governing equation is first transformed into a function of three variables: The two guesses and η. At the outset, a suitable numerical algorithm is applied by solving the resulting set of twelve first-order ordinary differential equations with two unspecified start-up conditions. In seeking the two unknown initial guesses, the rapidly converging inverse Jacobian method is applied in an iterative fashion. Numerical results are later used to ascertain a deeper understanding of the flow character. The numerical scheme enables us to extend the solution range to physical settings not considered in previous studies. Moreover, the numerical approach broadens the scope to cover both suction and injection cases occurring with simultaneous wall motion.

  6. Higher-Order Compact Schemes for Numerical Simulation of Incompressible Flows

    NASA Technical Reports Server (NTRS)

    Wilson, Robert V.; Demuren, Ayodeji O.; Carpenter, Mark

    1998-01-01

    A higher order accurate numerical procedure has been developed for solving incompressible Navier-Stokes equations for 2D or 3D fluid flow problems. It is based on low-storage Runge-Kutta schemes for temporal discretization and fourth and sixth order compact finite-difference schemes for spatial discretization. The particular difficulty of satisfying the divergence-free velocity field required in incompressible fluid flow is resolved by solving a Poisson equation for pressure. It is demonstrated that for consistent global accuracy, it is necessary to employ the same order of accuracy in the discretization of the Poisson equation. Special care is also required to achieve the formal temporal accuracy of the Runge-Kutta schemes. The accuracy of the present procedure is demonstrated by application to several pertinent benchmark problems.

  7. Unsteady Hybrid Navier-Stokes/Vortex Model for Numerical Study of Horizontal Axis Wind Turbine Aerodynamics under Yaw Conditions

    NASA Astrophysics Data System (ADS)

    Suzuki, Kensuke

    A new analysis tool, an unsteady Hybrid Navier-Stokes/Vortex Model, for a horizontal axis wind turbine (HAWT) in yawed flow is presented, and its convergence and low cost computational performance are demonstrated. In earlier work, a steady Hybrid Navier-Stokes/Vortex Model was developed with a view to improving simulation results obtained by participants of the NASA Ames blind comparison workshop, following the NREL Unsteady Aerodynamics Experiment. The hybrid method was shown to better predict rotor torque and power over the range of wind speeds, from fully attached to separated flows. A decade has passed since the workshop was held and three dimensional unsteady Navier-Stokes analyses have become available using super computers. In the first chapter, recent results of unsteady Euler and Navier-Stokes computations are reviewed as standard references of what is currently possible and are contrasted with results of the Hybrid Navier-Stokes/Vortex Model in steady flow. In Chapter 2, the computational method for the unsteady Hybrid model is detailed. The grid generation procedure, using ICEM CFD, is presented in Chapter 3. Steady and unsteady analysis results for the NREL Phase IV rotor and for a modified "swept NREL rotor" are presented in Chapter 4-Chapter 7.

  8. Navier-Stokes and Euler solutions for lee-side flows over supersonic delta wings. A correlation with experiment

    NASA Technical Reports Server (NTRS)

    Mcmillin, S. Naomi; Thomas, James L.; Murman, Earll M.

    1990-01-01

    An Euler flow solver and a thin layer Navier-Stokes flow solver were used to numerically simulate the supersonic leeside flow fields over delta wings which were observed experimentally. Three delta wings with 75, 67.5, and 60 deg leading edge sweeps were computed over an angle-of-attack range of 4 to 20 deg at a Mach number 2.8. The Euler code and Navier-Stokes code predict equally well the primary flow structure where the flow is expected to be separated or attached at the leading edge based on the Stanbrook-Squire boundary. The Navier-Stokes code is capable of predicting both the primary and the secondary flow features for the parameter range investigated. For those flow conditions where the Euler code did not predict the correct type of primary flow structure, the Navier-Stokes code illustrated that the flow structure is sensitive to boundary layer model. In general, the laminar Navier-Stokes solutions agreed better with the experimental data, especially for the lower sweep delta wings. The computational results and a detailed re-examination of the experimental data resulted in a refinement of the flow classifications. This refinement in the flow classification results in the separation bubble with the shock flow type as the intermediate flow pattern between separated and attached flows.

  9. Direct simulation Monte Carlo and Navier-Stokes simulations of blunt body wake flows

    NASA Astrophysics Data System (ADS)

    Moss, James N.; Mitcheltree, Robert A.; Dogra, Virendra K.; Wilmoth, Richard G.

    1994-07-01

    Numerical results obtained with direct simulation Monte Carlo and Navier-Stokes methods are presented for a Mach-20 nitrogen flow about a 70-deg blunted cone. The flow conditions simuulated are those that can be obtained in existing low-density hypersonic wind tunnels. Three sets of flow conditions are considered with freestream Knudsen numbers ranging from 0.03 to 0.001. The focus is on the wake structure: how the wake structure changes as a function of rarefaction, what the afterbody levels of heating are, and to what limits the continuum models are realistic as rarefaction in the wake is progressively increased. Calculations are made with and without an afterbody sting. Results for the after body sting are emphasizes in anticipation of an experimental study for the current flow conditions and model configuration. The Navier-Stokes calculations were made with and without slip boundary conditions. Comparisons of the results obtained with the two simulation methodologies are made for both flowfield structure and surface quantities.

  10. Direct simulation Monte Carlo and Navier-Stokes simulations of blunt body wake flows

    NASA Astrophysics Data System (ADS)

    Moss, James N.; Mitcheltree, Robert A.; Dogra, Virendra K.; Wilmoth, Richard G.

    1994-07-01

    Numerical results obtained with direct simulation Monte Carlo and Navier-Stokes methods are presented for a Mach-20 nitrogen flow about a 70-deg blunted cone. The flow conditions simulated are those that can be obtained in existing low-density hypersonic wind tunnels. Three sets of flow conditions are considered with freestream Knudsen numbers ranging from 0.03 to 0.001. The focus is on the wake structure: how the wake structure changes as a function of rare faction, what the afterbody levels of heating are, and to what limits the continuum models are realistic as rarefunction in the wake is progressively increased. Calculations are made with and without an afterbody sting. Results for the afterbody sting are emphasized in anticipation of an experimental study for the current flow conditions and model configuration. The Navier-Stokes calculations were made with and without slip boundary conditions. Comparisons of the results obtained with the two simulation methodologies are made for both flowfield structure and surface quantities.

  11. Tetrahedral finite-volume solutions to the Navier-Stokes equations on complex configurations

    NASA Astrophysics Data System (ADS)

    Frink, N. T.; Pirzadeh, S. Z.

    1999-09-01

    A review of the algorithmic features and capabilities of the unstructured-grid flow solver USM3Dns is presented. This code, along with the tetrahedral grid generator, VGRIDns, is being extensively used throughout the USA for solving the Euler and Navier-Stokes equations on complex aerodynamic problems. Spatial discretization is accomplished by a tetrahedral cell-centered finite-volume formulation using Roe's upwind flux difference splitting. The fluxes are limited by either a Superbee or MinMod limiter. Solution reconstruction within the tetrahedral cells is accomplished with a simple, but novel, multidimensional analytical formula. Time is advanced by an implicit backward-Euler time-stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one-equation model, which is coupled with a wall function to reduce the number of cells in the near-wall region of the boundary layer. The issues of accuracy and robustness of USM3Dns Navier-Stokes capabilities are addressed for a flat-plate boundary layer, and a full F-16 aircraft with external stores at transonic speed.

  12. Fast non-symmetric iterations and efficient preconditioning for Navier-Stokes equations

    SciTech Connect

    Silvester, D.; Elman, H.

    1994-12-31

    Discretisation of the steady-state Navier-Stokes equations: (u.grad)u-{nu}{del}{sup 2}u + grad p = 0; div u = 0 [1]. in some flow domain {Omega} {contained_in} IR{sup d}, (d = 2 or 3), gives a system of non-linear algebraic equations for discretised variables u (the velocity), and p (the pressure). The authors assume that appropriate boundary conditions are imposed. The non-linear equation system can be linearised using a fixed-point (Picard) iteration to give a matrix system which must be solved at every iteration. Part of this matrix is block diagonal, and consists of d convection-diffusion operators, one for each component of velocity. Two difficulties arise when solving this matrix equation. Firstly, the block diagonal part is not symmetric, although under certain conditions the symmetric part is positive definite. Secondly, the overall system is indefinite. This makes the design of fast and efficient iterative solvers for discretised Navier-Stokes operators an extremely challenging task.

  13. Ducted-Fan Engine Acoustic Predictions using a Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Biedron, R. T.; Farassat, F.; Spence, P. L.

    1998-01-01

    A Navier-Stokes computer code is used to predict one of the ducted-fan engine acoustic modes that results from rotor-wake/stator-blade interaction. A patched sliding-zone interface is employed to pass information between the moving rotor row and the stationary stator row. The code produces averaged aerodynamic results downstream of the rotor that agree well with a widely used average-passage code. The acoustic mode of interest is generated successfully by the code and is propagated well upstream of the rotor; temporal and spatial numerical resolution are fine enough such that attenuation of the signal is small. Two acoustic codes are used to find the far-field noise. Near-field propagation is computed by using Eversman's wave envelope code, which is based on a finite-element model. Propagation to the far field is accomplished by using the Kirchhoff formula for moving surfaces with the results of the wave envelope code as input data. Comparison of measured and computed far-field noise levels show fair agreement in the range of directivity angles where the peak radiation lobes from the inlet are observed. Although only a single acoustic mode is targeted in this study, the main conclusion is a proof-of-concept: Navier-Stokes codes can be used both to generate and propagate rotor/stator acoustic modes forward through an engine, where the results can be coupled to other far-field noise prediction codes.

  14. Analysis of spurious oscillation modes for the shallow water and Navier-Stokes equations

    USGS Publications Warehouse

    Walters, R.A.; Carey, G.F.

    1983-01-01

    The origin and nature of spurious oscillation modes that appear in mixed finite element methods are examined. In particular, the shallow water equations are considered and a modal analysis for the one-dimensional problem is developed. From the resulting dispersion relations we find that the spurious modes in elevation are associated with zero frequency and large wave number (wavelengths of the order of the nodal spacing) and consequently are zero-velocity modes. The spurious modal behavior is the result of the finite spatial discretization. By means of an artificial compressibility and limiting argument we are able to resolve the similar problem for the Navier-Stokes equations. The relationship of this simpler analysis to alternative consistency arguments is explained. This modal approach provides an explanation of the phenomenon in question and permits us to deduce the cause of the very complex behavior of spurious modes observed in numerical experiments with the shallow water equations and Navier-Stokes equations. Furthermore, this analysis is not limited to finite element formulations, but is also applicable to finite difference formulations. ?? 1983.

  15. Looking for O(N) Navier-Stokes solutions on non-structured meshes

    NASA Technical Reports Server (NTRS)

    Morano, Eric; Dervieux, Alain

    1993-01-01

    Multigrid methods are good candidates for the resolution of the system arising in Numerical Fluid Dynamics. However, the question is to know if those algorithms which are efficient for the Poissan equation on structured meshes will still apply well to the Euler and Navier-Stokes equations on unstructured meshes. The study of elliptic problems leads us to define the conditions where a Full Multigrid strategy has O(N) complexity. The aim of this paper is to build a comparison between the elliptic theory and practical CFD problems. First, as an introduction, we will recall some basic definitions and theorems applied to a model problem. The goal of this section is to point out the different properties that we need to produce an FMG algorithm with O(N) complexity. Then, we will show how we can apply this theory to the fluid dynamics equations such as Euler and Navier-Stokes equations. At last, we present some results which are 2nd-order accurate and some explanations about the behavior of the FMG process.

  16. The Proteus Navier-Stokes code. [two and three dimensional computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.

    1992-01-01

    An effort is currently underway at NASA Lewis to develop two and three dimensional Navier-Stokes codes, called Proteus, for aerospace propulsion applications. Proteus solves the Reynolds-averaged, unsteady, compressible Navier-Stokes equations in strong conservation law form. Turbulence is modeled using a Baldwin-Lomax based algebraic eddy viscosity model. In addition, options are available to solve thin layer or Euler equations, and to eliminate the energy equation by assuming constant stagnation enthalpy. An extensive series of validation cases have been run, primarily using the two dimensional planar/axisymmetric version of the code. Several flows were computed that have exact solution such as: fully developed channel and pipe flow; Couette flow with and without pressure gradients; unsteady Couette flow formation; flow near a suddenly accelerated flat plate; flow between concentric rotating cylinders; and flow near a rotating disk. The two dimensional version of the Proteus code has been released, and the three dimensional code is scheduled for release in late 1991.

  17. Adaptively Refined Euler and Navier-Stokes Solutions with a Cartesian-Cell Based Scheme

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Powell, Kenneth G.

    1995-01-01

    A Cartesian-cell based scheme with adaptive mesh refinement for solving the Euler and Navier-Stokes equations in two dimensions has been developed and tested. Grids about geometrically complicated bodies were generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells were created using polygon-clipping algorithms. The grid was stored in a binary-tree data structure which provided a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations were solved on the resulting grids using an upwind, finite-volume formulation. The inviscid fluxes were found in an upwinded manner using a linear reconstruction of the cell primitives, providing the input states to an approximate Riemann solver. The viscous fluxes were formed using a Green-Gauss type of reconstruction upon a co-volume surrounding the cell interface. Data at the vertices of this co-volume were found in a linearly K-exact manner, which ensured linear K-exactness of the gradients. Adaptively-refined solutions for the inviscid flow about a four-element airfoil (test case 3) were compared to theory. Laminar, adaptively-refined solutions were compared to accepted computational, experimental and theoretical results.

  18. Flowfield Comparisons from Three Navier-Stokes Solvers for an Axisymmetric Separate Flow Jet

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Bridges, James; Khavaran, Abbas

    2002-01-01

    To meet new noise reduction goals, many concepts to enhance mixing in the exhaust jets of turbofan engines are being studied. Accurate steady state flowfield predictions from state-of-the-art computational fluid dynamics (CFD) solvers are needed as input to the latest noise prediction codes. The main intent of this paper was to ascertain that similar Navier-Stokes solvers run at different sites would yield comparable results for an axisymmetric two-stream nozzle case. Predictions from the WIND and the NPARC codes are compared to previously reported experimental data and results from the CRAFT Navier-Stokes solver. Similar k-epsilon turbulence models were employed in each solver, and identical computational grids were used. Agreement between experimental data and predictions from each code was generally good for mean values. All three codes underpredict the maximum value of turbulent kinetic energy. The predicted locations of the maximum turbulent kinetic energy were farther downstream than seen in the data. A grid study was conducted using the WIND code, and comments about convergence criteria and grid requirements for CFD solutions to be used as input for noise prediction computations are given. Additionally, noise predictions from the MGBK code, using the CFD results from the CRAFT code, NPARC, and WIND as input are compared to data.

  19. Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations.

    PubMed

    Li, Q; He, Y L; Wang, Y; Tao, W Q

    2007-11-01

    A coupled double-distribution-function lattice Boltzmann method is developed for the compressible Navier-Stokes equations. Different from existing thermal lattice Boltzmann methods, this method can recover the compressible Navier-Stokes equations with a flexible specific-heat ratio and Prandtl number. In the method, a density distribution function based on a multispeed lattice is used to recover the compressible continuity and momentum equations, while the compressible energy equation is recovered by an energy distribution function. The energy distribution function is then coupled to the density distribution function via the thermal equation of state. In order to obtain an adjustable specific-heat ratio, a constant related to the specific-heat ratio is introduced into the equilibrium energy distribution function. Two different coupled double-distribution-function lattice Boltzmann models are also proposed in the paper. Numerical simulations are performed for the Riemann problem, the double-Mach-reflection problem, and the Couette flow with a range of specific-heat ratios and Prandtl numbers. The numerical results are found to be in excellent agreement with analytical and/or other solutions.

  20. Besov Space Regularity Conditions for Weak Solutions of the Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Farwig, Reinhard; Sohr, Hermann; Varnhorn, Werner

    2014-06-01

    Consider a bounded domain with smooth boundary, some initial value , and a weak solution u of the Navier-Stokes system in . Our aim is to develop regularity and uniqueness conditions for u which are based on the Besov space with ; here A denotes the Stokes operator. This space, introduced by Farwig et al. (Ann. Univ. Ferrara 55:89-110, 2009 and J. Math. Fluid Mech. 14: 529-540, 2012), is a subspace of the well known Besov space , see Amann (Nonhomogeneous Navier-Stokes Equations with Integrable Low-Regularity Data. Int. Math. Ser. pp. 1-28. Kluwer/Plenum, New York, 2002). Our main results on the regularity of u exploits a variant of the space in which the integral in time has to be considered only on finite intervals (0, δ ) with . Further we discuss several criteria for uniqueness and local right-hand regularity, in particular, if u satisfies Serrin's limit condition . Finally, we obtain a large class of regular weak solutions u defined by a smallness condition with some constant.

  1. Navier-Stokes analysis of three-dimensional flow and heat transfer inside turbine blade rows

    NASA Technical Reports Server (NTRS)

    Hah, C.

    1993-01-01

    A numerical method for solving the three-dimensional, Navier-Stokes equations for unsteady, viscous flow and heat transfer through multiple turbomachinery blade rows is presented. The method solves the fully three-dimensional Navier-Stokes equations with an implicit scheme which is based on a control volume approach. A two-equation turbulence model with a low Reynolds number modification is employed. A third-order accurate upwinding scheme is used to approximate convection terms while a second order accurate central difference scheme is used for the discretization of viscous terms. A second-order accurate scheme is employed for the temporal discretization. The numerical method is applied to study the unsteady flow and heat transfer field of the High Pressure Fuel side Turbo-Pump (HPFTP) of the Space Shuttle Main Engine (SSME). The stage calculation is performed by coupling the stator and the rotor flow fields at each time step through an over-laid grid. Numerical results for the complete geometry with the vane trailing edge cutback are presented and compared with the available experimental data.

  2. A Galerkin-free model reduction approach for the Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Shinde, Vilas; Longatte, Elisabeth; Baj, Franck; Hoarau, Yannick; Braza, Marianna

    2016-03-01

    Galerkin projection of the Navier-Stokes equations on Proper Orthogonal Decomposition (POD) basis is predominantly used for model reduction in fluid dynamics. The robustness for changing operating conditions, numerical stability in long-term transient behavior and the pressure-term consideration are generally the main concerns of the Galerkin Reduced-Order Models (ROM). In this article, we present a novel procedure to construct an off-reference solution state by using an interpolated POD reduced basis. A linear interpolation of the POD reduced basis is performed by using two reference solution states. The POD basis functions are optimal in capturing the averaged flow energy. The energy dominant POD modes and corresponding base flow are interpolated according to the change in operating parameter. The solution state is readily built without performing the Galerkin projection of the Navier-Stokes equations on the reduced POD space modes as well as the following time-integration of the resulted Ordinary Differential Equations (ODE) to obtain the POD time coefficients. The proposed interpolation based approach is thus immune from the numerical issues associated with a standard POD-Galerkin ROM. In addition, a posteriori error estimate and a stability analysis of the obtained ROM solution are formulated. A detailed case study of the flow past a cylinder at low Reynolds numbers is considered for the demonstration of proposed method. The ROM results show good agreement with the high fidelity numerical flow simulation.

  3. Tetrahedral Finite-Volume Solutions to the Navier-Stokes Equations on Complex Configurations

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Pirzadeh, Shahyar Z.

    1998-01-01

    A review of the algorithmic features and capabilities of the unstructured-grid flow solver USM3Dns is presented. This code, along with the tetrahedral grid generator, VGRIDns, is being extensively used throughout the U.S. for solving the Euler and Navier-Stokes equations on complex aerodynamic problems. Spatial discretization is accomplished by a tetrahedral cell-centered finite-volume formulation using Roe's upwind flux difference splitting. The fluxes are limited by either a Superbee or MinMod limiter. Solution reconstruction within the tetrahedral cells is accomplished with a simple, but novel, multidimensional analytical formula. Time is advanced by an implicit backward-Euler time-stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one-equation model, which is coupled with a wall function to reduce the number of cells in the near-wall region of the boundary layer. The issues of accuracy and robustness of USM3Dns Navier-Stokes capabilities are addressed for a flat-plate boundary layer, and a full F-16 aircraft with external stores at transonic speed.

  4. Algorithm and code development for unsteady three-dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru

    1994-01-01

    Aeroelastic tests require extensive cost and risk. An aeroelastic wind-tunnel experiment is an order of magnitude more expensive than a parallel experiment involving only aerodynamics. By complementing the wind-tunnel experiments with numerical simulations, the overall cost of the development of aircraft can be considerably reduced. In order to accurately compute aeroelastic phenomenon it is necessary to solve the unsteady Euler/Navier-Stokes equations simultaneously with the structural equations of motion. These equations accurately describe the flow phenomena for aeroelastic applications. At ARC a code, ENSAERO, is being developed for computing the unsteady aerodynamics and aeroelasticity of aircraft, and it solves the Euler/Navier-Stokes equations. The purpose of this cooperative agreement was to enhance ENSAERO in both algorithm and geometric capabilities. During the last five years, the algorithms of the code have been enhanced extensively by using high-resolution upwind algorithms and efficient implicit solvers. The zonal capability of the code has been extended from a one-to-one grid interface to a mismatching unsteady zonal interface. The geometric capability of the code has been extended from a single oscillating wing case to a full-span wing-body configuration with oscillating control surfaces. Each time a new capability was added, a proper validation case was simulated, and the capability of the code was demonstrated.

  5. Computation of transonic separated wing flows using an Euler/Navier-Stokes zonal approach

    NASA Technical Reports Server (NTRS)

    Kaynak, Uenver; Holst, Terry L.; Cantwell, Brian J.

    1986-01-01

    A computer program called Transonic Navier Stokes (TNS) has been developed which solves the Euler/Navier-Stokes equations around wings using a zonal grid approach. In the present zonal scheme, the physical domain of interest is divided into several subdomains called zones and the governing equations are solved interactively. The advantages of the Zonal Grid approach are as follows: (1) the grid for any subdomain can be generated easily; (2) grids can be, in a sense, adapted to the solution; (3) different equation sets can be used in different zones; and, (4) this approach allows for a convenient data base organization scheme. Using this code, separated flows on a NACA 0012 section wing and on the NASA Ames WING C have been computed. First, the effects of turbulence and artificial dissipation models incorporated into the code are assessed by comparing the TNS results with other CFD codes and experiments. Then a series of flow cases is described where data are available. The computed results, including cases with shock-induced separation, are in good agreement with experimental data. Finally, some futuristic cases are presented to demonstrate the abilities of the code for massively separated cases which do not have experimental data.

  6. Looking for O(N) Navier-Stokes solutions on non-structured meshes

    NASA Technical Reports Server (NTRS)

    Morano, Eric; Dervieux, Alain

    1993-01-01

    Multigrid methods are good candidates for the resolution of the system arising in numerical fluid dynamics. However, the question is to know if those algorithms which are efficient for the Poisson equation on structured meshes will still apply well to the Euler and Navier-Stokes equations on unstructured meshes. The study of elliptic problems leads us to define the conditions where a full multigrid strategy has O(N) complexity. The aim of this paper is to build a comparison between the elliptic theory and practical CFD problems. First, as an introduction, we will recall some basic definitions and theorems applied to a model problem. The goal of this section is to point out the different properties that we need to produce an FMG algorithm with O(N) complexity. Then, we will show how we can apply this theory to the fluid dynamics equations such as Euler and Navier-Stokes equations. At last, we present some results which are 2nd-order accurate and some explanations about the behavior of the FMG process.

  7. Ducted-Fan Engine Acoustic Predictions Using a Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Biedron, R. T.; Farassat, F.; Spence, P. L.

    1998-01-01

    A Navier-Stokes computer code is used to predict one of the ducted-fan engine acoustic modes that results from rotor-wake/stator-blade interaction. A patched sliding-zone interface is employed to pass information between the moving rotor row and the stationary stator row. The code produces averaged aerodynamic results downstream of the rotor that agree well with a widely used average-passage code. The acoustic mode of interest is generated successfully by the code and is propagated well upstream of the rotor, temporal and spatial numerical resolution are fine enough such that attenuation of the signal is small. Two acoustic codes are used to find the far-field noise. Near-field propagation is computed by using Eversman's wave envelope code, which is based on a finite-element model. Propagation to the far field is accomplished by using the Kirchhoff formula for moving surfaces with the results of the wave envelope code as input data. Comparison of measured and computed far-field noise levels show fair agreement in the range of directivity angles where the peak radiation lobes from the inlet are observed. Although only a single acoustic mode is targeted in this study, the main conclusion is a proof-of-concept: Navier Stokes codes can be used both to generate and propagate rotor-stator acoustic modes forward through an engine, where the results can be coupled to other far-field noise prediction codes.

  8. Navier-Stokes solutions with surface catalysis for Martian atmospheric entry

    NASA Technical Reports Server (NTRS)

    Chen, Y.-K.; Henline, W. D.; Stewart, D. A.; Candler, G. V.

    1992-01-01

    In this study numerical solutions have been obtained for two-dimensional axisymmetric hypersonic nonequilibrium CO2 flow over a high angle blunt cone with appropriate surface boundary conditions to account for energy and mass conservation at the body surface. The flowfield is described by the Navier-Stokes equations and multicomponent conservation laws which account for both translational and internal vibrational nonequilibrium effects. Complete forebody solutions have been obtained for the peak heating point of the Mars entry trajectory specified in the proposed NASA MESUR (Mars Environmental Survey) project. In these solutions, radiative equilibrium wall temperature and surface heating distributions are determined over the MESUR aeroshell forebody for entry velocity equal to 7 km/sec with varying degrees of surface catalysis. The effects of gas kinetics, surface catalysis, transport properties, and vibrational relaxation times on the surface heating are examined. The results identify some important issues in the prediction of surface heating for flows in thermochemical nonequilibrium and show that the Navier-Stokes code used herein is effective for thermal protection system design and materials selection.

  9. Navier-Stokes Solutions of Rotor and Rotor-Body Flows

    NASA Technical Reports Server (NTRS)

    Srinivasan, G. R.; Holst, Terry L. (Technical Monitor)

    1994-01-01

    This paper will review the advances made recently in the Navier-Stokes CFD methods to simulate aerodynamics and aeroacoustics of helicopter rotors and rotor-body flows. Although a complete flowfield simulation of full helicopter is currently not feasible with these methods, impressive gains have been made in analyzing individual components of this complex problem in a very detailed manner. The use of the state-of-the-art numerical algorithms in solution methods, in conjunction with powerful supercomputers, like the Cray-2, have enabled noticeable progress to be made in modeling viscous-inviscid interactions, blade-vortex interactions, tip-vortex: simulation and wake effects, as well as high speed impulsive noise in hover and forward flight for isolated rotor blades. This paper will critically evaluate the presently available Euler and Navier-Stokes methods, both finite-difference and finite volume methods using structured and unstructured grids for helicopter applications for accuracy, suitability, and computational efficiency. The review will also include the recent progress made using overset grids to model rotor-body flows. All the material for this review will be drawn from the published material shown below.

  10. Navier-Stokes analysis of solid propellant rocket motor internal flows

    SciTech Connect

    Sabnis, J.S.; Gibeling, H.J.; Mcdonald, H. )

    1989-12-01

    A multidimensional implicit Navier-Stokes analysis that uses numerical solution of the ensemble-averaged Navier-Stokes equations in a nonorthogonal, body-fitted, cylindrical coordinate system has been applied to the simulation of the steady mean flow in solid propellant rocket motor chambers. The calculation procedure incorporates a two-equation (k-epsilon) turbulence model and utilizes a consistently split, linearized block-implicit algorithm for numerical solution of the governing equations. The code was validated by comparing computed results with the experimental data obtained in cylindrical-port cold-flow tests. The agreement between the computed and experimentally measured mean axial velocities is excellent. The axial location of transition to turbulent flow predicted by the two-equation (k-epsilon) turbulence model used in the computations also agrees well with the experimental data. Computations performed to simulate the axisymmetric flowfield in the vicinity of the aft field joint in the Space Shuttle solid rocket motor using 14,725 grid points show the presence of a region of reversed axial flow near the downstream edge of the slot. 22 refs.

  11. Computational study of supersonic turbulent-separated flows using partially averaged Navier-stokes method

    NASA Astrophysics Data System (ADS)

    Luo, Dahai; Yan, Chao; Wang, Xiaoyong

    2015-02-01

    Separation commonly exists in the flows around flight vehicles and also in the internal combustor flows. Simulation of high-speed turbulent-separated flows using a reliable computational design tool is crucial for the development of supersonic and hypersonic vehicles. In this paper, we present the computational results of supersonic base and ramped-cavity flows at high Reynolds numbers using the partially averaged Navier-Stokes (PANS) method. The current PANS models are based on the Menter SST turbulence model and also the Wilcox k-ω model. Results from PANS simulations are compared in detail with the available experimental data. The effect of the resolution control parameter fk (the ratio of unresolved-to-total kinetic energy) relevant to the PANS method is investigated. More turbulent flow structures are resolved as expected with decreasing fk, but it does not mean better results can be obtained. Spatially varying and dynamically updated fk in PANS simulations has been performed. Results from variable fk PANS simulations show good agreement with the experiment and great improvement when compared to Reynolds averaged Navier-Stokes (RANS) computation and constant fk PANS simulations.

  12. Source Term Model for Steady Micro Jets in a Navier-Stokes Computer Code

    NASA Technical Reports Server (NTRS)

    Waithe, Kenrick A.

    2005-01-01

    A source term model for steady micro jets was implemented into a non-proprietary Navier-Stokes computer code, OVERFLOW. The source term models the mass flow and momentum created by a steady blowing micro jet. The model is obtained by adding the momentum and mass flow created by the jet to the Navier-Stokes equations. The model was tested by comparing with data from numerical simulations of a single, steady micro jet on a flat plate in two and three dimensions. The source term model predicted the velocity distribution well compared to the two-dimensional plate using a steady mass flow boundary condition, which was used to simulate a steady micro jet. The model was also compared to two three-dimensional flat plate cases using a steady mass flow boundary condition to simulate a steady micro jet. The three-dimensional comparison included a case with a grid generated to capture the circular shape of the jet and a case without a grid generated for the micro jet. The case without the jet grid mimics the application of the source term. The source term model compared well with both of the three-dimensional cases. Comparisons of velocity distribution were made before and after the jet and Mach and vorticity contours were examined. The source term model allows a researcher to quickly investigate different locations of individual or several steady micro jets. The researcher is able to conduct a preliminary investigation with minimal grid generation and computational time.

  13. Discontinuous Galerkin solution of the Navier-Stokes equations on deformable domains

    SciTech Connect

    Persson, P.-O.; Bonet, J.; Peraire, J.

    2009-01-13

    We describe a method for computing time-dependent solutions to the compressible Navier-Stokes equations on variable geometries. We introduce a continuous mapping between a fixed reference configuration and the time varying domain, By writing the Navier-Stokes equations as a conservation law for the independent variables in the reference configuration, the complexity introduced by variable geometry is reduced to solving a transformed conservation law in a fixed reference configuration, The spatial discretization is carried out using the Discontinuous Galerkin method on unstructured meshes of triangles, while the time integration is performed using an explicit Runge-Kutta method, For general domain changes, the standard scheme fails to preserve exactly the free-stream solution which leads to some accuracy degradation, especially for low order approximations. This situation is remedied by adding an additional equation for the time evolution of the transformation Jacobian to the original conservation law and correcting for the accumulated metric integration errors. A number of results are shown to illustrate the flexibility of the approach to handle high order approximations on complex geometries.

  14. Direct simulation Monte Carlo and Navier-Stokes simulations of blunt body wake flows

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Mitcheltree, Robert A.; Dogra, Virendra K.; Wilmoth, Richard G.

    1994-01-01

    Numerical results obtained with direct simulation Monte Carlo and Navier-Stokes methods are presented for a Mach-20 nitrogen flow about a 70-deg blunted cone. The flow conditions simuulated are those that can be obtained in existing low-density hypersonic wind tunnels. Three sets of flow conditions are considered with freestream Knudsen numbers ranging from 0.03 to 0.001. The focus is on the wake structure: how the wake structure changes as a function of rarefaction, what the afterbody levels of heating are, and to what limits the continuum models are realistic as rarefaction in the wake is progressively increased. Calculations are made with and without an afterbody sting. Results for the after body sting are emphasizes in anticipation of an experimental study for the current flow conditions and model configuration. The Navier-Stokes calculations were made with and without slip boundary conditions. Comparisons of the results obtained with the two simulation methodologies are made for both flowfield structure and surface quantities.

  15. Direct simulation Monte Carlo and Navier-Stokes simulations of blunt body wake flows

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Mitcheltree, Robert A.; Dogra, Virendra K.; Wilmoth, Richard G.

    1994-01-01

    Numerical results obtained with direct simulation Monte Carlo and Navier-Stokes methods are presented for a Mach-20 nitrogen flow about a 70-deg blunted cone. The flow conditions simulated are those that can be obtained in existing low-density hypersonic wind tunnels. Three sets of flow conditions are considered with freestream Knudsen numbers ranging from 0.03 to 0.001. The focus is on the wake structure: how the wake structure changes as a function of rare faction, what the afterbody levels of heating are, and to what limits the continuum models are realistic as rarefunction in the wake is progressively increased. Calculations are made with and without an afterbody sting. Results for the afterbody sting are emphasized in anticipation of an experimental study for the current flow conditions and model configuration. The Navier-Stokes calculations were made with and without slip boundary conditions. Comparisons of the results obtained with the two simulation methodologies are made for both flowfield structure and surface quantities.

  16. Further Development of a New, Flux-Conserving Newton Scheme for the Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Scott, James R.

    1996-01-01

    This paper is one of a series of papers describing the development of a new numerical approach for solving the steady Navier-Stokes equations. The key features in the current development are (1) the discrete representation of the dependent variables by way of high order polynomial expansions, (2) the retention of all derivatives in the expansions as unknowns to be explicitly solved for, (3) the automatic balancing of fluxes at cell interfaces, and (4) the discrete simulation of both the integral and differential forms of the governing equations. The main purpose of this paper is, first, to provide a systematic and rigorous derivation of the conditions that are used to simulate the differential form of the Navier-Stokes equations, and second, to extend our previously-presented internal flow scheme to external flows and nonuniform grids. Numerical results are presented for high Reynolds number flow (Re = 100,000) around a finite flat plate, and detailed comparisons are made with the Blasius flat plate solution and Goldstein wake solution. It is shown that the error in the streamwise velocity decreases like r(sup alpha)(Delta)y(exp 2), where alpha approx. 0.25 and r = delta(y)/delta(x) is the grid aspect ratio.

  17. Navier-Stokes flow in the weighted Hardy space with applications to time decay problem

    NASA Astrophysics Data System (ADS)

    Okabe, Takahiro; Tsutsui, Yohei

    2016-08-01

    The asymptotic expansions of the Navier-Stokes flow in Rn and the rates of decay are studied with aid of weighted Hardy spaces. Fujigaki and Miyakawa [12], Miyakawa [28] proved the nth order asymptotic expansion of the Navier-Stokes flow if initial data decays like (1 + | x |)-n-1 and if nth moment of initial data is finite. In the present paper, it is clarified that the moment condition for initial data is essential in order to obtain higher order asymptotic expansion of the flow and to consider the rapid time decay problem. The second author [39] established the weighted estimates of the strong solutions in the weighted Hardy spaces with small initial data which belongs to Ln and a weighed Hardy space. Firstly, the refinement of the previous work [39] is achieved with alternative proof. Then the existence time of the solution in the weighted Hardy spaces is characterized without any Hardy norm. As a result, in two dimensional case the smallness condition on initial data is completely removed. As an application, the rapid time decay of the flow is investigated with aid of asymptotic expansions and of the symmetry conditions introduced by Brandolese [3].

  18. A unified multigrid solver for the Navier-Stokes equations on mixed element meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Venkatakrishnan, V.

    1995-01-01

    A unified multigrid solution technique is presented for solving the Euler and Reynolds-averaged Navier-Stokes equations on unstructured meshes using mixed elements consisting of triangles and quadrilaterals in two dimensions, and of hexahedra, pyramids, prisms, and tetrahedra in three dimensions. While the use of mixed elements is by no means a novel idea, the contribution of the paper lies in the formulation of a complete solution technique which can handle structured grids, block structured grids, and unstructured grids of tetrahedra or mixed elements without any modification. This is achieved by discretizing the full Navier-Stokes equations on tetrahedral elements, and the thin layer version of these equations on other types of elements, while using a single edge-based data-structure to construct the discretization over all element types. An agglomeration multigrid algorithm, which naturally handles meshes of any types of elements, is employed to accelerate convergence. An automatic algorithm which reduces the complexity of a given triangular or tetrahedral mesh by merging candidate triangular or tetrahedral elements into quadrilateral or prismatic elements is also described. The gains in computational efficiency afforded by the use of non-simplicial meshes over fully tetrahedral meshes are demonstrated through several examples.

  19. Numerical simulation of jet aerodynamics using the three-dimensional Navier-Stokes code PAB3D

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul; Abdol-Hamid, Khaled S.

    1996-01-01

    This report presents a unified method for subsonic and supersonic jet analysis using the three-dimensional Navier-Stokes code PAB3D. The Navier-Stokes code was used to obtain solutions for axisymmetric jets with on-design operating conditions at Mach numbers ranging from 0.6 to 3.0, supersonic jets containing weak shocks and Mach disks, and supersonic jets with nonaxisymmetric nozzle exit geometries. This report discusses computational methods, code implementation, computed results, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions. The Navier-Stokes method using the standard Jones-Launder two-equation kappa-epsilon turbulence model can accurately predict jet flow, and such predictions are made without any modification to the published constants for the turbulence model.

  20. Drifting solutions with elliptic symmetry for the compressible Navier-Stokes equations with density-dependent viscosity

    SciTech Connect

    An, Hongli; Yuen, Manwai

    2014-05-15

    In this paper, we investigate the analytical solutions of the compressible Navier-Stokes equations with dependent-density viscosity. By using the characteristic method, we successfully obtain a class of drifting solutions with elliptic symmetry for the Navier-Stokes model wherein the velocity components are governed by a generalized Emden dynamical system. In particular, when the viscosity variables are taken the same as Yuen [M. W. Yuen, “Analytical solutions to the Navier-Stokes equations,” J. Math. Phys. 49, 113102 (2008)], our solutions constitute a generalization of that obtained by Yuen. Interestingly, numerical simulations show that the analytical solutions can be used to explain the drifting phenomena of the propagation wave like Tsunamis in oceans.

  1. A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation

    NASA Astrophysics Data System (ADS)

    Han, Daozhi; Wang, Xiaoming

    2015-06-01

    We propose a novel second order in time numerical scheme for Cahn-Hilliard-Navier-Stokes phase field model with matched density. The scheme is based on second order convex-splitting for the Cahn-Hilliard equation and pressure-projection for the Navier-Stokes equation. We show that the scheme is mass-conservative, satisfies a modified energy law and is therefore unconditionally stable. Moreover, we prove that the scheme is unconditionally uniquely solvable at each time step by exploring the monotonicity associated with the scheme. Thanks to the simple coupling of the scheme, we design an efficient Picard iteration procedure to further decouple the computation of Cahn-Hilliard equation and Navier-Stokes equation. We implement the scheme by the mixed finite element method. Ample numerical experiments are performed to validate the accuracy and efficiency of the numerical scheme.

  2. Uniform Regularity and Vanishing Dissipation Limit for the Full Compressible Navier-Stokes System in Three Dimensional Bounded Domain

    NASA Astrophysics Data System (ADS)

    Wang, Yong

    2016-09-01

    In the present paper, we study the uniform regularity and vanishing dissipation limit for the full compressible Navier-Stokes system whose viscosity and heat conductivity are allowed to vanish at different orders. The problem is studied in a three dimensional bounded domain with Navier-slip type boundary conditions. It is shown that there exists a unique strong solution to the full compressible Navier-Stokes system with the boundary conditions in a finite time interval which is independent of the viscosity and heat conductivity. The solution is uniformly bounded in {W^{1,infty}} and is a conormal Sobolev space. Based on such uniform estimates, we prove the convergence of the solutions of the full compressible Navier-Stokes to the corresponding solutions of the full compressible Euler system in {L^infty(0,T; L^2)}, {L^infty(0,T; H1)} and {L^infty([0,T]×Ω)} with a rate of convergence.

  3. An Empirical Model for Vane-Type Vortex Generators in a Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.

    2005-01-01

    An empirical model which simulates the effects of vane-type vortex generators in ducts was incorporated into the Wind-US Navier-Stokes computational fluid dynamics code. The model enables the effects of the vortex generators to be simulated without defining the details of the geometry within the grid, and makes it practical for researchers to evaluate multiple combinations of vortex generator arrangements. The model determines the strength of each vortex based on the generator geometry and the local flow conditions. Validation results are presented for flow in a straight pipe with a counter-rotating vortex generator arrangement, and the results are compared with experimental data and computational simulations using a gridded vane generator. Results are also presented for vortex generator arrays in two S-duct diffusers, along with accompanying experimental data. The effects of grid resolution and turbulence model are also examined.

  4. Comparisons of TVD schemes applied to the Navier-Stokes equations. [total variation diminishing

    NASA Technical Reports Server (NTRS)

    Buelow, Philip E.

    1989-01-01

    In this study, the following total variation diminishing (TVD) schemes for solving the Navier-Stokes equations have been tested: the Chakravarthy and Szema (1985) upwind biased TVD scheme, the Harten's upwind TVD scheme described by Yee et al. (1983), and the Yee's (1985) symmetric TVD scheme. The schemes have been compared using three test cases. The first case was the one-dimensional shock tube problem which tested the shock-capturing abilities of the schemes. Chakravarthy's and Harten's schemes gave similar results which were found to be more accurate than the results from Yee's scheme. The second case was a compressible boundary layer which tested the schemes's abilities to solve fiscous flows. In this case, the three schemes yielded almost identical results. Finally, the shock/boundary-layer interaction case studied experimentally by Hakkinen et al. (1959) was computed. Here, Chakravarthy's and Yee's schemes compared most favorably with the published data, with Yee's scheme giving slightly better results.

  5. Entropy Stable Wall Boundary Conditions for the Three-Dimensional Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2015-01-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  6. Navier-Stokes computations about complex configurations including a complete F-16 aircraft

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Flores, Jolen; Chaderjian, Neal M.; Kaynak, Unver

    1990-01-01

    Transonic Navier-Stokes (TNS) code solutions gathered from the literature for three-dimensional geometries, including two different wings and a complete F-16A aircraft, are presently discussed. The TNS codes use a zonal grid approach whose number of zones vary from four to 54. The Euler equations are solved in zones away from no-slip surfaces, and the thin-layer TNS equations are solved in all zones immediately adjacent to no-slip surfaces. In the case of 'corner' zones possessing no-slip boundary conditions on two different surfaces, a thin-layer formulation along both directions is employed. Employing these features, a zonal construction with the requisite set of boundary conditions can be devised for almost any application.

  7. Navier-Stokes structure of merged layer flow on the spherical nose of a space vehicle

    NASA Technical Reports Server (NTRS)

    Jain, A. C.; Woods, G. H.

    1988-01-01

    Hypersonic merged layer flow on the forepart of a spherical surface of a space vehicle has been investigated on the basis of the full steady-state Navier-Stokes equations using slip and temperature jump boundary conditions at the surface and free-stream conditions far from the surface. The shockwave-like structure was determined as part of the computations. Using an equivalent body concept, computations were carried out under conditions that the Aeroassist Flight Experiment (AFE) Vehicle would encounter at 15 and 20 seconds in its flight path. Emphasis was placed on understanding the basic nature of the flow structure under low density conditions. Particular attention was paid to the understanding of the structure of the outer shockwave-like region as the fluid expands around the sphere. Plots were drawn for flow profiles and surface characteristics to understand the role of dissipation processes in the merged layer of the spherical nose of the vehicle.

  8. A three dimensional multigrid Reynolds-averaged Navier-Stokes solver for unstructured meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1994-01-01

    A three-dimensional unstructured mesh Reynolds averaged Navier-Stokes solver is described. Turbulence is simulated using a single field-equation model. Computational overheads are minimized through the use of a single edge-based data-structure, and efficient multigrid solution technique, and the use of multi-tasking on shared memory multi-processors. The accuracy and efficiency of the code are evaluated by computing two-dimensional flows in three dimensions and comparing with results from a previously validated two-dimensional code which employs the same solution algorithm. The feasibility of computing three-dimensional flows on grids of several million points in less than two hours of wall clock time is demonstrated.

  9. Three-dimensional Navier-Stokes analysis of turbine passage heat transfer

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.; Arnone, Andrea

    1991-01-01

    The three-dimensional Reynolds-averaged Navier-Stokes equations are numerically solved to obtain the pressure distribution and heat transfer rates on the endwalls and the blades of two linear turbine cascades. The TRAF3D code which has recently been developed in a joint project between researchers from the University of Florence and NASA Lewis Research Center is used. The effect of turbulence is taken into account by using the eddy viscosity hypothesis and the two-layer mixing length model of Baldwin and Lomax. Predictions of surface heat transfer are made for Langston's cascade and compared with the data obtained for that cascade by Graziani. The comparison was found to be favorable. The code is also applied to a linear transonic rotor cascade to predict the pressure distributions and heat transfer rates.

  10. Navier-Stokes solution of transonic cascade flows using nonperiodic C-type grids

    NASA Technical Reports Server (NTRS)

    Arnone, Andrea; Liou, Meng-Sing; Povinelli, Louis A.

    1992-01-01

    A new kind of C-type grid is proposed, this grid is non-periodic on the wake and allows minimum skewness for cascades with high turning and large camber. Reynolds-averaged Navier-Stokes equations are solved on this type of grid using a finite volume discretization and a full multigrid method which uses Runge-Kutta stepping as the driving scheme. The Baldwin-Lomax eddy-viscosity model is used for turbulence closure. A detailed numerical study is proposed for a highly loaded transonic blade. A grid independence analysis is presented in terms of pressure distribution, exit flow angles, and loss coefficient. Comparison with experiments clearly demonstrates the capability of the proposed procedure.

  11. Multigrid computations of unsteady rotor-stator interaction using the Navier-Stokes equations

    SciTech Connect

    Arnone, A.; Sestini, A.; Pacciani, R.

    1995-12-01

    A Navier-Stokes time-accurate solver has been extended to the analysis of unsteady rotor-stator interaction. In the proposed method, a fully-implicit time discretization is used to remove stability limitations. A four-stage Runge-Kutta scheme is used in conjunction with several accelerating techniques typical of steady-state solvers, instead of traditional time-expensive factorizations. Those accelerating strategies include local time stepping, residual smoothing, and multigrid. Direct interpolation of the conservative variables is used to handle the interfaces between blade rows. Two-dimensional viscous calculations of unsteady rotor-stator interaction in a modern gas turbine stage are presented to check for the capability of the procedure.

  12. About the coupling of turbulence closure models with averaged Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Vandromme, D.; Ha Minh, H.

    1986-01-01

    The MacCormack implicit predictor-corrector model (1981) for numerical solution of the coupled Navier-Stokes equations for turbulent flows is extended to nonconservative multiequation turbulence models, as well as the inclusion of second-order Reynolds stress turbulence closure. A scalar effective pressure turbulent contribution to the pressure field is defined to approximate the effects of the Reynolds stress in strongly sheared flows. The Jacobian matrices of the transport equations are diagonalized to reduce the required computer memory and run time. Techniques are defined for including turbulence in the diagonalization. Application of the method is demonstrated with solutions generated for transonic nozzle flow and for the interaction between a supersonic flat plate boundary layer and a 12 deg compression-expansion ramp.

  13. Entropy Stable Wall Boundary Conditions for the Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2014-01-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite volume, finite difference, discontinuous Galerkin, and flux reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  14. Convergence acceleration for a three-dimensional Euler/Navier-Stokes zonal approach

    NASA Technical Reports Server (NTRS)

    Flores, J.

    1985-01-01

    A fast diagonal algorithm is coupled with a zonal approach to solve the three-dimensional Euler/Navier-Stokes equations. Transonic viscous solutions are obtained on a 150,000 point mesh for a NACA 0012 wing. The new computational approach yields a speedup by as much as a factor of 40 over the standard Beam-Warming algorithm/zonal method originally coded. A three-order-of-magnitude drop in the L2-norm of the residual requires approximately 500 iterations, which takes about 45 min of CPU time on a Cray-XMP. The numerically computed solutions are in good agreement with experimental results. Effects on convergence rate owing to increasing the zonal boundary overlap regions, different stretching distributions in the viscous regions, and different CFL values are also explored.

  15. Calculation of helicopter rotor blade/vortex interaction by Navier-Stokes procedures

    NASA Technical Reports Server (NTRS)

    Kim, Y.-N.; Shamroth, S. J.; Buggeln, R. C.

    1987-01-01

    Interactions of a modern rotor blade with concentrated tip vortices from the previous blades can have a significant influence on the airloads and the aeroacoustics of a helicopter. A better understanding of the blade/vortex interaction process and a method of analyzing its flow field would provide valuable help in the design of helicopters. The work discussed herein represents an initial effort in applying a 3-D, time-dependent Navier-Stokes simulation to the blade vortex interaction problem. The numerical approach is the Linearized Block Implicit (LBI) technique. In this initial effort, consideration is given to the interaction of a wing of idealized geometry and a vortex whose axis is aligned at an arbitrary angle to the wing. The calculations are made for laminar, subsonic flow, and show the time dependent pressure distribution and flow fields resulting from the interaction.

  16. Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas.

    PubMed

    Kolvin, Itamar; Livne, Eli; Meerson, Baruch

    2010-08-01

    We show that, in dimension higher than one, heat diffusion and viscosity cannot arrest thermal collapse in a freely evolving dilute granular gas, even in the absence of gravity. Thermal collapse involves a finite-time blowup of the gas density. It was predicted earlier in ideal, Euler hydrodynamics of dilute granular gases in the absence of gravity, and in nonideal, Navier-Stokes granular hydrodynamics in the presence of gravity. We determine, analytically and numerically, the dynamic scaling laws that characterize the gas flow close to collapse. We also investigate bifurcations of a freely evolving dilute granular gas in circular and wedge-shaped containers. Our results imply that, in general, thermal collapse can only be arrested when the gas density becomes comparable with the close-packing density of grains. This provides a natural explanation to the formation of densely packed clusters of particles in a variety of initially dilute granular flows.

  17. Turbine Internal and Film Cooling Modeling For 3D Navier-Stokes Codes

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Garg Vijay; Ameri, Ali

    2005-01-01

    The aim of this research project is to make use of NASA Glenn on-site computational facilities in order to develop, validate and apply aerodynamic, heat transfer, and turbine cooling models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes such as the Glenn-" code. Specific areas of effort include: Application of the Glenn-HT code to specific configurations made available under Turbine Based Combined Cycle (TBCC), and Ultra Efficient Engine Technology (UEET) projects. Validating the use of a multi-block code for the time accurate computation of the detailed flow and heat transfer of cooled turbine airfoils. The goal of the current research is to improve the predictive ability of the Glenn-HT code. This will enable one to design more efficient turbine components for both aviation and power generation. The models will be tested against specific configurations provided by NASA Glenn.

  18. The 3-D Navier-Stokes analysis of crossing, glancing shocks/turbulent boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Reddy, D. R.

    1991-01-01

    Three dimensional viscous flow analysis is performed for a configuration where two crossing and glancing shocks interact with a turbulent boundary layer. A time marching 3-D full Navier-Stokes code, called PARC3D, is used to compute the flow field, and the solution is compared to the experimental data obtained at the NASA Lewis Research Center's 1 x 1 ft supersonic wind tunnel facility. The study is carried out as part of the continuing code assessment program in support of the generic hypersonic research at NASA Lewis. Detailed comparisons of static pressure fields and oil flow patterns are made with the corresponding solution on the wall containing the shock/boundary layer interaction in an effort to validate the code for hypersonic inlet applications.

  19. 3-D Navier-Stokes analysis of crossing, glancing shocks/turbulent boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Reddy, D. R.

    1991-01-01

    Three dimensional viscous flow analysis is performed for a configuration where two crossing and glancing shocks interact with a turbulent boundary layer. A time marching 3-D full Navier-Stokes code, called PARC3D, is used to compute the flow field, and the solution is compared to the experimental data obtained at the NASA Lewis Research Center's 1 x 1 ft supersonic wind tunnel facility. The study is carried out as part of the continuing code assessment program in support of the generic hypersonic research at NASA Lewis. Detailed comparisons of static pressure fields and oil flow patterns are made with the corresponding solution on the wall containing the shock/boundary layer interaction in an effort to validate the code for hypersonic inlet applications.

  20. A split finite element algorithm for the compressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1979-01-01

    An accurate and efficient numerical solution algorithm is established for solution of the high Reynolds number limit of the Navier-Stokes equations governing the multidimensional flow of a compressible essentially inviscid fluid. Finite element interpolation theory is used within a dissipative formulation established using Galerkin criteria within the Method of Weighted Residuals. An implicit iterative solution algorithm is developed, employing tensor product bases within a fractional steps integration procedure, that significantly enhances solution economy concurrent with sharply reduced computer hardware demands. The algorithm is evaluated for resolution of steep field gradients and coarse grid accuracy using both linear and quadratic tensor product interpolation bases. Numerical solutions for linear and nonlinear, one, two and three dimensional examples confirm and extend the linearized theoretical analyses, and results are compared to competitive finite difference derived algorithms.

  1. Navier-Stokes solution on the CYBER-203 by a pseudospectral technique

    NASA Technical Reports Server (NTRS)

    Lambiotte, J. J.; Hussaini, M. Y.; Bokhari, S.; Orszag, S. A.

    1983-01-01

    A three-level, time-split, mixed spectral/finite difference method for the numerical solution of the three-dimensional, compressible Navier-Stokes equations has been developed and implemented on the Control Data Corporation (CDC) CYBER-203. This method uses a spectral representation for the flow variables in the streamwise and spanwise coordinates, and central differences in the normal direction. The five dependent variables are interleaved one horizontal plane at a time and the array of their values at the grid points of each horizontal plane is a typical vector in the computation. The code is organized so as to require, per time step, a single forward-backward pass through the entire data base. The one-and two-dimensional Fast Fourier Transforms are performed using software especially developed for the CYBER-203.

  2. On the Regularity Set and Angular Integrability for the Navier-Stokes Equation

    NASA Astrophysics Data System (ADS)

    D'Ancona, Piero; Lucà, Renato

    2016-09-01

    We investigate the size of the regular set for suitable weak solutions of the Navier-Stokes equation, in the sense of Caffarelli-Kohn-Nirenberg (Commun Pure Appl Math 35:771-831, 1982). We consider initial data in weighted Lebesgue spaces with mixed radial-angular integrability, and we prove that the regular set increases if the data have higher angular integrability, invading the whole half space {\\{t > 0\\}} in an appropriate limit. In particular, we obtain that if the {L2} norm with weight {|x|^{-frac12}} of the data tends to 0, the regular set invades {\\{t > 0\\}}; this result improves Theorem D of Caffarelli et al. (Commun Pure Appl Math 35:771-831, 1982).

  3. A numerical investigation of the finite element method in compressible primitive variable Navier-Stokes flow

    NASA Technical Reports Server (NTRS)

    Cook, C. H.

    1977-01-01

    The results of a comprehensive numerical investigation of the basic capabilities of the finite element method (FEM) for numerical solution of compressible flow problems governed by the two-dimensional and axis-symmetric Navier-Stokes equations in primitive variables are presented. The strong and weak points of the method as a tool for computational fluid dynamics are considered. The relation of the linear element finite element method to finite difference methods (FDM) is explored. The calculation of free shear layer and separated flows over aircraft boattail afterbodies with plume simulators indicate the strongest assets of the method are its capabilities for reliable and accurate calculation employing variable grids which readily approximate complex geometry and capably adapt to the presence of diverse regions of large solution gradients without the necessity of domain transformation.

  4. Asteroid tsunami modeling in the framework of Navier-Stokes equations with different sources

    NASA Astrophysics Data System (ADS)

    Kozelkov, Andrey; Kurkin, Andrey; Pelinovsky, Efim; Kurulin, Vadim

    2015-04-01

    The equivalent tsunami source is widely used to predict tsunami waves in the ocean induced by the meteorite fall. It presents the initial displacement having the cavern shape and zero velocity. Dimensions of the cavern are determined by the parameters of the meteorite: mass, density, fall velocity, etc. Such equivalent source has been developed to predict the tsunami wave characteristics in far zone with use of linear theory of surface gravity waves. Alternative approach is to model the process of meteorite entry in the water. Here we use the Navier-Stokes equation to compare tsunami wave characteristics generated by both sources. Quality, the results are similar but quantitatively the wave amplitudes and wave packet structure are different.

  5. PARC Navier-Stokes code upgrade and validation for high speed aeroheating predictions

    NASA Technical Reports Server (NTRS)

    Liver, Peter A.; Praharaj, Sarat C.; Seaford, C. Mark

    1990-01-01

    Applications of the PARC full Navier-Stokes code for hypersonic flowfield and aeroheating predictions around blunt bodies such as the Aeroassist Flight Experiment (AFE) and Aeroassisted Orbital Transfer Vehicle (AOTV) are evaluated. Two-dimensional/axisymmetric and three-dimensional perfect gas versions of the code were upgraded and tested against benchmark wind tunnel cases of hemisphere-cylinder, three-dimensional AFE forebody, and axisymmetric AFE and AOTV aerobrake/wake flowfields. PARC calculations are in good agreement with experimental data and results of similar computer codes. Difficulties encountered in flowfield and heat transfer predictions due to effects of grid density, boundary conditions such as singular stagnation line axis and artificial dissipation terms are presented together with subsequent improvements made to the code. The experience gained with the perfect gas code is being currently utilized in applications of an equilibrium air real gas PARC version developed at REMTECH.

  6. Navier-Stokes simulation of rotor-body flowfield in hover using overset grids

    NASA Technical Reports Server (NTRS)

    Srinivasan, G. R.; Ahmad, J. U.

    1993-01-01

    A free-wake Navier-Stokes numerical scheme and multiple Chimera overset grids have been utilized for calculating the quasi-steady hovering flowfield of a Boeing-360 rotor mounted on an axisymmetric whirl-tower. The entire geometry of this rotor-body configuration is gridded-up with eleven different overset grids. The composite grid has 1.3 million grid points for the entire flow domain. The numerical results, obtained using coarse grids and a rigid rotor assumption, show a thrust value that is within 5% of the experimental value at a flow condition of M(sub tip) = 0.63, Theta(sub c) = 8 deg, and Re = 2.5 x 10(exp 6). The numerical method thus demonstrates the feasibility of using a multi-block scheme for calculating the flowfields of complex configurations consisting of rotating and non-rotating components.

  7. Analysis of a High-Lift Multi-Element Airfoil using a Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Whitlock, Mark E.

    1995-01-01

    A thin-layer Navier-Stokes code, CFL3D, was utilized to compute the flow over a high-lift multi-element airfoil. This study was conducted to improve the prediction of high-lift flowfields using various turbulence models and improved glidding techniques. An overset Chimera grid system is used to model the three element airfoil geometry. The effects of wind tunnel wall modeling, changes to the grid density and distribution, and embedded grids are discussed. Computed pressure and lift coefficients using Spalart-Allmaras, Baldwin-Barth, and Menter's kappa-omega - Shear Stress Transport (SST) turbulence models are compared with experimental data. The ability of CFL3D to predict the effects on lift coefficient due to changes in Reynolds number changes is also discussed.

  8. A Priori Bound on the Velocity in Axially Symmetric Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Lei, Zhen; Navas, Esteban A.; Zhang, Qi S.

    2016-01-01

    Let v be the velocity of Leray-Hopf solutions to the axially symmetric three-dimensional Navier-Stokes equations. Under suitable conditions for initial values, we prove the following a priori bound |v(x, t)| ≤ C |ln r|^{1/2}/r^2, qquad 0 < r ≤ 1/2, where r is the distance from x to the z axis, and C is a constant depending only on the initial value. This provides a pointwise upper bound (worst case scenario) for possible singularities, while the recent papers (Chiun-Chuan et al., Commun PDE 34(1-3):203-232, 2009; Koch et al., Acta Math 203(1):83-105, 2009) gave a lower bound. The gap is polynomial order 1 modulo a half log term.

  9. LDV measurement and Navier-Stokes computation of parallel jet mixing in a rectangular confinement

    SciTech Connect

    Kunz, R.F.; D`Amico, S.W.; Vassallo, P.F.; Zaccaria, M.A.; Aksoy, H.; So, R.M.C.

    1995-06-01

    Laser Doppler Velocimetry (LDV) measurements were taken in a rectangular confinement into which issues a row of parallel jets. Two-component measurements were taken with two optics orientations yielding three mean velocity components and four Reynolds stress components. As observed in isolated three dimensional wall bounded jets, the transverse diffusion of the jets is quite large. The data indicates that this rapid mixing process is due to strong secondary flows, transport of large inlet intensities and Reynolds stress anisotropy effects. Navier-Stokes analyses of this configuration underpredict the rate of transverse jet diffusion. Detailed numerical accuracy studies show that this is attributed to shortcomings in low-Reynolds number two-equation turbulence modelling. A low-Reynolds number full-Reynolds stress model is shown to provide improvement.

  10. An Evaluation of Parameters Influencing Jet Mixing Using the WIND Navier-stokes Code

    NASA Technical Reports Server (NTRS)

    Dembowski, Mary Ann; Georgiadis, Nicholas J.

    2002-01-01

    The WIND code, a Reynolds-averaged Navier-Stokes solver used for a variety of aerospace flow simulations, was investigated for a Mach 2 nozzle at a series of nozzle stagnation temperatures. Comparisons of WIND calculations are made to experimental measurements of axial velocity, Mach number, and stagnation temperature along the jet centerline. The primary objective was to investigate the capabilities of the two-equation turbulence models available in WIND, version 4.0, for the analysis of heated supersonic nozzle flows. The models examined were the Menter Shear Stress Transport (SST) model and the Chien k-epsilon model, with and without the compressibility correction due to Sarkar. It was observed that all of the turbulence models investigated produced solutions that did not agree well with the experimental measurements. The effects of freestream Mach number and turbulent Prandtl number specifications were also investigated.

  11. Calculation of Turbulent Subsonic Diffuser Flows Using the NPARC Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Dudek, J. C.; Georgiadis, N. J.; Yoder, D. A.

    1996-01-01

    Axisymmetric subsonic diffuser flows were calculated with the NPARC Navier-Stokes code in order to determine the effects various code features have on the flow solutions. The code features examined in this work were turbulence models and boundary conditions. Four turbulence models available in NPARC were used: the Baldwin-Lomax algebraic model, the Baldwin-Barth one-equation model, and the Chien kappa-epsilon and Wilcox kappa-omega two-equation models. The three boundary conditions examined were the free boundary, the mass flux boundary and the subsonic outflow with variable static pressure. In addition to boundary condition type, the geometry downstream of the diffuser was varied to see if upstream influences were present. The NPARC results are compared with experimental data and recommendations are given for using NPARC to compute similar flows.

  12. Numerical solution of the Navier-Stokes equations for blunt nosed bodies in supersonic flows

    NASA Technical Reports Server (NTRS)

    Warsi, Z. U. A.; Devarayalu, K.; Thompson, J. F.

    1978-01-01

    A time dependent, two dimensional Navier-Stokes code employing the method of body fitted coordinate technique was developed for supersonic flows past blunt bodies of arbitrary shapes. The bow shock ahead of the body is obtained as part of the solution, viz., by shock capturing. A first attempt at mesh refinement in the shock region was made by using the forcing function in the coordinate generating equations as a linear function of the density gradients. The technique displaces a few lines from the neighboring region into the shock region. Numerical calculations for Mach numbers 2 and 4.6 and Reynolds numbers from 320 to 10,000 were performed for a circular cylinder with and without a fairing. Results of Mach number 4.6 and Reynolds number 10,000 for an isothermal wall temperature of 556 K are presented in detail.

  13. Discretization and Preconditioning Algorithms for the Euler and Navier-Stokes Equations on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Bart, Timothy J.; Kutler, Paul (Technical Monitor)

    1998-01-01

    Chapter 1 briefly reviews several related topics associated with the symmetrization of systems of conservation laws and quasi-conservation laws: (1) Basic Entropy Symmetrization Theory; (2) Symmetrization and eigenvector scaling; (3) Symmetrization of the compressible Navier-Stokes equations; and (4) Symmetrization of the quasi-conservative form of the magnetohydrodynamic (MHD) equations. Chapter 2 describes one of the best known tools employed in the study of differential equations, the maximum principle: any function f(x) which satisfies the inequality f(double prime)>0 on the interval [a,b] attains its maximum value at one of the endpoints on the interval. Chapter three examines the upwind finite volume schemes for scalar and system conservation laws. The basic tasks in the upwind finite volume approach have already been presented: reconstruction, flux evaluation, and evolution. By far, the most difficult task in this process is the reconstruction step.

  14. On the Helicity in 3D-Periodic Navier-Stokes Equations II: The Statistical Case

    NASA Astrophysics Data System (ADS)

    Foias, Ciprian; Hoang, Luan; Nicolaenko, Basil

    2009-09-01

    We study the asymptotic behavior of the statistical solutions to the Navier-Stokes equations using the normalization map [9]. It is then applied to the study of mean energy, mean dissipation rate of energy, and mean helicity of the spatial periodic flows driven by potential body forces. The statistical distribution of the asymptotic Beltrami flows are also investigated. We connect our mathematical analysis with the empirical theory of decaying turbulence. With appropriate mathematically defined ensemble averages, the Kolmogorov universal features are shown to be transient in time. We provide an estimate for the time interval in which those features may still be present. Our collaborator and friend Basil Nicolaenko passed away in September of 2007, after this work was completed. Honoring his contribution and friendship, we dedicate this article to him.

  15. Error norms for the adaptive solution of the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Forester, C. K.

    1982-01-01

    The adaptive solution of the Navier-Stokes equations depends upon the successful interaction of three key elements: (1) the ability to flexibly select grid length scales in composite grids, (2) the ability to efficiently control residual error in composite grids, and (3) the ability to define reliable, convenient error norms to guide the grid adjustment and optimize the residual levels relative to the local truncation errors. An initial investigation was conducted to explore how to approach developing these key elements. Conventional error assessment methods were defined and defect and deferred correction methods were surveyed. The one dimensional potential equation was used as a multigrid test bed to investigate how to achieve successful interaction of these three key elements.

  16. Anisotropic Regularity Conditions for the Suitable Weak Solutions to the 3D Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Wang, Yanqing; Wu, Gang

    2016-07-01

    We are concerned with the problem, originated from Seregin (159-200, 2007), Seregin (J. Math. Sci. 143: 2961-2968, 2007), Seregin (Russ. Math. Surv. 62:149-168, 2007), what are minimal sufficiently conditions for the regularity of suitable weak solutions to the 3D Navier-Stokes equations. We prove some interior regularity criteria, in terms of either one component of the velocity with sufficiently small local scaled norm and the rest part with bounded local scaled norm, or horizontal part of the vorticity with sufficiently small local scaled norm and the vertical part with bounded local scaled norm. It is also shown that only the smallness on the local scaled L 2 norm of horizontal gradient without any other condition on the vertical gradient can still ensure the regularity of suitable weak solutions. All these conclusions improve pervious results on the local scaled norm type regularity conditions.

  17. Navier-Stokes and Comprehensive Analysis Performance Predictions of the NREL Phase VI Experiment

    NASA Technical Reports Server (NTRS)

    Duque, Earl P. N.; Burklund, Michael D.; Johnson, Wayne

    2003-01-01

    A vortex lattice code, CAMRAD II, and a Reynolds-Averaged Navier-Stoke code, OVERFLOW-D2, were used to predict the aerodynamic performance of a two-bladed horizontal axis wind turbine. All computations were compared with experimental data that was collected at the NASA Ames Research Center 80- by 120-Foot Wind Tunnel. Computations were performed for both axial as well as yawed operating conditions. Various stall delay models and dynamics stall models were used by the CAMRAD II code. Comparisons between the experimental data and computed aerodynamic loads show that the OVERFLOW-D2 code can accurately predict the power and spanwise loading of a wind turbine rotor.

  18. Navier-Stokes calculation of solid-propellant rocket motor internal flowfields

    NASA Technical Reports Server (NTRS)

    Hsieh, Kwang-Chung; Yang, Vigor; Tseng, Jesse I. S.

    1988-01-01

    A comprehensive numerical analysis has been carried out to study the detailed physical and chemical processes involved in the combustion of homogeneous propellant in a rocket motor. The formulation is based on the time-dependent full Navier-Stokes equations, with special attention devoted to the chemical reactions in both gas and condensed phases. The turbulence closure is achieved using both the Baldwin-Lomax algebraic model and a modified k-epsilon two-equation scheme with a low Reynolds number and near-wall treatment. The effects of variable thermodynamic and transport properties are also included. The system of governing equations are solved using a multi-stage Runge-Kutta shceme with the source terms treated implicitly. Preliminary results clearly demonstrate the presence of various combustion regimes in the vicinity of propellant surface. The effects of propellant combustion on the motor internal flowfields are investigated in detail.

  19. Navier-Stokes Entropy Controlled Combustion Instability Analysis for Liquid Propellants

    NASA Technical Reports Server (NTRS)

    Chung, T. J.; Yoon, W. S.

    1990-01-01

    Navier-Stokes solutions are used to calculate oscillatory components of pressure, velocity, and density, which in turn provide necessary data to compute energy growth factors to determine combustion instability. It is shown that wave instabilities are associated with changes in entropy and the space and time averages of oscillatory components of pressure, velocity and density, together with the mean flow field in the energy equation. Compressible laminar and turbulent flows and reacting flows with hydrogen/oxygen combustion are considered. The SSME combustion/thrust chamber is used for illustration of the theory. The analysis shows that the increase of mean pressure and disturbances consistently results in the increase of instability. It is shown that adequate combustion instability analysis requires at least third order nonlinearity in energy growth or decay.

  20. Entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2015-07-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  1. On Bifurcating Time-Periodic Flow of a Navier-Stokes Liquid Past a Cylinder

    NASA Astrophysics Data System (ADS)

    Galdi, Giovanni P.

    2016-10-01

    We provide general sufficient conditions for the existence and uniqueness of branching out of a time-periodic family of solutions from steady-state solutions to the two-dimensional Navier-Stokes equations in the exterior of a cylinder. By separating the time-independent averaged component of the velocity field from its oscillatory one, we show that the problem can be formulated as a coupled elliptic-parabolic nonlinear system in appropriate and distinct function spaces, with the property that the relevant linearized operators become Fredholm of index 0. In this functional setting, the notorious difficulty of 0 being in the essential spectrum entirely disappears and, in fact, it is even meaningless. Our approach is different and, we believe, more natural and simpler than those proposed by previous authors discussing similar questions. Moreover, the latter all fail, when applied to the problem studied here.

  2. A Navier-Stokes Solution of Hull-Ring Wing-Thruster Interaction

    NASA Technical Reports Server (NTRS)

    Yang, C.-I.; Hartwich, P.; Sundaram, P.

    1991-01-01

    Navier-Stokes simulations of high Reynolds number flow around an axisymmetric body supported in a water tunnel were made. The numerical method is based on a finite-differencing high resolution second-order accurate implicit upwind scheme. Four different configurations were investigated, these are: (1) barebody; (2) body with an operating propeller; (3) body with a ring wing; and (4) body with a ring wing and an operating propeller. Pressure and velocity components near the stern region were obtained computationally and are shown to compare favorably with the experimental data. The method correctly predicts the existence and extent of stern flow separation for the barebody and the absence of flow separation for the three other configurations with ring wing and/or propeller.

  3. Application of an unsteady Navier-Stokes solver to transonic turbine design

    NASA Technical Reports Server (NTRS)

    Rangwalla, Akil A.; Madavan, Nateri K.; Johnson, Paul D.

    1991-01-01

    This study presents a numerical evaluation of the performance of the first stage of a new-generation turbine design. The numerical method solves the two-dimensional Navier-Stokes equations using a system of patched grids. Three-dimensional effects of stream-tube contraction are also modeled. The study focuses on the effects of axial gap variation on the unsteady rotor-stator interactions and on stage performance. Results are presented for three different axial gaps. The results indicate that the unsteady interactions can be very large in this design. These interactions affect not only the stage efficiency but also substantially alter the time-averaged features of the flow. In particular, for the case of the smallest axial gap, it was found that there was an unsteady shock on the stator suction surface which spanned the gap region and impinged upon the moving rotor airfoils.

  4. Navier-Stokes Computations on Full Wing-Body Configuration with Oscillating Control Surfaces

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru; Chiu, Ing-Tsau; Guruswamy, Guru P.

    1995-01-01

    Unsteady Navier-Stokes simulations have been performed for vortical flows over an "arrow-wing" configuration of a supersonic transport in the transonic regime. Computed steady pressures and integrated force coefficients with and without control surface deflection at a moderate angle of attack are compared with experiment. For unsteady cases, oscillating trailing-edge control surfaces are modeled by using moving grids. Response characteristics between symmetric and antisymmetric oscillatory motions of the control surfaces on the left and right wings are studied. The antisymmetric case produces higher lift than the steady case with no deflection and the unsteady symmetric case produces higher lift than the antisymmetric case. The detailed analysis of the wake structure revealed a strong interaction between the primary vortex and the wake vortex sheet from the flap region when the flap is deflected up.

  5. Navier-Stokes simulation of the supersonic combustion flowfield in a ram accelerator

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye

    1991-01-01

    A computational study of the ram accelerator, a ramjet-in-tube device for accelerating projectiles to ultrahigh velocities, is presented. The analysis is performed using a fully implicit TVD scheme that efficiently solves the Reynolds-averaged Navier-Stokes equations and the species continuity equations associated with a finite rate combustion model. The present results indicate that viscous effects are of primary importance in all the cases studied, shock-induced combustion always started in the boundary layer. The effects of Mach number, mixture composition, pressure and tubulence are investigated for various configurations. Two types of combustion processes, one stable and the other unstable, were observed depending on the inflow conditions. The possibility of stabilizing the detonation wave by means of a backward facing step is also investigated. Two numerical techniques were tested: vector extrapolation, to accelerate convergence, and a diagonal formulation that eliminates the expense of inverting large block matrices which arise in chemically reacting flows.

  6. Simulation of Synthetic Jets in Quiescent Air Using Unsteady Reynolds Averaged Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Turkel, Eli L.

    2004-01-01

    We report research experience in applying an Unsteady Reynolds-Averaged Navier-Stokes (URANS) solver for the prediction of time-dependent flows in the presence of an active flow control device. The configuration under consideration is a synthetic jet created by a single diaphragm piezoelectric actuator in quiescent air. Time-averaged and instantaneous data for this case were obtained at Langley Research Center, using multiple measurement techniques. Computational results for this case using one-equation Spalart-Allmaras and two-equation Menter s turbulence models are presented here along with comparisons with the experimental data. The effect of grid refinement, preconditioning and time-step variation are also examined.

  7. Navier-Stokes Calculations For a Venus Composition Probe With Ablation And Wake Radiation

    NASA Technical Reports Server (NTRS)

    Olynick, David R.; Henline, William D.; Rasky, Daniel J. (Technical Monitor)

    1994-01-01

    A numerical investigation is carried out to determine the magnitude of wake radiation for a proposed Venus composition probe. One of the scientific goals of the mission is to determine the atmospheric composition of Venus by examining the intensity of scattered sunlight through the wake of the vehicle during planetary entry. In the wake of the vehicle, excited particles generated in the bow shock and boundary layers absorb and emit radiation. Thus, the purpose of this study is to determine if the radiation sensor will be able to sense the incoming solar radiative flux relative to the radiative flux generated in the wake. During portions of the entry trajectory the incident surface heat flux will be high enough to produce significant ablation. Ablation products such as CN are known to be strong radiators. Also, the ablation will be driven by strong radiation emanating from the bow shock. Thus, radiation and ablation will be coupled into the Navier-Stokes flow solutions.

  8. Numerical solutions of the Navier-Stokes equations for transonic afterbody flows

    NASA Technical Reports Server (NTRS)

    Swanson, R. C., Jr.

    1980-01-01

    The time dependent Navier-Stokes equations in mass averaged variables are solved for transonic flow over axisymmetric boattail plume simulator configurations. Numerical solution of these equations is accomplished with the unsplit explict finite difference algorithm of MacCormack. A grid subcycling procedure and computer code vectorization are used to improve computational efficiency. The two layer algebraic turbulence models of Cebeci-Smith and Baldwin-Lomax are employed for investigating turbulence closure. Two relaxation models based on these baseline models are also considered. Results in the form of surface pressure distribution for three different circular arc boattails at two free stream Mach numbers are compared with experimental data. The pressures in the recirculating flow region for all separated cases are poorly predicted with the baseline turbulence models. Significant improvements in the predictions are usually obtained by using the relaxation models.

  9. Nonperturbative renormalization group study of the stochastic Navier-Stokes equation.

    PubMed

    Mejía-Monasterio, Carlos; Muratore-Ginanneschi, Paolo

    2012-07-01

    We study the renormalization group flow of the average action of the stochastic Navier-Stokes equation with power-law forcing. Using Galilean invariance, we introduce a nonperturbative approximation adapted to the zero-frequency sector of the theory in the parametric range of the Hölder exponent 4-2ε of the forcing where real-space local interactions are relevant. In any spatial dimension d, we observe the convergence of the resulting renormalization group flow to a unique fixed point which yields a kinetic energy spectrum scaling in agreement with canonical dimension analysis. Kolmogorov's -5/3 law is, thus, recovered for ε = 2 as also predicted by perturbative renormalization. At variance with the perturbative prediction, the -5/3 law emerges in the presence of a saturation in the ε dependence of the scaling dimension of the eddy diffusivity at ε = 3/2 when, according to perturbative renormalization, the velocity field becomes infrared relevant. PMID:23005533

  10. Streamline upwind scheme for the segregated formulation of the Navier-Stokes equation

    SciTech Connect

    Choi, H.G.; Yoo, J.Y. . Dept. of Mechanical Engineering)

    1994-03-01

    A finite-element method has been developed that combines the segregated velocity-pressure equal-order formulation of the Navier-Stokes equation originated from the SIMPLE algorithm and the streamline upwind Petrov-Galerkin weighted residual method. To verify the proposed finite-element, driven cavity flow and backward-facing step flow have been considered. The present results are compared with existing experimental results using laser Doppler velocimetry and numerical results using the finite-difference method and the velocity-pressure integrated, mixed-order interpolation method. It has been shown that the present method gives accurate results with less memory and execution time than the conventional finite-element method.

  11. A study of the efficiency of various Navier-Stokes solvers. [finite difference methods

    NASA Technical Reports Server (NTRS)

    Atias, M.; Wolfshtein, M.; Israeli, M.

    1975-01-01

    A comparative study of the efficiency of some finite difference methods for the solution of the Navier-Stokes equations was conducted. The study was restricted to the two-dimensional steady, uniform property vorticity-stream function equations. The comparisons were drawn by recording the CPU time required to obtain a solution as well as the accuracy of this solution using five numerical methods: central differences, first order upwind differences, second order upwind differences, exponential differences, and an ADI solution of the central difference equations. Solutions were obtained for two test cases: a recirculating eddy inside a square cavity with a moving top, and an impinging jet flow. The results show that whenever the central difference method is stable it generates results with a given accuracy for less CPU time than any other method.

  12. A concurrent hybrid Navier-Stokes/Euler approach to fluid dynamic computations

    NASA Technical Reports Server (NTRS)

    Tavella, Domingo A.; Djomehri, M. J.; Kislitzin, Katherine T.; Blake, Matthew W.; Erickson, Larry L.

    1993-01-01

    We present a methodology for the numerical simulation of flow fields by the simultaneous application of two distinct approaches to computational aerodynamics. We compute the three dimensional flow field of a missile at moderate angle of attack by dividing the flow field into two regions: a region near the surface where we use a structured grid and a Navier Stokes solver, and a region farther away from the surface where we utilize an unstructured grid and an Euler solver. The two solvers execute as independent UNIX processes either on the same machine or on two machines. The solvers communicate data across their common interfaces within the same machine or over the network. The computations indicate that extensively separated flow fields can be computed without significant distortion by combining viscous and inviscid solvers.

  13. Navier-Stokes simulation of the crossflow instability in swept-wing flows

    NASA Technical Reports Server (NTRS)

    Reed, Helen L.

    1989-01-01

    The computational modeling of the transition process characteristic of flows over swept wings are described. Specifically, the crossflow instability and crossflow/T-S wave interactions are analyzed through the numerical solution of the full three-dimensional Navier-Stokes equations including unsteadiness, curvature, and sweep. This approach is chosen because of the complexity of the problem and because it appears that linear stability theory is insufficient to explain the discrepancies between different experiments and between theory and experiments. The leading edge region of a swept wing is considered in a three-dimensional spatial simulation with random disturbances as the initial conditions. The work has been closely coordinated with the experimental program of Professor William Saric, examining the same problem. Comparisons with NASA flight test data and the experiments at Arizona State University were a necessary and an important integral part of this work.

  14. Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas.

    PubMed

    Kolvin, Itamar; Livne, Eli; Meerson, Baruch

    2010-08-01

    We show that, in dimension higher than one, heat diffusion and viscosity cannot arrest thermal collapse in a freely evolving dilute granular gas, even in the absence of gravity. Thermal collapse involves a finite-time blowup of the gas density. It was predicted earlier in ideal, Euler hydrodynamics of dilute granular gases in the absence of gravity, and in nonideal, Navier-Stokes granular hydrodynamics in the presence of gravity. We determine, analytically and numerically, the dynamic scaling laws that characterize the gas flow close to collapse. We also investigate bifurcations of a freely evolving dilute granular gas in circular and wedge-shaped containers. Our results imply that, in general, thermal collapse can only be arrested when the gas density becomes comparable with the close-packing density of grains. This provides a natural explanation to the formation of densely packed clusters of particles in a variety of initially dilute granular flows. PMID:20866801

  15. Recent Analytical and Numerical Results for The Navier-Stokes-Voigt Model and Related Models

    NASA Astrophysics Data System (ADS)

    Larios, Adam; Titi, Edriss; Petersen, Mark; Wingate, Beth

    2010-11-01

    The equations which govern the motions of fluids are notoriously difficult to handle both mathematically and computationally. Recently, a new approach to these equations, known as the Voigt-regularization, has been investigated as both a numerical and analytical regularization for the 3D Navier-Stokes equations, the Euler equations, and related fluid models. This inviscid regularization is related to the alpha-models of turbulent flow; however, it overcomes many of the problems present in those models. I will discuss recent work on the Voigt-regularization, as well as a new criterion for the finite-time blow-up of the Euler equations based on their Voigt-regularization. Time permitting, I will discuss some numerical results, as well as applications of this technique to the Magnetohydrodynamic (MHD) equations and various equations of ocean dynamics.

  16. Unsteady Navier-Stokes simulation of the canard-wing-body ramp motion

    NASA Technical Reports Server (NTRS)

    Tu, Eugene L.; Obayashi, Shigeru; Guruswamy, Guru P.

    1993-01-01

    A time-accurate thin-layer Navier-Stokes simulation of the unsteady flowfield is performed for a typical canard-wing-body configuration undergoing ramp motions. The computations are made at a transonic Mach number of 0.90 and for ramp angles from 0 to 15 degrees. Accuracy is determined by comparisons with steady-state experimental data and with spatial and time-step refinement studies. During the ramp motion, the computational results show improved dynamic lift performance and a strong canard-wing interaction for the canard-on configuration. Formation of the canard leading-edge vortex is inhibited in the early stages of the ramp motion. An analysis performed on the transient flowfield after the ramp motion ends shows that the canard vortex rapidly gains strength and vortex breakdown eventually occurs. These characteristics of the canard vortex have significant influences on wing performance.

  17. An Evaluation of Architectural Platforms for Parallel Navier-Stokes Computations

    NASA Technical Reports Server (NTRS)

    Jayasimha, D. N.; Hayder, M. E.; Pillay, S. K.

    1996-01-01

    We study the computational, communication, and scalability characteristics of a computational fluid dynamics application, which solves the time accurate flow field of a jet using the compressible Navier-Stokes equations, on a variety of parallel architecture platforms. The platforms chosen for this study are a cluster of workstations (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), and distributed memory multiprocessors with different topologies - the IBM SP and the Cray T3D. We investigate the impact of various networks connecting the cluster of workstations on the performance of the application and the overheads induced by popular message passing libraries used for parallelization. The work also highlights the importance of matching the memory bandwidth to the processor speed for good single processor performance. By studying the performance of an application on a variety of architectures, we are able to point out the strengths and weaknesses of each of the example computing platforms.

  18. Parallelizing Navier-Stokes Computations on a Variety of Architectural Platforms

    NASA Technical Reports Server (NTRS)

    Jayasimha, D. N.; Hayder, M. E.; Pillay, S. K.

    1997-01-01

    We study the computational, communication, and scalability characteristics of a Computational Fluid Dynamics application, which solves the time accurate flow field of a jet using the compressible Navier-Stokes equations, on a variety of parallel architectural platforms. The platforms chosen for this study are a cluster of workstations (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), distributed memory multiprocessors with different topologies-the IBM SP and the Cray T3D. We investigate the impact of various networks, connecting the cluster of workstations, on the performance of the application and the overheads induced by popular message passing libraries used for parallelization. The work also highlights the importance of matching the memory bandwidth to the processor speed for good single processor performance. By studying the performance of an application on a variety of architectures, we are able to point out the strengths and weaknesses of each of the example computing platforms.

  19. Preconditioned conjugate gradient methods for the compressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, V.

    1990-01-01

    The compressible Navier-Stokes equations are solved for a variety of two-dimensional inviscid and viscous problems by preconditioned conjugate gradient-like algorithms. Roe's flux difference splitting technique is used to discretize the inviscid fluxes. The viscous terms are discretized by using central differences. An algebraic turbulence model is also incorporated. The system of linear equations which arises out of the linearization of a fully implicit scheme is solved iteratively by the well known methods of GMRES (Generalized Minimum Residual technique) and Chebyschev iteration. Incomplete LU factorization and block diagonal factorization are used as preconditioners. The resulting algorithm is competitive with the best current schemes, but has wide applications in parallel computing and unstructured mesh computations.

  20. Navier-Stokes Aerodynamic Simulation of the V-22 Osprey on the Intel Paragon MPP

    NASA Technical Reports Server (NTRS)

    Vadyak, Joseph; Shrewsbury, George E.; Narramore, Jim C.; Montry, Gary; Holst, Terry; Kwak, Dochan (Technical Monitor)

    1995-01-01

    The paper will describe the Development of a general three-dimensional multiple grid zone Navier-Stokes flowfield simulation program (ENS3D-MPP) designed for efficient execution on the Intel Paragon Massively Parallel Processor (MPP) supercomputer, and the subsequent application of this method to the prediction of the viscous flowfield about the V-22 Osprey tiltrotor vehicle. The flowfield simulation code solves the thin Layer or full Navier-Stoke's equation - for viscous flow modeling, or the Euler equations for inviscid flow modeling on a structured multi-zone mesh. In the present paper only viscous simulations will be shown. The governing difference equations are solved using a time marching implicit approximate factorization method with either TVD upwind or central differencing used for the convective terms and central differencing used for the viscous diffusion terms. Steady state or Lime accurate solutions can be calculated. The present paper will focus on steady state applications, although time accurate solution analysis is the ultimate goal of this effort. Laminar viscosity is calculated using Sutherland's law and the Baldwin-Lomax two layer algebraic turbulence model is used to compute the eddy viscosity. The Simulation method uses an arbitrary block, curvilinear grid topology. An automatic grid adaption scheme is incorporated which concentrates grid points in high density gradient regions. A variety of user-specified boundary conditions are available. This paper will present the application of the scalable and superscalable versions to the steady state viscous flow analysis of the V-22 Osprey using a multiple zone global mesh. The mesh consists of a series of sheared cartesian grid blocks with polar grids embedded within to better simulate the wing tip mounted nacelle. MPP solutions will be shown in comparison to equivalent Cray C-90 results and also in comparison to experimental data. Discussions on meshing considerations, wall clock execution time

  1. Comparison Between Navier-Stokes and Thin-Layer Computations for Separated Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Degani, David; Steger, Joseph L.

    1983-01-01

    In the numerical simulation of high Reynolds-number flow, one can frequently supply only enough grid points to resolve the viscous terms in a thin layer. As a consequence, a body-or stream-aligned coordinate system is frequently used and viscous terms in this direction are discarded. It is argued that these terms cannot be resolved and computational efficiency is gained by their neglect. Dropping the streamwise viscous terms in this manner has been termed the thin-layer approximation. The thin-layer concept is an old one, and similar viscous terms are dropped, for example, in parabolized Navier-Stokes schemes. However, such schemes also make additional assumptions so that the equations can be marched in space, and such a restriction is not usually imposed on a thin-layer model. The thin-layer approximation can be justified in much the same way as the boundary-layer approximation; it requires, therefore, a body-or stream-aligned coordinate and a high Reynolds number. Unlike the boundary-layer approximation, the same equations are used throughout, so there is no matching problem. Furthermore, the normal momentum equation is not simplified and the convection terms are not one-sided differenced for marching. Consequently, the thin-layer equations are numerically well behaved at separation and require no special treatment there. Nevertheless, the thin-layer approximation receives criticism. It has been suggested that the approximation is invalid at separation and, more recently, that it is inadequate for unsteady transonic flow. Although previous comparisons between the thin-layer and Navier-Stokes equations have been made, these comparisons have not been adequately documented.

  2. Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces

    NASA Technical Reports Server (NTRS)

    Wang, Chi R.

    2005-01-01

    This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one

  3. Global well-posedness of strong solutions to the two-dimensional barotropic compressible Navier-Stokes equations with vacuum

    NASA Astrophysics Data System (ADS)

    Fang, Li; Guo, Zhenhua

    2016-04-01

    The aim of this paper is to establish the global well-posedness and large-time asymptotic behavior of the strong solution to the Cauchy problem of the two-dimensional compressible Navier-Stokes equations with vacuum. It is proved that if the shear viscosity {μ} is a positive constant and the bulk viscosity {λ} is the power function of the density, that is, {λ=ρ^{β}} with {β in [0,1],} then the Cauchy problem of the two-dimensional compressible Navier-Stokes equations admits a unique global strong solution provided that the initial data are of small total energy. This result can be regarded as the extension of the well-posedness theory of classical compressible Navier-Stokes equations [such as Huang et al. (Commun Pure Appl Math 65:549-585, 2012) and Li and Xin (http://arxiv.org/abs/1310.1673) respectively]. Furthermore, the large-time behavior of the strong solution to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations had been also obtained.

  4. Numerical solution for the velocity-derivative skewness of a low-Reynolds-number decaying Navier-Stokes flow

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G.

    1990-01-01

    The variation of the velocity-derivative skewness of a Navier-Stokes flow as the Reynolds number goes toward zero is calculated numerically. The value of the skewness, which has been somewhat controversial, is shown to become small at low Reynolds numbers.

  5. Existence and uniqueness of solutions for Navier-Stokes equations with hyper-dissipation in a large space

    NASA Astrophysics Data System (ADS)

    Nan, Zhijie; Zheng, Xiaoxin

    2016-09-01

    We study Cauchy problem of the 3D Navier-Stokes equations with hyper-dissipation. By using the Fourier localization technique, we prove that the system has a unique global solution for large initial data in a critical Fourier-Herz space. More importantly, the energy of this solution is infinite.

  6. Global existence and exponential stability of solutions in H for the compressible Navier-Stokes equations with the cylinder symmetry

    NASA Astrophysics Data System (ADS)

    Qin, Yuming; Jiang, Limin

    This paper is concerned with the global existence and exponential stability of solutions in H for the compressible Navier-Stokes equations with the cylinder symmetry in R when the initial total energy is sufficiently small. Moreover, the global existence and exponential stability of the classical solution can be also derived.

  7. Numerical studies of incompressible viscous flow in a driven cavity

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A series of project papers is presented in computational fluid dynamics. The work was performed during the 1973-74 academic year at Old Dominion University. Each paper briefly examines a numerical method(s) that can be applied to the Navier-Stokes equations governing incompressible flow in a driven cavity. Solutions obtained with a cubic spline procedure are also included.

  8. Computation of viscous incompressible flows

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    1989-01-01

    Incompressible Navier-Stokes solution methods and their applications to three-dimensional flows are discussed. A brief review of existing methods is given followed by a detailed description of recent progress on development of three-dimensional generalized flow solvers. Emphasis is placed on primitive variable formulations which are most promising and flexible for general three-dimensional computations of viscous incompressible flows. Both steady- and unsteady-solution algorithms and their salient features are discussed. Finally, examples of real world applications of these flow solvers are given.

  9. A General Approach to Time Periodic Incompressible Viscous Fluid Flow Problems

    NASA Astrophysics Data System (ADS)

    Geissert, Matthias; Hieber, Matthias; Nguyen, Thieu Huy

    2016-06-01

    This article develops a general approach to time periodic incompressible fluid flow problems and semilinear evolution equations. It yields, on the one hand, a unified approach to various classical problems in incompressible fluid flow and, on the other hand, gives new results for periodic solutions to the Navier-Stokes-Oseen flow, the Navier-Stokes flow past rotating obstacles, and, in the geophysical setting, for Ornstein-Uhlenbeck and various diffusion equations with rough coefficients. The method is based on a combination of interpolation and topological arguments, as well as on the smoothing properties of the linearized equation.

  10. Algorithm and code development for unsteady three-dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru

    1993-01-01

    In the last two decades, there have been extensive developments in computational aerodynamics, which constitutes a major part of the general area of computational fluid dynamics. Such developments are essential to advance the understanding of the physics of complex flows, to complement expensive wind-tunnel tests, and to reduce the overall design cost of an aircraft, particularly in the area of aeroelasticity. Aeroelasticity plays an important role in the design and development of aircraft, particularly modern aircraft, which tend to be more flexible. Several phenomena that can be dangerous and limit the performance of an aircraft occur because of the interaction of the flow with flexible components. For example, an aircraft with highly swept wings may experience vortex-induced aeroelastic oscillations. Also, undesirable aeroelastic phenomena due to the presence and movement of shock waves occur in the transonic range. Aeroelastically critical phenomena, such as a low transonic flutter speed, have been known to occur through limited wind-tunnel tests and flight tests. Aeroelastic tests require extensive cost and risk. An aeroelastic wind-tunnel experiment is an order of magnitude more expensive than a parallel experiment involving only aerodynamics. By complementing the wind-tunnel experiments with numerical simulations the overall cost of the development of aircraft can be considerably reduced. In order to accurately compute aeroelastic phenomenon it is necessary to solve the unsteady Euler/Navier-Stokes equations simultaneously with the structural equations of motion. These equations accurately describe the flow phenomena for aeroelastic applications. At Ames a code, ENSAERO, is being developed for computing the unsteady aerodynamics and aeroelasticity of aircraft and it solves the Euler/Navier-Stokes equations. The purpose of this contract is to continue the algorithm enhancements of ENSAERO and to apply the code to complicated geometries. During the last year

  11. Lower upper cycle independent implicit parallel processing algorithm for the compressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Ghizawi, Nidal Awni

    Computational Fluid Dynamics problems of engineering interest are among the most demanding scientific problems in terms of the massive computational resources they require. Only parallel architecture computers offer the promise of providing orders of magnitude greater computational power. A common feature of the currently available implicit flow solvers for the compressible Navier-Stokes equations is that the solution for a multi-dimensional problem is obtained by the solution of a set of dependent problems which must be computed in series. In this study, a lower upper cycle independent (LUCI) implicit parallel processing algorithm for solving the compressible Navier-Stokes equations is proposed. A characteristic feature of this algorithm is that the solution for a multi-dimensional problem is obtained by the superposition of the solution of a set of independent problems which, therefore, enhances its parallel processing functionality. The accuracy and stability of this algorithm are carefully analyzed and compared with those of other algorithms. Flow computations using the LUCI algorithm are performed for two test cases which show the symmetry preserving property of this algorithm and demonstrate its accuracy. Through employing the principle of pseudo-parallelism, effects of domain decomposition on the stability and convergence of the LUCI and the Symmetric Successive Over-Relaxation (SSOR) schemes (representative of cycle dependent implicit schemes) are analyzed and quantified. Parallel implementation details of the LUCI (in two VERSIONS: I and II) and the SSOR (in VERSION I) schemes using the standard (portable) Message Passing Interface (MPI) on two computational platforms are given. These platforms are: Lewis Advanced Cluster Environment (LACE) which is an example of Network of Workstations (NOWs), and the Ohio Supercomputer CRAY T3D massive parallel computing environment. Parallel performance results indicate that VERSION I of the LUCI scheme is superior to

  12. Automated Euler and Navier-Stokes Database Generation for a Glide-Back Booster

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.; Rogers, Stuart E.; Aftosmis, Mike J.; Pandya, Shishir A.; Ahmad, Jasim U.; Tejnil, Edward

    2004-01-01

    The past two decades have seen a sustained increase in the use of high fidelity Computational Fluid Dynamics (CFD) in basic research, aircraft design, and the analysis of post-design issues. As the fidelity of a CFD method increases, the number of cases that can be readily and affordably computed greatly diminishes. However, computer speeds now exceed 2 GHz, hundreds of processors are currently available and more affordable, and advances in parallel CFD algorithms scale more readily with large numbers of processors. All of these factors make it feasible to compute thousands of high fidelity cases. However, there still remains the overwhelming task of monitoring the solution process. This paper presents an approach to automate the CFD solution process. A new software tool, AeroDB, is used to compute thousands of Euler and Navier-Stokes solutions for a 2nd generation glide-back booster in one week. The solution process exploits a common job-submission grid environment, the NASA Information Power Grid (IPG), using 13 computers located at 4 different geographical sites. Process automation and web-based access to a MySql database greatly reduces the user workload, removing much of the tedium and tendency for user input errors. The AeroDB framework is shown. The user submits/deletes jobs, monitors AeroDB's progress, and retrieves data and plots via a web portal. Once a job is in the database, a job launcher uses an IPG resource broker to decide which computers are best suited to run the job. Job/code requirements, the number of CPUs free on a remote system, and queue lengths are some of the parameters the broker takes into account. The Globus software provides secure services for user authentication, remote shell execution, and secure file transfers over an open network. AeroDB automatically decides when a job is completed. Currently, the Cart3D unstructured flow solver is used for the Euler equations, and the Overflow structured overset flow solver is used for the

  13. Construction of reduced order models for the non-linear Navier-Stokes equations using the proper orthogonal fecomposition (POD)/Galerkin method.

    SciTech Connect

    Fike, Jeffrey A.

    2013-08-01

    The construction of stable reduced order models using Galerkin projection for the Euler or Navier-Stokes equations requires a suitable choice for the inner product. The standard L2 inner product is expected to produce unstable ROMs. For the non-linear Navier-Stokes equations this means the use of an energy inner product. In this report, Galerkin projection for the non-linear Navier-Stokes equations using the L2 inner product is implemented as a first step toward constructing stable ROMs for this set of physics.

  14. Unsteady Reynolds averaged Navier-Stokes simulation of the post-critical flow around a closely spaced group of silos

    NASA Astrophysics Data System (ADS)

    Hillewaere, J.; Dooms, D.; Van Quekelberghe, B.; Degroote, J.; Vierendeels, J.; De Roeck, G.; Lombaert, G.; Degrande, G.

    2012-04-01

    During a storm in October 2002, wind induced ovalling vibrations were observed on several empty silos of a closely spaced group (pitch-to-diameter ratio of 1.05) consisting of 8 by 5 silos in the port of Antwerp (Belgium). Numerical simulations of the turbulent wind flow are performed to clarify the occurrence of the observed ovalling vibrations near the lee side corner of the group by studying the dynamic wind pressures on the silo surfaces and linking to the dynamic properties of the silo structures. As the orientation of the group largely affects the pressure distribution around the cylinders of the group, the influence of the angle of incidence of the wind flow on these ovalling vibrations is examined while other parameters, such as spacing ratio and Reynolds number are unchanged. To achieve results within a reasonable computation time, 2D unsteady Reynolds averaged Navier-Stokes (URANS) equations using Menter's shear stress transport turbulence model were performed. In order to elucidate the influence of the applied turbulence model and to qualitatively validate the spatial and temporal discretization of the 2D highly turbulent post-critical (Re=1.24×107) flow simulations for the silo group, single cylinder simulations were used. The geometric resemblance of the group arrangement with rectangular cylinders on the one hand and of the interstitial spaces with tube arrays (e.g. heat exchangers) on the other hand is used to qualitatively compare the observed flow phenomena. The simulations show that the silo group can be treated neither as a tube array nor as a solid bluff body. Subsequent linking of dynamic wind pressures to dynamic properties of the silo structures reveals strong narrow band frequency peaks in the turbulent pressure coefficient spectra of the silos near the lee side corners of the group that match the structural natural frequencies of the third and fourth ovalling mode shape of the silos. This match indicates a forced, resonant response which

  15. Numerical simulation of self-sustained oscillation of a voice-producing element based on Navier-Stokes equations and the finite element method

    NASA Astrophysics Data System (ADS)

    de Vries, Martinus P.; Hamburg, Marc C.; Schutte, Harm K.; Verkerke, Gijsbertus J.; Veldman, Arthur E. P.

    2003-04-01

    Surgical removal of the larynx results in radically reduced production of voice and speech. To improve voice quality a voice-producing element (VPE) is developed, based on the lip principle, called after the lips of a musician while playing a brass instrument. To optimize the VPE, a numerical model is developed. In this model, the finite element method is used to describe the mechanical behavior of the VPE. The flow is described by two-dimensional incompressible Navier-Stokes equations. The interaction between VPE and airflow is modeled by placing the grid of the VPE model in the grid of the aerodynamical model, and requiring continuity of forces and velocities. By applying and increasing pressure to the numerical model, pulses comparable to glottal volume velocity waveforms are obtained. By variation of geometric parameters their influence can be determined. To validate this numerical model, an in vitro test with a prototype of the VPE is performed. Experimental and numerical results show an acceptable agreement.

  16. A novel vector potential formulation of 3D Navier-Stokes equations with through-flow boundaries by a local meshless method

    NASA Astrophysics Data System (ADS)

    Young, D. L.; Tsai, C. H.; Wu, C. S.

    2015-11-01

    An alternative vector potential formulation is used to solve the Navier-Stokes (N-S) equations in 3D incompressible viscous flow problems with and without through-flow boundaries. Difficulties of the vector potential formulation include the implementation of boundary conditions for through-flow boundaries and the numerical treatment of fourth-order partial differential equations. The advantages on the other hand are the automatic satisfaction of the continuity equation; and pressure is decoupled from the velocity. The objective of this paper is to introduce the appropriate gauge and boundary conditions on the vector potential formulation by a localized meshless method. To handle the divergence-free property, a Coulomb gauge condition is enforced on the vector potential to ensure its existence and uniqueness mathematically. We further improve the algorithm to through-flow problems for the boundary conditions of vector potential by introducing the concept of Stokes' theorem. Based on this innovation, there is no need to include an additional variable to tackle the through-flow fields. This process will greatly simplify the imposition of boundary conditions by the vector potential approach. Under certain conditions, the coupled fourth-order partial differential equations can be easily solved by using this meshless local differential quadrature (LDQ) method. Due to the LDQ capability to deal with the high order differential equations, this algorithm is very attractive to solve this fourth-order vector potential formulation for the N-S equations as comparing to the conventional numerical schemes such as finite element or finite difference methods. The proposed vector potential formulation is simpler and has improved accuracy and efficiency compared to other pressure-free or pressure-coupled algorithms. This investigation can be regarded as the first complete study to obtain the N-S solutions by vector potential formulation through a LDQ method. Two classic 3D benchmark

  17. Linearized form of implicit TVD schemes for the multidimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1986-01-01

    Linearized alternating direction implicit (ADI) forms of a class of total variation diminishing (TVD) schemes for the Euler and Navier-Stokes equations have been developed. These schemes are based on the second-order-accurate TVD schemes for hyperbolic conservation laws developed by Harten (1983, 1984). They have the property of not generating spurious oscillations across shocks and contact discontinuities. In general, shocks can be captured within 1-2 grid points. These schemes are relatively simple to understand and easy to implement into a new or existing computer code. One can modify a standard three-point central-difference code by simply changing the conventional numerical dissipation term into the one designed for the TVD scheme. For steady-state applications, the only difference in computation is that the current schemes require a more elaborate dissipation term for the explicit operator; no extra computation is required for the implicit operator. Numerical experiments with the proposed algorithms on a variety of steady-state airfoil problems illustrate the versatility of the schemes.

  18. A Reconstructed Discontinuous Galerkin Method for the Compressible Navier-Stokes Equations on Hybrid Grids

    SciTech Connect

    Xiaodong Liu; Lijun Xuan; Hong Luo; Yidong Xia

    2001-01-01

    A reconstructed discontinuous Galerkin (rDG(P1P2)) method, originally introduced for the compressible Euler equations, is developed for the solution of the compressible Navier- Stokes equations on 3D hybrid grids. In this method, a piecewise quadratic polynomial solution is obtained from the underlying piecewise linear DG solution using a hierarchical Weighted Essentially Non-Oscillatory (WENO) reconstruction. The reconstructed quadratic polynomial solution is then used for the computation of the inviscid fluxes and the viscous fluxes using the second formulation of Bassi and Reay (Bassi-Rebay II). The developed rDG(P1P2) method is used to compute a variety of flow problems to assess its accuracy, efficiency, and robustness. The numerical results demonstrate that the rDG(P1P2) method is able to achieve the designed third-order of accuracy at a cost slightly higher than its underlying second-order DG method, outperform the third order DG method in terms of both computing costs and storage requirements, and obtain reliable and accurate solutions to the large eddy simulation (LES) and direct numerical simulation (DNS) of compressible turbulent flows.

  19. A time accurate finite volume high resolution scheme for three dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Hsu, Andrew T.

    1989-01-01

    A time accurate, three-dimensional, finite volume, high resolution scheme for solving the compressible full Navier-Stokes equations is presented. The present derivation is based on the upwind split formulas, specifically with the application of Roe's (1981) flux difference splitting. A high-order accurate (up to the third order) upwind interpolation formula for the inviscid terms is derived to account for nonuniform meshes. For the viscous terms, discretizations consistent with the finite volume concept are described. A variant of second-order time accurate method is proposed that utilizes identical procedures in both the predictor and corrector steps. Avoiding the definition of midpoint gives a consistent and easy procedure, in the framework of finite volume discretization, for treating viscous transport terms in the curvilinear coordinates. For the boundary cells, a new treatment is introduced that not only avoids the use of 'ghost cells' and the associated problems, but also satisfies the tangency conditions exactly and allows easy definition of viscous transport terms at the first interface next to the boundary cells. Numerical tests of steady and unsteady high speed flows show that the present scheme gives accurate solutions.

  20. Least-squares/parabolized Navier-Stokes procedure for optimizing hypersonic wind tunnel nozzles

    NASA Technical Reports Server (NTRS)

    Korte, John J.; Kumar, Ajay; Singh, D. J.; Grossman, B.

    1991-01-01

    A new procedure is demonstrated for optimizing hypersonic wind-tunnel-nozzle contours. The procedure couples a CFD computer code to an optimization algorithm, and is applied to both conical and contoured hypersonic nozzles for the purpose of determining an optimal set of parameters to describe the surface geometry. A design-objective function is specified based on the deviation from the desired test-section flow-field conditions. The objective function is minimized by optimizing the parameters used to describe the nozzle contour based on the solution to a nonlinear least-squares problem. The effect of the changes in the nozzle wall parameters are evaluated by computing the nozzle flow using the parabolized Navier-Stokes equations. The advantage of the new procedure is that it directly takes into account the displacement effect of the boundary layer on the wall contour. The new procedure provides a method for optimizing hypersonic nozzles of high Mach numbers which have been designed by classical procedures, but are shown to produce poor flow quality due to the large boundary layers present in the test section. The procedure is demonstrated by finding the optimum design parameters for a Mach 10 conical nozzle and a Mach 6 and a Mach 15 contoured nozzle.

  1. Reynolds-Averaged Navier-Stokes Solutions to Flat Plate Film Cooling Scenarios

    NASA Technical Reports Server (NTRS)

    Johnson, Perry L.; Shyam, Vikram; Hah, Chunill

    2011-01-01

    The predictions of several Reynolds-Averaged Navier-Stokes solutions for a baseline film cooling geometry are analyzed and compared with experimental data. The Fluent finite volume code was used to perform the computations with the realizable k-epsilon turbulence model. The film hole was angled at 35 to the crossflow with a Reynolds number of 17,400. Multiple length-to-diameter ratios (1.75 and 3.5) as well as momentum flux ratios (0.125 and 0.5) were simulated with various domains, boundary conditions, and grid refinements. The coolant to mainstream density ratio was maintained at 2.0 for all scenarios. Computational domain and boundary condition variations show the ability to reduce the computational cost as compared to previous studies. A number of grid refinement and coarsening variations are compared for further insights into the reduction of computational cost. Liberal refinement in the near hole region is valuable, especially for higher momentum jets that tend to lift-off and create a recirculating flow. A lack of proper refinement in the near hole region can severely diminish the accuracy of the solution, even in the far region. The effects of momentum ratio and hole length-to-diameter ratio are also discussed.

  2. A three-dimensional upwind PNS code for chemically reacting scramjet flowfields. [Parabolized Navier Stokes

    SciTech Connect

    Wadawadigi, G.; Tannehill, J.C.; Buelow, P.E.; Lawrence, S.L. NASA, Ames Research Center, Moffett Field, CA )

    1992-07-01

    A new upwind, parabolized Navier-Stokes (PNS) code has been developed to compute the three-dimensional (3D) chemically reacting flow in scramjet (supersonic combustion ramjet) engines. The code is a modification of the 3D upwind PNS (UPS) airflow code which has been extended in the present study to permit internal flow calculations with hydrogen-air chemistry. With these additions, the new code has the capability of computing aerodynamic and propulsive flowfields simultaneously. The algorithm solves the PNS equations using a finite-volume, upwind TVD method based on Roe's approximate Riemann solver that has been modified to account for 'real gas' effects. The fluid medium is assumed to be a chemically reacting mixture of thermally perfect (but calorically imperfect) gases in thermal equilibrium. The new code has been applied to two test cases. These include the Burrows-Kurkov supersonic combustion experiment and a generic 3D scramjet flowfield. The computed results compare favorably with the available experimental data. 38 refs.

  3. Multitasking a three-dimensional Navier-Stokes algorithm on the Cray-2

    NASA Technical Reports Server (NTRS)

    Swisshelm, Julie M.

    1989-01-01

    A three-dimensional computational aerodynamics algorithm has been multitasked for efficient parallel execution on the Cray-2. It provides a means for examining the multitasking performance of a complete CFD application code. An embedded zonal multigrid scheme is used to solve the Reynolds-averaged Navier-Stokes equations for an internal flow model problem. The explicit nature of each component of the method allows a spatial partitioning of the computational domain to achieve a well-balanced task load for MIMD computers with vector-processing capability. Experiments have been conducted with both two- and three-dimensional multitasked cases. The best speedup attained by an individual task group was 3.54 on four processors of the Cray-2, while the entire solver yielded a speedup of 2.67 on four processors for the three-dimensional case. The multiprocessing efficiency of various types of computational tasks is examined, performance on two Cray-2s with different memory access speeds is compared, and extrapolation to larger problems is discussed.

  4. Higher Order Time Integration Schemes for the Unsteady Navier-Stokes Equations on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.

    2002-01-01

    The rapid increase in available computational power over the last decade has enabled higher resolution flow simulations and more widespread use of unstructured grid methods for complex geometries. While much of this effort has been focused on steady-state calculations in the aerodynamics community, the need to accurately predict off-design conditions, which may involve substantial amounts of flow separation, points to the need to efficiently simulate unsteady flow fields. Accurate unsteady flow simulations can easily require several orders of magnitude more computational effort than a corresponding steady-state simulation. For this reason, techniques for improving the efficiency of unsteady flow simulations are required in order to make such calculations feasible in the foreseeable future. The purpose of this work is to investigate possible reductions in computer time due to the choice of an efficient time-integration scheme from a series of schemes differing in the order of time-accuracy, and by the use of more efficient techniques to solve the nonlinear equations which arise while using implicit time-integration schemes. This investigation is carried out in the context of a two-dimensional unstructured mesh laminar Navier-Stokes solver.

  5. A High Order, Locally-Adaptive Method for the Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Chan, Daniel

    1998-11-01

    I have extended the FOSLS method of Cai, Manteuffel and McCormick (1997) and implemented it within the framework of a spectral element formulation using the Legendre polynomial basis function. The FOSLS method solves the Navier-Stokes equations as a system of coupled first-order equations and provides the ellipticity that is needed for fast iterative matrix solvers like multigrid to operate efficiently. Each element is treated as an object and its properties are self-contained. Only C^0 continuity is imposed across element interfaces; this design allows local grid refinement and coarsening without the burden of having an elaborate data structure, since only information along element boundaries is needed. With the FORTRAN 90 programming environment, I can maintain a high computational efficiency by employing a hybrid parallel processing model. The OpenMP directives provides parallelism in the loop level which is executed in a shared-memory SMP and the MPI protocol allows the distribution of elements to a cluster of SMP's connected via a commodity network. This talk will provide timing results and a comparison with a second order finite difference method.

  6. Navier-Stokes computations of lee-side flows over delta wings

    NASA Technical Reports Server (NTRS)

    Thomas, J. L.; Newsome, R. W.

    1986-01-01

    Solutions to the Navier-Stokes equations for the flow over delta wings are computed with emphasis on the separated vortical flows developing on the lee side at high angles of attack. A recently developed implicit algorithm is used which employs upwind differencing for the pressure and convection terms and central differencing for the shear stress and heat transfer terms. Solutions to both the three-dimensional equations and the approximate conical flow equations are compared parametrically with an extensive experimental data base at supersonic speeds. The computations indicate that the conical flow approximation provides results in close agreement with the three-dimensional equations, even to angles of attack as high as 20 degrees. Good agreement with experimentally measured pressures and vapor screen photographs is obtained for the conditions investigated. The method predicts the classical pattern of vortical flow over a delta wing and transition to other flow patterns as the leading edge sweep angle and leading edge normal Mach number are varied.

  7. Time-Shifted Boundary Conditions Used for Navier-Stokes Aeroelastic Solver

    NASA Technical Reports Server (NTRS)

    Srivastava, Rakesh

    1999-01-01

    Under the Advanced Subsonic Technology (AST) Program, an aeroelastic analysis code (TURBO-AE) based on Navier-Stokes equations is currently under development at NASA Lewis Research Center s Machine Dynamics Branch. For a blade row, aeroelastic instability can occur in any of the possible interblade phase angles (IBPA s). Analyzing small IBPA s is very computationally expensive because a large number of blade passages must be simulated. To reduce the computational cost of these analyses, we used time shifted, or phase-lagged, boundary conditions in the TURBO-AE code. These conditions can be used to reduce the computational domain to a single blade passage by requiring the boundary conditions across the passage to be lagged depending on the IBPA being analyzed. The time-shifted boundary conditions currently implemented are based on the direct-store method. This method requires large amounts of data to be stored over a period of the oscillation cycle. On CRAY computers this is not a major problem because solid-state devices can be used for fast input and output to read and write the data onto a disk instead of storing it in core memory.

  8. Study of time-accurate integration of the variable-density Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoyi; Pantano, Carlos

    2015-11-01

    We present several theoretical elements that affect time-consistent integration of the low-Mach number approximation of variable-density Navier-Stokes equations. The goal is for velocity, pressure, density, and scalars to achieve uniform order of accuracy, consistent with the time integrator being used. We show examples of second-order (using Crank-Nicolson and Adams-Bashforth) and third-order (using additive semi-implicit Runge-Kutta) uniform convergence with the proposed conceptual framework. Furthermore, the consistent approach can be extended to other time integrators. In addition, the method is formulated using approximate/incomplete factorization methods for easy incorporation in existing solvers. One of the observed benefits of the proposed approach is improved stability, even for large density difference, in comparison with other existing formulations. A linearized stability analysis is also carried out for some test problems to better understand the behavior of the approach. This work was supported in part by the Department of Energy, National Nuclear Security Administration, under award no. DE-NA0002382 and the California Institute of Technology.

  9. Navier-Stokes Simulation of a Heavy Lift Slowed-Rotor Compound Helicopter Configuration

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.; Hallissy, Jim B.; Harris, Jerome; Noonan, Kevin W.; Wong, Oliver D.; Jones, Henry E.; Malovrh, Brendon D.; reis, Deane G.; Mace, W. Derry

    2009-01-01

    Time accurate numerical simulations were performed using the Reynolds-averaged Navier-Stokes (RANS) flow solver OVERFLOW for a heavy lift, slowed-rotor, compound helicopter configuration, tested at the NASA Langley 14- by 22-Foot Subsonic Tunnel. The primary purpose of these simulations is to provide support for the development of a large field of view Particle Imaging Velocimetry (PIV) flow measurement technique supported by the Subsonic Rotary Wing (SRW) project under the NASA Fundamental Aeronautics program. These simulations provide a better understanding of the rotor and body wake flows and helped to define PIV measurement locations as well as requirements for validation of flow solver codes. The large field PIV system can measure the three-dimensional velocity flow field in a 0.914m by 1.83m plane. PIV measurements were performed upstream and downstream of the vertical tail section and are compared to simulation results. The simulations are also used to better understand the tunnel wall and body/rotor support effects by comparing simulations with and without tunnel floor/ceiling walls and supports. Comparisons are also made to the experimental force and moment data for the body and rotor.

  10. An h-adaptive local discontinuous Galerkin method for the Navier-Stokes-Korteweg equations

    NASA Astrophysics Data System (ADS)

    Tian, Lulu; Xu, Yan; Kuerten, J. G. M.; van der Vegt, J. J. W.

    2016-08-01

    In this article, we develop a mesh adaptation algorithm for a local discontinuous Galerkin (LDG) discretization of the (non)-isothermal Navier-Stokes-Korteweg (NSK) equations modeling liquid-vapor flows with phase change. This work is a continuation of our previous research, where we proposed LDG discretizations for the (non)-isothermal NSK equations with a time-implicit Runge-Kutta method. To save computing time and to capture the thin interfaces more accurately, we extend the LDG discretization with a mesh adaptation method. Given the current adapted mesh, a criterion for selecting candidate elements for refinement and coarsening is adopted based on the locally largest value of the density gradient. A strategy to refine and coarsen the candidate elements is then provided. We emphasize that the adaptive LDG discretization is relatively simple and does not require additional stabilization. The use of a locally refined mesh in combination with an implicit Runge-Kutta time method is, however, non-trivial, but results in an efficient time integration method for the NSK equations. Computations, including cases with solid wall boundaries, are provided to demonstrate the accuracy, efficiency and capabilities of the adaptive LDG discretizations.

  11. Calculations of separated 3-D flows with a pressure-staggered Navier-Stokes equations solver

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.

    1991-01-01

    A Navier-Stokes equations solver based on a pressure correction method with a pressure-staggered mesh and calculations of separated three-dimensional flows are presented. It is shown that the velocity pressure decoupling, which occurs when various pressure correction algorithms are used for pressure-staggered meshes, is caused by the ill-conditioned discrete pressure correction equation. The use of a partial differential equation for the incremental pressure eliminates the velocity pressure decoupling mechanism by itself and yields accurate numerical results. Example flows considered are a three-dimensional lid driven cavity flow and a laminar flow through a 90 degree bend square duct. For the lid driven cavity flow, the present numerical results compare more favorably with the measured data than those obtained using a formally third order accurate quadratic upwind interpolation scheme. For the curved duct flow, the present numerical method yields a grid independent solution with a very small number of grid points. The calculated velocity profiles are in good agreement with the measured data.

  12. Nonlinear simulations of combustion instabilities with a quasi-1D Navier-Stokes code

    NASA Astrophysics Data System (ADS)

    Haugen, Nils Erland L.; Langørgen, Øyvind; Sannan, Sigurd

    2011-11-01

    As lean premixed combustion systems are more susceptible to combustion instabilities than non-premixed systems, there is an increasing demand for improved numerical design tools that can predict the occurrence of combustion instabilities with high accuracy. The inherent nonlinearities in combustion instabilities can be of crucial importance, and we here propose an approach in which the one-dimensional (1D) Navier-Stokes and scalar transport equations are solved for geometries of variable cross-section. The focus is on attached flames, and for this purpose a new phenomenological model for the unsteady heat release from a flame front is introduced. In the attached flame method (AFM) the heat release occurs over the full length of the flame. The nonlinear code with the use of the AFM approach is validated against analytical results and against an experimental study of thermoacoustic instabilities in oxy-fuel flames by Ditaranto and Hals [Combustion and Flame 146 (2006) 493-512]. The numerical simulations are in accordance with the experimental measurements and the analytical results and both the frequencies and the amplitudes of the resonant acoustic pressure modes are reproduced with good accuracy.

  13. Aspects of a high-resolution scheme for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Turkel, E.

    1993-01-01

    In this paper we emphasize the importance of the form of the numerical dissipation model in computing accurate viscous flow solutions. A high-resolution scheme for viscous flows based on three-point central differencing and a matrix dissipation is considered. The various components of this scheme, including 'entropy fix', limiter function, and boundary-point dissipation are discussed. By analyzing boundary-point dissipation stencils, we confirm that with the matrix dissipation model the normal numerical dissipation terms in the streamwise momentum equation are independent of the Reynolds number. Such independence is not achieved with a scalar dissipation form. The accuracy of the central-difference scheme, with and without matrix dissipation, and the flux-difference split scheme of Roe, which is classified as a high-resolution scheme, is compared. For this comparison, three high Reynolds number laminar flows are considered. Solutions of the Navier-Stokes equations are obtained for low-speed flow over a flat plate, transonic flow over an airfoil with transition near the leading edge, and hypersonic flow over a compression ramp. The emphasis of the comparison is primarily on the details of the viscous flows. The necessity of the high-resolution property is revealed.

  14. Comparison of Navier-Stokes simulations with long-wave theory: Study of wetting and dewetting

    NASA Astrophysics Data System (ADS)

    Mahady, K.; Afkhami, S.; Diez, J.; Kondic, L.

    2013-11-01

    The classical long-wave theory (also known as lubrication approximation) applied to fluid spreading or retracting on a solid substrate is derived under a set of assumptions, typically including small slopes and negligible inertial effects. In this work, we compare the results obtained by using the long-wave model and by simulating directly the full two-phase Navier-Stokes equations employing a volume-of-fluid method. In order to isolate the influence of the small slope assumption inherent in the long-wave theory, we present a quantitative comparison between the two methods in the regime where inertial effects and the influence of gas phase are negligible. The flow geometries that we consider include wetting and dewetting drops within a broad range of equilibrium contact angles in planar and axisymmetric geometries, as well as liquid rings. For perfectly wetting spreading drops we find good quantitative agreement between the models, with both of them following rather closely Tanner's law. For partially wetting drops, while in general we find good agreement between the two models for small equilibrium contact angles, we also uncover differences which are particularly evident in the initial stages of evolution, for retracting drops, and when additional azimuthal curvature is considered. The contracting rings are also found to evolve differently for the two models, with the main difference being that the evolution occurs on the faster time scale when the long-wave model is considered, although the ring shapes are very similar between the two models.

  15. A diffusion tensor imaging tractography algorithm based on Navier-Stokes fluid mechanics.

    PubMed

    Hageman, Nathan S; Toga, Arthur W; Narr, Katherine L; Shattuck, David W

    2009-03-01

    We introduce a fluid mechanics based tractography method for estimating the most likely connection paths between points in diffusion tensor imaging (DTI) volumes. We customize the Navier-Stokes equations to include information from the diffusion tensor and simulate an artificial fluid flow through the DTI image volume. We then estimate the most likely connection paths between points in the DTI volume using a metric derived from the fluid velocity vector field. We validate our algorithm using digital DTI phantoms based on a helical shape. Our method segmented the structure of the phantom with less distortion than was produced using implementations of heat-based partial differential equation (PDE) and streamline based methods. In addition, our method was able to successfully segment divergent and crossing fiber geometries, closely following the ideal path through a digital helical phantom in the presence of multiple crossing tracts. To assess the performance of our algorithm on anatomical data, we applied our method to DTI volumes from normal human subjects. Our method produced paths that were consistent with both known anatomy and directionally encoded color images of the DTI dataset.

  16. A challenge in Navier-Stokes-based continuum modeling: Maxwell-Burnett slip law

    NASA Astrophysics Data System (ADS)

    Weng, Huei Chu; Chen, Cha'o.-Kuang

    2008-10-01

    In this paper, we provide an analytical solution of the Navier-Stokes equations subject to second-order slip boundary conditions for gas flow in a long open-ended parallel-plate microchannel with variable working temperature. Comparisons with available experimental data show the limits of various slip laws in the experimental setups. It is found that the Maxwell (first-order) slip law can be valid for average Knudsen numbers up to 0.255 and that the Maxwell-Burnett slip law should be preferred and can be valid for values up to 1.60. The influences of working temperature on the appearance of the Knudsen paradox and the change in the centerline pressure curvature for different values of the pressure-drop parameter are further predicted. Results reveal that the value of the Knudsen number where the Knudsen paradox appears is always greater than the value where the pressure curvature changes. When the working temperature rises, both the critical values increase. However, both the corresponding values of the mass flow rate decrease. For low values of the pressure-drop parameter, this effect seems to be negligible on the critical Knudsen number and constant on the corresponding mass flow rate.

  17. Solutions of thin-layer Navier-Stokes equations for missile configurations

    NASA Astrophysics Data System (ADS)

    Pourtakdoust, Seid Hossein

    1989-12-01

    Solutions of the thin-layer Navier-Stokes equations were obtained for two typical missile bodies as well as two complete missile configurations. The finite-differenced three-dimensional equations are solved using a modified NASA Ames solver code on a body-fitted curvi-linear grid system developed in conjunction with the flowfield solver. The grid program is based on the method of algebraic interpolation and is capable of generating three-dimensional grid systems for missile bodies and finned-missiles having up to eight control surfaces. The numerical procedure is based on an implicit approximate factorization algorithm employing a multi-grid approach in the simulation of flow about complex finned-missile configurations. The present procedures are proven effective in dealing with complete missile configurations flying at high angles of attack. The predicted aerodynamic loading coefficients and pressure distributions match the available wind-tunnel data with good accuracy. Flow non-linearities such as shock, streamwise and cross-flow separations, and reverse flow were detected and verified with the available experimental reports. Leading-edge separation and classical patterns of vortical flow were also numerically obtained and studied for interaction effects. The Mach number and Reynolds number effects on the convergence of the numerical process are also discussed.

  18. A 3-dimensional Navier-Stokes-Euler code for blunt-body flow computations

    NASA Technical Reports Server (NTRS)

    Li, C. P.

    1985-01-01

    The shock-layer flowfield is obtained with or without viscous and heat-conducting dissipations from the conservative laws of fluid dynamics equations using a shock-fitting implicity finite-difference technique. The governing equations are cast in curvilinear-orthogonal coordinates and transformed to the domain between the shock and the body. Another set of equations is used for the singular coordinate axis, which, together with a cone generator away from the stagnation point, encloses the computation domain. A time-dependent alternating direction implicit factorization technique is applied to integrate the equations with local-time increment until a steady solution is reached. The shock location is updated after the flowfield computation, but the wall conditions are implemented into the implicit procedure. Innovative procedures are introduced to define the initial flowfield, to treat both perfect and equilibrium gases, to advance the solution on a coarse-to-fine grid sequence, and to start viscous flow computations from their corresponding inviscid solutions. The results are obtained from a grid no greater than 28 by 18 by 7 and converged within 300 integration steps. They are of sufficient accuracy to start parabolized Navier-Stokes or Euler calculations beyond the nose region, to compare with flight and wind-tunnel data, and to evaluate conceptual designs of reentry spacecraft.

  19. Navier-Stokes Flowfield Simulation of Boeing 747-200 as Platform for SOFIA

    NASA Technical Reports Server (NTRS)

    Srinivasan, G.R.

    1994-01-01

    Steady and unsteady viscous, three-dimensional flowfields are calculated using a thin layer approximation of Navier-Stokes equations in conjunction with Chimera overset grids. The finite-difference numerical scheme uses structured grids and a pentadiagonal flow solver called "OVERFLOW". The configuration of Boeing 747-200 has been chosen as one of configurations to be used as a platform for the SOFIA (Stratospheric Observatory For Infrared Astronomy). Initially, the steady flowfield of the full aircraft is calculated for the clean configuration (without a cavity to house telescope). This solution is then used to start the unsteady flowfield of a configuration containing cavity housing the observation telescope and its peripheral units. Analysis of unsteady flowfield in the cavity and its influence on the tail empennage, as well as the noise due to turbulence and optical quality of the flow are the main focus of this study. For the configuration considered here, the telescope housing cavity is located slightly downstream of the portwing. The entire flow-field is carefully constructed using 45 overset grids and consists of nearly 4 million grid points. All the computations axe done at one freestream flow condition of M(sub infinity) = 0.85, alpha = 2.5deg, and a Reynolds of Re = 1.85x10deg

  20. Generalized extended Navier-Stokes theory: multiscale spin relaxation in molecular fluids.

    PubMed

    Hansen, J S

    2013-09-01

    This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia per unit mass. In the regime of large moment of inertia the fast relaxation is wave-vector independent and dominated by the coupling between spin and the fluid streaming velocity, whereas for small inertia the relaxation is slow and spin diffusion plays a significant role. The fast wave-vector-independent relaxation is also observed for highly packed systems. The transverse and longitudinal spin modes have, to a good approximation, identical relaxation, indicating that the longitudinal and transverse spin viscosities have same value. The relaxation is also shown to be isomorphic invariant. Finally, the effect of the coupling in the zero frequency and wave-vector limit is quantified by a characteristic length scale; if the system dimension is comparable to this length the coupling must be included into the fluid dynamical description. It is found that the length scale is independent of moment of inertia but dependent on the state point. PMID:24125208