Science.gov

Sample records for 2d ir spectroscopy

  1. [Study on the processing of leech by FTIR and 2D-IR correlation spectroscopy].

    PubMed

    Li, Bing-Ning; Wu, Yan-Wen; Ouyang, Jie; Sun, Su-Qin; Chen, Shun-Cong

    2011-04-01

    The chemical differences of traditional Chinese medicine leech before and after processing were analyzed by FTIR and two-dimensional correlation infrared (2D-IR) spectroscopy. The result showed that the leech was high in protein, with characteristic peaks of amide I, II bands. Comparing the IR spectra of samples, the primary difference was that the characteristic peak of fresh leech was at 1 543 cm(-1), while that of crude and processed leech was at 1 535 cm(-1). A 2D-IR spectrum with heating perturbation was used to track the processing dynamics of leech In the 2D-IR correlation spectra, fresh leech exhibited stronger automatic peaks of the amide I and II bands than that of processed leech, which indicates that the protein components of the fresh leech were more sensitive to heat perturbation than the processed one. Moreover, the result of FTIR and 2D-IR correlation spectra validated that the 3-dimensional structure of protein was damaged and hydrogen bonds were broken after processing, which resulted in the inactivation of protein. The fatty acids and cholesterol components of leech were also oxidized in this process.

  2. Dye aggregation identified by vibrational coupling using 2D IR spectroscopy

    SciTech Connect

    Oudenhoven, Tracey A.; Laaser, Jennifer E.; Zanni, Martin T.; Joo, Yongho; Gopalan, Padma

    2015-06-07

    We report that a model dye, Re(CO){sub 3}(bypy)CO{sub 2}H, aggregates into clusters on TiO{sub 2} nanoparticles regardless of our preparation conditions. Using two-dimensional infrared (2D IR) spectroscopy, we have identified characteristic frequencies of monomers, dimers, and trimers. A comparison of 2D IR spectra in solution versus those deposited on TiO{sub 2} shows that the propensity to dimerize in solution leads to higher dimer formation on TiO{sub 2}, but that dimers are formed even if there are only monomers in solution. Aggregates cannot be washed off with standard protocols and are present even at submonolayer coverages. We observe cross peaks between aggregates of different sizes, primarily dimers and trimers, indicating that clusters consist of microdomains in close proximity. 2D IR spectroscopy is used to draw these conclusions from measurements of vibrational couplings, but if molecules are close enough to be vibrationally coupled, then they are also likely to be electronically coupled, which could alter charge transfer.

  3. Folding of a heterogeneous β-hairpin peptide from temperature-jump 2D IR spectroscopy

    PubMed Central

    Jones, Kevin C.; Peng, Chunte Sam; Tokmakoff, Andrei

    2013-01-01

    We provide a time- and structure-resolved characterization of the folding of the heterogeneous β-hairpin peptide Tryptophan Zipper 2 (Trpzip2) using 2D IR spectroscopy. The amide I′ vibrations of three Trpzip2 isotopologues are used as a local probe of the midstrand contacts, β-turn, and overall β-sheet content. Our experiments distinguish between a folded state with a type I′ β-turn and a misfolded state with a bulged turn, providing evidence for distinct conformations of the peptide backbone. Transient 2D IR spectroscopy at 45 °C following a laser temperature jump tracks the nanosecond and microsecond kinetics of unfolding and the exchange between conformers. Hydrogen bonds to the peptide backbone are loosened rapidly compared with the 5-ns temperature jump. Subsequently, all relaxation kinetics are characterized by an observed 1.2 ± 0.2-μs exponential. Our time-dependent 2D IR spectra are explained in terms of folding of either native or nonnative contacts from a common compact disordered state. Conversion from the disordered state to the folded state is consistent with a zip-out folding mechanism. PMID:23382249

  4. Amide I'-II' 2D IR spectroscopy provides enhanced protein secondary structural sensitivity.

    PubMed

    Deflores, Lauren P; Ganim, Ziad; Nicodemus, Rebecca A; Tokmakoff, Andrei

    2009-03-11

    We demonstrate how multimode 2D IR spectroscopy of the protein amide I' and II' vibrations can be used to distinguish protein secondary structure. Polarization-dependent amide I'-II' 2D IR experiments on poly-l-lysine in the beta-sheet, alpha-helix, and random coil conformations show that a combination of amide I' and II' diagonal and cross peaks can effectively distinguish between secondary structural content, where amide I' infrared spectroscopy alone cannot. The enhanced sensitivity arises from frequency and amplitude correlations between amide II' and amide I' spectra that reflect the symmetry of secondary structures. 2D IR surfaces are used to parametrize an excitonic model for the amide I'-II' manifold suitable to predict protein amide I'-II' spectra. This model reveals that the dominant vibrational interaction contributing to this sensitivity is a combination of negative amide II'-II' through-bond coupling and amide I'-II' coupling within the peptide unit. The empirically determined amide II'-II' couplings do not significantly vary with secondary structure: -8.5 cm(-1) for the beta sheet, -8.7 cm(-1) for the alpha helix, and -5 cm(-1) for the coil.

  5. Probing Spatio-Temporal Correlation in Complex Aqueous Systems through 2D-IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bagchi, Biman; Biswas, Rajib; Samanta, Tuhin; Ghosh, Rikhia; Roy, Susmita

    2015-03-01

    Heterogeneity is ubiquitous in aqueous solutions, e.g., in protein and DNA solutions, micelles and reverse micelles, density fluctuations during phase transitions (e,g., water to ice). Origin of heterogeneity can be diverse, sometimes stimulated by external biomolecular subsystems (proteins, DNA, lipids), nanoscopic materials etc, but may also be intrinsic to the thermodynamic nature of the aqueous solution itself. The altered dynamics of water in presence of such diverse surfaces have attracted considerable attention in recent years. However, efficiently capturing the length and timescale of heterogeneous dynamics of water is indeed a challenging task. Recent development of two dimensional infra-red (2D-IR) allows us to estimate length and time scales of such dynamics fairly accurately. In this work, we present a series of interesting studies employing two dimensional infra-red spectroscopy (2D-IR) to investigate (i) dynamics of water inside reverse micelles of varying sizes, (ii) supercritical water near the Widom line that is known to exhibit pronounced density fluctuation and calculate. The respective studies reveal a number of interesting facts. Spatio-temporal correlation of water dynamics with varying size of reverse micelles is well captured through the spectral diffusion of corresponding 2D-IR spectra. In case of supercritical water also, we observe strong signature of dynamic heterogeneity from the elongated nature of the spectra.

  6. Rapid discrimination of extracts of Chinese propolis and poplar buds by FT-IR and 2D IR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Yan-Wen; Sun, Su-Qin; Zhao, Jing; Li, Yi; Zhou, Qun

    2008-07-01

    The extract of Chinese propolis (ECP) has recently been adulterated with that of poplar buds (EPB), because most of ECP is derived from the poplar plant, and ECP and EPB have almost identical chemical compositions. It is very difficult to differentiate them by using the chromatographic methods such as high performance liquid chromatography (HPLC) and gas chromatography (GC). Therefore, how to effectively discriminate these two mixtures is a problem to be solved urgently. In this paper, a rapid method for discriminating ECP and EPB was established by the Fourier transform infrared (FT-IR) spectra combined with the two-dimensional infrared correlation (2D IR) analysis. Forty-three ECP and five EPB samples collected from different areas of China were analyzed by the FT-IR spectroscopy. All the ECP and EPB samples tested show similar IR spectral profiles. The significant differences between ECP and EPB appear in the region of 3000-2800 cm -1 of the spectra. Based on such differences, the two species were successfully classified with the soft independent modeling of class analogy (SIMCA) pattern recognition technique. Furthermore, these differences were well validated by a series of temperature-dependent dynamic FT-IR spectra and the corresponding 2D IR plots. The results indicate that the differences in these two natural products are caused by the amounts of long-chain alkyl compounds (including long-chain alkanes, long-chain alkyl esters and long chain alkyl alcohols) in them, rather than the flavonoid compounds, generally recognized as the bioactive substances of propolis. There are much more long-chain alkyl compounds in ECP than those in EPB, and the carbon atoms of the compounds in ECP remain in an order Z-shaped array, but those in EPB are disorder. It suggests that FT-IR and 2D IR spectroscopy can provide a valuable method for the rapid differentiation of similar natural products, ECP and EPB. The IR spectra could directly reflect the integrated chemical

  7. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy.

    PubMed

    Qu, Lei; Chen, Jian-Bo; Zhang, Gui-Jun; Sun, Su-Qin; Zheng, Jing

    2017-03-05

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p=0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.

  8. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Qu, Lei; Chen, Jian-bo; Zhang, Gui-Jun; Sun, Su-qin; Zheng, Jing

    2017-03-01

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p = 0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.

  9. Interrogating Fiber Formation Kinetics with Automated 2D-IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Strasfeld, David B.; Ling, Yun L.; Shim, Sang-Hee; Zanni, Martin T.

    A new method for collecting 2D-IR spectra that utilizes both a pump-probe beam geometry and a mid-IR pulse shaper is used to gain a fuller understanding of fiber formation in the human islet amyloid polypeptide (hIAPP). We extract structural kinetics in order to better understand aggregation in hIAPP, the protein component of the amyloid fibers found to inhibit insulin production in type II diabetes patients.

  10. Anharmonic vibrational modes of nucleic acid bases revealed by 2D IR spectroscopy.

    PubMed

    Peng, Chunte Sam; Jones, Kevin C; Tokmakoff, Andrei

    2011-10-05

    Polarization-dependent two-dimensional infrared (2D IR) spectra of the purine and pyrimadine base vibrations of five nucleotide monophosphates (NMPs) were acquired in D(2)O at neutral pH in the frequency range 1500-1700 cm(-1). The distinctive cross-peaks between the ring deformations and carbonyl stretches of NMPs indicate that these vibrational modes are highly coupled, in contrast with the traditional peak assignment, which is based on a simple local mode picture such as C═O, C═N, and C═C double bond stretches. A model of multiple anharmonically coupled oscillators was employed to characterize the transition energies, vibrational anharmonicities and couplings, and transition dipole strengths and orientations. No simple or intuitive structural correlations are found to readily assign the spectral features, except in the case of guanine and cytosine, which contain a single local CO stretching mode. To help interpret the nature of these vibrational modes, we performed density functional theory (DFT) calculations and found that multiple ring vibrations are coupled and delocalized over the purine and pyrimidine rings. Generally, there is close correspondence between the experimental and computational results, provided that the DFT calculations include explicit waters solvating hydrogen-bonding sites. These results provide direct experimental evidence of the delocalized nature of the nucleotide base vibrations via a nonperturbative fashion and will serve as building blocks for constructing a structure-based model of DNA and RNA vibrational spectroscopy.

  11. Phase-Resolved Heterodyne-Detected Transient Grating Enhances the Capabilities of 2D IR Echo Spectroscopy.

    PubMed

    Jin, Geun Young; Kim, Yung Sam

    2017-02-09

    2D IR echo spectroscopy, with high sensitivity and femtosecond time resolution, enables us to understand structure and ultrafast dynamics of molecular systems. Application of this experimental technique on weakly absorbing samples, however, had been limited by the precise and unambiguous phase determination of the echo signals. In this study, we propose a new experimental scheme that significantly increases the phase stability of the involved IR pulses. We have demonstrated that the incorporation of phase-resolved heterodyne-detected transient grating (PR-HDTG) spectroscopy greatly enhances the capabilities of 2D IR spectroscopy. The new experimental scheme has been used to obtain 2D IR spectra on weakly absorbing azide ions (N3(-)) in H2O (absorbance ∼0.025), free of phase ambiguity even at large waiting times. We report the estimated spectral diffusion time scale (1.056 ps) of azide ions in aqueous solution from the 2D IR spectra and the vibrational lifetime (750 ± 3 fs) and the reorientation time (1108 ± 24 fs) from the PR-HDTG spectra.

  12. 2D IR spectroscopy at 100 kHz utilizing a Mid-IR OPCPA laser source.

    PubMed

    Luther, Bradley M; Tracy, Kathryn M; Gerrity, Michael; Brown, Susannah; Krummel, Amber T

    2016-02-22

    We present a 100 kHz 2D IR spectrometer. The system utilizes a ytterbium all normal dispersion fiber oscillator as a common source for the pump and seed beams of a MgO:PPLN OPCPA. The 1030 nm OPCPA pump is generated by amplification of the oscillator in cryocooled Yb:YAG amplifiers, while the 1.68 μm seed is generated in a OPO pumped by the oscillator. The OPCPA outputs are used in a ZGP DFG stage to generate 4.65 μm pulses. A mid-IR pulse shaper delivers pulse pairs to a 2D IR spectrometer allowing for data collection at 100 kHz.

  13. Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy

    PubMed Central

    Díaz-Visurraga, Judith; Daza, Carla; Pozo, Claudio; Becerra, Abraham; von Plessing, Carlos; García, Apolinaria

    2012-01-01

    Background The objective of this study was to clarify the intermolecular interaction between antibacterial copper nanoparticles (Cu NPs) and sodium alginate (NaAlg) by Fourier transform infrared spectroscopy (FT-IR) and to process the spectra applying two-dimensional infrared (2D-IR) correlation analysis. To our knowledge, the addition of NaAlg as a stabilizer of copper nanoparticles has not been previously reported. It is expected that the obtained results will provide valuable additional information on: (1) the influence of reducing agent ratio on the formation of copper nanoparticles in order to design functional nanomaterials with increased antibacterial activity, and (2) structural changes related to the incorporation of Cu NPs into the polymer matrix. Methods Cu NPs were prepared by microwave heating using ascorbic acid as reducing agent and NaAlg as stabilizing agent. The characterization of synthesized Cu NPs by ultraviolet visible spectroscopy, transmission electron microscopy (TEM), electron diffraction analysis, X-ray diffraction (XRD), and semiquantitative analysis of the weight percentage composition indicated that the average particle sizes of Cu NPs are about 3–10 nm, they are spherical in shape, and consist of zerovalent Cu and Cu2O. Also, crystallite size and relative particle size of stabilized Cu NPs were calculated by XRD using Scherrer’s formula and FT from the X-ray diffraction data. Thermogravimetric analysis, differential thermal analysis, differential scanning calorimetry (DSC), FT-IR, second-derivative spectra, and 2D-IR correlation analysis were applied to studying the stabilization mechanism of Cu NPs by NaAlg molecules. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of stabilized Cu NPs against five bacterial strains (Staphylococccus aureus ATCC 6538P, Escherichia coli ATCC 25922 and O157: H7, and Salmonella enterica serovar Typhimurium ATCC 13311 and 14028) were evaluated with macrodilution

  14. Residue-Specific Structural Kinetics of Proteins through the Union of Isotope Labeling, Mid-IR Pulse Shaping, and Coherent 2D IR Spectroscopy

    PubMed Central

    Middleton, Chris T.; Woys, Ann Marie; Mukherjee, Sudipta S.; Zanni, Martin T.

    2010-01-01

    We describe a methodology for studying protein kinetics using a rapid-scan technology for collecting 2D IR spectra. In conjunction with isotope labeling, 2D IR spectroscopy is able to probe the secondary structure and environment of individual residues in polypeptides and proteins. It is particularly useful for membrane and aggregate proteins. Our rapid-scan technology relies on a mid-IR pulse shaper that computer generates the pulse shapes, much like in an NMR spectrometer. With this device, data collection is faster, easier, and more accurate. We describe our 2D IR spectrometer, as well as protocols for 13C=18O isotope labeling, and then illustrate the technique with an application to the aggregation of the human islet amyloid polypeptide form type 2 diabetes. PMID:20472067

  15. Rapid identification of Pterocarpus santalinus and Dalbergia louvelii by FTIR and 2D correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Fang-Da; Xu, Chang-Hua; Li, Ming-Yu; Huang, An-Min; Sun, Su-Qin

    2014-07-01

    Since Pterocarpus santalinus and Dalbergia louvelii, which are of precious Rosewood, are very similar in their appearance and anatomy characteristics, cheaper Hongmu D. louvelii is often illegally used to impersonate valuable P. santalinus, especially in Chinese furniture manufacture. In order to develop a rapid and effective method for easy confused wood furniture differentiation, we applied tri-step identification method, i.e., conventional infrared spectroscopy (FT-IR), second derivative infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2DCOS-IR) spectroscopy to investigate P. santalinus and D. louvelii furniture. According to FT-IR and SD-IR spectra, it has been found two unconditional stable difference at 848 cm-1 and 700 cm-1 and relative stable differences at 1735 cm-1, 1623 cm-1, 1614 cm-1, 1602 cm-1, 1509 cm-1, 1456 cm-1, 1200 cm-1, 1158 cm-1, 1055 cm-1, 1034 cm-1 and 895 cm-1 between D. louvelii and P. santalinus IR spectra. The stable discrepancy indicates that the category of extractives is different between the two species. Besides, the relative stable differences imply that the content of holocellulose in P. santalinus is more than that of D. louvelii, whereas the quantity of extractives in D. louvelii is higher. Furthermore, evident differences have been observed in their 2DCOS-IR spectra of 1550-1415 cm-1 and 1325-1030 cm-1. P. santalinus has two strong auto-peaks at 1459 cm-1 and 1467 cm-1, three mid-strong auto-peaks at 1518 cm-1, 1089 cm-1 and 1100 cm-1 and five weak auto-peaks at 1432 cm-1, 1437 cm-1, 1046 cm-1, 1056 cm-1 and 1307 cm-1 while D. louvelii has four strong auto-peaks at 1465 cm-1, 1523 cm-1, 1084 cm-1 and 1100 cm-1, four mid-strong auto-peaks at 1430 cm-1, 1499 cm-1, 1505 cm-1 and 1056 cm-1 and two auto-peaks at 1540 cm-1 and 1284 cm-1. This study has proved that FT-IR integrated with 2DCOS-IR could be applicable for precious wood furniture authentication in a direct, rapid and holistic manner.

  16. Polarization shaping in the mid-IR and polarization-based balanced heterodyne detection with application to 2D IR spectroscopy.

    PubMed

    Middleton, Chris T; Strasfeld, David B; Zanni, Martin T

    2009-08-17

    We demonstrate amplitude, phase and polarization shaping of femtosecond mid-IR pulses using a germanium acousto-optical modulator by independently shaping the frequency-dependent amplitudes and phases of two orthogonally polarized pulses which are then collinearly overlapped using a wire-grid polarizer. We use a feedback loop to set and stabilize the relative phase of the orthogonal pulses. We have also used a wire-grid polarizer to implement polarization-based balanced heterodyne detection for improved signal-to-noise of 2D IR spectra collected in a pump-probe geometry. Applications include coherent control of molecular vibrations and improvements in multidimensional IR spectroscopy.

  17. Vibrational dynamics and solvatochromism of the label SCN in various solvents and hemoglobin by time dependent IR and 2D-IR spectroscopy.

    PubMed

    van Wilderen, Luuk J G W; Kern-Michler, Daniela; Müller-Werkmeister, Henrike M; Bredenbeck, Jens

    2014-09-28

    We investigated the characteristics of the thiocyanate (SCN) functional group as a probe of local structural dynamics for 2D-IR spectroscopy of proteins, exploiting the dependence of vibrational frequency on the environment of the label. Steady-state and time-resolved infrared spectroscopy are performed on the model compound methylthiocyanate (MeSCN) in solvents of different polarity, and compared to data obtained on SCN as a local probe introduced as cyanylated cysteine in the protein bovine hemoglobin. The vibrational lifetime of the protein label is determined to be 37 ps, and its anharmonicity is observed to be lower than that of the model compound (which itself exhibits solvent-independent anharmonicity). The vibrational lifetime of MeSCN generally correlates with the solvent polarity, i.e. longer lifetimes in less polar solvents, with the longest lifetime being 158 ps. However, the capacity of the solvent to form hydrogen bonds complicates this simplified picture. The long lifetime of the SCN vibration is in contrast to commonly used azide labels or isotopically-labeled amide I and better suited to monitor structural rearrangements by 2D-IR spectroscopy. We present time-dependent 2D-IR data on the labeled protein which reveal an initially inhomogeneous structure around the CN oscillator. The distribution becomes homogeneous after 5 picoseconds so that spectral diffusion has effectively erased the 'memory' of the CN stretching frequency. Therefore, the 2D-IR data of the label incorporated in hemoglobin demonstrate how SCN can be utilized to sense rearrangements in the local structure on a picosecond timescale.

  18. 2D IR spectroscopy of histidine: probing side-chain structure and dynamics via backbone amide vibrations.

    PubMed

    Ghosh, Ayanjeet; Tucker, Matthew J; Gai, Feng

    2014-07-17

    It is well known that histidine is involved in many biological functions due to the structural versatility of its side chain. However, probing the conformational transitions of histidine in proteins, especially those occurring on an ultrafast time scale, is difficult. Herein we show, using a histidine dipeptide as a model, that it is possible to probe the tautomer and protonation status of a histidine residue by measuring the two-dimensional infrared (2D IR) spectrum of its amide I vibrational transition. Specifically, for the histidine dipeptide studied, the amide unit of the histidine gives rise to three spectrally resolvable amide I features at approximately 1630, 1644, and 1656 cm(-1), respectively, which, based on measurements at different pH values and frequency calculations, are assigned to a τ tautomer (1630 cm(-1) component) and a π tautomer with a hydrated (1644 cm(-1) component) or dehydrated (1656 cm(-1) component) amide. Because of the intrinsic ultrafast time resolution of 2D IR spectroscopy, we believe that the current approach, when combined with the isotope editing techniques, will be useful in revealing the structural dynamics of key histidine residues in proteins that are important for function.

  19. Ultrafast slaving dynamics at the protein-water interface studied with 2D-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    King, J. T.; Kubarych, K. J.

    2013-03-01

    The dynamics of hen egg white lysozyme in D2O/glycerol mixtures is studied using two-dimensional infrared spectroscopy. The hydration dynamics and the protein dynamics are studied simultaneously through vibrational probes attached to the protein surface.

  20. [Identification and analysis of genuine and false Flos Rosae Rugosae by FTIR and 2D correlation IR spectroscopy].

    PubMed

    Cai, Fang; Sun, Su-qin; Yan, Wen-rong; Niu, Shi-jie; Li, Xian-en

    2009-09-01

    The genuine and false Flos Rosae Rugosae (Flos Rosae Chinensis and Flos Rosa multiflora) were examined in terms of their differences by using Fourier transform infrared spectroscopy (FTIR) combined with two-dimensional (2D) correlation IR spectroscopy. The three species were shown very similar in FTIR spectra. The peak of 1318 cm(-1) of genuine Flos Rosae Rugosae is not obvious but this peak could be found sharp in Flos Rosae Chinensis and Flos Rosa multiflora. Generally, the second derivative IR spectrum can clearly enhance the spectral resolution. Flos Rosae Rugosae and Flos rosae Chinensis have aromatic compounds distinct fingerprint characteristics at 1 617 and 1 618 cm(-1), respectively. Nevertheless, FlosRosa multiflora has the peak at 1612 cm(-1). There is a discrepancy of 5 to 6 cm(-1). FlosRosa multiflora has glucide's distinct fingerprint characteristics at 1 044 cm(-1), but Flos Rosae Rugosae and Flos Rosae Chinensis don't. The second derivative infrared spectra indicated different fingerprint characteristics. Three of them showed aromatic compounds with autopeaks at 1620, 1560 and 1460 cm(-1). Flos Rosae Chinensis and Flos Rosa multiflora have the shoulder peak at 1660 cm(-1). In the range of 850-1250 cm(-1), three of them are distinct different, Flos Rosae Rugosae has the strongest autopeak, Flos Rosae Chinensis has the feeble autopeak and Flos Rosa multiflora has no autopeak at 1050 cm(-1). In third-step identification, the different contents of aromatic compounds and glucide in Flos Rosae Rugosae, Flos Rosae Chinensis and Flos Rosa multiflora were revealed. It is proved that the method is fast and effective for distinguishing and analyzing genuine Flos Rosae Rugosae and false Flos Rosae Rugosae (Flos Rosae Chinensis and Flos Rosa multiflora).

  1. 2D-IR spectroscopy of the sulfhydryl band of cysteines in the hydrophobic core of proteins.

    PubMed

    Koziński, M; Garrett-Roe, S; Hamm, P

    2008-06-26

    We investigate the sulfhydryl band of cysteines as a new chromophore for two-dimensional IR (2D-IR) studies of the structure and dynamics of proteins. Cysteines can be put at almost any position in a protein by standard methods of site-directed mutagenesis and, hence, have the potential to be an extremely versatile local probe. Although being a very weak absorber in aqueous environment, the sulfhydryl group gets strongly polarized when situated in an alpha-helix inside the hydrophobic core of a protein because of a strong hydrogen bond to the backbone carbonyl group. The extinction coefficient (epsilon=150 M(-1) cm(-1)) then is sufficiently high to perform detailed 2D-IR studies even at low millimolar concentrations. Using porcine (carbonmonoxy)hemoglobin as an example, which contains two such cysteines in its wild-type form, we demonstrate that spectral diffusion deduced from the 2D-IR line shapes reports on the overall-breathing of the corresponding alpha-helix. The vibrational lifetime of the sulfhydryl group (T1 approximately 6 ps) is considerably longer than that of the much more commonly used amide I mode (approximately 1.0 ps), thereby significantly extending the time window in which spectral diffusion processes can be observed. The experiments are accompanied by molecular dynamics simulations revealing a good overall agreement.

  2. The structure of salt bridges between Arg(+) and Glu(-) in peptides investigated with 2D-IR spectroscopy: Evidence for two distinct hydrogen-bond geometries.

    PubMed

    Huerta-Viga, Adriana; Amirjalayer, Saeed; Domingos, Sérgio R; Meuzelaar, Heleen; Rupenyan, Alisa; Woutersen, Sander

    2015-06-07

    Salt bridges play an important role in protein folding and in supramolecular chemistry, but they are difficult to detect and characterize in solution. Here, we investigate salt bridges between glutamate (Glu(-)) and arginine (Arg(+)) using two-dimensional infrared (2D-IR) spectroscopy. The 2D-IR spectrum of a salt-bridged dimer shows cross peaks between the vibrational modes of Glu(-) and Arg(+), which provide a sensitive structural probe of Glu(-)⋯Arg(+) salt bridges. We use this probe to investigate a β-turn locked by a salt bridge, an α-helical peptide whose structure is stabilized by salt bridges, and a coiled coil that is stabilized by intra- and intermolecular salt bridges. We detect a bidentate salt bridge in the β-turn, a monodentate one in the α-helical peptide, and both salt-bridge geometries in the coiled coil. To our knowledge, this is the first time 2D-IR has been used to probe tertiary side chain interactions in peptides, and our results show that 2D-IR spectroscopy is a powerful method for investigating salt bridges in solution.

  3. The structure of salt bridges between Arg+ and Glu- in peptides investigated with 2D-IR spectroscopy: Evidence for two distinct hydrogen-bond geometries

    NASA Astrophysics Data System (ADS)

    Huerta-Viga, Adriana; Amirjalayer, Saeed; Domingos, Sérgio R.; Meuzelaar, Heleen; Rupenyan, Alisa; Woutersen, Sander

    2015-06-01

    Salt bridges play an important role in protein folding and in supramolecular chemistry, but they are difficult to detect and characterize in solution. Here, we investigate salt bridges between glutamate (Glu-) and arginine (Arg+) using two-dimensional infrared (2D-IR) spectroscopy. The 2D-IR spectrum of a salt-bridged dimer shows cross peaks between the vibrational modes of Glu- and Arg+, which provide a sensitive structural probe of Glu-⋯Arg+ salt bridges. We use this probe to investigate a β-turn locked by a salt bridge, an α-helical peptide whose structure is stabilized by salt bridges, and a coiled coil that is stabilized by intra- and intermolecular salt bridges. We detect a bidentate salt bridge in the β-turn, a monodentate one in the α-helical peptide, and both salt-bridge geometries in the coiled coil. To our knowledge, this is the first time 2D-IR has been used to probe tertiary side chain interactions in peptides, and our results show that 2D-IR spectroscopy is a powerful method for investigating salt bridges in solution.

  4. How to turn your pump–probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping

    PubMed Central

    Shim, Sang-Hee; Zanni, Martin T.

    2010-01-01

    We have recently developed a new and simple way of collecting 2D infrared and visible spectra that utilizes a pulse shaper and a partly collinear beam geometry. 2D IR and Vis spectroscopies are powerful tools for studying molecular structures and their dynamics. They can be used to correlate vibrational or electronic eigenstates, measure energy transfer rates, and quantify the dynamics of lineshapes, for instance, all with femtosecond time-resolution. As a result, they are finding use in systems that exhibit fast dynamics, such as sub-millisecond chemical and biological dynamics, and in hard-to-study environments, such as in membranes. While powerful, these techniques have been difficult to implement because they require a series of femtosecond pulses to be spatially and temporally overlapped with precise time-resolution and interferometric phase stability. However, many of the difficulties associated with implementing 2D spectroscopies are eliminated by using a pulse shaper and a simple beam geometry, which substantially lowers the technical barriers required for researchers to enter this exciting field while simultaneously providing many new capabilities. The aim of this paper is to provide an overview of the methods for collecting 2D spectra so that an outsider considering using 2D spectroscopy in their own research can judge which approach would be most suitable for their research aims. This paper focuses primarily on 2D IR spectroscopy, but also includes our recent work on adapting this technology to collecting 2D Vis spectra. We review work that has already been published as well as cover several topics that we have not reported previously, including phase cycling methods to remove background signals, eliminate unwanted scatter, and shift data collection into the rotating frame. PMID:19290321

  5. Evaluation on intrinsic quality of licorice influenced by environmental factors by using FTIR combined with 2D-IR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Ying-qun; Yu, Hua; Zhang, Yan-ling; Sun, Su-qin; Chen, Shi-lin; Zhao, Run-huai; Zhou, Qun; Noda, Isao

    2010-06-01

    To evaluate the intrinsic quality of licorice influenced by environmental factors, the spectral comparison of licorice from two typical ecological habitats was conducted by using FTIR and 2D-IR correlation spectroscopy. There were differences in the peak intensities of 1155, 1076 and 1048 cm -1 of FTIR profiles. The difference was amplified by the second derivative spectrum for the peak intensities at 1370, 1365 and 1317 cm -1 and the peak shape in 958-920 cm -1 and 1050-988 cm -1. The synchronous 2D-IR spectra within the range of 860-1300 cm -1 were classified into type I and type II and their frequency in the two groups was noticeably different. Although the chemical compounds of licorice samples from two areas were generally similar, the contents of starch, calcium oxalate, and some chemical compounds containing alcohol hydroxyl group were different, indicating the influence of precipitation and temperature. This study demonstrates that the systematical analysis of FTIR, the second derivative spectrum and 2D-IR can effectively determine the differences in licorice samples from different ecological habitats.

  6. Two Keggin-type heteropolytungstates with transition metal as a central atom: Crystal structure and magnetic study with 2D-IR correlation spectroscopy

    SciTech Connect

    Chai, Feng; Chen, YiPing; You, ZhuChai; Xia, ZeMin; Ge, SuZhi; Sun, YanQiong; Huang, BiHua

    2013-06-01

    Two Keggin-type heteropolytungstates, [Co(phen)₃]₃[CoW₁₂O₄₀]·9H₂O 1 (phen=1,10-phenanthroline) and [Fe(phen)₃]₂[FeW₁₂O₄₀]·H₃O·H₂O 2, have been synthesized via the hydrothermal technique and characterized by single crystal X-ray diffraction analyses, IR, XPS, TG analysis, UV–DRS, XRD, thermal-dependent and magnetic-dependent 2D-COS IR (two-dimensional infrared correlation spectroscopy). Crystal structure analysis reveals that the polyanions in compound 1 are linked into 3D supramolecule through hydrogen bonding interactions between lattice water molecules and terminal oxygen atoms of polyanion units, and [Co(phen)₃]²⁺ cations distributed in the polyanion framework with many hydrogen bonding interactions. The XPS spectra indicate that all the Co atoms in 1 are +2 oxidation state, the Fe atoms in 2 existing with +2 and +3 mixed oxidation states. - Graphical abstract: The magnetic-dependent synchronous 2D correlation IR spectra of 1 (a), 2 (b) over 0–50 mT in the range of 600–1000 cm⁻¹, the obvious response indicate two Keggin polyanions skeleton susceptible to applied magnetic field. Highlights: • Two Keggin-type heteropolytungstates with transition metal as a central atom has been obtained. • Compound 1 forms into 3D supramolecular architecture through hydrogen bonding between water molecules and polyanions. • Magnetic-dependent 2D-IR correlation spectroscopy was introduced to discuss the magnetism of polyoxometalate.

  7. Effect of solvent polarity on the vibrational dephasing dynamics of the nitrosyl stretch in an Fe(II) complex revealed by 2D IR spectroscopy.

    PubMed

    Brookes, Jennifer F; Slenkamp, Karla M; Lynch, Michael S; Khalil, Munira

    2013-07-25

    The vibrational dephasing dynamics of the nitrosyl stretching vibration (ν(NO)) in sodium nitroprusside (SNP, Na2[Fe(CN)5NO]·2H2O) are investigated using two-dimensional infrared (2D IR) spectroscopy. The ν(NO) in SNP acts as a model system for the nitrosyl ligand found in metalloproteins which play an important role in the transportation and detection of nitric oxide (NO) in biological systems. We perform a 2D IR line shape study of the ν(NO) in the following solvents: water, deuterium oxide, methanol, ethanol, ethylene glycol, formamide, and dimethyl sulfoxide. The frequency of the ν(NO) exhibits a large vibrational solvatochromic shift of 52 cm(-1), ranging from 1884 cm(-1) in dimethyl sulfoxide to 1936 cm(-1) in water. The vibrational anharmonicity of the ν(NO) varies from 21 to 28 cm(-1) in the solvents used in this study. The frequency-frequency correlation functions (FFCFs) of the ν(NO) in SNP in each of the seven solvents are obtained by fitting the experimentally obtained 2D IR spectra using nonlinear response theory. The fits to the 2D IR line shape reveal that the spectral diffusion time scale of the ν(NO) in SNP varies from 0.8 to 4 ps and is negatively correlated with the empirical solvent polarity scales. We compare our results with the experimentally determined FFCFs of other charged vibrational probes in polar solvents and in the active sites of heme proteins. Our results suggest that the vibrational dephasing dynamics of the ν(NO) in SNP reflect the fluctuations of the nonhomogeneous electric field created by the polar solvents around the nitrosyl and cyanide ligands. The solute solvent interactions occurring at the trans-CN ligand are sensed through the π-back-bonding network along the Fe-NO bond in SNP.

  8. Unraveling the dynamics and structure of functionalized self-assembled monolayers on gold using 2D IR spectroscopy and MD simulations

    PubMed Central

    Yan, Chang; Yuan, Rongfeng; Pfalzgraff, William C.; Nishida, Jun; Wang, Lu; Markland, Thomas E.; Fayer, Michael D.

    2016-01-01

    Functionalized self-assembled monolayers (SAMs) are the focus of ongoing investigations because they can be chemically tuned to control their structure and dynamics for a wide variety of applications, including electrochemistry, catalysis, and as models of biological interfaces. Here we combine reflection 2D infrared vibrational echo spectroscopy (R-2D IR) and molecular dynamics simulations to determine the relationship between the structures of functionalized alkanethiol SAMs on gold surfaces and their underlying molecular motions on timescales of tens to hundreds of picoseconds. We find that at higher head group density, the monolayers have more disorder in the alkyl chain packing and faster dynamics. The dynamics of alkanethiol SAMs on gold are much slower than the dynamics of alkylsiloxane SAMs on silica. Using the simulations, we assess how the different molecular motions of the alkyl chain monolayers give rise to the dynamics observed in the experiments. PMID:27044113

  9. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel

    NASA Astrophysics Data System (ADS)

    Ghosh, Ayanjeet; Wang, Jun; Moroz, Yurii S.; Korendovych, Ivan V.; Zanni, Martin; DeGrado, William F.; Gai, Feng; Hochstrasser, Robin M.

    2014-06-01

    Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs.

  10. Synthesis, structure and temperature-depended 2D IR correlation spectroscopy of an organo-bismuth benzoate with 1,10-phenanthroline

    NASA Astrophysics Data System (ADS)

    Sun, Yan-Qiong; Zhong, Jie-Cen; Liu, Le-Hui; Qiu, Xing-Tai; Chen, Yi-Ping

    2016-11-01

    An organo-bismuth benzoate with phen as auxiliary ligand, [Bi(phen)(C6H5COO)(C6H4COO)] (1) (phen = 1,10-phenanthroline) has been hydrothermally synthesized from bismuth nitrate, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, PXRD, IR spectra, TG analyses, temperature-depended 2D-IR COS (two-dimensional infrared correlation spectroscopy). Interestingly, benzoate anions in 1 came from the desulfuration reaction of 2-mercaptonbenzoic acid under hydrothermal condition. Compound 1 is a discrete organo-bismuth compound with benzoate and phen ligands. The offset face-to-face π-π stacking interactions and C-H⋯O hydrogen bonds link the isolate complex into a 3D supramolecular network. The temperature-depended 2D-IR COS indicates that the stretching vibrations of Cdbnd C/Cdbnd N of aromatic rings and Cdbnd O bonds are sensitive to the temperature change.

  11. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel

    SciTech Connect

    Ghosh, Ayanjeet E-mail: gai@sas.upenn.edu; Gai, Feng E-mail: gai@sas.upenn.edu; Hochstrasser, Robin M.; Wang, Jun; DeGrado, William F.; Moroz, Yurii S.; Korendovych, Ivan V.; Zanni, Martin

    2014-06-21

    Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs.

  12. Solvation of fluoro-acetonitrile in water by 2D-IR spectroscopy: A combined experimental-computational study

    SciTech Connect

    Cazade, Pierre-André; Das, Akshaya K.; Tran, Halina; Kläsi, Felix; Hamm, Peter; Bereau, Tristan; Meuwly, Markus

    2015-06-07

    The solvent dynamics around fluorinated acetonitrile is characterized by 2-dimensional infrared spectroscopy and atomistic simulations. The lineshape of the linear infrared spectrum is better captured by semiempirical (density functional tight binding) mixed quantum mechanical/molecular mechanics simulations, whereas force field simulations with multipolar interactions yield lineshapes that are significantly too narrow. For the solvent dynamics, a relatively slow time scale of 2 ps is found from the experiments and supported by the mixed quantum mechanical/molecular mechanics simulations. With multipolar force fields fitted to the available thermodynamical data, the time scale is considerably faster—on the 0.5 ps time scale. The simulations provide evidence for a well established CF–HOH hydrogen bond (population of 25%) which is found from the radial distribution function g(r) from both, force field and quantum mechanics/molecular mechanics simulations.

  13. Parallel β-sheet vibrational couplings revealed by 2D IR spectroscopy of an isotopically labeled macrocycle: quantitative benchmark for the interpretation of amyloid and protein infrared spectra.

    PubMed

    Woys, Ann Marie; Almeida, Aaron M; Wang, Lu; Chiu, Chi-Cheng; McGovern, Michael; de Pablo, Juan J; Skinner, James L; Gellman, Samuel H; Zanni, Martin T

    2012-11-21

    Infrared spectroscopy is playing an important role in the elucidation of amyloid fiber formation, but the coupling models that link spectra to structure are not well tested for parallel β-sheets. Using a synthetic macrocycle that enforces a two stranded parallel β-sheet conformation, we measured the lifetimes and frequency for six combinations of doubly (13)C═(18)O labeled amide I modes using 2D IR spectroscopy. The average vibrational lifetime of the isotope labeled residues was 550 fs. The frequencies of the labels ranged from 1585 to 1595 cm(-1), with the largest frequency shift occurring for in-register amino acids. The 2D IR spectra of the coupled isotope labels were calculated from molecular dynamics simulations of a series of macrocycle structures generated from replica exchange dynamics to fully sample the conformational distribution. The models used to simulate the spectra include through-space coupling, through-bond coupling, and local frequency shifts caused by environment electrostatics and hydrogen bonding. The calculated spectra predict the line widths and frequencies nearly quantitatively. Historically, the characteristic features of β-sheet infrared spectra have been attributed to through-space couplings such as transition dipole coupling. We find that frequency shifts of the local carbonyl groups due to nearest neighbor couplings and environmental factors are more important, while the through-space couplings dictate the spectral intensities. As a result, the characteristic absorption spectra empirically used for decades to assign parallel β-sheet secondary structure arises because of a redistribution of oscillator strength, but the through-space couplings do not themselves dramatically alter the frequency distribution of eigenstates much more than already exists in random coil structures. Moreover, solvent exposed residues have amide I bands with >20 cm(-1) line width. Narrower line widths indicate that the amide I backbone is solvent

  14. Selection of the NIR region for a regression model of the ethanol concentration in fermentation process by an online NIR and mid-IR dual-region spectrometer and 2D heterospectral correlation spectroscopy.

    PubMed

    Nishii, Takashi; Genkawa, Takuma; Watari, Masahiro; Ozaki, Yukihiro

    2012-01-01

    A new selection procedure of an informative near-infrared (NIR) region for regression model building is proposed that uses an online NIR/mid-infrared (mid-IR) dual-region spectrometer in conjunction with two-dimensional (2D) NIR/mid-IR heterospectral correlation spectroscopy. In this procedure, both NIR and mid-IR spectra of a liquid sample are acquired sequentially during a reaction process using the NIR/mid-IR dual-region spectrometer; the 2D NIR/mid-IR heterospectral correlation spectrum is subsequently calculated from the obtained spectral data set. From the calculated 2D spectrum, a NIR region is selected that includes bands of high positive correlation intensity with mid-IR bands assigned to the analyte, and used for the construction of a regression model. To evaluate the performance of this procedure, a partial least-squares (PLS) regression model of the ethanol concentration in a fermentation process was constructed. During fermentation, NIR/mid-IR spectra in the 10000 - 1200 cm(-1) region were acquired every 3 min, and a 2D NIR/mid-IR heterospectral correlation spectrum was calculated to investigate the correlation intensity between the NIR and mid-IR bands. NIR regions that include bands at 4343, 4416, 5778, 5904, and 5955 cm(-1), which result from the combinations and overtones of the C-H group of ethanol, were selected for use in the PLS regression models, by taking the correlation intensity of a mid-IR band at 2985 cm(-1) arising from the CH(3) asymmetric stretching vibration mode of ethanol as a reference. The predicted results indicate that the ethanol concentrations calculated from the PLS regression models fit well to those obtained by high-performance liquid chromatography. Thus, it can be concluded that the selection procedure using the NIR/mid-IR dual-region spectrometer combined with 2D NIR/mid-IR heterospectral correlation spectroscopy is a powerful method for the construction of a reliable regression model.

  15. Ultrafast vibrational spectroscopy (2D-IR) of CO{sub 2} in ionic liquids: Carbon capture from carbon dioxide’s point of view

    SciTech Connect

    Brinzer, Thomas; Berquist, Eric J.; Ren, Zhe; Dutta, Samrat; Johnson, Clinton A.; Krisher, Cullen S.; Lambrecht, Daniel S.; Garrett-Roe, Sean

    2015-06-07

    The CO{sub 2}ν{sub 3} asymmetric stretching mode is established as a vibrational chromophore for ultrafast two-dimensional infrared (2D-IR) spectroscopic studies of local structure and dynamics in ionic liquids, which are of interest for carbon capture applications. CO{sub 2} is dissolved in a series of 1-butyl-3-methylimidazolium-based ionic liquids ([C{sub 4}C{sub 1}im][X], where [X]{sup −} is the anion from the series hexafluorophosphate (PF{sub 6}{sup −}), tetrafluoroborate (BF{sub 4}{sup −}), bis-(trifluoromethyl)sulfonylimide (Tf{sub 2}N{sup −}), triflate (TfO{sup −}), trifluoroacetate (TFA{sup −}), dicyanamide (DCA{sup −}), and thiocyanate (SCN{sup −})). In the ionic liquids studied, the ν{sub 3} center frequency is sensitive to the local solvation environment and reports on the timescales for local structural relaxation. Density functional theory calculations predict charge transfer from the anion to the CO{sub 2} and from CO{sub 2} to the cation. The charge transfer drives geometrical distortion of CO{sub 2}, which in turn changes the ν{sub 3} frequency. The observed structural relaxation timescales vary by up to an order of magnitude between ionic liquids. Shoulders in the 2D-IR spectra arise from anharmonic coupling of the ν{sub 2} and ν{sub 3} normal modes of CO{sub 2}. Thermal fluctuations in the ν{sub 2} population stochastically modulate the ν{sub 3} frequency and generate dynamic cross-peaks. These timescales are attributed to the breakup of ion cages that create a well-defined local environment for CO{sub 2}. The results suggest that the picosecond dynamics of CO{sub 2} are gated by local diffusion of anions and cations.

  16. Identification of the Excited-State C═C and C═O Modes of trans-β-Apo-8'-carotenal with Transient 2D-IR-EXSY and Femtosecond Stimulated Raman Spectroscopy.

    PubMed

    Di Donato, Mariangela; Ragnoni, Elena; Lapini, Andrea; Kardaś, Tomasz M; Ratajska-Gadomska, Boźena; Foggi, Paolo; Righini, Roberto

    2015-05-07

    Assigning the vibrational modes of molecules in the electronic excited state is often a difficult task. Here we show that combining two nonlinear spectroscopic techniques, transient 2D exchange infrared spectroscopy (T2D-IR-EXSY) and femtosecond stimulated Raman spectroscopy (FSRS), the contribution of the C═C and C═O modes in the excited-state vibrational spectra of trans-β-apo-8'-carotenal can be unambiguously identified. The experimental results reported in this work confirm a previously proposed assignment based on quantum-chemical calculations and further strengthen the role of an excited state with charge-transfer character in the relaxation pathway of carbonyl carotenoids. On a more general ground, our results highlight the potentiality of nonlinear spectroscopic methods based on the combined use of visible and infrared pulses to correlate structural and electronic changes in photoexcited molecules.

  17. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser-Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations.

    PubMed

    Najbauer, Eszter E; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György

    2015-08-20

    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, six conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-life of (3.7 ± 0.5) × 10(3) s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser-induced conversions revealed that the excitation of the stretching overtone of both the side chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations.

  18. Coherent 2D-IR Spectroscopy of a Cyclic Decapeptide Antamanide. A Simulation Study of the Amide-I and A Bands

    PubMed Central

    Falvo, Cyril; Hayashi, Tomoyuki; Zhuang, Wei; Mukamel, Shaul

    2009-01-01

    The two dimensional infrared photon echo spectrum of Antamanide (-1Val-2Pro-3Pro-4Ala-5Phe-6Phe-7Pro-8Pro-9Phe-10Pro-) in chloroform is calculated using an explicit solvent MD simulation combined with a DFT map for the effective vibrational Hamiltonian. Evidence for a strong intramolecular hydrogen bonding network is found. Comparison with experimental absorption allows to identify the dominant conformation. Multidimensional spectroscopy reveals intramolecular couplings and gives information on its dynamics. A two color amide-I and amide-A cross peak is predicted and analyzed in term of local structure. PMID:18781709

  19. Determination of chemical changes in Isatis indigotica seeds carried after Chinese first spaceship with FTIR and 2D-IR correlation spectroscopy.

    PubMed

    Chen, Xiangdong; Keong, Choong Yew; Mei, Xiling; Lan, Jin

    2014-04-24

    Spaceflight represents a complex environmental condition. Space mutagenesis breeding has achieved and marked certain results over the years. This method was employed in our previous studies in order to obtain improved germplasm of Isatis indigotica. This study is to determine the chemical changes in I. indigotica seeds carried after Chinese first spaceship (Shenzhou I). Fourier transform infrared (FTIR), second derivative and two-dimensional infrared (2DIR) correlation spectroscopy were used in analysis. Not much differences between the two spectra were found except the peaks in the range of 1500-1200 cm(-)(1) which was about 7 cm(-)(1) different and indicated the absorption could be initialed from different bonds. SP4 showed different derivative compared with C4 in the second derivative spectra of 1200-800 cm(-)(1). The stronger signal of 2DIR in SP4 indicated the protein content of the seed was changed after spaceflight. It is concluded that spaceflight provided an extreme condition that caused changes of chemical properties in I. indigotica.

  20. Discrimination of five species of Fritillaria and its extracts by FT-IR and 2D-IR

    NASA Astrophysics Data System (ADS)

    Li, Dan; Jin, Zhexiong; Zhou, Qun; Chen, Jianbo; Lei, Yu; Sun, Suqin

    2010-06-01

    Bulbus Fritillariae (in Chinese named Beimu), referred to the bulbs of several Fritillaria species ( Liliaceae), is a commonly used anti-tussive and expectorant herb in traditional Chinese medicine (TCM) for more than 2000 years. The objective of this study is to discriminate five species of Beimu herbs and their total alkaloid extracts by Fourier transform infrared spectroscopy (FT-IR), second derivative infrared spectroscopy, and two-dimensional correlation infrared spectroscopy (2D-IR) under thermal perturbation. The structural information of the samples indicated that, Beimu and their extract residues contain a large amount of starch, since some characteristic absorption peaks of the starch, such as 1158, 1080, 1015 and 987 cm -1 can be observed. Further more, the characteristic absorption peaks of the sulfate which arouse at 1120 ± 5 and 618 cm -1 in the IR spectra of Beimu aqueous extracts can be find. This validated that people used the sulfur fumigation method in the processing. The macroscopical fingerprint characters of FT-IR and 2D-IR spectra can not only provide the information of main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. In conclusion, the multi-steps IR macro-fingerprint method is rapid, effective, visual and accurate for pharmaceutical research.

  1. Quantum coherence selective 2D Raman–2D electronic spectroscopy

    PubMed Central

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-01-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541

  2. Quantum coherence selective 2D Raman-2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-03-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  3. Quantum coherence selective 2D Raman-2D electronic spectroscopy.

    PubMed

    Spencer, Austin P; Hutson, William O; Harel, Elad

    2017-03-10

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  4. From Ultrafast Structure Determination to Steering Reactions: Mixed IR/Non-IR Multidimensional Vibrational Spectroscopies.

    PubMed

    van Wilderen, Luuk J G W; Bredenbeck, Jens

    2015-09-28

    Ultrafast multidimensional infrared spectroscopy is a powerful method for resolving features of molecular structure and dynamics that are difficult or impossible to address with linear spectroscopy. Augmenting the IR pulse sequences by resonant or nonresonant UV, Vis, or NIR pulses considerably extends the range of application and creates techniques with possibilities far beyond a pure multidimensional IR experiment. These include surface-specific 2D-IR spectroscopy with sub-monolayer sensitivity, ultrafast structure determination in non-equilibrium systems, triggered exchange spectroscopy to correlate reactant and product bands, exploring the interplay of electronic and nuclear degrees of freedom, investigation of interactions between Raman- and IR-active modes, imaging with chemical contrast, sub-ensemble-selective photochemistry, and even steering a reaction by selective IR excitation. We give an overview of useful mixed IR/non-IR pulse sequences, discuss their differences, and illustrate their application potential.

  5. Assessing 2D electrophoretic mobility spectroscopy (2D MOSY) for analytical applications.

    PubMed

    Fang, Yuan; Yushmanov, Pavel V; Furó, István

    2016-12-08

    Electrophoretic displacement of charged entity phase modulates the spectrum acquired in electrophoretic NMR experiments, and this modulation can be presented via 2D FT as 2D mobility spectroscopy (MOSY) spectra. We compare in various mixed solutions the chemical selectivity provided by 2D MOSY spectra with that provided by 2D diffusion-ordered spectroscopy (DOSY) spectra and demonstrate, under the conditions explored, a superior performance of the former method. 2D MOSY compares also favourably with closely related LC-NMR methods. The shape of 2D MOSY spectra in complex mixtures is strongly modulated by the pH of the sample, a feature that has potential for areas such as in drug discovery and metabolomics. Copyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. StartCopTextCopyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

  6. Cosolvent Effects on Solute-Solvent Hydrogen-Bond Dynamics: Ultrafast 2D IR Investigations.

    PubMed

    Kashid, Somnath M; Jin, Geun Young; Bagchi, Sayan; Kim, Yung Sam

    2015-12-10

    Cosolvents strongly influence the solute-solvent interactions of biomolecules in aqueous environments and have profound effects on the stability and activity of several proteins and enzymes. Experimental studies have previously reported on the hydrogen-bond dynamics of water molecules in the presence of a cosolvent, but understanding the effects from a solute's perspective could provide greater insight into protein stability. Because carbonyl groups are abundant in biomolecules, the current study used 2D IR spectroscopy and molecular dynamics simulations to compare the hydrogen-bond dynamics of the solute's carbonyl group in aqueous solution, with and without the presence of DMSO as a cosolvent. 2D IR spectroscopy was used to quantitatively estimate the time scales of the hydrogen-bond dynamics of the carbonyl group in neat water and 1:1 DMSO/water solution. The 2D IR results show spectral signatures of a chemical exchange process: The presence of the cosolvent was found to lower the hydrogen-bond exchange rate by a factor of 5. The measured exchange rates were 7.50 × 10(11) and 1.48 × 10(11) s(-1) in neat water and 1:1 DMSO/water, respectively. Molecular dynamics simulations predict a significantly shorter carbonyl hydrogen-bond lifetime in neat water than in 1:1 DMSO/water and provide molecular insights into the exchange mechanism. The binding of the cosolvent to the solute was found to be accompanied by the release of hydrogen-bonded water molecules to the bulk. The widely different hydrogen-bond lifetimes and exchange rates with and without DMSO indicate a significant change in the ultrafast hydrogen-bond dynamics in the presence of a cosolvent, which, in turn, might play an important role in the stability and activity of biomolecules.

  7. 2D IR spectra of cyanide in water investigated by molecular dynamics simulations

    USGS Publications Warehouse

    Lee, Myung Won; Carr, Joshua K.; Göllner, Michael; Hamm, Peter; Meuwly, Markus

    2013-01-01

    Using classical molecular dynamics simulations, the 2D infrared (IR) spectroscopy of CN− solvated in D2O is investigated. Depending on the force field parametrizations, most of which are based on multipolar interactions for the CN− molecule, the frequency-frequency correlation function and observables computed from it differ. Most notably, models based on multipoles for CN− and TIP3P for water yield quantitatively correct results when compared with experiments. Furthermore, the recent finding that T 1 times are sensitive to the van der Waals ranges on the CN− is confirmed in the present study. For the linear IR spectrum, the best model reproduces the full widths at half maximum almost quantitatively (13.0 cm−1 vs. 14.9 cm−1) if the rotational contribution to the linewidth is included. Without the rotational contribution, the lines are too narrow by about a factor of two, which agrees with Raman and IR experiments. The computed and experimental tilt angles (or nodal slopes) α as a function of the 2D IR waiting time compare favorably with the measured ones and the frequency fluctuation correlation function is invariably found to contain three time scales: a sub-ps, 1 ps, and one on the 10-ps time scale. These time scales are discussed in terms of the structural dynamics of the surrounding solvent and it is found that the longest time scale (≈10 ps) most likely corresponds to solvent exchange between the first and second solvation shell, in agreement with interpretations from nuclear magnetic resonance measurements.

  8. Isotope-Labeled Amyloids via Synthesis, Expression, and Chemical Ligation for Use in FTIR, 2D IR, and NMR Studies.

    PubMed

    Zhang, Tianqi O; Grechko, Maksim; Moran, Sean D; Zanni, Martin T

    2016-01-01

    This chapter provides protocols for isotope-labeling the human islet amyloid polypeptide (hIAPP or amylin) involved in type II diabetes and γD-crystallin involved in cataract formation. Because isotope labeling improves the structural resolution, these protocols are useful for experiments using Fourier transform infrared (FTIR), two-dimensional infrared (2D IR), and NMR spectroscopies. Our research group specializes in using 2D IR spectroscopy and isotope labeling. 2D IR spectroscopy provides structural information by measuring solvation from 2D diagonal lineshapes and vibrational couplings from cross peaks. Infrared spectroscopy can be used to study kinetics, membrane proteins, and aggregated proteins. Isotope labeling provides greater certainty in the spectral assignment, which enables new structural insights that are difficult to obtain with other methods. For amylin, we provide a protocol for (13)C/(18)O labeling backbone carbonyls at one or more desired amino acids in order to obtain residue-specific structural resolution. We also provide a protocol for expressing and purifying amylin from E. coli, which enables uniform (13)C or (13)C/(15)N labeling. Uniform labeling is useful for measuring the monomer infrared spectrum in an amyloid oligomer or fiber as well as amyloid protein bound to another polypeptide or protein, such as a chaperone or an inhibitor. In addition, our expression protocol results in 2-2.5 mg of amylin peptide per 1 L cell culture, which is a high enough yield to straightforwardly obtain the 2-10 mg needed for high resolution and solid-state NMR experiments. Finally, we provide a protocol to isotope-label either of the two domains of γD-crystallin using expressed protein ligation. Domain labeling makes it possible to resolve the structures of the two halves of the protein in FTIR and 2D IR spectra. With modifications, these strategies and protocols for isotope labeling can be applied to other amyloid polypeptides and proteins.

  9. Double resonance rotational spectroscopy of CH2D+

    NASA Astrophysics Data System (ADS)

    Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2016-09-01

    Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.

  10. Determining Transition State Geometries in Liquids Using 2D-IR

    SciTech Connect

    Harris, Charles; Cahoon, James F.; Sawyer, Karma R.; Schlegel, Jacob P.; Harris, Charles B.

    2007-12-11

    Many properties of chemical reactions are determined by the transition state connecting reactant and product, yet it is difficult to directly obtain any information about these short-lived structures in liquids. We show that two-dimensional infrared (2D-IR) spectroscopy can provide direct information about transition states by tracking the transformation of vibrational modes as a molecule crossed a transition state. We successfully monitored a simple chemical reaction, the fluxional rearrangement of Fe(CO)5, in which the exchange of axial and equatorial CO ligands causes an exchange of vibrational energy between the normal modes of the molecule. This energy transfer provides direct evidence regarding the time scale, transition state, and mechanism of the reaction.

  11. Study on molecular structure and hydration mechanism of Domyoji-ko starch by IR and NIR hetero 2D analysis

    NASA Astrophysics Data System (ADS)

    Katayama, Norihisa; Kondo, Miyuki; Miyazawa, Mitsuhiro

    2010-06-01

    The hydration structure of starch molecule in Domyoji-ko, which is made from gluey rice, was investigated by hetero 2D correlation analysis of IR and NIR spectroscopy. The feature near 1020 cm -1 in the IR spectra of Domyoji-ko is changed by rehydration process, indicating that the molecular structure of amylopectin in the starch has been varied by the hydration without heating. The intensity of a band at 4770 cm -1 in NIR spectra is decreasing with the increasing of either the heating time with water or rehydration time without heating. These results suggest that the hydration of Domyoji-ko has proceeded in similar mechanisms on these processes. The generalized hetero 2D IR-NIR correlation analysis for rehydration of Domyoji-ko has supported the assignments for NIR bands concerning the gelatinization of starch.

  12. Interferometric 2D Sum Frequency Generation Spectroscopy Reveals Structural Heterogeneity of Catalytic Monolayers on Transparent Materials.

    PubMed

    Vanselous, Heather; Stingel, Ashley M; Petersen, Poul B

    2017-02-16

    Molecular monolayers exhibit structural and dynamical properties that are different from their bulk counterparts due to their interaction with the substrate. Extracting these distinct properties is crucial for a better understanding of processes such as heterogeneous catalysis and interfacial charge transfer. Ultrafast nonlinear spectroscopic techniques such as 2D infrared (2D IR) spectroscopy are powerful tools for understanding molecular dynamics in complex bulk systems. Here, we build on technical advancements in 2D IR and heterodyne-detected sum frequency generation (SFG) spectroscopy to study a CO2 reduction catalyst on nanostructured TiO2 with interferometric 2D SFG spectroscopy. Our method combines phase-stable heterodyne detection employing an external local oscillator with a broad-band pump pulse pair to provide the first high spectral and temporal resolution 2D SFG spectra of a transparent material. We determine the overall molecular orientation of the catalyst and find that there is a static structural heterogeneity reflective of different local environments at the surface.

  13. Sensitivity of 2D IR Spectra to Peptide Helicity: A Concerted Experimental and Simulation Study of an Octapeptide

    PubMed Central

    Sengupta, Neelanjana; Maekawa, Hiroaki; Zhuang, Wei; Toniolo, Claudio; Mukamel, Shaul; Tobias, Douglas J.; Ge, Nien-Hui

    2010-01-01

    We have investigated the sensitivity of two-dimensional infrared (2D IR) spectroscopy to peptide helicity with an experimental and theoretical study of Z-[L-(αMe)Val]8-OtBu in CDCl3. 2D IR experiments were carried out in the amide-I region under the parallel and the double-crossed polarization configurations. In the latter polarization configuration, the 2D spectra taken with the rephasing and nonrephasing pulse sequences exhibit a doublet feature and a single peak, respectively. These cross-peak patterns are highly sensitive to the underlying peptide structure. Spectral calculations were performed on the basis of a vibrational exciton model, with the local mode frequencies and couplings calculated from snapshots of molecular dynamics (MD) simulation trajectories using six different models for the Hamiltonian. Conformationally variant segments of the MD trajectory, while reproducing the main features of the experimental spectra, are characterized by extraneous features, suggesting that the structural ensembles sampled by the simulation are too broad. By imposing periodic restraints on the peptide dihedral angles with the crystal structure as a reference, much better agreement between the measured and the calculated spectra was achieved. The result indicates that the structure of Z-[L-(αMe)Val]8-OtBu in CDCl3 is a fully developed 310-helix with only a small fraction of α-helical or nonhelical conformations in the middle of the peptide. Of the four different combinations of pulse sequences and polarization configurations, the nonrephasing double-crossed polarization 2D IR spectrum exhibits the highest sensitivity in detecting conformational variation. Of the six local mode frequency models tested, the electrostatic maps of Mukamel and Cho perform the best. Our results show that the high sensitivity of 2D IR spectroscopy can provide a useful basis for developing methods to improve the sampling accuracy of force fields and for characterizing the relative merits of

  14. Quantum process tomography by 2D fluorescence spectroscopy

    SciTech Connect

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  15. Rapid-scan coherent 2D fluorescence spectroscopy.

    PubMed

    Draeger, Simon; Roeding, Sebastian; Brixner, Tobias

    2017-02-20

    We developed pulse-shaper-assisted coherent two-dimensional (2D) electronic spectroscopy in liquids using fluorescence detection. A customized pulse shaper facilitates shot-to-shot modulation at 1 kHz and is employed for rapid scanning over all time delays. A full 2D spectrum with 15 × 15 pixels is obtained in approximately 6 s of measurement time (plus further averaging if needed). Coherent information is extracted from the incoherent fluorescence signal via 27-step phase cycling. We exemplify the technique on cresyl violet in ethanol and recover literature-known oscillations as a function of population time. Signal-to-noise behavior is analyzed as a function of the amount of averaging. Rapid scanning provides a 2D spectrum with a root-mean-square error of < 0.05 after 1 min of measurement time.

  16. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores

    SciTech Connect

    Burris, Paul C.; Laage, Damien; Thompson, Ward H.

    2016-05-20

    Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this Paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is used to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. Lastly, the simulated spectra indicate that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra.

  17. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores.

    PubMed

    Burris, Paul C; Laage, Damien; Thompson, Ward H

    2016-05-21

    Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is used to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. The simulated spectra indicates that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra.

  18. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores

    DOE PAGES

    Burris, Paul C.; Laage, Damien; Thompson, Ward H.

    2016-05-20

    Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this Paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is usedmore » to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. Lastly, the simulated spectra indicate that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra.« less

  19. Differentiation of five species of Danggui raw materials by FTIR combined with 2D-COS IR

    NASA Astrophysics Data System (ADS)

    Li, Jian-Rui; Sun, Su-Qin; Wang, Xiao-Xiao; Xu, Chang-Hua; Chen, Jian-Bo; Zhou, Qun; Lu, Guang-Hua

    2014-07-01

    Five herbs named as Chinese Danggui (CDG), Japanese Danggui (JDG), Korea Danggui (KDG), Lovage root (LR) and Angelica root (AR) are widely and confusedly used in eastern and western countries owing to their homonym. These herbs come from different plant species resulting in the variety of bioactive components and medical efficacy. A method combing tri-step IR macro-fingerprinting techniques with statistical pattern recognition was therefore employed discriminate the five herbs in order to assure their genuineness. A total of 26 samples were collected and identified by conventional Fourier transform infrared (FTIR) spectroscopy, second derivative infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2D-COS IR) spectroscopy. CDG and KDG were easily differentiated from others herbs by FTIR and SD-IR spectra. The characteristic peaks of CDG were located at 1068, 1051, 990, 909 and 867 cm-1, whilst KDG contained the peaks located at 1628, 1565, 1392, 1232 and 1136 cm-1. By 2D-COS IR spectra, the bands in the range of 950-1110 cm-1 could be a characteristic range to identify the five herbs. There were six auto-peaks located at 978, 991, 1028 (strongest), 1061, 1071 and 1097 cm-1 for CDG, six auto-peaks at 975, 991, 1026, 1053, 1070 (strongest) and 1096 cm-1 for KDG, five auto-peaks at 970, 1009, 1037, 1070 and 1096 (strongest) cm-1 for JDG, five auto-peaks at 973 (strongest), 1009, 1033, 1072 and 1099 cm-1 for LR, and five auto-peaks at 974 (strongest), 1010, 1033, 1072 and 1099 cm-1 for AR. Classification analysis of FTIR showed that these species located in different clusters. The results indicate the tri-step infrared macro-fingerprinting combines with principle component analysis (PCA) is suitable to rapidly and nondestructively differentiate these herbs.

  20. Visualizing Infrared (IR) Spectroscopy with Computer Animation

    NASA Technical Reports Server (NTRS)

    Abrams, Charles B.; Fine, Leonard W.

    1996-01-01

    IR Tutor, an interactive, animated infrared (IR) spectroscopy tutorial has been developed for Macintosh and IBM-compatible computers. Using unique color animation, complicated vibrational modes can be introduced to beginning students. Rules governing the appearance of IR absorption bands become obvious because the vibrational modes can be visualized. Each peak in the IR spectrum is highlighted, and the animation of the corresponding normal mode can be shown. Students can study each spectrum stepwise, or click on any individual peak to see its assignment. Important regions of each spectrum can be expanded and spectra can be overlaid for comparison. An introduction to the theory of IR spectroscopy is included, making the program a complete instructional package. Our own success in using this software for teaching and research in both academic and industrial environments will be described. IR Tutor consists of three sections: (1) The 'Introduction' is a review of basic principles of spectroscopy. (2) 'Theory' begins with the classical model of a simple diatomic molecule and is expanded to include larger molecules by introducing normal modes and group frequencies. (3) 'Interpretation' is the heart of the tutorial. Thirteen IR spectra are analyzed in detail, covering the most important functional groups. This section features color animation of each normal mode, full interactivity, overlay of related spectra, and expansion of important regions. This section can also be used as a reference.

  1. Optimizing sparse sampling for 2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Roeding, Sebastian; Klimovich, Nikita; Brixner, Tobias

    2017-02-01

    We present a new data acquisition concept using optimized non-uniform sampling and compressed sensing reconstruction in order to substantially decrease the acquisition times in action-based multidimensional electronic spectroscopy. For this we acquire a regularly sampled reference data set at a fixed population time and use a genetic algorithm to optimize a reduced non-uniform sampling pattern. We then apply the optimal sampling for data acquisition at all other population times. Furthermore, we show how to transform two-dimensional (2D) spectra into a joint 4D time-frequency von Neumann representation. This leads to increased sparsity compared to the Fourier domain and to improved reconstruction. We demonstrate this approach by recovering transient dynamics in the 2D spectrum of a cresyl violet sample using just 25% of the originally sampled data points.

  2. Preliminary results of determination of chemical changes on Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt.:Fr.)P. Karst. (higher Basidiomycetes) carried by Shenzhou I spaceship with FTIR and 2D-IR correlation spectroscopy.

    PubMed

    Choong, Yew Keong; Chen, Xiangdong; Jamal, Jamia Azdina; Wang, Qiuying; Lan, Jin

    2012-01-01

    Spaceflight represents a complex environmental condition. Space mutagenesis breeding has achieved marked results over the years. The objective of this study is to determine the chemical changes in medicinal mushroom Ganoderma lucidum cultivated after spaceflight in 1999. Fourier transform infrared (FTIR) and two-dimensional infrared (2DIR) correlation spectroscopy were used in analysis. The sample Sx and its control Cx showed the least dissimilarities in one-dimensional FTIR spectra, but absorbance of Sx is twice as high as Cx. Sx presented a clear peak at 1648 cm in 2nd derivative spectra, which could not be detected in the Cx. The 2DIR spectra showed the intensity of Sx in the range 1800-1400 cm-1 for protein is higher than the control. The sample Sx produced some carbohydrate peaks in the area of 889 cm-1 compared with the Cx. The spaceflight set up an extreme condition and caused changes of chemical properties in G. lucidum strain.

  3. Broadband THz Spectroscopy of 2D Nanoscale Materials

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Tripathi, Shivendra; Huang, Mengchen; Hsu, Jen-Feng; D'Urso, Brian; Lee, Hyungwoo; Eom, Chang-Beom; Irvin, Patrick; Levy, Jeremy

    Two-dimensional (2D) materials such as graphene and transition-metal dichalcogenides (TMDC) have attracted intense research interest in the past decade. Their unique electronic and optical properties offer the promise of novel optoelectronic applications in the terahertz regime. Recently, generation and detection of broadband terahertz (10 THz bandwidth) emission from 10-nm-scale LaAlO3/SrTiO3 nanostructures created by conductive atomic force microscope (c-AFM) lithography has been demonstrated . This unprecedented control of THz emission at 10 nm length scales creates a pathway toward hybrid THz functionality in 2D-material/LaAlO3/SrTiO3 heterostructures. Here we report initial efforts in THz spectroscopy of 2D nanoscale materials with resolution comparable to the dimensions of the nanowire (10 nm). Systems under investigation include graphene, single-layer molybdenum disulfide (MoS2), and tungsten diselenide (WSe2) nanoflakes. 1. Y. Ma, et al., Nano Lett. 13, 2884 (2013). We gratefully acknowledge financial support from the following agencies and grants: AFOSR (FA9550-12-1-0268 (JL, PRI), FA9550-12-1-0342 (CBE)), ONR (N00014-13-1-0806 (JL, CBE), N00014-15-1-2847 (JL)), NSF DMR-1124131 (JL, CBE) and DMR-1234096 (CBE).

  4. Peak width issues with generalised 2D correlation NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kirwan, Gemma M.; Adams, Michael J.

    2008-12-01

    Two-dimensional spectral correlation analysis is shown to be sensitive to fluctuations in spectral peak width as a function of perturbation variable. This is particularly significant where peak width fluctuations are of similar order of magnitude as the peak width values themselves and where changes in peak width are not random but are, for example, proportional to intensity. In such cases these trends appear in the asynchronous matrix as false peaks that serve to interfere with interpretation of the data. Complex, narrow band spectra such as provided by 1H NMR spectroscopy are demonstrated to be prone to such interference. 2D correlation analysis was applied to a series of NMR spectra corresponding to a commercial wine fermentation, in which the samples collected over a period of several days exhibit dramatic changes in concentration of minor and major components. The interference due to changing peak width effects is eliminated by synthesizing the recorded spectra using a constant peak width value prior to performing 2D correlation analysis.

  5. IR Spectroscopy of PAHs in Dense Clouds

    NASA Astrophysics Data System (ADS)

    Allamandola, Louis; Bernstein, Max; Mattioda, Andrew; Sandford, Scott

    2007-05-01

    Interstellar PAHs are likely to be a component of the ice mantles that form on dust grains in dense molecular clouds. PAHs frozen in grain mantles will produce IR absorption bands, not IR emission features. A couple of very weak absorption features in ground based spectra of a few objects embedded in dense clouds may be due to PAHs. Additionally spaceborne observations in the 5 to 8 ?m region, the region in which PAH spectroscopy is rich, reveal unidentified new bands and significant variation from object to object. It has not been possible to properly evaluate the contribution of PAH bands to these IR observations because the laboratory absorption spectra of PAHs condensed in realistic interstellar mixed-molecular ice analogs is lacking. This experimental data is necessary to interpret observations because, in ice mantles, the interaction of PAHs with the surrounding molecules effects PAH IR band positions, widths, profiles, and intrinsic strengths. Furthermore, PAHs are readily ionized in pure H2O ice, further altering the PAH spectrum. This laboratory proposal aims to remedy the situation by studying the IR spectroscopy of PAHs frozen in laboratory ice analogs that realistically reflect the composition of the interstellar ices observed in dense clouds. The purpose is to provide laboratory spectra which can be used to interpret IR observations. We will measure the spectra of these mixed molecular ices containing PAHs before and after ionization and determine the intrinsic band strengths of neutral and ionized PAHs in these ice analogs. This will enable a quantitative assessment of the role that PAHs can play in determining the 5-8 ?m spectrum of dense clouds and will directly address the following two fundamental questions associated with dense cloud spectroscopy and chemistry: 1- Can PAHs be detected in dense clouds? 2- Are PAH ions components of interstellar ice?

  6. Volatility-dependent 2D IR correlation analysis of traditional Chinese medicine ‘Red Flower Oil’ preparation from different manufacturers

    NASA Astrophysics Data System (ADS)

    Wu, Yan-Wen; Sun, Su-Qin; Zhou, Qun; Tao, Jia-Xun; Noda, Isao

    2008-06-01

    As a traditional Chinese medicine (TCM), 'Red Flower Oil' preparation is widely used as a household remedy in China and Southeast Asia. Usually, the preparation is a mixture of several plant essential oils with different volatile features, such as wintergreen oil, turpentine oil and clove oil. The proportions of these plant essential oils in 'Red Flower Oil' vary from different manufacturers. Thus, it is important to develop a simple and rapid evaluation method for quality assurance of the preparations. Fourier transform infrared (FT-IR) was applied and two-dimensional correlation infrared spectroscopy (2D IR) based on the volatile characteristic of samples was used to enhance the resolution of FT-IR spectra. 2D IR technique could, not only easily provide the composition and their volatile sequences in 'Red flower Oil' preparations, but also rapidly discriminate the subtle differences in products from different manufacturers. Therefore, FT-IR combined with volatility-dependent 2D IR correlation analysis provides a very fast and effective method for the quality control of essential oil mixtures in TCM.

  7. Thermal analysis of paracetamol polymorphs by FT-IR spectroscopies.

    PubMed

    Zimmermann, Boris; Baranović, Goran

    2011-01-25

    A simple IR spectroscopy based methodology in routine screening studies of polymorphism is proposed. Reflectance and transmittance temperature-dependent IR measurements (coupled with the 2D-IR data presentation and the baseline analysis) offer a positive identification of each polymorphic phase, therefore allowing simple and rapid monitoring of the measured system. Applicability and flexibility of the methodology was demonstrated on the measurement of the model polymorphic compound paracetamol under various conditions (including geometric constraints and elevated pressure). The thermal behavior of paracetamol strongly depends on slight variations in experimental conditions that can result in formation of various phases (three polymorphs and the amorphous form). The amorphous phase can crystallize during heating into either Form II or Form III within almost identical temperature range. Likewise, the crystal transformations II→I and III→II also can proceed within almost identical temperature range. Furthermore, the thermal behavior is even more diverse than that, and includes the crystallizations of Forms I, II and III from the melt, and the high temperature II→I transition. The variety of the temperatures of the transformations is a major obstacle for unambiguous identification of a particular phase by DSC and a major reason for the implementation of these IR methods.

  8. Tellurium halide IR fibers for remote spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xhang H.; Ma, Hong Li; Blanchetiere, Chantal; Le Foulgoc, Karine; Lucas, Jacques; Heuze, Jean; Colardelle, P.; Froissard, P.; Picque, D.; Corrieu, G.

    1994-07-01

    The new family of IR transmitting glasses, the TeX glasses, based on the association of tellurium and halide (Cl, Br, or I) are characterized by a wide optical window extending from 2 to 18 micrometers and a strong stability towards devitrification. Optical fibers drawn from these glasses exhibit low losses in the 7 - 10 micrometers range (less than 1 dB/m for single index fibers, 1 - 2 dB/m for fibers having a core-clad structure). The TeX glass fibers have been used in a remote analysis set-up which is mainly composed of a FTIR spectrometer coupled with a HgCdTe detector. This prototype system permits qualitative and quantitative analysis in a wide wavelength region lying from 3 to 13 micrometers , covering the fundamental absorption of more organic species. The evolution of a lactic and an alcoholic fermentation has been monitored by means of this set-up.

  9. IR Cards: Inquiry-Based Introduction to Infrared Spectroscopy

    ERIC Educational Resources Information Center

    Bennett, Jacqueline; Forster, Tabetha

    2010-01-01

    As infrared spectroscopy (IR) is frequently used in undergraduate organic chemistry courses, an inductive introduction to IR spectroscopy that uses index cards printed with spectra, structures, and chemical names is described. Groups of students are given an alphabetized deck of these "IR cards" to sort into functional groups. The students then…

  10. IR Spectroscopy of PANHs in Dense Clouds

    NASA Astrophysics Data System (ADS)

    Allamandola, Louis; Mattioda, Andrew; Sandford, Scott

    2008-03-01

    Interstellar PAHs are likely to be frozen into ice mantles on dust grains in dense clouds. These PAHs will produce IR absorption bands, not emission features. A couple of very weak absorption features in ground based spectra of a few objects in dense clouds may be due to PAHs. It is now thought that aromatic molecules in which N atoms are substituted for a few of the C atoms in a PAH's hexagonal skeletal network (PANHs) may well be as abundant and ubiquitous throughout the interstellar medium as PAHs. Spaceborne observations in the 5 to 8 um region, the region in which PAH spectroscopy is rich, reveal unidentified new bands and significant variation from object to object. It is not possible to analyze these observations because lab spectra of PANHs and PAHs condensed in realistic interstellar ice analogs are lacking. This lab data is necessary to interpret observations because, in ice mantles, the surrounding molecules affect PANH and PAH IR band positions, widths, profiles, and intrinsic strengths. Further, PAHs (and PANHs?) are readily ionized in pure H2O ice, further altering the spectrum. This proposal starts to address this situation by studying the IR spectra of PANHs frozen in laboratory ice analogs that reflect the composition of the interstellar ices observed in dense clouds. Thanks to Spitzer Cycle-4 support, we are now measuring the spectra of PAHs in interstellar ice analogs to provide laboratory spectra that can be used to interpret IR observations. Here we propose to extend this work to PANHs. We will measure the spectra of these interstellar ice analogs containing PANHs before and after ionization and determine the band strengths of neutral and ionized PANHs in these ices. This will enable a quantitative assessment of the role that PANHs can play in the 5-8 um spectrum of dense clouds and address the following two fundamental questions associated with dense cloud spectroscopy and chemistry: 1- Can PANHs be detected in dense clouds? 2- Are PANH ions

  11. Fourier transform two-dimensional electronic-vibrational spectroscopy using an octave-spanning mid-IR probe.

    PubMed

    Gaynor, James D; Courtney, Trevor L; Balasubramanian, Madhumitha; Khalil, Munira

    2016-06-15

    The development of coherent Fourier transform two-dimensional electronic-vibrational (2D EV) spectroscopy with acousto-optic pulse-shaper-generated near-UV pump pulses and an octave-spanning broadband mid-IR probe pulse is detailed. A 2D EV spectrum of a silicon wafer demonstrates the full experimental capability of this experiment, and a 2D EV spectrum of dissolved hexacyanoferrate establishes the viability of our 2D EV experiment for studying condensed phase molecular ensembles.

  12. Solution conformation of 2-aminopurine (2-AP) dinucleotide determined by ultraviolet 2D fluorescence spectroscopy (UV-2D FS).

    PubMed

    Widom, Julia R; Johnson, Neil P; von Hippel, Peter H; Marcus, Andrew H

    2013-02-01

    We have observed the conformation-dependent electronic coupling between the monomeric subunits of a dinucleotide of 2-aminopurine (2-AP), a fluorescent analog of the nucleic acid base adenine. This was accomplished by extending two-dimensional fluorescence spectroscopy (2D FS) - a fluorescence-detected variation of 2D electronic spectroscopy - to excite molecular transitions in the ultraviolet (UV) regime. A collinear sequence of four ultrafast laser pulses centered at 323 nm was used to resonantly excite the coupled transitions of 2-AP dinucleotide. The phases of the optical pulses were continuously swept at kilohertz frequencies, and the ensuing nonlinear fluorescence was phase-synchronously detected at 370 nm. Upon optimization of a point-dipole coupling model to our data, we found that in aqueous buffer the 2-AP dinucleotide adopts an average conformation in which the purine bases are non-helically stacked (center-to-center distance R12 = 3.5 Å ± 0.5 Å, twist angle θ12 = 5° ± 5°), which differs from the conformation of such adjacent bases in duplex DNA. These experiments establish UV-2D FS as a method for examining the local conformations of an adjacent pair of fluorescent nucleotides substituted into specific DNA or RNA constructs, which will serve as a powerful probe to interpret, in structural terms, biologically significant local conformational changes within the nucleic acid framework of protein-nucleic acid complexes.

  13. Human erythrocytes analyzed by generalized 2D Raman correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wesełucha-Birczyńska, Aleksandra; Kozicki, Mateusz; Czepiel, Jacek; Łabanowska, Maria; Nowak, Piotr; Kowalczyk, Grzegorz; Kurdziel, Magdalena; Birczyńska, Malwina; Biesiada, Grażyna; Mach, Tomasz; Garlicki, Aleksander

    2014-07-01

    The most numerous elements of the blood cells, erythrocytes, consist mainly of two components: homogeneous interior filled with hemoglobin and closure which is the cell membrane. To gain insight into their specific properties we studied the process of disintegration, considering these two constituents, and comparing the natural aging process of human healthy blood cells. MicroRaman spectra of hemoglobin within the single RBC were recorded using 514.5, and 785 nm laser lines. The generalized 2D correlation method was applied to analyze the collected spectra. The time passed from blood donation was regarded as an external perturbation. The time was no more than 40 days according to the current storage limit of blood banks, although, the average RBC life span is 120 days. An analysis of the prominent synchronous and asynchronous cross peaks allow us to get insight into the mechanism of hemoglobin decomposition. Appearing asynchronous cross-peaks point towards globin and heme separation from each other, while synchronous shows already broken globin into individual amino acids. Raman scattering analysis of hemoglobin "wrapping", i.e. healthy erythrocyte ghosts, allows for the following peculiarity of their behavior. The increasing power of the excitation laser induced alterations in the assemblage of membrane lipids. 2D correlation maps, obtained with increasing laser power recognized as an external perturbation, allows for the consideration of alterations in the erythrocyte membrane structure and composition, which occurs first in the proteins. Cross-peaks were observed indicating an asynchronous correlation between the senescent-cell antigen (SCA) and heme or proteins vibrations. The EPR spectra of the whole blood was analyzed regarding time as an external stimulus. The 2D correlation spectra points towards participation of the selected metal ion centers in the disintegration process.

  14. Coherent 2D Spectroscopy and Control of Molecular Complexes

    NASA Astrophysics Data System (ADS)

    Brixner, Tobias

    2007-03-01

    Coherent two-dimensional femtosecond spectroscopy is used to investigate electronic couplings within molecular complexes. Third-order optical response functions are measured in a non-collinear three-pulse photon echo geometry with heterodyne signal detection. In combination with suitable simulations this allows recovering the delocalization of excited-state wavefunctions, their coupling, and the corresponding energy transport pathways, with nanometer spatial and femtosecond temporal resolution. Examples of multichromophoric systems are the FMO and the LH3 light-harvesting complexes from green sulfur bacteria and purple bacteria, respectively, for which energy transfer processes have been determined. Additional challenges arise if one is interested in the spectroscopy of photochemical rather than photophysical processes in molecular complexes: The product yields attained by a single femtosecond laser pulse are often very small, and hence time-dependent signals are hard to measure with good signal-to-noise ratio. In the context of coherent control, this implies that bond-breaking photochemistry in liquids is still difficult despite the many successes of optimal control in gas-phase photodissociation. In a novel accumulative scheme, macroscopic amounts of stable photoproducts are generated in an optimal fashion and with high product detection sensitivity. In connection with time-resolved spectroscopy, the accumulative scheme furthermore provides kinetic information on the pathways of low-efficiency chemical reaction channels. This was applied to investigate the photoconversion of green fluorescent protein.

  15. ATR-IR spectroscopy as applied to nucleic acid films

    NASA Astrophysics Data System (ADS)

    Stepanyugin, Andriy V.; Samijlenko, Svitlana P.; Martynenko, Olena I.; Hovorun, Dmytro M.

    2005-07-01

    For the first time the ATR technique was applied to obtain IR absorption spectra of DNA and RNA dry films. There was worked out procedure of the nucleic acid removal from germanium plate, which obviously was a main obstacle to application of ATR-IR spectroscopy to nucleic acids. This technique of IR spectroscopy was applied to confirmation of RNA tropism of aurin tricarboxylic acid observed by molecular biological methods.

  16. Rapid identification of Chinese Sauce liquor from different fermentation positions with FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Changwen; Wei, Jiping; Zhou, Qun; Sun, Suqin

    2008-07-01

    FT-IR and two-dimensional correlation spectroscopy (2D-IR) technology were applied to discriminate Chinese Sauce liquor from different fermentation positions (top, middle and bottom of fermentation cellar) for the first time. The liquors at top, middle and bottom of fermentation cellar, possessed the characteristic peaks at 1731 cm -1, 1733 cm -1 and 1602 cm -1, respectively. In the 2D correlation infrared spectra, the differences were amplified. A strong auto-peak at 1725 cm -1 showed in the 2D spectra of the Top Liquor, which indicated that the liquor might contain some ester compounds. Different from Top Liquor, three auto-peaks at 1695, 1590 and 1480 cm -1 were identified in 2D spectra of Middle Liquor, which were the characteristic absorption of acid, lactate. In 2D spectra of Bottom Liquor, two auto-peaks at 1570 and 1485 cm -1 indicated that lactate was the major component. As a result, FT-IR and 2D-IR correlation spectra technology provided a rapid and effective method for the quality analysis of the Sauce liquor.

  17. C2D Spitzer-IRS spectra of disks around T Tauri stars. V. Spectral decomposition

    NASA Astrophysics Data System (ADS)

    Olofsson, J.; Augereau, J.-C.; van Dishoeck, E. F.; Merín, B.; Grosso, N.; Ménard, F.; Blake, G. A.; Monin, J.-L.

    2010-09-01

    Context. Dust particles evolve in size and lattice structure in protoplanetary disks, due to coagulation, fragmentation and crystallization, and are radially and vertically mixed in disks due to turbulent diffusion and wind/radiation pressure forces. Aims: This paper aims at determining the mineralogical composition and size distribution of the dust grains in planet forming regions of disks around a statistical sample of 58 T Tauri stars observed with Spitzer/IRS as part of the Cores to Disks (c2d) Legacy Program. Methods: We present a spectral decomposition model, named “B2C”, that reproduces the IRS spectra over the full spectral range (5-35 μm). The model assumes two dust populations: a warm component responsible for the 10 μm emission arising from the disk inner regions (≲1 AU) and a colder component responsible for the 20-30 μm emission, arising from more distant regions (≲10 AU). The fitting strategy relies on a random exploration of parameter space coupled with a Bayesian inference method. Results: We show evidence for a significant size distribution flattening in the atmospheres of disks compared to the typical MRN distribution, providing an explanation for the usual flat, boxy 10 μm feature profile generally observed in T Tauri star spectra. We reexamine the crystallinity paradox, observationally identified by Olofsson et al. (2009 , A&A, 507, 327), and we find a simultaneous enrichment of the crystallinity in both the warm and cold regions, while grain sizes in both components are uncorrelated. We show that flat disks tend to have larger grains than flared disk. Finally our modeling results do not show evidence for any correlations between the crystallinity and either the star spectral type, or the X-ray luminosity (for a subset of the sample). Conclusions: The size distribution flattening may suggests that grain coagulation is a slightly more effective process than fragmentation (helped by turbulent diffusion) in disk atmospheres, and that

  18. Distinction of three wood species by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Anmin; Zhou, Qun; Liu, Junliang; Fei, Benhua; Sun, Suqin

    2008-07-01

    Dalbergia odorifera T. Chen, Pterocarpus santalinus L.F. and Pterocarpus soyauxii are three kinds of the most valuable wood species, which are hard to distinguish. In this paper, differentiation of D. odorifera, P. santalinus and P. soyauxii was carried out by using Fourier transform infrared spectroscopy (FT-IR), second derivative IR spectra and two-dimensional correlation infrared (2D-IR) spectroscopy. The three woods have their characteristic peaks in conventional IR spectra. For example, D. odorifera has obvious absorption peaks at 1640 and 1612 cm -1; P. santalinus has only one peak at 1614 cm -1; and P. soyauxii has one peak at 1619 cm -1 and one shoulder peak at 1597 cm -1. To enhance spectrum resolution and amplify the differences between the IR spectra of different woods, the second derivative technology was adopted to examine the three wood samples. More differences could be observed in the region of 800-1700 cm -1. Then, the thermal perturbation is applied to distinguish different wood samples in an easier way, because of the spectral resolution being enhanced by the 2D correlation spectroscopy. In the region of 1300-1800 cm -1, D. odorifera has five auto-peaks at 1518, 1575, 1594, 1620 and 1667 cm -1; P. santalinus has four auto-peaks at 1469, 1518, 1627 and 1639 cm -1 and P. soyauxii has only two auto-peaks at 1627 and 1639 cm -1. It is proved that the 2D correlation IR spectroscopy can be a new method to distinguish D. odorifera, P. santalinus and P. soyauxii.

  19. Study on Angelica and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hong-xia; Sun, Su-qin; Lv, Guang-hua; Chan, Kelvin K. C.

    2006-05-01

    In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional correlation infrared spectroscopy (2D-IR) to study the main constituents in traditional Chinese medicine Angelica and its different extracts (extracted by petroleum ether, ethanol and water in turn). The findings indicated that FT-IR spectrum can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can not only identify the main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. This analytical method is highly rapid, effective, visual and accurate for pharmaceutical research.

  20. 2D FT-IR Study of Compositional and Structural Change in Developing Cotton Fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two-dimensional (2D) correlation analysis was applied to characterize the ATR spectral intensity fluctuations of immature and mature cotton fibers. Prior to 2D analysis, the spectra were leveled to zero at the peak intensity of 1800 cm-1 and then were normalized at the peak intensity of 660 cm-1 to ...

  1. A 2-D Array of Superconducting Magnesium Diboride (MgB2) Far-IR Thermal Detectors for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Lakew, Brook

    2009-01-01

    A 2-D array of superconducting Magnesium Diboride(MgB2) far IR thermal detectors has been fabricated. Such an array is intended to be at the focal plane of future generation thermal imaging far-IR instruments that will investigate the outer planets and their icy moons. Fabrication and processing of the pixels of the array as well as noise characterization of architectured MgB2 thin films will be presented. Challenges and solutions for improving the performance of the array will be discussed.

  2. Fast, accurate 2D-MR relaxation exchange spectroscopy (REXSY): Beyond compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Benjamini, Dan; Cheng, Jian; Basser, Peter J.

    2016-10-01

    Previously, we showed that compressive or compressed sensing (CS) can be used to reduce significantly the data required to obtain 2D-NMR relaxation and diffusion spectra when they are sparse or well localized. In some cases, an order of magnitude fewer uniformly sampled data were required to reconstruct 2D-MR spectra of comparable quality. Nonetheless, this acceleration may still not be sufficient to make 2D-MR spectroscopy practicable for many important applications, such as studying time-varying exchange processes in swelling gels or drying paints, in living tissue in response to various biological or biochemical challenges, and particularly for in vivo MRI applications. A recently introduced framework, marginal distributions constrained optimization (MADCO), tremendously accelerates such 2D acquisitions by using a priori obtained 1D marginal distribution as powerful constraints when 2D spectra are reconstructed. Here we exploit one important intrinsic property of the 2D-MR relaxation exchange spectra: the fact that the 1D marginal distributions of each 2D-MR relaxation exchange spectrum in both dimensions are equal and can be rapidly estimated from a single Carr-Purcell-Meiboom-Gill (CPMG) or inversion recovery prepared CPMG measurement. We extend the MADCO framework by further proposing to use the 1D marginal distributions to inform the subsequent 2D data-sampling scheme, concentrating measurements where spectral peaks are present and reducing them where they are not. In this way we achieve compression or acceleration that is an order of magnitude greater than that in our previous CS method while providing data in reconstructed 2D-MR spectral maps of comparable quality, demonstrated using several simulated and real 2D T2 - T2 experimental data. This method, which can be called "informed compressed sensing," is extendable to other 2D- and even ND-MR exchange spectroscopy.

  3. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  4. Preparation and characterization of CdSe colloidal quantum dots by pptical spectroscopy and 2D DOSY NMR

    NASA Astrophysics Data System (ADS)

    Geru, I.; Bordian, O.; Culeac, I.; Turta, C.; Verlan, V.; Barba, A.

    2015-02-01

    We present experimental results on preparation and characterization of colloidal CdSe quantum dots (QD) in organic solvent. CdSe QDs were synthesized following a modified literature method and have been characterized by UV-Vis absorption and photoluminescent (PL) spectroscopy, as well as by 2D Diffusion Ordered Spectroscopy (DOSY) NMR. The average CdSe particles size estimated from the UV-Vis absorption spectra was found to be in the range 2.28 - 2.92 nm, which correlates very well with the results obtained from NMR measurements. The PL spectrum for CdSe nanodots can be characterized by a narrow emission band with the peak maximum shifting from 508 to 566 nm in dependence of the CdSe nanoparticle size. The PL is dominated by a near-band-edge emission, accompanied by a weak broad band in the near IR, related to the surface shallow trap emission.

  5. Testing for memory-free spectroscopic coordinates by 3D IR exchange spectroscopy

    PubMed Central

    Borek, Joanna A.; Perakis, Fivos; Hamm, Peter

    2014-01-01

    Using 3D infrared (IR) exchange spectroscopy, the ultrafast hydrogen-bond forming and breaking (i.e., complexation) kinetics of phenol to benzene in a benzene/CCl4 mixture is investigated. By introducing a third time point at which the hydrogen-bonding state of phenol is measured (in comparison with 2D IR exchange spectroscopy), the spectroscopic method can serve as a critical test of whether the spectroscopic coordinate used to observe the exchange process is a memory-free, or Markovian, coordinate. For the system under investigation, the 3D IR results suggest that this is not the case. This conclusion is reconfirmed by accompanying molecular dynamics simulations, which furthermore reveal that the non-Markovian kinetics is caused by the heterogeneous structure of the mixed solvent. PMID:25002483

  6. Tumor diagnostics using fiber optical IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Winter, Harald; Bindig, Uwe; Waesche, Wolfgang; Liebold, K.; Roggan, Andre; Frege, P.; Gross, U. M.; Mueller, G.

    1999-04-01

    Aim of the project is the development of an in vivo endoscopic method to differentiate between cancerous from healthy tissue. The method is based on IR spectra in which each diseased state of the tissue has its own characteristic pattern as already shown in previous experiments. Two regions (1245 - 1195) cm-1 and (1045 - 995) cm-1 within the fingerprint (less than 1500 cm-1) region were selected for analysis. This paper will present the technical design of the laboratory set up and outcome of the development as well as the experiments. Two lead-salt diode lasers were used as excitation sources. The IR-radiation was transmitted via silverhalide fibers to the tissue to be investigated. On the detection side another IR fiber was used to transmit the signal to an MCT-detector (Mercury-Cadmium-Telluride). Measurement modes are Attenuated Total Reflectance (ATR) and diffuse Reflection/Remission. Spatial resolution was 100 X 100 micrometer2. The tissue used for these experiments was human colon carcinoma under humidity conditions. Samples were mapped using a stepper motor powered x/y/z-translation stage with a resolution of 1 micrometer. Results were compared with measurements carried out using a FTIR-interferometer and an FTIR-microscope in the region from 4000 - 900 cm-1. Soft- and Hardware control of the experiment is done using Labwindows/CVI (National Instruments, USA).

  7. Standoff imaging of chemicals using IR spectroscopy

    SciTech Connect

    Senesac, Larry R; Thundat, Thomas George; Morales Rodriguez, Marissa E

    2011-01-01

    Here we report on a standoff spectroscopic technique for identifying chemical residues on surfaces. A hand-held infrared camera was used in conjunction with a wavelength tunable mid-IR quantum cascade laser (QCL) to create hyperspectral image arrays of a target with an explosive residue on its surface. Spectral signatures of the explosive residue (RDX) were extracted from the hyperspectral image arrays and compared with a reference spectrum. Identification of RDX was achieved for residue concentrations of 20 g per cm2 at a distance of 1.5 m, and for 5 g per cm2 at a distance of 15 cm.

  8. Ir Spectroscopy and Nickel (II) Hexammines

    ERIC Educational Resources Information Center

    Reedijk, J.; And Others

    1975-01-01

    Describes an experiment, for the general chemistry laboratory, intended to introduce the student to infrared spectroscopy. After being introduced to the theory of molecular vibrations on an elementary level, each student receives a list of 5-7 nickel (II) ammines to be prepared, analyzed and characterized by infrared spectoscopy. (MLH)

  9. Differentiation of the root of Cultivated Ginseng, Mountain Cultivated Ginseng and Mountain Wild Ginseng using FT-IR and two-dimensional correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Li, Yong-Guo; Xu, Hong; Sun, Su-Qin; Wang, Zheng-Tao

    2008-07-01

    Ginseng is one of the most widely used herbal medicines. Based on the grown environments and the cultivate method, three kinds of ginseng, Cultivated Ginseng (CG), Mountain Cultivated Ginseng (MCG) and Mountain Wild Ginseng (MWG) are classified. A novel and scientific-oriented method was developed and established to discriminate and identify three kinds of ginseng using Fourier transform infrared spectroscopy (FT-IR), secondary derivative IR spectra and two-dimensional correlation infrared spectroscopy (2D-IR). The findings indicated that the relative contents of starch in the CG were more than that in MCG and MWG, while the relative contents of calcium oxalate and lipids in MWG were more than that in CG and MCG, and the relative contents of fatty acid in MCG were more than that in CG and MWG. The hierarchical cluster analysis was applied to data analysis of MWG, CG and MWG, which could be classified successfully. The results demonstrated the macroscopic IR fingerprint method, including FT-IR, secondary derivative IR and 2D-IR, can be applied to discriminate different ginsengs rapidly, effectively and non-destructively.

  10. Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials

    NASA Astrophysics Data System (ADS)

    Frisenda, Riccardo; Niu, Yue; Gant, Patricia; Molina-Mendoza, Aday J.; Schmidt, Robert; Bratschitsch, Rudolf; Liu, Jinxin; Fu, Lei; Dumcenco, Dumitru; Kis, Andras; Perez De Lara, David; Castellanos-Gomez, Andres

    2017-02-01

    Optical spectroscopy techniques such as differential reflectance and transmittance have proven to be very powerful techniques for studying 2D materials. However, a thorough description of the experimental setups needed to carry out these measurements is lacking in the literature. We describe a versatile optical microscope setup for carrying out differential reflectance and transmittance spectroscopy in 2D materials with a lateral resolution of ~1 µm in the visible and near-infrared part of the spectrum. We demonstrate the potential of the presented setup to determine the number of layers of 2D materials and characterize their fundamental optical properties, such as excitonic resonances. We illustrate its performance by studying mechanically exfoliated and chemical vapor-deposited transition metal dichalcogenide samples.

  11. Distinguishing and grading human gliomas by IR spectroscopy.

    PubMed

    Steiner, Gerald; Shaw, Anthony; Choo-Smith, Lin-P'ing; Abuid, Mario H; Schackert, Gabriele; Sobottka, Stephan; Steller, Wolfram; Salzer, Reiner; Mantsch, Henry H

    2003-01-01

    As a molecular probe of tissue composition, IR spectroscopy can potentially serve as an adjunct to histopathology in detecting and diagnosing disease. This study demonstrates that cancerous brain tissue (astrocytoma, glioblastoma) is distinguishable from control tissue on the basis of the IR spectra of thin tissue sections. It is further shown that the IR spectra of astrocytoma and glioblastoma affected tissue can be discriminated from one another, thus providing insight into the malignancy grade of the tissue. Both the spectra and the methods employed for their classification reveal characteristic differences in tissue composition. In particular, the nature and relative amounts of brain lipids, including both the gangliosides and phospholipids, appear to be altered in cancerous compared to control tissue. Using a genetic classification approach, classification success rates of up to 89% accuracy were obtained, depending on the number of regions included in the model. The diagnostic potential and practical applications of IR spectroscopy in brain tumor diagnosis are discussed.

  12. Combination of transient 2D-IR experiments and ab initio computations sheds light on the formation of the charge-transfer state in photoexcited carbonyl carotenoids.

    PubMed

    Di Donato, Mariangela; Segado Centellas, Mireia; Lapini, Andrea; Lima, Manuela; Avila, Francisco; Santoro, Fabrizio; Cappelli, Chiara; Righini, Roberto

    2014-08-14

    The excited state dynamics of carbonyl carotenoids is very complex because of the coupling of single- and doubly excited states and the possible involvement of intramolecular charge-transfer (ICT) states. In this contribution we employ ultrafast infrared spectroscopy and theoretical computations to investigate the relaxation dynamics of trans-8'-apo-β-carotenal occurring on the picosecond time scale, after excitation in the S2 state. In a (slightly) polar solvent like chloroform, one-dimensional (T1D-IR) and two-dimensional (T2D-IR) transient infrared spectroscopy reveal spectral components with characteristic frequencies and lifetimes that are not observed in nonpolar solvents (cyclohexane). Combining experimental evidence with an analysis of CASPT2//CASSCF ground and excited state minima and energy profiles, complemented with TDDFT calculations in gas phase and in solvent, we propose a photochemical decay mechanism for this system where only the bright single-excited 1Bu(+) and the dark double-excited 2Ag(-) states are involved. Specifically, the initially populated 1Bu(+) relaxes toward 2Ag(-) in 200 fs. In a nonpolar solvent 2Ag(-) decays to the ground state (GS) in 25 ps. In polar solvents, distortions along twisting modes of the chain promote a repopulation of the 1Bu(+) state which then quickly relaxes to the GS (18 ps in chloroform). The 1Bu(+) state has a high electric dipole and is the main contributor to the charge-transfer state involved in the dynamics in polar solvents. The 2Ag(-) → 1Bu(+) population transfer is evidenced by a cross peak on the T2D-IR map revealing that the motions along the same stretching of the conjugated chain on the 2Ag(-) and 1Bu(+) states are coupled.

  13. Non-native side chain IR probe in peptides: ab initio computation and 1D and 2D IR spectral simulation.

    PubMed

    Zheng, Michael L; Zheng, David C; Wang, Jianping

    2010-02-18

    Infrared frequency region of 2000-2600 cm(-1) (i.e., ca. 4-5 microm in wavelength) is a well-known open spectral window for peptides and proteins. In this work, six unnatural amino acids (unAAs) were designed to have characteristic absorption bands located in this region. Key chemical groups that served as side chains in these unAAs are C[triple bond]C, Phe-C[triple bond]C, N=C=O, N=C=S, P-H, and Si-H, respectively. Cysteine (a natural AA having S-H in side chain) was also studied for comparison. The anharmonic vibrational properties, including frequencies, anharmonicities, and intermode couplings, were examined using the density functional theory. Broadband linear infrared (IR) and two-dimensional (2D) IR spectra were simulated for each molecule. It is found that all of the side chain modes have significant overtone diagonal anharmonicities. All have moderate transition dipole strengths except the C[triple bond]C and S-H stretching modes, in comparison with the C=O stretching mode. In each case, a collection of 2D IR cross peaks were predicted to appear due to the presence of the side chain groups, whose strengths are closely related to the intramolecular anharmonic interactions, and to the transition dipole strengths of the coupled vibrators. Further, potential energy distribution analysis and high-order anharmonic constant computation showed that these IR probes possess a varying degree of mode localization. The results suggest that these IR probes are potentially useful in complementing the well-studied amide-I mode, to investigate structures and dynamics of peptides and proteins.

  14. Frequency Comb Assisted IR Measurements of H_3^+, H_2D^+ and D_2H^+ Transitions

    NASA Astrophysics Data System (ADS)

    Jusko, Pavol; Asvany, Oskar; Schlemmer, Stephan

    2016-06-01

    We present recent measurements of the fundamental transitions of H_3^+, H_2D^+ and D_2H^+ in a 4 K 22-pole trap by action spectroscopic techniques. Either Laser Induced Inhibition of Cluster Growth (He attachment at T≈4 K), endothermic reaction of H_3^+ with O_2, or deuterium exchange has been used as measurement scheme. We used a 3 μm optical parametric oscillator coupled to a frequency comb in order to achieve accuracy generally below 1 MHz. Five transitions of H_3^+, eleven of H_2D^+ and ten of D_2H^+ were recorder in our spectral range. We compare our H_3^+ results with two previous frequency comb assisted works. Moreover, accurate determination of the frequency allows us to predict pure rotational transitions for H_2D^+ and D_2H^+ in the THz range. P. Jusko, C. Konietzko, S. Schlemmer, O. Asvany, J. Mol. Spec. 319 (2016) 55 O. Asvany, S. Brünken, L. Kluge, S. Schlemmer, Appl. Phys. B 114 (2014) 203 O. Asvany, J. Krieg, S. Schlemmer, Rev. Sci. Instr. 83 (2012) 093110 J.N. Hodges, A.J. Perry, P.A. Jenkins, B.M. Siller, B.J. McCall, J. Chem. Phys. 139 (2013) 164201 H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, J.-T. Shy, Phys. Rev. Lett. 109 (2012) 263002

  15. ISO FAR-IR Spectroscopy of IR-Bright Galaxies and Ulirgs

    DTIC Science & Technology

    1999-01-01

    ISO FAR-IR SPECTROSCOPY OF IR-BRIGHT GALAXIES AND ULIRGS J. FISCHER AND M.L. LUHMAN Naval Research Laboratory, Washington, DC, USA S. SATYAPAL AND...flux ratios than in normal and less luminous IR-bright galaxies by an order of magnitude ( Luhman et al., 1998; 1999). This has been interpreted as an...line ratio is unexpectedly low (Fischer et al., 1997; Luhman et al., 1998). Implicit in this interpretation is the assumption that the [O I]145µm upper

  16. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    PubMed

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-03-19

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.

  17. Concepts for compact mid-IR spectroscopy in photochemistry

    NASA Astrophysics Data System (ADS)

    Cu-Nguyen, Phuong-Ha; Wang, Ziyu; Zappe, Hans

    2016-11-01

    Mid-infrared (IR) spectroscopy, typically 3 to 5 µm, is often the technology of choice to monitor the interaction between and concentration of molecules during photochemical reactions. However, classical mid-IR spectrometers are bulky, complex and expensive, making them unsuitable for use in the miniaturized microreactors increasingly being employed for chemical synthesis. We present here the concept for an ultra-miniaturized mid-IR spectrometer directly integrated onto a chemical microreactor to monitor the chemical reaction. The spectrometer is based on micro-machined Fabry-Perot resonator filters realized using pairs of Bragg mirrors to achieve a high spectral resolution. The fabrication of the optical filters is outlined and the measurement of transmittance spectra in the mid-IR range show a good agreement with theory and are thus promising candidates for a fully integrated system.

  18. Critical Slowing of Density Fluctuations Approaching the Isotropic-Nematic Transition in Liquid Crystals: 2D IR Measurements and Mode Coupling Theory.

    PubMed

    Sokolowsky, Kathleen P; Bailey, Heather E; Hoffman, David J; Andersen, Hans C; Fayer, Michael D

    2016-07-21

    Two-dimensional infrared (2D IR) data are presented for a vibrational probe in three nematogens: 4-cyano-4'-pentylbiphenyl, 4-cyano-4'-octylbiphenyl, and 4-(trans-4-amylcyclohexyl)-benzonitrile. The spectral diffusion time constants in all three liquids in the isotropic phase are proportional to [T*/(T - T*)](1/2), where T* is 0.5-1 K below the isotropic-nematic phase transition temperature (TNI). Rescaling to a reduced temperature shows that the decays of the frequency-frequency correlation function (FFCF) for all three nematogens fall on the same curve, suggesting a universal dynamic behavior of nematogens above TNI. Spectral diffusion is complete before significant orientational relaxation in the liquid, as measured by optically heterodyne detected-optical Kerr effect (OHD-OKE) spectroscopy, and before any significant orientational randomization of the probe measured by polarization selective IR pump-probe experiments. To interpret the OHD-OKE and FFCF data, we constructed a mode coupling theory (MCT) schematic model for the relationships among three correlation functions: ϕ1, a correlator for large wave vector density fluctuations; ϕ2, the orientational correlation function whose time derivative is the observable in the OHD-OKE experiment; and ϕ3, the FFCF for the 2D IR experiment. The equations for ϕ1 and ϕ2 match those in the previous MCT schematic model for nematogens, and ϕ3 is coupled to the first two correlators in a straightforward manner. Resulting models fit the data very well. Across liquid crystals, the temperature dependences of the coupling constants show consistent, nonmonotonic behavior. A remarkable change in coupling occurs at ∼5 K above TNI, precisely where the rate of spectral diffusion in 5CB was observed to deviate from that of a similar nonmesogenic liquid.

  19. NMR Analysis of Unknowns: An Introduction to 2D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Alonso, David E.; Warren, Steven E.

    2005-01-01

    A study combined 1D (one-dimensional) and 2D (two-dimensional) NMR spectroscopy to solve structural organic problems of three unknowns, which include 2-, 3-, and 4-heptanone. Results showed [to the first power]H NMR and [to the thirteenth power]C NMR signal assignments for 2- and 3-heptanone were more challenging than for 4-heptanone owing to the…

  20. Dynamics of a Room Temperature Ionic Liquid in Supported Ionic Liquid Membranes vs the Bulk Liquid: 2D IR and Polarized IR Pump-Probe Experiments.

    PubMed

    Shin, Jae Yoon; Yamada, Steven A; Fayer, Michael D

    2017-01-11

    Supported ionic liquid membranes (SILMs) are membranes that have ionic liquids impregnated in their pores. SILMs have been proposed for advanced carbon capture materials. Two-dimensional infrared (2D IR) and polarization selective IR pump-probe (PSPP) techniques were used to investigate the dynamics of reorientation and spectral diffusion of the linear triatomic anion, SeCN(-), in poly(ether sulfone) (PES) membranes and room-temperature ionic liquid (RTIL), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimNTf2). The dynamics in the bulk EmimNTf2 were compared to its dynamics in the SILM samples. Two PES membranes, PES200 and PES30, have pores with average sizes, ∼300 nm and ∼100 nm, respectively. Despite the relatively large pore sizes, the measurements reveal that the reorientation of SeCN(-) and the RTIL structural fluctuations are substantially slower in the SILMs than in the bulk liquid. The complete orientational randomization, slows from 136 ps in the bulk to 513 ps in the PES30. 2D IR measurements yield three time scales for structural spectral diffusion (SSD), that is, the time evolution of the liquid structure. The slowest decay constant increases from 140 ps in the bulk to 504 ps in the PES200 and increases further to 1660 ps in the PES30. The results suggest that changes at the interface propagate out and influence the RTIL structural dynamics even more than a hundred nanometers from the polymer surface. The differences between the IL dynamics in the bulk and in the membranes suggest that studies of bulk RTIL properties may be poor guides to their use in SILMs in carbon capture applications.

  1. 2D fluorescence spectroscopy for monitoring ion-exchange membrane based technologies - Reverse electrodialysis (RED).

    PubMed

    Pawlowski, Sylwin; Galinha, Claudia F; Crespo, João G; Velizarov, Svetlozar

    2016-01-01

    Reverse electrodialysis (RED) is one of the emerging, membrane-based technologies for harvesting salinity gradient energy. In RED process, fouling is an undesirable operation constraint since it leads to a decrease of the obtainable net power density due to increasing stack electric resistance and pressure drop. Therefore, early fouling detection is one of the main challenges for successful RED technology implementation. In the present study, two-dimensional (2D) fluorescence spectroscopy was used, for the first time, as a tool for fouling monitoring in RED. Fluorescence excitation-emission matrices (EEMs) of ion-exchange membrane surfaces and of natural aqueous streams were acquired during one month of a RED stack operation. Fouling evolvement on the ion-exchange membrane surfaces was successfully followed by 2D fluorescence spectroscopy and quantified using principal components analysis (PCA). Additionally, the efficiency of cleaning strategy was assessed by measuring the membrane fluorescence emission intensity before and after cleaning. The anion-exchange membrane (AEM) surface in contact with river water showed to be significantly affected due to fouling by humic compounds, which were found to cross through the membrane from the lower salinity (river water) to higher salinity (sea water) stream. The results obtained show that the combined approach of using 2D fluorescence spectroscopy and PCA has a high potential for studying fouling development and membrane cleaning efficiency in ion exchange membrane processes.

  2. Beyond the Born-Oppenheimer approximation: High-resolution overtone spectroscopy of H2D+ and D2H+

    NASA Astrophysics Data System (ADS)

    Fárník, Michal; Davis, Scott; Kostin, Maxim A.; Polyansky, Oleg L.; Tennyson, Jonathan; Nesbitt, David J.

    2002-04-01

    Transitions to overtone 2ν2 and 2ν3, and combination ν2+ν3 vibrations in jet-cooled H2D+ and D2H+ molecular ions have been measured for the first time by high-resolution IR spectroscopy. The source of these ions is a pulsed slit jet supersonic discharge, which allows for efficient generation, rotational cooling, and high frequency (100 KHz) concentration modulation for detection via sensitive lock-in detection methods. Isotopic substitution and high-resolution overtone spectroscopy in this fundamental molecular ion permit a systematic, first principles investigation of Born-Oppenheimer "breakdown" effects due to large amplitude vibrational motion as well as provide rigorous tests of approximate theoretical methods beyond the Born-Oppenheimer level. The observed overtone transitions are in remarkably good agreement (<0.1 cm-1) with non-Born-Oppenheimer ab initio theoretical predictions, with small but systematic deviations for 2ν2, ν2+ν3, and 2ν3 excited states indicating directions for further improvement in such treatments. Spectroscopic assignment and analysis of the isotopomeric transitions reveals strong Coriolis mixing between near resonant 2ν3 and ν2+ν3 vibrations in D2H+. Population-independent line intensity ratios for transitions from common lower states indicate excellent overall agreement with theoretical predictions for D2H+, but with statistically significant discrepancies noted for H2D+. Finally, H2D+ versus D2H+ isotopomer populations are analyzed as a function of D2/H2 mixing ratio and can be well described by steady state kinetics in the slit discharge expansion.

  3. Single-scan 2D NMR: An Emerging Tool in Analytical Spectroscopy

    PubMed Central

    Giraudeau, Patrick; Frydman, Lucio

    2016-01-01

    Two-dimensional Nuclear Magnetic Resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing an increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago a so-called “ultrafast” (UF) approach was proposed, capable to deliver arbitrary 2D NMR spectra involving any kind of homo- or hetero-nuclear correlations, in a single scan. During the intervening years the performance of this sub-second 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool witnessing an expanded scope of applications. The present reviews summarizes the principles and the main developments which have contributed to the success of this approach, and focuses on applications which have been recently demonstrated in various areas of analytical chemistry –from the real time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  4. IR Spectroscopy and Photo-Chemistry of Extraterrestrial Ices

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Mastrapa, Rachel; Elsila, Jamie; Sandford, Scott

    2005-01-01

    Dense molecular clouds from which planetary systems form and the outer Solar System are both cold environments dominated by ices. Infrared (IR) spectroscopy is used to probe these ices, but the IR absorptions of molecules depend on the conditions. As a result appropriate lab data is needed to correctly fit spectra of extraterrestrial ices. Such fits have shown that most of these ices are composed primarily of H2O, but also contain 1-10 percent of other simple molecules such as CO2, CO, CH4, & NH3;. We shall present near IR spectra of ice mixtures of relevance to icy outer Solar System bodies and show that they still hold surprises, such as the Cheshire cat-like CO2 (2v3) overtone near 2.134 micrometers (4685 cm-1) that is absent from spectra of pure CO2 but present in H2O-CO2 mixtures.

  5. Fourier Transform Infrared Spectroscopy: Part II. Advantages of FT-IR.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1987-01-01

    This is Part II in a series on Fourier transform infrared spectroscopy (FT-IR). Described are various advantages of FT-IR spectroscopy including energy advantages, wavenumber accuracy, constant resolution, polarization effects, and stepping at grating changes. (RH)

  6. The separation of overlapping transitions in β-carotene with broadband 2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Calhoun, Tessa R.; Davis, Jeffrey A.; Graham, Matthew W.; Fleming, Graham R.

    2012-01-01

    Broadband 2D electronic spectroscopy is applied to β-carotene, revealing new insight into the excited state dynamics of carotenoids by exploring the full energetic range encompassing the S0→S2 and S1→S1n transitions at 77 K. Multiple signals are observed in the regime associated with the proposed S∗ state and isolated through separate analysis of rephasing and nonrephasing contributions. Peaks in rephasing pathways display dynamic lineshapes characteristic of coupling to high energy vibrational modes, and simulation with a simple model supports their assignment to impulsive stimulated Raman scattering. A signal persisting beyond 10 ps in the nonrephasing spectra is still under investigation.

  7. c2d Spitzer IRS spectra of embedded low-mass young stars: gas-phase emission lines

    NASA Astrophysics Data System (ADS)

    Lahuis, F.; van Dishoeck, E. F.; Jørgensen, J. K.; Blake, G. A.; Evans, N. J.

    2010-09-01

    Context. A survey of mid-infrared gas-phase emission lines of H2, H2O and various atoms toward a sample of 43 embedded low-mass young stars in nearby star-forming regions is presented. The sources are selected from the Spitzer “Cores to Disks” (c2d) legacy program. Aims: The environment of embedded protostars is complex both in its physical structure (envelopes, outflows, jets, protostellar disks) and the physical processes (accretion, irradiation by UV and/or X-rays, excitation through slow and fast shocks) which take place. The mid-IR spectral range hosts a suite of diagnostic lines which can distinguish them. A key point is to spatially resolve the emission in the Spitzer-IRS spectra to separate extended PDR and shock emission from compact source emission associated with the circumstellar disk and jets. Methods: An optimal extraction method is used to separate both spatially unresolved (compact, up to a few hundred AU) and spatially resolved (extended, thousand AU or more) emission from the IRS spectra. The results are compared with the c2d disk sample and literature PDR and shock models to address the physical nature of the sources. Results: Both compact and extended emission features are observed. Warm (T_ex few hundred K) H2, observed through the pure rotational H2 S(0), S(1) and S(2) lines, and [S i] 25 μm emission is observed primarily in the extended component. [S i] is observed uniquely toward truly embedded sources and not toward disks. On the other hand hot (T_ex ⪆ 700 K) H2, observed primarily through the S(4) line, and [Ne ii] emission is seen mostly in the spatially unresolved component. [Fe ii] and [Si ii] lines are observed in both spatial components. Hot H2O emission is found in the spatially unresolved component of some sources. Conclusions: The observed emission on ≥1000 AU scales is characteristic of PDR emission and likely originates in the outflow cavities in the remnant envelope created by the stellar wind and jets from the embedded

  8. The two-dimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its three-dimensional structure

    PubMed Central

    Hamm, Peter; Lim, Manho; DeGrado, William F.; Hochstrasser, Robin M.

    1999-01-01

    A form of two-dimensional (2D) vibrational spectroscopy, which uses two ultrafast IR laser pulses, is used to examine the structure of a cyclic penta-peptide in solution. Spectrally resolved cross peaks occur in the off-diagonal region of the 2D IR spectrum of the amide I region, analogous to those in 2D NMR spectroscopy. These cross peaks measure the coupling between the different amide groups in the structure. Their intensities and polarizations relate directly to the three-dimensional structure of the peptide. With the help of a model coupling Hamiltonian, supplemented by density functional calculations, the spectra of this penta-peptide can be regenerated from the known solution phase structure. This 2D-IR measurement, with an intrinsic time resolution of less than 1 ps, could be used in all time regimes of interest in biology. PMID:10051590

  9. Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates

    PubMed Central

    Swisher, Christine Leon; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder

    2015-01-01

    In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate–lactate, pyruvate–alanine, and pyruvate–hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines. PMID:26117655

  10. Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates

    NASA Astrophysics Data System (ADS)

    Leon Swisher, Christine; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder

    2015-08-01

    In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate-lactate, pyruvate-alanine, and pyruvate-hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines.

  11. Characterization of Secondary Amide Peptide Bonds Isomerization: Thermodynamics and Kinetics from 2D NMR Spectroscopy

    PubMed Central

    Zhang, Jin; Germann, Markus W.

    2011-01-01

    Secondary amide cis peptide bonds are of even lower abundance than the cis tertiary amide bonds of prolines, yet they are of biochemical importance. Using 2D NMR exchange spectroscopy we investigated the formation of cis peptide bonds in several oligopeptides: Ac-G-G-G-NH2, Ac-I-G-G-NH2, Ac-I-G-G-N-NH2 and its cyclic form: I-G-G-N in DMSO. From the NMR studies, using the amide protons as monitors, an occurrenc.e of 0.13% – 0.23% of cis bonds was obtained at 296 K. The rate constants for the trans to cis conversion determined from 2D EXSY spectroscopy were 4–9·10−3 s−1. Multiple minor conformations were detected for most peptide bonds. From their thermodynamic and kinetic properties the cis isomers are distinguished from minor trans isomers that appear because of an adjacent cis peptide bond. Solvent and sequence effects were investigated utilizing N-methylacetamide and various peptides, which revealed an unique enthalpy profile in DMSO. The cyclization of a tetrapeptide resulted in greatly lowered cis populations and slower isomerization rate compared to its linear counterpart, further highlighting the impact of structural constraints. PMID:21538331

  12. Identifying residual structure in intrinsically disordered systems: a 2D IR spectroscopic study of the GVGXPGVG peptide.

    PubMed

    Lessing, Joshua; Roy, Santanu; Reppert, Mike; Baer, Marcel; Marx, Dominik; Jansen, Thomas La Cour; Knoester, Jasper; Tokmakoff, Andrei

    2012-03-21

    The peptide amide-I vibration of a proline turn encodes information on the turn structure. In this study, FTIR, two-dimensional IR spectroscopy and molecular dynamics simulations were employed to characterize the varying turn conformations that exist in the GVGX(L)PGVG family of disordered peptides. This analysis revealed that changing the size of the side chain at the X amino acid site from Gly to Ala to Val substantially alters the conformation of the peptide. To quantify this effect, proline peak shifts and intensity changes were compared to a structure-based spectroscopic model. These simulated spectra were used to assign the population of type-II β turns, bulged turns, and irregular β turns for each peptide. Of particular interest was the Val variant commonly found in the protein elastin, which contained a 25% population of irregular β turns containing two peptide hydrogen bonds to the proline C═O.

  13. Boria modified alumina probed by methanol dehydration and IR spectroscopy

    NASA Astrophysics Data System (ADS)

    de Farias, Andréa M. Duarte; Esteves, Angela M. Lavogade; Ziarelli, Fabio; Caldarelli, Stefano; Fraga, Marco A.; Appel, Lucia G.

    2004-04-01

    Al 2O 3·B 2O 3 catalysts were synthesized by co-precipitation and impregnation methods applying two calcination temperatures and boria loadings. Catalysts were analyzed by IR spectroscopy of pyridine and CO 2 adsorption and were evaluated in methanol dehydration. Results showed that boron addition to alumina causes a decrease of the number of basic and Lewis acid sites on alumina surface. It could also be observed an enhancement in acid strength of Lewis sites for impregnated samples. The results of methanol dehydration show that strong Brönsted sites are not formed on borate alumina.

  14. IRIS : A reaction spectroscopy facility with solid H2 /D2 target

    NASA Astrophysics Data System (ADS)

    Holl, Matthias; Kanungo, Ritu; Alcorta, Martin; Andreoiu, Corina; Bidaman, Harris; Burbadge, Christina; Burke, Devin; Chen, Alan; Davids, Barry; Diaz Varela, Alejandra; Garrett, Paul; Hackman, Greg; Ishimoto, Shigeru; Kaur, Satbir; Keefe, Matthew; Kruecken, Reiner; Mansour, Iymad; Randhawa, Jaspreet; Sanetullaev, Alisher; Shotter, Alan; Smith, Jenna; Tanaka, Junki; Tanihata, Isao; Turko, Joseph; Workman, Orry

    2016-09-01

    The charged particle reaction spectroscopy station IRIS at TRIUMF is designed to allow studies of inelastic scattering and transfer reactions for low intensity beams. To do so, a novel solid H2 /D2 target is used in combination with a low pressure ionization chamber for the identification of incoming beam particles. The light ejectiles are measured using a ΔE - E telescope consisting of an annular silicon detector followed by CsI(Tl) array. Another ΔE - E telescope, consisting of two segmented silicon detectors, is used to identify the heavy outgoing particles. An overview of the faciltity will be given and examples from recent experiments that illustrate that facility's capability for reaction studies of exotic nuclei will be shown. Support from Canada Foundation for Innovation, Nova Scotia Research and Innovation Trust and NSERC.

  15. Fast acquisition of high-resolution 2D NMR spectroscopy in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Lin, Liangjie; Wei, Zhiliang; Zeng, Qing; Yang, Jian; Lin, Yanqin; Chen, Zhong

    2016-05-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy plays an important role in chemical and biological analyses. In this study, we combine the J-coupling coherence transfer module with the echo-train acquisition technique for fast acquisition of high-resolution 2D NMR spectra in magnetic fields with unknown spatial variations. The proposed method shows satisfactory performance on a 5 mM ethyl 3-bromopropionate sample, under a 5-kHz (10 ppm at 11.7 T) B0 inhomogeneous field, as well as under varying degrees of pulse-flip-angle deviations. Moreover, a simulative ex situ NMR measurement is also conducted to show the effectiveness of the proposed pulse sequence.

  16. Rotational Spectroscopy of Vibrationally Excited N_2H^+ and N_2D^+ up to 2 Thz

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Pearson, John; Drouin, Brian; Crawford, Timothy J.; Daly, Adam M.; Elliott, Ben; Amano, Takayoshi

    2015-06-01

    Terahertz absorption spectroscopy was employed to extend the measurements on the pure rotational transitions of N_2H^+, N_2D^+ and their 15N-containing isotopologues in the ground state and first excited vibrational states for the three fundamental vibrational modes. In total 88 new pure rotational transitions were observed in the range of 0.7--2.0~THz. The observed transition frequencies were fit to experimental accuracy, and the improved molecular parameters were obtained. The new measurements and predictions will support the analysis of high-resolution astronomical observations made with facilities such as SOFIA and ALMA where laboratory rest frequencies with uncertainties of 1 MHz or smaller are required for proper analysis of velocity resolved astrophysical components.

  17. Temperature-dependent conformations of a membrane supported zinc porphyrin tweezer by 2D fluorescence spectroscopy.

    PubMed

    Widom, Julia R; Lee, Wonbae; Perdomo-Ortiz, Alejandro; Rappoport, Dmitrij; Molinski, Tadeusz F; Aspuru-Guzik, Alán; Marcus, Andrew H

    2013-07-25

    We studied the equilibrium conformations of a zinc porphyrin tweezer composed of two carboxylphenyl-functionalized zinc tetraphenyl porphyrin subunits connected by a 1,4-butyndiol spacer, which was suspended inside the amphiphilic regions of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) liposomes. By combining phase-modulation two-dimensional fluorescence spectroscopy (2D FS) with linear absorbance and fluorimetry, we determined that the zinc porphyrin tweezer adopts a mixture of folded and extended conformations in the membrane. By fitting an exciton-coupling model to a series of data sets recorded over a range of temperatures (17-85 °C) and at different laser center wavelengths, we determined that the folded form of the tweezer is stabilized by a favorable change in the entropy of the local membrane environment. Our results provide insights toward understanding the balance of thermodynamic factors that govern molecular assembly in membranes.

  18. A 2D correlation Raman spectroscopy analysis of a human cataractous lens

    NASA Astrophysics Data System (ADS)

    Sacharz, Julia; Wesełucha-Birczyńska, Aleksandra; Paluszkiewicz, Czesława; Chaniecki, Piotr; Błażewicz, Marta

    2016-11-01

    This work is a continuation of our study of a cataractous human eye lens removed after phacoemulsification surgery. There are clear differences in the lens colors that allowed for distinguishing two opaque phases in the obtained biological material: the white- and yellow-phase. The Raman spectroscopy and 2D correlation spectroscopy method were used to trace a pathologically altered human cataract lens at a molecular level. Although the Raman spectra of these two phases are relatively similar, taking advantage of 2D correlation, and considering time as an external perturbation, the synchronous and asynchronous spectra were obtained showing completely different patterns. Prominent synchronous auto-peaks appear at 3340, 2920, 1736, 1665 and 1083 cm-1 for the white-, and at 2929 and 1670 cm-1 for the yellow phase. The white phase is characterized by intensive asynchronous peaks at -(2936, 3360), -(1650, 1674) and +(1620,1678). The modifications in the water contained in the white phase structure are ahead of the changes in the protein (CH3-groups), furthermore changes in β-conformation are asynchronous with respect to the α-structure. The yellow phase demonstrates asynchronous peaks: +(2857, 2928), +(1645,1673), +(1663, 1679), and +(1672,1707). These illustrate concomitant modifications in the β- and unordered conformation. Both forms of cataractous human eye lens, white- and yellow-phases, are degenerate forms of the eye lens proteins, both are arranged in a different way. The main differences are observed for the amide I, methyl, methylene and Osbnd H vibrational band region. The effect of Asp, Glu and Tyr amino acids in cataractous lens transformations was observed.

  19. Sensitive far-IR survey spectroscopy: BLISS for SPICA

    NASA Astrophysics Data System (ADS)

    Bradford, C. M.; Kenyon, Matt; Holmes, Warren; Bock, James; Koch, Timothy

    2008-07-01

    We present a concept for BLISS, a sensitive far-IR-submillimeter spectrograph for SPICA. SPICA is a JAXA-led mission featuring a 3.5-meter telescope actively cooled to below 5K, envisioned for launch in 2017. The low-background platform is especially compelling for moderate-resolution survey spectroscopy, for which BLISS is designed. The BLISS / SPICA combination will offer line sensitivities below 10-20W m-2 in modest integrations, enabling rapid survey spectroscopy of galaxies out to redshift 5. The far-IR fine-structure and molecular transitions which BLISS / SPICA will measure are immune to dust extinction, and will unambiguously reveal these galaxies' redshifts, stellar and AGN contents, gas properties, and heavy-element abundances. Taken together, such spectra will reveal the history of galaxies from 1 GY after the Big Bang to the present day. BLISS is comprised of five sub-bands, each with two R ~ 700 grating spectrometer modules. The modules are configured with polarizing and dichroic splitters to provide complete instantaneous spectral coverage in two sky positions. To approach background-limited performance, BLISS detectors must have sensitivities at or below 5 × 10-20W Hz-1/2, and the format is 10 arrays of several hundred pixels each. It is anticipated that these requirements can be met on SPICA's timescale with leg-isolated superconducting (TES) bolometers cooled with a 50 mK magnetic refrigerator.

  20. Structural characterization of lignins isolated from Caragana sinica using FT-IR and NMR spectroscopy.

    PubMed

    Xiao, Ling-Ping; Shi, Zheng-Jun; Xu, Feng; Sun, Run-Cang; Mohanty, Amar K

    2011-09-01

    In order to efficiently explore and use woody biomass, six lignin fractions were isolated from dewaxed Caragana sinica via successive extraction with organic solvents and alkaline solutions. The lignin structures were characterized by Fourier transform infrared spectroscopy (FT-IR) and 1D and 2D Nuclear Magnetic Resonance (NMR). FT-IR spectra revealed that the "core" of the lignin structure did not significantly change during the treatment under the conditions given. The results of 1H and 13C NMR demonstrated that the lignin fraction L2, isolated with 70% ethanol containing 1% NaOH, was mainly composed of beta-O-4 ether bonds together with G and S units and trace p-hydroxyphenyl unit. Based on the 2D HSQC NMR spectrum, the ethanol organosolv lignin fraction L1, extracted with 70% ethanol, presents a predominance of beta-O-4' aryl ether linkages (61% of total side chains), and a low abundance of condensed carbon-carbon linked structures (such as beta-beta', beta-1', and beta-5') and a lower S/G ratio. Furthermore, a small percentage (ca. 9%) of the linkage side chain was found to be acylated at the gamma-carbon.

  1. Differentiation of Leishmania species by FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aguiar, Josafá C.; Mittmann, Josane; Ferreira, Isabelle; Ferreira-Strixino, Juliana; Raniero, Leandro

    2015-05-01

    Leishmaniasis is a parasitic infectious disease caused by protozoa that belong to the genus Leishmania. It is transmitted by the bite of an infected female Sand fly. The disease is endemic in 88 countries Desjeux (2001) [1] (16 developed countries and 72 developing countries) on four continents. In Brazil, epidemiological data show the disease is present in all Brazilian regions, with the highest incidences in the North and Northeast. There are several methods used to diagnose leishmaniasis, but these procedures have many limitations, are time consuming, have low sensitivity, and are expensive. In this context, Fourier Transform Infrared Spectroscopy (FT-IR) analysis has the potential to provide rapid results and may be adapted for a clinical test with high sensitivity and specificity. In this work, FT-IR was used as a tool to investigate the promastigotes of Leishmaniaamazonensis, Leishmaniachagasi, and Leishmaniamajor species. The spectra were analyzed by cluster analysis and deconvolution procedure base on spectra second derivatives. Results: cluster analysis found four specific regions that are able to identify the Leishmania species. The dendrogram representation clearly indicates the heterogeneity among Leishmania species. The band deconvolution done by the curve fitting in these regions quantitatively differentiated the polysaccharides, amide III, phospholipids, proteins, and nucleic acids. L. chagasi and L. major showed a greater biochemistry similarity and have three bands that were not registered in L. amazonensis. The L. amazonensis presented three specific bands that were not recorded in the other two species. It is evident that the FT-IR method is an indispensable tool to discriminate these parasites. The high sensitivity and specificity of this technique opens up the possibilities for further studies about characterization of other microorganisms.

  2. Using Fourier transform IR spectroscopy to analyze biological materials

    PubMed Central

    Baker, Matthew J; Trevisan, Júlio; Bassan, Paul; Bhargava, Rohit; Butler, Holly J; Dorling, Konrad M; Fielden, Peter R; Fogarty, Simon W; Fullwood, Nigel J; Heys, Kelly A; Hughes, Caryn; Lasch, Peter; Martin-Hirsch, Pierre L; Obinaju, Blessing; Sockalingum, Ganesh D; Sulé-Suso, Josep; Strong, Rebecca J; Walsh, Michael J; Wood, Bayden R; Gardner, Peter; Martin, Francis L

    2015-01-01

    IR spectroscopy is an excellent method for biological analyses. It enables the nonperturbative, label-free extraction of biochemical information and images toward diagnosis and the assessment of cell functionality. Although not strictly microscopy in the conventional sense, it allows the construction of images of tissue or cell architecture by the passing of spectral data through a variety of computational algorithms. Because such images are constructed from fingerprint spectra, the notion is that they can be an objective reflection of the underlying health status of the analyzed sample. One of the major difficulties in the field has been determining a consensus on spectral pre-processing and data analysis. This manuscript brings together as coauthors some of the leaders in this field to allow the standardization of methods and procedures for adapting a multistage approach to a methodology that can be applied to a variety of cell biological questions or used within a clinical setting for disease screening or diagnosis. We describe a protocol for collecting IR spectra and images from biological samples (e.g., fixed cytology and tissue sections, live cells or biofluids) that assesses the instrumental options available, appropriate sample preparation, different sampling modes as well as important advances in spectral data acquisition. After acquisition, data processing consists of a sequence of steps including quality control, spectral pre-processing, feature extraction and classification of the supervised or unsupervised type. A typical experiment can be completed and analyzed within hours. Example results are presented on the use of IR spectra combined with multivariate data processing. PMID:24992094

  3. Using Fourier transform IR spectroscopy to analyze biological materials.

    PubMed

    Baker, Matthew J; Trevisan, Júlio; Bassan, Paul; Bhargava, Rohit; Butler, Holly J; Dorling, Konrad M; Fielden, Peter R; Fogarty, Simon W; Fullwood, Nigel J; Heys, Kelly A; Hughes, Caryn; Lasch, Peter; Martin-Hirsch, Pierre L; Obinaju, Blessing; Sockalingum, Ganesh D; Sulé-Suso, Josep; Strong, Rebecca J; Walsh, Michael J; Wood, Bayden R; Gardner, Peter; Martin, Francis L

    2014-08-01

    IR spectroscopy is an excellent method for biological analyses. It enables the nonperturbative, label-free extraction of biochemical information and images toward diagnosis and the assessment of cell functionality. Although not strictly microscopy in the conventional sense, it allows the construction of images of tissue or cell architecture by the passing of spectral data through a variety of computational algorithms. Because such images are constructed from fingerprint spectra, the notion is that they can be an objective reflection of the underlying health status of the analyzed sample. One of the major difficulties in the field has been determining a consensus on spectral pre-processing and data analysis. This manuscript brings together as coauthors some of the leaders in this field to allow the standardization of methods and procedures for adapting a multistage approach to a methodology that can be applied to a variety of cell biological questions or used within a clinical setting for disease screening or diagnosis. We describe a protocol for collecting IR spectra and images from biological samples (e.g., fixed cytology and tissue sections, live cells or biofluids) that assesses the instrumental options available, appropriate sample preparation, different sampling modes as well as important advances in spectral data acquisition. After acquisition, data processing consists of a sequence of steps including quality control, spectral pre-processing, feature extraction and classification of the supervised or unsupervised type. A typical experiment can be completed and analyzed within hours. Example results are presented on the use of IR spectra combined with multivariate data processing.

  4. Synchronous two-dimensional MIR correlation spectroscopy (2D-COS) as a novel method for screening smoke tainted wine.

    PubMed

    Fudge, Anthea L; Wilkinson, Kerry L; Ristic, Renata; Cozzolino, Daniel

    2013-08-15

    In this study, two-dimensional correlation spectroscopy (2D-COS) combined with mid-infrared (MIR) spectroscopy was evaluated as a novel technique for the identification of spectral regions associated with smoke-affected wine, for the purpose of screening taint arising from grapevine exposure to smoke. Smoke-affected wines obtained from experimental and industry sources were analysed using MIR spectroscopy and chemometrics, and calibration models developed. 2D-COS analysis was used to generate synchronous data maps for red and white cask wines spiked with guaiacol, a marker of smoke taint. Correlations were observed at wavelengths that could be attributable to aromatic C-C stretching, i.e., between 1400 and 1500 cm(-1), indicative of volatile phenols. These results demonstrate the potential of 2D-COS as a rapid, high-throughput technique for the preliminary screening of smoke tainted wine.

  5. Rapid authentication of different ages of tissue-cultured and wild Dendrobium huoshanense as well as wild Dendrobium henanense using FTIR and 2D-COS IR

    NASA Astrophysics Data System (ADS)

    Chen, Nai-Dong; Chen, Nai-Fu; Li, Jun; Cao, Cai-Yun; Wang, Jin-Mei

    2015-12-01

    The accumulating of pharmaceutical chemicals in medicinal plants would greatly be affected by their ages and establishing a fast quality-identification method to evaluate the similarity of medicinal herbs at different cultivated ages is a critical step for assurance of quality and safety in the TCM industry. In this work, tri-step IR macro-fingerprinting and 2D-COS IR spectrum techniques combined with statistical pattern recognition were applied for discrimination and similarity evaluation of different ages of tissue-cultured and wild Dendrobium huoshanense C. Z. Tang et S. J. Cheng as well as Dendrobium henanense J.L.Lu et L.X Gao. Both tissue-cultured and wild D. huoshanense were easily differentiated from D. henanense by FTIR and SD-IR spectra, while it's quite difficult to discriminate different cultivated years of the three investigated Dendrobiums. In 2D-COS IR spectra, 1-5 auto-peaks with different indensity and positions were located in the region 1160-1030 cm-1 of the twelve Dendrobium samples and thus could be used to identify Dendrobium samples at different ages. Principle component analysis (PCA) of synchronous 2D-COS data showed that the twelve samples were effectively identified and evaluated. The results indicated that the tri-step infrared macro-fingerprinting combined with PCA method was suitable to differentiate the cultivated ages of Dendrobiums with species and orgins rapidly and nondestructively.

  6. Development of 2-D Array of Superconducting Magnesium Diboride (MgB2) for Far-IR Investigations of the Outer Planets and Icy Moons

    NASA Astrophysics Data System (ADS)

    Lakew, Brook

    2009-09-01

    A 2-D array of superconducting Magnesium Diboride(MgB2) far -IR thermal detectors has been fabricated. Such an array is intended to be at the focal plane of future generation thermal imaging far-IR instruments that will investigate the outer planets and their icy moons. Fabrication and processing of the pixels of the array as well as noise characterization of architectured MgB2 thin films will be presented. Challenges and solutions for improving the performance of the array will be discussed.

  7. IR spectroscopy vs. Raman scattering by measurement of glucose concentration

    NASA Astrophysics Data System (ADS)

    Abdallah, O.; Hansmann, J.; Bolz, A.; Mertsching, H.

    2010-11-01

    By developing a non-invasive device for glucose concentration measurement, two promising methods were compared for that aim. The Raman scattering using Laser at the wavelength 785 nm and the light scattering in R- and IR-range are demonstrated. An easy accessible and low-cost method for glucose concentration monitoring and management to avoid its complications will be a great help for diabetic patients. Raman Scattering is a promising method for noninvasively measuring of glucose and for the diagnostic of pathological tissue variations. Despite the power and the time of measurement can be reduced using enhanced Raman scattering, it will be difficult to develop a compatible device with low power Laser and low price for a non-invasive method for home monitoring. As using IR-spectroscopy at wavelengths slightly below 10000 nm, the absorption of glucose can be well discriminated from that of water, LED`s or LD's at these wavelengths are very expensive for this purpose. At wavelengths about 6250 and 7700 glucose has a less light absorption than water. Also slightly above 3000 nm glucose has a high absorption. There are also possibilities for the measurement in the NIR at wavelengths between 1400 nm and 1670 nm. Scattering measurements at wavelengths below 900 nm and our measurements with the wavelength about 640 nm give reproducible glucose dependence on the reflected light from a glucose solution at a constant temperature. A multi-sensor with different wavelengths and temperature sensor will be a good choice for in-vivo glucose monitoring.

  8. Mixed IR/Vis two-dimensional spectroscopy: chemical exchange beyond the vibrational lifetime and sub-ensemble selective photochemistry.

    PubMed

    van Wilderen, Luuk J G W; Messmer, Andreas T; Bredenbeck, Jens

    2014-03-03

    Two-dimensional exchange spectroscopy (2D EXSY) is a powerful method to study the interconversion (chemical exchange) of molecular species in equilibrium. This method has recently been realized in femtosecond 2D-IR spectroscopy, dramatically increasing the time resolution. However, current implementations allow the EXSY signal (and therefore the chemical process of interest) only to be tracked during the lifetime (T1 ) of the observed spectroscopic transition. This is a severe limitation, as typical vibrational T1 are only a few ps. An IR/Vis pulse sequence is presented that overcomes this limit and makes the EXSY signal independent of T1 . The same pulse sequence allows to collect time-resolved IR spectra after electronic excitation of a particular chemical species in a mixture of species with strongly overlapping UV/Vis spectra. Different photoreaction pathways and dynamics of coexisting isomers or of species involved in different intermolecular interactions can thus be revealed, even if the species cannot be isolated because they are in rapid equilibrium.

  9. Structure and absolute configuration of ginkgolide B characterized by IR- and VCD spectroscopy.

    PubMed

    Andersen, Niels H; Christensen, Niels Johan; Lassen, Peter R; Freedman, Teresa B N; Nafie, Laurence A; Strømgaard, Kristian; Hemmingsen, Lars

    2010-02-01

    Experimental and calculated (B3LYP/6-31G(d)) vibrational circular dichroism (VCD) and IR spectra are compared, illustrating that the structure and absolute configuration of ginkgolide B (GB) may be characterized directly in solution. A conformational search for GB using MacroModel and subsequent DFT optimizations (B3LYP/6-31G(d)) provides a structure for the lowest energy conformer which agrees well with the structure determined by X-ray diffraction. In addition, a conformer at an energy of 7 kJ mol(-1) (B3LYP/6-311+G(2d,2p)) with respect to the lowest energy conformer is predicted, displaying different intramolecular hydrogen bonding. Differences between measured and calculated IR and VCD spectra for GB at certain wavenumbers are rationalized in terms of interactions with solvent, intermolecular GB-GB interactions, and the potential presence of more than one conformer. This is the first detailed investigation of the spectroscopic fingerprint region (850-1300 cm(-1)) of the natural product GB employing infrared absorption and VCD spectroscopy.

  10. Two-dimensional IR spectroscopy and segmental 13C labeling reveals the domain structure of human γD-crystallin amyloid fibrils.

    PubMed

    Moran, Sean D; Woys, Ann Marie; Buchanan, Lauren E; Bixby, Eli; Decatur, Sean M; Zanni, Martin T

    2012-02-28

    The structural eye lens protein γD-crystallin is a major component of cataracts, but its conformation when aggregated is unknown. Using expressed protein ligation, we uniformly (13)C labeled one of the two Greek key domains so that they are individually resolved in two-dimensional (2D) IR spectra for structural and kinetic analysis. Upon acid-induced amyloid fibril formation, the 2D IR spectra reveal that the C-terminal domain forms amyloid β-sheets, whereas the N-terminal domain becomes extremely disordered but lies in close proximity to the β-sheets. Two-dimensional IR kinetics experiments show that fibril nucleation and extension occur exclusively in the C-terminal domain. These results are unexpected because the N-terminal domain is less stable in the monomer form. Isotope dilution experiments reveal that each C-terminal domain contributes two or fewer adjacent β-strands to each β-sheet. From these observations, we propose an initial structural model for γD-crystallin amyloid fibrils. Because only 1 μg of protein is required for a 2D IR spectrum, even poorly expressing proteins can be studied under many conditions using this approach. Thus, we believe that 2D IR and protein ligation will be useful for structural and kinetic studies of many protein systems for which IR spectroscopy can be straightforwardly applied, such as membrane and amyloidogenic proteins.

  11. Conformation and electronic population transfer in membrane-supported self-assembled porphyrin dimers by 2D fluorescence spectroscopy.

    PubMed

    Perdomo-Ortiz, Alejandro; Widom, Julia R; Lott, Geoffrey A; Aspuru-Guzik, Alán; Marcus, Andrew H

    2012-09-06

    Two-dimensional fluorescence spectroscopy (2D FS) is applied to determine the conformation and femtosecond electronic population transfer in a dimer of magnesium meso tetraphenylporphyrin. The dimers are prepared by self-assembly of the monomer within the amphiphilic regions of 1,2-distearoyl-sn-glycero-3-phosphocholine liposomes. A theoretical framework to describe 2D FS experiments is presented, and a direct comparison is made between the observables of this measurement and those of 2D electronic spectroscopy (2D ES). The sensitivity of the method to varying dimer conformation is explored. A global multivariable fitting analysis of linear and 2D FS data indicates that the dimer adopts a "bent T-shaped" conformation. Moreover, the manifold of singly excited excitons undergoes rapid electronic dephasing and downhill population transfer on the time scale of ∼95 fs. The open conformation of the dimer suggests that its self-assembly is favored by an increase in entropy of the local membrane environment.

  12. AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging.

    PubMed

    Dazzi, Alexandre; Prater, Craig B

    2016-12-13

    Atomic force microscopy-based infrared spectroscopy (AFM-IR) is a rapidly emerging technique that provides chemical analysis and compositional mapping with spatial resolution far below conventional optical diffraction limits. AFM-IR works by using the tip of an AFM probe to locally detect thermal expansion in a sample resulting from absorption of infrared radiation. AFM-IR thus can provide the spatial resolution of AFM in combination with the chemical analysis and compositional imaging capabilities of infrared spectroscopy. This article briefly reviews the development and underlying technology of AFM-IR, including recent advances, and then surveys a wide range of applications and investigations using AFM-IR. AFM-IR applications that will be discussed include those in polymers, life sciences, photonics, solar cells, semiconductors, pharmaceuticals, and cultural heritage. In the Supporting Information , the authors provide a theoretical section that reviews the physics underlying the AFM-IR measurement and detection mechanisms.

  13. Bringing NMR and IR Spectroscopy to High Schools

    ERIC Educational Resources Information Center

    Bonjour, Jessica L.; Hass, Alisa L.; Pollock, David W.; Huebner, Aaron; Frost, John A.

    2017-01-01

    Development of benchtop, portable Fourier transform nuclear magnetic resonance (NMR) and infrared (IR) spectrometers has opened up opportunities for creating university-high school partnerships that provide high school students with hands-on experience with NMR and IR instruments. With recent changes to the international baccalaureate chemistry…

  14. Simultaneous multi-beam planar array IR (pair) spectroscopy

    DOEpatents

    Elmore, Douglas L.; Rabolt, John F.; Tsao, Mei-Wei

    2005-09-13

    An apparatus and method capable of providing spatially multiplexed IR spectral information simultaneously in real-time for multiple samples or multiple spatial areas of one sample using IR absorption phenomena requires no moving parts or Fourier Transform during operation, and self-compensates for background spectra and degradation of component performance over time. IR spectral information and chemical analysis of the samples is determined by using one or more IR sources, sampling accessories for positioning the samples, optically dispersive elements, a focal plane array (FPA) arranged to detect the dispersed light beams, and a processor and display to control the FPA, and display an IR spectrograph. Fiber-optic coupling can be used to allow remote sensing. Portability, reliability, and ruggedness is enhanced due to the no-moving part construction. Applications include determining time-resolved orientation and characteristics of materials, including polymer monolayers. Orthogonal polarizers may be used to determine certain material characteristics.

  15. Probing interband coulomb interactions in semiconductor nanostructures with 2D double-quantum coherence spectroscopy.

    PubMed

    Velizhanin, Kirill A; Piryatinski, Andrei

    2011-05-12

    Employing the interband exciton scattering model, we have derived a closed set of equations determining the 2D double-quantum coherence signal sensitive to the interband Coulomb interactions (i.e., many-body Coulomb interactions leading to the couplings between exciton and biexciton bands) in semiconductor nanostructures such as nanocrystals, quantum wires, wells, and carbon nanotubes. Our general analysis of 2D double-quantum coherence resonances has demonstrated that the interband Coulomb interactions lead to new cross-peaks whose appearance can be interpreted as a result of exciton and biexciton state mixing. The presence of the strongly coupled resonant states and weakly coupled background of off-resonant states can significantly simplify cross-peak analysis by eliminating the congested background spectrum. Our simulations of the 2D double-quantum coherence signal in PbSe NCs have validated this approach.

  16. Rovibrational analysis of the ethylene isotopologue 13C2D4 by high-resolution Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, T. L.; Gabona, M. G.; Godfrey, Peter D.; McNaughton, Don

    2015-01-01

    The Fourier transform infrared (FTIR) spectrum of the unperturbed a-type ν12 band of 13C2D4 was recorded at an unapodized resolution of 0.0063 cm-1 between 1000 and 1140 cm-1 for a rovibrational analysis. By assigning and fitting a total of 2068 infrared transitions using a Watson's A-reduced and S-reduced Hamiltonians in the Ir representation, rovibrational constants for the upper state (ν12 = 1) up to five quartic centrifugal distortion terms were derived for the first time. The root-mean-square (rms) deviation of the fits was 0.00034 cm-1 both in the A-reduction and S-reduction Hamiltonian. The ground state rovibrational constants of 13C2D4 in the A-reduced and S-reduced Hamiltonians were also determined for the first time by a fit of 985 combination-differences from the present infrared measurements, with rms deviation of 0.00036 cm-1. The ν12 band centre of 13C2D4 was at 1069.970824(17) cm-1 and at 1069.970799(17) cm-1 for the A-reduced and S-reduced Hamiltonians respectively. The ground state constants of 13C2D4 from this experimental work are in close agreement to those derived from theoretical calculations using the B3LYP/cc-pVTZ, MP2/cc-pVTZ, and CSSD(T)/cc-pVTZ levels of theory.

  17. Noise reduction methods applied to two-dimensional correlation spectroscopy (2D-COS) reveal complementary benefits of pre- and post-treatment.

    PubMed

    Foist, Rod B; Schulze, H Georg; Ivanov, Andre; Turner, Robin F B

    2011-05-01

    Two-dimensional correlation spectroscopy (2D-COS) is a powerful spectral analysis technique widely used in many fields of spectroscopy because it can reveal spectral information in complex systems that is not readily evident in the original spectral data alone. However, noise may severely distort the information and thus limit the technique's usefulness. Consequently, noise reduction is often performed before implementing 2D-COS. In general, this is implemented using one-dimensional (1D) methods applied to the individual input spectra, but, because 2D-COS is based on sets of successive spectra and produces 2D outputs, there is also scope for the utilization of 2D noise-reduction methods. Furthermore, 2D noise reduction can be applied either to the original set of spectra before performing 2D-COS ("pretreatment") or on the 2D-COS output ("post-treatment"). Very little work has been done on post-treatment; hence, the relative advantages of these two approaches are unclear. In this work we compare the noise-reduction performance on 2D-COS of pretreatment and post-treatment using 1D (wavelets) and 2D algorithms (wavelets, matrix maximum entropy). The 2D methods generally outperformed the 1D method in pretreatment noise reduction. 2D post-treatment in some cases was superior to pretreatment and, unexpectedly, also provided correlation coefficient maps that were similar to 2D correlation spectroscopy maps but with apparent better contrast.

  18. 2D-Raman-THz spectroscopy: A sensitive test of polarizable water models

    NASA Astrophysics Data System (ADS)

    Hamm, Peter

    2014-11-01

    In a recent paper, the experimental 2D-Raman-THz response of liquid water at ambient conditions has been presented [J. Savolainen, S. Ahmed, and P. Hamm, Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)]. Here, all-atom molecular dynamics simulations are performed with the goal to reproduce the experimental results. To that end, the molecular response functions are calculated in a first step, and are then convoluted with the laser pulses in order to enable a direct comparison with the experimental results. The molecular dynamics simulation are performed with several different water models: TIP4P/2005, SWM4-NDP, and TL4P. As polarizability is essential to describe the 2D-Raman-THz response, the TIP4P/2005 water molecules are amended with either an isotropic or a anisotropic polarizability a posteriori after the molecular dynamics simulation. In contrast, SWM4-NDP and TL4P are intrinsically polarizable, and hence the 2D-Raman-THz response can be calculated in a self-consistent way, using the same force field as during the molecular dynamics simulation. It is found that the 2D-Raman-THz response depends extremely sensitively on details of the water model, and in particular on details of the description of polarizability. Despite the limited time resolution of the experiment, it could easily distinguish between various water models. Albeit not perfect, the overall best agreement with the experimental data is obtained for the TL4P water model.

  19. 2D-Raman-THz spectroscopy: A sensitive test of polarizable water models

    SciTech Connect

    Hamm, Peter

    2014-11-14

    In a recent paper, the experimental 2D-Raman-THz response of liquid water at ambient conditions has been presented [J. Savolainen, S. Ahmed, and P. Hamm, Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)]. Here, all-atom molecular dynamics simulations are performed with the goal to reproduce the experimental results. To that end, the molecular response functions are calculated in a first step, and are then convoluted with the laser pulses in order to enable a direct comparison with the experimental results. The molecular dynamics simulation are performed with several different water models: TIP4P/2005, SWM4-NDP, and TL4P. As polarizability is essential to describe the 2D-Raman-THz response, the TIP4P/2005 water molecules are amended with either an isotropic or a anisotropic polarizability a posteriori after the molecular dynamics simulation. In contrast, SWM4-NDP and TL4P are intrinsically polarizable, and hence the 2D-Raman-THz response can be calculated in a self-consistent way, using the same force field as during the molecular dynamics simulation. It is found that the 2D-Raman-THz response depends extremely sensitively on details of the water model, and in particular on details of the description of polarizability. Despite the limited time resolution of the experiment, it could easily distinguish between various water models. Albeit not perfect, the overall best agreement with the experimental data is obtained for the TL4P water model.

  20. A combined IR/IR and IR/UV spectroscopy study on the proton transfer coordinate of isolated 3-hydroxychromone in the electronic ground and excited state.

    PubMed

    Stamm, A; Weiler, M; Brächer, A; Schwing, K; Gerhards, M

    2014-10-21

    In this paper the excited state proton transfer (ESPT) of isolated 3-hydroxychromone (3-HC), the prototype of the flavonols, is investigated for the first time by combined IR/UV spectroscopy in molecular beam experiments. The IR/UV investigations are performed both for the electronically excited and electronic ground state indicating a spectral overlap of transitions of the 3-HC monomer and clusters with water in the electronic ground state, whereas in the excited state only the IR frequencies of the proton-transferred monomer structure are observed. Due to the loss of isomer and species selectivity with respect to the UV excitations IR/IR techniques are applied in order to figure out the assignment of the vibrational transitions in the S0 state. In this context the quadruple resonance IR/UV/IR/UV technique (originally developed to distinguish different isomers in the electronically excited state) could be applied to identify the OH stretching vibration of the monomer in the electronic ground state. In agreement with calculations the OH stretching frequency differs significantly from the corresponding values of substituted hydroxychromones.

  1. Infrared spectroscopy of radio-luminous OH/IR stars

    NASA Technical Reports Server (NTRS)

    Jones, Terry Jay; Hyland, A. R.; Fix, John D.; Cobb, Michael L.

    1988-01-01

    Low-resolution 1.5-2.5-micron spectra for 21 radio-luminous OH/IR stars are presented. These spectra divide into two broad classes. Those with very strong water-vapor absorption closely resemble the spectra of classical Mira variables and are classified Type VM. Those with weaker water-vapor absorption, but still showing strong CO absorption, resemble the spectra of true core-burning supergiants and are classified Type SG. Comparison of the classification of 30 radio-luminous OH/IR stars with their Delta(V)s and luminosities suggests this classification is a good indicator of the intrinsic nature of the underlying star. There is some evidence, however, that some true supergiants (massive main-sequence progenitors) develop the pulsation properties and photospheric characteristics of the Mira-like OH/IR stars when they become optically obscured OH/IR stars.

  2. In vivo 1D and 2D correlation MR spectroscopy of the soleus muscle at 7T

    NASA Astrophysics Data System (ADS)

    Ramadan, Saadallah; Ratai, Eva-Maria; Wald, Lawrence L.; Mountford, Carolyn E.

    2010-05-01

    AimThis study aims to (1) undertake and analyse 1D and 2D MR correlation spectroscopy from human soleus muscle in vivo at 7T, and (2) determine T1 and T2 relaxation time constants at 7T field strength due to their importance in sequence design and spectral quantitation. MethodSix healthy, male volunteers were consented and scanned on a 7T whole-body scanner (Siemens AG, Erlangen, Germany). Experiments were undertaken using a 28 cm diameter detunable birdcage coil for signal excitation and an 8.5 cm diameter surface coil for signal reception. The relaxation time constants, T1 and T2 were recorded using a STEAM sequence, using the 'progressive saturation' method for the T1 and multiple echo times for T2. The 2D L-Correlated SpectroscopY (L-COSY) method was employed with 64 increments (0.4 ms increment size) and eight averages per scan, with a total time of 17 min. ResultsT1 and T2 values for the metabolites of interest were determined. The L-COSY spectra obtained from the soleus muscle provided information on lipid content and chemical structure not available, in vivo, at lower field strengths. All molecular fragments within multiple lipid compartments were chemically shifted by 0.20-0.26 ppm at this field strength. 1D and 2D L-COSY spectra were assigned and proton connectivities were confirmed with the 2D method. ConclusionIn vivo 1D and 2D spectroscopic examination of muscle can be successfully recorded at 7T and is now available to assess lipid alterations as well as other metabolites present with disease. T1 and T2 values were also determined in soleus muscle of male healthy volunteers.

  3. Phthalocyanine adsorption to graphene on Ir(111): Evidence for decoupling from vibrational spectroscopy

    SciTech Connect

    Endlich, M. Gozdzik, S.; Néel, N.; Kröger, J.; Rosa, A. L. da; Frauenheim, T.; Wehling, T. O.

    2014-11-14

    Phthalocyanine molecules have been adsorbed to Ir(111) and to graphene on Ir(111). From a comparison of scanning tunneling microscopy images of individual molecules adsorbed to the different surfaces alone it is difficult to discern potential differences in the molecular adsorption geometry. In contrast, vibrational spectroscopy using inelastic electron scattering unequivocally hints at strong molecule deformations on Ir(111) and at a planar adsorption geometry on graphene. The spectroscopic evidence for the different adsorption configurations is supported by density functional calculations.

  4. Recovering the Fermi surface with 2D-ACAR spectroscopy in samples with defects

    NASA Astrophysics Data System (ADS)

    Dugdale, S. B.; Laverock, J.

    2014-04-01

    When two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) experiments are performed in metals containing defects, conventional analysis in which the measured momentum distribution is folded back into the first Brillouin zone is rendered ineffective due to the contribution from positrons annihilating from the defect. However, by working with the radial anisotropy of the spectrum, it is shown that an image of the Fermi surface can be recovered since the defect contribution is essentially isotropic.

  5. High-power THz to IR emission by femtosecond laser irradiation of random 2D metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Liangliang; Mu, Kaijun; Zhou, Yunsong; Wang, Hai; Zhang, Cunlin; Zhang, X.-C.

    2015-07-01

    Terahertz (THz) spectroscopic sensing and imaging has identified its potentials in a number of areas such as standoff security screening at portals, explosive detection at battle fields, bio-medical research, and so on. With these needs, the development of an intense and broadband THz source has been a focus of THz research. In this work, we report an intense (~10 mW) and ultra-broadband (~150 THz) THz to infrared (IR) source with a Gaussian wavefront, emitted from nano-pore-structured metallic thin films with femtosecond laser pulse excitation. The underlying mechanism has been proposed as thermal radiation. In addition, an intense coherent THz signal was generated through the optical rectification process simultaneously with the strong thermal signal. This unique feature opens up new avenues in biomedical research.

  6. High-power THz to IR emission by femtosecond laser irradiation of random 2D metallic nanostructures.

    PubMed

    Zhang, Liangliang; Mu, Kaijun; Zhou, Yunsong; Wang, Hai; Zhang, Cunlin; Zhang, X-C

    2015-07-24

    Terahertz (THz) spectroscopic sensing and imaging has identified its potentials in a number of areas such as standoff security screening at portals, explosive detection at battle fields, bio-medical research, and so on. With these needs, the development of an intense and broadband THz source has been a focus of THz research. In this work, we report an intense (~10 mW) and ultra-broadband (~150 THz) THz to infrared (IR) source with a Gaussian wavefront, emitted from nano-pore-structured metallic thin films with femtosecond laser pulse excitation. The underlying mechanism has been proposed as thermal radiation. In addition, an intense coherent THz signal was generated through the optical rectification process simultaneously with the strong thermal signal. This unique feature opens up new avenues in biomedical research.

  7. Spectroscopic-tomography of biological membrane with high-spatial resolution by the imaging-type 2D Fourier spectroscopy

    NASA Astrophysics Data System (ADS)

    Inui, Asuka; Tsutsumi, Ryosuke; Qi, Wei; Takuma, Takashi; Ishimaru, Ichirou

    2011-07-01

    We proposed the imaging-type 2-dimensional Fourier spectroscopy that is the phase-shift interferometry between the objective lights. The proposed method can measure the 2D spectral image at the limited depth. Because of the imaging optical system, the 2D spectral images can be measured in high spatial resolution. And in the depth direction, we can get the spectral distribution only in the focal plane. In this report, we mention about the principle of the proposed wide field imaging-type 2D Fourier spectroscopy. And, we obtained the spectroscopic tomography of biological tissue of mouse's ear. In the visible region, we confirmed the difference of spectral characteristics between blood vessel region and other region. In the near infrared region (λ=900nm~1700nm), we can obtain the high-contrast blood vessel image of mouse's ear in the deeper part by InGaAs camera. Furthermore, in the middle infrared region(λ=8μ~14μm), we have successfully measured the radiation spectroscopic-imaging with wild field of view by the infrared module, such as the house plants. Additionally, we propose correction geometrical model that can convert the mechanical phase-shift value into the substantial phase difference in each oblique optical axes. We successfully verified the effectiveness of the proposed correction geometrical model and can reduce the spectral error into the error range into +/-3nm using the He-Ne laser whose wavelength 632.8nm.

  8. FT-IR spectroscopy characterization of schwannoma: a case study

    NASA Astrophysics Data System (ADS)

    Ferreira, Isabelle; Neto, Lazaro P. M.; das Chagas, Maurilio José; Carvalho, Luís. Felipe C. S.; dos Santos, Laurita; Ribas, Marcelo; Loddi, Vinicius; Martin, Airton A.

    2016-03-01

    Schwannoma are rare benign neural neoplasia. The clinical diagnosis could be improved if novel optical techniques are performed. Among these techniques, FT-IR is one of the currently techniques which has been applied for samples discrimination using biochemical information with minimum sample preparation. In this work, we report a case of a schwannoma in the cervical region. A histological examination described a benign process. An immunohistochemically examination demonstrated positivity to anti-S100 protein antibody, indicating a diagnosis of schwannoma. The aim of this analysis was to characterize FT-IR spectrum of the neoplastic and normal tissue in the fingerprint (1000-1800 cm-1) and high wavenumber region (2800-3600 cm-1). The IR spectra were collect from tumor tissue and normal nerve samples by a FT-IR spectrophotometer (Spotlight Perkin Elmer 400, USA) with 64 scans, and resolution of 4 cm-1. A total of twenty spectra were recorded (10 from schwannoma and 10 from nerve). Multivariate Analysis was used to classify the data. Through average and standard deviation analysis we observed that the main spectral change occurs at ≍1600 cm-1 (amide I) and ≍1400 cm-1 (amide III) in the fingerprint region, and in CH2/CH3 protein-lipids and OH-water vibrations for the high wavenumber region. In conclusion, FT-IR could be used as a technique for schwannoma analysis helping to establish specific diagnostic.

  9. Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Theory.

    PubMed

    Spencer, Austin P; Li, Hebin; Cundiff, Steven T; Jonas, David M

    2015-04-30

    A solution to Maxwell's equations in the three-dimensional frequency domain is used to calculate rephasing two-dimensional Fourier transform (2DFT) spectra of the D2 line of atomic rubidium vapor in argon buffer gas. Experimental distortions from the spatial propagation of pulses through the sample are simulated in 2DFT spectra calculated for the homogeneous Bloch line shape model. Spectral features that appear at optical densities of up to 3 are investigated. As optical density increases, absorptive and dispersive distortions start with peak shape broadening, progress to peak splitting, and ultimately result in a previously unexplored coherent transient twisting of the split peaks. In contrast to the low optical density limit, where the 2D peak shape for the Bloch model depends only on the total dephasing time, these distortions of the 2D peak shape at finite optical density vary with the waiting time and the excited state lifetime through coherent transient effects. Experiment-specific conditions are explored, demonstrating the effects of varying beam overlap within the sample and of pseudo-time domain filtering. For beam overlap starting at the sample entrance, decreasing the length of beam overlap reduces the line width along the ωτ axis but also reduces signal intensity. A pseudo-time domain filter, where signal prior to the center of the last excitation pulse is excluded from the FID-referenced 2D signal, reduces propagation distortions along the ωt axis. It is demonstrated that 2DFT rephasing spectra cannot take advantage of an excitation-detection transformation that can eliminate propagation distortions in 2DFT relaxation spectra. Finally, the high optical density experimental 2DFT spectrum of rubidium vapor in argon buffer gas [J. Phys. Chem. A 2013, 117, 6279-6287] is quantitatively compared, in line width, in depth of peak splitting, and in coherent transient peak twisting, to a simulation with optical density higher than that reported.

  10. Determination of Dihydrobenzoacridinone Structures by NMR, IR, and UV Spectroscopy and Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kozlov, N. G.; Zhiharko, Yu. D.; Skakovsky, E. D.; Baranovsky, A. V.; Ogorodnikova, M. M.; Basalaeva, L. I.

    2016-01-01

    Condensation of 2-naphthylamine, aromatic aldehydes, and dimedone was found to produce 9,10-dihydrobenzo[a] acridin-11-one derivatives according to PMR, 13C NMR, and IR spectroscopy and mass spectrometry. Correlation spectroscopy showed that the carbonyl in the synthesized dihydrobenzoacridinone derivatives was located on C11.

  11. Monitoring guanidinium-induced structural changes in ribonuclease proteins using Raman spectroscopy and 2D correlation analysis.

    PubMed

    Brewster, Victoria L; Ashton, Lorna; Goodacre, Royston

    2013-04-02

    Assessing the stability of proteins by comparing their unfolding profiles is a very important characterization and quality control step for any biopharmaceutical, and this is usually measured by fluorescence spectroscopy. In this paper we propose Raman spectroscopy as a rapid, noninvasive alternative analytical method and we shall show this has enhanced sensitivity and can therefore reveal very subtle protein conformational changes that are not observed with fluorescence measurements. Raman spectroscopy is a powerful nondestructive method that has a strong history of applications in protein characterization. In this work we describe how Raman microscopy can be used as a fast and reliable method of tracking protein unfolding in the presence of a chemical denaturant. We have compared Raman spectroscopic data to the equivalent samples analyzed using fluorescence spectroscopy in order to validate the Raman approach. Calculations from both Raman and fluorescence unfolding curves of [D]50 values and Gibbs free energy correlate well with each other and more importantly agree with the values found in the literature for these proteins. In addition, 2D correlation analysis has been performed on both Raman and fluorescence data sets in order to allow further comparisons of the unfolding behavior indicated by each method. As many biopharmaceuticals are glycosylated in order to be functional, we compare the unfolding profiles of a protein (RNase A) and a glycoprotein (RNase B) as measured by Raman spectroscopy and discuss the implications that glycosylation has on the stability of the protein.

  12. Communication: two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): simultaneous planar imaging and multiplex spectroscopy in a single laser shot.

    PubMed

    Bohlin, Alexis; Kliewer, Christopher J

    2013-06-14

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15,000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm(2).

  13. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    NASA Astrophysics Data System (ADS)

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-06-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15 000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm2.

  14. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    SciTech Connect

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15, 000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm2.

  15. Analysis of pyruvylated beta-carrageenan by 2D NMR spectroscopy and reductive partial hydrolysis.

    PubMed

    Falshaw, Ruth; Furneaux, Richard H; Wong, Herbert

    2003-06-23

    A polysaccharide rich in 4',6'-O-(1-carboxyethylidene)-substituted (i.e., pyruvylated) beta-carrageenan has been prepared by solvolytic desulfation of a polysaccharide containing predominantly pyruvylated alpha-carrageenan, which was extracted from the red seaweed, Callophycus tridentifer. The 13C and 1H NMR chemical shifts of pyruvylated beta-carrageenan have been fully assigned using 2D NMR spectroscopic techniques. The 4',6'-O-(1-methoxycarbonylethylidene) group, generated during chemical methylation of the polysaccharide, has been shown to survive under the conditions of acidic hydrolysis that cleave the 3,6-anhydro-alpha-D-galactosidic bonds in permethylated samples of both pyruvylated beta- and pyruvylated alpha-carrageenans. As a result, two novel pyruvylated carrabiitol derivatives have been prepared.

  16. FT-IR spectroscopy of lipoproteins—A comparative study

    NASA Astrophysics Data System (ADS)

    Krilov, Dubravka; Balarin, Maja; Kosović, Marin; Gamulin, Ozren; Brnjas-Kraljević, Jasminka

    2009-08-01

    FT-IR spectra, in the frequency region 4000-600 cm -1, of four major lipoprotein classes: very low density lipoprotein (VLDL), low density lipoprotein (LDL) and two subclasses of high density lipoproteins (HDL 2 and HDL 3) were analyzed to obtain their detailed spectral characterization. Information about the protein domain of particle was obtained from the analysis of amide I band. The procedure of decomposition and curve fitting of this band confirms the data already known about the secondary structure of two different apolipoproteins: apo A-I in HDL 2 and HDL 3 and apo B-100 in LDL and VLDL. For information about the lipid composition and packing of the particular lipoprotein the well expressed lipid bands in the spectra were analyzed. Characterization of spectral details in the FT-IR spectrum of natural lipoprotein is necessary to study the influence of external compounds on its structure.

  17. Deconvolution of 2D coincident Doppler broadening spectroscopy using the Richardson Lucy algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, J. D.; Zhou, T. J.; Cheung, C. K.; Beling, C. D.; Fung, S.; Ng, M. K.

    2006-05-01

    Coincident Doppler Broadening Spectroscopy (CDBS) measurements are popular in positron solid-state studies of materials. By utilizing the instrumental resolution function obtained from a gamma line close in energy to the 511 keV annihilation line, it is possible to significantly enhance the quality of the CDBS spectra using deconvolution algorithms. In this paper, we compare two algorithms, namely the Non-Negativity Least Squares (NNLS) regularized method and the Richardson-Lucy (RL) algorithm. The latter, which is based on the method of maximum likelihood, is found to give superior results to the regularized least-squares algorithm and with significantly less computer processing time.

  18. 2D Raman spectroscopy as an alternative technique for distinguishing oleanoic acid and ursolic acid

    NASA Astrophysics Data System (ADS)

    Mello, César; Crotti, Antônio E. M.; Vessecchi, Ricardo; Cunha, Wilson R.

    2006-11-01

    The isomeric triterpenes oleanoic acid and ursolic acid are compounds exhibiting a variety of biological activities. Structurally, they differ only in the position of the methyl group (C-29) at ring E. The differentiation of these two compounds requires a detailed analysis of their 13C and 1H NMR spectra which is often tedious and time-consuming, besides the need of using deuterated solvents. In this work, we report the use of bidimensional Raman spectroscopy as a fast technique to distinguish these two bioactive isomeric compounds.

  19. Parallel online multi-wavelength (2D) fluorescence spectroscopy in each well of a continuously shaken microtiter plate.

    PubMed

    Ladner, Tobias; Beckers, Mario; Hitzmann, Bernd; Büchs, Jochen

    2016-12-01

    Small-scale high-throughput screening devices are becoming increasingly important in bioprocess development. Conventional dipping probes for process monitoring are often too large to be used in these devices. Thus, optical measurements are often the method of choice. Even some parameters that cannot directly be measured by fluorescence become accessible via sensitive fluorescence dyes. However, not all compounds of interest are measurable by this technique. Recent studies applying multi-wavelength (2D) fluorescence spectroscopy in combination with chemometrics have shown that information on numerous analytes is obscured by the fluorescence data. Hitherto, this measurement technique has only been available on the scale of stirred tank fermenters. This work introduces a new device for multi-wavelength (2D) fluorescence spectroscopy in each well of a continuously shaken microtiter plate. Using a combination of spectrograph and CCD detector, the required time per measurement cycle in a 48-well microtiter plate was 0.5 h. Cultures of Hansenula polymorpha and Escherichia coli are monitored. The concentrations of glycerol, glucose and acetate as well as pH are determined using partial least square (PLS) models. Because a pH-sensitive fluorescence dye was not required, no dependency of the pKa of a fluorescence dye exists, and measurements in the low pH range can be obtained.

  20. Ionic Liquid–Solute Interactions Studied by 2D NOE NMR Spectroscopy

    SciTech Connect

    Khatun, Sufia; Castner, Edward W.

    2014-11-26

    Intermolecular interactions between a Ru²⁺(bpy)₃ solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {¹H-¹⁹F} HOESY and {¹H-¹H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru²⁺(bpy)₃ solute is rather different from the bulk IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru²⁺(bpy)₃ solute interacts with both the polar head and the nonpolar tail groups of the 1- butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.

  1. Ionic Liquid–Solute Interactions Studied by 2D NOE NMR Spectroscopy

    DOE PAGES

    Khatun, Sufia; Castner, Edward W.

    2014-11-26

    Intermolecular interactions between a Ru²⁺(bpy)₃ solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {¹H-¹⁹F} HOESY and {¹H-¹H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru²⁺(bpy)₃ solute is rather different from the bulkmore » IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru²⁺(bpy)₃ solute interacts with both the polar head and the nonpolar tail groups of the 1- butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.« less

  2. Early fire sensing using near-IR diode laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Bomse, David S.; Hovde, D. Christian; Chen, Shin-Juh; Silver, Joel A.

    2002-09-01

    We describe research leading to a trace gas detection system based on optical absorption using near-IR diode lasers that is intended to provide early warning of incipient fires. Applications include "high loss" structures such as office buildings, hospitals, hotels and shopping malls as well as airplanes and manned spacecraft where convention smoke detectors generate unacceptably high false alarm rates. Simultaneous or near-simultaneous detection of several gases (typically carbon dioxide, carbon monoxide, acetylene and hydrogen cyanide) provides high sensitivity while reducing the chance of false alarms. Continuous measurement of carbon dioxide concentrations also provides an internal check of instrument performance because ambient levels will not drop below ~350 ppm.

  3. Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS)

    NASA Astrophysics Data System (ADS)

    Choi, Doo-Won; Jeon, Min-Gyu; Cho, Gyeong-Rae; Kamimoto, Takahiro; Deguchi, Yoshihiro; Doh, Deog-Hee

    2016-02-01

    Performance improvement was attained in data reconstructions of 2-dimensional tunable diode laser absorption spectroscopy (TDLAS). Multiplicative Algebraic Reconstruction Technique (MART) algorithm was adopted for data reconstruction. The data obtained in an experiment for the measurement of temperature and concentration fields of gas flows were used. The measurement theory is based upon the Beer-Lambert law, and the measurement system consists of a tunable laser, collimators, detectors, and an analyzer. Methane was used as a fuel for combustion with air in the Bunsen-type burner. The data used for the reconstruction are from the optical signals of 8-laser beams passed on a cross-section of the methane flame. The performances of MART algorithm in data reconstruction were validated and compared with those obtained by Algebraic Reconstruction Technique (ART) algorithm.

  4. Topical Protectant Evaluation By FT-IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Braue, Ernest H.; Pannella, Michael G.

    1989-12-01

    A unique analytical method for evaluating the effectiveness of topical protectants against penetration by chemical agents has been developed using FT-IR and the horizontal attenuated total reflectance (ATR) accessory. A template was fabricated from double-sided adhesive tape attached to a piece of plastic sheet with an 8.0mm hole punched in the middle. This laminate was placed on the surface of the ATR crystal. A uniform thickness layer of topical protectant was applied to the ATR crystal through the hole in the template. Background spectra of the ATR crystal with and without the template were recorded and stored. A chemical challenge was applied to the template filled with topical protectant, and spectra were recorded every 15 seconds using a Nicolet 60SXB FT-IR spectrometer fitted with an MCT-A detector. Analysis of the recorded spectra identified how much time was required for the chemical challenge to break through the topical protectant barrier. The method was validated using polysaturated fat, petroleum jelly, and hexafluoropropylene epoxide polymer as topical protectants. These materials were challenged with ethyl disulfide. The detection threshold concentration for ethyl disulfide in the topical protectant was observed to be 0.5% (w/w). Using a barrier thickness of 0.45mm the break-through times were observed to be 5.0 min and 22.0 min for polysaturated fat and petroleum jelly respectively. The fluoropolymer showed no break-through even after 180 min.

  5. High Resolution FIR and IR Spectroscopy of Methanol Isotopologues

    SciTech Connect

    Lees, R. M.; Xu, Li-Hong; Appadoo, D. R. T.; Billinghurst, B.

    2010-02-03

    New astronomical facilities such as HIFI on the Herschel Space Observatory, the SOFIA airborne IR telescope and the ALMA sub-mm telescope array will yield spectra from interstellar and protostellar sources with vastly increased sensitivity and frequency coverage. This creates the need for major enhancements to laboratory databases for the more prominent interstellar 'weed' species in order to model and account for their lines in observed spectra in the search for new and more exotic interstellar molecular 'flowers'. With its large-amplitude internal torsional motion, methanol has particularly rich spectra throughout the FIR and IR regions and, being very widely distributed throughout the galaxy, is perhaps the most notorious interstellar weed. Thus, we have recorded new spectra for a variety of methanol isotopic species on the high-resolution FTIR spectrometer on the CLS FIR beamline. The aim is to extend quantum number coverage of the data, improve our understanding of the energy level structure, and provide the astronomical community with better databases and models of the spectral patterns with greater predictive power for a range of astrophysical conditions.

  6. Fast quantification of recombinant protein inclusion bodies within intact cells by FT-IR spectroscopy.

    PubMed

    Gross-Selbeck, Sven; Margreiter, Gerd; Obinger, Christian; Bayer, Karl

    2007-01-01

    The accomplishment of the quantification of the recombinant protein content of whole bacterial cells by FT-IR spectroscopy by application of chemometrics is shown. Recombinant Escherichia coli cells expressing an inclusion body forming fusion protein were dried on a 96-well silicon plate for the analysis in a high-throughput FT-IR spectrometer. Acquired spectra of additionally conventionally quantified samples were used to establish a multivariate calibration. The obtained method was tested by predicting inclusion body contents of samples not used for the multivariate model. Results from FT-IR spectra coincided well with the data of universalized electrophoresis analysis. Hence FT-IR spectroscopy could prove as a fast and simple alternative to conventional quantification methods.

  7. VLT near- to mid-IR imaging and spectroscopy of the M 17 UC1 - IRS5 region

    NASA Astrophysics Data System (ADS)

    Chen, Zhiwei; Nürnberger, Dieter E. A.; Chini, Rolf; Jiang, Zhibo; Fang, Min

    2015-06-01

    Aims: We investigate the surroundings of the hypercompact H ii region M 17 UC1 to probe the physical properties of the associated young stellar objects and the environment of massive star formation. Methods: We use diffraction-limited near-IR (VLT/NACO) and mid-IR (VLT/VISIR) images to reveal the different morphologies at various wavelengths. Likewise, we investigate the stellar and nebular content of the region with VLT/SINFONI integral field spectroscopy with a resolution R ˜ 1500 at H + K bands. Results: Five of the seven point sources in this region show L-band excess emission. A geometric match is found between the H2 emission and near-IR polarized light in the vicinity of IRS5A, and between the diffuse mid-IR emission and near-IR polarization north of UC1. The H2 emission is typical for dense photodissociation regions (PDRs), which are initially far-ultraviolet pumped and repopulated by collisional de-excitation. The spectral types of IRS5A and B273A are B3-B7 V/III and G4-G5 III, respectively. The observed infrared luminosity LIR in the range 1-20 μm is derived for three objects; we obtain 2.0 × 103 L⊙ for IRS5A, 13 L⊙ for IRS5C, and 10 L⊙ for B273A. Conclusions: IRS5 might be a young quadruple system. Its primary star IRS5A is confirmed to be a high-mass protostellar object (˜9 M⊙, ˜1 × 105 yrs); it might have terminated accretion due to the feedback from stellar activities (radiation pressure, outflow) and the expanding H ii region of M 17. The object UC1 might also have terminated accretion because of the expanding hypercompact H ii region, which it ionizes. The disk clearing process of the low-mass young stellar objects in this region might be accelerated by the expanding H ii region. The outflows driven by UC1 are running south-north with its northeastern side suppressed by the expanding ionization front of M 17; the blue-shifted outflow lobe of IRS5A is seen in two types of tracers along the same line of sight in the form of H2 emission

  8. Water analysis of glass ceramics by FT-IR spectroscopy

    SciTech Connect

    Nease, A B; Hale, M D; Kramer, D P

    1983-12-15

    A method for measuring water concentration in glasses has been described and the results of the study of ten batches of glasses have been tabulated. It has been shown that infrared spectroscopy is a satisfactory tool for measuring water concentration in glass ceramics. The water concentrations of ten batches of glass have been shown to differ significantly, and these variances are associated with environmental humidity and glass preparation method.

  9. Positron spectroscopy of 2D materials using an advanced high intensity positron beam

    NASA Astrophysics Data System (ADS)

    McDonald, A.; Chirayath, V.; Lim, Z.; Gladen, R.; Chrysler, M.; Fairchild, A.; Koymen, A.; Weiss, A.

    An advanced high intensity variable energy positron beam(~1eV to 20keV) has been designed, tested and utilized for the first coincidence Doppler broadening (CDB) measurements on 6-8 layers graphene on polycrystalline Cu sample. The system is capable of simultaneous Positron annihilation induced Auger electron Spectroscopy (PAES) and CDB measurements giving it unparalleled sensitivity to chemical structure at external surfaces, interfaces and internal pore surfaces. The system has a 3m flight path up to a micro channel plate (MCP) for the Auger electrons emitted from the sample. This gives a superior energy resolution for PAES. A solid rare gas(Neon) moderator was used for the generation of the monoenergetic positron beam. The positrons were successfully transported to the sample chamber using axial magnetic field generated with a series of Helmholtz coils. We will discuss the PAES and coincidence Doppler broadening measurements on graphene -Cu sample and present an analysis of the gamma spectra which indicates that a fraction of the positrons implanted at energies 7-60eV can become trapped at the graphene/metal interface. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  10. Anisotropy in bone demineralization revealed by polarized far-IR spectroscopy.

    PubMed

    Schuetz, Roman; Fix, Dmitri; Schade, Ulrich; Aziz, Emad F; Timofeeva, Nadya; Weinkamer, Richard; Masic, Admir

    2015-04-02

    Bone material is composed of an organic matrix of collagen fibers and apatite nanoparticles. Previously, vibrational spectroscopy techniques such as infrared (IR) and Raman spectroscopy have proved to be particularly useful for characterizing the two constituent organic and inorganic phases of bone. In this work, we tested the potential use of high intensity synchrotron-based far-IR radiation (50-500 cm(-1)) to gain new insights into structure and chemical composition of bovine fibrolamellar bone. The results from our study can be summarized in the following four points: (I) compared to far-IR spectra obtained from synthetic hydroxyapatite powder, those from fibrolamellar bone showed similar peak positions, but very different peak widths; (II) during stepwise demineralization of the bone samples, there was no significant change neither to far-IR peak width nor position, demonstrating that mineral dissolution occurred in a uniform manner; (III) application of external loading on fully demineralized bone had no significant effect on the obtained spectra, while dehydration of samples resulted in clear differences. (IV) using linear dichroism, we showed that the anisotropic structure of fibrolamellar bone is also reflected in anisotropic far-IR absorbance properties of both the organic and inorganic phases. Far-IR spectroscopy thus provides a novel way to functionally characterize bone structure and chemistry, and with further technological improvements, has the potential to become a useful clinical diagnostic tool to better assess quality of collagen-based tissues.

  11. Near-infrared (NIR) monitoring of Nylon 6 during quenching studied by projection two-dimensional (2D) correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Mizukado, Junji

    2016-11-01

    Evolutionary change in supermolecular structure of Nylon 6 during its melt-quenched process was studied by Near-infrared (NIR) spectroscopy. Time-resolved NIR spectra was measured by taking the advantage of high-speed NIR monitoring based on an acousto-optic tunable filter (AOTF). Fine spectral features associated with the variation of crystalline and amorphous structure occurring in relatively short time scale were readily captured. For example, synchronous and asynchronous 2D correlation spectra reveal the initial decrease in the contribution of the NIR band at 1485 nm due to the amorphous structure, predominantly existing in the melt Nylon 6. This is then followed by the emerging contribution of the band intensity at 1535 nm associated with the crystalline structure. Consequently, the results clearly demonstrate a definite advantage of the high-speed NIR monitoring for analyzing fleeting phenomena.

  12. Rotational spectroscopy of vibrationally excited N2H+ and N2D+ up to 2.7 THz

    NASA Astrophysics Data System (ADS)

    Yu, S.; Pearson, J. C.; Drouin, B. J.; Crawford, T.; Daly, A. M.; Elliott, B.; Amano, T.

    2015-08-01

    Terahertz absorption spectroscopy was employed to extend the measurements on the pure rotational transitions of N2H+, N2D+ and their 15N-containing isotopologues in the ground state and first excited vibrational states for the three fundamental vibrational modes. In total, 91 new pure rotational transitions were observed in the range of 0.7-2.7 THz. The observed transition frequencies were fit to experimental accuracy, and the improved molecular parameters were obtained. The new measurements and predictions reported here will support the analysis of high-resolution astronomical observations made with facilities such as SOFIA and ALMA where laboratory rest frequencies with uncertainties of 1 MHz or smaller are required for proper analysis of velocity resolved astrophysical components.

  13. Surface characterization of Kevlar fibers by FT-IR spectroscopy

    SciTech Connect

    Chatzi, E.G.

    1987-01-01

    The Kevlar-49 aramid fiber offers considerable potential for utilization in high-performance composite materials. However, it has poor adhesion to the polymer matrix resin. In order to improve the adhesion the surface of the fiber was characterized by using two nondestructive Fourier transform infrared (FT-IR) techniques. It was shown that the polymer chains in the skin are oriented parallel to the surface, while in the core they are almost radially oriented. This orientation as well as the fact that the functional groups are intermolecularly hydrogen-bonded might limit their availability for reacting with the polymer matrix. The author also characterized the water absorbed in both the skin and the core of the fiber and found the existence of three types of water: (a) weakly hydrogen-bonded between one NH and one carbonyl group, (b) between two carbonyl groups and (c) liquid-like water clustered in microvoids and other sites inside the fibers. It was also found that 30% of the NH groups of the Kevlar-49 fiber are accessible for deuterium exchange. These groups on one hand are available for reactions that would improve the adhesion, but on the other hand can hydrogen-bond with water, which would be detrimental for the mechanical properties of the composite.

  14. Two-dimensional (2D) Chemiluminescence (CL) correlation spectroscopy for studying thermal oxidation of isotactic polypropylene (iPP)

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Hagihara, Hideaki; Suda, Hiroyuki; Mizukado, Jyunji

    2016-11-01

    Application of the two-dimensional (2D) correlation spectroscopy is extended to Chemiluminescence (CL) spectra of isotactic polypropylene (iPP) under thermally induced oxidation. Upon heating, the polymer chains of the iPP undergoes scissoring and fragmentation to develop several intermediates. While different chemical species provides the emission at different wavelength regions, entire feature of the time-dependent CL spectra of the iPP samples were complicated by the presence of overlapped contributions from singlet oxygen (1O2) and carbonyl species within sample. 2D correlation spectra showed notable enhancement of the spectral resolution to provide penetrating insight into the thermodynamics of the polymer system. For example, the, oxidation induce scissoring and fragmentation of the polymer chains to develop the carbonyl group. Further reaction results in the consumption of the carbonyl species and subsequent production of different 1O2 species each developed in different manner. Consequently, key information on the thermal oxidation can be extracted in a surprisingly simple manner without any analytical expression for the actual response curves of spectral intensity signals during the reaction.

  15. Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy

    PubMed Central

    Ginsberg, Naomi S.; Davis, Jeffrey A.; Ballottari, Matteo; Cheng, Yuan-Chung; Bassi, Roberto; Fleming, Graham R.

    2011-01-01

    The CP29 light harvesting complex from green plants is a pigment-protein complex believed to collect, conduct, and quench electronic excitation energy in photosynthesis. We have spectroscopically determined the relative angle between electronic transition dipole moments of its chlorophyll excitation energy transfer pairs in their local protein environments without relying on simulations or an X-ray crystal structure. To do so, we measure a basis set of polarized 2D electronic spectra and isolate their absorptive components on account of the tensor relation between the light polarization sequences used to obtain them. This broadly applicable advance further enhances the acuity of polarized 2D electronic spectroscopy and provides a general means to initiate or feed back on the structural modeling of electronically-coupled chromophores in condensed phase systems, tightening the inferred relations between the spatial and electronic landscapes of ultrafast energy flow. We also discuss the pigment composition of CP29 in the context of light harvesting, energy channeling, and photoprotection within photosystem II. PMID:21321222

  16. Comparison between ATR-IR, Raman, concatenated ATR-IR and Raman spectroscopy for the determination of total antioxidant capacity and total phenolic content of Chinese rice wine.

    PubMed

    Wu, Zhengzong; Xu, Enbo; Long, Jie; Pan, Xiaowei; Xu, Xueming; Jin, Zhengyu; Jiao, Aiquan

    2016-03-01

    The application of attenuated total reflectance infrared spectroscopy (ATR-IR), Raman spectroscopy (RS) and combination of ATR-IR and RS for measurements of total antioxidant capacity (TAC) and total phenolic content (TPC) of Chinese rice wine (CRW) were investigated in this study. Synergy interval partial least-squares (SiPLS), support vector machine (SVM) and principal component analysis (PCA) were applied to process the merged data from two individual instruments. It was observed that the performances of models based on the RS spectra were better than those based on the ATR-IR spectra. In addition, SVM models based on the efficient information extracted from ATR-IR and RS spectra were superior to PLS models based on the same information and PLS models based on ATR-IR or RS spectra. The overall results demonstrated that integrating ATR-IR and RS was possible and could improve the prediction accuracy of TAC and TPC in CRWs.

  17. Composition of the Martian aerosols through near-IR spectroscopy

    NASA Technical Reports Server (NTRS)

    Erard, Stephane; Cerroni, Priscilla; Coradini, Angioletta

    1993-01-01

    Near-infrared spectroscopy is a powerful technique to study the composition of planetary surfaces, as the main minerals exhibit absorption bands in this spectral range. It gave important information on the mineralogy and petrology of Mars in the past twenty years although in this case it is well known that a large fraction of light is scattered by the airborne particles before reaching the surface. The measured signal is thus the sum of two different contributions that should be studied separately: One from the surface and one from the aerosols that depends on their density, size distribution and composition. Data from the ISM imaging spectrometer are used here to derive the aerosols spectrum. They consist in sets of spectra (from 0.76 to 3.16 microns) of approximately 3000 pixels approximately 25x25 sq km in size. The resulting spectrum exhibits both water-ice and clay mineral features superimposed on a scattering continuum.

  18. Broadband mid-IR subharmonic OPOs for molecular spectroscopy

    NASA Astrophysics Data System (ADS)

    Leindecker, Nick; Marandi, Alireza; Vodopyanov, Konstantin L.; Byer, Robert L.

    2012-02-01

    We generate broadband mid-infrared frequency combs via degenerate optical parametric oscillation in a subharmonic OPO. This technique efficiently transfers the desirable properties of shorter wavelength mode-locked sources to the mid- IR. Our OPO resonator is a 3m or 4m ring cavity composed of one pair of concave mirrors with R=50mm and four flat mirrors, all but one of which are gold coated with > 99% reflection. A single dielectric mirror is used to introduce the pump (2.05 micron from IMRA America, 75 MHz, 80 fs, 600mW or 1.55 micron from Menlo Systems C-fiber, 100 MHz, 70 fs, 350 mW or 1.56 micron from Toptica Photonics FemtoFiber Pro, 80 MHz, 85 fs, 380 mW). The dielectric mirror is transmissive for the pump and reflective in a 2.5- 4 micron or 3- 6 micron (for 2 micron pump) range. Broadband parametric gain around the 3.1-micron subharmonic is provided by short (0.2-0.5mm) periodically poled lithium niobate (MgO:PPLN) at Brewster angle. Crystals were cut from Crystal Technology Inc. material having QPM period of 34.8 microns for type 0 (e=e+e) phase matching at t=32 deg. C. With the 2-micron pump, orientation patterned gallium arsenide from BAE systems is used as the non-linear material In both systems, the enormous acceptance bandwidth at degeneracy, typical for OPOs with type 0 (or type I) phase-matching, gives broad bandwidth and makes temperature tuning insignificant. Broadband oscillation is achieved when signal/idler are brought into degenerate resonance by fine-tuning the cavity length with a mirror on a piezo stage. Using an 8% reflective pellicle, we outcouple a frequency comb of more than 1000nm bandwidth, centered around 3.1 microns from the Er/PPLN system. A 1mm or 2.5mm thick ZnSe plate at Brewster angle provides 2nd-order group velocity dispersion compensation, improving the OPO bandwidth. The OPO threshold was measured to be < 30mW. When locked, the OPO outputs 60 mW of average power centered at 3.1 microns. With the Tm/OP-GaAs system we

  19. Detection of starch adulteration in onion powder by FT-NIR and FT-IR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adulteration of onion powder with cornstarch was identified by Fourier transform near-infrared (FT-NIR) and Fourier transform infrared (FT-IR) spectroscopy. The reflectance spectra of 180 pure and adulterated samples (1–35 wt% starch) were collected and preprocessed to generate calibration and predi...

  20. Structure Determination of Unknown Organic Liquids Using NMR and IR Spectroscopy: A General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Pavel, John T.; Hyde, Erin C.; Bruch, Martha D.

    2012-01-01

    This experiment introduced general chemistry students to the basic concepts of organic structures and to the power of spectroscopic methods for structure determination. Students employed a combination of IR and NMR spectroscopy to perform de novo structure determination of unknown alcohols, without being provided with a list of possible…

  1. Investigation of the mineralization process of biosystems by IR diffuse reflection spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Zolotarev, V. M.

    2014-04-01

    Particular features of the application of Fourier-transform IR diffuse reflection spectroscopy methods to the in situ investigation of spectra of porous rough objects have been considered. The reciprocal influence of the scattering and absorption of porous objects on the formation of the impurity-band contour in the diffuse reflection spectrum when the impurity center is in the vicinity of the fundamental IR absorption band has been analyzed. Using methods of Fourier-transform IR diffuse reflection spectroscopy, processes of mineralization of fragments of mammoth tusks from a multilayer paleolithic site at Yudinovo (Bryansk oblast, Russia) and fragments of mammoth tusks from Yakutia (Russia) have been investigated. Particular features of mineralization processes (carbonate formation and silicification) on the surface and in the volume of objects at different conditions of their burial (humidity, temperature, soil acidity) have been studied.

  2. Quantification of transition dipole strengths using 1D and 2D spectroscopy for the identification of molecular structures via exciton delocalization: Application to α-helices

    PubMed Central

    Grechko, Maksim; Zanni, Martin T.

    2012-01-01

    Vibrational and electronic transition dipole strengths are often good probes of molecular structures, especially in excitonically coupled systems of chromophores. One cannot determine transition dipole strengths using linear spectroscopy unless the concentration is known, which in many cases it is not. In this paper, we report a simple method for measuring transition dipole moments from linear absorption and 2D IR spectra that does not require knowledge of concentrations. Our method is tested on several model compounds and applied to the amide I′ band of a polypeptide in its random coil and α-helical conformation as modulated by the solution temperature. It is often difficult to confidently assign polypeptide and protein secondary structures to random coil or α-helix by linear spectroscopy alone, because they absorb in the same frequency range. We find that the transition dipole strength of the random coil state is 0.12 ± 0.013 D2, which is similar to a single peptide unit, indicating that the vibrational mode of random coil is localized on a single peptide unit. In an α-helix, the lower bound of transition dipole strength is 0.26 ± 0.03 D2. When taking into account the angle of the amide I′ transition dipole vector with respect to the helix axis, our measurements indicate that the amide I′ vibrational mode is delocalized across a minimum of 3.5 residues in an α-helix. Thus, one can confidently assign secondary structure based on exciton delocalization through its effect on the transition dipole strength. Our method will be especially useful for kinetically evolving systems, systems with overlapping molecular conformations, and other situations in which concentrations are difficult to determine. PMID:23163364

  3. Improved rovibrational constants for the v7 = 1 state of ethylene-cis-1,2-d2 (cis-C2H2D2) by high-resolution synchrotron FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, T. L.; Ng, L. L.; Gabona, M. G.; Aruchunan, G.; Wong, Andy; Appadoo, Dominique R. T.; McNaughton, Don

    2017-01-01

    Using the far-infrared beamline of the Australian Synchrotron, the spectrum of the ν7 band of ethylene-cis-1,2-d2 (cis-C2H2D2) was recorded in the 640-990 cm-1 region at an unapodized resolution of 0.00096 cm-1. A rovibrational analysis of a total of 2823 infrared transitions of the ν7 band was carried out using an asymmetric rotor fitting program based on the Watson's A-reduced Hamiltonian in the Ir representation to derive up to four sextic constants with a rms deviation of 0.00035 cm-1. From the fitting of 2634 ground state combination differences (GSCDs) of cis-C2H2D2 which were derived from the infrared transitions of the ν7 band of this work, and ν10 and ν12 bands of previous studies, together with 22 microwave frequencies, accurate ground state constants of cis-C2H2D2 up to four sextic terms were obtained. The rotational constants (A, B, and C) of the v7 = 1 state of cis-C2H2D2 were found to agree within 0.5% with the calculated values using B3LYP/cc-pVTZ and MP2/cc-pVTZ levels of theory. From this work, the band center of ν7 at 842.209489(20) cm-1 and the rovibrational constants of the v7 = 1 state of cis-C2H2D2 were determined with better accuracy than previously reported.

  4. Remote Thermal IR Spectroscopy of our Solar System

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Hewagama, Tilak; Goldstein, Jeffrey; Livengood, Timothy; Fast, Kelly

    1999-01-01

    Indirect methods to detect extrasolar planets have been successful in identifying a number of stars with companion planets. No direct detection of an extrasolar planet has yet been reported. Spectroscopy in the thermal infrared region provides a potentially powerful approach to detection and characterization of planets and planetary systems. We can use knowledge of our own solar system, its planets and their atmospheres to model spectral characteristics of planets around other stars. Spectra derived from modeling our own solar system seen from an extrasolar perspective can be used to constrain detection strategies, identification of planetary class (terrestrial vs. gaseous) and retrieval of chemical, thermal and dynamical information. Emission from planets in our solar system peaks in the thermal infrared region, approximately 10 - 30 microns, substantially displaced from the maximum of the much brighter solar emission in the visible near 0.5 microns. This fact provides a relatively good contrast ratio to discriminate between stellar (solar) and planetary emission and optimize the delectability of planetary spectra. Important molecular constituents in planetary atmospheres have rotational-vibrational spectra in the thermal infrared region. Spectra from these molecules have been well characterized in the laboratory and studied in the atmospheres of solar system planets from ground-based and space platforms. The best example of such measurements are the studies with Fourier transform spectrometers, the Infrared Interferometer Spectrometers (IRIS), from spacecraft: Earth observed from NIMBUS 8, Mars observed from Mariner 9, and the outer planets observed from Voyager spacecraft. An Earth-like planet is characterized by atmospheric spectra of ozone, carbon dioxide, and water. Terrestrial planets have oxidizing atmospheres which are easily distinguished from reducing atmospheres of gaseous giant planets which lack oxygen-bearing species and are characterized by spectra

  5. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy

    SciTech Connect

    Enriquez, Miriam M.; Zhang, Cheng; Tan, Howe-Siang; Akhtar, Parveen; Garab, Győző; Lambrev, Petar H.

    2015-06-07

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Q{sub y} band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240–270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet–singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.

  6. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy.

    PubMed

    Enriquez, Miriam M; Akhtar, Parveen; Zhang, Cheng; Garab, Győző; Lambrev, Petar H; Tan, Howe-Siang

    2015-06-07

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Qy band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240-270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet-singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.

  7. Pulsed-field ionization photoelectron and IR-UV resonant photoionization spectroscopy of Al-thymine.

    PubMed

    Krasnokutski, Serge A; Lei, Yuxiu; Lee, Jung Sup; Yang, Dong-Sheng

    2008-09-28

    Al-thymine (Al-C(4)H(3)N(2)O(2)CH(3)) is produced by laser vaporization of a rod made of Al and thymine powders in a molecular beam and studied by single-photon pulsed-field ionization-zero electron kinetic energy (ZEKE) photoelectron and IR-UV resonant two-photon ionization spectroscopy and density functional theory calculations. The ZEKE experiment determines the adiabatic ionization energy of the neutral complex and 22 vibrational modes for the corresponding ion with frequencies below 2000 cm(-1). The IR-UV photoionization experiment measures two N-H and three C-H stretches for the neutral species. The theoretical calculations predict a number of low-energy isomers with Al binding to single oxygen or adjacent oxygen and nitrogen atoms of thymine. Among these isomers, the structure with Al binding to the O4 atom of the diketo tautomer is predicted to be the most stable one by the theory and is probed by both ZEKE and IR-UV measurements. This work presents the first application of the IR-UV resonant ionization to metal-organic molecule systems. Like ZEKE spectroscopy, the IR-UV photoionization technique is sensitive for identifying isomeric structures of metal association complexes.

  8. Highly-accelerated quantitative 2D and 3D localized spectroscopy with linear algebraic modeling (SLAM) and sensitivity encoding

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Gabr, Refaat E.; Zhou, Jinyuan; Weiss, Robert G.; Bottomley, Paul A.

    2013-12-01

    Noninvasive magnetic resonance spectroscopy (MRS) with chemical shift imaging (CSI) provides valuable metabolic information for research and clinical studies, but is often limited by long scan times. Recently, spectroscopy with linear algebraic modeling (SLAM) was shown to provide compartment-averaged spectra resolved in one spatial dimension with many-fold reductions in scan-time. This was achieved using a small subset of the CSI phase-encoding steps from central image k-space that maximized the signal-to-noise ratio. Here, SLAM is extended to two- and three-dimensions (2D, 3D). In addition, SLAM is combined with sensitivity-encoded (SENSE) parallel imaging techniques, enabling the replacement of even more CSI phase-encoding steps to further accelerate scan-speed. A modified SLAM reconstruction algorithm is introduced that significantly reduces the effects of signal nonuniformity within compartments. Finally, main-field inhomogeneity corrections are provided, analogous to CSI. These methods are all tested on brain proton MRS data from a total of 24 patients with brain tumors, and in a human cardiac phosphorus 3D SLAM study at 3T. Acceleration factors of up to 120-fold versus CSI are demonstrated, including speed-up factors of 5-fold relative to already-accelerated SENSE CSI. Brain metabolites are quantified in SLAM and SENSE SLAM spectra and found to be indistinguishable from CSI measures from the same compartments. The modified reconstruction algorithm demonstrated immunity to maladjusted segmentation and errors from signal heterogeneity in brain data. In conclusion, SLAM demonstrates the potential to supplant CSI in studies requiring compartment-average spectra or large volume coverage, by dramatically reducing scan-time while providing essentially the same quantitative results.

  9. Detection of metanil yellow contamination in turmeric using FT-Raman and FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Dhakal, Sagar; Chao, Kuanglin; Qin, Jianwei; Kim, Moon; Schmidt, Walter; Chan, Dian

    2016-05-01

    Turmeric is well known for its medicinal value and is often used in Asian cuisine. Economically motivated contamination of turmeric by chemicals such as metanil yellow has been repeatedly reported. Although traditional technologies can detect such contaminants in food, high operational costs and operational complexities have limited their use to the laboratory. This study used Fourier Transform Raman Spectroscopy (FT-Raman) and Fourier Transform - Infrared Spectroscopy (FT-IR) to identify metanil yellow contamination in turmeric powder. Mixtures of metanil yellow in turmeric were prepared at concentrations of 30%, 25%, 20%, 15%, 10%, 5%, 1% and 0.01% (w/w). The FT-Raman and FT-IR spectral signal of pure turmeric powder, pure metanil yellow powder and the 8 sample mixtures were obtained and analyzed independently to identify metanil yellow contamination in turmeric. The results show that FT-Raman spectroscopy and FT-IR spectroscopy can detect metanil yellow mixed with turmeric at concentrations as low as 1% and 5%, respectively, and may be useful for non-destructive detection of adulterated turmeric powder.

  10. Gas-phase peptide structures unraveled by far-IR spectroscopy: combining IR-UV ion-dip experiments with Born-Oppenheimer molecular dynamics simulations.

    PubMed

    Jaeqx, Sander; Oomens, Jos; Cimas, Alvaro; Gaigeot, Marie-Pierre; Rijs, Anouk M

    2014-04-01

    Vibrational spectroscopy provides an important probe of the three-dimensional structures of peptides. With increasing size, these IR spectra become very complex and to extract structural information, comparison with theoretical spectra is essential. Harmonic DFT calculations have become a common workhorse for predicting vibrational frequencies of small neutral and ionized gaseous peptides. Although the far-IR region (<500 cm(-1)) may contain a wealth of structural information, as recognized in condensed phase studies, DFT often performs poorly in predicting the far-IR spectra of peptides. Here, Born-Oppenheimer molecular dynamics (BOMD) is applied to predict the far-IR signatures of two γ-turn peptides. Combining experiments and simulations, far-IR spectra can provide structural information on gas-phase peptides superior to that extracted from mid-IR and amide A features.

  11. Particular features of the application of IR reflection spectroscopy methods in studies in archeology and paleontology

    NASA Astrophysics Data System (ADS)

    Zolotarev, V. M.; Khlopachev, G. A.

    2013-06-01

    We have considered an optical model of a porous rough surface with optical properties of objects (bone, flint) that are typical of archeology and paleontology. We have formulated an approach that makes it possible to perform mathematical processing of the IR reflection spectra of objects of this kind using standard algorithms and determine criteria that ensure obtaining reliable information on objects with a rough surface in the course of interpretation of frequencies in their IR reflection spectra. The potential of the approach has been demonstrated using as an example an investigation by the IR Fourier-transform reflection spectroscopy of mineralization processes of mammoth tusks from two paleolithic sites (14000 and 16000 BCE) located by the town of Yudinovo, Bryansk oblast, Russia.

  12. Conformational study of chiral penicillamine ligand on optically active silver nanoclusters with IR and VCD spectroscopy

    NASA Astrophysics Data System (ADS)

    Yao, Hiroshi; Nishida, Naoki; Kimura, Keisaku

    2010-02-01

    The conformation of chiral D-/ L-penicillamine ( D-/ L-Pen) adsorbed on optically active silver nanoclusters with a mean core diameter of about 1.1 nm was investigated by infrared (IR) and vibrational circular dichroism (VCD) spectroscopy. IR spectra of the D-/ L-Pen-protected nanoclusters in D 2O/CD 3OD solution are essentially identical, but the VCD exhibits a mirror image relationship indicating that these species have enantiomeric relationship. The experimental IR and VCD spectra are compared with the calculated ones for different model conformers at the DFT/B3PW91 level. The analysis in the spectral region of ν asym(COO -) and δ sym(NH 2) modes reveals significant shortcomings when comparing with vacuum calculations. We then take a bulk solvent effect into account in the theoretical calculations to obtain better agreement, resulting in the establishment of a preferential conformation of chiral penicillamine on the silver nanocluster surface.

  13. FT-IR spectroscopy study of perturbations induced by antibiotic on bacteria (Escherichia coli).

    PubMed

    Zeroual, W; Manfait, M; Choisy, C

    1995-04-01

    Fourier transform infrared spectroscopy (FT-IR) is an analysis method which over the spectral absorption, gives information about the molecular structures of systems. Recently, this method is widely used to the investigation of complex systems like cells and bacteria. Characteristic of FT-IR spectrum of bacteria depend closely to physiological and culture parameters. In this study, the infrared bands of intact bacteria are first tentatively attributed to the contribution of the cellular components. Secondly are compared the FT-IR spectra of Escherichia coli bacteria before and after treatment at sub-inhibitrice concentrations (< or = MIC) at penicillin A, penicillin G and nalidixic acid. The observed spectral perturbations are closely depending on the antibiotic treatment and are observed even if bacterial cell mass is far away from cell death. On the other hand, this spectral changes are related to the known mode of action of the used antibiotic.

  14. Characterization of human ovarian teratoma hair by using AFM, FT-IR, and Raman spectroscopy.

    PubMed

    Kim, Kyung Sook; Lee, Jinwoo; Jung, Min-Hyung; Choi, Young Joon; Park, Hun-Kuk

    2011-12-01

    The structural, physical, and chemical properties of hair taken from an ovarian teratoma (teratoma hair) was first examined by atomic force microscopy (AFM), Fourier transform infrared (FT-IR), and Raman spectroscopy. The similarities and differences between the teratoma hair and scalp hair were also investigated. Teratoma hair showed a similar morphology and chemical composition to scalp hair. Teratoma hair was covered with a cuticle in the same manner as scalp hair and showed the same amide bonding modes as scalp hair according to FT-IR and Raman spectroscopy. On the other hand, teratoma hair showed different physical properties and cysteic acid bands from scalp hair: the surface was rougher and the adhesive force was lower than the scalp hair. The cystine oxides modes did not change with the position unlike scalp hair. These differences can be understood by environmental effects not by the intrinsic properties of the teratoma hair.

  15. Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy.

    PubMed

    Akerholm, Margaretha; Hinterstoisser, Barbara; Salmén, Lennart

    2004-02-25

    The cellulose structure is a factor of major importance for the strength properties of wood pulp fibers. The ability to characterize small differences in the crystalline structures of cellulose from fibers of different origins is thus highly important. In this work, dynamic FT-IR spectroscopy has been further explored as a method sensitive to cellulose structure variations. Using a model system of two different celluloses, the relation between spectral information and the relative cellulose Ialpha content was investigated. This relation was then used to determine the relative cellulose Ialpha content in different pulps. The estimated cellulose I allomorph compositions were found to be reasonable for both unbleached and bleached chemical pulps. In addition, it was found that the dynamic FT-IR spectroscopy technique had the potential to indicate possible correlation field splitting peaks of cellulose Ibeta.

  16. IR/THz Double Resonance Spectroscopy Approach for Remote Chemical Detection at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Tanner, Elizabeth A.; Phillips, Dane J.; De Lucia, Frank C.; Everitt, Henry O.

    2013-06-01

    A remote sensing methodology based on infrared/terahertz (IR/THz) double resonance (DR) spectroscopy is shown to overcome limitations traditionally associated with either IR or THz spectroscopic approaches for detecting trace gases in an atmosphere. The applicability of IR/THz DR spectroscopy is explored by estimating the IR and THz power requirements for detecting a 100 part-per-million-meter cloud of methyl fluoride, methyl chloride, or methyl bromide at ranges up to 1km in three atmospheric windows below 0.3 THz. These prototypical molecules are used to ascertain the dependence of the DR signal-to-noise ratio on IR and THz beam power. A line-tunable CO_2 laser with 100 ps pulse duration generates a DR signature in four rotational transitions on a time scale commensurate with collisional relaxations caused by atmospheric N_2 and O_2. A continuous wave THz beam is frequency tuned to probe one of these rotational transitions so that laser-induced absorption variations in the analyte cloud are detected as temporal power fluctuations synchronized with the laser pulses. A combination of molecule-specific physics and scenario-dependent atmospheric conditions are used to predict the signal-to-noise ratio (SNR) for detecting an analyte as a function of cloud column density. A methodology is presented by which the optimal IR/THz pump/probe frequencies are identified. These estimates show the potential for low concentration chemical detection in a challenging atmospheric scenario with currently available or near term hardware components.

  17. IR spectroscopy studies of zeolites in geopolymeric materials derived from kaolinite

    NASA Astrophysics Data System (ADS)

    Król, M.; Minkiewicz, J.; Mozgawa, W.

    2016-12-01

    This study investigated the effect of alkali activation process conditions on the IR spectra, on which amount and types of zeolites in the resultant geopolymers influence significantly. Kaolinite was used as starting materials. The kaolinitic clay was first calcined to transform into the amorphous aluminosilicate phases (metakaolinite) and then activated with sodium silicate (as water glass) and sodium hydroxide. The effects of reaction systems composition (expressed as SiO2/Al2O3 and Al2O3/Na2O molar ratios) as well as synthesis temperature on the phase composition of obtained products have been determined. In particular, the structures of materials were examined using FT-IR spectroscopy in the middle infrared range. The results were compared to the XRD measurements, as well as SEM observations. Alkali-activation treatment of the metakaolin yielded bulk materials with different amounts and types of zeolite, which reveal the IR spectra of received materials. With proper selection of the initial conditions (temperature and composition), it is possible to obtain a solid material containing zeolite phase such as zeolite X, zeolite A or sodalite. The presence of zeolite phase was confirmed by the measurement of spectra in the middle infrared. In particular in pseudolattice range of the spectra, i.e. 800-400 cm-1, there are bands associated with the ring vibrations, which are characteristic for secondary building units (SBU) occurred in zeolite structure. IR spectroscopy is also useful in the studies of resulting amorphous phase structure.

  18. Rapid detection of talcum powder in tea using FT-IR spectroscopy coupled with chemometrics

    PubMed Central

    Li, Xiaoli; Zhang, Yuying; He, Yong

    2016-01-01

    This paper investigated the feasibility of Fourier transform infrared transmission (FT-IR) spectroscopy to detect talcum powder illegally added in tea based on chemometric methods. Firstly, 210 samples of tea powder with 13 dose levels of talcum powder were prepared for FT-IR spectra acquirement. In order to highlight the slight variations in FT-IR spectra, smoothing, normalize and standard normal variate (SNV) were employed to preprocess the raw spectra. Among them, SNV preprocessing had the best performance with high correlation of prediction (RP = 0.948) and low root mean square error of prediction (RMSEP = 0.108) of partial least squares (PLS) model. Then 18 characteristic wavenumbers were selected based on a hybrid of backward interval partial least squares (biPLS) regression, competitive adaptive reweighted sampling (CARS) algorithm and successive projections algorithm (SPA). These characteristic wavenumbers only accounted for 0.64% of the full wavenumbers. Following that, 18 characteristic wavenumbers were used to build linear and nonlinear determination models by PLS regression and extreme learning machine (ELM), respectively. The optimal model with RP = 0.963 and RMSEP = 0.137 was achieved by ELM algorithm. These results demonstrated that FT-IR spectroscopy with chemometrics could be used successfully to detect talcum powder in tea. PMID:27468701

  19. Rapid detection of talcum powder in tea using FT-IR spectroscopy coupled with chemometrics.

    PubMed

    Li, Xiaoli; Zhang, Yuying; He, Yong

    2016-07-29

    This paper investigated the feasibility of Fourier transform infrared transmission (FT-IR) spectroscopy to detect talcum powder illegally added in tea based on chemometric methods. Firstly, 210 samples of tea powder with 13 dose levels of talcum powder were prepared for FT-IR spectra acquirement. In order to highlight the slight variations in FT-IR spectra, smoothing, normalize and standard normal variate (SNV) were employed to preprocess the raw spectra. Among them, SNV preprocessing had the best performance with high correlation of prediction (RP = 0.948) and low root mean square error of prediction (RMSEP = 0.108) of partial least squares (PLS) model. Then 18 characteristic wavenumbers were selected based on a hybrid of backward interval partial least squares (biPLS) regression, competitive adaptive reweighted sampling (CARS) algorithm and successive projections algorithm (SPA). These characteristic wavenumbers only accounted for 0.64% of the full wavenumbers. Following that, 18 characteristic wavenumbers were used to build linear and nonlinear determination models by PLS regression and extreme learning machine (ELM), respectively. The optimal model with RP = 0.963 and RMSEP = 0.137 was achieved by ELM algorithm. These results demonstrated that FT-IR spectroscopy with chemometrics could be used successfully to detect talcum powder in tea.

  20. Practical Analysis of materials with depth varying compositions using FT-IR photoacoustic spectroscopy (PAS)

    SciTech Connect

    J.F. McClelland; R.W. Jones; Siquan Luo

    2004-09-30

    FT-IR photoacoustic spectroscopy (PAS) is discussed as a nondestructive method to probe the molecular composition of materials versus depth on the basis of the analysis of layers of experimentally controllable thickness, which are measured from the sample surface to depths of some tens of micrometers, depending on optical and thermal properties. Computational methods are described to process photoacoustic amplitude and phase spectra for both semi-quantitative and quantitative depth analyses. These methods are demonstrated on layered and gradient samples.

  1. Breath air measurement using wide-band frequency tuning IR laser photo-acoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Kistenev, Yury V.; Borisov, Alexey V.; Kuzmin, Dmitry A.; Bulanova, Anna A.; Boyko, Andrey A.; Kostyukova, Nadezhda Y.; Karapuzikov, Alexey A.

    2016-03-01

    The results of measuring of biomarkers in breath air of patients with broncho-pulmonary diseases using wide-band frequency tuning IR laser photo-acoustic spectroscopy and the methods of data mining are presented. We will discuss experimental equipment and various methods of intellectual analysis of the experimental spectra in context of above task. The work was carried out with partial financial support of the FCPIR contract No 14.578.21.0082 (ID RFMEFI57814X0082).

  2. The detection and discrimination of human body fluids using ATR FT-IR spectroscopy.

    PubMed

    Orphanou, Charlotte-Maria; Walton-Williams, Laura; Mountain, Harry; Cassella, John

    2015-07-01

    Blood, saliva, semen and vaginal secretions are the main human body fluids encountered at crime scenes. Currently presumptive tests are routinely utilised to indicate the presence of body fluids, although these are often subject to false positives and limited to particular body fluids. Over the last decade more sensitive and specific body fluid identification methods have been explored, such as mRNA analysis and proteomics, although these are not yet appropriate for routine application. This research investigated the application of ATR FT-IR spectroscopy for the detection and discrimination of human blood, saliva, semen and vaginal secretions. The results demonstrated that ATR FT-IR spectroscopy can detect and distinguish between these body fluids based on the unique spectral pattern, combination of peaks and peak frequencies corresponding to the macromolecule groups common within biological material. Comparisons with known abundant proteins relevant to each body fluid were also analysed to enable specific peaks to be attributed to the relevant protein components, which further reinforced the discrimination and identification of each body fluid. Overall, this preliminary research has demonstrated the potential for ATR FT-IR spectroscopy to be utilised in the routine confirmatory screening of biological evidence due to its quick and robust application within forensic science.

  3. Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions.

    PubMed

    Meng, Yingying; Yao, Changhong; Xue, Song; Yang, Haibo

    2014-01-01

    Fourier transform infrared spectroscopy (FT-IR) was applied in algal strain screening and monitoring cell composition dynamics in a marine microalga Isochrysis zhangjiangensis during algal cultivation. The content of lipid, carbohydrate and protein of samples determined by traditional methods had validated the accuracy of FT-IR method. For algal screening, the band absorption ratios of lipid/amide I and carbo/amide I from FT-IR measurements allowed for the selection of Isochrysis sp. and Tetraselmis subcordiformis as the most potential lipid and carbohydrate producers, respectively. The cell composition dynamics of I. zhangjiangensis measured by FT-IR revealed the diversion of carbon allocation from protein to carbohydrate and neutral lipid when nitrogen-replete cells were subjected to nitrogen limitation. The carbo/amide I band absorption ratio had also been demonstrated to depict physiological status under nutrient stress in T. subcordiformis. FT-IR serves as a tool for the simultaneous measurement of lipid, carbohydrate, and protein content in cell.

  4. Structural analysis of bioinspired nano materials with synchrotron far IR spectroscopy.

    PubMed

    Seoudi, Rania S; Dowd, Annette; Smith, Brian J; Mechler, Adam

    2016-04-28

    Bioinspired fibres and hierarchical nano-materials are based on the self-assembly of organic building blocks such as polypeptides. Confirming the core structure of such materials is often challenging as they lack the long-range order required by crystallographic methods. Far-IR spectroscopy characterizes the vibrational modes of large molecular units. These vibrational modes are very sensitive to angle strain and second order interactions such as hydrogen bonding. As such, far-IR spectra hold information about the secondary structure and interactions of large biomolecules. Here we analyze the far-IR vibrational spectra of fibrous nano-materials based on three isomeric unnatural tripeptides, Ac-β(3)Leu-β(3)Ile-β(3)Ala, Ac-β(3)Ile-β(3)Ala-β(3)Leu, and Ac-β(3)Ala-β(3)Leu-β(3)Ile. These peptides have well described self-assembly characteristics, forming one-dimensional nanorods that impose tight conformational constraints on the constituent molecules. The synchrotron far-IR spectroscopic results were interpreted by using density functional theory (DFT) modelling based vibrational analysis. The sensitivity of the spectra to peptide conformation was assessed by comparing the experimental spectra with DFT predictions. In high dielectric implicit solvent, intramolecular hydrogen-bonding is inhibited and thus the energy minimized peptide structure remains close to the 14-helix folding characteristic of substituted β(3)-peptides, giving good agreement between the experimental and predicted vibration spectra. In contrast, energy minimization in vacuum alters the peptide conformation leading to intramolecular hydrogen bonds, and hence the predicted vibration spectra do not agree with the experimental data. Therefore, our results demonstrate the ability of far-IR spectroscopy to identify correct structural predictions and thus open the way for using far-IR spectroscopy for the characterization and structural analysis of bioinspired nano-materials and potentially their

  5. Potential of mid IR spectroscopy in the rapid label free identification of skin malignancies

    NASA Astrophysics Data System (ADS)

    Kastl, Lena; Kemper, Björn; Lloyd, Gavin R.; Nallala, Jayakrupakar; Stone, Nick; Naranjo, Valery; Penaranda, Francisco; Schnekenburger, Jürgen

    2016-03-01

    The rapid inspection of suspicious skin lesions for pathological cell types is the objective of optical point of care diagnostics technologies. A marker free fast diagnosis of skin malignancies would overcome the limitations of the current gold standard surgical biopsy. The time consuming and costly biopsy procedure requires the inspection of each sample by a trained pathologist, which limits the analysis of potentially malignant lesions. Optical technologies like RAMAN or infrared spectroscopy, which provide both, localization and chemical information, can be used to differentiate malignant from healthy tissue by the analysis of multi cell structures and cell type specific spectra. We here report the application of midIR spectroscopy towards fast and reliable skin diagnostics. Within the European research project MINERVA we developed standardized in vitro skin systems with increasing complexity, from single skin cell types as fibroblasts, keratinocytes and melanoma cells, to mixtures of these and finally three dimensional human skin equivalents. The standards were characterized in the established midIR range and also with newly developed systems for fast imaging up to 12 μm. The analysis of the spectra by novel data processing algorithms demonstrated the clear separation of all cell types, especially the tumor cells. The signals from single cell layers were sufficient for cell type differentiation. We have compared different midIR systems and found all of them suitable for specific cell type identification. Our data demonstrate the potential of midIR spectroscopy for fast image acquisition and an improved data processing as sensitive and specific optical biopsy technology.

  6. Mid-IR fiber-optic reflectance spectroscopy for identifying the finish on wooden furniture.

    PubMed

    Poli, T; Chiantore, O; Nervo, M; Piccirillo, A

    2011-05-01

    Mid-IR fiber-optic reflectance spectroscopy (FORS) is a totally noninvasive infrared analytical technique allowing the investigation of artworks without the need for any sampling. The development and optimization of this analytical methodology can provide a tool that is capable of supporting conservators during the first steps of their interventions, yielding fast results and dramatically reducing the number of samples needed to identify the materials involved. Furthermore, since reflection IR spectra suffer from important spectral anomalies that complicate accurate spectral interpretation, it is important to characterize known reference materials and substrates in advance. This work aims to verify the possibility of investigating and identifying the most widely used wood finishes by means of fiber-optic (chalcogenide and metal halides) mid-infrared spectroscopy. Two historically widely employed wood finishes (beeswax, shellac) and two modern ones (a hydrogenated hydrocarbon resin and a microcrystalline wax) were investigated in an extended IR range (from 1000 to 6000 cm(-1)) with reflectance spectroscopy and with FORS. The broad spectral response of the MCT detector was exploited in order to include overtones and combination bands from the NIR spectral range in the investigation. The reflectance spectra were compared with those collected in transmission mode in order to highlight modifications to shapes and intensities, to assign absorptions, and finally to select "marker" bands indicating the presence of certain finishing materials, even when applied onto a substrate such as wood, which shows many absorptions in the mid-infrared region. After the characterization, the different products were applied to samples of aged pear wood and investigated with the same techniques in order to check the ability of mid-IR FORS to reveal the presence and composition of the product on the wooden substrate.

  7. Identification and characterization of salmonella serotypes using DNA spectral characteristics by fourier transform infrared (FT-IR) spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analysis of DNA samples of Salmonella serotypes (Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky) were performed using Fourier transform infrared spectroscopy (FT-IR) spectrometer by placing directly in contact with a diamond attenua...

  8. The importance of correcting for variable probe-sample interactions in AFM-IR spectroscopy: AFM-IR of dried bacteria on a polyurethane film.

    PubMed

    Barlow, Daniel E; Biffinger, Justin C; Cockrell-Zugell, Allison L; Lo, Michael; Kjoller, Kevin; Cook, Debra; Lee, Woo Kyung; Pehrsson, Pehr E; Crookes-Goodson, Wendy J; Hung, Chia-Suei; Nadeau, Lloyd J; Russell, John N

    2016-08-02

    AFM-IR is a combined atomic force microscopy-infrared spectroscopy method that shows promise for nanoscale chemical characterization of biological-materials interactions. In an effort to apply this method to quantitatively probe mechanisms of microbiologically induced polyurethane degradation, we have investigated monolayer clusters of ∼200 nm thick Pseudomonas protegens Pf-5 bacteria (Pf) on a 300 nm thick polyether-polyurethane (PU) film. Here, the impact of the different biological and polymer mechanical properties on the thermomechanical AFM-IR detection mechanism was first assessed without the additional complication of polymer degradation. AFM-IR spectra of Pf and PU were compared with FTIR and showed good agreement. Local AFM-IR spectra of Pf on PU (Pf-PU) exhibited bands from both constituents, showing that AFM-IR is sensitive to chemical composition both at and below the surface. One distinct difference in local AFM-IR spectra on Pf-PU was an anomalous ∼4× increase in IR peak intensities for the probe in contact with Pf versus PU. This was attributed to differences in probe-sample interactions. In particular, significantly higher cantilever damping was observed for probe contact with PU, with a ∼10× smaller Q factor. AFM-IR chemical mapping at single wavelengths was also affected. We demonstrate ratioing of mapping data for chemical analysis as a simple method to cancel the extreme effects of the variable probe-sample interactions.

  9. VizieR Online Data Catalog: IR spectroscopy of AGN & starbursts (Samsonyan+, 2016)

    NASA Astrophysics Data System (ADS)

    Samsonyan, A.; Weedman, D.; Lebouteiller, V.; Barry, D.; Sargsyan, L.

    2016-10-01

    A sample of 379 extragalactic sources is presented that has mid-infrared, high-resolution spectroscopy from the Spitzer Infrared Spectrograph (IRS) and also spectroscopy of the [CII]158μm line from the Herschel Photodetector Array Camera and Spectrometer (PACS). The emission line profiles of [NeII]12.81μm, [NeIII]15.55μm, and [CII]158μm are presented, and intrinsic line widths are determined (full width half maximum of Gaussian profiles after instrumental correction). All line profiles, together with overlays comparing the positions of PACS and IRS observations, are made available in the Cornell Atlas of Spitzer IRS Sources (CASSIS). Sources are classified from active galactic nucleus (AGN) to starburst based on equivalent widths of the 6.2μm polycyclic aromatic hydrocarbon feature. It is found that intrinsic line widths do not change among classifications for [CII], with median widths of 207km/s for AGNs, 248km/s for composites, and 233km/s for starbursts. The [NeII] line widths also do not change with classification, but [NeIII] lines are progressively broader from starburst to AGN. A few objects with unusually broad lines or unusual redshift differences in any feature are identified. (1 data file).

  10. Monitoring of bacterial growth and structural analysis as probed by FT-IR spectroscopy.

    PubMed

    Zeroual, W; Choisy, C; Doglia, S M; Bobichon, H; Angiboust, J F; Manfait, M

    1994-06-30

    Fourier-transform infrared spectroscopy was used to explore structural changes in bacteria under different incubation conditions. In particular, differences between Bradyrhizobium japonicum (BRJ) grown in liquid and on solid media were investigated, as well as the rearrangement of BRJ after transfer from one medium to the other. The FT-IR absorption bands located between 1200 and 900 cm-1 region, vary in spectral shape and intensity when BRJ were suspended in solution medium or plated on solid medium. In agreement with the electronic micrograph data, these spectroscopic changes are due to the changes involving the bacterial wall (peptidoglycan) when BRJ are plated in agar medium. By means of this FT-IR ultrastructural study of Bradyrhizobium japonicum bacteria, it has been possible to follow and to evaluate the rate of the molecular change in bacteria without any destructive interference. This indicates that FT-IR spectroscopy can prove to be a valuable technique in the monitoring of metabolic events in bacterial cells relevant to agriculture as well as environmental and health sciences.

  11. Identification of species' blood by attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy.

    PubMed

    Mistek, Ewelina; Lednev, Igor K

    2015-09-01

    Blood is one of the most common and informative forms of biological evidence found at a crime scene. A very crucial step in forensic investigations is identifying a blood stain's origin. The standard methods currently employed for analyzing blood are destructive to the sample and time-consuming. In this study, attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy is used as a confirmatory, nondestructive, and rapid method for distinction between human and animal (nonhuman) blood. Partial least squares-discriminant analysis (PLS-DA) models were built and demonstrated complete separation between human and animal donors, as well as distinction between three separate species: human, cat, and dog. Classification predictions of unknown blood donors were performed by the model, resulting in 100 % accuracy. This study demonstrates ATR FT-IR spectroscopy's great potential for blood stain analysis and species discrimination, both in the lab and at a crime scene since portable ATR FT-IR instrumentation is commercially available.

  12. Advanced algorithms for the identification of mixtures using condensed-phase FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Arnó, Josep; Andersson, Greger; Levy, Dustin; Tomczyk, Carol; Zou, Peng; Zuidema, Eric

    2011-06-01

    FT-IR spectroscopy is the technology of choice to identify solid and liquid phase unknown samples. Advances in instrument portability have made possible the use of FT-IR spectroscopy in emergency response and military field applications. The samples collected in those harsh environments are rarely pure and typically contain multiple chemical species in water, sand, or inorganic matrices. In such critical applications, it is also desired that in addition to broad chemical identification, the user is warned immediately if the sample contains a threat or target class material (i.e. biological, narcotic, explosive). The next generation HazMatID 360 combines the ruggedized design and functionality of the current HazMatID with advanced mixture analysis algorithms. The advanced FT-IR instrument allows effective chemical assessment of samples that may contain one or more interfering materials like water or dirt. The algorithm was the result of years of cumulative experience based on thousands of real-life spectra sent to our ReachBack spectral analysis service by customers in the field. The HazMatID 360 combines mixture analysis with threat detection and chemical hazard classification capabilities to provide, in record time, crucial information to the user. This paper will provide an overview of the software and algorithm enhancements, in addition to examples of improved performance in mixture identification.

  13. [Study on the identification of radix scutellariae and extract using Fourier transform infrared spectroscopy and two-dimensional IR correlation spectroscopy].

    PubMed

    Zhang, Chun-hui; Zhang, Gui-jun; Sun, Su-qin; Tu, Ya

    2010-07-01

    2D-IR correlation spectroscopy was used to do the research on crude and prepared drug of radix scutellariae and the extracts of them. The results show that the holistic shape of peaks among them are similar in the FTIR spectra. In second derivative spectra, the two absorption peaks: 1,745 and 1,411 cm(-1) of processed products move to the bigger wavenumber direction, while 1,357 cm(-1) of processed products moves to the smaller wavenumber direction; There are conspicuous differences in Two-dimensional infrared correlation spectroscopy among them: Four characteristic peaks are shown between 1,300 and 1,800 cm(-1). The intensity of peak at 1,575 cm(-1) is the strongest. There are three main districts about the autopeaks of sliced scutellariae. Wine-fried scutellariae has two auto-peak districts, in which all the auto-peaks are positively correlated. The FTIR spectra of total glycoside extract of different samples present characteristic peaks at 1,615, 1,585, 1,450 cm(-1) (vibration of phenyl framework) and 1,658 cm(-1) (=C-O ) respectively, therefore, the authors speculated that their mutual component is the compound of phenolic glycoside. The two-dimensional infrared correlation spectra present five automatic peaks (vibration of phenyl framework) in 800-1,800 cm(-1) (1,366, 1,420, 1,508, 1,585, 1,669 cm(-1)). So the authors can conclude that a lot of information can be provided by macro-fingerprint technology of infrared spectroscopy which can evaluate overall quality of radix scutellariae accurately and be used to study the characteristics of relevance of crude and prepared scutellariae.

  14. Collaborative Student Laboratory Exercise Using FT-IR Spectroscopy for the Kinetics Study of a Biotin Analogue

    ERIC Educational Resources Information Center

    Leong, Jhaque; Ackroyd, Nathan C.; Ho, Karen

    2014-01-01

    The synthesis of N-methoxycarbonyl-2-imidazolidone, an analogue of biotin, was conducted by organic chemistry students and confirmed using FT-IR and H NMR. Spectroscopy students used FT-IR to measure the rate of hydrolysis of the product and determined the rate constant for the reaction using the integrated rate law. From the magnitude of the rate…

  15. Attenuated total reflectance-FT-IR spectroscopy for gunshot residue analysis: potential for ammunition determination.

    PubMed

    Bueno, Justin; Sikirzhytski, Vitali; Lednev, Igor K

    2013-08-06

    The ability to link a suspect to a particular shooting incident is a principal task for many forensic investigators. Here, we attempt to achieve this goal by analysis of gunshot residue (GSR) through the use of attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FT-IR) combined with statistical analysis. The firearm discharge process is analogous to a complex chemical process. Therefore, the products of this process (GSR) will vary based upon numerous factors, including the specific combination of the firearm and ammunition which was discharged. Differentiation of FT-IR data, collected from GSR particles originating from three different firearm-ammunition combinations (0.38 in., 0.40 in., and 9 mm calibers), was achieved using projection to latent structures discriminant analysis (PLS-DA). The technique was cross (leave-one-out), both internally and externally, validated. External validation was achieved via assignment (caliber identification) of unknown FT-IR spectra from unknown GSR particles. The results demonstrate great potential for ATR-FT-IR spectroscopic analysis of GSR for forensic purposes.

  16. Advanced Photoemission Spectroscopy Investigations Correlated with DFT Calculations on the Self-Assembly of 2D Metal Organic Frameworks Nano Thin Films.

    PubMed

    Elzein, Radwan; Chang, Chun-Min; Ponomareva, Inna; Gao, Wen-Yang; Ma, Shengqian; Schlaf, Rudy

    2016-11-16

    Metal-organic frameworks (MOFs) deposited from solution have the potential to form 2-dimensional supramolecular thin films suitable for molecular electronic applications. However, the main challenges lie in achieving selective attachment to the substrate surface, and the integration of organic conductive ligands into the MOF structure to achieve conductivity. The presented results demonstrate that photoemission spectroscopy combined with preparation in a system-attached glovebox can be used to characterize the electronic structure of such systems. The presented results demonstrate that porphyrin-based 2D MOF structures can be produced and that they exhibit similar electronic structure to that of corresponding conventional porphyrin thin films. Porphyrin MOF multilayer thin films were grown on Au substrates prefunctionalized with 4-mercaptopyridine (MP) via incubation in a glovebox, which was connected to an ultrahigh vacuum system outfitted with photoelectron spectroscopy. The thin film growth process was carried out in several sequential steps. In between individual steps the surface was characterized by photoemission spectroscopy to determine the valence bands and evaluate the growth mode of the film. A comprehensive evaluation of X-ray photoemission spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and inverse photoemission spectroscopy (IPES) data was performed and correlated with density functional theory (DFT) calculations of the density of states (DOS) of the films involved to yield the molecular-level insights into the growth and the electronic properties of MOF-based 2D thin films.

  17. Determination of Cellulose Fiber Structure Using IR Reflectance Spectroscopy of Paper

    NASA Astrophysics Data System (ADS)

    Derkacheva, O. Yu.

    2015-01-01

    A rapid and non-destructive method for analyzing the structure of cellulose fibers using IR reflectance spectroscopy from a paper surface was developed and verified for correctness. IR absorption and reflectance spectra of standard paper samples of known composition (sheets made of four fibers of different origin without additives and with additives of kaolin and chalk) were analyzed. Good correlations between these two spectral methods were found for the studied samples. Calibration curves were useful for assessing the structure of cellulose samples from XVIth century historical paper. Data on the degree of cellulose ordering that were obtained from the paper reflectance spectra indicated that the studied sheets consisted mainly of flax fibers with added cotton. This agreed fully with the historical fact that the studied samples were rag papers.

  18. Linear dichroism amplification: Adapting a long-known technique for ultrasensitive femtosecond IR spectroscopy

    SciTech Connect

    Rehault, Julien; Helbing, Jan; Zanirato, Vinicio; Olivucci, Massimo

    2011-03-28

    We demonstrate strong amplification of polarization-sensitive transient IR signals using a pseudo-null crossed polarizer technique first proposed by Keston and Lospalluto [Fed. Proc. 10, 207 (1951)] and applied for nanosecond flash photolysis in the visible by Che et al. [Chem. Phys. Lett. 224, 145 (1994)]. We adapted the technique to ultrafast pulsed laser spectroscopy in the infrared using photoelastic modulators, which allow us to measure amplified linear dichroism at kilohertz repetition rates. The method was applied to a photoswitch of the N-alkylated Schiff base family in order to demonstrate its potential of strongly enhancing sensitivity and signal to noise in ultrafast transient IR experiments, to simplify spectra and to determine intramolecular transition dipole orientations.

  19. Biomimetic environment to study E. coli complex I through surface-enhanced IR absorption spectroscopy.

    PubMed

    Kriegel, Sébastien; Uchida, Taro; Osawa, Masatoshi; Friedrich, Thorsten; Hellwig, Petra

    2014-10-14

    In this study complex I was immobilized in a biomimetic environment on a gold layer deposited on an ATR-crystal in order to functionally probe the enzyme against substrates and inhibitors via surface-enhanced IR absorption spectroscopy (SEIRAS) and cyclic voltammetry (CV). To achieve this immobilization, two methods based on the generation of a high affinity self-assembled monolayer (SAM) were probed. The first made use of the affinity of Ni-NTA toward a hexahistidine tag that was genetically engineered onto complex I and the second exploited the affinity of the enzyme toward its natural substrate NADH. Experiments were also performed with complex I reconstituted in lipids. Both approaches have been found to be successful, and electrochemically induced IR difference spectra of complex I were obtained.

  20. Femtosecond IR pump-probe spectroscopy of nonlinear energy localization in protein models and model proteins.

    PubMed

    Hamm, Peter

    2009-02-01

    This paper reviews our experimental and theoretical efforts toward understanding vibrational self-trapping of the amide I and N-H mode of crystalline acetanilide (ACN), other similar hydrogen-bonded crystals, as well as of model peptides. In contrast to previous works, we used nonlinear IR spectroscopy as the experimental tool, which is specifically sensitive to the anharmonic contributions of the intramolecular interactions (as the nonlinear IR response of set of harmonic oscillators vanishes exactly). Our work reconfirms the previous assignment of the two bands of the amide I mode of ACN as being a self-trapped and a free exciton state, but in addition also establishes the lifetimes of these states and identifies the relevant phonons. Furthermore, we provide evidence for vibrationally self-trapped states also in model alpha-helices. However, given the short lifetime, any biological relevance in the sense of Davydov's initial proposal can probably be ruled out.

  1. Thermal properties of tannin extracted from Anacardium occidentale L. using TGA and FT-IR spectroscopy.

    PubMed

    Viswanath, Vinod; Leo, Vincent Vineeth; Prabha, S Sabna; Prabhakumari, C; Potty, V P; Jisha, M S

    2016-01-01

    The chemical nature of the polyphenols of cashew kernel testa has been determined. Testa contains tannins, which present large molecular complexity and has an ancient use as tanning agents. The use of tannins extracted from cashew testa, considered in many places as a waste, grants an extra value to the cashew. In this work we have analysed through high performance liquid chromatography, infrared spectroscopy (FT-IR) and thermo gravimetric analysis the average molecular weight, main functional groups and thermal properties of tannins extracted from Anacardium occidentale L. The results of these analyses are compared with the commercial grade tannic acid. The FT-IR spectra showed bands characteristic of C = C, C-C and OH bonds. This important bioactive compound present in the cashew nut kernel testa was suggested as an interesting economical source of antioxidants for use in the food and nutraceutical industry.

  2. Multifrequency high precise subTHz-THz-IR spectroscopy for exhaled breath research

    NASA Astrophysics Data System (ADS)

    Vaks, Vladimir L.; Domracheva, Elena G.; Pripolzin, Sergey I.; Chernyaeva, Mariya B.

    2016-09-01

    Nowadays the development of analytical spectroscopy with high performance, sensitivity and spectral resolution for exhaled breath research is attended. The method of two-frequency high precise THz spectroscopy and the method of high precise subTHz-THz-IR spectroscopy are presented. Development of a subTHz-THz-IR gas analyzer increases the number of gases that can be identified and the reliability of the detection by confirming the signature in both THz and MIR ranges. The testing measurements have testified this new direction of analytical spectroscopy to open widespread trends of its using for various problems of medicine and biology. First of all, there are laboratory investigations of the processes in exhaled breath and studying of their dynamics. Besides, the methods presented can be applied for detecting intermediate and short time living products of reactions in exhaled breath. The spectrometers have been employed for investigations of acetone, methanol and ethanol in the breath samples of healthy volunteers and diabetes patients. The results have demonstrated an increased concentration of acetone in breath of diabetes patients. The dynamic of changing the acetone concentration before and after taking the medicines is discovered. The potential markers of pre-cancer states and oncological diseases of gastrointestinal tract organs have been detected. The changes in the NO concentration in exhaled breath of cancer patients during radiotherapy as well as increase of the NH3 concentration at gastrointestinal diseases have been revealed. The preliminary investigations of biomarkers in three frequency ranges have demonstrated the advantages of the multifrequency high precise spectroscopy for noninvasive medical diagnostics.

  3. 193Ir Mössbauer spectroscopy of Pt-IrO 2 nanoparticle catalysts developed for detection and removal of carbon monoxide from air

    NASA Astrophysics Data System (ADS)

    Sawicki, J. A.; Marcinkowska, K.; Wagner, F. E.

    2010-08-01

    Mössbauer spectroscopy of 73.0 keV gamma-ray transition in 193Ir and supplementary analytical techniques were used to study the microstructure and chemical form of polymer-supported hydrophobic bimetallic Pt-Ir catalysts for detection and removal of CO from humid air at ambient conditions. The catalysts, typically with a composition of 9 wt.% Pt and 1 wt.% Ir, were prepared by incipient wetness impregnation of polystyrene-divinylbenzene (SDB) granules with ethanol solutions of hexachloroplatinic and hexachloroiridic acids. This procedure, followed by reduction in H 2 or CO at only 200 °C or 250 °C, resulted in formation of highly-dispersed Pt-Ir particles usually smaller than 20 nm and having high catalytic activity and selectivity. Mössbauer spectra of 73.0 keV gamma-ray transition in 193Ir were taken after consecutive steps of preparation and exposure of catalysts to better understand and further improve the fabrication processes. In the as-impregnated state, iridium was found mostly as Ir(III) in [IrCl 6] 3- ions, with only a small fraction of Ir(IV) in [IrCl 6] 2- ions. The iridium in bimetallic clusters formed by reduction in hydrogen showed a strong tendency towards oxidation on exposure to air at room temperature, while Pt remained mostly metallic. In the most active and stable catalysts, the Ir and Pt in metallic regions of the clusters did not tend to segregate, unlike in Pt-Ir/silica-supported catalysts studied by us earlier. Further, this study shows that the IrO 2-like regions in the clusters exhibit stronger deviations from local symmetry and stoichiometry of crystalline IrO 2 than observed previously in Pt-Ir/silica catalysts. Our study also indicates that in the examined Pt-IrO 2 nanoparticles iridium largely provides the dissociative O 2 adsorption sites, while the CO adsorption occurs primarily at metallic Pt sites.

  4. [Evaluation of Malassezia species by Fourier transform infrared (FT-IR) spectroscopy].

    PubMed

    Ergin, Cağrı; Vuran, M Emre; Gök, Yaşar; Ozdemir, Durmuş; Karaarslan, Aydın; Kaleli, Ilknur; Zorbozan, Orçun; Kabay, Nilgün; Con, Ahmet Hilmi

    2011-10-01

    Malassezia species which are lipophilic exobasidiomycetes fungi, have been accepted as members of normal cutaneous flora as well as causative agent of certain skin diseases. In routine microbiology laboratory, species identification based on phenotypic characters may not yield identical results with taxonomic studies. Lipophilic and lipid-dependent Malassezia yeasts require lipid-enriched complex media. For this reason, Fourier transform infrared (FT-IR) spectroscopy analysis focused on lipid window may be useful for identification of Malassezia species. In this study, 10 different standard Malassezia species (M.dermatis CBS 9145, M.furfur CBS 7019, M.japonica CBS 9432, M.globosa CBS 7966, M.nana CBS 9561, M.obtusa CBS 7876, M.pachydermatis CBS 1879, M.slooffiae CBS 7956, M.sympodialis CBS 7222 and M.yamatoensis CBS 9725) which are human pathogens, have been analyzed by FT-IR spectroscopy following standard cultivation onto modified Dixon agar medium. Results showed that two main groups (M1; M.globosa, M.obtusa, M.sympodialis, M.dermatis, M.pachydermatis vs, M2; M.furfur, M.japonica, M.nana, M.slooffiae, M.yamatoensis) were discriminated by whole spectra analysis. M.obtusa in M1 by 1686-1606 cm-1 wavenumber ranges and M.japonicum in M2 by 2993-2812 cm-1 wavenumber ranges were identified with low level discrimination power. Discriminatory areas for species differentiation of M1 members as M.sympodialis, M.globosa and M.pachydermatis and M2 members as M.furfur and M.yamatoensis could not be identified. Several spectral windows analysis results revealed that FT-IR spectroscopy was not sufficient for species identification of culture grown Malassezia species.

  5. Characterization of laser-treated Opuntia using FT-IR spectroscopy and thermal analysis

    NASA Astrophysics Data System (ADS)

    Mejías Díaz, K. D.; Flores Reyes, T.; Ponce Cabrera, L.; Domínguez Sánchez, M.; Arronte García, M.; de Posada Piñán, E.

    2013-07-01

    This paper presents the characterization of Opuntia samples whose thorns were removed by laser pulses. The characterization was performed by Fourier transform infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC). In this study we performed a comparative analysis of samples before and after treatment by using a Nd:YAG laser emitting at 1064 nm with an energy variable of up to 0.9 J. It was determined that no significant morphological or compositional changes had taken place in the cactus epidermis due to the laser treatment.

  6. Structure-Activity Relations In Enzymes: An Application Of IR-ATR Modulation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fringeli, Urs P.; Ahlstrom, Peter; Vincenz, Claudius; Fringeli, Marianna

    1985-12-01

    Relations between structure and specific activity in immobilized acetylcholinesterase (ACNE) have been studied by means of pH- and Ca++-modulation technique combined with attenuated total reflection (ATR) infrared (IR) spectroscopy and enzyme activity measurement. Periodic modulation of pH and Ca++-concentration enabled a periodic on-off switching of about 40% of the total enzyme activity. It was found that about 0.5 to 1% of the amino acids were involved in this process. These 15 to 30 amino acids assumed antiparallel pleated sheet structure in the inhibited state and random and/or helical structure in the activated state.

  7. Using FT-IR Spectroscopy to Elucidate the Structures of Ablative Polymers

    NASA Technical Reports Server (NTRS)

    Fan, Wendy

    2011-01-01

    The composition and structure of an ablative polymer has a multifaceted influence on its thermal, mechanical and ablative properties. Understanding the molecular level information is critical to the optimization of material performance because it helps to establish correlations with the macroscopic properties of the material, the so-called structure-property relationship. Moreover, accurate information of molecular structures is also essential to predict the thermal decomposition pathways as well as to identify decomposition species that are fundamentally important to modeling work. In this presentation, I will describe the use of infrared transmission spectroscopy (FT-IR) as a convenient tool to aid the discovery and development of thermal protection system materials.

  8. A structural study of fentanyl by DFT calculations, NMR and IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Asadi, Zahra; Esrafili, Mehdi D.; Vessally, Esmail; Asnaashariisfahani, Manzarbanou; Yahyaei, Saeideh; Khani, Ali

    2017-01-01

    N-(1-(2-phenethyl)-4-piperidinyl-N-phenyl-propanamide (fentanyl) is synthesized and characterized by FT-IR, 1H NMR, 13C NMR, mass spectroscopy and elemental analyses. The geometry optimization is performed using the B3LYP and M06 density functionals with 6-311 + G(d) and 6-311++G(d,p) basis sets. The complete assignments are performed on the basis of the potential energy distribution (PED) of the all vibrational modes. Almost a nice correlation is found between the calculated 13C chemical shifts and experimental data. The frontier molecular orbitals and molecular electrostatic potential of fentanyl are also obtained.

  9. FT-IR and FT-NIR Raman spectroscopy in biomedical research

    NASA Astrophysics Data System (ADS)

    Naumann, D.

    1998-06-01

    FT-IR and FT-NIR Raman spectra of intact microbial, plant animal or human cells, tissues, and body fluids are highly specific, fingerprint-like signatures which can be used to discriminate between diverse microbial species and strains, characterize growth-dependent phenomena and cell-drug interactions, and differentiate between various disease states. The spectral information potentially useful for biomedical characterizations may be distributed over the entire infrared region of the electromagnetic spectrum, i.e. over the near-, mid-, and far-infrared. It is therefore a key problem how the characteristic vibrational spectroscopic information can be systematically extracted from the infrared spectra of complex biological samples. In this report these questions are addressed by applying factor and cluster analysis treating the classification problem of microbial infrared spectra as a model task. Particularly interesting applications arise by means of a light microscope coupled to the FT-IR spectrometer. FT-IR spectra of single microcolonies of less than 40 μm in diameter can be obtained from colony replica applying a stamping technique that transfers the different, spatially separated microcolonies from the culture plate to a special IR-sample holder. Using a computer controlled x,y-stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro-organisms can be integrated in one single apparatus. Since high quality, essentially fluorescence free Raman spectra may now be obtained in relatively short time intervals on previously intractable biological specimens, FT-IR and NIR-FT-Raman spectroscopy can be used in tandem to characterize biological samples. This approach seems to open up new horizons for biomedical characterizations of complex biological systems.

  10. Discrimination of adulterated milk based on two-dimensional correlation spectroscopy (2D-COS) combined with kernel orthogonal projection to latent structure (K-OPLS).

    PubMed

    Yang, Renjie; Liu, Rong; Xu, Kexin; Yang, Yanrong

    2013-12-01

    A new method for discrimination analysis of adulterated milk and pure milk is proposed by combining two-dimensional correlation spectroscopy (2D-COS) with kernel orthogonal projection to latent structure (K-OPLS). Three adulteration types of milk with urea, melamine, and glucose were prepared, respectively. The synchronous 2D spectra of adulterated milk and pure milk samples were calculated. Based on the characteristics of 2D correlation spectra of adulterated milk and pure milk, a discriminant model of urea-tainted milk, melamine-tainted milk, glucose-tainted milk, and pure milk was built by K-OPLS. The classification accuracy rates of unknown samples were 85.7, 92.3, 100, and 87.5%, respectively. The results show that this method has great potential in the rapid discrimination analysis of adulterated milk and pure milk.

  11. Coriolis interaction of the ν12 and 2ν10 bands of ethylene-cis-1,2-d2 (cis-C2H2D2) by high-resolution FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ng, L. L.; Tan, T. L.; Gabona, M. G.

    2015-10-01

    The spectrum of the A-type ν12 band of ethylene-cis-1,2-d2 (cis-C2H2D2) was recorded at an unapodized resolution of 0.0063 cm-1 in the wavenumber range of 1270-1410 cm-1. The band is perturbed through a c-type Coriolis resonance with the unobserved B-type 2ν10 band which is situated approximately 11 cm-1 below the ν12 band center. In this work, a total of 73 new infrared transitions of high J and Ka values of the ν12 band were identified and assigned for a rovibrational analysis. Finally, a total of 844 perturbed and unperturbed infrared transitions (including those previously reported) of ν12 were assigned and fitted using Watson's A-reduced Hamiltonian in the Ir representation with the inclusion of a second-order c-type Coriolis interaction term to derive a set of rovibrational constants of better accuracy for the ν12 = 1 state up to two sextic terms. Improved rotational and two quartic centrifugal distortion constants were also derived for the ν10 = 2 state of cis-C2H2D2 from the analysis of the Coriolis interaction between the two perturbing bands. The ν12 band is found to be centered at 1341.150877 ± 0.000088 cm-1 while that of 2ν10 is 1330.6360 ± 0.0113 cm-1. By fitting the infrared lines of ν12 with an rms deviation of 0.00067 cm-1, a second-order c-Coriolis coupling constant was accurately determined. A set of ground state rovibrational constants up to two sextic terms of comparable accuracy to those previously reported was also derived from a simultaneous fit of a total of 1728 ground state combination differences (GSCDs) from the infrared transitions of the present analysis and those of the ν7 band of cis-C2H2D2 together with 22 microwave transitions. The root-mean-square deviation of the GSCD fit was 0.00030 cm-1.

  12. Interaction of mineral surfaces with simple organic molecules by diffuse reflectance IR spectroscopy (DRIFT)

    SciTech Connect

    Thomas, Joan E.; Kelley, Michael J.

    2008-06-01

    Diffuse reflectance Fourier-transform infrared spectroscopy (DRIFTS) was used to characterize multi-layers of lysine, glutamic acid and salicylic acid on -alumina and kaolinite surfaces. The results agreed well with those previously obtained by ATR-IR in aqueous media where available, indicating that DRIFT may be regarded as effectively an in-situ spectroscopy for these materials. In the case of salicylic acid adsorption onto γ-alumina, DRIFTS was used to identify monolayer coverage and to detect molecules down to coverage of 3% of a monolayer. The spectroscopic results as to coverage were confirmed by analysis of the solutions used for treatment. The spectra obtained allowed identification of changes in the bonding environment with increasing surface coverage. DRIFTS, offers several advantages in terms of materials, experimental technique and data treatment, motivating further investigations.

  13. Conformational equilibrium of phenylacetic acid and its halogenated analogues through theoretical studies, NMR and IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Levandowski, Mariana N.; Rozada, Thiago C.; Melo, Ulisses Z.; Basso, Ernani A.; Fiorin, Barbara C.

    2017-03-01

    This paper presents a study on the conformational preferences of phenylacetic acid (PA) and its halogenated analogues (FPA, CPA, BPA). To clarify the effects that rule these molecules' behaviour, theoretical calculations were used, for both the isolated phase and solution, combined with nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy. Most conformations of phenylacetic acid and its halogenated derivatives are stabilized through the hyperconjugative effect, which rules the conformational preference. NMR analyses showed that even with the variation in medium polarity, there was no significant change in the conformation population. Infrared spectroscopy showed similar results for all compounds under study. In most spectra, two bands were found through the carbonyl deconvolution, which is in accordance with the theoretical data. It was possible to prove that variation in the nature of the substituent in the ortho position had no significant influence on the conformational equilibrium.

  14. X-ray Absorption Spectroscopy Study of the Effect of Rh doping in Sr2IrO4

    PubMed Central

    Sohn, C. H.; Cho, Deok-Yong; Kuo, C.-T.; Sandilands, L. J.; Qi, T. F.; Cao, G.; Noh, T. W.

    2016-01-01

    We investigate the effect of Rh doping in Sr2IrO4 using X-ray absorption spectroscopy (XAS). We observed appearance of new electron-addition states with increasing Rh concentration (x in Sr2Ir1−xRhxO4) in accordance with the concept of hole doping. The intensity of the hole-induced state is however weak, suggesting weakness of charge transfer (CT) effect and Mott insulating ground states. Also, Ir Jeff = 1/2 upper Hubbard band shifts to lower energy as x increases up to x = 0.23. Combined with optical spectroscopy, these results suggest a hybridisation-related mechanism, in which Rh doping can weaken the (Ir Jeff = 1/2)–(O 2p) orbital hybridisation in the in-planar Rh-O-Ir bond networks. PMID:27025538

  15. 3D localized 2D ultrafast J-resolved magnetic resonance spectroscopy: in vitro study on a 7 T imaging system.

    PubMed

    Roussel, T; Giraudeau, P; Ratiney, H; Akoka, S; Cavassila, S

    2012-02-01

    2D Magnetic Resonance Spectroscopy (MRS) is a well known tool for the analysis of complicated and overlapped MR spectra and was therefore originally used for structural analysis. It also presents a potential for biomedical applications as shown by an increasing number of works related to localized in vivo experiments. However, 2D MRS suffers from long acquisition times due to the necessary collection of numerous increments in the indirect dimension (t(1)). This paper presents the first 3D localized 2D ultrafast J-resolved MRS sequence, developed on a small animal imaging system, allowing the acquisition of a 3D localized 2D J-resolved MRS spectrum in a single scan. Sequence parameters were optimized regarding Signal-to-Noise ratio and spectral resolution. Sensitivity and spatial localization properties were characterized and discussed. An automatic post-processing method allowing the reduction of artifacts inherent to ultrafast excitation is also presented. This sequence offers an efficient signal localization and shows a great potential for in vivo dynamic spectroscopy.

  16. The hybrid A/B type ν12 band of trans-ethylene-1,2-d2 by high-resolution Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, T. L.; Ng, L. L.; Gabona, M. G.

    2015-06-01

    The FTIR absorption spectrum of the hybrid A/B type ν12 band of trans-ethylene-1,2-d2 (trans-C2H2D2) centered at 1298.038145(19) cm-1 in the 1220-1420 cm-1 region was recorded at an unapodized resolution of 0.0063 cm-1. Using Watson's A-reduced Hamiltonian in the Ir representation, a total of 2892 a- and b-type transitions was assigned and fitted to upper state (ν12 = 1) rovibrational constants up to three sextic terms. The b-type feature of the band was analyzed for the first time. The root-mean-square deviation of the upper state ν12 = 1 fit was 0.00037 cm-1 while the accuracy of the measurements of the line frequencies was limited to ±0.00065 cm-1. A set of ground state rovibrational constants up to three sextic terms was also derived from the simultaneous fit of 4597 ground state combination differences from the present analysis and those of the ν4 + ν8 and ν4 bands of trans-C2H2D2 with a root-mean-square deviation of 0.00039 cm-1. The transition dipole moment ratio |μa/μb | of the ν12 band of trans-C2H2D2 was found to be 5.0 ± 0.3.

  17. Probing a Conformational Change of a Photoswitchable Allosteric Protein with Ultrafast IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stucki-Buchli, Brigitte; Waldauer, Steven A.; Walser, Reto; Pfister, Rolf; Hamm, Peter

    2015-03-01

    By covalently linking an azobenzene photoswitch across the binding groove of an allosteric protein domain, a conformational transition can be initiated by a laser pulse.. This transition mimics the conformational change of the unmodified domain upon ligand binding. We have studied this light induced conformational change by ultrafast IR spectroscopy. So far, we have probed two IR absorption bands: First, the amide I band which arises from the carbonyl stretch vibration of all amide groups in the protein and is sensitive to overall structural changes, and second, a vibration localized on the photoswitch, which is sensitive to its local environment, namely the opening of the binding groove. We have found that the binding groove opens on a timescale of 100 ns in a non-exponential manner. Even after the binding groove has equilibrated, the protein conformation still continues to change elsewhere. Currently, we are incorporating site-specific IR labels, to learn more about the response of the protein to the perturbation of the binding groove.

  18. Spectroscopy of the enigmatic short-period cataclysmic variable IR Com in an extended low state

    NASA Astrophysics Data System (ADS)

    Manser, C. J.; Gänsicke, B. T.

    2014-07-01

    We report the occurrence of a deep low state in the eclipsing short-period cataclysmic variable (CV) IR Com, lasting more than two years. Spectroscopy obtained in this state shows the system as a detached white dwarf plus low-mass companion, indicating that accretion has practically ceased. The spectral type of the companion derived from the SDSS spectrum is M6-7, somewhat later than expected for the orbital period of IR Com. Its radial velocity amplitude, K2 = 419.6 ± 3.4 km s-1, together with the inclination of 75°-90° implies 0.8 < Mwd <1.0 M⊙. We estimate the white dwarf temperature to be ≃15 000 K, and the absence of Zeeman splitting in the Balmer lines rules out magnetic fields in excess of ≃5 MG. IR Com still defies an unambiguous classification, in particular the occurrence of a deep, long low state is so far unique among short-period CVs that are not strongly magnetic.

  19. Detection of starch adulteration in onion powder by FT-NIR and FT-IR spectroscopy.

    PubMed

    Lohumi, Santosh; Lee, Sangdae; Lee, Wang-Hee; Kim, Moon S; Mo, Changyeun; Bae, Hanhong; Cho, Byoung-Kwan

    2014-09-24

    Adulteration of onion powder with cornstarch was identified by Fourier transform near-infrared (FT-NIR) and Fourier transform infrared (FT-IR) spectroscopy. The reflectance spectra of 180 pure and adulterated samples (1-35 wt % starch) were collected and preprocessed to generate calibration and prediction sets. A multivariate calibration model of partial least-squares regression (PLSR) was executed on the pretreated spectra to predict the presence of starch. The PLSR model predicted adulteration with an R(p)2 of 0.98 and a standard error of prediction (SEP) of 1.18% for the FT-NIR data and an R(p)2 of 0.90 and SEP of 3.12% for the FT-IR data. Thus, the FT-NIR data were of greater predictive value than the FT-IR data. Principal component analysis on the preprocessed data identified the onion powder in terms of added starch. The first three principal component loadings and β coefficients of the PLSR model revealed starch-related absorption. These methods can be applied to rapidly detect adulteration in other spices.

  20. Vibrational overtone combination spectroscopy (VOCSY)-a new way of using IR and NIR data.

    PubMed

    Alm, Erik; Bro, Rasmus; Engelsen, Søren B; Karlberg, Bo; Torgrip, Ralf J O

    2007-05-01

    This work explores a novel method for rearranging 1st order (one-way) infra-red (IR) and/or near infra-red (NIR) ordinary spectra into a representation suitable for multi-way modelling and analysis. The method is based on the fact that the fundamental IR absorption and the first, second, and consecutive overtones of NIR absorptions represent identical chemical information. It is therefore possible to rearrange these overtone regions of the vectors comprising an IR and NIR spectrum into a matrix where the fundamental, 1st, 2nd, and consecutive overtones of the spectrum are arranged as either rows or columns in a matrix, resulting in a true three-way tensor of data for several samples. This tensorization facilitates explorative analysis and modelling with multi-way methods, for example parallel factor analysis (PARAFAC), N-way partial least squares (N-PLS), and Tucker models. The vibrational overtone combination spectroscopy (VOCSY) arrangement is shown to benefit from the "order advantage", producing more robust, stable, and interpretable models than, for example, the traditional PLS modelling method. The proposed method also opens the field of NIR for true peak decomposition--a feature unique to the method because the latent factors acquired using PARAFAC can represent pure spectral components whereas latent factors in principal component analysis (PCA) and PLS usually do not.

  1. Identification of authentic and adulterated Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation analysis

    NASA Astrophysics Data System (ADS)

    Qu, Lei; Chen, Jian-bo; Zhou, Qun; Zhang, Gui-jun; Sun, Su-qin; Guo, Yi-zhen

    2016-11-01

    As a kind of expensive perfume and valuable herb, the commercial Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy and two-dimensional (2D) correlation analysis are employed to establish a simple and quick identification method for the authentic and adulterated ALR. In the conventional infrared spectra, the standard ALR has a strong peak at 1658 cm-1 referring to the conjugated carbonyl of resin, while this peak is absent in the adulterated samples. The position, intensity, and shape of the auto-peaks and cross-peaks of the authentic and adulterated ALR are much different in the synchronous 2D correlation spectra with thermal perturbation. In the range of 1700-1500 cm-1, the standard ALR has four obvious auto-peaks, while the strongest one is at 1659 cm-1. The adulterated sample w-1 has three obvious auto-peaks and the strongest one is at 1647 cm-1. The adulterated sample w-2 has three obvious auto-peaks and the strongest one is at 1519 cm-1. The adulterated sample w-3 has four obvious auto-peaks and the strongest one is at 1690 cm-1. The above auto-peaks confirm that the standard ALR contains a certain content of resin compounds, while the three counterfeits contain little or different resins. The results show the potential of FT-IR spectroscopy and 2D correlation analysis in the simple and quick identification of authentic and adulterated ALR.

  2. New ultrarapid-scanning interferometer for FT-IR spectroscopy with microsecond time-resolution

    NASA Astrophysics Data System (ADS)

    Süss, B.; Ringleb, F.; Heberle, J.

    2016-06-01

    A novel Fourier-transform infrared (FT-IR) rapid-scan spectrometer has been developed (patent pending EP14194520.4) which yields 1000 times higher time resolution as compared to conventional rapid-scanning spectrometers. The central element to achieve faster scanning rates is based on a sonotrode whose front face represents the movable mirror of the interferometer. A prototype spectrometer with a time resolution of 13 μs was realized, capable of fully automated long-term measurements with a flow cell for liquid samples, here a photosynthetic membrane protein in solution. The performance of this novel spectrometer is demonstrated by recording the photoreaction of bacteriorhodopsin initiated by a short laser pulse that is synchronized to the data recording. The resulting data are critically compared to those obtained by step-scan spectroscopy and demonstrate the relevance of performing experiments on proteins in solution. The spectrometer allows for future investigations of fast, non-repetitive processes, whose investigation is challenging to step-scan FT-IR spectroscopy.

  3. Back-exchange of deuterium in neutron crystallography: characterization by IR spectroscopy

    PubMed Central

    Yee, Ai Woon; Moulin, Martine; Haertlein, Michael; Mitchell, Edward; Forsyth, V. Trevor

    2017-01-01

    The application of IR spectroscopy to the characterization and quality control of samples used in neutron crystallography is described. While neutron crystallography is a growing field, the limited availability of neutron beamtime means that there may be a delay between crystallogenesis and data collection. Since essentially all neutron crystallographic work is carried out using D2O-based solvent buffers, a particular concern for these experiments is the possibility of H2O back-exchange across reservoir or capillary sealants. This may limit the quality of neutron scattering length density maps and of the associated analysis. Given the expense of central facility beamtime and the effort that goes into the production of suitably sized (usually perdeuterated) crystals, a systematic method of exploiting IR spectroscopy for the analysis of back-exchange phenomena in the reservoirs used for crystal growth is valuable. Examples are given in which the characterization of D2O/H2O back-exchange in transthyretin crystals is described. PMID:28381984

  4. Evaluation of Polymerization Efficacy in Composite Resins via FT-IR Spectroscopy and Vickers Microhardness Test

    PubMed Central

    Jafarzadeh, Tahereh-Sadat; Erfan, Mohammad; Behroozibakhsh, Marjan; Fatemi, Mostafa; Masaeli, Reza; Rezaei, Yashar; Bagheri, Hossein; Erfan, Yasaman

    2015-01-01

    Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR) spectroscopy and Vickers microhardness testing at two different depths (top surface, 2 mm). Materials and methods. For FT-IR spectrometry, five cylindrical specimens (5mm in diameter × 2 mm in length) were prepared from each composite resin using Teflon molds and polymerized for 20 seconds. Then, 70-μm wafers were sectioned at the top surface and at2mm from the top surface. The degree of conversion for each sample was calculated using FT-IR spectroscopy. For Vickers micro-hardness testing, three cylindrical specimens were prepared from each composite resin and polymerized for 20 seconds. The Vickers microhardness test (Shimadzu, Type M, Japan) was performed at the top and bottom (depth=2 mm) surfaces of each specimen. Three-way ANOVA with independent variables and Tukey tests were performed at 95% significance level. Results. No significant differences were detected in degree of conversion and microhardness between LED and QTH light-curing units except for the ormocer-based specimen, CeramX, which exhibited significantly higher DC by LED. All the composite resins showed a significantly higher degree of conversion at the surface. Microhardness was not significantly affected by depth, except for Herculite XRV Ultra and CeramX, which showed higher values at the surface. Conclusion. Composite resins containing nano-particles generally exhibited more variations in degree of conversion and microhardness. PMID:26889359

  5. Evaluation of Polymerization Efficacy in Composite Resins via FT-IR Spectroscopy and Vickers Microhardness Test.

    PubMed

    Jafarzadeh, Tahereh-Sadat; Erfan, Mohammad; Behroozibakhsh, Marjan; Fatemi, Mostafa; Masaeli, Reza; Rezaei, Yashar; Bagheri, Hossein; Erfan, Yasaman

    2015-01-01

    Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR) spectroscopy and Vickers microhardness testing at two different depths (top surface, 2 mm). Materials and methods. For FT-IR spectrometry, five cylindrical specimens (5mm in diameter × 2 mm in length) were prepared from each composite resin using Teflon molds and polymerized for 20 seconds. Then, 70-μm wafers were sectioned at the top surface and at2mm from the top surface. The degree of conversion for each sample was calculated using FT-IR spectroscopy. For Vickers micro-hardness testing, three cylindrical specimens were prepared from each composite resin and polymerized for 20 seconds. The Vickers microhardness test (Shimadzu, Type M, Japan) was performed at the top and bottom (depth=2 mm) surfaces of each specimen. Three-way ANOVA with independent variables and Tukey tests were performed at 95% significance level. Results. No significant differences were detected in degree of conversion and microhardness between LED and QTH light-curing units except for the ormocer-based specimen, CeramX, which exhibited significantly higher DC by LED. All the composite resins showed a significantly higher degree of conversion at the surface. Microhardness was not significantly affected by depth, except for Herculite XRV Ultra and CeramX, which showed higher values at the surface. Conclusion. Composite resins containing nano-particles generally exhibited more variations in degree of conversion and microhardness.

  6. Utility of FT-IR imaging spectroscopy in estimating differences between the quality of bovine blastocysts

    NASA Astrophysics Data System (ADS)

    Wiecheć, A.; Opiela, J.; Lipiec, E.; Kwiatek, W. M.

    2013-10-01

    This study was conducted to verify whether the FT-IR spectroscopy and Focal Plane Array (FPA) imaging can be successfully applied to estimate the quality of bovine blastocysts (on the basis of the concentration of nucleic acids and amides). The FT-IR spectra of inner cell mass from blastocysts of three different culture systems were examined. The spectral changes between blastocysts were analyzed in DNA (spectral range of 1240-950 cm-1) and protein amides (1800-1400 cm-1). Blastocyst 1 (BL1-HA) was developed from the fertilized oocyte cultured with low concentration of hialuronian (HA), Blastocyst 2 and 3 were developed from the oocytes cultured in standard conditions. Cleavage stage blastocyst 2 (BL2-SOF) has been cultured in SOF medium while blastocyst 3 (BL3-VERO) was cultured in co-culture with VERO cells. The multivariate statistical analysis (Hierarchical Cluster Analysis - HCA and Principal Component Analysis - PCA) of single cells spectra showed high similarity of cells forming the inner cell mass within single blastocyst. The main variance between the three examined blastocysts was related to amides bands. Differences in the intensities of the amides' peaks between the bovine blastocysts derived from different culture systems indicated that specific proteins reflecting the appearance of a new phenotype were produced. However, for the three blastocysts, the α-helix typical peak was twice more intensive than the β-sheet typical peak suggesting that the differentiation processes had been started. Taking into account the quantitative and qualitative composition of the protein into examined blastocysts, it can be assumed, that the quality of the BL1-HA turned out much more similar to BL3-VERO than to BL2-SOF. FT-IR spectroscopy can be successfully applied in reproductive biology research for quality estimation of oocytes and embryos at varied stages of their development. Moreover this technique proved to be particularly useful when the quantity of the

  7. The Coriolis-interacting ν6 and ν4 bands of ethylene-cis-1,2-d2 (cis-C2H2D2) by high-resolution synchrotron Fourier transform infrared (FTIR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, T. L.; Gabona, M. G.; Wong, Andy; Appadoo, Dominique R. T.; McNaughton, Don

    2016-11-01

    The infrared spectrum of the ν6 band of ethylene-cis-1,2-d2 (cis-C2H2D2) was recorded at the Australian Synchrotron in the 980-1100 cm-1 region at an unapodized resolution of 0.00096 cm-1. Some of the transitions of the ν6 band centered at 1039.768335(30) cm-1 were perturbed by the upper energy levels of the infrared inactive ν4 band at 980.364(24) cm-1 by an a-type Coriolis interaction. Rovibrational analysis of a total of 941 unperturbed and perturbed infrared transitions of the ν6 band was carried out using an asymmetric rotor fitting program based on the Watson's A-reduced Hamiltonian in the Ir representation to derive up to 2 sextic constants for the ν6 = 1 state and 3 rotational constants (A, B, and C) for the ν4 = 1 state with a rms deviation of 0.00028 cm-1. From the perturbed analysis, the a-type Coriolis resonance parameter Z6,4a for the ν6 and ν4 interacting bands was determined to be 0.5249(14) cm-1. The band center and the rotational constants of the ν6 = 1 state were found to agree within 1% to the calculated values using B3LYP/cc-pVTZ and MP2/cc-pVTZ levels of theory. Furthermore, the a-type Coriolis coupling constant of these two bands derived from this work were compared to those experimentally determined previously and presently calculated.

  8. IR fiber-optic evanescent wave spectroscopy (FEWS) for sensing applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Katzir, Abraham

    2016-03-01

    We developed crystalline AgClBr fibers of diameters 0.7-0.9mm that are flexible, non-toxic, insoluble in water and highly transparent between 4-15µm. We used these fibers for various sensing applications. Highly sensitive absorption measurements in the mid-IR may be carried out by Fiber-optic Evanescent Wave Spectroscopy (FEWS). A typical FEWS system is based on three mid-IR components: a tunable source, a detector and a AgClBr fiber sensor that is brought in contact with the samples. We used FTIR spectrometers or tunable gas lasers or quantum cascade lasers (QCLs) as mid-IR sources. We used this FEWS system for measurements on gases, liquids and solids. In particular we used it for several biomedical applications. Measurements in vivo: (1) Early detection of skin diseases (e.g. melanoma). (2) Measurements on cells and bacteria. (3) Measurements on cornea. Measurements in vitro: (4) Characterization of urinary and biliary stones. (5) Blood measurements. The FEWS method is simple, inexpensive and does not require sample processing. It would be useful for diagnostic measurements on the outer part of the body of a patient, as well as for endoscopic measurements. It would also useful for measurements on tissue samples removed from the body. In addition we develop Scanning Near-field Infrared Microscope that will be used for spectral imaging with sub-wavelength resolution in the mid-IR. The various AgClBr fiber-optic sensors are expected to be important diagnostic tools at the hand of physicians in the future.

  9. Far-Ir Action Spectroscopy of Aminophenol and Ethylvanillin: Experiment and Theory

    NASA Astrophysics Data System (ADS)

    Yatsyna, Vasyl; Feifel, Raimund; Zhaunerchyk, Vitali; Bakker, Daniël; Rijs, Anouk

    2015-06-01

    Investigations of molecular structure and conformational isomerism are at the forefront of today's biophysics and biochemistry. In particular, vibrations excited by far-IR radiation can be highly sensitive to the molecular 3D structure as they are delocalized over large parts of the molecule. Current theoretical predictions of vibrational frequencies in the far-IR range are not accurate enough because of the non-local character and anharmonicity of these vibrations. Therefore experimental studies in the far-IR are vital to guide theory towards improved methodology. In this work we present the conformer-specific far-IR spectra of aminophenol and ethylvanillin molecules in the range of 220-800 wn utilizing ion-dip action spectroscopy carried out at the free electron laser FELIX in Nijmegen, Netherlands. The systems studied are aromatic molecules with important functional groups such as the hydroxyl (OH) and amino (NH_2) groups in aminophenol, and the hydroxyl, ethoxy (OCH_2CH_3) and formyl (CHO) groups in ethylvanillin. The experimental spectra show well resolved conformer-specific vibrational bands. In the case of ethylvanillin only two planar conformers have been observed under supersonic jet expansion conditions. Despite the fact that these conformers differ only in the position of oxygen of the formyl group with respect to ethoxy group, they are well distinguishable in far-IR spectra. The capability of numerical methods based on density functional theory (DFT) for predicting vibrational frequencies in this spectral region within the harmonic approximation has been investigated by using several hybrid-functionals such as B3LYP, PBE0, B2PLYP and CAM-B3LYP. An anharmonic correction based on vibrational second order perturbation theory approach was also applied. We have found that the methods we considered are well suited for the assignment of far-IR vibrational features except the modes which are strongly anharmonic, like the NH_2 wagging mode in aminophenol which

  10. Far-Ir Spectroscopy of Neutral Gas Phase Peptides: Signatures from Combined Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Mahé, Jérôme; Gaigeot, Marie-Pierre; Bakker, Daniël; Jaeqx, Sander; Rijs, Anouk

    2016-06-01

    Within the past two decades, action vibrational spectroscopy has become an almost routine experimental method to probe the structures of molecules and clusters in the gas phase (neutral and ions). Such experiments are mainly performed in the 1000-4000 wn fingerprint regions. Though successful in many respects, these spectral domains can be however restrictive in the information provided, and sometimes reach limitations for unravelling structures without ambiguity. In a collaborative work with the group of Dr A.M. Rijs (FELIX laboratory, Radbout University, The Netherlands) we have launched a new strategy where the far-IR/Tera-Hertz domain (100-800 wn domain) is experimentally probed for neutral gas phase molecules. Our group in Paris apply finite temperature DFT-based molecular dynamics (DFT-MD) simulations in order to unravel the complex signatures arising in the far-IR domain, and provide an unambiguous assignment both of the structural conformation of the gas phase molecules (taking into account the experimental conditions) and an understanding of the spectral signatures/fingerprints. We will discuss our experimental and theoretical investigations on two neutral peptides in the 100-800 wn far-IR spectral domain, i.e. Z-Ala6 and PheGly dipeptide, that represent two systems which definitive conformational assignment was not possible without the far IR signatures. We will also present our very recent results on the Phe-X peptide series, where X stands for Gly, Ala, Pro, Val, Ser, Cys, combining experiments and DFT-MD simulations, providing a detailed understanding of the vibrational fingerprints in the far-IR domain. In all exemples, we will show how DFT-MD simulations is the proper theoretical tool to account for vibrational anharmonicities and mode couplings, of prime importance in the far-IR domain. References : J. Mahé, S. Jaeqx, A.M. Rijs, M.P. Gaigeot, Phys. Chem. Chem. Phys., 17 :25905 (2015) S. Jaeqx, J. Oomens, A. Cimas, M.P. Gaigeot, A.M. Rijs, Angew

  11. Terahertz Spectroscopy of the Bending Vibrations of Acetylene 12C2H2 and 12C2D2

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Drouin, B.; Pearson, J.

    2009-12-01

    Several fundamental interstellar molecules, e.g., C2H2, CH4 and C3, are completely symmetric molecules and feature no permanent dipole moment and no pure rotation spectrum. As a result they have only previously been observed in the infrared. However, directly observing them with the rest of the molecular column especially when the source is spatially resolved would be very valuable in understanding chemical evolution. Vibrational difference bands provide a means to detect symmetric molecules with microwave precision using terahertz techniques. Herschel, SOFIA and ALMA have the potential to identify a number of vibrational difference bands of light symmetric species. This paper reports laboratory results on 12C2H2 and 12C2D2. Symmetric acetylene isotopologues have two bending modes, the trans bending and the cis bending. Their difference bands are allowed and occur in the microwave, terahertz, and far-infrared wavelengths, with band origins at 3500 GHz for 12C2H2 and 900 GHz for 12C2D2. Twenty 12C2H2 P branch high-J transitions and two hundred and fifty-one 12C2D2 P Q and R branch transitions have been measured in the 0.2 - 1.6 THz region with precision of 50 to 100 kHz. These lines were modeled together with prior data on the pure bending levels. Significantly improved molecular parameters were obtained for 12C2H2 and 12C2D2 with the combined data set, and new frequency and intensity predictions were made to support astrophysics applications. The research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. S. Y. was supported by an appointment to the NASA Postdoctoral Program, administrated by Oak Ridge Associated Universities through a contract with NASA.

  12. s-SNOM based IR and THz spectroscopy for nanoscale material characterization

    NASA Astrophysics Data System (ADS)

    Gokus, Tobias; Huber, Andreas; Cernescu, Adrian

    Scattering-type Scanning Near-field Optical Microscopy (s-SNOM) allows to overcome the diffraction limit of conventional light microscopy enabling optical measurements at a spatial resolution of 10nm. s-SNOM employs an externally-illuminated sharp metallic AFM tip to create a nanoscale hot-spot at its apex. The optical tip-sample near-field interaction is determined by the local dielectric properties (refractive index) of the sample and detection of the elastically tip-scattered light yields nanoscale resolved near-field images simultaneous to topography. Development of a dedicated Fourier-transform detection module for analyzing light scattered from the tip which is illuminated by a broadband laser source enables IR spectroscopy of complex polymer nanostructures. Applications presented further demonstrate characterization of embedded structural phases in biominerals (bone), organic semiconductors or functional semiconductor nanostructures.Furthermore, by extending the concept of broadband-s-SNOM spectroscopy to the THz-spectral range, we demonstrate optical near-field imaging and spectroscopy at THz-frequencies (0.5-2.5 THz) by coupling the free space beam of a dedicated THz-TDS to the s-SNOM system.

  13. ATR-IR spectroscopy of pendant NH2 groups on silica involved in the Knoevenagel condensation.

    PubMed

    Wirz, Ronny; Ferri, Davide; Baiker, Alfons

    2006-04-11

    The liquid-phase Knoevenagel condensation between benzaldehyde and ethyl cyanoacetate catalyzed by aminopropyl-modified silica has been investigated using in situ attenuated total reflection infrared (ATR-IR) spectroscopy. The aim of the work was to demonstrate the different levels of information on the reaction mechanism that can be achieved by operating the spectroscopic cell in the absence and in the presence of a solvent, in flow-through and stop-flow modes and in combination with concentration modulation spectroscopy. The reaction mechanism involves the formation of an imine intermediate whose existence has been verified in situ by combining in one experiment continuous and stop-flow operations. Identical information has been gained more elegantly using concentration modulation spectroscopy, which additionally provided information on the possible origin of the solvent effect observed in the Knoevenagel reaction. Faster production and consumption of the imine intermediate was observed in cyclohexane solvent than in toluene. Identification of other species evolving on the catalyst surface and monitoring of the effluents of the spectroscopic cell provided some insight in possible catalyst deactivation.

  14. Resonant IR multi-photon dissociation spectroscopy of a trapped and sympathetically cooled biomolecular ion species.

    PubMed

    Wellers, Ch; Borodin, A; Vasilyev, S; Offenberg, D; Schiller, S

    2011-11-14

    In this work we demonstrate vibrational spectroscopy of polyatomic ions that are trapped and sympathetically cooled by laser-cooled atomic ions. We use the protonated dipeptide tryptophan-alanine (HTyrAla(+)) as a model system, cooled by barium ions to less than 800 mK secular temperature. The spectroscopy is performed on the fundamental vibrational transition of a local vibrational mode at 2.74 μm using a continuous-wave optical parametric oscillator (OPO). Resonant IR multi-photon dissociation spectroscopy (R-IRMPD) (without the use of a UV laser) generates charged molecular fragments, which are sympathetically cooled and trapped, and subsequently released from the trap and counted. We measured the cross section for R-IRMPD under conditions of low intensity, and found it to be approximately two orders smaller than the vibrational excitation cross section. The observed rotational bandwidth of the vibrational transition is larger than the one expected from the combined effects of 300 K black-body temperature, conformer-dependent line shifts, and intermolecular vibrational relaxation broadening (J. Stearns et al., J. Chem. Phys., 2007, 127, 154322-154327). This indicates that as the internal energy of the molecule grows, an increase of the rotational temperature of the molecular ions well above room temperature (up to on the order of 1000 K), and/or an appreciable shift of the vibrational transition frequency (approx. 6-8 cm(-1)) occurs.

  15. Cold, Gas-Phase UV and IR Spectroscopy of Protonated Leucine Enkephalin and its Analogues

    NASA Astrophysics Data System (ADS)

    Burke, Nicole L.; Redwine, James; Dean, Jacob C.; McLuckey, Scott A.; Zwier, Timothy S.

    2014-06-01

    The conformational preferences of peptide backbones and the resulting hydrogen bonding patterns provide critical biochemical information regarding the structure-function relationship of peptides and proteins. The spectroscopic study of cryogenically-cooled peptide ions in a mass spectrometer probes these H-bonding arrangements and provides information regarding the influence of a charge site. Leucine enkephalin, a biologically active endogenous opiod peptide, has been extensively studied as a model peptide in mass spectrometry. This talk will present a study of the UV and IR spectroscopy of protonated leucine enkephalin [YGGFL+H]+ and two of its analogues: the sodiated [YGGFL+Na]+ and C-terminally methyl esterified [YGGFL-OMe+H]+ forms. All experiments were performed in a recently completed multi-stage mass spectrometer outfitted with a cryocooled ion trap. Ions are generated via nano-electrospray ionization and the analyte of interest is isolated in a linear ion trap. The analyte ions are trapped in a 22-pole ion trap held at 5 K by a closed cycle helium cryostat and interrogated via UV and IR lasers. Photofragments are trapped and isolated in a second LIT and mass analyzed. Double-resonance UV and IR methods were used to assign the conformation of [YGGFL+H]+, using the NH/OH stretch, Amide I, and Amide II regions of the infrared spectrum. The assigned structure contains a single backbone conformation at vibrational/rotational temperatures of 10 K held together with multiple H-bonds that self-solvate the NH3+ site. A "proton wire" between the N and C termini reinforces the H-bonding activity of the COO-H group to the F-L peptide bond, whose cleavage results in formation of the b4 ion, which is a prevalent, low-energy fragmentation pathway for [YGGFL+H]+. The reinforced H-bonding network in conjunction with the mobile proton theory may help explain the prevalence of the b4 pathway. In order to elucidate structural changes caused by modifying this H-bonding activity

  16. Rovibrational constants of the ground and ν12 = 1 states of C2D4 by high-resolution synchrotron FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, T. L.; Gabona, M. G.; Appadoo, Dominique R. T.; Godfrey, Peter D.; McNaughton, Don

    2014-09-01

    The Fourier transform infrared (FTIR) absorption spectrum of the ν12 fundamental band of ethylene-d4 (C2D4) was recorded in the 1000-1150 cm-1 region with a resolution of 0.00096 cm-1 using the THz/far-infrared beamline of the Australian Synchrotron. Upper state (ν12 = 1) rovibrational constants consisting of three rotational constants and up to five quartic constants were improved by assigning and fitting 3950 rovibrational transitions using Watson’s A-reduced and S-reduced Hamiltonians in the Ir representation. The band centres of the unperturbed A-type ν12 band are found to be 1076.984958(14) cm-1 and 1076.984813(14) cm-1 for A-reduced and S-reduced Hamiltonians respectively. The present analysis, covering a wider wavenumber range and higher J and Kc values (up to 58) than previous studies, yielded upper state constants including the band centre which are more accurate than previously reported. The rms deviation of the upper state (ν12 = 1) fit is 0.00040 cm-1 in the A-reduction and 0.00041 cm-1 in the S-reduction. Improved ground state rovibrational constants were also determined from the fit of 3151 ground state combination differences (GSCD) from the presently-assigned transitions of the ν12 band of C2D4 using Watson’s A-reduced and S-reduced Hamiltonians in the Ir representation. The rms deviation of the GSCD fit is 0.00036 cm-1 in the A-reduction and 0.00035 cm-1 in the S-reduction. The ground state constants of C2D4 derived from the experimental GSCD fit are in good agreement with those from theoretical calculations using the B3LYP/cc-pVTZ, MP2/cc-pVTZ, and CSSD/cc-pVTZ levels, up to five quartic constants.

  17. Four divalent transition metal carboxyarylphosphonate compounds: Hydrothermal synthesis, structural chemistry and generalized 2D FTIR correlation spectroscopy studies

    SciTech Connect

    Lei Ran; Chai Xiaochuan; Mei Hongxin; Zhang Hanhui; Chen Yiping; Sun Yanqiong

    2010-07-15

    Four divalent transition metal carboxyarylphosphonates, [Ni(4,4'-bipy)H{sub 2}L{sup 1}(HL{sup 1}){sub 2}(H{sub 2}O){sub 2}].2H{sub 2}O 1, [Ni{sub 2}(4,4'-bipy)(L{sup 2})(OH)(H{sub 2}O){sub 2}].3H{sub 2}O 2, Mn(phen){sub 2}(H{sub 2}L{sup 1}){sub 2}3 and Mn(phen)(HL{sup 2}) 4 (H{sub 3}L{sup 1}=p-H{sub 2}O{sub 3}PCH{sub 2}-C{sub 6}H{sub 4}-COOH, H{sub 3}L{sup 2}=m-H{sub 2}O{sub 3}PCH{sub 2}-C{sub 6}H{sub 4}-COOH, 4,4'-bipy=4,4'-bipyridine, phen=1,10-phenanthroline) were synthesized under hydrothermal conditions. 1 features 1D linear chains built from Ni(II) ions bridging 4,4'-bipy. In 2, neighboring Ni{sub 4} cluster units are connected by pairs of H{sub 3}L{sup 2} ligands to form 1D double-crankshaft chains, which are interconnected by pairs of 4,4'-bipy into 2D sheets. 3 exhibits 2D supramolecular layers via the R{sub 2}{sup 2}(8) ringed hydrogen bonding units. 4 has 1D ladderlike chains, in which the 4-membered rings are cross-linked by the organic moieties of the H{sub 3}L{sup 2} ligands. Additionally, 2D FTIR correlation analysis is applied with thermal and magnetic perturbation to clarify the structural changes of functional groups from H{sub 3}L{sup 1} and H{sub 3}L{sup 2} ligands in the compounds more efficiently. - Graphical abstract: A series of divalent transition metal carboxyarylphosphonate compounds were synthesized under hydrothermal conditions. The figure displays 2D sheet structure with large windows in compound 2.

  18. Intracavity laser absorption spectroscopy using mid-IR quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Medhi, G.; Muravjov, A. V.; Saxena, H.; Fredricksen, C. J.; Brusentsova, T.; Peale, R. E.; Edwards, O.

    2011-06-01

    Intracavity Laser Absorption Spectroscopy (ICLAS) at IR wavelengths offers an opportunity for spectral sensing with sufficient sensitivity to detect vapors of low vapor pressure compounds such as explosives. Reported here are key enabling technologies for this approach, including multi-mode external-cavity quantum cascade lasers and a scanning Fabry-Perot spectrometer to analyze the laser mode spectrum in the presence of a molecular intracavity absorber. Reported also is the design of a compact integrated data acquisition and control system. Applications include military and commercial sensing for threat compounds, chemical gases, biological aerosols, drugs, and banned or invasive plants or animals, bio-medical breath analysis, and terrestrial or planetary atmosphere science.

  19. X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolyzed guar gum.

    PubMed

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B S

    2012-05-01

    Guar gum was hydrolyzed using cellulase from Aspergillus niger at 5.6 pH and 50°C temperature. Hydrolyzed guar gum sample was characterized using Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, dilute solution viscometry and rotational viscometry. Viscometry analysis of native guar gum showed a molecular weight of 889742.06, whereas, after enzymatic hydrolysis, the resultant product had a molecular weight of 7936.5. IR spectral analysis suggests that after enzymatic hydrolysis of guar gum there was no major transformation of functional group. Thermal analysis revealed no major change in thermal behavior of hydrolyzed guar gum. It was shown that partial hydrolysis of guar gum could be achieved by inexpensive and food grade cellulase (Aspergillus niger) having commercial importance and utilization as a functional soluble dietary fiber for food industry.

  20. Rotationally resolved IR spectroscopy of hexamethylenetetramine (HMT) C6N4H12

    NASA Astrophysics Data System (ADS)

    Pirali, O.; Boudon, V.; Carrasco, N.; Dartois, E.

    2014-01-01

    Context. Hexamethylenetetramine (HMT) appears to be a potential constituent of several objects in space, including comets or Titan's atmosphere and, as an organic residue of ice irradiation in the laboratory, it may be present in the interstellar medium. Aims: We performed a laboratory study of rotationally resolved intense IR bands of HMT to provide accurate line positions and synthetic spectra to be used for potential astronomical detections. Methods: We used synchrotron-based high-resolution Fourier transform infrared spectroscopy to record the experimental data. A formalism and programs dedicated to the assignment, analysis, and simulation of absorption spectra of tetrahedral molecules were used to exploit the spectra. Results: Infrared spectra of gas phase HMT were recorded and accurate wavenumbers and molecular parameters for four intense bands located in the 1000-1500 cm-1 spectral range suitable for astronomical searches were derived.

  1. Plant Sunscreens in Nature: UV and IR Spectroscopy of Sinapate Derivatives

    NASA Astrophysics Data System (ADS)

    Dean, Jacob C.; Walsh, Patrick S.; Zwier, Timothy S.; Allais, Florent

    2013-06-01

    Plants are exposed to prolonged amounts of UV radiation, with elevated levels of UV-B (280-320 nm) as the ozone layer is depleted. When UV-B radiation penetrates the leaf epidermis, substantial oxidative damage can occur to plant tissues and plant growth can be inhibited. Sinapate esters, particularly sinapoyl malate, have been shown to efficiently prevent such damaging effects. By studying a series of molecules in this unique class under the isolated, cold conditions of a supersonic expansion, the fundamental UV-spectroscopic properties and photophysical aspects following UV absorption can be interrogated in detail. Sinapic acid and neutral sinapoyl malate were brought into the gas phase by laser desorption and detected via resonant two-photon ionization (R2PI). IR-UV double resonance methods were employed to obtain single-conformation UV and IR spectra. As the UV chromophore of interest is the sinapoyl moiety, sinapic acid served as the simplest model to compare directly to the more functionalized sinapoyl malate. It has a spectrum much like most aromatics, with a strong {ππ}^* origin, and well-resolved vibronic structure. By contrast, the spectrum for sinapoyl malate displays a large, broad absorption with little resolved vibronic structure, reflecting its role in nature as a pivotal and efficient UV protectant for plants, serving as the plant's sunscreen. Using conformer-specific IR spectroscopy, the individual conformations of both species were assigned and used as the basis for further ab initio calculations of the excited states that give rise to the observed behavior. Landry, L.G.; Chapple, C.S.; Last, R.L. Plant Physiol. {1995}, 109, 1159-1166.

  2. Spatial metabolic fingerprinting using FT-IR spectroscopy: investigating abiotic stresses on Micrasterias hardyi.

    PubMed

    Patel, Soyab A; Currie, Felicity; Thakker, Nalin; Goodacre, Royston

    2008-12-01

    The release of active pharmaceutical ingredients (APIs) into the environment is an ecologically important topic for study because, whilst APIs have been designed to have a wide range of biological properties for the target of interest (usually in man), little information on potential ecological risks is currently available regarding their effects on the organisms that inhabit the environment. In this study, the algae Micrasterias hardyi was exposed to propranolol, metoprolol (beta-adrenergic receptor agonist drugs) and mefenamic acid (a non steroidal anti-inflammatory drug), at concentrations ranging between 0.002-0.2 mM. Initial studies showed that Fourier transform infrared (FT-IR) spectroscopy on algal homogenates illustrated that all three APIs had a quantitative effect on the metabolism of the organisms and it was possible to estimate the level of API exposure from the FT-IR metabolic fingerprints using partial least squares (PLS) regression. From the inspection of the PLS loadings matrices it was possible to elucidate that all drugs caused effects on protein and lipid levels. Most strikingly propranolol had significant effects on the lipid components of the cell. These were dramatically reduced possibly as a consequence of loss of membrane integrity. In order to investigate this further, FT-IR microspectroscopy was used to generate detailed metabolic fingerprinting maps. These chemical maps revealed that all the drugs had a dramatic effect on the distribution of various chemical species throughout the algae, and that all drugs had an affect on protein and lipid levels. In particular, as noted in the PLS analyses for propranolol treated cells, the lipid complement found in the lipid storage areas in the processes of M. hardyi was greatly reduced. This illustrates the power of spatial metabolic fingerprinting for investigating abiotic stresses on complex biological species.

  3. Orienting molecules via an ir and uv pulse pair: Implications for coherent Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Sokolov, Alexei V.; Lehmann, Kevin K.; Scully, Marlan O.; Herschbach, Dudley

    2009-05-01

    Spatial orientation of molecules is a pervasive issue in chemical physics and, by breaking inversion symmetry, has major consequences in nonlinear optics. In this paper, we propose and analyze an approach to molecular orientation. This extracts from an ensemble of aligned diatomic molecules (equally AB and BA , relative to the E vector) a subensemble that is oriented (mostly AB or BA ). Subjecting an aligned molecule to a tailored infrared (ir) laser pulse creates a pair of coherent wave packets that correlate vibrational phase with the AB or BA orientation. Subsequent, suitably phased ultraviolet (uv) or visible pulses dissociate one of these vibrational wave packets, thereby “weeding out” either AB or BA but leaving intact the other orientation. Molecular orientation has significant implications for coherent Raman spectroscopy. In the absence of orientation, coherence between vibrational levels is generated by a pair of laser pulses off which a probe pulse is scattered to produce a signal. Orientation allows direct one-photon ir excitation to achieve (in principle) maximal Raman coherence.

  4. Defect sites in highly siliceous HZSM-5 zeolites: A study performed by alumination and IR spectroscopy

    SciTech Connect

    Yamagishi, Kouji; Namba, Seitaro; Yashima, Tatsuaki )

    1991-01-24

    The concentration of oxygen atoms on defect sites in a highly siliceous HZSM-5 type zeolite was estimated by the {sup 18}O-exchange reaction between C{sup 18}O{sub 2} and the zeolite. The concentration of oxygen atoms on defect sites could be controlled by means of changes of the gel composition and of the use of various silica sources in the hydrothermal synthesis. The relationship between the concentration of oxygen atoms on defect sites in a highly siliceous HZSM-5 and the concentration of aluminum introduced into the framework of the HZSM-5 by an alumination was examined. The concentration of the framework aluminum was the same as one-fourth that of the oxygen atoms on defect sites. These results suggest that the defect sites into which aluminum atoms are introduced tetrahedrally can be identified with hydroxyl nests that consist of four silanol groups. The existence of hydroxyl nests could be confirmed by IR spectroscopy. From the {sup 18}O-exchange reaction and IR measurements, the authors conclude that the sharp band at 3,740 cm{sup {minus}1} can be attributed to both isolated SiOH groups on the external surface and intracrystalline isolated SiOH groups and that the broad band at 3,505 cm{sup {minus}1} can be attributed to the SiOH groups in hydroxyl nests.

  5. Identification of forged Bank of England £20 banknotes using IR spectroscopy.

    PubMed

    Sonnex, Emily; Almond, Matthew J; Baum, John V; Bond, John W

    2014-01-24

    Bank of England notes of £20 denomination have been studied using infrared spectroscopy in order to generate a method to identify forged notes. An aim of this work was to develop a non-destructive method so that a small, compact Fourier transform infrared spectrometer (FT-IR) instrument could be used by bank workers, police departments or others such as shop assistants to identify forged notes in a non-lab setting. The ease of use of the instrument is the key to this method, as well as the relatively low cost. The presence of a peak at 1400 cm(-1) arising from νasym (CO3(2-)) from the blank paper section of a forged note proved to be a successful indicator of the note's illegality for the notes that we studied. Moreover, differences between the spectra of forged and genuine £20 notes were observed in the ν(OH) (ca. 3500 cm(-1)), ν(C-H) (ca. 2900 cm(-1)) and ν(C=O) (ca. 1750 cm(-1)) regions of the IR spectrum recorded for the polymer film covering the holographic strip. In cases where these simple tests fail, we have shown how an infrared microscope can be used to further differentiate genuine and forged banknotes by producing infrared maps of selected areas of the note contrasting inks with background paper.

  6. FT-IR spectroscopy combined with DFT calculation to explore solvent effects of vinyl acetate.

    PubMed

    Chen, Yi; Zhang, Hui; Liu, Qing

    2014-05-21

    The infrared vibration frequencies of vinyl acetate (VAc) in 18 different solvents were theoretically computed at Density Function Theory (DFT) B3LYP/6-311G(*) level based on Polarizable Continuum Model (PCM) and experimentally recorded by FT-IR spectroscopy. The solvent-induced long-range bulk electrostatic solvation free energies of VAc (ΔGelec) were calculated by the SMD model. The C=O stretching vibration frequencies of VAc were utilized as a measure of the chemical reactivities of the CC group in VAc. The calculated and experimental C=O stretching vibration frequencies of VAc (νcal(C=O) and νexp(C=O)) were correlated with empirical solvent parameters including the KBM equation, the Swain equation and the linear solvation energy relationships (LSER). Through ab initio calculation, assignments of the two C=O absorption bands of VAc in alcohol solvents were achieved. The PCM, SMD and ab initio calculation offered supporting evidence to explain the FT-IR experimental observations from differing aspects.

  7. Global responses of Escherichia coli to adverse conditions determined by microarrays and FT-IR spectroscopy.

    PubMed

    Moen, Birgitte; Janbu, Astrid Oust; Langsrud, Solveig; Langsrud, Oyvind; Hobman, Jon L; Constantinidou, Chrystala; Kohler, Achim; Rudi, Knut

    2009-06-01

    The global gene expression and biomolecular composition in an Escherichia coli model strain exposed to 10 adverse conditions (sodium chloride, ethanol, glycerol, hydrochloric and acetic acid, sodium hydroxide, heat (46 degrees C), and cold (15 degrees C), as well as ethidium bromide and the disinfectant benzalkonium chloride) were determined using DNA microarrays and Fourier transform infrared (FT-IR) spectroscopy. In total, approximately 40% of all investigated genes (1682/4279 genes) significantly changed expression, compared with a nonstressed control. There were, however, only 3 genes (ygaW (unknown function), rmf (encoding a ribosomal modification factor), and ghrA (encoding a glyoxylate/hydroxypyruvate reductase)) that significantly changed expression under all conditions (not including benzalkonium chloride). The FT-IR analysis showed an increase in unsaturated fatty acids during ethanol and cold exposure, and a decrease during acid and heat exposure. Cold conditions induced changes in the carbohydrate composition of the cell, possibly related to the upregulation of outer membrane genes (glgAP and rcsA). Although some covariance was observed between the 2 data sets, principle component analysis and regression analyses revealed that the gene expression and the biomolecular responses are not well correlated in stressed populations of E. coli, underlining the importance of multiple strategies to begin to understand the effect on the whole cell.

  8. The Application of FT-IR Spectroscopy for Quality Control of Flours Obtained from Polish Producers

    PubMed Central

    Ceglińska, Alicja; Reder, Magdalena; Ciemniewska-Żytkiewicz, Hanna

    2017-01-01

    Samples of wheat, spelt, rye, and triticale flours produced by different Polish mills were studied by both classic chemical methods and FT-IR MIR spectroscopy. An attempt was made to statistically correlate FT-IR spectral data with reference data with regard to content of various components, for example, proteins, fats, ash, and fatty acids as well as properties such as moisture, falling number, and energetic value. This correlation resulted in calibrated and validated statistical models for versatile evaluation of unknown flour samples. The calibration data set was used to construct calibration models with use of the CSR and the PLS with the leave one-out, cross-validation techniques. The calibrated models were validated with a validation data set. The results obtained confirmed that application of statistical models based on MIR spectral data is a robust, accurate, precise, rapid, inexpensive, and convenient methodology for determination of flour characteristics, as well as for detection of content of selected flour ingredients. The obtained models' characteristics were as follows: R2 = 0.97, PRESS = 2.14; R2 = 0.96, PRESS = 0.69; R2 = 0.95, PRESS = 1.27; R2 = 0.94, PRESS = 0.76, for content of proteins, lipids, ash, and moisture level, respectively. Best results of CSR models were obtained for protein, ash, and crude fat (R2 = 0.86; 0.82; and 0.78, resp.). PMID:28243483

  9. FT-IR spectroscopy combined with DFT calculation to explore solvent effects of vinyl acetate

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Zhang, Hui; Liu, Qing

    The infrared vibration frequencies of vinyl acetate (VAc) in 18 different solvents were theoretically computed at Density Function Theory (DFT) B3LYP/6-311G* level based on Polarizable Continuum Model (PCM) and experimentally recorded by FT-IR spectroscopy. The solvent-induced long-range bulk electrostatic solvation free energies of VAc (ΔGelec) were calculated by the SMD model. The Cdbnd O stretching vibration frequencies of VAc were utilized as a measure of the chemical reactivities of the Cdbnd C group in VAc. The calculated and experimental Cdbnd O stretching vibration frequencies of VAc (νcal(Cdbnd O) and νexp(Cdbnd O)) were correlated with empirical solvent parameters including the KBM equation, the Swain equation and the linear solvation energy relationships (LSER). Through ab initio calculation, assignments of the two Cdbnd O absorption bands of VAc in alcohol solvents were achieved. The PCM, SMD and ab initio calculation offered supporting evidence to explain the FT-IR experimental observations from differing aspects.

  10. Evaluation of lead(II) immobilization by a vermicompost using adsorption isotherms and IR spectroscopy.

    PubMed

    Carrasquero-Durán, Armando; Flores, Iraima

    2009-02-01

    The immobilization of lead ions by a vermicompost with calcite added was evaluated by adsorption isotherms and the results were explained on basis of the pH dependent surface charge and by IR spectroscopy. The results showed maximum adsorption values between 113.6 mg g(-1) (33 degrees C) and 123.5mg g(-1) (50 degrees C). The point of zero net charge (PZC) was 7.5+/-0.1, indicating the presence of a positive surface charge at the pH of batch experiments. The differences in the IR spectra at pH 3.8 and 7.0 in the region from 1800 to 1300 cm(-1), were interpreted on the basis of the carboxyl acid ionization, that reduced the band intensity around 1725 cm(-1), producing signals at 1550 cm(-1) and 1390 cm(-1) of carboxylate groups. Similar changes were detected at pH 3.8 when Pb2+ was present suggesting that the ion complexation takes place by a cationic exchange equilibrium, between the protons and Pb2+ ions.

  11. Spectral database for postage stamps by means of FT-IR spectroscopy.

    PubMed

    Imperio, Eleonora; Giancane, Gabriele; Valli, Ludovico

    2013-08-06

    A Fourier transform infrared (FT-IR) spectroscopy study on the entire Italian postage stamps production is presented in this work. Crossing 150 years of issues from the unification of Italy until today, a time line of the major components constituting the stamps has been defined, based on the wide spectral database built on the basis of the numerous analyzed exemplars. Even though it is easy to find reports about stamps' issues history, information arising from these investigations contributes to throw light upon the substances incorporated in the stamps, which could be described as hybrid or composite materials (a sort of undisclosed or hidden story). As a result of the whole spectra acquired in attenuated total reflectance (ATR) mode, changes in paper composition showed the transition from the protein sizing glue to starch sizing; also the employment of kaolin varied through time. First it was used as the extender in the pigment-medium mixture, and finally it constituted the coating on the stamp surface. Also the chemical composition of the adhesive gum on the rear side of stamps has been subjected to modifications, as well as the front side. The earliest back glue was a protein-based adhesive; then it was replaced by gum arabic first and by poly(vinyl acetate) (PVAC) later. FT-IR spectroscopy, supported by the detailed database developed, has been applied, for the first time, in the very useful detection of two counterfeit samples: a fake of the famous Gronchi Rosa, issued in 1961, and a regummed 2 cent red stamp, issued in 1865. The information held in the whole spectral data has been selected and employed in the principal component analysis (PCA) statistical analysis.

  12. Solvent effect on aggregational properties of β-amyloid polypeptides studied by FT IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Szabó, Z.; Jost, K.; Soós, K.; Zarándi, M.; Kiss, J. T.; Penke, B.

    1999-05-01

    Aggregation of the β-amyloid peptides is the major hallmark of the brain in case of Alzheimer's disease. On the basis of some results it is assumed that the toxic centrum of the βA4 (1-42) amyloid peptide is primarily the (31-35) fragment [N.W. Kowall, A.C. McKee, B.A. Yanker, M.P. Beal, Neurobiol. Aging 13 537-542; B. Penke, L. Tóth, K. Soós, J. Varga, E.Z. Szabó, J. Márki-Zay, A. Baranyi, in: H.L.S. Maia (Ed.), Peptides 1994, Proceedings of the 23rd European Peptide Symposium Escom, Leiden, 1995, pp. 101-102; I. Laczkó, Z. Kónya, J. Varga, K. Soós, M. Hollósi, B. Penke, in: H.L.S. Maia (Ed.), Peptides 1994, Proceedings of the 23rd European Peptide Symposium Escom, Leiden, 1995, pp. 549-550]. Two analogues of βA4 (1-42) were synthetized: one of them includes the toxic fragment (31-35) unchanged and consists mainly of hydrophilic residues, denoted as MOD-3. The other one does not contain the toxic fragment and has mainly hydrophobic residues, denoted as MOD-4. Peptides were dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol to have deaggregated samples. After the addition of the D 2O as second solvent, the aggregation was followed by FT-IR spectroscopy. Changes of the spectra as a function of the composition of the solvent mixtures will be shown and discussed. Based on the results, FT-IR spectroscopy seems to be a suitable analytical control in standardizing the aggregation grade of β-amyloid peptides.

  13. Two-dimensional correlation spectroscopy (2D-COS) variable selection for near-infrared microscopy discrimination of meat and bone meal in compound feed.

    PubMed

    Lü, Chengxu; Chen, Longjian; Yang, Zengling; Liu, Xian; Han, Lujia

    2014-01-01

    This article presents a novel method for combining auto-peak and cross-peak information for sensitive variable selection in synchronous two-dimensional correlation spectroscopy (2D-COS). This variable selection method is then applied to the case of near-infrared (NIR) microscopy discrimination of meat and bone meal (MBM). This is of important practical value because MBM is currently banned in ruminate animal compound feed. For the 2D-COS analysis, a set of NIR spectroscopy data of compound feed samples (adulterated with varying concentrations of MBM) was pretreated using standard normal variate and detrending (SNVD) and then mapped to the 2D-COS synchronous matrix. For the auto-peak analysis, 12 main sensitive variables were identified at 6852, 6388, 6320, 5788, 5600, 5244, 4900, 4768, 4572, 4336, 4256, and 4192 cm(-1). All these variables were assigned their specific spectral structure and chemical component. For the cross-peak analysis, these variables were divided into two groups, each group containing the six sensitive variables. This grouping resulted in a correlation between the spectral variables that was in accordance with the chemical-component content of the MBM and compound feed. These sensitive variables were then used to build a NIR microscopy discrimination model, which yielded a 97% correct classification. Moreover, this method detected the presence of MBM when its concentration was less than 1% in an adulterated compound feed sample. The concentration-dependent 2D-COS-based variable selection method developed in this study has the unique advantages of (1) introducing an interpretive aspect into variable selection, (2) substantially reducing the complexity of the computations, (3) enabling the transferability of the results to discriminant analysis, and (4) enabling the efficient compression of spectral data.

  14. Rapid determination of baicalin and total baicalein content in Scutellariae radix by ATR-IR and NIR spectroscopy.

    PubMed

    Navarro Escamilla, M; Rodenas Sanz, F; Li, H; Schönbichler, S A; Yang, B; Bonn, G K; Huck, C W

    2013-09-30

    In this study methods for the quantification of baicalin and total baicalein in Scutellariae radix with near infrared (NIR) spectroscopy and attenuated-total-reflectance mid-infrared (ATR-IR) spectroscopy in hyphenation with multivariate analysis were developed and compared. The reference analysis was performed by high performance liquid chromatography coupled to diode array detection (HPLC-DAD). Different pretreatments like standard normal variate (SNV), multiplicative scatter correction (MSC), first and second derivative Savitzky-Golay were applied on the spectra to optimize the calibrations. A principal component analysis was performed with both spectroscopic methods to distinguish wild and cultivated samples. Quality parameters obtained for test-set calibration models of ATR-IR spectroscopy (baicalin: standard error of prediction (SEP)=1.31, ratio performance to deviation (RPD)=2.91 and R(2)=0.88; total baicalein: SEP=1.02, RPD=3.24 and R(2)=0.89) and NIR spectroscopy (baicalin: SEP=1.50, RPD=2.54 and R(2)=0.88; total baicalein: SEP=1.19, RPD=2.76 and R(2)=0.84) demonstrate that both spectroscopic techniques in combination with multivariate analysis are successful tools for the quantification of baicalin and total baicalein in Scutellariae radix, but it was found that ATR-IR spectroscopy provides higher accuracy in the given application. Furthermore it was proved that wild and cultivated samples can be distinguished by ATR-IR.

  15. Investigation of the nitrogen hyperfine coupling of the second stable radical in γ-irradiated L-alanine crystals by 2D-HYSCORE spectroscopy

    NASA Astrophysics Data System (ADS)

    Maltar-Strmečki, Nadica; Rakvin, Boris

    2012-09-01

    The second stable radical, NH3+C(CH3)COO, R2, in the γ-irradiated single crystal of L-alanine and its fully 15N-enriched analogue were studied by an advanced pulsed EPR technique, 2D-HYSCORE (two-dimensional hyperfine sublevel correlation) spectroscopy at 200 K. The nitrogen hyperfine coupling tensor of the R2 radical was determined from the HYSCORE data and provides new experimental data for improved characterization of the R2 radical in the crystal lattice. The results obtained complement the experimental proton data available for the R2 radical and could lead to increased accuracy and reliability of EPR spectrum simulations.

  16. Surface Plasmon Resonances in 1D and 2D Arrays of Metal Nanoparticles for the Control of Enhanced Spectroscopies

    DTIC Science & Technology

    2011-01-24

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2 . REPORT TYPE 3. DATES...SPECTROSCOPIES FA9550-09-1-0579 Noguez, Cecilia Roman-Velazquez, Carlos E. Angulo, Ali M. Instituto de Fisica Universidad Nacional Autonoma de Mexico...representation, nanoshells, nanospheres U U U SAR 2 Cecilia Noguez +52 (55) 5622 5106 Final Technical Report Grant/Contract Title: SURFACE PLASMON

  17. Gaz Phase IR and UV Spectroscopy of Neutral Contact Ion Pairs

    NASA Astrophysics Data System (ADS)

    Habka, Sana; Brenner, Valerie; Mons, Michel; Gloaguen, Eric

    2016-06-01

    Cations and anions, in solution, tend to pair up forming ion pairs. They play a crucial role in many fundamental processes in ion-concentrated solutions and living organisms. Despite their importance and vast applications in physics, chemistry and biochemistry, they remain difficult to characterize namely because of the coexistence of several types of pairing in solution. However, an interesting alternative consists in applying highly selective gas phase spectroscopy which can offer new insights on these neutral ion pairs. Our study consists in characterizing contact ion pairs (CIPs) in isolated model systems (M+, Ph-(CH2)n-COO- with M=Li, Na, K, Rb, Cs, and n=1-3), to determine their spectral signatures and compare them to ion pairs in solution. We have used laser desorption to vaporize a solid tablet containing the desired salt. Structural information for each system was obtained by mass-selective, UV and IR laser spectroscopy combined with high level quantum chemistry calculations1. Evidence of the presence of neutral CIPs was found by scanning the π-π* transition of the phenyl ring using resonant two-photon ionization (R2PI). Then, conformational selective IR/UV double resonance spectra were recorded in the CO2- stretch region for each conformation detected. The good agreement between theoretical data obtained at the BSSE-corrected-fullCCSD(T)/dhf-TZVPP//B97-D3/dhf-TZVPP level and experimental IR spectra led us to assign the 3D structure for each ion pair formed. Spectral signatures of (M+, Ph-CH2-COO-) pairs, were assigned to a bidentate CIPs between the alkali cation and the carboxylate group. In the case of (Li+, Ph-(CH2)3-COO-) pairs, the presence of a flexible side chain promotes a cation-π interaction leading to a tridentate O-O-π structure with its unique IR and UV signatures. IR spectra obtained on isolated CIPs were found very much alike the ones published on lithium and sodium acetate in solution2. However, in the case of sodium acetate, solution

  18. Analysis of a Brazilian baroque sculpture using Raman spectroscopy and FT-IR.

    PubMed

    Freitas, Renato P; Ribeiro, Iohanna M; Calza, Cristiane; Oliveira, Ana L; Felix, Valter S; Ferreira, Douglas S; Pimenta, André R; Pereira, Ronaldo V; Pereira, Marcelo O; Lopes, Ricardo T

    2016-02-05

    In this study, samples were taken from the sculpture of Our Lady of Sorrows and analyzed by Raman spectroscopy and FT-IR. This sculpture has been dated to the early eighteenth century. Samples were also examined using optical microscopy and Energy Dispersive Spectroscopy (EDS). Based on chemical analysis, the pigments vermilion [HgS], massicot [PbO] and azurite [Cu3(CO3)2(OH)2]were found in the sculpture polychrome. The results indicate that the green polychrome of the sculpture's mantle comes from the blending of massicot and azurite. Because the literature reports that the mantle of the Our Lady of Sorrows sculpture is blue, the mixing of these pigments results from a production error. The results also indicate the presence of Au in the sculpture, which indicates the originality of the piece. The results from this study helped restorers to choose the appropriate procedures for intervening in the sculpture and contributed to the knowledge about the manufacturing process of Brazilian baroque sculptures.

  19. Analysis of a Brazilian baroque sculpture using Raman spectroscopy and FT-IR

    NASA Astrophysics Data System (ADS)

    Freitas, Renato P.; Ribeiro, Iohanna M.; Calza, Cristiane; Oliveira, Ana L.; Felix, Valter S.; Ferreira, Douglas S.; Pimenta, André R.; Pereira, Ronaldo V.; Pereira, Marcelo O.; Lopes, Ricardo T.

    2016-02-01

    In this study, samples were taken from the sculpture of Our Lady of Sorrows and analyzed by Raman spectroscopy and FT-IR. This sculpture has been dated to the early eighteenth century. Samples were also examined using optical microscopy and Energy Dispersive Spectroscopy (EDS). Based on chemical analysis, the pigments vermilion [HgS], massicot [PbO] and azurite [Cu3(CO3)2(OH)2] were found in the sculpture polychrome. The results indicate that the green polychrome of the sculpture's mantle comes from the blending of massicot and azurite. Because the literature reports that the mantle of the Our Lady of Sorrows sculpture is blue, the mixing of these pigments results from a production error. The results also indicate the presence of Au in the sculpture, which indicates the originality of the piece. The results from this study helped restorers to choose the appropriate procedures for intervening in the sculpture and contributed to the knowledge about the manufacturing process of Brazilian baroque sculptures.

  20. Ion irradiation of Allende meteorite probed by visible, IR, and Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Brunetto, R.; Lantz, C.; Ledu, D.; Baklouti, D.; Barucci, M. A.; Beck, P.; Delauche, L.; Dionnet, Z.; Dumas, P.; Duprat, J.; Engrand, C.; Jamme, F.; Oudayer, P.; Quirico, E.; Sandt, C.; Dartois, E.

    2014-07-01

    Little is known about carbonaceous asteroids weathering in space as previous studies have struggled to define a general spectral trend among dark surfaces. Here we present experiments on ion irradiation of the Allende meteorite, performed using 40 keV He+ and Ar+ ions, as a simulation of solar wind irradiation of primitive bodies surfaces. We used different fluences up to 3 × 1016 ions/cm2, corresponding to short timescales of ∼103-104 yrs in the main asteroid belt. Samples were analyzed before and after irradiation using visible to far-IR (0.4-50 μm) reflectance spectroscopy, and Raman micro-spectroscopy. Similarly to what observed in previous experiments, results show a reddening and darkening of VIS-NIR reflectance spectra. These spectral variations are however comparable to other spectral variations due to viewing geometry, grain size, and sample preparation, suggesting an explanation for the contradictory space weathering studies of dark asteroids. After irradiation, the infrared bands of the matrix olivine silicates change profile and shift to longer wavelength, possibly as a consequence of a more efficient sputtering effect on Mg than Fe (lighter and more volatile species are preferentially sputtered backwards) and/or preferential amorphization of Mg-rich olivine. Spectral variations are compatible with the Hapke weathering model. Raman spectroscopy shows that the carbonaceous component is substantially affected by irradiation: different degrees of de-ordering are produced as a function of dose, to finally end with a highly disordered carbon. All observed modifications seem to scale with the nuclear elastic dose.

  1. Photoinduced Graft-Polymerization of Acrylic Acid on Polyethylene and Polypropylene Surfaces: Comparative Study Using IR-ATR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gorbachev, A. A.; Tretinnikov, O. N.; Shkrabatovskaya, L. V.; Prikhodchenko, L. K.

    2014-11-01

    Photoinduced graft-polymerization of acrylic acid on the surface of polyethylene and polypropylene films containing a photoinitiator pre-adsorbed from a thin layer of non-de-aerated aqueous monomer solution was investigated. Data about the monomer conversion and grafting depth as functions of the UV irradiation time and polymer nature were obtained using IR-ATR spectroscopy.

  2. NMR and IR Spectroscopy for the Structural Characterization of Edible Fats and Oils: An Instrumental Analysis Laboratory

    ERIC Educational Resources Information Center

    Crowther, Molly W.

    2008-01-01

    This article describes an upper-level instrumental laboratory for undergraduates that explores the complementary nature of IR and NMR spectroscopy for analysis of several edible fats and oils that are structurally similar but differ in physical properties and health implications. Five different fats and oils are analyzed for average chain length,…

  3. Detection and classification of salmonella serotypes using spectral signatures collected by fourier transform infrared (FT-IR) spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spectral signatures of Salmonella serotypes namely Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky were collected using Fourier transform infrared spectroscopy (FT-IR). About 5-10 µL of Salmonella suspensions with concentrations of 1...

  4. HST/STIS results on circumstellar disks and jets, future coronography and technology for IR multi-object spectroscopy

    NASA Technical Reports Server (NTRS)

    Woodgate, Bruce E.

    2002-01-01

    Results of studies of circumstellar disks and jets obtained by HST/STIS visible coronagraphy and UV spectroscopy, and by ground-based Fabry-Perot coronagraphy will be presented. Future improvements in coronagraphy will be discussed. The development of microshutter arrays as programmable multi-object selectors for the NGST near IR spectrograph will be described.

  5. Online coupling of size-exclusion chromatography and IR spectroscopy to correlate molecular weight with chemical composition.

    PubMed

    Beskers, Timo F; Hofe, Thorsten; Wilhelm, Manfred

    2012-10-26

    The determination of molecular weight and correlated chemical composition is of major interest for the advanced analysis of copolymers, blends, or unknown samples. In this work, we present a new way of online coupling IR spectroscopy and SEC to achieve a chemically sensitive, universally applicable SEC detector. Our method overcomes the limitations of existing spectroscopy-SEC combinations. We solved the major problems, like huge intensity of solvent signals (polymer concentration in detector <1 g L(-1) ) and short measuring time (<30 s), by recording the IR spectra with fully optimized sensitivity and by following mathematical solvent suppression. The measuring time for a certain S/N was reduced in several optimization steps by a factor of more than 70 000. The resulting sensitivity allows online coupled IR-SEC measurements.

  6. Molecular orientation of molybdate ions adsorbed on goethite nanoparticles revealed by polarized in situ ATR-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Davantès, Athénaïs; Lefèvre, Grégory

    2016-11-01

    The speciation of species adsorbed on nanoparticles is a major concern for several fields, as environmental pollution and remediation, surface functionalization, or catalysis. Attenuated total reflectance infrared spectroscopy (ATR-IR) was amongst the rare methods able to give in situ information about the geometry of surface complexes on nanoparticles. A new possibility using this technique is illustrated here with the MoO42 -/goethite system. Using deuterated goethite to avoid spectral interferences, adsorption of molybdate ions on a spontaneous oriented film of nanoparticles has been followed using a polarized infrared beam. From the decomposition of spectra in the x, y and z directions, a monodentate surface complex on the {101} faces has been found as the most probable geometry. This result demonstrates that polarized ATR-IR allows to characterize in more details adsorption mode at the atomic scale, in comparison with usual ATR-IR spectroscopy.

  7. Characterization of Paracoccidioides brasiliensis by FT-IR spectroscopy and nanotechnology

    NASA Astrophysics Data System (ADS)

    Ferreira, Isabelle; Ferreira-Strixino, Juliana; Castilho, Maiara L.; Campos, Claudia B. L.; Tellez, Claudio; Raniero, Leandro

    2016-01-01

    Paracoccidioides brasiliensis, the etiological agent of paracoccidioidomycosis, is a dimorphic fungus existing as mycelia in the environment (or at 25 °C in vitro) and as yeast cells in the human host (or at 37 °C in vitro). Because mycological examination of lesions in patients frequently is unable to show the presence of the fungus and serological tests can misdiagnose the disease with other mycosis, the development of new approach's for molecular identification of P. brasiliensis spurges is needed. This study describes the use of a gold nanoprobe of a known gene sequence of P. brasiliensis as a molecular tool to identify P. brasiliensis by regular polymerase chain reaction (PCR) associated with a colorimetric methods. This approach is suitable for testing in remote areas because it does not require any further step than gene amplification, being safer and cheaper than electrophoresis methods. The proposed test showed a color change of the PCR reaction mixture from red to blue in negative samples, whereas the solution remains red in positive samples. We also performed a Fourier Transform Infrared (FT-IR) Spectroscopy analysis to characterize and compare the chemical composition between yeast and mycelia forms, which revealed biochemical differences between these two forms. The analysis of the spectra showed that differences were distributed in chemical bonds of proteins, lipids and carbohydrates. The most prominent difference between both forms was vibration modes related to 1,3-β-glucan usually found in mycelia and 1,3-α-glucan found in yeasts and also chitin forms. In this work, we introduce FT-IR as a new method suitable to reveal overall differences that biochemically distinguish each form of P. brasiliensis that could be additionally used to discriminate biochemical differences among a single form under distinct environmental conditions.

  8. QCL- and CO_2 Laser-Based Mid-Ir Spectrometers for High Accuracy Molecular Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sow, P. L. T.; Chanteau, B.; Auguste, F.; Mejri, S.; Tokunaga, S. K.; Argence, B.; Lopez, O.; Chardonnet, C.; Amy-Klein, A.; Daussy, C.; Darquie, B.; Nicolodi, D.; Abgrall, M.; Le Coq, Y.; Santarelli, G.

    2013-06-01

    With their rich internal structure, molecules can play a decisive role in precision tests of fundamental physics. They are now being used, for example in our group, to test fundamental symmetries such as parity and time reversal, and to measure either absolute values of fundamental constants or their temporal variation. Most of those experiments can be cast as the measurement of molecular frequencies. Ultra-stable and accurate sources in the mid-IR spectral region, the so-called molecular fingerprint region that hosts many intense rovibrational signatures, are thus highly desirable. We report on the development of a widely tunable quantum cascade laser (QCL) based spectrometer. Our first characterization of a free-running cw near-room-temperature DFB 10.3 μm QCL led to a ˜200 kHz linewidth beat-note with our frequency-stabilized CO_2 laser. Narrowing of the QCL linewidth was achieved by straightforwardly phase-locking the QCL to the CO_2 laser. The great stability of the CO_2 laser was transferred to the QCL resulting in a record linewidth of a few tens of hertz. The use of QCLs will allow the study of any species showing absorption between 3 and 25 μm which will broaden the scope of our experimental setups dedicated to molecular spectroscopy-based precision measurements. Eventually we want to lock the QCL to a frequency comb itself stabilized to an ultra-stable near-IR reference provided via a 43-km long fibre by the French metrological institute and monitored against atomic fountain clocks. We report on the demonstration of this locking-scheme with a ˜10 μm CO_2 laser resulting in record 10^{-14}-10^{-15} fractional accuracy and stability. Stabilizing a QCL this way will free us from having to lock it to a molecular transition or a CO_2 laser. It will make it possible for any laboratory to have a stabilized QCL at any desired wavelength with spectral performances currently only achievable in the visible and near-IR, in metrological institutes.

  9. Grism Performance for Mid-IR (5-40 microns) Spectroscopy

    NASA Technical Reports Server (NTRS)

    Ennico, K. A.; Mar, D. J.; Jaffe, D. T.; Marsh, J. P.; Keller, L. D.; Herter, T. L.; Greene, T. P.; Adams, J. D.

    2006-01-01

    Grisms provide a straightforward method to transform an imager into a spectrometer with little change to the original imaging optics. This paper addresses the performance of a suite of grisms as part of an Astrobiology Science and Instrument Development (ASTID) Program to implement a moderate resolution spectroscopic capability to the mid/far-IR facility instrument FORCAST for the Stratospheric Observatory For Infrared Astronomy (SOFIA) [see accompanying abstract by Adams et al.]. A moderate resolution mid-IR spectrometer on SOFIA will offer advantages not available to either ground or space-based instruments after the Spitzer Space Telescope ceases operation in approx. 2007. SOFIA will begin operations in 2007 and will have an operational lifetime of approx. 20 years. From aircraft altitudes, it will be possible to cover a range of wavelengths, particularly in the critical 5-9 micron band, where detection of astrobiologically interesting molecules have key spectral signatures, that are not accessible from the ground. This grism suite consists of six grisms: four monolithic Si grisms [see accompanying abstract by Mar et al.] and two KRS-5 grisms. These devices will allow long slit low-resolution and short slit, cross-dispersed high-resolution spectroscopic modes selectable by simply moving the camera filter wheels. This configuration will enable observing programs to gather images and spectra in a single SOFIA flight. The four silicon grisms, whose performance is highlighted in this paper, will operate in the following wavelength ranges: 5-8, 17-28, and 28-37 microns. In the 5-8 micron range, R=1200 is achievable for a 2 arcsecond slit using the grism as a cross-disperser. For the 17-28 and 28-37 micron ranges, the resolving powers are R approx. 130, 250 when used in low orders with a slit of 3 arcseconds. The silicon grisms demonstrate a new family of dispersive elements with good optical performance for spectroscopy from 1.2-8 micron and beyond 18 microns

  10. Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy.

    PubMed

    Bakulin, Artem A; Morgan, Sarah E; Kehoe, Tom B; Wilson, Mark W B; Chin, Alex W; Zigmantas, Donatas; Egorova, Dassia; Rao, Akshay

    2016-01-01

    Singlet fission is the spin-allowed conversion of a spin-singlet exciton into a pair of spin-triplet excitons residing on neighbouring molecules. To rationalize this phenomenon, a multiexcitonic spin-zero triplet-pair state has been hypothesized as an intermediate in singlet fission. However, the nature of the intermediate states and the underlying mechanism of ultrafast fission have not been elucidated experimentally. Here, we study a series of pentacene derivatives using ultrafast two-dimensional electronic spectroscopy and unravel the origin of the states involved in fission. Our data reveal the crucial role of vibrational degrees of freedom coupled to electronic excitations that facilitate the mixing of multiexcitonic states with singlet excitons. The resulting manifold of vibronic states drives sub-100 fs fission with unity efficiency. Our results provide a framework for understanding singlet fission and show how the formation of vibronic manifolds with a high density of states facilitates fast and efficient electronic processes in molecular systems.

  11. Synchrotron Based High Resolution Far-Ir Spectroscopy of 1,1-DICHLOROETHYLENE

    NASA Astrophysics Data System (ADS)

    Peebles, Rebecca A.; Elmuti, Lena F.; Peebles, Sean A.; Obenchain, Daniel A.

    2013-06-01

    Six vibrational bands of the ^{35}Cl_2C=CH_2 isotopologue of 1,1-dichloroethylene have been recorded in the 350 - 1150 cm^{-1} range using the 0.00096 cm^{-1} resolution far-infrared beamline of the Canadian Light Source synchrotron facility. Results from the analysis of one a-type (ν_9 = 796.01904(8) cm^{-1}, CCl asymmetric stretch) and one c-type (ν_{11} = 868.488626(26) cm^{-1}, CH_2 flap) band will be presented. Over 6000 transitions have now been fitted for these two bands, with ground state rotational and centrifugal distortion constants fixed to values determined by rotational spectroscopy, while the upper state constants have been varied. Anharmonic frequency calculations at the MP2/6-311++G(2d,2p) level were instrumental in assigning the dense spectra. Assignment of additional bands around 603 cm^{-1} (b-type, CCl symmetric stretch, ν_4) and 456 cm^{-1} (c-type, CCl_2 flap, ν_{12}), as well as attempts at assigning the mixed ^{35}Cl^{37}Cl isotopologue spectra for ν_9 and ν_{11}, are in progress. Z. Kisiel, L. Pszczółkowski, Z. Naturforsch, {{50a}, (1995), 347-351.

  12. WaFIRS, a Waveguide Far-IR Spectrometer: Enabling Space-Borne Spectroscopy of High-z Galaxies in the Far-IR and Submm

    NASA Technical Reports Server (NTRS)

    Bradford, C. M.; Bock, J. J.; Dragovan, M.; Earle, L.; Glenn, J.; Naylor, B.; Nguyen, H.; Zmuidzinas, J.

    2004-01-01

    The discovery of galaxies beyond z approximately equal to 1 which emit the bulk of their luminosity at long wavelengths has demonstrated the need for high sensitivity, broadband spectroscopy in the far-IR/submm/mm bands. Because many of these sources are not detectable in the optical, long wavelength spectroscopy is key to measuring their redshifts and ISM conditions. The continuum source list will increase in the next decade with new ground-based instruments (SCUBA2, Bolocam, MAMBO) and the surveys of HSO and SIRTF. Yet the planned spectroscopic capabilities lag behind, primarily due to the difficulty in scaling existing IR spectrograph designs to longer wavelengths. To overcome these limitations, we are developing WaFIRS, a novel concept for long-wavelength spectroscopy which utilizes a parallel-plate waveguide and a curved diffraction grating. WaFIRS provides the large (approximately 60%) instantaneous bandwidth and high throughput of a conventional grating system, but offers a dramatic reduction in volume and mass. WaFIRS requires no space overheads for extra optical elements beyond the diffraction grating itself, and is two-dimensional because the propagation is confined between two parallel plates. Thus several modules could be stacked to multiplex either spatially or in different frequency bands. The size and mass savings provide opportunities for spectroscopy from space-borne observatories which would be impractical with conventional spectrographs. With background-limited detectors and a cooled 3.5 telescope, the line sensitivity would be better than that of ALMA, with instantaneous broad-band coverage. We have built and tested a WaFIRS prototype for 1-1.6 mm, and are currently constructing Z-Spec, a 100 mK model to be used as a ground-based lambda/DELTAlambda approximately equal to 350 submillimeter galaxy redshift machine.

  13. XRD, TEM, IR, Raman and NMR Spectroscopy of In Situ Crystallization of Lithium Disilicate Glass

    NASA Technical Reports Server (NTRS)

    Fuss, T.; Mogus-Milankovic, A.; Ray, C. S.; Lesher, C. E.; Youngman, R.; Day, D. E.

    2006-01-01

    The structure of a Li2O-2SiO2 (LS2) glass was investigated as a function of pressure and temperature up to 6 GPa and 750 C respectively, using XRD, TEM, IR, Raman and NMR spectroscopy. Glass densified at 6 GPa has an average Si-O-Si bond angle approx.7deg lower than that found in glass processed at 4.5 GPa. At 4.5 GPa, lithium disilicate crystallizes from the glass, while at 6 GPa a new high pressure form of lithium metasilicate crystallizes. The new phase, while having lithium metasilicate crystal symmetry, contains at least 4 different Si sites. NMR results for 6 GPa sample indicate the presence of Q4 species with (Q(sup 4))Si-O-Si(Q(sup 4)) bond angles of approx.157deg. This is the first reported occurrence of Q(sup 4) species with such large bond angles in alumina free alkali silicate glass. No five- or six- coordinated Si are found.

  14. Microstructural, thermal and IR spectroscopy characterisation of wheat gluten and its sub fractions.

    PubMed

    Dhaka, Vandana; Khatkar, B S

    2016-08-01

    The gluten and its sub-fractions of good and poor bread quality wheat varieties were studied using scanning electron microscopy, differential scanning calorimetry (DSC) and IR spectroscopy techniques. The gluten of good bread quality wheat variety showed organized foam like matrix, whereas that of poor demonstrated an open gluten matrix. The glutenin of good bread quality wheat (HI 977) exhibited a more striated, organised texture in contrast to a dense, unorganised structure visible in C306. Gliadins of poor bread quality wheat were self-assembled to form a sheet like structure, whereas the gliadin proteins of good bread quality wheat variety showed more open microstructure. DSC thermal profiles of gluten and glutenin proteins of poor bread quality wheat showed exothermic peaks at around 200 °C. A distinct endothermic peak was detected in the glutenin fraction of good bread quality wheat, suggesting greater thermostability. Amide I peak at ~1668 cm(-1) for gluten of good bread quality wheat variety showed higher relative intensities of β-turn as compared to observed for gluten of poor bread quality.

  15. Dogfish egg case structural studies by ATR FT-IR and FT-Raman spectroscopy.

    PubMed

    Iconomidou, Vassiliki A; Georgaka, Martha E; Chryssikos, Georgios D; Gionis, Vassilis; Megalofonou, Persefoni; Hamodrakas, Stavros J

    2007-06-01

    The dogfish egg case is a composite structure that combines mechanical tensile strength, toughness and elasticity with high permeability to small molecules and ions. Presumably, it provides both a protective and a filtering role for the egg/embryo contained within it. In this work, we performed structural studies of the Galeus melastomus egg case at two different stages of the hardening process, utilizing ATR FT-IR and FT-Raman spectroscopy. Based on these data we deduce that: (a) The G. melastomus egg case, in close analogy to that of the related species Scyliorhinus cunicula, is a complex, composite structure which consists mainly of an analogue of collagen IV. This network forming protein appears to have common secondary structural characteristics in the entire egg case. (b) The outermost layer of the non-sclerotized egg case is especially rich in tyrosine, while the innermost layer is rich in polysaccharides, presumably glycosaminoglycans, and lipids. These differences are diminished upon hardening. (c) Disulfide bonds do not appear to play a significant role in cross-linking. However, cross-links involving tyrosine residues appear to sclerotize the egg case. It is proposed that the intensity of the Raman band at ca. 1615 cm(-1), which is due to ring stretching vibrations of Tyr, might be a useful indicator of the sclerotization status of a certain proteinaceous tissue, when tyrosines are involved in sclerotization mechanisms.

  16. Ion selectivity of crown ethers investigated by UV and IR spectroscopy in a cold ion trap.

    PubMed

    Inokuchi, Yoshiya; Boyarkin, Oleg V; Kusaka, Ryoji; Haino, Takeharu; Ebata, Takayuki; Rizzo, Thomas R

    2012-04-26

    Electronic and vibrational spectra of benzo-15-crown-5 (B15C5) and benzo-18-crown-6 (B18C6) complexes with alkali metal ions, M(+)•B15C5 and M(+)•B18C6 (M = Li, Na, K, Rb, and Cs), are measured using UV photodissociation (UVPD) and IR-UV double resonance spectroscopy in a cold, 22-pole ion trap. We determine the structure of conformers with the aid of density functional theory calculations. In the Na(+)•B15C5 and K(+)•B18C6 complexes, the crown ethers open the most and hold the metal ions at the center of the ether ring, demonstrating an optimum matching in size between the cavity of the crown ethers and the metal ions. For smaller ions, the crown ethers deform the ether ring to decrease the distance and increase the interaction between the metal ions and oxygen atoms; the metal ions are completely surrounded by the ether ring. In the case of larger ions, the metal ions are too large to enter the crown cavity and are positioned on it, leaving one of its sides open for further solvation. Thermochemistry data calculated on the basis of the stable conformers of the complexes suggest that the ion selectivity of crown ethers is controlled primarily by the enthalpy change for the complex formation in solution, which depends strongly on the complex structure.

  17. Identification of Forged Bank of England 20 Gbp Banknotes Using IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sonnex, Emily

    2014-06-01

    Bank of England notes of 20 GBP denomination have been studied using infrared spectroscopy in order to generate a method to identify forged notes. A principal aim of this work was to develop a method so that a small, compact ATR FTIR instrument could be used by bank workers, police departments or others such as shop assistants to identify forged notes in a non-lab setting. The ease of use of the instrument is the key to this method, as well as the relatively low cost. The presence of a peak at 1400 wn from the blank paper section of a forged note proved to be a successful indicator of the note's illegality for the notes that we studied. Moreover, differences between the spectra of forged and genuine 20 GBP notes were observed in the ν(OH) (ca. 3500 wn), ν(C-H) (ca. 2900 wn) and ν(C=O) (ca. 1750 wn) regions of the IR spectrum recorded for the polymer film covering the holographic strip. In cases where these simple tests fail, we have shown how an infrared microscope can be used to further differentiate genuine and forged banknotes by producing infrared maps of selected areas of the note contrasting inks with background paper. Further to this, with an announcement by the Bank of England to produce polymer banknotes in the future, the work has been extended using Australian polymer banknotes to show that the method would be transferable.

  18. Investigation of the hydrated 7-hydroxy-4-methylcoumarin dimer by combined IR/UV spectroscopy.

    PubMed

    Stamm, A; Schwing, K; Gerhards, M

    2014-11-21

    The first molecular beam investigations on a coumarin dimer and clusters of a coumarin dimer with water both in the neutral (S0) and cationic (D0) electronic ground state are performed. The structure and structural changes due to ionization of the isolated 7-hydroxy-4-methylcoumarin dimer (7H4MC)2 as well as its mono- and dihydrate (7H4MC)2(H2O)1-2 are analyzed by applying combined IR/UV spectroscopy compared with density functional theory calculations. In case of the neutral dimer of 7H4MC a doubly hydrogen-bonded structure is formed. This doubly hydrogen-bonded arrangement opens to a singly hydrogen-bonded structure in the ion presenting a rearrangement reaction within an isolated dimer. By attaching one or two water molecules to the neutral 7H4MC dimer water is inserted into the hydrogen bonds. In contrast to the non-hydrated species this general binding motif with water in a bridging function does not change via ionization but especially for the dihydrate the spatial arrangement of the two 7H4MC units changes strengthening the interaction between the aromatic chromophores. The presented analyses illustrate the strong dependence of binding motifs as a function of successive hydration and charge including a rearrangement reaction.

  19. Investigation of the hydrated 7-hydroxy-4-methylcoumarin dimer by combined IR/UV spectroscopy

    SciTech Connect

    Stamm, A.; Schwing, K.; Gerhards, M.

    2014-11-21

    The first molecular beam investigations on a coumarin dimer and clusters of a coumarin dimer with water both in the neutral (S{sub 0}) and cationic (D{sub 0}) electronic ground state are performed. The structure and structural changes due to ionization of the isolated 7-hydroxy-4-methylcoumarin dimer (7H4MC){sub 2} as well as its mono- and dihydrate (7H4MC){sub 2}(H{sub 2}O){sub 1-2} are analyzed by applying combined IR/UV spectroscopy compared with density functional theory calculations. In case of the neutral dimer of 7H4MC a doubly hydrogen-bonded structure is formed. This doubly hydrogen-bonded arrangement opens to a singly hydrogen-bonded structure in the ion presenting a rearrangement reaction within an isolated dimer. By attaching one or two water molecules to the neutral 7H4MC dimer water is inserted into the hydrogen bonds. In contrast to the non-hydrated species this general binding motif with water in a bridging function does not change via ionization but especially for the dihydrate the spatial arrangement of the two 7H4MC units changes strengthening the interaction between the aromatic chromophores. The presented analyses illustrate the strong dependence of binding motifs as a function of successive hydration and charge including a rearrangement reaction.

  20. Solid acid-catalyzed cellulose hydrolysis monitored by in situ ATR-IR spectroscopy.

    PubMed

    Zakzeski, Joseph; Grisel, Ruud J H; Smit, Arjan T; Weckhuysen, Bert M

    2012-02-13

    The solid acid-catalyzed hydrolysis of cellulose was studied under elevated temperatures and autogenous pressures using in situ ATR-IR spectroscopy. Standards of cellulose and pure reaction products, which include glucose, fructose, hydroxymethylfurfural (HMF), levulinic acid (LA), formic acid, and other compounds, were measured in water under ambient and elevated temperatures. A combination of spectroscopic and HPLC analysis revealed that the cellulose hydrolysis proceeds first through the disruption of the glycosidic linkages of cellulose to form smaller cellulose molecules, which are readily observed by their distinctive C-O vibrational stretches. The continued disruption of the linkages in these oligomers eventually results in the formation and accumulation of monomeric glucose. The solid-acid catalyst accelerated the isomerization of glucose to fructose, which then rapidly reacted under hydrothermal conditions to form degradation products, which included HMF, LA, formic acid, and acetic acid. The formation of these species could be suppressed by decreasing the residence time of glucose in the reactor, reaction temperature, and contact with the metal reactor. The hydrolysis of regenerated cellulose proceeded faster and under milder conditions than microcrystalline cellulose, which resulted in increased glucose yield and selectivity.

  1. FT IR spectroscopy of silicon oxide and HfSiOx layer formation

    NASA Astrophysics Data System (ADS)

    Kopani, M.; Mikula, M.; Pinčík, E.; Kobayashi, H.; Takahashi, M.

    2014-09-01

    Hafnium oxide is an interesting material for a broad range of applications. Infrared spectroscopy was used to study the impact of aqueous environment and mechanism of formation of 5 nm HfO2 films after nitric acid oxidation (NAOS) of n-doped Si (1 0 0) substrates. Samples were annealed in N2 atmosphere at different temperatures 200-400 °C for 10 min. For NAOS passivation 100% vapor of HNO3 (set A) and 98% aqueous solution (set B) was used. FTIR measurements reveal silicon oxide layer formation and formation of HfSiOx layer. There are differences in HfSiOx layer formation between samples of set A and B caused by different environment. This layer of samples set B is thinner because of Sisbnd OH bonds that may inhibit formation of this layer. Absorption IR spectra of set A show more ordered SiOx layer in comparison with samples of set B. The structural properties of HfO2 are crucial for application in the future.

  2. Impact and radiation influence on solid hydrocarbon transformation and structuring (by IR-spectroscopy)

    NASA Astrophysics Data System (ADS)

    Kovaleva, O.

    2009-04-01

    Solid hydrocarbons (bitumens)-typical specimens of natural organic minerals-are one of the most essential objects of petroleum geology and at the same time-one of the least investigated objects of organic mineralogy. Moreover they can be treated as admissible analogs of meteorite carbonaceous materials. According to terrestrial analog of meteoritic organic matter it's possible to estimate the chemical structure of extraterrestrial matter. Further investigation of impact force and radiation influence on the bitumen chemical structure change will make it possible to connect them with extraterrestrial organic matter. This work represents the research of impact influence on the processes of transformation and structuring of asphaltite and changes in the molecular structure of solid bitumens constituting the carbonization series (asphaltite--kerite--anthraxolite), which were subjected to the impact of high radiation doses (10 and 100 Mrad) by infrared spectroscopy (IRS). In percussion experiments peak pressure varied from 10 to 63.4 GPa; temperature - from the first tens degrees to several hundreds degrees Celsius. The radiation experiment was performed in the Arzamas-16 Federal Nuclear Center in line with conditions described in [1]. Asphaltite, which sustained shock load from 17.3 to 23 GPa, didn't undergo considerable changes in its element composition. Though their IR-spectra differ from the spectrum of initial asphaltite by heightened intensity of absorption bands of aromatic groups, as well as by insignificant rise of heterogroups and condensed structures oscillation strength. At the same time the intensity of aliphatic (СН2 and СН3) groups absorption hasn't changed. Probably there've just been the carbon and hydrogen atomic rearrangement. However, shock load up to 26.7 GPa leads to asphaltite transformation into the albertite. There've been observed the intensity decrease of aliphatic groups on its IR-spectrum. Under growth of shock load up to 60 GPa bitumen

  3. Synthesizing and Characterizing Graphene via Raman Spectroscopy: An Upper-Level Undergraduate Experiment That Exposes Students to Raman Spectroscopy and a 2D Nanomaterial

    ERIC Educational Resources Information Center

    Parobek, David; Shenoy, Ganesh; Zhou, Feng; Peng, Zhenbo; Ward, Michelle; Liu, Haitao

    2016-01-01

    In this upper-level undergraduate experiment, students utilize micro-Raman spectroscopy to characterize graphene prepared by mechanical exfoliation and chemical vapor deposition (CVD). The mechanically exfoliated samples are prepared by the students while CVD graphene can be purchased or obtained through outside sources. Owing to the intense Raman…

  4. Characteristics of the complexing of chitosan with sodium dodecyl sulfate, according to IR spectroscopy data and quantum-chemical calculations

    NASA Astrophysics Data System (ADS)

    Shilova, S. V.; Romanova, K. A.; Galyametdinov, Yu. G.; Tret'yakova, A. Ya.; Barabanov, V. P.

    2016-06-01

    The complexing of protonated chitosan with dodecyl sulfate ions in water solutions is studied using IR spectroscopy data and quantum-chemical calculations. It is established that the electrostatic interaction between the protonated amino groups of chitosan and dodecyl sulfate ions is apparent in the IR spectrum as a band at 833 cm-1. The need to consider the effect the solvent has on the formation of hydrogen-bound ion pairs [CTS+ ṡ C12H25O 3 - ] is shown via a quantum-chemical simulation of the equilibrium geometry and the energy characteristics of complexing and hydration.

  5. Mid-IR Properties of Seyferts: Spitzer IRS Spectroscopy of the IRAS 12 μm Seyfert Sample

    NASA Astrophysics Data System (ADS)

    Charmandaris, Vassilis; Wu, Yanling; Huang, Jiasheng; Spinoglio, Luigi; Tommasin, Silvia

    2010-05-01

    We performed an analysis of the mid-infrared properties of the 12 μm Seyfert sample, a complete unbiased 12 μm flux limited sample of local Seyfert galaxies selected from the IRAS Faint Source Catalog based on low-resolution spectra obtained with the Infrared Spectrograph (IRS) on-board Spitzer Space Telescope. A detailed presentation of this analysis is discussed by Wu et al. (2009). We find that, on average, the 15-30 μm slope of the continuum is < α15-30> = -0.85 ± 0.61 for Seyfert 1s and -1.53 ± 0.84 for Seyfert 2s, and there is substantial scatter in each type. Moreover, nearly 32% of Seyfert 1s, and 9% of Seyfert 2s, display a peak in the mid-infrared spectrum at 20 μm, which is attributed to an additional hot dust component. The polycyclic aromatic hydrocarbon (PAH) equivalent width decreases with increasing dust temperature, as indicated by the global infrared color of the host galaxies. However, no statistical difference in PAH equivalent width is detected between the two Seyfert types of the same bolometric luminosity. Finally, we propose a new method to estimate the AGN contribution to the integrated 12 μm galaxy emission, by subtracting the “star formation” component in the Seyfert galaxies, making use of the tight correlation between PAH 11.2 μm luminosity and 12 μm luminosity for star forming galaxies.

  6. Differentiation of Body Fluid Stains on Fabrics Using External Reflection Fourier Transform Infrared Spectroscopy (FT-IR) and Chemometrics.

    PubMed

    Zapata, Félix; de la Ossa, Ma Ángeles Fernández; García-Ruiz, Carmen

    2016-04-01

    Body fluids are evidence of great forensic interest due to the DNA extracted from them, which allows genetic identification of people. This study focuses on the discrimination among semen, vaginal fluid, and urine stains (main fluids in sexual crimes) placed on different colored cotton fabrics by external reflection Fourier transform infrared spectroscopy (FT-IR) combined with chemometrics. Semen-vaginal fluid mixtures and potential false positive substances commonly found in daily life such as soaps, milk, juices, and lotions were also studied. Results demonstrated that the IR spectral signature obtained for each body fluid allowed its identification and the correct classification of unknown stains by means of principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). Interestingly, results proved that these IR spectra did not show any bands due to the color of the fabric and no substance of those present in daily life which were analyzed, provided a false positive.

  7. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing

    PubMed Central

    Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo

    2016-01-01

    The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line. PMID:26901199

  8. Rapid evaluation and quantitative analysis of thyme, origano and chamomile essential oils by ATR-IR and NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Schulz, Hartwig; Quilitzsch, Rolf; Krüger, Hans

    2003-12-01

    The essential oils obtained from various chemotypes of thyme, origano and chamomile species were studied by ATR/FT-IR as well as NIR spectroscopy. Application of multivariate statistics (PCA, PLS) in conjunction with analytical reference data leads to very good IR and NIR calibration results. For the main essential oil components (e.g. carvacrol, thymol, γ-terpinene, α-bisabolol and β-farnesene) standard errors are in the range of the applied GC reference method. In most cases the multiple coefficients of determination ( R2) are >0.97. Using the IR fingerprint region (900-1400 cm -1) a qualitative discrimination of the individual chemotypes is possible already by visual judgement without to apply any chemometric algorithms.The described rapid and non-destructive methods can be applied in industry to control very easily purifying, blending and redistillation processes of the mentioned essential oils.

  9. [The effect of Tween-80 on the differentiation of Trichophyton mentagrophytes and Trichophyton rubrum strains with FT-IR spectroscopy].

    PubMed

    Ergın, Çagri; İlkit, Macit; Gök, Yaşar; Çon, Ahmet Hilmi; Özel, Mustafa Zafer; Kabay, Nilgün; Döğen, Aylin; Baygu, Yasemin

    2014-07-01

    Trichophyton mentagrophytes and Trichophyton rubrum, are two of the frequently identified dermatophyte species in routine microbiology laboratories. Although newer technologies may assist in species-level identification, direct application of these methods usually require improvement in order to obtain reliable identification of these species. Earlier data have shown that dermatophytes may be identified with FT-IR spectroscopy although there are some limitations. In particular, the organic bond ranges in FT-IR spectra showed more irregularity because of the eucaryotic complexity of the molds. In this study, Tween-80 which is an inorganic molecule, was added to the dermatophyte growth medium in order to investigate its effect on FT-IR spectroscopy analysis of dermatophytes. Nine reference dermatophyte strains [5 T.mentagrophytes complex (T.asteroides CBS 424.63, T.erinacei CBS 344.79, CBS 511.73, CBS 677.86, T.mentagrophytes CBS 110.65) and 4 T.rubrum complex strains with different morphotypes (T.fluviomuniense CBS 592.68, T.kuryangei CBS 422.67, T.raubitschekii CBS 102856, T.rubrum CBS 392.58)] were included in the study. All strains were cultured on Sabouraud glucose agar either with or without 1% Tween-80 for three weeks. After the incubation period, superficial scrapings from each dermatophyte colony were analyzed using FT-IR spectroscopy. All measurements were performed in transmission mode between 4400 and 400 cm-1. Numerous spectral window data were analyzed by principal component analysis and hierarchical clustering was performed. The second derivations of spectral ranges revealed clear grouping of T.mentagrophytes complex and T.rubrum complex in association over five separate spectral ranges. The findings also showed that while all of the T.mentagrophytes strains contained lipid compounds in their mold structure after Tween-80 incubation (p< 0.025), T.rubrum strains did not. Based on these results, it was concluded that culture medium containing Tween-80

  10. IGRINS Near-IR High-resolution Spectroscopy of Multiple Jets around LkHα 234

    NASA Astrophysics Data System (ADS)

    Oh, Heeyoung; Pyo, Tae-Soo; Yuk, In-Soo; Park, Byeong-Gon; Park, Chan; Chun, Moo-Young; Pak, Soojong; Kim, Kang-Min; Sok Oh, Jae; Jeong, Ueejeong; Yu, Young Sam; Lee, Jae-Joon; Kim, Hwihyun; Hwang, Narae; Kaplan, Kyle; Pavel, Michael; Mace, Gregory; Lee, Hye-In; Nguyen Le, Huynh Anh; Lee, Sungho; Jaffe, Daniel T.

    2016-02-01

    We present the results of high-resolution near-IR spectroscopy toward the multiple outflows around the Herbig Be star LkHα 234 using the Immersion Grating Infrared Spectrograph. Previous studies indicate that the region around LkHα 234 is complex, with several embedded young stellar objects and the outflows associated with them. In simultaneous H- and K-band spectra from HH 167, we detected 5 [Fe ii] and 14 H2 emission lines. We revealed a new [Fe ii] jet driven by radio continuum source VLA 3B. Position-velocity diagrams of the H2 1-0 S(1) λ2.122 μm line show multiple velocity peaks. The kinematics may be explained by a geometrical bow shock model. We detected a component of H2 emission at the systemic velocity (VLSR = -10.2 km s-1) along the whole slit in all slit positions, which may arise from the ambient photodissociation region. Low-velocity gas dominates the molecular hydrogen emission from knots A and B in HH 167, which is close to the systemic velocity; [Fe ii] emission lines are detected farther from the systemic velocity, at VLSR = -100--130 km s-1. We infer that the H2 emission arises from shocked gas entrained by a high-velocity outflow. Population diagrams of H2 lines imply that the gas is thermalized at a temperature of 2500-3000 K and the emission results from shock excitation. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  11. IGRINS NEAR-IR HIGH-RESOLUTION SPECTROSCOPY OF MULTIPLE JETS AROUND LkHα 234

    SciTech Connect

    Oh, Heeyoung; Yuk, In-Soo; Park, Byeong-Gon; Park, Chan; Chun, Moo-Young; Kim, Kang-Min; Oh, Jae Sok; Jeong, Ueejeong; Yu, Young Sam; Lee, Jae-Joon; Kim, Hwihyun; Hwang, Narae; Lee, Sungho; Pyo, Tae-Soo; Pak, Soojong; Lee, Hye-In; Le, Huynh Anh Nguyen; Kaplan, Kyle; Pavel, Michael; Mace, Gregory; and others

    2016-02-01

    We present the results of high-resolution near-IR spectroscopy toward the multiple outflows around the Herbig Be star LkHα 234 using the Immersion Grating Infrared Spectrograph. Previous studies indicate that the region around LkHα 234 is complex, with several embedded young stellar objects and the outflows associated with them. In simultaneous H- and K-band spectra from HH 167, we detected 5 [Fe ii] and 14 H{sub 2} emission lines. We revealed a new [Fe ii] jet driven by radio continuum source VLA 3B. Position–velocity diagrams of the H{sub 2} 1−0 S(1) λ2.122 μm line show multiple velocity peaks. The kinematics may be explained by a geometrical bow shock model. We detected a component of H{sub 2} emission at the systemic velocity (V{sub LSR} = −10.2 km s{sup −1}) along the whole slit in all slit positions, which may arise from the ambient photodissociation region. Low-velocity gas dominates the molecular hydrogen emission from knots A and B in HH 167, which is close to the systemic velocity; [Fe ii] emission lines are detected farther from the systemic velocity, at V{sub LSR} = −100–−130 km s{sup −1}. We infer that the H{sub 2} emission arises from shocked gas entrained by a high-velocity outflow. Population diagrams of H{sub 2} lines imply that the gas is thermalized at a temperature of 2500–3000 K and the emission results from shock excitation.

  12. FT-IR spectroscopy of microorganisms at the Robert Koch Institute: experiences gained during a successful project

    NASA Astrophysics Data System (ADS)

    Naumann, Dieter

    2008-02-01

    The characterization and identification of microorganisms by infrared or Raman spectroscopy is probably one of the best developed and most frequent applications of biomedical vibrational spectroscopy. The serial types of dedicated instruments for routine FT-IR characterizations of microorganisms are now available on the market and already used in routine microbiological laboratories. The experiences gained to date, especially the necessity to define standards for sampling and measurement procedures and the details of how data compatibility between different laboratories is achieve will be discussed as well as the problem to establish validated reference data bases for objective species or strain identifications.

  13. Investigation of the Rotation of Molecular Groups in Polymers of Methyl Acrylate and Vinyl Acetate by the Method of IR-Spectroscopy,

    DTIC Science & Technology

    1987-08-27

    BY THE METHOD OF IR- SPECTROSCOPY by O.N. Trapeznikova, T.V. Belopol’skaya OTtO ELECTE NOV 1 71987 ED Approved for public release; Distribution...MOLECULAR GROUPS IN POLYMERS OF METHYL ACRYLATE AND VINYL ACETATE BY THE METHOD OF IR- SPECTROSCOPY By: O.N. Trapeznikova, T.V. Belopol’skaya English...THE METHOD OF IR- SPECTROSCOPY O.N. Trapeznikova, T.V. Belopol’skaya Physics Institute of Leningrad State University in. A.A. Zhdanov Submitted 17 July

  14. The roles of carbohydrates, proteins and lipids in the process of aggregation of natural marine organic matter investigated by means of 2D correlation spectroscopy applied to infrared spectra.

    PubMed

    Mecozzi, Mauro; Pietrantonio, Eva; Pietroletti, Marco

    2009-01-01

    In this paper the marine organic matter soluble in an alkaline medium called extractable humic substance (EHS), was extracted from three sediment samples of Tyrrhenian Sea and separated by precipitation at pH 2 in the two fractions of fulvic acids (FAs) and humic acids (HAs). FAs were further fractionated in seven sub-samples of different molecular weight (mw) by means of seven different ultrafiltration membranes operating in the range between mw<1 kDa and mw>100 kDa. Then the qualitative composition of each sample of fractionated FAs and HAs was studied by means of one-dimensional Fourier transform infrared spectroscopy in reflectance mode (FTIR-DRIFT) and by two-dimensional (2D) correlation spectroscopy both in wavelength-wavelength (WW) and in sample-sample (SS) mode. The application of 2D correlation WW spectroscopy allows to elucidate the different roles played by carbohydrates and proteins with respect to some lipid compounds such as fatty acids and ester fatty acids during the process of aggregate formations from mw approximately 1 kDa to higher size aggregates. In addition, 2D correlation WW spectroscopy allows to observe some peculiar interactions between carbohydrates and proteins in the formation of EHS aggregates, interactions which vary from a sample to another sample. The results of 2D correlation SS spectroscopy confirm the general evidences obtained by 2D WW spectroscopy and moreover, they also describe the formation of EHS aggregates as a complex process where evolutionary links and connectivity between aggregates of neighbour molecular size ranges are not evident. Two-dimensional correlation spectroscopy applied to FTIR spectroscopy shows to be a powerful tool for the investigation of the mechanisms involved in EHS aggregation because it supports the acquisition of structural information which sometimes can be hardly obtained by one-dimensional FTIR spectroscopy.

  15. The roles of carbohydrates, proteins and lipids in the process of aggregation of natural marine organic matter investigated by means of 2D correlation spectroscopy applied to infrared spectra

    NASA Astrophysics Data System (ADS)

    Mecozzi, Mauro; Pietrantonio, Eva; Pietroletti, Marco

    2009-01-01

    In this paper the marine organic matter soluble in an alkaline medium called extractable humic substance (EHS), was extracted from three sediment samples of Tyrrhenian Sea and separated by precipitation at pH 2 in the two fractions of fulvic acids (FAs) and humic acids (HAs). FAs were further fractionated in seven sub-samples of different molecular weight (mw) by means of seven different ultrafiltration membranes operating in the range between mw < 1 kDa and mw > 100 kDa. Then the qualitative composition of each sample of fractionated FAs and HAs was studied by means of one-dimensional Fourier transform infrared spectroscopy in reflectance mode (FTIR-DRIFT) and by two-dimensional (2D) correlation spectroscopy both in wavelength-wavelength (WW) and in sample-sample (SS) mode. The application of 2D correlation WW spectroscopy allows to elucidate the different roles played by carbohydrates and proteins with respect to some lipid compounds such as fatty acids and ester fatty acids during the process of aggregate formations from mw ˜1 kDa to higher size aggregates. In addition, 2D correlation WW spectroscopy allows to observe some peculiar interactions between carbohydrates and proteins in the formation of EHS aggregates, interactions which vary from a sample to another sample. The results of 2D correlation SS spectroscopy confirm the general evidences obtained by 2D WW spectroscopy and moreover, they also describe the formation of EHS aggregates as a complex process where evolutionary links and connectivity between aggregates of neighbour molecular size ranges are not evident. Two-dimensional correlation spectroscopy applied to FTIR spectroscopy shows to be a powerful tool for the investigation of the mechanisms involved in EHS aggregation because it supports the acquisition of structural information which sometimes can be hardly obtained by one-dimensional FTIR spectroscopy.

  16. Structure Determination and Excited State Proton Transfer Reaction of 1-NAPHTHOL-AMMONIA Clusters in the S_{1} State Studied by Uv-Ir Mid-Ir Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Shunpei; Miyazaki, Mitsuhiko; Martin, Weiler; Ishikawa, Haruki; Fujii, Masaaki

    2013-06-01

    1-naphthol ammonia clusters have been studied long time as a benchmark system of the excited state proton transfer (ESPT) reactions. Understanding the ESPT reaction in this system has still not been fully established. To detect the cluster size dependence of the S_{1} state properties, many researcher extensively investigated such as emission spectra, lifetime, solvents (ammonia) evaporation pattern. Curiously, cluster structure that is fundamental to discuss the reaction has not been determined for the system. Thus we applied an IR spectroscopy to the S_{1} states of the system to determine the cluster structure and to discuss the minimum size inducing the ionic dissociation of the O-H bond in the S_{1} state. IR spectra were recorded not only the O-H and N-H stretching region (3 {μ}m) but also the skeletal vibrational region (5.5-10 {μ}m). Though O-H and N-H stretching vibrations do not provide useful structural information due to the broadness, the skeletal vibrations hold the sharpness even in the S_{1} states. Changes in the skeletal vibrations due to the ammonia solvation, e.g. C-O stretching and C-O-H bending, will be discussed based on a comparison with theoretical calculations. O. Cheshnovsky and S. Leutwylar, J. Chem. Phys. 1, 4127 (1988). S. K. Kim et al., Chem. Phys. lett. 228, 369 (1994). C. Dedonder-Lardeux et al., Phys. Chem, Chem, Phys. 3, 4316 (2001).

  17. Vibrational Coupling Pathways in the CH Stretch Region of CH_3OH and CH_3OD as Revealed by IR and Ftmw-Ir Spectroscopies

    NASA Astrophysics Data System (ADS)

    Twagirayezu, Sylvestre; Wang, Xiaoliang; Perry, David S.; Neill, Justin L.; Muckle, Matt T.; Pate, Brooks H.; Xu, Li-Hong

    2011-06-01

    Infrared spectra of jet-cooled CH_3OD and CH_3OH in the CH stretch region are observed by coherence-converted population transfer Fourier transform microwave-infrared (CCPT-FTMW-IR) spectroscopy (E torsional species only) and by slit-jet single resonance spectroscopy (both A and E torsional species, CH_3OH only). Previously, we reported the analysis of ν_3 symmetric CH stretch region (2750-2900 Cm-1), and the present work extends the analysis to higher frequency (2900-3020 Cm-1). The overall observed spectra contain 17 interacting vibrational bands for CH_3OD and 28 for CH_3OH. The signs and magnitudes of the torsional tunneling splittings are deduced for three CH fundamentals (ν_3, ν_9, ν_2) of both molecules and are compared to a model calculation and to ab initio theory. The number and distribution of observed vibrational bands indicate that the CH stretch bright states couple first to doorway states that are binary combinations of bending modes. In the parts of the spectrum where doorway states are present, the observed density of coupled states is comparable to the total density of vibrational states in the molecule, but where there are no doorway states, only the CH stretch fundamentals are observed. A time-dependent interpretation of the present FTMW-IR spectra indicates a fast (˜ 200 fs) initial decay of the bright state followed by second, slower redistribution (˜ 1-3 ps). The qualitative agreement of the present data with the time-dependent experiments of Iwaki and Dlott provides further support for the similarity of the fastest vibrational relaxation processes in the liquid and gas phases. Twagirayezu, S.; Clasp, T. N.; Perry, D. S.; Neill, J. L.; Muckle, M. T.; Pate, B. H. J. Phys. Chem. A 2010, 114, 6818 Iwaki, L. K.; Dlott, D. D. J. Phys. Chem. A 2000, 104, 9101

  18. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.

    PubMed

    Wang, Tuo; Yang, Hui; Kubicki, James D; Hong, Mei

    2016-06-13

    The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D (13)C-(13)C correlation spectra of uniformly (13)C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose (13)C chemical shifts differ significantly from the (13)C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing, and hydrogen bonding from celluloses of other organisms. 2D (13)C-(13)C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Celluloses f and g are well mixed chains on the microfibril surface, celluloses a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of

  19. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations

    PubMed Central

    Wang, Tuo; Yang, Hui; Kubicki, James D.; Hong, Mei

    2017-01-01

    The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D 13C-13C correlation spectra of uniformly 13C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose 13C chemical shifts differ significantly from the 13C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing and hydrogen bonding from celluloses of other organisms. 2D 13C-13C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Cellulose f and g are well mixed chains on the microfibril surface, cellulose a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of bacterial, algal

  20. Near-IR spectroscopy of the eruptive variable source V2493 Cyg (HBC 722)

    NASA Astrophysics Data System (ADS)

    Lorenzetti, D.; Efimova, N.; Larionov, V.; Arkharov, A.; Gorshanov, D.; Giannini, T.; Antoniucci, S.; Di Paola, A.

    2012-05-01

    As part of our near-IR spectroscopic monitoring program of EXor pre-Main sequence variables (Lorenzetti et al. 2009 ApJ 693, 1056) on-going at the AZT24 1m IR telescope (Campo Imperatore, Italy), we have recently (2012 May 11) obtained a low resolution (R~250) near-IR spectrum (0.8 - 2.5 μm) of the outbursting source V2493 Cyg (otherwise called HBC 722). Since its outburst in August 2009 (Miller et al.

  1. Effect of storage on microstructural changes of Carbopol polymers tracked by the combination of positron annihilation lifetime spectroscopy and FT-IR spectroscopy.

    PubMed

    Szabó, Barnabás; Süvegh, Károly; Zelkó, Romána

    2011-09-15

    Different types of Carbopols are frequently applied excipients of various dosage forms. Depending on the supramolecular structure, their water sorption behaviour could significantly differ. The purpose of the present study was to track the supramolecular changes of two types of Carbopol polymers (Carbopol 71G and Ultrez 10NF) alone and in their physical mixture with a water-soluble drug, vitamin B(12), as a function of storage time. The combination of FT-IR spectroscopy, positron annihilation lifetime spectroscopy (PALS) and Doppler-broadening spectroscopy was applied to follow the effect of water uptake on the structural changes. Our results indicate that water-induced interactions between polymeric chains can be sensitively detected. This enables the prediction of stability of dosage forms in the course of storage.

  2. Characterization of large amyloid fibers and tapes with Fourier transform infrared (FT-IR) and Raman spectroscopy.

    PubMed

    Ridgley, Devin M; Claunch, Elizabeth C; Barone, Justin R

    2013-12-01

    Amyloids are self-assembled protein structures implicated in a host of neurodegenerative diseases. Organisms can also produce "functional amyloids" to perpetuate life, and these materials serve as models for robust biomaterials. Amyloids are typically studied using fluorescent dyes, Fourier transform infrared (FT-IR), or Raman spectroscopy analysis of the protein amide I region, and X-ray diffraction (XRD) because the self-assembled β-sheet secondary structure of the amyloid can be easily identified with these techniques. Here, FT-IR and Raman spectroscopy analyses are described to characterize amyloid structures beyond just identification of the β-sheet structure. It has been shown that peptide mixtures can self-assemble into nanometer-sized amyloid structures that then continue to self-assemble to the micrometer scale. The resulting structures are flat tapes of low rigidity or cylinders of high rigidity depending on the peptides in the mixture. By monitoring the aggregation of peptides in solution using FT-IR spectroscopy, it is possible to identify specific amino acids implicated in β-sheet formation and higher order self-assembly. It is also possible to predict the final tape or cylinder morphology and gain insight into the structure's physical properties based on observed intermolecular interactions during the self-assembly process. Tapes and cylinders are shown to both have a similar core self-assembled β-sheet structure. Soft tapes also have weak hydrophobic interactions between alanine, isoleucine, leucine, and valine that facilitate self-assembly. Rigid cylinders have similar hydrophobic interactions that facilitate self-assembly and also have extensive hydrogen bonding between glutamines. Raman spectroscopy performed on the dried tapes and fibers shows the persistence of these interactions. The spectroscopic analyses described could be generalized to other self-assembling amyloid systems to explain property and morphological differences.

  3. Evaluation of Turmeric Powder Adulterated with Metanil Yellow Using FT-Raman and FT-IR Spectroscopy

    PubMed Central

    Dhakal, Sagar; Chao, Kuanglin; Schmidt, Walter; Qin, Jianwei; Kim, Moon; Chan, Diane

    2016-01-01

    Turmeric powder (Curcuma longa L.) is valued both for its medicinal properties and for its popular culinary use, such as being a component in curry powder. Due to its high demand in international trade, turmeric powder has been subject to economically driven, hazardous chemical adulteration. This study utilized Fourier Transform-Raman (FT-Raman) and Fourier Transform-Infra Red (FT-IR) spectroscopy as separate but complementary methods for detecting metanil yellow adulteration of turmeric powder. Sample mixtures of turmeric powder and metanil yellow were prepared at concentrations of 30%, 25%, 20%, 15%, 10%, 5%, 1%, and 0.01% (w/w). FT-Raman and FT-IR spectra were acquired for these mixture samples as well as for pure samples of turmeric powder and metanil yellow. Spectral analysis showed that the FT-IR method in this study could detect the metanil yellow at the 5% concentration, while the FT-Raman method appeared to be more sensitive and could detect the metanil yellow at the 1% concentration. Relationships between metanil yellow spectral peak intensities and metanil yellow concentration were established using representative peaks at FT-Raman 1406 cm−1 and FT-IR 1140 cm−1 with correlation coefficients of 0.93 and 0.95, respectively. PMID:28231130

  4. Distribution of Hydroxyl Groups in Kukersite Shale Oil: Quantitative Determination Using Fourier Transform Infrared (FT-IR) Spectroscopy.

    PubMed

    Baird, Zachariah Steven; Oja, Vahur; Järvik, Oliver

    2015-05-01

    This article describes the use of Fourier transform infrared (FT-IR) spectroscopy to quantitatively measure the hydroxyl concentrations among narrow boiling shale oil cuts. Shale oil samples were from an industrial solid heat carrier retort. Reference values were measured by titration and were used to create a partial least squares regression model from FT-IR data. The model had a root mean squared error (RMSE) of 0.44 wt% OH. This method was then used to study the distribution of hydroxyl groups among more than 100 shale oil cuts, which showed that hydroxyl content increased with the average boiling point of the cut up to about 350 °C and then leveled off and decreased.

  5. Isomer-Specific IR Spectroscopy of BENZENE-(WATER)N Clusters with N=1-8: New Insights from the Water Bend Fundamentals and Isotopically Substituted Clusters

    NASA Astrophysics Data System (ADS)

    Kusaka, Ryoji; Walsh, Patrick S.; Zwier, Timothy S.

    2014-06-01

    This talk will focus on the isomer-specific IR spectra of benzene-(water)n (BWn) clusters with n = 1-8, returning to a topic studied by our group some 20 years ago, but now with higher resolution (OH stretch region), with inclusion of data from isotopically substituted clusters, and with extension into the HOH bending mode region. Spectra are recorded using resonant ion-dip infrared spectroscopy, an IR-UV double resonance method. Isomer-specific IR spectra in the regions of OH, OD stretches and HOH, HOD bend of benzene-H_2O, -D_2O, -HOD, -(H_2O)_2, -(D_2O)_2, -HOD-DOD were recorded in order to investigate in greater detail the intermolecular potential energy surface between water and benzene. These spectra show strong combination bands in addition to the OH/OD stretch fundamentals arising from large-amplitude "tumbling" and tunneling along internal rotation and torsion coordinates of water(s) on the surface of benzene. Interestingly, the number of extra bands and spectral patterns change dramatically depending on cluster size, the kind of deuterated isomer, and the spectral region probed. In larger clusters with n=3-8, the water HOH bending region is explored for the first time. The prominent bending mode transitions in BW1-8 are spread over a relatively small range (1610-1660 wn), and shift with cluster size in a way that reflects the known structural changes that accompany the increase in size. By comparison of experiment with calculation, it is possible to assign the experimentally observed 1614 wn transition of BW1 and 1615 wn of BW2 bands to the π-bound water molecule. The 1620-1660 wn bands of BW3-8 are due to water molecules that can be categorized as single-acceptor, single-donor (AD) hydrogen-bonded waters. In the case of single-acceptor, double-donor (ADD) water molecules, which are expected to be seen from BW6,a they show higher-frequency bending vibrations and weaker IR intensity, which would correspond to very weakly observed bands in 1660-1750 wn for

  6. Allophane on Mars: Evidence from IR Spectroscopy and TES Spectral Models

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Rampe, E. B.; Kraft, M. D.; Sharp. T. G.; Golden, D. C.; Christensen, P. C.

    2010-01-01

    Allophane is an alteration product of volcanic glass and a clay mineral precursor that is commonly found in basaltic soils on Earth. It is a poorly-crystalline or amorphous, hydrous aluminosilicate with Si/Al ratios ranging from approx.0.5-1 [Wada, 1989]. Analyses of thermal infrared (TIR) spectra of the Martian surface from TES show high-silica phases at mid-to-high latitudes that have been proposed to be primary volcanic glass [Bandfield et al., 2000; Bandfield, 2002; Rogers and Christensen, 2007] or poorly-crystalline secondary silicates such as allophane or aluminous amorphous silica [Kraft et al., 2003; Michalski et al., 2006; Rogers and Christensen, 2007; Kraft, 2009]. Phase modeling of chemical data from the APXS on the Mars Exploration Rover Spirit suggest the presence of allophane in chemically weathered rocks [Ming et al., 2006]. The presence of allophane on Mars has not been previously tested with IR spectroscopy because allophane spectra have not been available. We synthesized allophanes and allophanic gels with a range of Si/Al ratios to measure TIR emission and VNIR reflectance spectra and to test for the presence of allophane in Martian soils. VNIR reflectance spectra of the synthetic allophane samples have broad absorptions near 1.4 m from OH stretching overtones and 1.9 m from a combination of stretching and bending vibrations in H2O. Samples have a broad absorption centered near 2.25 microns, from AlAlOH combination bending and stretching vibrations, that shifts position with Si/Al ratio. Amorphous silica (opaline silica or primary volcanic glass) has been identified in CRISM spectra of southern highland terrains based on the presence of 1.4, 1.9, and broad 2.25 m absorptions [Mustard et al., 2008]; however, these absorptions are also consistent with the presence of allophane. TIR emission spectra of the synthetic allophanes show two spectrally distinct types: Si-rich and Al-rich. Si-rich allophanes have two broad absorptions centered near 1080

  7. Understanding the two-dimensional ionization structure in luminous infrared galaxies. A near-IR integral field spectroscopy perspective

    NASA Astrophysics Data System (ADS)

    Colina, Luis; Piqueras López, Javier; Arribas, Santiago; Riffel, Rogério; Riffel, Rogemar A.; Rodriguez-Ardila, Alberto; Pastoriza, Miriani; Storchi-Bergmann, Thaisa; Alonso-Herrero, Almudena; Sales, Dinalva

    2015-06-01

    We investigate the two-dimensional excitation structure of the interstellar medium (ISM) in a sample of luminous infrared galaxies (LIRGs) and Seyferts using near-IR integral field spectroscopy. This study extends to the near infrared the well-known optical and mid-IR emission line diagnostics used to classify activity in galaxies. Based on the spatially resolved spectroscopy of prototypes, we identify in the [FeII]1.64 μm/Brγ- H22.12 μm/Brγ plane regions dominated by the different heating sources, i.e. active galactic nuclei (AGNs), young main-sequence massive stars, and evolved stars i.e. supernovae. The ISM in LIRGs occupy a wide region in the near-IR diagnostic plane from -0.6 to +1.5 and from -1.2 to +0.8 (in log units) for the [FeII]/Brγ and H2/Brγ line ratios, respectively. The corresponding median(mode) ratios are +0.18(0.16) and +0.02(-0.04). Seyferts show on average larger values by factors ~2.5 and ~1.4 for the [FeII]/Brγ and H2/Brγ ratios, respectively. New areas and relations in the near-IR diagnostic plane are defined for the compact, high surface brightness regions dominated by AGN, young ionizing stars, and supernovae explosions, respectively. In addition to these high surface brightness regions, the diffuse regions affected by the AGN radiation field cover an area similar to that of Seyferts, but with high values in [FeII]/Brγ that are not as extreme. The extended, non-AGN diffuse regions cover a wide area in the near-IR diagnostic diagram that overlaps that of individual excitation mechanisms (i.e. AGN, young stars, and supernovae), but with its mode value to that of the young star-forming clumps. This indicates that the excitation conditions of the extended, diffuse ISM are likely due to a mixture of the different ionization sources, weighted by their spatial distribution and relative flux contribution. The integrated line ratios in LIRGs show higher excitation conditions i.e. towards AGNs, than those measured by the spatially resolved

  8. Time-resolved IR laser-assisted XUV photoelectron spectroscopy of metal surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, C.-H.; Thumm, U.

    2009-11-01

    Photoemission of localized and delocalized electrons from an (adsorbate-covered) metal surface by an XUV pulse of length τX into the field of a delayed IR laser pulse with carrier period TL allows for the time-resolved observation of surface and adsorbate electronic processes. For τX ≪ TL, the energy of the emitted photoelectrons (PEs) oscillates with period TL as a function of the XUV-IR pulse delay, leading to streaked PE spectra. In contrast, for τX ≳ TL, the PE spectrum is characterized by a satellite structure of sideband peaks located at integer multiples of the IR photon energy from the main photoemission peak. We present a theoretical model that allows us to discuss both, streaked and sideband photoemission spectra in comparison with recent experiments.

  9. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-21

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t{sub 1} and t{sub 3} periods, respectively. In addition to through-space and through-bond {sup 13}C/{sup 1}H and {sup 13}C/{sup 13}C chemical shift correlations, the 3D {sup 1}H/{sup 13}C/{sup 1}H experiment also provides a COSY-type {sup 1}H/{sup 1}H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ({sup 1}H/{sup 1}H chemical shift correlation spectrum) at different {sup 13}C chemical shift frequencies from the 3D {sup 1}H/{sup 13}C/{sup 1}H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the

  10. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    PubMed Central

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-01

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D 1H/13C/1H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond 13C/1H and 13C/13C chemical shift correlations, the 3D 1H/13C/1H experiment also provides a COSY-type 1H/1H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices (1H/1H chemical shift correlation spectrum) at different 13C chemical shift frequencies from the 3D 1H/13C/1H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D 1H/13C/1H experiment would be useful to study the structure and dynamics of a variety of chemical and biological

  11. Mid-IR beam direction stabilization scheme for vibrational spectroscopy, including dual-frequency 2DIR.

    PubMed

    Nyby, Clara M; Leger, Joel D; Tang, Jianan; Varner, Clyde; Kireev, Victor V; Rubtsov, Igor V

    2014-03-24

    A compact laser beam direction stabilization scheme is developed that provides the angular stability of better than 50 μrad over a wide range of frequencies from 800 to 4000 cm-1. The schematic is fully automated and features a single MCT quadrant detector. The schematic was tested to stabilize directions of the two IR beams used for dual-frequency two-dimensional infrared (2DIR) measurements and showed excellent results: automatic tuning of the beam direction allowed achieving the alignment quality within 10% of the optimal alignment obtained manually. The schematic can be easily implemented to any nonlinear spectroscopic measurements in the mid-IR spectral region.

  12. Rapid characterisation of archaeological midden components using FT-IR spectroscopy, SEM-EDX and micro-XRD.

    PubMed

    Shillito, Lisa-Marie; Almond, Matthew J; Nicholson, James; Pantos, Manolis; Matthews, Wendy

    2009-07-01

    Samples taken from middens at the Neolithic site of Catalhöyük in Turkey have been analysed using IR spectroscopy backed up by powder XRD and SEM-EDX. Microcomponents studied include fossil hackberries (providing evidence of ancient diet and seasonality), mineral nodules (providing evidence of post-depositional change) and phytoliths (mineralised plant cells, providing evidence of usage of plant species). Finely laminated ashy deposits have also been investigated allowing chemical and mineralogical variations to be explored. It is found that many layers which appear visually to be quite distinctive have, in fact, very similar mineralogy.

  13. Organic Spectroscopy Laboratory: Utilizing IR and NMR in the Identification of an Unknown Substance

    ERIC Educational Resources Information Center

    Glagovich, Neil M.; Shine, Timothy D.

    2005-01-01

    A laboratory experiment that emphasizes the interpretation of both infrared (IR) and nuclear magnetic resonance (NMR) spectra in the elucidation of the structure of an unknown compound was developed. The method helps students determine [to the first power]H- and [to the thirteenth power]C-NMR spectra from the structures of compounds and to…

  14. Dynamics-based selective 2D {sup 1}H/{sup 1}H chemical shift correlation spectroscopy under ultrafast MAS conditions

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-28

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of {sup 1}H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of {sup 1}H/{sup 1}H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.

  15. Biochemical Monitoring of Spinal Cord Injury by FT-IR Spectroscopy--Effects of Therapeutic Alginate Implant in Rat Models.

    PubMed

    Tamosaityte, Sandra; Galli, Roberta; Uckermann, Ortrud; Sitoci-Ficici, Kerim H; Later, Robert; Beiermeister, Rudolf; Doberenz, Falko; Gelinsky, Michael; Leipnitz, Elke; Schackert, Gabriele; Koch, Edmund; Sablinskas, Valdas; Steiner, Gerald; Kirsch, Matthias

    2015-01-01

    Spinal cord injury (SCI) induces complex biochemical changes, which result in inhibition of nervous tissue regeneration abilities. In this study, Fourier-transform infrared (FT-IR) spectroscopy was applied to assess the outcomes of implants made of a novel type of non-functionalized soft calcium alginate hydrogel in a rat model of spinal cord hemisection (n = 28). Using FT-IR spectroscopic imaging, we evaluated the stability of the implants and the effects on morphology and biochemistry of the injured tissue one and six months after injury. A semi-quantitative evaluation of the distribution of lipids and collagen showed that alginate significantly reduced injury-induced demyelination of the contralateral white matter and fibrotic scarring in the chronic state after SCI. The spectral information enabled to detect and localize the alginate hydrogel at the lesion site and proved its long-term persistence in vivo. These findings demonstrate a positive impact of alginate hydrogel on recovery after SCI and prove FT-IR spectroscopic imaging as alternative method to evaluate and optimize future SCI repair strategies.

  16. Characterization of extracellular vesicles by IR spectroscopy: Fast and simple classification based on amide and CH stretching vibrations.

    PubMed

    Mihály, Judith; Deák, Róbert; Szigyártó, Imola Csilla; Bóta, Attila; Beke-Somfai, Tamás; Varga, Zoltán

    2017-03-01

    Extracellular vesicles isolated by differential centrifugation from Jurkat T-cell line were investigated by attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR). Amide and CH stretching band intensity ratios calculated from IR bands, characteristic of protein and lipid components, proved to be distinctive for the different extracellular vesicle subpopulations. This proposed 'spectroscopic protein-to-lipid ratio', combined with the outlined spectrum-analysis protocol is valid also for low sample concentrations (0.15-0.05mg/ml total protein content) and can carry information about the presence of other non-vesicular formations such as aggregated proteins, lipoproteins and immune complexes. Detailed analysis of IR data reveals compositional changes of extracellular vesicles subpopulations: second derivative spectra suggest changes in protein composition from parent cell towards exosomes favoring proteins with β-turns and unordered motifs at the expense of intermolecular β-sheet structures. The IR-based protein-to-lipid assessment protocol was tested also for red blood cell derived microvesicles for which similar values were obtained. The potential applicability of this technique for fast and efficient characterization of vesicular components is high as the investigated samples require no further preparations and all the different molecular species can be determined in the same sample. The results indicate that ATR-FTIR measurements provide a simple and reproducible method for the screening of extracellular vesicle preparations. It is hoped that this sophisticated technique will have further impact in extracellular vesicle research.

  17. Classification of edible oils and modeling of their physico-chemical properties by chemometric methods using mid-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Luna, Aderval S.; da Silva, Arnaldo P.; Ferré, Joan; Boqué, Ricard

    This research work describes two studies for the classification and characterization of edible oils and its quality parameters through Fourier transform mid infrared spectroscopy (FT-mid-IR) together with chemometric methods. The discrimination of canola, sunflower, corn and soybean oils was investigated using SVM-DA, SIMCA and PLS-DA. Using FT-mid-IR, DPLS was able to classify 100% of the samples from the validation set, but SIMCA and SVM-DA were not. The quality parameters: refraction index and relative density of edible oils were obtained from reference methods. Prediction models for FT-mid-IR spectra were calculated for these quality parameters using partial least squares (PLS) and support vector machines (SVM). Several preprocessing alternatives (first derivative, multiplicative scatter correction, mean centering, and standard normal variate) were investigated. The best result for the refraction index was achieved with SVM as well as for the relative density except when the preprocessing combination of mean centering and first derivative was used. For both of quality parameters, the best results obtained for the figures of merit expressed by the root mean square error of cross validation (RMSECV) and prediction (RMSEP) were equal to 0.0001.

  18. Fluorescence anisotropy, FT-IR spectroscopy and 31-P NMR studies on the interaction of paclitaxel with lipid bilayers.

    PubMed

    Dhanikula, Anand Babu; Panchagnula, Ramesh

    2008-06-01

    To understand the bilayer interaction with paclitaxel, fluorescence polarization, Fourier transform infrared spectroscopy (FT-IR) and 31-phosphorus nuclear magnetic resonance (31P-NMR) studies were performed on paclitaxel bearing liposomes. Fluorescence anisotropy of three probes namely, 1,6-diphenyl-1,3,5-hexatriene (DPH), 12-(9-anthroyloxy) stearic acid (12AS) and 8-anilino-1-naphthalene sulfonate (ANS) were monitored as a function of paclitaxel concentration in the unsaturated bilayers. The incorporation of paclitaxel decreased anisotropy of 12AS and ANS probes, while slightly increased anisotropy of DPH. Paclitaxel has a fluidizing effect in the upper region of the bilayer whereas the hydrophobic core is slightly rigidized. FT-IR spectroscopy showed an increase in the asymmetric and symmetric methylene stretching frequencies, splitting of methylene scissoring band and broadening of carbonyl stretching mode. These studies collectively ascertained that paclitaxel mainly occupies the cooperativity region and interact with the interfacial region of unsaturated bilayers and induces fluidity in the headgroup region of bilayer. At higher loadings (>3 mol%), paclitaxel might gradually tend to accumulate at the interface and eventually partition out of bilayer as a result of solute exclusion phenomenon, resulting in crystallization; seed non-bilayer phases, as revealed by 31P-NMR, thereby destabilizing liposomal formulations. In general, any membrane component which has a rigidization effect will decrease, while that with a fluidizing effect will increase, with a bearing on headgroup interactions, partitioning of paclitaxel into bilayers and stability of the liposomes.

  19. Accelerated Aging of BKC 44306-10 Rigid Polyurethane Foam: FT-IR Spectroscopy, Dimensional Analysis, and Micro Computed Tomography

    SciTech Connect

    Gilbertson, Robert D.; Patterson, Brian M.; Smith, Zachary

    2014-01-02

    An accelerated aging study of BKC 44306-10 rigid polyurethane foam was carried out. Foam samples were aged in a nitrogen atmosphere at three different temperatures: 50 °C, 65 °C, and 80 °C. Foam samples were periodically removed from the aging canisters at 1, 3, 6, 9, 12, and 15 month intervals when FT-IR spectroscopy, dimensional analysis, and mechanical testing experiments were performed. Micro Computed Tomography imaging was also employed to study the morphology of the foams. Over the course of the aging study the foams the decreased in size by a magnitude of 0.001 inches per inch of foam. Micro CT showed the heterogeneous nature of the foam structure likely resulting from flow effects during the molding process. The effect of aging on the compression and tensile strength of the foam was minor and no cause for concern. FT-IR spectroscopy was used to follow the foam chemistry. However, it was difficult to draw definitive conclusions about the changes in chemical nature of the materials due to large variability throughout the samples.

  20. FT-IR and Raman spectroscopies determine structural changes of tilapia fish protein isolate and surimi under different comminution conditions.

    PubMed

    Kobayashi, Yuka; Mayer, Steven G; Park, Jae W

    2017-07-01

    Tilapia proteins refined by pH shift and water washing were chopped under various comminution conditions and their structural changes were investigated using Fourier transform infrared (FT-IR) and Raman spectroscopies. Both techniques revealed the degree of unfolding in protein structure increased when fish protein isolate (FPI) and surimi were chopped at 25°C for 18min compared to samples chopped at 5°C for 6min. Results indicated both hydrophobic interactions and disulfide bonds were significantly enhanced during gelation. FPI and surimi gels prepared at 25°C for 18min exhibited higher β-sheet contents and more chemical bonds such as hydrophobic interactions and disulfide bonds than those at 5°C for 6min. Results suggested that controlling comminution is important to improve gel qualities in FPI and surimi from tropical fish like tilapia. Moreover, FT-IR and Raman spectroscopies are useful complementary tools for elucidating the change in the structure of protein during comminution and gelation.

  1. High Resolution Near-IR Spectroscopy of Protostars With Large Telescopes

    NASA Technical Reports Server (NTRS)

    Greene, Tom; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    It is now possible to measure absorption spectra of Class I protostars using D greater than or = 8m telescopes equipped with sensitive cryogenic IR spectrographs. Our latest high-resolution (R approx. 20,000) Keck data reveal that Class I protostars are indeed low-mass stars with dwarf-like features. However, they differ from T Tauri stars in that Class I protostars have much higher IR veilings (tau(sub k) greater than or = 1 - 3+) and they are rotating quickly, v sin i greater than 20 km/s. Interestingly, the vast majority of protostellar absorption spectra show stellar - not disk - absorption features. A preliminary H-R diagram suggests that protostellar photospheres may have different physical structures than T Tauri stars, perhaps due to their higher accretion rates.

  2. Determination of the aromatic compounds in plant cuticular waxes using FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Dubis, Eligiusz N.; Dubis, Alina T.; Popławski, J.

    2001-09-01

    The infrared study of the aromatic components of hops ( Humulus lupulus) cuticular wax was performed. HATR FT-IR technique for fresh leaves and their extract analysis was applied. Phenylmethyl myristate, 2-phenylethyl myristate and docosyl benzoate were synthesized and used as reference standards. An absorption band in the range of 709-966 cm -1 indicates the presence of aromatic esters in plant cuticular waxes.

  3. Characterisation of DNA methylation status using spectroscopy (mid-IR versus Raman) with multivariate analysis.

    PubMed

    Kelly, Jemma G; Najand, Ghazal M; Martin, Francis L

    2011-05-01

    Methylation status plays important roles in the regulation of gene expression and significantly influences the dynamics, bending and flexibility of DNA. The aim of this study was to determine whether attenuated total reflection Fourier-transform infrared (ATR-FTIR) or Raman spectroscopy with subsequent multivariate analysis could determine methylation patterning in oligonucleotides variously containing 5-methylcytosine, cytosine and guanine bases. Applied to Low-E reflective glass slides, 10 independent spectral acquisitions were acquired per oligonucleotide sample. Resultant spectra were baseline-corrected and vector normalised over the 1750 cm(-1) -760 cm(-1) (for ATR-FTIR spectroscopy) or the 1750 cm(-1) -600 cm(-1) (for Raman spectroscopy) regions. Data were then analysed using principal component analysis (PCA) coupled with linear discriminant analysis (LDA). Exploiting this approach, biomolecular signatures enabling sensitive and specific discrimination of methylation patterning were derived. For DNA sequence and methylation analysis, this approach has the potential to be an important tool, especially when material is scarce.

  4. Compact large-aperture Fabry-Perot interferometer modules for gas spectroscopy at mid-IR

    NASA Astrophysics Data System (ADS)

    Kantojärvi, Uula; Varpula, Aapo; Antila, Tapani; Holmlund, Christer; Mäkynen, Jussi; Näsilä, Antti; Mannila, Rami; Rissanen, Anna; Antila, Jarkko; Disch, Rolf J.; Waldmann, Torsten A.

    2014-03-01

    VTT has developed Fabry-Pérot Interferometers (FPI) for visible and infrared wavelengths since 90's. Here we present two new platforms for mid-infrared gas spectroscopy having a large optical aperture to provide high optical throughput but still enabling miniaturized instrument size. First platform is a tunable filter that replaces a traditional filter wheel, which operates between wavelengths of 4-5 um. Second platform is for correlation spectroscopy where the interferometer provides a comb-like transmission pattern mimicking absorption of diatomic molecules at the wavelength range of 4.7-4.8 um. The Bragg mirrors have 2-4 thin layers of polysilicon and silicon oxide.

  5. Vibrational spectroscopy at interfaces by IR-VIS sum-frequency generation using CLIO FEL

    SciTech Connect

    Peremans, A.; Tadjeddine, A.; Wan Quan, Z.

    1995-12-31

    IR-vis sum-frequency generation (SFG) has developed into a versatile technique for probing the vibrational structure of interfaces. To overcome the limited spectral range accessible by benchtop IR lasers, we have developed an SFG spectrometer that makes use of the broad band tuneable infrared beam provided by the CLIO-FEL. We will evaluate the gain in sensitivity of the FEL-SFG spectrometer in comparison to that of benchtop lasers, taking account of the surface damage by laser heating. Thereafter, we review the different research projects undertaken using this facility: (1) The interface selectivity of SFG makes it particularly suitable for probing buried liquid/solid interface. We took advantage of the spectrometer sensitivity to monitor the electrochemical deposition of hydrogen on platinum single crystals at under- and overpotential (2) Because of its sensitivity to the molecular symmetry, SFG allows probing the conformation of self assembled monolayers deposited on metals. We discuss SFG spectra of {omega}(4-nitroanilino)-dodecane adsorbed on polycrystalline gold and silver films; in the 1550 - 900 cm{sup -1} spectral range. (3) We have undertaken a spectroscopic approach for the investigation of polymer films adhesion on glass. Polyurethane/glass interface is investigated in the 2200 - 1600 cin{sup -1} spectral region. (4) The use of the CLIO FEL allows probing of the vibrational dynamics of the prominent IR active vibrations between 1500 and 500 cm{sup -1} of fullerene epitaxial films. These modes are modified upon charge transfer from the substrate to the C{sub 60} molecules. Preliminary SFG spectra of C{sub 60}/Ag interface are presented. (5) Site specific detection of CO adsorption and CO + O coadsorption on Pd(111) are studied.

  6. Conformation states of gramicidin A along the pathway to the formation of channels in model membranes determined by 2D NMR and circular dichroism spectroscopy.

    PubMed

    Abdul-Manan, N; Hinton, J F

    1994-06-07

    Gramicidin A incorporated into SDS (sodium dodecyl sulfate) micelles exists as a right-handed, N-to-N-terminal beta 6.3 helical dimer [Lomize, A. L., Orechov, V. Yu., & Arseniev, A.S. (1992) Bioorg. Khim. 18, 182-189]. In the incorporation procedure to achieve the ion channel state of gramicidin A in SDS micelles, trifluoroethanol (TFE) is used to solubilize the hydrophobic peptide before addition to the aqueous/micelle solution. The conformational transition of gramicidin A to form ion channels in SDS micelles, i.e., in TFE and 10% TFE/water, has been investigated using 2D NMR and CD spectroscopy. In neat TFE, gramicidin A was found to be monomeric and may possibly exist in an equilibrium of rapidly interconverting conformers of at least three different forms believed to be left- and/or right-handed alpha and beta 4.4 helices. It was found that the interconversion between these conformers was slowed down in 55% TFE as evident by the observation of at least three different sets of d alpha N COSY peaks although CD gave a net spectrum similar to that in neat TFE. In 10% TFE gramicidin A spontaneously forms a precipitate. The precipitated species were isolated and solubilized in dioxane where gramicidin conformers undergo very slow interconversion and could be characterized by NMR. At least seven different gramicidin A conformations were found in 10% TFE. Four of thes are the same types of double helices as previously found in ethanol (i.e., a symmetric left-handed parallel beta 5.6 double helix, an unsymmetric left-handed parallel beta 5.6 double helix, a symmetric left-handed antiparallel beta 5.6 double helix, a symmetric right-handed parallel beta 5.6 double helix); the fifth is possibly a symmetric right-handed antiparallel beta 5.6 double helix. There is also evidence for the presence of at least one form of monomeric species. Previous observation on the solvent history dependence in the ease of channel incorporation may be explained by the presence of several

  7. Identification and classification of textile fibres using ATR-FT-IR spectroscopy with chemometric methods.

    PubMed

    Peets, Pilleriin; Leito, Ivo; Pelt, Jaan; Vahur, Signe

    2017-02-15

    The possibility of classification of single- and two-component textile materials using ATR-FT-IR spectra and chemometric methods, principal component analysis (PCA) and discriminant analysis, was assessed. Altogether 89 textile samples belonging to 26 different types (11 one- and 15 two-component textiles) were investigated. It was found that PCA classification using only two or three principal components (PCs) enables identifying different one- and two-component textiles, although with two important limitations: it was not always possible to distinguish between the cellulose-based fibres (cotton, linen and in some cases viscose) and it was only partly possible to distinguish between silk and wool. The statistical discriminant analysis can use as many PCs as there are sample classes and due to that can discriminate between single-component fibres, including viscose from linen and cotton as well as silk from wool. Besides that, in both of these cases, involving optical microscopy as an additional technique enabled unequivocal identification of the fibres. The possibilities of semi-quantitative analysis of mixed fibres (cotton-polyester, wool-polyester and wool-polyamide) with PCA were investigated and it was found that approximate quantitative composition is obtainable if for the mixed fibre sample a number of spectra are averaged in order to minimize the effect of structural inhomogeneity. For approximate content determination 25 spectra of selected two-component samples were registered for calibration and the averaged spectrum for each sample was computed. Due to the structural inhomogeneity of mixed textiles, obtaining accurate quantitative composition from real samples is not possible with ATR-FT-IR. The main problems with ATR-FT-IR-PCA classification are (1) difficulties in getting high quality spectra from some textiles (e.g. polyacrylic), (2) inhomogeneity of the textile fibres in the case of two-component fibres and (3) intrinsic similarity between the

  8. Mid- and Far-IR Spectroscopy of the Nebular Phase of SN1987A

    NASA Technical Reports Server (NTRS)

    Wooden, Diane; Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    The mid- and far-infrared (IR) spectra of the nebular phase of SM 987A spans 250 days through more than 1000 days after the event. Analysis of the spectra, largely obtained from the Kuiper Airborne Observatory, leads to a rich picture of the structure of the supernebula. The evidence for dust grain formation. In the nebula after about 580 days will be reviewed. The dust continuum emission spectrum was gray and dust appears to have condensed in optically thick 'clumps' throughout a significant fraction of the nebula. Additional information is contained in the original extended abstract.

  9. Identification and classification of textile fibres using ATR-FT-IR spectroscopy with chemometric methods

    NASA Astrophysics Data System (ADS)

    Peets, Pilleriin; Leito, Ivo; Pelt, Jaan; Vahur, Signe

    2017-02-01

    The possibility of classification of single- and two-component textile materials using ATR-FT-IR spectra and chemometric methods, principal component analysis (PCA) and discriminant analysis, was assessed. Altogether 89 textile samples belonging to 26 different types (11 one- and 15 two-component textiles) were investigated. It was found that PCA classification using only two or three principal components (PCs) enables identifying different one- and two-component textiles, although with two important limitations: it was not always possible to distinguish between the cellulose-based fibres (cotton, linen and in some cases viscose) and it was only partly possible to distinguish between silk and wool. The statistical discriminant analysis can use as many PCs as there are sample classes and due to that can discriminate between single-component fibres, including viscose from linen and cotton as well as silk from wool. Besides that, in both of these cases, involving optical microscopy as an additional technique enabled unequivocal identification of the fibres. The possibilities of semi-quantitative analysis of mixed fibres (cotton-polyester, wool-polyester and wool-polyamide) with PCA were investigated and it was found that approximate quantitative composition is obtainable if for the mixed fibre sample a number of spectra are averaged in order to minimize the effect of structural inhomogeneity. For approximate content determination 25 spectra of selected two-component samples were registered for calibration and the averaged spectrum for each sample was computed. Due to the structural inhomogeneity of mixed textiles, obtaining accurate quantitative composition from real samples is not possible with ATR-FT-IR. The main problems with ATR-FT-IR-PCA classification are (1) difficulties in getting high quality spectra from some textiles (e.g. polyacrylic), (2) inhomogeneity of the textile fibres in the case of two-component fibres and (3) intrinsic similarity between the

  10. Utilization of UV and IR Supercontinua in Gas-Phase Subpicosecond Kinetic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Glownia, J. H.; Misewich, J.; Sorokin, P. P.

    Through the work of photochemists extending over many decades, there now exists a wealth of information on the various reactions that photoexcited gas phase molecules undergo. Most of this information relates to the product molecules that are formed, either as the direct result of a primary photochemical act, such as photodissociation, or through subsequent secondary reactions, involving collisions with other molecules in the gas. Recently, there has been an extensive effort directed at determining the exact energy distributions of the primary products formed in photodissociation. With the use of nanosecond tunable-laser techniques, such as laser-induced fluorescence (LIF) and coherent anti-Stokes Raman spectroscopy (CARS), scientists have successfully determined the nascent electronic, vibrational, and rotational energy distributions of various diatomic fragments such as CN, OH, NO, and O2 that are directly formed in the photodissociation of many kinds of molecules. The ready availability of high-quality, tunable, nanosecond lasers has made determination of the above-mentioned collisionless energy distributions a relatively straightforward process. The determination of product translational energies has long effectively been handled by angularly resolved time-of-flight (TOF) spectroscopy, or by sub-Doppler resolution spectroscopy, including a recently improved version of the latter, velocity-aligned Doppler spectroscopy (Xu et al., 1986).

  11. Fourier Transform Infrared (FT-IR) Spectroscopy of Atmospheric Trace Gases HCl, NO and SO2

    NASA Technical Reports Server (NTRS)

    Haridass, C.; Aw-Musse, A.; Dowdye, E.; Bandyopadhyay, C.; Misra, P.; Okabe, H.

    1998-01-01

    Fourier Transform Infrared (FT-IR) spectral data have been recorded in the spectral region 400-4000/cm of hydrogen chloride and sulfur dioxide with I/cm resolution and of nitric oxide with 0.25 cm-i resolution, under quasi-static conditions, when the sample gas was passed through tubings of aluminum, copper, stainless steel and teflon. The absorbance was measured for the rotational lines of the fundamental bands of (1)H(35)Cl and (1)H(37)Cl for pressures in the range 100-1000 Torr and for the (14)N(16)O molecule in the range 100-300 Torr. The absorbance was also measured for individual rotational lines corresponding to the three modes of vibrations (upsilon(sub 1) - symmetric stretch, upsilon(sub 2) - symmetric bend, upsilon(sub 3) - anti-symmetric stretch) of the SO2 molecule in the pressure range 25-150 Torr. A graph of absorbance versus pressure was plotted for the observed rotational transitions of the three atmospherically significant molecules, and it was found that the absorbance was linearly proportional to the pressure range chosen, thereby validating Beer's law. The absorption cross-sections were determined from the graphical slopes for each rotational transition recorded for the HCl, NO and SO2 species. Qualitative and quantitative spectral changes in the FT-IR data will be discussed to identify and characterize various tubing materials with respect to their absorption features.

  12. Observation of the interference between the intramolecular IR-visible and visible-IR processes in the doubly resonant sum frequency generation vibrational spectroscopy of Rhodamine 6G adsorbed at the air/water interface.

    PubMed

    Wu, Dan; Deng, Gang-Hua; Guo, Yuan; Wang, Hong-fei

    2009-05-28

    Using the picosecond visible light at 532.1 nm and infrared light at 2800-3100 cm(-1), we observed the interference between the intramolecular IR-visible and visible-IR processes in the doubly resonant sum frequency generation vibrational spectroscopy of Rhodamine 6G adsorbed at the air/water interface. The interference phenomenon exists for both the C-H stretching vibrations in the 2800-3100 cm(-1) region and the skeleton vibrations in the 1450-1700 cm(-1) region. The relative strength of the visible-IR process at different wavelengths is the result of the electronic structure of the molecule. This is the first direct observation of the visible-IR sum frequency generation process in the electronically excited state of a model molecular system.

  13. Hyperspectral image analysis for standoff trace detection using IR laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Jarvis, J.; Fuchs, F.; Hugger, S.; Ostendorf, R.; Butschek, L.; Yang, Q.; Dreyhaupt, A.; Grahmann, J.; Wagner, J.

    2016-05-01

    In the recent past infrared laser backscattering spectroscopy using Quantum Cascade Lasers (QCL) emitting in the molecular fingerprint region between 7.5 μm and 10 μm proved a highly promising approach for stand-off detection of dangerous substances. In this work we present an active illumination hyperspectral image sensor, utilizing QCLs as spectral selective illumination sources. A high performance Mercury Cadmium Telluride (MCT) imager is used for collection of the diffusely backscattered light. Well known target detection algorithms like the Adaptive Matched Subspace Detector and the Adaptive Coherent Estimator are used to detect pixel vectors in the recorded hyperspectral image that contain traces of explosive substances like PETN, RDX or TNT. In addition we present an extension of the backscattering spectroscopy technique towards real-time detection using a MOEMS EC-QCL.

  14. Chemical Sensors Based on IR Spectroscopy and Surface-Modified Waveguides

    NASA Technical Reports Server (NTRS)

    Lopez, Gabriel P.; Niemczyk, Thomas

    1999-01-01

    Sol-gel processing techniques have been used to apply thin porous films to the surfaces of planar infrared (IR) waveguides to produce widely useful chemical sensors. The thin- film coating serves to diminish the concentration of water and increase the concentration of the analyte in the region probed by the evanescent IR wave. These porous films are composed of silica, and therefore, conventional silica surface modification techniques can be used to give the surface a specific functional character. The sol-gel film was surface-modified to make the film highly hydrophobic. These sensors were shown to be capable of detecting non-polar organic analytes, such as benzonitrile, in aqueous solution with detection limits in the ppb range. Further, these porous sol-gel structures allow the analytes to diffuse into and out of the films rapidly, thus reaching equilibrium in less than ten seconds. These sensors are unique because of the fact that their operation is based on the measurement of an IR absorption spectrum. Thus, these sensors are able to identify the analytes as well as measure concentration with high sensitivity. These developments have been documented in previous reports and publications. Recently, we have also targeted detection of the polar organic molecules acetone and isopropanol in aqueous solution. Polar organics are widely used in industrial and chemical processes, hence it is of interest to monitor their presence in effluents or decontamination process flows. Although large improvements in detection limits were expected with non-polar organic molecules in aqueous solutions using very hydrophobic porous sol-gel films on silicon attenuated total reflectance (Si ATR) waveguides, it was not as clear what the detection enhancements might be for polar organic molecules. This report describes the use of modified sol-gel-coated Si ATR sensors for trace detection and quantitation of small polar organic molecules in aqueous solutions. The detection of both acetone

  15. Atmospheric Transmission Measurements Using IR Lasers, Fourier Transform Spectroscopy, and Gas-Filter Correlation Techniques,

    DTIC Science & Technology

    2007-11-02

    J. A. DOWLING , K. M. HAUGHT, R. F. HORTON, S. T. HANLEY, J. A. CURCIO, D. H. GARCIA, AND C. O. GOTT Optical Sciences Division and W. L. AGAMBAR...Spectroscopy, and Gas-Filter Correlation Techniques Personal Author: Dowling , JA.; Haught, K.M.; Horton, R.F; et al. Corporate Author Or Publisher: Naval... Dowling , K. M. Haught, R. F. Horton, S. T. Hanley, J. A. Curcio, D. H. Garcia, and C. 0. Gott Optical Sciences Division and W. L. Agambar

  16. Screening the low molecular weight fraction of human serum using ATR-IR spectroscopy.

    PubMed

    Bonnier, Franck; Brachet, Guillaume; Duong, Romain; Sojinrin, Tobiloba; Respaud, Renaud; Aubrey, Nicolas; Baker, Matthew J; Byrne, Hugh J; Chourpa, Igor

    2016-10-01

    Vibrational spectroscopic techniques can detect small variations in molecular content, linked with disease, showing promise for screening and early diagnosis. Biological fluids, particularly blood serum, are potentially valuable for diagnosis purposes. The so-called Low Molecular Weight Fraction (LMWF) contains the associated peptidome and metabolome and has been identified as potentially the most relevant molecular population for disease-associated biomarker research. Although vibrational spectroscopy can deliver a specific chemical fingerprint of the samples, the High Molecular Weight Fraction (HMWF), composed of the most abundant serum proteins, strongly dominates the response and ultimately makes the detection of minor spectral variations a challenging task. Spectroscopic detection of potential serum biomarkers present at relatively low concentrations can be improved using pre-analytical depletion of the HMWF. In the present study, human serum fractionation by centrifugal filtration was used prior to analysis by Attenuated Total Reflection infrared spectroscopy. Using a model sample based on glycine spiked serum, it is demonstrated that the screening of the LMWF can be applied to quantify blinded concentrations up to 50 times lower. Moreover, the approach is easily transferable to different bodily fluids which would support the development of more efficient and suitable clinical protocols exploring vibrational spectroscopy based ex-vivo diagnostic tools. Revealing serum LMWF for spectral serological diagnostic applications.

  17. Nondestructive analysis and dating of historical paper based on IR spectroscopy and chemometric data evaluation.

    PubMed

    Trafela, Tanja; Strlic, Matija; Kolar, Jana; Lichtblau, Dirk A; Anders, Manfred; Mencigar, Danijela Pucko; Pihlar, Boris

    2007-08-15

    Sampling restrictions in analysis of cultural heritage materials narrow the choice of appropriate analytical methods considerably. In this work, near- and mid-FT-IR reflectance data were related to paper properties determined with classical analytical methods using partial least-squares. Nondestructive determination of properties, which are of importance for evaluation of the long-term stability of historical paper, i.e., ash content, lignin content, degree of polymerization of cellulose, pH, and aluminum content, is possible. With the use of a considerable sample set, satisfactory reliability was achieved for all properties but aluminum content. Considering that with age, chemical properties of paper change, dating of historical documents was attempted for the first time, also with success.

  18. Impact of drying on wood ultrastructure observed by deuterium exchange and photoacoustic FT-IR spectroscopy.

    PubMed

    Suchy, Miro; Virtanen, Jenni; Kontturi, Eero; Vuorinen, Tapani

    2010-02-08

    The impact of drying on the ultrastructure of fresh wood was studied by deuterium exchange coupled with FT-IR analysis. This fundamental investigation demonstrated that water removal leads to irreversible alterations of the wood structure, namely, supramolecular rearrangements between wood polymers. The deuteration of fresh wood was shown to be fully reversible by a subsequent exposure of the deuterated sample to water (reprotonation). Therefore, the presence of any OD groups in deuterated and then dried wood samples after reprotonation is a clear indicator of reduced accessibility. The extent of changes was affected by drying temperature and relative humidity. Application of this methodology for the evaluation of chemical pulp sample (reference material) resulted in similar response, only more pronounced. Two hypothetical alternatives were proposed for accessibility reduction in dried wood: (i) irreversible aggregation of cellulose microfibrils and (ii) irreversible stiffening of the hemicellulose/lignin matrix that extensively swells when exposed to water.

  19. Structural features of alkali and barium aluminofluorophosphate glasses studied by IR spectroscopy

    SciTech Connect

    Urusovskaya, L.N.; Smirnova, E.V.

    1995-03-01

    IR reflection spectra of the Al(PO{sub 3}){sub 3}-MeF{sub x} glasses (Me=Li, Na, K, Ba) with the maximum content of fluoride varied for each specific glass within certain concentration limits are considered. Analysis of the spectra for glasses obtained upon variation in the content of alkali metal fluoride introduced into these glasses has demonstrated that the increase in the MeF{sub x} content leads to breaking the chain groupings and forming the [PO{sub 3}F]{sup 2-} groups, whereas the rise in concentration of barium fluoride in the Al(PO{sub 3}){sub 3}-BaF{sub 2} glasses brings about the stabilization of the chain structures.

  20. High precision mapping of kidney stones using μ-IR spectroscopy to determine urinary lithogenesis.

    PubMed

    Blanco, Francisco; Ortiz-Alías, Pilar; López-Mesas, Montserrat; Valiente, Manuel

    2015-06-01

    Evolution of urinary lithiasis is determined by the metabolism and life-style of the related patient. The appropriate classification of the stone is mandatory for the identification of the lithogenic process. In this study, cros-sections from a single stone of each of the most frequent urolithiasis types (calcium oxalate mono and dihydrate and carbonate apatite) have been selected and imaged using IR microspectroscopy. Moreover, the use of high definition sFTIR (synchrotron source) has revealed hidden information to the conventional FTIR. This work has demonstrated that minor components become key factors on the description of the stages of stone formation. Intensity map for COM (1630 cm(-1) peak). The high spatial definition achieved is key for the precise description of the kidney stone history.

  1. Impact of Humidity on Quartz-Enhanced Photoacoustic Spectroscopy Based CO Detection Using a Near-IR Telecommunication Diode Laser.

    PubMed

    Yin, Xukun; Dong, Lei; Zheng, Huadan; Liu, Xiaoli; Wu, Hongpeng; Yang, Yanfang; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Xiao, Liantuan; Jia, Suotang

    2016-01-27

    A near-IR CO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) is evaluated using humidified nitrogen samples. Relaxation processes in the CO-N2-H2O system are investigated. A simple kinetic model is used to predict the sensor performance at different gas pressures. The results show that CO has a ~3 and ~5 times slower relaxation time constant than CH4 and HCN, respectively, under dry conditions. However, with the presence of water, its relaxation time constant can be improved by three orders of magnitude. The experimentally determined normalized detection sensitivity for CO in humid gas is 1.556 × 10(-8) W ⋅ cm (-1)/Hz(1/2).

  2. Ion Association in Hydrothermal Sodium Sulfate Solutions Studied by Modulated FT-IR-Raman Spectroscopy and Molecular Dynamics.

    PubMed

    Reimer, Joachim; Steele-MacInnis, Matthew; Wambach, Jörg M; Vogel, Frédéric

    2015-07-30

    Saline aqueous solutions at elevated pressures and temperatures play an important role in processes such as supercritical water oxidation (SCWO) and supercritical water gasification (SCWG), as well as in natural geochemical processes in Earth and planetary interiors. Some solutions exhibit a negative temperature coefficient of solubility at high temperatures, thereby leading to salt precipitation with increasing temperature. Using modulated FT-IR Raman spectroscopy and classical molecular dynamics simulations (MD), we studied the solute speciation in solutions of 10 wt % Na2SO4, at conditions close to the saturation limit. Our experiments reveal that ion pairing and cluster formation are favored as solid saturation is approached, and ionic clusters form prior to the precipitation of solid sulfate. The proportion of such clusters increases as the phase boundary is approached either by decreasing pressure or by increasing temperature in the vicinity of the three-phase (vapor-liquid-solid) curve.

  3. Molecular Structural Analysis of Spider's Capture Thread and Viscid Droplets Studied by Microscopic FT-IR Spectroscopy.

    PubMed

    Yabe, Hironobu; Katayama, Norihisa; Miyazawa, Mitsuhiro

    2017-01-01

    The molecular structural analysis of capture thread, including its viscid droplets of oriental golden orb-web spider Nephila clavata, has been performed by microscopic FT-IR spectroscopy. The obtained spectra of capture threads with and without viscid droplets indicate that the features in the region of 1400 - 1000 cm(-1) will be useful as marker bands for the degree of the dissolving of viscid droplet; further, the bands at 1395 and 1335 cm(-1) are attributable to the components of anchoring granules located at the inner side of viscid droplets. By recrystallization and its infrared measurements, the main chemical component of viscid droplets is assignable to glycosylated proline. It has also been demonstrated that the components of the anchoring granule of a viscid droplet are decomposed by UV irradiation, and that the molecular conformation of silk fiber protein of a capture thread is denatured at over 60°C, whereas the viscid droplets on a capture thread retain their structure.

  4. Nitriles as directionally tolerant hydrogen bond acceptors: IR-UV ion depletion spectroscopy of benzenepropanenitrile and its hydrate clusters

    NASA Astrophysics Data System (ADS)

    Robertson, Patrick A.; Lobo, Isabella A.; Wilson, David J. D.; Robertson, Evan G.

    2016-09-01

    Benzenepropanenitrile (BPN) and its hydrate clusters are studied by R2PI and IR-UV ion-depletion spectroscopy in the CH/OH stretch regions, aided by theoretical calculations. A single water molecule binds to the terminal nitrile 'lone-pair' of the anti-BPN host, but there is also evidence for a side-type structure with OH donating to the nitrile π-electrons. In the gauche-BPN cluster, water is located at an intermediate angle that facilitates O⋯HC(ortho) interaction. A wide range of attachment angles is possible, as the intrinsic preference for linear hydrogen bonding is mediated by additional CH⋯O interactions that depend on molecular geometry near the nitrile group.

  5. Hot Carrier Dynamics in the X Valley in Si and Ge Measured by Pump-IR-Probe Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Wang, W. B.; Cavicchia, M. A.; Alfano, R. R.

    1996-01-01

    Si is the semiconductor of choice for nanoelectronic roadmap into the next century for computer and other nanodevices. With growing interest in Si, Ge, and Si(sub m)Ge(sub n) strained superlattices, knowledge of the carrier relaxation processes in these materials and structures has become increasingly important. The limited time resolution for earlier studies of carrier dynamics in Ge and Si, performed using Nd:glass lasers, was not sufficient to observe the fast cooling processes. In this paper, we present a direct measurement of hot carrier dynamics in the satellite X valley in Si and Ge by time-resolved infrared(IR) absorption spectroscopy, and show the potential of our technique to identify whether the X valley is the lowest conduction valley in semiconductor materials and structures.

  6. Selective modification of polylactide by introducing acrylate groups: IR spectroscopy, gel permeation chromatography, and differential thermal analysis

    NASA Astrophysics Data System (ADS)

    Shashkova, V. T.; Matveeva, I. A.; Glagolev, N. N.; Zarkhina, T. S.; Timashev, P. S.; Bagratashvili, V. N.; Solov'eva, A. B.

    2016-10-01

    One-stage modification of polylactide has been performed to obtain the acrylate derivatives of the polymer capable of further polymerization and preparation of cross-linked polymer materials suitable for creating implants. The reaction mechanism was determined by IR spectroscopy, gel permeation chromatography, and differential thermal analysis. It was shown for the first time that the reaction path changes depending on the ratio of components so that the desired product polylactide acrylate forms with a ~90% yield only in the presence of large (approximately tenfold) excesses of the isocyanate and acrylate components; at the equimolar ratio of components generally used in urethane formation, a mixture of the desired product (~30%), oligourethane diacrylates, and unchanged polylactide forms.

  7. Solid state 13C NMR and FT-IR spectroscopy of the cocoon silk of two common spiders

    NASA Astrophysics Data System (ADS)

    Bramanti, Emilia; Catalano, Donata; Forte, Claudia; Giovanneschi, Mario; Masetti, Massimo; Veracini, Carlo Alberto

    2005-11-01

    The structure of the silk from cocoons of two common spiders, Araneus diadematus (family Araneidae) and Achaearanea tepidariorum (family Theridiidae) was investigated by means of 13C solid state NMR and FT-IR spectroscopies. The combined use of these two techniques allowed us to highlight differences in the two samples. The cocoon silk of Achaearanea tepidariorum is essentially constituted by helical and β-sheet structures, whereas that of Araneus diadematus shows a more complex structure, containing also β-strands and β-turns. Moreover, the former silk is essentially crystalline while the latter contains more mobile domains. The structural differences of the two cocoon silks are ascribed to the different habitat of the two species.

  8. IR and Raman Spectroscopy of Sodium-Aluminophosphate Glasses for Immobilizing High-Level Wastes from Spent Nuclear Fuel Reprocessing

    NASA Astrophysics Data System (ADS)

    Stefanovsky, S. V.; Myasoedov, B. F.; Remizov, M. B.; Belanova, E. A.

    2014-09-01

    The structure of sodium-aluminophosphate glasses containing constituents of high-level wastes (cesium, magnesium, copper, and molybdenum oxides) from uranium-graphite reactors was studied by IR and Raman spectroscopy coupled with x-ray diffraction. The structural network was shown to be composed of short P-O chains with embedded AlO4 tetrahedra. Cross-linking by Mg2+ was possible in the Mg-bearing samples. The effect of the other oxides (Cs2O, MoO3, CuO) on the glass structure was negligible for the occurring amounts. The glasses devitrified partially upon quenching and more strongly upon annealing. This was reflected in splitting of the vibrational bands for bonds in the glass anionic structural motif.

  9. Histone Acetylation Induced Transformation of B-DNA to Z-DNA in Cells Probed through FT-IR Spectroscopy.

    PubMed

    Zhang, Fengqiu; Huang, Qing; Yan, Jingwen; Chen, Zhu

    2016-04-19

    A nucleosome is made up of DNA and histones, and acetylation of histones perturbs the interaction of DNA and histones and thus affects the chromatin conformation and function. However, whether or how acetylation induces DNA conformation changes is still elusive. In this work, we applied FT-IR spectroscopy to monitor the DNA signals in cells as the histone acetylation was regulated by trichostatin A (TSA), a reversible inhibitor to histone deacetylases (HDACs). Our results unambiguously demonstrate the significant transformation of B-DNA to Z-DNA upon histone acetylation in the TSA treated HeLa cells. This is the first report providing the explicit experimental evidence for such a B-Z transformation of DNA in the epigenetic states of cells.

  10. A Concept for Seeing-Limited Near-IR Spectroscopy on the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Simcoe, Robert A.; Furesz, Gabor; Egan, Mark; Malonis, Andrew; Hellickson, Tim

    2016-09-01

    We present a simple seeing-limited IR spectrometer design for the Giant Magellan Telescope, with continuous R = 6000 coverage from 0.87-2.50 microns for a 0:7" slit. The instrument's design is based on an asymmetric white pupil echelle layout, with dichroics splitting the optical train into yJ, H, and K channels after the pupil transfer mirror. A separate low-dispersion mode offers single-object R ~ 850 spectra which also cover the full NIR bandpass in each exposure. Catalog gratings and H2RG detectors are used to minimize cost, and only two cryogenic rotary mechanisms are employed, reducing mechanical complexity. The instrument dewar occupies an envelope of 1:8×1:5×1:2 meters, satisfying mass and volume requirements for GMT with comfortable margin. We estimate the system throughput at ~35% including losses from the atmosphere, telescope, and instrument (i.e. all coatings, gratings, and sensors). This optical efficiency is comparable to the FIRE spectrograph on Magellan, and we have specified and designed fast cameras so the GMT instrument will have an almost identical pixel scale as FIRE. On the 6.5 meter Magellan telescopes, FIRE is read-noise limited in the y and J bands, similar to other existing near-IR spectrometers and also to JWST/NIRSPEC. GMT's twelve-fold increase in collecting area will therefore offer gains in signal-to-noise per exposure that exceed those of moderate resolution optical instruments, which are already sky-noise limited on today's telescopes. Such an instrument would allow GMT to pursue key early science programs on the Epoch of Reionization, galaxy formation, transient astronomy, and obscured star formation environments prior to commissioning of its adaptive optics system. This design study demonstrates the feasibility of developing relatively affordable spectrometers at the ELT scale, in response to the pressures of joint funding for these telescopes and their associated instrument suites.

  11. Rapid Quantitative Determination of Squalene in Shark Liver Oils by Raman and IR Spectroscopy.

    PubMed

    Hall, David W; Marshall, Susan N; Gordon, Keith C; Killeen, Daniel P

    2016-01-01

    Squalene is sourced predominantly from shark liver oils and to a lesser extent from plants such as olives. It is used for the production of surfactants, dyes, sunscreen, and cosmetics. The economic value of shark liver oil is directly related to the squalene content, which in turn is highly variable and species-dependent. Presented here is a validated gas chromatography-mass spectrometry analysis method for the quantitation of squalene in shark liver oils, with an accuracy of 99.0 %, precision of 0.23 % (standard deviation), and linearity of >0.999. The method has been used to measure the squalene concentration of 16 commercial shark liver oils. These reference squalene concentrations were related to infrared (IR) and Raman spectra of the same oils using partial least squares regression. The resultant models were suitable for the rapid quantitation of squalene in shark liver oils, with cross-validation r (2) values of >0.98 and root mean square errors of validation of ≤4.3 % w/w. Independent test set validation of these models found mean absolute deviations of the 4.9 and 1.0 % w/w for the IR and Raman models, respectively. Both techniques were more accurate than results obtained by an industrial refractive index analysis method, which is used for rapid, cheap quantitation of squalene in shark liver oils. In particular, the Raman partial least squares regression was suited to quantitative squalene analysis. The intense and highly characteristic Raman bands of squalene made quantitative analysis possible irrespective of the lipid matrix.

  12. Cyclic Constraints on Conformational Flexibility in γ-PEPTIDES: Conformation-Specific IR and UV Spectroscopy

    NASA Astrophysics Data System (ADS)

    Walsh, Patrick S.; Kusaka, Ryoji; Zwier, Timothy S.; Fisher, Brian F.; Gellman, Samuel H.

    2013-06-01

    Spectroscopic studies of flexible peptides in the gas phase can provide insight to their inherent structural preferences in the absence of solvent. Recently, there has been increased attention paid to synthetic foldamers containing non-natural residues that can be specifically engineered to robustly form particular secondary structures. These engineered peptides have potential in therapeutic drug design because they are resistant to enzymatic degradation. Specifically, the Gellman group has synthesized a γ-peptide with a six membered cyclic constraint in the γ^{4}-γ^{3} position and an ethyl group at the γ^{2} position (γ_{ACHC}). The three stereocenters have a well-defined chirality [S,S,S]. These two features constrain the relative orientation of adjacent amide groups, thereby favoring a particular "pitch" to the turn. Solution phase results indicate that constrained γ-peptides induce the formation of a 14-helix. Ac-γ_{ACHC}-NHBz, its monohydrate and Ac-γ_{ACHC}-γ_{ACHC}-NHBz have been studied using ultraviolet (UV) and infrared (IR) double-resonance methods to obtain conformation-specific spectra under jet-cooled conditions in the gas phase. IR spectra in the hydride stretch (3300-3750 cm^{-1}), amide I/II and OH bend (1400-1800 cm^{-1}) were recorded and compared to predictions using density functional methods (DFT) and harmonic frequency calculations. We will compare the present results on constrained γ-peptides with corresponding results on unconstrained analogs. Data obtained for the monohydrated water cluster of Ac-γ_{ACHC}-NHBz will also be presented, including assignment of the water bend fundamental, which appears in the midst of transitions due to the amide II vibrations. L. Guo, W. Zhang, A. G. Reidenbach, M. W. Giuliano, I. A. Guzei, L. C. Spencer and S. H. Gellman Angew. Chem. Int. Ed. 2011, 50, 5843-5846

  13. IR spectroscopy of aqueous alkali halide solutions: Pure salt-solvated water spectra and hydration numbers

    NASA Astrophysics Data System (ADS)

    Max, Jean-Joseph; Chapados, Camille

    2001-08-01

    Extrapolation techniques were used to obtain pure salt-solvated water spectra from the attenuated total reflection infrared spectra (ATR-IR) of aqueous solutions of the nine alkali halide salts LiCl, NaCl, KCl, CsCl, NaBr, KBr, NaI, KI, and CsI and the alkaline-earth chloride salt MgCl2. These salts ionize completely in water. The ions by themselves do not absorb in the IR, but their interactions with water can be observed and analyzed. A pure salt-solvated water spectrum is easier to analyze than that of a combined solution of pure water and salt-solvated water. Although the salt-solvated water spectra examined have distinctive signatures, they can be classified in three categories: those similar to NaCl; those not similar to NaCl; and MgCl2, in a class by itself. Each of the pure salt-solvated water spectra differs from that of liquid water, though the number of bands is the same. From the Gaussian band fitting, we found that the positions of the bands were fairly constant, whereas their intensities differed. The salt hydration numbers were determined: for NaCl, KCl, NaBr, KBr, and CsI solutions it is 5; for KI and MgCL2 it is 4; for NaI it is 3.5; for CsCl it is 3; and for LiCl it is 2. From these results we found that each pair of ions (monoatomic ions) of the ten salt solutions studied are close bound and form a complex in a cluster organization with a fixed number of water molecules.

  14. Fast time-resolved i.r. spectroscopy of biological molecules in aqueous solution: The reaction kinetics of myoglobin with carbon monoxide

    NASA Astrophysics Data System (ADS)

    Dixon, Andrew J.; Glyn, Paul; Healy, Michael A.; Hodges, P. Michael; Jenkins, Timothy; Poliakoff, Martyn; Turner, James J.

    The recombination of myoglobin (Mb) and CO, generated by the u.v. flash photolysis of carboxymyoglobin (MbCO) is monitored by time-resolved i.r. spectroscopy (TRIR) on a microsecond timescale. The TRIR measurements are made on the ν(CO) i.r. band of MbCO centered at 1945 cm -1. Experiments have been performed over a wide range of concentrations of both Mb and CO and the rate constants derived are in excellent agreement with those obtained by conventional flash photolysis. The results represent a significant improvement in sensitivity over previous i.r. experiments of this type.

  15. Infrared Spectroscopy of Gas-Phase M(+)(CO2)n (M = Co, Rh, Ir) Ion-Molecule Complexes.

    PubMed

    Iskra, Andreas; Gentleman, Alexander S; Kartouzian, Aras; Kent, Michael J; Sharp, Alastair P; Mackenzie, Stuart R

    2017-01-12

    The structures of gas-phase M(+)(CO2)n (M = Co, Rh, Ir; n = 2-15) ion-molecule complexes have been investigated using a combination of infrared resonance-enhanced photodissociation (IR-REPD) spectroscopy and density functional theory. The results provide insight into fundamental metal ion-CO2 interactions, highlighting the trends with increasing ligand number and with different group 9 ions. Spectra have been recorded in the region of the CO2 asymmetric stretch around 2350 cm(-1) using the inert messenger technique and their interpretation has been aided by comparison with simulated infrared spectra of calculated low-energy isomeric structures. All vibrational bands in the smaller complexes are blue-shifted relative to the asymmetric stretch in free CO2, consistent with direct binding to the metal center dominated by charge-quadrupole interactions. For all three metal ions, a core [M(+)(CO2)2] structure is identified to which subsequent ligands are less strongly bound. No evidence is observed in this size regime for complete activation or insertion reactions.

  16. Optical Determination of Lead Chrome Green in Green Tea by Fourier Transform Infrared (FT-IR) Transmission Spectroscopy

    PubMed Central

    Li, Xiaoli; Xu, Kaiwen; Zhang, Yuying; Sun, Chanjun; He, Yong

    2017-01-01

    The potential of Fourier transform infrared (FT-IR) transmission spectroscopy for determination of lead chrome green in green tea was investigated based on chemometric methods. Firstly, the qualitative analysis of lead chrome green in tea was performed based on partial least squares discriminant analysis (PLS-DA), and the correct rate of classification was 100%. And then, a hybrid method of interval partial least squares (iPLS) regression and successive projections algorithm (SPA) was proposed to select characteristic wavenumbers for the quantitative analysis of lead chrome green in green tea, and 19 wavenumbers were obtained finally. Among these wavenumbers, 1384 (C = C), 1456, 1438, 1419(C = N), and 1506 (CNH) cm-1 were the characteristic wavenumbers of lead chrome green. Then, these 19 wavenumbers were used to build determination models. The best model was achieved by least squares support vector machine (LS-SVM)algorithm with high coefficient of determination and low root-mean square error of prediction set (R2p = 0.864 and RMSEP = 0.291). All these results indicated the feasibility of IR spectra for detecting lead chrome green in green tea. PMID:28068348

  17. Optical Determination of Lead Chrome Green in Green Tea by Fourier Transform Infrared (FT-IR) Transmission Spectroscopy.

    PubMed

    Li, Xiaoli; Xu, Kaiwen; Zhang, Yuying; Sun, Chanjun; He, Yong

    2017-01-01

    The potential of Fourier transform infrared (FT-IR) transmission spectroscopy for determination of lead chrome green in green tea was investigated based on chemometric methods. Firstly, the qualitative analysis of lead chrome green in tea was performed based on partial least squares discriminant analysis (PLS-DA), and the correct rate of classification was 100%. And then, a hybrid method of interval partial least squares (iPLS) regression and successive projections algorithm (SPA) was proposed to select characteristic wavenumbers for the quantitative analysis of lead chrome green in green tea, and 19 wavenumbers were obtained finally. Among these wavenumbers, 1384 (C = C), 1456, 1438, 1419(C = N), and 1506 (CNH) cm-1 were the characteristic wavenumbers of lead chrome green. Then, these 19 wavenumbers were used to build determination models. The best model was achieved by least squares support vector machine (LS-SVM)algorithm with high coefficient of determination and low root-mean square error of prediction set (R2p = 0.864 and RMSEP = 0.291). All these results indicated the feasibility of IR spectra for detecting lead chrome green in green tea.

  18. Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR spectroscopy.

    PubMed

    Szymańska-Chargot, Monika; Cybulska, Justyna; Zdunek, Artur

    2011-01-01

    Raman and Fourier Transform Infrared (FT-IR) spectroscopy was used for assessment of structural differences of celluloses of various origins. Investigated celluloses were: bacterial celluloses cultured in presence of pectin and/or xyloglucan, as well as commercial celluloses and cellulose extracted from apple parenchyma. FT-IR spectra were used to estimate of the I(β) content, whereas Raman spectra were used to evaluate the degree of crystallinity of the cellulose. The crystallinity index (X(C)(RAMAN)%) varied from -25% for apple cellulose to 53% for microcrystalline commercial cellulose. Considering bacterial cellulose, addition of xyloglucan has an impact on the percentage content of cellulose I(β). However, addition of only xyloglucan or only pectins to pure bacterial cellulose both resulted in a slight decrease of crystallinity. However, culturing bacterial cellulose in the presence of mixtures of xyloglucan and pectins results in an increase of crystallinity. The results confirmed that the higher degree of crystallinity, the broader the peak around 913 cm(-1). Among all bacterial celluloses the bacterial cellulose cultured in presence of xyloglucan and pectin (BCPX) has the most similar structure to those observed in natural primary cell walls.

  19. Drying process of microcrystalline cellulose studied by attenuated total reflection IR spectroscopy with two-dimensional correlation spectroscopy and principal component analysis

    NASA Astrophysics Data System (ADS)

    Watanabe, Akihiko; Morita, Shigeaki; Kokot, Serge; Matsubara, Mika; Fukai, Katsuhiko; Ozaki, Yukihiro

    2006-11-01

    Molecular interactions between microcrystalline cellulose (MCC) and water were investigated by attenuated total reflection infrared (ATR/IR) spectroscopy. Moisture-content-dependent IR spectra during a drying process of wet MCC were measured. In order to distinguish overlapping O-H stretching bands arising from both cellulose and water, principal component analysis (PCA) and, generalized two-dimensional correlation spectroscopy (2DCOS) and second derivative analysis were applied to the obtained spectra. Four typical drying stages were clearly separated by PCA, and spectral variations in each stage were analyzed by 2DCOS. In the drying time range of 0-41 min, a decrease in the broad band around 3390 cm -1 was observed, indicating that bulk water was evaporated. In the drying time range of 49-195 min, decreases in the bands at 3412, 3344 and 3286 cm -1 assigned to the O6H6⋯O3' interchain hydrogen bonds (H-bonds), the O3H3⋯O5 intrachain H-bonds and the H-bonds in Iβ phase in MCC, respectively, were observed. The result of the second derivative analysis suggests that water molecules mainly interact with the O6H6⋯O3' interchain H-bonds. Thus, the H-bonding network in MCC is stabilized by H-bonds between OH groups constructing O6H6⋯O3' interchain H-bonds and water, and the removal of the water molecules induces changes in the H-bonding network in MCC.

  20. A deconvolution extraction method for 2D multi-object fibre spectroscopy based on the regularized least-squares QR-factorization algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Jian; Yin, Qian; Guo, Ping; Luo, A.-li

    2014-09-01

    This paper presents an efficient method for the extraction of astronomical spectra from two-dimensional (2D) multifibre spectrographs based on the regularized least-squares QR-factorization (LSQR) algorithm. We address two issues: we propose a modified Gaussian point spread function (PSF) for modelling the 2D PSF from multi-emission-line gas-discharge lamp images (arc images), and we develop an efficient deconvolution method to extract spectra in real circumstances. The proposed modified 2D Gaussian PSF model can fit various types of 2D PSFs, including different radial distortion angles and ellipticities. We adopt the regularized LSQR algorithm to solve the sparse linear equations constructed from the sparse convolution matrix, which we designate the deconvolution spectrum extraction method. Furthermore, we implement a parallelized LSQR algorithm based on graphics processing unit programming in the Compute Unified Device Architecture to accelerate the computational processing. Experimental results illustrate that the proposed extraction method can greatly reduce the computational cost and memory use of the deconvolution method and, consequently, increase its efficiency and practicability. In addition, the proposed extraction method has a stronger noise tolerance than other methods, such as the boxcar (aperture) extraction and profile extraction methods. Finally, we present an analysis of the sensitivity of the extraction results to the radius and full width at half-maximum of the 2D PSF.

  1. Molecular Engineering of Liquid Crystal Polymers by Living Polymerization. 17. Characterization of Poly(10-((4-Cyano-4’-Biphenyl)oxy) decanyl Vinyl Ether)s by 1-D and 2-D H-NMR Spectroscopy

    DTIC Science & Technology

    1991-10-30

    Spectroscopy by Virril Percec and Myongsoo Lee Department of Macromolecular Science Case Western Reserve University Cleveland, OH 44106-2699 and Peter L ...AUTHOrZ(S) Virgil Percec, Myongsoo Lee, Peter L . Rinaldi and Vincent E. Litman l3a TYPE OF REPORT 1131) TIME COVERED 14. DATE OF REPORT (Year. Afot? Dy I...with CF3SO 3 H/S(CH 3)2 in CH2Cl2 at 0OC and termninated by ammoniacal methanol, by 1 -D and 2-D (COSY) 300 MHz IH-NMR spectroscopy is presented. The

  2. The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management

    SciTech Connect

    Smidt, Ena . E-mail: ena.smidt@boku.ac.at; Meissl, Katharina

    2007-07-01

    State and stability or reactivity of waste materials are important properties that must be determined to obtain information about the future behavior and the emission potential of the materials. Different chemical and biological parameters are used to describe the stage of organic matter in waste materials. Fourier transform infrared spectroscopy provides information about the chemistry of waste materials in a general way. Several indicator bands that are referred to functional groups represent components or metabolic products. Their presence and intensity or their absence shed light on the phase of degradation or stabilization. The rapid assessment of the stage of organic matter decomposition is a very important field of application. Therefore, infrared spectroscopy is an appropriate tool for process and quality control, for the assessment of abandoned landfills and for checking of the successful landfill remediation. A wide range of applications are presented in this study for different waste materials. Progressing stages of a typical yard/kitchen waste composting process are shown. The fate of anaerobically 'stabilized' leftovers in a subsequent liquid aerobic process is revealed by spectroscopic characteristics. A compost that underwent the biological stabilization process is distinguished from a 'substrate' that comprises immature biogenic waste mixed with mineral compounds. Infrared spectra of freeze-dried leachate from untreated and aerated landfill material prove the effect of the aerobic treatment during 10 weeks in laboratory-scale experiments.

  3. Microimaging VIS-IR spectroscopy of ancient volcanic rocks as Mars analogues

    NASA Astrophysics Data System (ADS)

    Manzari, Paola; De Angelis, Simone; De Sanctis, Maria Cristina; Di Iorio, Tatiana; Ammannito, Eleonora; Bost, Nicolas; Foucher, Frédéric; Westall, Frances

    2016-07-01

    The SPectral Imager (SPIM) facility is a laboratory VIS-IR spectrometer developed to support spaceborne observations of rocky bodies of the solar system. Currently, this laboratory setup is used to support the Dawn NASA mission and to support the 2018 ExoMars mission in the spectral investigation of Martian subsurface. Specifically, for this mission, a selection of relevant Mars analogue materials has been characterized and stored in the International Space Analogue Rockstore (ISAR), hosted in Orléans, France. In this investigation, two volcanic rock samples from the ISAR collection were analyzed. These two samples were chosen because of their similarity in mineralogical composition and age with Martian basalts and volcanic sands. Moreover, volcanic sands are particularly interesting because they can contain fossils of primitive life forms. The analysis of data collected by SPIM resulted in good agreement with the mineralogical phases detected in these two samples by mineralogical and petrographical techniques, demonstrating the effectiveness of the high spatial and spectral resolution of SPIM for identifying and for mapping different mineralogical species on cut rock and mineral samples.

  4. Chemical curing in alkyd paints: An evaluation via FT-IR and NMR spectroscopies

    NASA Astrophysics Data System (ADS)

    Bartolozzi, G.; Marchiafava, V.; Mirabello, V.; Peruzzini, M.; Picollo, M.

    2014-01-01

    A study aimed at determining the time necessary for an alkyd paint to attain chemical curing is presented. In particular, the object of our investigation was an oil paint made by Winsor & Newton, namely French ultramarine (PB29) in the Griffin Alkyd “fast drying oil colour” series. Using this paint, we prepared several mock-ups on glass. These were left in the laboratory at room temperature in a piece of furniture with glass doors for a total of 70 days. Samples were taken at different times, and the changes in their composition were monitored by means of FT-IR and multinuclear NMR spectroscopic analyses. Since the cross-linking reactions involved in the formation of the pictorial film mainly affect the amount of carbon-carbon double bonds, we monitored the decrease in allyl, diallyl and vinyl protons and carbons. The data obtained from the use of both techniques led us to conclude that, in our particular experimental conditions, the chemical curing of the paint layer is reached within the first 70 days, thus establishing the beginning of the ageing phenomena.

  5. Computational IR spectroscopy of water: OH stretch frequencies, transition dipoles, and intermolecular vibrational coupling constants

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2013-05-01

    The Hessian matrix reconstruction method initially developed to extract the basis mode frequencies, vibrational coupling constants, and transition dipoles of the delocalized amide I, II, and III vibrations of polypeptides and proteins from quantum chemistry calculation results is used to obtain those properties of delocalized O-H stretch modes in liquid water. Considering the water symmetric and asymmetric O-H stretch modes as basis modes, we here develop theoretical models relating vibrational frequencies, transition dipoles, and coupling constants of basis modes to local water configuration and solvent electric potential. Molecular dynamics simulation was performed to generate an ensemble of water configurations that was in turn used to construct vibrational Hamiltonian matrices. Obtaining the eigenvalues and eigenvectors of the matrices and using the time-averaging approximation method, which was developed by the Skinner group, to calculating the vibrational spectra of coupled oscillator systems, we could numerically simulate the O-H stretch IR spectrum of liquid water. The asymmetric line shape and weak shoulder bands were quantitatively reproduced by the present computational procedure based on vibrational exciton model, where the polarization effects on basis mode transition dipoles and inter-mode coupling constants were found to be crucial in quantitatively simulating the vibrational spectra of hydrogen-bond networking liquid water.

  6. Iron pentacarbonyl detection limits in the cigarette smoke matrix using FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Parrish, Milton E.; Plunkett, Susan E.; Harward, Charles N.

    2005-11-01

    Endogenous metals present in tobacco from agricultural practices have been purported to generate metal carbonyls in cigarette smoke. Transition metal catalysts, such as iron oxide, have been investigated for the reduction of carbon monoxide (CO) in cigarette smoke. These studies motivated the development of an analytical method to determine if iron pentacarbonyl [Fe(CO) 5] is present in mainstream smoke from cigarette models having cigarette paper made with iron oxide. An FT-IR puff-by-puff method was developed and the detection limit was determined using two primary reference spectra from different sources to estimate the amount of Fe(CO) 5 present in a high-pressure steel cylinder of CO. We do not detect Fe(CO) 5 in a single 35 mL puff from reference cigarettes or from those cigarette models having cigarette paper made with iron oxide, with a 30-ppbV limit of detection (LOD). Also, it was shown that a filter containing activated carbon would remove Fe(CO) 5.

  7. HIGH-RESOLUTION IR ABSORPTION SPECTROSCOPY OF POLYCYCLIC AROMATIC HYDROCARBONS: THE REALM OF ANHARMONICITY

    SciTech Connect

    Maltseva, Elena; Buma, Wybren Jan; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Tielens, Alexander G. G. M.; Huang, Xinchuan; Lee, Timothy J.; Oomens, Jos E-mail: petrignani@strw.leidenuniv.nl

    2015-11-20

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3-μm CH stretching region of polycyclic aromatic hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold (∼4 K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main bands that fall within 0.5% of the experimental frequencies. The implications for the aromatic infrared bands, specifically the 3-μm band, are discussed.

  8. High-Resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons: The Realm of Anharmonicity

    NASA Technical Reports Server (NTRS)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2016-01-01

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3 micrometers CH stretching region of Polycyclic Aromatic Hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold ((is) approximately 4K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions enhanced with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main modes that fall within 0.5% of the experimental frequencies. The implications for the Aromatic Infrared Bands, specifically the 3-m band are discussed.

  9. Ultra-filtration of human serum for improved quantitative analysis of low molecular weight biomarkers using ATR-IR spectroscopy.

    PubMed

    Bonnier, Franck; Blasco, Hélène; Wasselet, Clément; Brachet, Guillaume; Respaud, Renaud; Carvalho, Luis Felipe C S; Bertrand, Dominique; Baker, Matthew J; Byrne, Hugh J; Chourpa, Igor

    2017-01-09

    Infrared spectroscopy is a reliable, rapid and cost effective characterisation technique, delivering a molecular finger print of the sample. It is expected that its sensitivity would enable detection of small chemical variations in biological samples associated with disease. ATR-IR is particularly suitable for liquid sample analysis and, although air drying is commonly performed before data collection, just a drop of human serum is enough for screening and early diagnosis. However, the dynamic range of constituent biochemical concentrations in the serum composition remains a limiting factor to the reliability of the technique. Using glucose as a model spike in human serum, it has been demonstrated in the present study that fractionating the serum prior to spectroscopic analysis can considerably improve the precision and accuracy of quantitative models based on the partial least squares regression algorithm. By depleting the abundant high molecular weight proteins, which otherwise dominate the spectral signatures collected, the ability to monitor changes in the concentrations of the low molecular weight constituents is enhanced. The Root Mean Square Error for the Validation set (RMSEV) has been improved by a factor of 5 following human serum processing with an average relative error in the predictive values below 1% being achieved. Moreover, the approach is easily transferable to different bodily fluids, which would support the development of more efficient and suitable clinical protocols for exploration of vibrational spectroscopy based ex vivo diagnostic tools.

  10. Hygroscopic Behavior of Substrate-Deposited Particles Studied by micro-FT-IR Spectroscopy and Complementary Methods of Particle Analysis

    SciTech Connect

    Liu, Yong; Yang, Zhiwei; Dessiaterik, Yury; Gassman, Paul L.; Wang, Hai; Laskin, Alexander

    2008-02-01

    The application of Microscopic Fourier Transform Infrared (micro-FTIR) spectroscopy combined with complementary methods of particle analysis is demonstrated here for investigations of phase transitions and hygroscopic growth of micron-sized particles. The approach utilizes the exposure of substrate-deposited, isolated particles to humidified nitrogen inside a sample cell followed by micro-FTIR spectroscopy over selected sample area. Phase transitions of NaCl, sea salt, NaNO3 and (NH)4SO4 particles are monitored with this technique to evaluate its utility and applicability for particle hydration studies. The results are found in excellent agreement with literature data in terms of (a) reliable and reproducible detection of deliquescence and efflorescence phase transitions, (b) quantitative measurements of water-to-solute ratios in particles as a function of relative humidity, and (c) changes in the IR spectra resulting from phase transitions and changing relative humidity. Additional methods of particle analysis are employed to complement and assist in the interpretation of particle hygroscopicity data obtained from micro-FTIR measurements. The analytical approach and the experimental setup presented here are relatively simple, inexpensive, readily available, and therefore may be practical for hydration studies of environmental particles collected in both laboratory and field studies.

  11. Synthesis and Resolution of the Atropisomeric 1,1'-Bi-2-Naphthol: An Experiment in Organic Synthesis and 2-D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Mak, Kendrew K. W.

    2004-01-01

    NMR spectroscopy is presented. It is seen that the experiment regarding the synthesis and resolution of 1,1'-Bi-2-naphtol presents a good experiment for teaching organic synthesis and NMR spectroscopy and provides a strategy for obtaining enantiopure compounds from achiral starting materials.

  12. Jet-Cooled Broad Range Near-Ir Scan of Reactive Intermediates Using Cavity Ringdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kline, Neal D.; Codd, Terrance J.; Chen, Ming-Wei; Miller, Terry A.

    2012-06-01

    A technique has been developed for obtaining broad range scans of jet-cooled radicals using cavity ringdown spectroscopy. The talk will describe a method that uses a slit jet expansion in tandem with an electrical discharge to produce the reactive intermediates and obtain rotational temperatures of 15-30 K and effective vibrational temperatures of 0 K. The spectrum can be recorded by scanning the second stokes of an H_2 Raman shifted YAG-pumped dye laser with bandwidth of ≈ 0.1 cm-1. This technique has been used to obtain the jet-cooled widetilde{A} - widetilde{X} spectra of the NO_3 radical and the 2,1-hydroxypropyl peroxy radical (2,1-HPP). Obtaining the jet-cooled spectra helped to identify hot bands present in the room temperature spectrum of NO_3 and also helped to identify cold, low-frequency fundamental bands present in the 2,1-HPP spectrum.

  13. Methods of IR spectroscopy in monitoring of chemotherapy of oncological pathologies using palladium complexes

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Bel'kov, M. V.; Skornyakov, I. V.; Pekhn'o, V. I.; Kozachkova, A. N.; Tsarik, N. V.; Kutsenko, I. P.; Sharykina, N. I.

    2014-11-01

    FTIR spectroscopy is used to study mammary-gland tissues of mice with a sarcoma tumor (strain 180). Spectral features that are typical of malignant tumors are revealed in the FTIR spectra in the sarcoma-tumor tissues. Tumor tissues are studied after treatment using coordination compounds based on palladium complexes with 3-amino-1-hydroxypropylidene-1,1-diphosphonic acid and zoledronic acid. A therapeutic effect is not revealed after treatment using palladium complex with 3-amino-1-hydroxypropylidene-1,1-diphosphonic acid. The suppression of tumor growth amounts to 59% when palladium complexes with zoledronic acid are used. Suppression of tumor growth is accompanied by variations in spectral characteristics. With respect to diagnostic features, the FTIR spectra of tumor tissues after treatment with the palladium complexes with zoledronic acid are similar to the FTIR spectra of tissues that are free of malignant tumors. Specific spectroscopic characteristics that make it possible to control the chemotherapy of oncological pathologies are determined.

  14. Rapid presumptive "fingerprinting" of body fluids and materials by ATR FT-IR spectroscopy.

    PubMed

    Elkins, Kelly M

    2011-11-01

    Human body fluids and materials were evaluated using attenuated total reflectance Fourier transform infrared spectroscopy. Purified proteins, cosmetics, and foodstuffs were also assayed with the method. The results of this study show that the sampled fluids and materials vary in the fingerprint region and locations of the amide I peaks because of the secondary structure of the composite proteins although the C = O stretch is always present. The distinct 1016 cm(-1) peak serves as a signature for semen. The lipid-containing materials (e.g., fingerprints, earwax, tears, and skin) can also be easily separated from the aqueous materials because of the strong CH(3) asymmetric stretch of the former. Blood-saliva and blood-urine mixtures were also successfully differentiated using combinations of peaks. Crime scene investigators employing rapid, portable, or handheld infrared spectroscopic instruments may be able to reduce their need for invasive, destructive, and consumptive presumptive test reagents in evaluating trace evidence.

  15. GEL-STATE NMR OF BALL-MILLED WHOLE CELL WALLS IN DMSO-d6 USING 2D SOLUTION-STATE NMR SPECTROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant cell walls were used for obtaining 2D solution-state NMR spectra without actual solubilization or structural modification. Ball-milled whole cell walls were swelled directly in the NMR tube with DMSO-d6 where they formed a gel. There are relatively few gel-state NMR studies. Most have involved...

  16. THz and mid-IR spectroscopy of interstellar ice analogs: methyl and carboxylic acid groups.

    PubMed

    Ioppolo, S; McGuire, B A; Allodi, M A; Blake, G A

    2014-01-01

    A fundamental problem in astrochemistry concerns the synthesis and survival of complex organic molecules (COMs) throughout the process of star and planet formation. While it is generally accepted that most complex molecules and prebiotic species form in the solid phase on icy grain particles, a complete understanding of the formation pathways is still largely lacking. To take full advantage of the enormous number of available THz observations (e.g., Herschel Space Observatory, SOFIA, and ALMA), laboratory analogs must be studied systematically. Here, we present the THz (0.3-7.5 THz; 10-250 cm(-1)) and mid-IR (400-4000 cm(-1)) spectra of astrophysically-relevant species that share the same functional groups, including formic acid (HCOOH) and acetic acid (CH3COOH), and acetaldehyde (CH3CHO) and acetone ((CH3)2CO), compared to more abundant interstellar molecules such as water (H2O), methanol (CH3OH), and carbon monoxide (CO). A suite of pure and mixed binary ices are discussed. The effects on the spectra due to the composition and the structure of the ice at different temperatures are shown. Our results demonstrate that THz spectra are sensitive to reversible and irreversible transformations within the ice caused by thermal processing, suggesting that THz spectra can be used to study the composition, structure, and thermal history of interstellar ices. Moreover, the THz spectrum of an individual species depends on the functional group(s) within that molecule. Thus, future THz studies of different functional groups will help in characterizing the chemistry and physics of the interstellar medium (ISM).

  17. Characterization of soil organic matter by FT-IR spectroscopy and its relationship with chlorpyrifos sorption.

    PubMed

    Parolo, María Eugenia; Savini, Mónica Claudia; Loewy, Ruth Miriam

    2017-03-14

    Sorption of non-ionic organic compounds to soil is usually expressed as the carbon-normalized partition coefficient (KOC) assuming that the main factor that influences the amount sorbed is the organic carbon content (OC) of the soil. However, KOC can vary across a range of soils. The influence of certain soil characteristics on the chlorpyrifos KOC values variation for 12 representative soils of the Northpatagonian Argentinian region with different physicochemical properties was investigated for this study. The chlorpyrifos sorption coefficients normalized by the OC content were experimentally obtained using the batch equilibrium method; the KOC values ranged between 9000-20,000 L kg(-1). The soil characteristics assessed were pH, clay content and spectral data indicative of soil organic matter (SOM) quality measured by FT-IR on the whole soil. The bands considered in the spectroscopic analyses were those corresponding to the aliphatic components, 2947-2858 cm(-1) (band A) and the hydrophilic components, 1647-1633 cm(-1) (band B). A significant relationship was found (R(2) = 0.66) between chlorpyrifos sorption (KOC) and the variables pH and A/B height band ratio. The correlation between the values predicted by the derived model and the experimental data was significant (r = 0.89 p < 0.05). Thus, this methodology could be used to estimate chlorpyrifos sorption coefficient through the use of a simple, rapid, and environmentally-friendly measurement. KOC analysis in relation to soil properties represents a valuable contribution to the understanding of the attenuation phenomena of the organic contaminants off-site migration in the environment.

  18. The studies of FT-IR and CD spectroscopy on catechol oxidase I from tobacco

    NASA Astrophysics Data System (ADS)

    Xiao, Hourong; Xie, Yongshu; Liu, Qingliang; Xu, Xiaolong; Shi, Chunhua

    2005-10-01

    A novel copper-containing enzyme named COI (catechol oxidase I) has been isolated and purified from tobacco by extracting acetone-emerged powder with phosphate buffer, centrifugation at low temperature, ammonium sulfate fractional precipitation, and column chromatography on DEAE-sephadex (A-50), sephadex (G-75), and DEAE-celluse (DE-52). PAGE, SDS-PAGE were used to detect the enzyme purity, and to determine its molecular weight. Then the secondary structures of COI at different pH, different temperatures and different concentrations of guanidine hydrochloride (GdnHCl) were studied by the FT-IR, Fourier self-deconvolution spectra, and circular dichroism (CD). At pH 2.0, the contents of both α-helix and anti-parallel β-sheet decrease, and that of random coil increases, while β-turn is unchanged compared with the neutral condition (pH 7.0). At pH 11.0, the results indicate that the contents of α-helix, anti-parallel β-sheet and β-turn decrease, while random coil structure increases. According to the CD measurements, the relative average fractions of α-helix, anti-parallel β-sheet, β-turn/parallel β-sheet, aromatic residues and disulfide bond, and random coil/γ-turn are 41.7%, 16.7%, 23.5%, 11.3%, and 6.8% at pH 7.0, respectively, while 7.2%, 7.7%, 15.2%, 10.7%, 59.2% at pH 2.0, and 20.6%, 9.5%, 15.2%, 10.5%, 44.2% at pH 11.0. Both α-helix and random coil decrease with temperature increasing, and anti-parallel β-sheet increases at the same time. After incubated in 6 mol/L guanidine hydrochloride for 30 min, the fraction of α-helix almost disappears (only 1.1% left), while random coil/γ-turn increases to 81.8%, which coincides well with the results obtained through enzymatic activity experiment.

  19. Classification and structural analysis of live and dead salmonella cells using fourier transform infrared (FT-IR) spectroscopy and principle component analysis (PCA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fourier Transform Infrared Spectroscopy (FT-IR) was used to detect Salmonella typhimurium and Salmonella enteritidis foodborne bacteria and distinguish between live and dead cells of both serotypes. Bacteria were loaded individually on the ZnSe Attenuated Total Reflection (ATR) crystal surface and s...

  20. Discovering [superscript 13]C NMR, [superscript 1]H NMR, and IR Spectroscopy in the General Chemistry Laboratory through a Sequence of Guided-Inquiry Exercises

    ERIC Educational Resources Information Center

    Iler, H. Darrell; Justice, David; Brauer, Shari; Landis, Amanda

    2012-01-01

    This sequence of three guided-inquiry labs is designed for a second-semester general chemistry course and challenges students to discover basic theoretical principles associated with [superscript 13]C NMR, [superscript 1]H NMR, and IR spectroscopy. Students learn to identify and explain basic concepts of magnetic resonance and vibrational…

  1. Dynamics of an [Fe4S4(SPh)4]2- cluster explored via IR, Raman, and nuclear resonance vibrational spectroscopy (NRVS)-analysis using 36S substitution, DFT calculations, and empirical force fields.

    PubMed

    Xiao, Yuming; Koutmos, Markos; Case, David A; Coucouvanis, Dimitri; Wang, Hongxin; Cramer, Stephen P

    2006-05-14

    We have used four vibrational spectroscopies--FT-IR, FT-Raman, resonance Raman, and 57Fe nuclear resonance vibrational spectroscopy (NRVS)--to study the normal modes of the Fe-S cluster in [(n-Bu)4N]2[Fe4S4(SPh)4]. This [Fe4S4(SR)4]2- complex serves as a model for the clusters in 4Fe ferredoxins and high-potential iron proteins (HiPIPs). The IR spectra exhibited differences above and below the 243 K phase transition. Significant shifts with 36S substitution into the bridging S positions were also observed. The NRVS results were in good agreement with the low temperature data from the conventional spectroscopies. The NRVS spectra were interpreted by normal mode analysis using optimized Urey-Bradley force fields (UBFF) as well as from DFT theory. For the UBFF calculations, the parameters were refined by comparing calculated and observed NRVS frequencies and intensities. The frequency shifts after 36S substitution were used as an additional constraint. A D 2d symmetry Fe4S4S'4 model could explain most of the observed frequencies, but a better match to the observed intensities was obtained when the ligand aromatic rings were included for a D 2d Fe4S4(SPh)4 model. The best results were obtained using the low temperature structure without symmetry constraints. In addition to stretching and bending vibrations, low frequency modes between approximately 50 and 100 cm(-1) were observed. These modes, which have not been seen before, are interpreted as twisting motions with opposing sides of the cube rotating in opposite directions. In contrast with a recent paper on a related Fe4S4 cluster, we find no need to assign a large fraction of the low frequency NRVS intensity to 'rotational lattice modes'. We also reassign the 430 cm(-1) band as primarily an elongation of the thiophenolate ring, with approximately 10% terminal Fe-S stretch character. This study illustrates the benefits of combining NRVS with conventional Raman and IR analysis for characterization of Fe-S centers. DFT

  2. Probing Star Formation in the Early Universe with Far-IR Spectroscopy using ZEUS-2

    NASA Astrophysics Data System (ADS)

    Vishwas, Amit; Ferkinhoff, Carl; Nikola, Thomas; Parshley, Stephen; Schoenwald, Justin Paul; Stacey, Gordon J.; Higdon, James L.; Higdon, Sarah; Brisbin, Drew; Verma, Aprajita; Riechers, Dominik A.; Hailey-Dunsheath, Steve; Menten, Karl; Güsten, Rolf; Weiss, Axel; Irwin, Kent; Cho, Hsiao-Mei; Niemack, Michael D.; Halpern, Mark; Amiri, Mandana; Hasselfield, Matthew; Wiebe, Donald V.; Ade, Peter A. R.; Tucker, Carole E.

    2015-01-01

    ZEUS-2 is a long slit, direct detection, grating spectrometer for submillimeter wavelengths between 200-850 μm. At present, ZEUS-2 employs a single TES bolometer array that addresses only the 350 and 450 μm windows. Here we report the first science obtained with this array on the Atacama Pathfinder Experiment (APEX) telescope, and our progress towards implementing a second TES array that will open up the 200, 230, 640, 850 μm windows for direct detection spectroscopy on APEX.Our investigations focus on detecting faint and broad far-infrared (FIR) fine structure lines of ionized carbon [CII] at 158 μm, nitrogen [NII] at 122 and 205 μm and doubly ionized oxygen [OIII] at 52 and 88 μm from distant galaxies as the lines are redshifted into the submm telluric windows. We are primarily interested in the redshift 1 to 4 interval which encompasses the epoch of maximum star formation rate per unit co-moving volume in the Universe. These far infrared lines are important gas coolants, and powerful probes of the physical conditions of the interstellar medium and the starlight that heats the gas. Here we report detections of the [CII] and [OIII] 88 μm lines from sources at redshift 1.8 to 4.3, and show how the lines can be used to trace both the spatial extent of the star formation and the hardness of the ambient radiation fields.

  3. Assessing the stability of alanine-based helices by conformer-selective IR spectroscopy.

    PubMed

    Hoffmann, Waldemar; Marianski, Mateusz; Warnke, Stephan; Seo, Jongcheol; Baldauf, Carsten; von Helden, Gert; Pagel, Kevin

    2016-07-20

    Polyalanine based peptides that carry a lysine at the C-terminus ([Ac-AlanLys + H](+)) are known to form α-helices in the gas phase. Three factors contribute to the stability of these helices: (i) the interaction between the helix macro dipole and the charge, (ii) the capping of dangling C[double bond, length as m-dash]O groups by lysine and (iii) the cooperative hydrogen bond network. In previous studies, the influence of the interaction between the helix dipole and the charge as well as the impact of the capping was studied intensively. Here, we complement these findings by systematically assessing the third parameter, the H-bond network. In order to selectively remove one H-bond along the backbone, we use amide-to-ester substitutions. The resulting depsi peptides were analyzed by ion-mobility and m/z-selective infrared spectroscopy as well as theoretical calculations. Our results indicate that peptides which contain only one ester bond still maintain the helical conformation. We conclude that the interaction between the charge and the helix macro-dipole is most crucial for the formation of the α-helical conformation and a single backbone H-bond has only little influence on the overall stability.

  4. Using FT-IR spectroscopy to measure charge organization in ionic liquids.

    PubMed

    Burba, Christopher M; Janzen, Jonathan; Butson, Eric D; Coltrain, Gage L

    2013-07-25

    A major goal in the field of ionic liquids is correlating transport property trends with the underlying liquid structure of the compounds, such as the degree of charge organization among the constituent ions. Traditional techniques for experimentally assessing charge organization are specialized and not readily available for routine measurements. This represents a significant roadblock in elucidating these correlations. We use a combination of transmission and polarized-ATR infrared spectroscopy to measure the degree of charge organization for ionic liquids. The technique is illustrated with a family of 1-alkyl-3-methylimidazolium trifluoromethanesulfonate ionic liquids at 30 °C. As expected, the amount of charge organization decreases as the alkyl side chain is lengthened, highlighting the important role of short-range repulsive interactions in defining quasilattice structure. Inherent limitations of the method are identified and discussed. The quantitative measurements of charge organization are then correlated with trends in the transport properties of the compounds to highlight the relationship between charge and momentum transport and the underlying liquid structure. Most research laboratories possess infrared spectrometers capable of conducting these measurements; thus, the proposed method may represent a cost-effective solution for routinely measuring charge organization in ionic liquids.

  5. Diagnosing the predisposition for diabetes mellitus by means of mid-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Frueh, Johanna; Jacob, Stephan; Dolenko, Brion; Haering, Hans-Ullrich; Mischler, Reinhold; Quarder, Ortrud; Renn, Walter; Somorjai, Raymond L.; Staib, Arnulf; Werner, Gerhard H.; Petrich, Wolfgang H.

    2002-03-01

    The vicious circle of insulin resistance and hyperinsulinemia is considered to precede the manifestation of diabetes type-2 by decades and the corresponding cluster of risk factors is described as the 'insulin resistance syndrome' or 'metabolic syndrome'. Since the present diagnosis of insulin resistance is expensive, time consuming and cumbersome, there is a need for diagnostic alternatives. We conducted a clinical study on 129 healthy volunteers and 99 patients suffering from the metabolic syndrome. We applied mid-infrared spectroscopy to dried serum samples from these donors and evaluated the spectra by means of disease pattern recognition (DPR). Substantial differences were found between the spectra originating from healthy volunteers and those spectra originating from patients with the metabolic syndrome. A linear discriminant analysis was performed using approximately one half of the sample set for teaching the classification algorithm. Within this teaching set, a classification sensitivity and specificity of 84 percent and 81 percent respectively can be derived. Furthermore, the resulting discriminant function was applied to an independent validation of the remaining half of the samples. For the discrimination between 'healthy' and 'metabolic syndrome' a sensitivity and a specificity of 80 percent and 82 percent respectively is obtained upon validating the algorithm with the independent validation set.

  6. Turbine engine exhaust gas measurements using in-situ FT-IR emission/transmission spectroscopy

    NASA Astrophysics Data System (ADS)

    Marran, David F.; Cosgrove, Joseph E.; Neira, Jorge; Markham, James R.; Rutka, Ronald; Strange, Richard R.

    2001-02-01

    12 An advanced multiple gas analyzer based on in-situ Fourier transform infrared spectroscopy has been used to successfully measure the exhaust plume composition and temperature of an operating gas turbine engine at a jet engine test stand. The sensor, which was optically coupled to the test cell using novel broadband hollow glass waveguides, performed well in this harsh environment (high acoustical noise and vibration, considerable temperature swings in the ambient with engine operation), providing quantitative gas phase information. Measurements were made through the diameter of the engine's one meter exhaust plume, about 0.7 meters downstream of the engine exit plane. The sensor performed near simultaneous infrared transmission and infrared emission measurements through the centerline of the plume. Automated analysis of the emission and transmission spectra provided the temperature and concentration information needed for engine tuning and control that will ensure optimal engine operation and reduced emissions. As a demonstration of the utility and accuracy of the technique, carbon monoxide, nitric oxide, water, and carbon dioxide were quantified in spite of significant variations in the exhaust gas temperature. At some conditions, unburned fuel, particulates (soot/fuel droplets), methane, ethylene and aldehydes were identified, but not yet quantified.

  7. Near IR Scanning Angle Total Internal Reflection Raman Spectroscopy at Smooth Gold Films

    SciTech Connect

    McKee, Kristopher; Meyer, Matthew; Smith, Emily

    2012-04-13

    Total internal reflection (TIR) Raman and reflectivity spectra were collected for nonresonant analytes as a function of incident angle at sapphire or sapphire/smooth 50 nm gold interfaces using 785 nm excitation. For both interfaces, the Raman signal as a function of incident angle is well-modeled by the calculated interfacial mean square electric field (MSEF) relative to the incident field times the thickness of the layer being probed in the Raman measurement (D{sub RS}). The Raman scatter was reproducibly enhanced at the interface containing a gold film relative to the sapphire interface by a factor of 4.3–4.6 for aqueous pyridine or 2.2–3.7 for neat nitrobenzene, depending on the analyzed vibrational mode. The mechanism for the increased Raman signal is the enhanced MSEF at incident angles where propagating surface plasmons are excited in the metal film. The background from the TIR prism was reduced by 89–95% with the addition of the gold film, and the percent relative uncertainty in peak area was reduced from 15 to 1.7% for the 1347 cm–1 mode of nitrobenzene. Single monolayers of benzenethiol (S/N = 6.8) and 4-mercaptopyridine (S/N = 16.5) on gold films were measured by TIR Raman spectroscopy with 785 nm excitation (210 mW) without resonant enhancement in 1 min.

  8. The structure and dynamics of carbon dioxide and water containing ices investigated via THz and mid-IR spectroscopy.

    PubMed

    Allodi, Marco A; Ioppolo, Sergio; Kelley, Matthew J; McGuire, Brett A; Blake, Geoffrey A

    2014-02-28

    Icy dust grains play a key role in the chemistry of the interstellar medium. The cumulative outcome of recent observations, laboratory studies, and astrochemical models indicates that solid-phase reaction mechanisms may dominate the formation of complex organic molecules such as amino acids and sugars in space. Consequently, the composition and structure of the icy grain mantle may significantly influence solid-phase reaction pathways. In this work, we present a new experimental setup capable of studying astrochemical ice analogs in both the TeraHertz (THz), or far-Infrared (far-IR), region (0.3-7.5 THz; 10-250 cm(-1)) and the mid-IR (400-4000 cm(-1)). The instruments are capable of performing a variety of spectroscopic studies that can provide especially relevant laboratory data to support astronomical observations from telescopes such as Herschel, SOFIA, and ALMA. Experimental spectra of astrochemical ice analogs of water and carbon dioxide in pure, mixed, and layered ices were collected at different temperatures under high vacuum conditions with the goal of investigating the structure of the ice. We tentatively observe a new feature in both amorphous solid water and crystalline water at 33 cm(-1) (1 THz). In addition, our studies of mixed and layered ices show how it is possible to identify the location of carbon dioxide as it segregates within the ice by observing its effect on the THz spectrum of water ice. The THz spectra of mixed and layered ices are further analyzed by fitting their spectral features to those of pure amorphous solid water and crystalline water ice to quantify the effects of temperature changes on structure. From the results of this work, it appears that THz spectroscopy is potentially well suited to study thermal transformations within the ice.

  9. Application of FT-IR spectroscopy for control of the medium composition during the biodegradation of nitro aromatic compounds.

    PubMed

    Grube, Mara; Muter, Olga; Strikauska, Silvija; Gavare, Marita; Limane, Baiba

    2008-11-01

    Previous studies showed that cabbage leaf extract (CLE) added to the growth medium can noticeably promote the degradation of nitro aromatic compounds by specific consortium of bacteria upon their growth. For further development of the approach for contaminated soil remediation it was necessary to evaluate the qualitative and/or quantitative composition of different origin CLE and their relevance on the growth of explosives-degrading bacteria. Six CLE (different by species, cultivars and harvesting time) were tested and used as additives to the growth medium. It was shown that nitro aromatic compounds can be identified in the FT-IR absorption spectra by the characteristic band at 1,527 cm(-1), and in CLE by the characteristic band at 1,602 cm(-1). The intensity of the CLE band at 1,602 cm(-1) correlated with the concentration of total nitrogen (R2=0.87) and decreased upon the growth of bacteria. The content of nitrogen in CLE differed (0.22-1.00 vol.%) and significantly influenced the content of total carbohydrates (9.50-16.00% DW) and lipids [3.90-9.90% dry weight (DW)] accumulated in bacterial cells while the content of proteins was similar in all samples. Though this study showed quantitative differences in the composition of the studied CLE and the response of bacterial cells to the composition of the growth media, and proved the potential of this additive for remediation of contaminated soil. It was shown that analysis of CLE and monitoring of the conversion of nitro aromatic compounds can be investigated by FT-IR spectroscopy as well as by conventional chemical methods.

  10. Rapid screening and identification of illicit drugs by IR absorption spectroscopy and gas chromatography

    NASA Astrophysics Data System (ADS)

    Mengali, Sandro; Liberatore, Nicola; Luciani, Domenico; Viola, Roberto; Cardinali, Gian Carlo; Elmi, Ivan; Poggi, Antonella; Zampolli, Stefano; Biavardi, Elisa; Dalcanale, Enrico; Bonadio, Federica; Delemont, Olivier; Esseiva, Pierre; Romolo, Francesco S.

    2013-01-01

    Analytical instruments based on InfraRed Absorption Spectroscopy (IRAS) and Gas Chromatography (GC) are today available only as bench-top instrumentation for forensic labs and bulk analysis. Within the 'DIRAC' project funded by the European Commission, we are developing an advanced portable sensor, that combines miniaturized GC as its key chemical separation tool, and IRAS in a Hollow Fiber (HF) as its key analytical tool, to detect and recognize illicit drugs and key precursors, as bulk and as traces. The HF-IRAS module essentially consists of a broadly tunable External Cavity (EC) Quantum Cascade Laser (QCL), thermo-electrically cooled MCT detectors, and an infrared hollow fiber at controlled temperature. The hollow fiber works as a miniaturized gas cell, that can be connected to the output of the GC column with minimal dead volumes. Indeed, the module has been coupled to GC columns of different internal diameter and stationary phase, and with a Vapour Phase Pre-concentrator (VPC) that selectively traps target chemicals from the air. The presentation will report the results of tests made with amphetamines and precursors, as pure substances, mixtures, and solutions. It will show that the sensor is capable of analyzing all the chemicals of interest, with limits of detection ranging from a few nanograms to about 100-200 ng. Furthermore, it is suitable to deal with vapours directly trapped from the headspace of a vessel, and with salts treated in a basic solution. When coupled to FAST GC columns, the module can analyze multi-components mixes in less than 5 minutes.

  11. Hubble space telescope near-ir transmission spectroscopy of the super-Earth HD 97658B

    SciTech Connect

    Knutson, Heather A.; Dragomir, Diana; Kreidberg, Laura; Bean, Jacob L.; Kempton, Eliza M.-R.; McCullough, P. R.; Fortney, Jonathan J.; Gillon, Michael; Homeier, Derek; Howard, Andrew W.

    2014-10-20

    Recent results from the Kepler mission indicate that super-Earths (planets with masses between 1-10 times that of the Earth) are the most common kind of planet around nearby Sun-like stars. These planets have no direct solar system analogue, and are currently one of the least well-understood classes of extrasolar planets. Many super-Earths have average densities that are consistent with a broad range of bulk compositions, including both water-dominated worlds and rocky planets covered by a thick hydrogen and helium atmosphere. Measurements of the transmission spectra of these planets offer the opportunity to resolve this degeneracy by directly constraining the scale heights and corresponding mean molecular weights of their atmospheres. We present Hubble Space Telescope near-infrared spectroscopy of two transits of the newly discovered transiting super-Earth HD 97658b. We use the Wide Field Camera 3's (WFC3) scanning mode to measure the wavelength-dependent transit depth in 30 individual bandpasses. Our averaged differential transmission spectrum has a median 1σ uncertainty of 23 ppm in individual bins, making this the most precise observation of an exoplanetary transmission spectrum obtained with WFC3 to date. Our data are inconsistent with a cloud-free solar metallicity atmosphere at the 10σ level. They are consistent at the 0.4σ level with a flat line model, as well as effectively flat models corresponding to a metal-rich atmosphere or a solar metallicity atmosphere with a cloud or haze layer located at pressures of 10 mbar or higher.

  12. Liquid Structure of Bis(trifluoromethylsulfonyl)imide-based Ionic Liquids Assessed by FT-IR Spectroscopy.

    PubMed

    Kimble, Cassie; Burba, Christopher M

    2017-03-17

    Ionic liquids are a fertile and active area of research, in part, due to the unique properties these solvents offer over traditional molecular solvents. Since these properties are rooted in the fundamental ion-ion interactions that govern liquid structure, there is a strong motivation to characterize liquid structure. Infrared spectroscopy is a standard analytical tool for assessing the liquid structure, for the intramolecular vibrational modes of the composing the materials are often quite sensitive to the local environment about a given ion. In this work, we demonstrate the band asymmetry for the νa(SNS) anion mode of N(Tf)2(‒)-based ionic liquids originates from the dynamic coupling of vibrationally-induced dipole moments of anions across a quasilattice. The magnitude of TO-LO splitting is linearly correlated to the particle densities of the ionic liquids; an observation that is in accord with the predictions of dipolar coupling theory. Dipole moment derivatives of νa(SNS) calculated from dipolar coupling theory, (∂μ/∂q)DCT, are lower than independent measurements of (∂μ/∂q). The most likely explanation for the disparity is that while ionic liquids possess sufficient long-range structure to support TO-LO splitting of infrared-active modes, there is sufficient orientational and translational disorder in the quasilattice to partially disrupt the coupling of vibrationally-induced dipole moments across the quasilattice. This will result in diminished amounts of TO-LO splitting than would be expected if the ionic liquid were a perfect crystal at 0 K. Impacts of cation molecular structure as well as formation of a binary solution on liquid structure is also explored.

  13. Understanding the Electronic Structure of IrO2 Using Hard-X-ray Photoelectron Spectroscopy and Density-Functional Theory

    NASA Astrophysics Data System (ADS)

    Kahk, J. M.; Poll, C. G.; Oropeza, F. E.; Ablett, J. M.; Céolin, D.; Rueff, J.-P.; Agrestini, S.; Utsumi, Y.; Tsuei, K. D.; Liao, Y. F.; Borgatti, F.; Panaccione, G.; Regoutz, A.; Egdell, R. G.; Morgan, B. J.; Scanlon, D. O.; Payne, D. J.

    2014-03-01

    The electronic structure of IrO2 has been investigated using hard x-ray photoelectron spectroscopy and density-functional theory. Excellent agreement is observed between theory and experiment. We show that the electronic structure of IrO2 involves crystal field splitting of the iridium 5d orbitals in a distorted octahedral field. The behavior of IrO2 closely follows the theoretical predictions of Goodenough for conductive rutile-structured oxides [J. B. Goodenough, J. Solid State Chem. 3, 490 (1971)]. Strong satellites associated with the core lines are ascribed to final state screening effects. A simple plasmon model for the satellites applicable to many other metallic oxides appears to be not valid for IrO2.

  14. Metal Ion Induced Pairing of Cytosine Bases: Formation of I-Motif Structures Identified by IR Ion Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gao, Juehan; Berden, Giel; Oomens, J.

    2015-06-01

    While the Watson-Crick structure of DNA is among the most well-known molecular structures of our time, alternative base-pairing motifs are also known to occur, often depending on base sequence, pH, or presence of cations. Pairing of two cytosine (C) bases induced by the sharing of a single proton (C-H^+-C) gives rise to the so-called i-motif, occurring particularly in the telomeric region of DNA, and particularly at low pH. At physiological pH, silver cations were recently suggested to form cytosine dimers in a C-Ag^+-C structure analogous to the hemiprotonated cytosine dimer, which was later confirmed by IR spectroscopy.^1 Here we investigate whether Ag^+ is unique in this behavior. Using infrared action spectroscopy employing the free-electron laser FELIX and a tandem mass spectrometer in combination with quantum-chemical computations, we investigate a series of C-M^+-C complexes, where M is Cu, Li and Na. The complexes are formed by electrospray ionization (ESI) from a solution of cytosine and the metal chloride salt in acetonitrile/water. The complexes of interest are mass-isolated in the cell of a FT ion cyclotron resonance mass spectrometer, where they are irradiated with the tunable IR radiation from FELIX in the 600 - 1800 wn range. Spectra in the H-stretching range are obtained with a LaserVision OPO. Both experimental spectra as well as theoretical calculations indicate that while Cu behaves as Ag, the alkali metal ions induce a clearly different dimer structure, in which the two cytosine units are parallelly displaced. In addition to coordination to the ring nitrogen atom, the alkali metal ions coordinate to the carbonyl oxygen atoms of both cytosine bases, indicating that the alkali metal ion coordination favorably competes with hydrogen bonding between the two cytosine sub-units of the i-motif like structure. 1. Berdakin, Steinmetz, Maitre, Pino, J. Phys. Chem. A 2014, 118, 3804

  15. Detection Limits for Blood on Fabrics Using Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy and Derivative Processing.

    PubMed

    Lu, Zhenyu; DeJong, Stephanie A; Cassidy, Brianna M; Belliveau, Raymond G; Myrick, Michael L; Morgan, Stephen L

    2016-06-27

    Attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) was used to detect blood stains based on signature protein absorption in the mid-IR region, where intensity changes in the spectrum can be related to blood concentration. Partial least squares regression (PLSR) was applied for multivariate calibrations of IR spectra of blood dilutions on four types of fabric (acrylic, nylon, polyester, and cotton). Gap derivatives (GDs) were applied as a preprocessing technique to optimize the performance of calibration models. We report a much improved IR detection limit (DL) for blood on cotton (2700× in dilution factor units) and the first IR DL reported for blood on nylon (250×). Due to sample heterogeneity caused by fabric hydrophobicity, acrylic fabric produced variable ATR FT-IR spectra that caused poor DLs in concentration units compared to previous work. Polyester showed a similar problem at low blood concentrations that lead to a relatively poor DL as well. However, the increased surface sensitivity and decreased penetration depth of ATR FT-IR make it an excellent choice for detection of small quantities of blood on the front surface of all fabrics tested (0.0010 µg for cotton, 0.0077 µg for nylon, 0.011 µg for acrylic, and 0.0066 µg for polyester).

  16. Engineering 1D Quantum Stripes from Superlattices of 2D Layered Materials.

    PubMed

    Gruenewald, John H; Kim, Jungho; Kim, Heung Sik; Johnson, Jared M; Hwang, Jinwoo; Souri, Maryam; Terzic, Jasminka; Chang, Seo Hyoung; Said, Ayman; Brill, Joseph W; Cao, Gang; Kee, Hae-Young; Seo, Sung S Ambrose

    2017-01-01

    Dimensional tunability from two dimensions to one dimension is demonstrated for the first time using an artificial superlattice method in synthesizing 1D stripes from 2D layered materials. The 1D confinement of layered Sr2 IrO4 induces distinct 1D quantum-confined electronic states, as observed from optical spectroscopy and resonant inelastic X-ray scattering. This 1D superlattice approach is generalizable to a wide range of layered materials.

  17. An investigation of the effect of silicone oil on polymer intraocular lenses by means of PALS, FT-IR and Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Chamerski, Kordian; Lesniak, Magdalena; Sitarz, Maciej; Stopa, Marcin; Filipecki, Jacek

    2016-10-01

    The effect of the polydimethylsiloxane (PDMS) based silicone oil, that is widely used in vitreoretinal surgery, on internal structures of the polymer intraocular lenses was investigated. The effect of PDMS was studied on the polymethyl methacrylate (PMMA) rigid lenses and poly(2-hydroxyethyl methacrylate) (PHEMA) flexible lenses. The research was carried out by means of the positron lifetime spectroscopy (PALS) as well as the infrared spectroscopy (FT-IR) and the Raman spectroscopy (RS). The studies involving the use of PALS and FT-IR methods have revealed that the PHEMA based lenses absorbed, whereas the PMMA lenses did not absorb, silicone oil. The results obtained with the use of the RS method were inconclusive, probably due to the too low intensity of the characteristic PDMS bands. The evidence from this study was discussed in terms of physics and related to the clinical use of both silicone oil and intraocular lenses.

  18. Coriolis interaction of the ν2 + ν12 band with ν2 + 2ν10 of cis-C2H2D2 by high resolution FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gabona, M. G.; Tan, T. L.

    2014-05-01

    The high resolution Fourier transform infrared (FTIR) absorption spectrum of the ν2 + ν12 band of cis-C2H2D2 was recorded in the frequency range of 2515-2960 cm-1 with an unapodized resolution of 0.0063 cm-1. This band was perturbed through c-type Coriolis interaction by the unobserved ν2 + 2ν10 band approximately 19 cm-1 below ν2 + ν12. A total of 751 unperturbed and perturbed infrared transitions of ν2 + ν12 were assigned and fitted using Watson's A-reduced Hamiltonian in the Ir representation with the inclusion of c-type Coriolis terms to give 11 rovibrational constants for the upper state (ν2 = 1, ν12 = 1) with improved accuracy. The ν2 + ν12A-type band is centred at 2898.8975 ± 0.0004 cm-1. From the Coriolis interaction analysis between the ν2 + ν12 and ν2 + 2ν10 bands of cis-C2H2D2, a higher order K-dependent c-type Coriolis coupling constant between the two bands was derived for the first time. Furthermore, rotational constants for the ν2 + 2ν10 band of cis-C2H2D2 centred at 2880.17 ± 0.06 cm-1 were also determined.

  19. Water Hydrogen-Bonding Network Structure and Dynamics at Phospholipid Multibilayer Surface: Femtosecond Mid-IR Pump-Probe Spectroscopy.

    PubMed

    Kundu, Achintya; Błasiak, Bartosz; Lim, Joon-Hyung; Kwak, Kyungwon; Cho, Minhaeng

    2016-03-03

    The water hydrogen-bonding network at a lipid bilayer surface is crucial to understanding membrane structures and its functional activities. With a phospholipid multibilayer mimicking a biological membrane, we study the temperature dependence of water hydrogen-bonding structure, distribution, and dynamics at a lipid multibilayer surface using femtosecond mid-IR pump-probe spectroscopy. We observe two distinguished vibrational lifetime components. The fast component (0.6 ps) is associated with water interacting with a phosphate part, whereas the slow component (1.9 ps) is with bulk-like choline-associated water. With increasing temperature, the vibrational lifetime of phosphate-associated water remains constant though its relative fraction dramatically increases. The OD stretch vibrational lifetime of choline-bound water slows down in a sigmoidal fashion with respect to temperature, indicating a noticeable change of the water environment upon the phase transition. The water structure and dynamics are thus shown to be in quantitative correlation with the structural change of liquid multibilayer upon the gel-to-liquid crystal phase transition.

  20. Hydrogen bond dynamics of superheated water and methanol by ultrafast IR-pump and EUV-photoelectron probe spectroscopy.

    PubMed

    Vöhringer-Martinez, E; Link, O; Lugovoy, E; Siefermann, K R; Wiederschein, F; Grubmüller, H; Abel, B

    2014-09-28

    Supercritical water and methanol have recently drawn much attention in the field of green chemistry. It is crucial to an understanding of supercritical solvents to know their dynamics and to what extent hydrogen (H) bonds persist in these fluids. Here, we show that with femtosecond infrared (IR) laser pulses water and methanol can be heated to temperatures near and above their critical temperature Tc and their molecular dynamics can be studied via ultrafast photoelectron spectroscopy at liquid jet interfaces with high harmonics radiation. As opposed to previous studies, the main focus here is the comparison between the hydrogen bonded systems of methanol and water and their interpretation by theory. Superheated water initially forms a dense hot phase with spectral features resembling those of monomers in gas phase water. On longer timescales, this phase was found to build hot aggregates, whose size increases as a function of time. In contrast, methanol heated to temperatures near Tc initially forms a broad distribution of aggregate sizes and some gas. These experimental features are also found and analyzed in extended molecular dynamics simulations. Additionally, the simulations enabled us to relate the origin of the different behavior of these two hydrogen-bonded liquids to the nature of the intermolecular potentials. The combined experimental and theoretical approach delivers new insights into both superheated phases and may contribute to understand their different chemical reactivities.

  1. FT-IR spectroscopy and multivariate analysis as an auxiliary tool for diagnosis of mental disorders: Bipolar and schizophrenia cases

    NASA Astrophysics Data System (ADS)

    Ogruc Ildiz, G.; Arslan, M.; Unsalan, O.; Araujo-Andrade, C.; Kurt, E.; Karatepe, H. T.; Yilmaz, A.; Yalcinkaya, O. B.; Herken, H.

    2016-01-01

    In this study, a methodology based on Fourier-transform infrared spectroscopy and principal component analysis and partial least square methods is proposed for the analysis of blood plasma samples in order to identify spectral changes correlated with some biomarkers associated with schizophrenia and bipolarity. Our main goal was to use the spectral information for the calibration of statistical models to discriminate and classify blood plasma samples belonging to bipolar and schizophrenic patients. IR spectra of 30 samples of blood plasma obtained from each, bipolar and schizophrenic patients and healthy control group were collected. The results obtained from principal component analysis (PCA) show a clear discrimination between the bipolar (BP), schizophrenic (SZ) and control group' (CG) blood samples that also give possibility to identify three main regions that show the major differences correlated with both mental disorders (biomarkers). Furthermore, a model for the classification of the blood samples was calibrated using partial least square discriminant analysis (PLS-DA), allowing the correct classification of BP, SZ and CG samples. The results obtained applying this methodology suggest that it can be used as a complimentary diagnostic tool for the detection and discrimination of these mental diseases.

  2. Probing the mechanism of plasma protein adsorption on Au and Ag nanoparticles with FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Mengmeng; Fu, Cuiping; Liu, Xingang; Lin, Zhipeng; Yang, Ning; Yu, Shaoning

    2015-09-01

    Protein-nanoparticle interactions are important in biomedical applications of nanoparticles and for growing biosafety concerns about nanomaterials. In this study, the interactions of four plasma proteins, human serum albumin (HSA), myoglobin (MB), hemoglobin (HB), and trypsin (TRP), with Au and Ag nanoparticles were investigated by FT-IR spectroscopy. The secondary structure of thio-proteins changed with time during incubation with Au and Ag nanoparticles, but the secondary structures of non-thio-proteins remained unchanged. The incubation time for structural changes depended on the sulfur-metal bond energy; the stronger the sulfur-metal energy, the less the time needed. H/D exchange experiments revealed that protein-NP complexes with thio-proteins were less dynamic than free proteins. No measurable dynamic differences were found between free non-thio-proteins and the protein-Au (or Ag) nanoparticle complex. Therefore, the impact of covalent bonds on the protein structure is greater than that of the electrostatic force.

  3. Ir Spectroscopy Study on the (HCl)N(H2O)M Aggregation in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Nieto, Pablo; Letzner, Melanie; Habig, Daniel; Poerschke, Toersten; Grün, Sarah Angelique; Hanke, Kenny; Schwaab, Gerhard; Havenith, Martina

    2011-06-01

    The study of acid-water clusters is an active area of research due to its fundamental importance for chemistry. In particular the (HCl)N(H2O)M clusters have been extensively investigated both theoretically and experimentally as a benchmark system. Despite of the great effort devoted to its understanding HCl dissociation in water clusters is still not well understood. An IR-Spectroscopy study on (HCl)N(H2O)M embedded in helium nanodroplets will be presented. The H216O→H218O and isotopic substitution was used in the experiments to probe the bands in the 2650-2760 Cm-1 spectral range which has been object of some debate recently. The observed isotopic shifts for the different bands raise some new questions to be addressed. D. Marx, Chem. Phys. Chem. 7, 1848, (2006). V. E. Bondybey et al., Int. Rev. Phys. Chem. 21, 277 (2002). A. Gutberlet et al., Science 324, 1545 (2009). S. D. Flynn et al., Phys. Chem. Lett. 1, 2233 (2010).

  4. Molecular structure and vibrational study of diprotonated guanazolium using DFT calculations and FT-IR and FT-Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Guennoun, L.; Zaydoun, S.; El jastimi, J.; Marakchi, K.; Komiha, N.; Kabbaj, O. K.; El Hajji, A.; Guédira, F.

    2012-11-01

    The purpose of this manuscript is to discuss our investigations of diprotonated guanazolium chloride using vibrational spectroscopy and quantum chemical methods. The solid phase FT-IR and FT-Raman spectra were recorded in the regions 4000-400 cm-1 and 3600-50 cm-1 respectively, and the band assignments were supported by deuteration effects. Different sites of diprotonation have been theoretically examined at the B3LYP/6-31G∗ level. The results of energy calculations show that the diprotonation process occurs with the two pyridine-like nitrogen N2 and N4 of the triazole ring. The molecular structure, harmonic vibrational wave numbers, infrared intensities and Raman activities were calculated for this form by DFT/B3LYP methods, using a 6-31G∗ basis set. Both the optimized geometries and the theoretical and experimental spectra for diprotonated guanazolium under a stable form are compared with theoretical and experimental data of the neutral molecule reported in our previous work. This comparison reveals that the diprotonation occurs on the triazolic nucleus, and provide information about the hydrogen bonding in the crystal. The scaled vibrational wave number values of the diprotonated form are in close agreement with the experimental data. The normal vibrations were characterized in terms of potential energy distribution (PED) using the VEDA 4 program.

  5. Molecular structure and vibrational study of diprotonated guanazolium using DFT calculations and FT-IR and FT-Raman spectroscopies.

    PubMed

    Guennoun, L; Zaydoun, S; El Jastimi, J; Marakchi, K; Komiha, N; Kabbaj, O K; El Hajji, A; Guédira, F

    2012-11-01

    The purpose of this manuscript is to discuss our investigations of diprotonated guanazolium chloride using vibrational spectroscopy and quantum chemical methods. The solid phase FT-IR and FT-Raman spectra were recorded in the regions 4000-400cm(-1) and 3600-50cm(-1) respectively, and the band assignments were supported by deuteration effects. Different sites of diprotonation have been theoretically examined at the B3LYP/6-31G level. The results of energy calculations show that the diprotonation process occurs with the two pyridine-like nitrogen N2 and N4 of the triazole ring. The molecular structure, harmonic vibrational wave numbers, infrared intensities and Raman activities were calculated for this form by DFT/B3LYP methods, using a 6-31G basis set. Both the optimized geometries and the theoretical and experimental spectra for diprotonated guanazolium under a stable form are compared with theoretical and experimental data of the neutral molecule reported in our previous work. This comparison reveals that the diprotonation occurs on the triazolic nucleus, and provide information about the hydrogen bonding in the crystal. The scaled vibrational wave number values of the diprotonated form are in close agreement with the experimental data. The normal vibrations were characterized in terms of potential energy distribution (PED) using the VEDA 4 program.

  6. Single photon infrared emission spectroscopy: a study of IR emission from UV laser excited PAHs between 3 and 15 micrometers

    NASA Technical Reports Server (NTRS)

    Cook, D. J.; Schlemmer, S.; Balucani, N.; Wagner, D. R.; Harrison, J. A.; Steiner, B.; Saykally, R. J.

    1998-01-01

    Single-photon infrared emission spectroscopy (SPIRES) has been used to measure emission spectra from polycyclic aromatic hydrocarbons (PAHs). A supersonic free-jet expansion has been used to provide emission spectra of rotationally cold and vibrationally excited naphthalene and benzene. Under these conditions, the observed width of the 3.3-micrometers (C-H stretch) band resembles the bandwidths observed in experiments in which emission is observed from naphthalene with higher rotational energy. To obtain complete coverage of IR wavelengths relevant to the unidentified infrared bands (UIRs), UV laser-induced desorption was used to generate gas-phase highly excited PAHs. Lorentzian band shapes were convoluted with the monochromator-slit function in order to determine the widths of PAH emission bands under astrophysically relevant conditions. Bandwidths were also extracted from bands consisting of multiple normal modes blended together. These parameters are grouped according to the functional groups mostly involved in the vibration, and mean bandwidths are obtained. These bandwidths are larger than the widths of the corresponding UIR bands. However, when the comparison is limited to the largest PAHs studied, the bandwidths are slightly smaller than the corresponding UIR bands. These parameters can be used to model emission spectra from PAH cations and cations of larger PAHs, which are better candidate carriers of the UIRs.

  7. Characterization of Alginates by Nuclear Magnetic Resonance (NMR) and Vibrational Spectroscopy (IR, NIR, Raman) in Combination with Chemometrics.

    PubMed

    Jensen, Henrik Max; Larsen, Flemming Hofmann; Engelsen, Søren Balling

    2015-01-01

    This chapter describes three different spectroscopic methods for structural characterization of the commercial important hydrocolloid alginate extracted from brown seaweed. The "golden" reference method for characterization of the alginate structure is (1)H liquid-state NMR of depolymerized alginate polymers using a stepwise hydrolysis. Having implemented this method, predictive and rapid non-destructive methods using vibrational spectroscopy and chemometrics can be developed. These methods can predict the M/G-ratio of the intact alginate powder with at least the same precision and accuracy as the reference method in a fraction of the time that is required to measure the alginate using the reference method. The chapter also demonstrates how solid-state (13)C CP/MAS NMR can be used to determine the M/G ratio on the intact sample by the use of multivariate chemometrics and how this method shares the characteristics of the solid-state non-destructive IR method rather than its liquid-state counterpart.

  8. Vectorial spin polarization detection in multichannel spin-resolved photoemission spectroscopy using an Ir(001) imaging spin filter

    NASA Astrophysics Data System (ADS)

    Schaefer, Erik D.; Borek, Stephan; Braun, Jürgen; Minár, Ján; Ebert, Hubert; Medjanik, Katerina; Kutnyakhov, Dmytro; Schönhense, Gerd; Elmers, Hans-Joachim

    2017-03-01

    We report on spin- and angular-resolved photoemission spectroscopy using a high-resolution imaging spin filter based on a large Ir(001) crystal enhancing the effective figure of merit for spin detection by a factor of over 103 compared to standard single-channel detectors. Furthermore, we review the spin filter preparation and its lifetime. The spin filter efficiency is mapped on a broad range of scattering energies and azimuthal angles. Large spin filter efficiencies are observed for the spin component perpendicular as well as parallel to the scattering plane depending on the azimuthal orientation of the spin filter crystal. A spin rotator capable of manipulating the spin direction prior to detection complements the measurement of three observables, thus allowing for a derivation of all three components of the spin polarization vector in multichannel spin polarimetry. The experimental results nicely agree with spin-polarized low-energy electron diffraction calculations based on a fully relativistic multiple scattering method in the framework of spin-polarized density functional theory.

  9. Investigation of multilayered polyelectrolyte thin films by means of refractive index measurements, FT-IR spectroscopy and SEM

    NASA Astrophysics Data System (ADS)

    Bodurov, I.; Vlaeva, I.; Exner, G.; Uzunova, Y.; Russev, S.; Pilicheva, B.; Viraneva, A.; Yovcheva, T.; Grancharova, Ts; Sotirov, S.; Marudova, M.

    2016-02-01

    Multilayered polyelectrolyte films are promising structures in the biomedical field. In order to meet the demands for biomedical applications, the structures have to be built from biocompatible and/or biodegradable, nontoxic starting materials, possessing some specific functional properties, depending on the particular application. In the present study, the multilayered polyelectrolyte films with potential use as buccal bioadhesive drug delivery systems were investigated. They were prepared via layer-by-layer deposition of successive nanolayers onto substrate. Three different biopolymers were used. The substrate, from poly(lactic acid), was solvent casted. After that, it was subjected to corona treatment, which ensures surface charge excess for the multilayer deposition. The nanolayers were prepared either from 0.01 g/L solutions of chitosan or 0.05 g/L xanthan. Acetate buffer (pH 4.5 and ionic strength 1 M) was used as a solvent. The substrate was dipped successively into one of the solutions, allowing formation of polyelectrolyte complexes of chitosan (polycation) and xanthan (polyanion). The substrates was treated in negative corona. The multilayered structures consisted of 8, 9, 14, 15 or 20 nanolayers. Number of techniques, such refractive index measurements, FT- IR spectroscopy and SEM morphology were employed in order to monitor the properties of the so prepared multilayered polyelectrolyte films.

  10. A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens

    2015-08-01

    A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.

  11. A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy.

    PubMed

    El Khoury, Youssef; Van Wilderen, Luuk J G W; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens

    2015-08-01

    A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.

  12. A spectroelectrochemical cell for ultrafast two-dimensional infrared spectroscopy

    SciTech Connect

    El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Vogt, Tim; Winter, Ernst; Bredenbeck, Jens E-mail: bredenbeck@biophysik.uni-frankfurt.de

    2015-08-15

    A spectroelectrochemical cell has been designed to combine electrochemistry and ultrafast two-dimensional infrared (2D-IR) spectroscopy, which is a powerful tool to extract structure and dynamics information on the femtosecond to picosecond time scale. Our design is based on a gold mirror with the dual role of performing electrochemistry and reflecting IR light. To provide the high optical surface quality required for laser spectroscopy, the gold surface is made by electron beam evaporation on a glass substrate. Electrochemical cycling facilitates in situ collection of ultrafast dynamics of redox-active molecules by means of 2D-IR. The IR beams are operated in reflection mode so that they travel twice through the sample, i.e., the signal size is doubled. This methodology is optimal for small sample volumes and successfully tested with the ferricyanide/ferrocyanide redox system of which the corresponding electrochemically induced 2D-IR difference spectrum is reported.

  13. Sub-Doppler infrared spectroscopy of CH2D radical in a slit supersonic jet: isotopic symmetry breaking in the CH stretching manifold.

    PubMed

    Roberts, Melanie A; Savage, Chandra; Dong, Feng; Sharp-Williams, Erin N; McCoy, Anne B; Nesbitt, David J

    2012-06-21

    First high-resolution infrared absorption spectra in the fundamental symmetric/asymmetric CH stretching region of isotopically substituted methyl radical, CH(2)D, are reported and analyzed. These studies become feasible in the difference frequency spectrometer due to (i) high density radical generation via dissociative electron attachment to CH(2)DI in a discharge, (ii) low rotational temperatures (23 K) from supersonic cooling in a slit expansion, (iii) long absorption path length (64 cm) along the slit axes, and (iv) near shot noise limited absorption sensitivity (5 × 10(-7)/√(Hz)). The spectra are fully rovibrationally resolved and fit to an asymmetric top rotational Hamiltonian to yield rotational/centrifugal constants and vibrational band origins. In addition, the slit expansion collisionally quenches the transverse velocity distribution along the laser probe direction, yielding sub-Doppler resolution of spin-rotation structure and even partial resolution of nuclear hyperfine structure for each rovibrational line. Global least-squares fits to the line shapes provide additional information on spin-rotation and nuclear hyperfine constants, which complement and clarify previous FTIR studies [K. Kawaguchi, Can. J. Phys. 79, 449 (2001)] of CH(2)D in the out-of-plane bending region. Finally, analysis of the spectral data from the full isotopomeric CH(m)D(3-m) series based on harmonically coupled Morse oscillators establishes a predictive framework for describing the manifold of planar stretching vibrations in this fundamental combustion radical.

  14. Time-Resolved IR-Absorption Spectroscopy of Hot-Electron Dynamics in Satellite and Upper Conduction Bands in GaP

    NASA Technical Reports Server (NTRS)

    Cavicchia, M. A.; Alfano, R. R.

    1995-01-01

    The relaxation dynamics of hot electrons in the X6 and X7 satellite and upper conduction bands in GaP was directly measured by femtosecond UV-pump-IR-probe absorption spectroscopy. From a fit to the induced IR-absorption spectra the dominant scattering mechanism giving rise to the absorption at early delay times was determined to be intervalley scattering of electrons out of the X7 upper conduction-band valley. For long delay times the dominant scattering mechanism is electron-hole scattering. Electron transport dynamics of the upper conduction band of GaP has been time resolved.

  15. FT-IR spectroscopy: A powerful tool for studying the inter- and intraspecific biodiversity of cultivable non-Saccharomyces yeasts isolated from grape must.

    PubMed

    Grangeteau, Cédric; Gerhards, Daniel; Terrat, Sebastien; Dequiedt, Samuel; Alexandre, Hervé; Guilloux-Benatier, Michèle; von Wallbrunn, Christian; Rousseaux, Sandrine

    2016-02-01

    The efficiency of the FT-IR technique for studying the inter- and intra biodiversity of cultivable non-Saccharomyces yeasts (NS) present in different must samples was examined. In first, the capacity of the technique FT-IR to study the global diversity of a given sample was compared to the pyrosequencing method, used as a reference technique. Seven different genera (Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Issatchenkia, Metschnikowia and Pichia) were identified by FT-IR and also by pyrosequencing. Thirty-eight other genera were identified by pyrosequencing, but together they represented less than 6% of the average total population of 6 musts. Among the species identified, some of them present organoleptic potentials in winemaking, particularly Starmerella bacillaris (synonym Candidazemplinina). So in a second time, we evaluated the capacity of the FT-IR technique to discriminate the isolates of this species because few techniques were able to study intraspecific NS yeast biodiversity. The results obtained were validated by using a classic method as ITS sequencing. Biodiversity at strain level was high: 19 different strains were identified from 58 isolates. So, FT-IR spectroscopy seems to be an accurate and reliable method for identifying major genera present in the musts. The two biggest advantages of the FT-IR are the capacity to characterize intraspecific biodiversity of non-Saccharomyces yeasts and the possibility to discriminate a lot of strains.

  16. Structural determination of prunusins A and B, new C-alkylated flavonoids from Prunus domestica, by 1D and 2D NMR spectroscopy.

    PubMed

    Mahmood, Azhar; Fatima, Itrat; Kosar, Shaheen; Ahmed, Rehana; Malik, Abdul

    2010-02-01

    Prunusins A (1) and B (2), the new C-alkylated flavonoids, have been isolated from the seed kernels of Prunus domestica. Their structures were assigned from (1)H and (13)C nuclear magnetic resonating spectra, DEPT and by correlation spectroscopy, HMQC and HMBC experiments. 3, 5, 7, 4'-Tetrahydroxyflavone (3) and 3, 5, 7-trihydroxy-8, 4'-dimethoxyflavone (4) have also been reported from this species. Both compounds (1) and (2) showed significant antifungal activity against pathogenic fungus Trichophyton simmi.

  17. Electron momentum distribution and singlet-singlet annihilation in the organic anthracene molecular crystals using positron 2D-ACAR and fluorescence spectroscopy.

    PubMed

    Selvakumar, Sellaiyan; Sivaji, Krishnan; Arulchakkaravarthi, Arjunan; Sankar, Sambasivam

    2014-08-14

    We present the mapping of electron momentum distribution (EMD) in a single crystal of anthracene by two-dimensional angular correlation of positron annihilation radiation (2D-ACAR). The projected EMD is explained on the basis of the crystallographic features of the material. The EMD spectra provide information about the positron states and their behavior and also about the hindrance of the positronium (Ps) formation in this material. The EMD has exhibited evidence for the absence of free volume defects. The characteristic EMD features regarding the delocalized electronic states are explained. Further, scintillation characteristics such as fluorescence and time-correlated single photon counting have also been studied. The emission peaks are attributed to vibrational bands of fluorescence emission from the singlet excitons and lifetime components are observed to be due to singlet fission and the singlet-singlet excitons annihilation.

  18. Surface processes occurring on Rh/alumina during chiral modification by cinchonidine: an ATR-IR spectroscopy study.

    PubMed

    Schmidt, Erik; Ferri, Davide; Baiker, Alfons

    2007-07-17

    Cinchona alkaloids are frequently used for chiral modification of supported noble metal catalysts employed in heterogeneous enantioselective hydrogenation. In order to gain molecular insight into the surface processes occurring at the metal/liquid interface, cinchonidine (CD) adsorption on vapor-deposited Rh/Al2O3 films has been studied in the presence of solvent and hydrogen by means of attenuated total reflection infrared (ATR-IR) spectroscopy. The spectrum of CD adsorbed on Rh exhibited two dominant signals at 1593 and 1511 cm(-1), which are characteristic of a surface species having a quinoline ring tilted with respect to the metal. Interestingly, no adsorbed modifier in the flat geometry (quinoline parallel to the metal plane) was observed. During desorption, these signals vanished, and a new prominent signal appeared at 1601 cm(-1) which belongs to a species with the quinoline ring hydrogenated on the heteroaromatic side. Concentration-dependent experiments and the reversibility of the observed phenomenon indicate that CD was readily hydrogenated to 1',2',3',4',10,11-hexahydrocinchonidine (CDH(6)) on Rh. The ATR-IR spectra also reveal that the flat species was indeed immediately hydrogenated when CD was provided from solution, and the only visible adsorbed species was the tilted species, which displaced the hydrogenation product from the metal surface. In the absence of dissolved CD, during desorption, the tilted species was converted to the flat species and rapidly hydrogenated. The hydrogenation product was stable on the metal surface only in the absence of CD. Therefore, the adsorption strength of the different species is as follows: flat > tilted > CDH(6). Evidence for the formation of the flat species and its role as an intermediate to the hydrogenation product is given by an experiment in which CD was adsorbed in the absence of dissolved hydrogen after surface cleaning. The adsorption and hydrogenation of CD on Rh deviate significantly from that

  19. Real-time feedback control using online attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy for continuous flow optimization and process knowledge.

    PubMed

    Skilton, Ryan A; Parrott, Andrew J; George, Michael W; Poliakoff, Martyn; Bourne, Richard A

    2013-10-01

    The use of automated continuous flow reactors is described, with real-time online Fourier transform infrared spectroscopy (FT-IR) analysis to enable rapid optimization of reaction yield using a self-optimizing feedback algorithm. This technique has been applied to the solvent-free methylation of 1-pentanol with dimethyl carbonate using a γ-alumina catalyst. Calibration of the FT-IR signal was performed using gas chromatography to enable quantification of yield over a wide variety of flow rates and temperatures. The use of FT-IR as a real-time analytical technique resulted in an order of magnitude reduction in the time and materials required compared to previous studies. This permitted a wide exploration of the parameter space to provide process understanding and validation of the optimization algorithms.

  20. Ir-Uv Double Resonance Spectroscopy of a Cold Protonated Fibril-Forming Peptide: NNQQNY\\cdotH+

    NASA Astrophysics Data System (ADS)

    DeBlase, Andrew F.; Harrilal, Christopher P.; Walsh, Patrick S.; McLuckey, Scott A.; Zwier, Timothy S.

    2016-06-01

    Protein aggregation to form amyloid-like fibrils is a purported molecular manifestation that leads to Alzheimer's, Huntington's, and other neurodegenerative diseases. The propensity for a protein to aggregate is often driven by the presence of glutamine (Q) and asparagine (N) rich tracts within the primary sequence. For example, Eisenberg and coworkers [Nature 2006, 435, 773] have shown by X-ray crystallography that the peptides NNQQNY and GNNQQNY aggregate into a parallel β-sheet configuration with side chains that intercalate into a "steric zipper". These sequences are commonly found at the N-terminus of the prion-determining domain in the yeast protein Sup35, a typical fibril-forming protein. Herein, we invoke recent advances in cold ion spectroscopy to explore the nascent conformational preferences of the protonated peptides that are generated by electrospray ionization. Towards this aim, we have used UV and IR spectroscopy to record conformation-specific photofragment action spectra of the NNQQNY monomer cryogenically cooled in an octopole ion trap. This short peptide contains 20 hydride stretch oscillators, leading to a rich infrared spectrum with at least 18 resolved transitions in the 2800-3800 cm-1 region. The infrared spectrum suggests the presence of both a free acid OH moiety and an H-bonded tyrosine OH group. We compare our results with resonant ion dip infrared spectra (RIDIRS) of the acyl/NH-benzyl capped neutral glutamine amino acid and its corresponding dipeptide: Ac-Q-NHBn and Ac-QQ-NHBn, respectively. These comparisons bring empirical insight to the NH stretching region of the spectrum, which contains contributions from free and singly H-bonded NH2 side-chain groups, and from peptide backbone amide NH groups. We further compare our spectrum to harmonic calculations at the M05-2X/6-31+G* level of theory, which were performed on low energy structures obtained from Monte Carlo conformational searches using the Amber* and OPLS force fields to assess

  1. Qualitative and quantitative evaluation of chrysotile and crocidolite fibers with IR-spectroscopy: application to asbestos-cement products.

    PubMed

    Balducci, D; Valerio, F

    1986-01-01

    Infrared (IR) spectrophotometry allows simple and quick qualitative and quantitative evaluations of different kinds of asbestos, as well as of other inorganic particles. In particular, chrysotile and crocidolite have characteristic IR spectra and optical density measures of 2,710 nm band for chrysotile, of 12,820 nm band for crocidolite permit quantitative evaluation of each fiber alone or in mixture. IR spectra also give informations about changes of fiber structure and of chemical composition due, for example, to thermal treatment or acid leaching. The analytical method we developed can detect levels as low as 0.1 mg of fiber in a 300 mg disk of KBr using a low cost IR spectrophotometer. The use of a Fourier Transform IR spectrophotometer (FTIR) improves dramatically the sensitivity and selectivity. Computer assisted analysis of spectra offers the possibility to reduce matrix interferences and to compare different spectra. Examples of IR technique applied to asbestos-cement products and insulating materials are presented.

  2. A Laser Absorption Spectroscopy System for 2D Mapping of CO2 Over Large Spatial Areas for Monitoring, Reporting and Verification of Ground Carbon Storage Sites

    NASA Astrophysics Data System (ADS)

    Dobler, J. T.; Braun, M.; Blume, N.; McGregor, D.; Zaccheo, T. S.; Pernini, T.; Botos, C.

    2014-12-01

    We will present the development of the Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE). GreenLITE consists of two laser based transceivers and a number of retro-reflectors to measure differential transmission (DT) of a number of overlapping chords in a plane over the site being monitored. The transceivers use the Intensity Modulated Continuous Wave (IM-CW) approach, which is a technique that allows simultaneous transmission/reception of multiple fixed wavelength lasers and a lock-in, or matched filter, to measure amplitude and phase of the different wavelengths in the digital domain. The technique was developed by Exelis and has been evaluated using an airborne demonstrator for the past 10 years by NASA Langley Research Center. The method has demonstrated high accuracy and high precision measurements as compared to an in situ monitor tracable to WMO standards, agreeing to 0.65 ppm +/-1.7 ppm. The GreenLITE system is coupled to a cloud-based data storage and processing system that takes the measured chord data, along with auxiliary data to retrieve an average CO2 concentration per chord and which combines the chords to provide an estimate of the spatial distribution of CO2 concentration in the plane. A web-based interface allows users to view real-time CO2 concentrations and 2D concentration maps of the area being monitored. The 2D maps can be differenced as a function of time for an estimate of the flux across the plane measured by the system. The system is designed to operate autonomously from semi-remote locations with a very low maintenance cycle. Initial instrument tests, conducted in June, showed signal to noise in the measured ratio of >3000 for 10 s averages. Additional local field testing and a quantifiable field testing at the Zero Emissions Research and Technology (ZERT) site in Bozeman, MT are planned for this fall. We will present details on the instrument and software tools that have been developed, along with results from the local

  3. The exploration of hydrogen bonding properties of 2,6- and 3,5-diethynylpyridine by IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Vojta, Danijela; Kovačević, Goran; Vazdar, Mario

    2015-02-01

    Hydrogen bonding properties of 2,6- and 3,5-diethynylpyridine were analyzed by exploring of their interactions with trimethylphosphate, as hydrogen bond acceptor, or phenol, as hydrogen bond donor, in tetrachloroethene C2Cl4. The employment of IR spectroscopy enabled unravelling of their interaction pattern as well as the determination of their association constants (Kc) and standard reaction enthalpies (ΔrH⦵). The association of diethynylpyridines with trimethylphosphate in stoichiometry 1:1 is established through tbnd Csbnd H⋯O hydrogen bond, accompanied by the secondary interaction between Ctbnd C moiety and CH3 group of trimethylphosphate. In the complexes with phenol, along with the expected OH⋯N interaction, Ctbnd C⋯HO interaction is revealed. In contrast to 2,6-diethynylpyridine where the spatial arrangement of hydrogen bond accepting groups enables the simultaneous involvement of phenol OH group in both OH⋯N and OH⋯Ctbnd C hydrogen bond, in the complex between phenol and 3,5-diethynylpyridine this is not possible. It is postulated that cooperativity effects, arisen from the certain type of resonance-assisted hydrogen bonds, contribute the stability gain of the latter. Associations of diethynylpyridines with trimethylphosphate are characterized as weak (Kc ≈ 0.8-0.9 mol-1 dm3; -ΔrH⦵ ≈ 5-8 kJ mol-1), while their complexes with phenol as medium strong (Kc ≈ 5 mol-1 dm3; -ΔrH⦵ ≈ 15-35 kJ mol-1). Experimental findings on the studied complexes are supported with the calculations conducted at B3LYP/6-311++G(d,p) level of theory in the gas phase. Two conformers of diethynylpyridine⋯trimethylphosphate dimers are formed via tbnd Csbnd H⋯O interaction, whereas dimers between phenol and diethynylpyridines are established through OH⋯N interaction.

  4. The exploration of hydrogen bonding properties of 2,6- and 3,5-diethynylpyridine by IR spectroscopy.

    PubMed

    Vojta, Danijela; Kovačević, Goran; Vazdar, Mario

    2015-02-05

    Hydrogen bonding properties of 2,6- and 3,5-diethynylpyridine were analyzed by exploring of their interactions with trimethylphosphate, as hydrogen bond acceptor, or phenol, as hydrogen bond donor, in tetrachloroethene C2Cl4. The employment of IR spectroscopy enabled unravelling of their interaction pattern as well as the determination of their association constants (Kc) and standard reaction enthalpies (ΔrH(⦵)). The association of diethynylpyridines with trimethylphosphate in stoichiometry 1:1 is established through CH⋯O hydrogen bond, accompanied by the secondary interaction between CC moiety and CH3 group of trimethylphosphate. In the complexes with phenol, along with the expected OH⋯N interaction, CC⋯HO interaction is revealed. In contrast to 2,6-diethynylpyridine where the spatial arrangement of hydrogen bond accepting groups enables the simultaneous involvement of phenol OH group in both OH⋯N and OH⋯CC hydrogen bond, in the complex between phenol and 3,5-diethynylpyridine this is not possible. It is postulated that cooperativity effects, arisen from the certain type of resonance-assisted hydrogen bonds, contribute the stability gain of the latter. Associations of diethynylpyridines with trimethylphosphate are characterized as weak (Kc≈0.8-0.9mol(-1)dm(3); -ΔrH(⦵)≈5-8kJmol(-1)), while their complexes with phenol as medium strong (Kc≈5mol(-1)dm(3); -ΔrH(⦵)≈15-35kJmol(-1)). Experimental findings on the studied complexes are supported with the calculations conducted at B3LYP/6-311++G(d,p) level of theory in the gas phase. Two conformers of diethynylpyridine⋯trimethylphosphate dimers are formed via CH⋯O interaction, whereas dimers between phenol and diethynylpyridines are established through OH⋯N interaction.

  5. Graphitic carbon nitride C{sub 6}N{sub 9}H{sub 3}.HCl: Characterisation by UV and near-IR FT Raman spectroscopy

    SciTech Connect

    McMillan, Paul F.; Lees, Victoria; Quirico, Eric; Sella, Andrea; Reynard, Bruno; Simon, Patrick; Bailey, Edward; Deifallah, Malek; Cora, Furio

    2009-10-15

    The graphitic layered compound C{sub 6}N{sub 9}H{sub 3}.HCl was prepared by reaction between melamine and cyanuric chloride under high pressure-high temperature conditions in a piston cylinder apparatus and characterised using SEM, powder X-ray diffraction, UV Raman and near-IR Fourier transform Raman spectroscopy with near-IR excitation. Theoretical calculations using density functional methods permitted evaluation of the mode of attachment of H atoms to nitrogen sites in the structure and a better understanding of the X-ray diffraction pattern. Broadening in the UV and near-IR FT Raman spectra indicate possible disordering of the void sites within the graphitic layers or it could be due to electron-phonon coupling effects. - Graphical abstract: The graphitic layered compound C{sub 6}N{sub 9}H{sub 3}.HCl was prepared by reaction between melamine and cyanuric chloride under high pressure-high temperature conditions in a piston cylinder apparatus and characterised using SEM, powder X-ray diffraction, UV Raman and near-IR Fourier transform Raman spectroscopy using near-IR excitation. Theoretical calculations using density functional methods permitted evaluation of the mode of attachment of H atoms to nitrogen sites around the C{sub 12}N{sub 12} voids within the layered structure and also led to better understanding of the X-ray diffraction pattern. Sharp peaks in the UV Raman spectra are due to C{sub 3}N{sub 3} triazine ring units in the structure, that may be enhanced by resonance Raman effects. Broadening in the UV and near-IR FT Raman spectra indicate possible disordering within the graphitic layers or electron-phonon coupling effects.

  6. Low-dimensional systems investigated by x-ray absorption spectroscopy: a selection of 2D, 1D and 0D cases

    NASA Astrophysics Data System (ADS)

    Mino, Lorenzo; Agostini, Giovanni; Borfecchia, Elisa; Gianolio, Diego; Piovano, Andrea; Gallo, Erik; Lamberti, Carlo

    2013-10-01

    Over the last three decades low-dimensional systems have attracted increasing interest both from the fundamental and technological points of view due to their unique physical and chemical properties. X-ray absorption spectroscopy (XAS) is a powerful tool for the characterization of such kinds of systems, owing to its chemical selectivity and high sensitivity in interatomic distance determination. Moreover, XAS does not require long-range ordering, that is usually absent in low-dimensional systems. Finally, this technique can simultaneously provide information on electronic and local structural properties of the nanomaterials, significantly contributing to clarify the relation between their atomic structure and their peculiar physical properties. This review provides a general introduction to XAS, discussing the basic theory of the technique, the most used detection modes, the related experimental setups and some complementary relevant characterization techniques (diffraction anomalous fine structure, extended energy-loss fine structure, pair distribution function, x-ray emission spectroscopy, high-energy resolution fluorescence detected XAS and x-ray Raman scattering). Subsequently, a selection of significant applications of XAS to two-, one- and zero-dimensional systems will be presented. The selected low-dimensional systems include IV and III-V semiconductor films, quantum wells, quantum wires and quantum dots; carbon-based nanomaterials (epitaxial graphene and carbon nanotubes); metal oxide films, nanowires, nanorods and nanocrystals; metal nanoparticles. Finally, the future perspectives for the application of XAS to nanostructures are discussed.

  7. Combining FT-IR spectroscopy and multivariate analysis for qualitative and quantitative analysis of the cell wall composition changes during apples development.

    PubMed

    Szymanska-Chargot, M; Chylinska, M; Kruk, B; Zdunek, A

    2015-01-22

    The aim of this work was to quantitatively and qualitatively determine the composition of the cell wall material from apples during development by means of Fourier transform infrared (FT-IR) spectroscopy. The FT-IR region of 1500-800 cm(-1), containing characteristic bands for galacturonic acid, hemicellulose and cellulose, was examined using principal component analysis (PCA), k-means clustering and partial least squares (PLS). The samples were differentiated by development stage and cultivar using PCA and k-means clustering. PLS calibration models for galacturonic acid, hemicellulose and cellulose content from FT-IR spectra were developed and validated with the reference data. PLS models were tested using the root-mean-square errors of cross-validation for contents of galacturonic acid, hemicellulose and cellulose which was 8.30 mg/g, 4.08% and 1.74%, respectively. It was proven that FT-IR spectroscopy combined with chemometric methods has potential for fast and reliable determination of the main constituents of fruit cell walls.

  8. Discrimination of edible oils and fats by combination of multivariate pattern recognition and FT-IR spectroscopy: A comparative study between different modeling methods

    NASA Astrophysics Data System (ADS)

    Javidnia, Katayoun; Parish, Maryam; Karimi, Sadegh; Hemmateenejad, Bahram

    2013-03-01

    By using FT-IR spectroscopy, many researchers from different disciplines enrich the experimental complexity of their research for obtaining more precise information. Moreover chemometrics techniques have boosted the use of IR instruments. In the present study we aimed to emphasize on the power of FT-IR spectroscopy for discrimination between different oil samples (especially fat from vegetable oils). Also our data were used to compare the performance of different classification methods. FT-IR transmittance spectra of oil samples (Corn, Colona, Sunflower, Soya, Olive, and Butter) were measured in the wave-number interval of 450-4000 cm-1. Classification analysis was performed utilizing PLS-DA, interval PLS-DA, extended canonical variate analysis (ECVA) and interval ECVA methods. The effect of data preprocessing by extended multiplicative signal correction was investigated. Whilst all employed method could distinguish butter from vegetable oils, iECVA resulted in the best performances for calibration and external test set with 100% sensitivity and specificity.

  9. Strength by joining methods: combining synthesis with NMR, IR, and vibrational circular dichroism spectroscopy for the determination of the relative configuration in hemicalide.

    PubMed

    De Gussem, Ewoud; Herrebout, Wouter; Specklin, Simon; Meyer, Christophe; Cossy, Janine; Bultinck, Patrick

    2014-12-22

    The relative configuration of a key subunit of hemicalide, a recently isolated, highly bioactive marine natural product having potent antiproliferative activity against a panel of human cancer cell lines, was assigned by combining stereocontrolled synthesis of model substrates with NMR, IR, and vibrational circular dichroism (VCD) spectroscopy. The assignment of the absolute configuration of asymmetric carbon center C42 in two structurally complex epimeric substructures containing six stereocenters by VCD analysis illustrates the power and reliability of combining methods.

  10. Combining Raman and FT-IR spectroscopy with quantitative isotopic labeling for differentiation of E. coli cells at community and single cell levels.

    PubMed

    Muhamadali, Howbeer; Chisanga, Malama; Subaihi, Abdu; Goodacre, Royston

    2015-04-21

    There is no doubt that the contribution of microbially mediated bioprocesses toward maintenance of life on earth is vital. However, understanding these microbes in situ is currently a bottleneck, as most methods require culturing these microorganisms to suitable biomass levels so that their phenotype can be measured. The development of new culture-independent strategies such as stable isotope probing (SIP) coupled with molecular biology has been a breakthrough toward linking gene to function, while circumventing in vitro culturing. In this study, for the first time we have combined Raman spectroscopy and Fourier transform infrared (FT-IR) spectroscopy, as metabolic fingerprinting approaches, with SIP to demonstrate the quantitative labeling and differentiation of Escherichia coli cells. E. coli cells were grown in minimal medium with fixed final concentrations of carbon and nitrogen supply, but with different ratios and combinations of (13)C/(12)C glucose and (15)N/(14)N ammonium chloride, as the sole carbon and nitrogen sources, respectively. The cells were collected at stationary phase and examined by Raman and FT-IR spectroscopies. The multivariate analysis investigation of FT-IR and Raman data illustrated unique clustering patterns resulting from specific spectral shifts upon the incorporation of different isotopes, which were directly correlated with the ratio of the isotopically labeled content of the medium. Multivariate analysis results of single-cell Raman spectra followed the same trend, exhibiting a separation between E. coli cells labeled with different isotopes and multiple isotope levels of C and N.

  11. Observation of charge transfer cascades in α-Fe2O3/IrOx photoanodes by operando X-ray absorption spectroscopy.

    PubMed

    Minguzzi, Alessandro; Naldoni, Alberto; Lugaresi, Ottavio; Achilli, Elisabetta; D'Acapito, Francesco; Malara, Francesco; Locatelli, Cristina; Vertova, Alberto; Rondinini, Sandra; Ghigna, Paolo

    2017-02-22

    Electrochemical devices for energy conversion and storage are central for a sustainable economy. The performance of electrodes is driven by charge transfer across different layer materials and an understanding of the mechanistics is pivotal to gain improved efficiency. Here, we directly observe the transfer of photogenerated charge carriers in a photoanode made of hematite (α-Fe2O3) and a hydrous iridium oxide (IrOx) overlayer, which plays a key role in photoelectrochemical water oxidation. Through the use of operando X-ray absorption spectroscopy (XAS), we probe the change in occupancy of the Ir 5d levels during optical band gap excitation of α-Fe2O3. At potentials where no photocurrent is observed, electrons flow from the α-Fe2O3 photoanode to the IrOx overlayer. In contrast, when the composite electrode produces a sustained photocurrent (i.e., 1.4 V vs. RHE), a significant transfer of holes from the illuminated α-Fe2O3 to the IrOx layer is clearly demonstrated. The analysis of the operando XAS spectra further suggests that oxygen evolution actually occurs both at the α-Fe2O3/electrolyte and α-Fe2O3/IrOx interfaces. These findings represent an important outcome for a better understanding of composite photoelectrodes and their use in photoelectrochemical systems, such as hydrogen generation or CO2 reduction from sunlight.

  12. Hubble and Spitzer Follow-up for Two Strongly Lensed LBGs: (I) Optical-to-Mid-IR Photometry and Mid-IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tucker, Douglas Lee; Allam, S. S.; SDSS Bright Arcs Search Team

    2009-05-01

    We present the HST and Spitzer photometry and Spitzer spectroscopy of two strongly lensed Lyman Break Galaxies LBGs that were recently discovered. These two LBGs -- the "8 O'Clock Arc" (Allam et al. 2007) and the "SDSS J1206+5142 Arc" (Lin et al. 2008)-- are currently the brightest known LBGs, roughly 3 times brighter than the former record-holder, MS1512-cB58 (a.k.a. "cB58").

  13. Phase-Sensitive Control Of Molecular Dissociation Through Attosecond Pump/Strong-Field Mid-IR Probe Spectroscopy

    DTIC Science & Technology

    2016-04-15

    of- the-art approach can be plagued by significant systematic errors. • Few-cycle, intense, 2.6- and 6-micron mid-IR pulse generation: combining a...where the state-of-the-art approach can be plagued by significant systematic errors. Few-cycle, intense, 2.6- and 6-micron mid-IR pulse generation

  14. Ultra-broadband 2D electronic spectroscopy of carotenoid-bacteriochlorophyll interactions in the LH1 complex of a purple bacterium

    SciTech Connect

    Maiuri, Margherita; Réhault, Julien; Polli, Dario; Cerullo, Giulio; Carey, Anne-Marie; Hacking, Kirsty; Cogdell, Richard J.; Garavelli, Marco; Lüer, Larry

    2015-06-07

    We investigate the excitation energy transfer (EET) pathways in the photosynthetic light harvesting 1 (LH1) complex of purple bacterium Rhodospirillum rubrum with ultra-broadband two-dimensional electronic spectroscopy (2DES). We employ a 2DES apparatus in the partially collinear geometry, using a passive birefringent interferometer to generate the phase-locked pump pulse pair. This scheme easily lends itself to two-color operation, by coupling a sub-10 fs visible pulse with a sub-15-fs near-infrared pulse. This unique pulse combination allows us to simultaneously track with extremely high temporal resolution both the dynamics of the photoexcited carotenoid spirilloxanthin (Spx) in the visible range and the EET between the Spx and the B890 bacterio-chlorophyll (BChl), whose Q{sub x} and Q{sub y} transitions peak at 585 and 881 nm, respectively, in the near-infrared. Global analysis of the one-color and two-color 2DES maps unravels different relaxation mechanisms in the LH1 complex: (i) the initial events of the internal conversion process within the Spx, (ii) the parallel EET from the first bright state S{sub 2} of the Spx towards the Q{sub x} state of the B890, and (iii) the internal conversion from Q{sub x} to Q{sub y} within the B890.

  15. Ultra-broadband 2D electronic spectroscopy of carotenoid-bacteriochlorophyll interactions in the LH1 complex of a purple bacterium

    NASA Astrophysics Data System (ADS)

    Maiuri, Margherita; Réhault, Julien; Carey, Anne-Marie; Hacking, Kirsty; Garavelli, Marco; Lüer, Larry; Polli, Dario; Cogdell, Richard J.; Cerullo, Giulio

    2015-06-01

    We investigate the excitation energy transfer (EET) pathways in the photosynthetic light harvesting 1 (LH1) complex of purple bacterium Rhodospirillum rubrum with ultra-broadband two-dimensional electronic spectroscopy (2DES). We employ a 2DES apparatus in the partially collinear geometry, using a passive birefringent interferometer to generate the phase-locked pump pulse pair. This scheme easily lends itself to two-color operation, by coupling a sub-10 fs visible pulse with a sub-15-fs near-infrared pulse. This unique pulse combination allows us to simultaneously track with extremely high temporal resolution both the dynamics of the photoexcited carotenoid spirilloxanthin (Spx) in the visible range and the EET between the Spx and the B890 bacterio-chlorophyll (BChl), whose Qx and Qy transitions peak at 585 and 881 nm, respectively, in the near-infrared. Global analysis of the one-color and two-color 2DES maps unravels different relaxation mechanisms in the LH1 complex: (i) the initial events of the internal conversion process within the Spx, (ii) the parallel EET from the first bright state S2 of the Spx towards the Qx state of the B890, and (iii) the internal conversion from Qx to Qy within the B890.

  16. Fourier transform infrared (FT-IR) spectroscopy and imaging of the nucleus to characterize DNA contributions in different phases of the cell cycle

    NASA Astrophysics Data System (ADS)

    Tiwari, Saumya; Zong, Xinying; Holton, Sarah E.; Prasanth, K. V.; Bhargava, Rohit

    2015-03-01

    Determination of neoplasia is largely dependent on the state of cell growth. Infrared (IR) spectroscopy has the potential to measure differences between normal and cancerous cells. When analyzing biopsy sections using IR spectroscopy, careful analyses become important since biochemical variations may be misinterpreted due to variations in cell cycle. Processes like DNA replication, transcription and translation to produce proteins are important in determining if the cells are actively dividing but no studies on this aspect using IR spectroscopy have been conducted on isolated cell nuclei. Nuclei hold critical information about the phase of cell and its capacity to divide, but IR spectra of nuclei are often confounded by cytoplasmic signals during data acquisition from intact cells and tissues. Therefore, we sought to separate nuclear signals from cytoplasmic signals and identify spectral differences that characterize different phases of the cell cycle. Both cells and isolated nuclei were analyzed to assess the effect of the cytoplasmic background and to identify spectral changes in nuclei in different phases of cell cycle. We observed that signals of DNA could be obtained when imaging nuclei isolated from cells in different phases of cell cycle, which is in contrast to the oft-cited case in cells wherein nuclear contributions are obscured. The differences across cell cycle phases were more pronounced in nucleic acid regions of the spectra, showing that the use of nuclear spectrum can provide additional information on cellular state. These results can aid in developing computational models that extract nuclear spectra from whole cells and tissues for more accurate assessment of biochemical variations.

  17. Synthesis, structural characterization, IR- and Raman spectroscopy, magnetic properties of new organically templated metal sulfates with 4-aminopyridinium

    NASA Astrophysics Data System (ADS)

    Bednarchuk, Tamara J.; Kinzhybalo, Vasyl; Bednarchuk, Oleksandr; Pietraszko, Adam

    2016-09-01

    Crystal structures of the series of twelve 4-aminopyridinium templated metal sulfates: (C5H7N2)2[MeII(H2O)6](SO4)2 (MeII = Cu (1), Co (2), Mg (3), Zn (4), Fe (5), Mn (6a)), (C5H7N2)2[MeII(H2O)4(SO4)2]·4H2O (MeII = Mn (6b), Cd (7a)), (C5H7N2)2[MnII(H2O)4(SO4)2] (6c), (C5H7N2)2[Cd(H2O)4(SO4)2] (7b), (C5H7N2)[Al(H2O)6](SO4)2·4H2O (low (8lt) and room temperature (8rt) phases) and (C5H7N2)[FeIII(H2O)4(SO4)2] (9) were determined by single-crystal X-ray diffraction. Compounds 1-6a are isostructural, crystal structure consists of [Me(H2O)6]2+ octahedra, 4-aminopyridinium cations (4ap) and sulfate anions. Crystal packing in 1-6a series is characterized by alternating 4ap and inorganic layers. In the structure of 1 Cu2+ coordination environment is axially deformed due to Jahn-Teller effect to tetragonal bipyramidal. Compounds 6 (a, b) and 7a at ambient conditions dehydrate to produce isostructural complexes 6c and 7b, respectively. In structures of 6c, 7b and 9 sulfate anions are involved in slightly distorted octahedral metal coordination composed of six O atoms from four water molecules and two sulfate anions. Room temperature phase of 8 is characterized by disorder of 4ap around center of inversion. Continuous phase transition at ≈185 K leads to the cell doubling and ordering of 4ap. All of the structures are governed by an extensive three-dimensional hydrogen bond networks, as well as π-π interactions visualized by Hirshfeld surface analysis. Moreover, selected compounds were characterized by the IR and Raman spectroscopy and magnetic measurement studies.

  18. Faecal near-IR spectroscopy to determine the nutritional value of diets consumed by beef cattle in east Mediterranean rangelands.

    PubMed

    Landau, S Y; Dvash, L; Roudman, M; Muklada, H; Barkai, D; Yehuda, Y; Ungar, E D

    2016-02-01

    Rapid assessment of the nutritional quality of diets ingested by grazing animals is pivotal for successful cow-calf management in east Mediterranean rangelands, which receive unpredictable rainfall and are subject to hot-spells. Clipped vegetation samples are seldom representative of diets consumed, as cows locate and graze selectively. In contrast, faeces are easily sampled and their near-IR spectra contain information about nutrients and their utilization. However, a pre-requisite for successful faecal near-infrared reflectance spectroscopy (FNIRS) is that the calibration database encompass the spectral variability of samples to be analyzed. Using confined beef cows in Northern and Southern Israel, we calibrated prediction equations based on individual pairs of known dietary attributes and the NIR spectra of associated faeces (n=125). Diets were composed of fresh-cut green fodder of monocots (wheat and barley), dicots (safflower and garden pea) and natural pasture collected at various phenological states over 2 consecutive years, and, optionally, supplements of barley grain and dried poultry litter. A total of 48 additional pairs of faeces and diets sourced from cows fed six complete mixed rations covering a wide range of energy and CP concentrations. Precision (linearity of calibration, R2cal, and of cross-validation, R2cv) and accuracy (standard error of cross-validation, SEcv) were criteria for calibration quality. The calibrations for dietary ash, CP, NDF and in vitro dry matter digestibility yielded R2cal values >0.87, R2cv of 0.81 to 0.89 and SEcv values of 16, 13, 39 and 31 g/kg dry matter, respectively. Equations for nutrient intake were of low quality, with the exception of CP. Evaluation of FNIRS predictions was carried out with grazing animals supplemented or not with poultry litter, and implementation of the method in one herd over 2 years is presented. The potential usefulness of equations was also established by calculating the Mahalanobis (H

  19. Solution structure of the 45-residue MgATP-binding peptide of adenylate kinase as examined by 2-D NMR, FTIR, and CD spectroscopy.

    PubMed

    Fry, D C; Byler, D M; Susi, H; Brown, E M; Kuby, S A; Mildvan, A S

    1988-05-17

    The structure of a synthetic peptide corresponding to residues 1-45 of rabbit muscle adenylate kinase has been studied in aqueous solution by two-dimensional NMR, FTIR, and CD spectroscopy. This peptide, which binds MgATP and is believed to represent most of the MgATP-binding site of the enzyme [Fry, D.C., Kuby, S.A., & Mildvan, A.S. (1985) Biochemistry 24, 4680-4694], appears to maintain a conformation similar to that of residues 1-45 in the X-ray structure of intact porcine adenylate kinase [Sachsenheimer, W., & Schulz, G.E. (1977) J. Mol. Biol. 114, 23-26], with 42% of the residues of the peptide showing NOEs indicative of phi and psi angles corresponding to those found in the protein. The NMR studies suggest that the peptide is composed of two helical regions of residues 4-7 and 23-29, and three stretches of beta-strand at residues 8-15, 30-32, and 35-40, yielding an overall secondary structure consisting of 24% alpha-helix, 38% beta-structure, and 38% aperiodic. Although the resolution-enhanced amide I band of the peptide FTIR spectrum is broad and rather featureless, possibly due to disorder, it can be fit by using methods developed on well-characterized globular proteins. On this basis, the peptide consists of 35 +/- 10% beta-structure, 60 +/- 12% turns and aperiodic structure, and not more than 10% alpha-helix. The CD spectrum is best fit by assuming the presence of at most 13% alpha-helix in the peptide, 24 +/- 2% beta-structure, and 66 +/- 4% aperiodic. The inability of the high-frequency FTIR and CD methods to detect helices in the amount found by NMR may result from the short helical lengths as well as from static and dynamic disorder in the peptide. Upon binding of MgATP, numerous conformational changes in the backbone of the peptide are detected by NMR, with smaller alterations in the overall secondary structure as assessed by CD. Detailed assignments of resonances in the peptide spectrum and intermolecular NOEs between protons of bound MgATP and

  20. A Q-switched Ho:YAG laser assisted nanosecond time-resolved T-jump transient mid-IR absorbance spectroscopy with high sensitivity

    SciTech Connect

    Li, Deyong; Li, Yunliang; Li, Hao; Weng, Yuxiang; Wu, Xianyou; Yu, Qingxu

    2015-05-15

    Knowledge of dynamical structure of protein is an important clue to understand its biological function in vivo. Temperature-jump (T-jump) time-resolved transient mid-IR absorbance spectroscopy is a powerful tool in elucidating the protein dynamical structures and the folding/unfolding kinetics of proteins in solution. A home-built setup of T-jump time-resolved transient mid-IR absorbance spectroscopy with high sensitivity is developed, which is composed of a Q-switched Cr, Tm, Ho:YAG laser with an output wavelength at 2.09 μm as the T-jump heating source, and a continuous working CO laser tunable from 1580 to 1980 cm{sup −1} as the IR probe. The results demonstrate that this system has a sensitivity of 1 × 10{sup −4} ΔOD for a single wavelength detection, and 2 × 10{sup −4} ΔOD for spectral detection in amide I′ region, as well as a temporal resolution of 20 ns. Moreover, the data quality coming from the CO laser is comparable to the one using the commercial quantum cascade laser.

  1. Ethylene polymerization on a SiH4-modified Phillips catalyst: detection of in situ produced α-olefins by operando FT-IR spectroscopy.

    PubMed

    Barzan, Caterina; Groppo, Elena; Quadrelli, Elsje Alessandra; Monteil, Vincent; Bordiga, Silvia

    2012-02-21

    Ethylene polymerization on a model Cr(II)/SiO(2) Phillips catalyst modified with gas phase SiH(4) leads to a waxy product containing a bimodal MW distribution of α-olefins (M(w) < 3000 g mol(-1)) and a highly branched polyethylene, LLDPE (M(w) ≈ 10(5) g mol(-1), T(m) = 123 °C), contrary to the unmodified catalyst which gives a linear and more dense PE, HDPE (M(w) = 86,000 g mol(-1) (PDI = 7), T(m) = 134 °C). Pressure and temperature resolved FT-IR spectroscopy under operando conditions (T = 130-230 K) allows us to detect α-olefins, and in particular 1-hexene and 1-butene (characteristic IR absorption bands at 3581-3574, 1638 and 1598 cm(-1)) as intermediate species before their incorporation in the polymer chains. The polymerization rate is estimated, using time resolved FT-IR spectroscopy, to be 7 times higher on the SiH(4)-modified Phillips catalyst with respect to the unmodified one.

  2. The Use and Evaluation of Scaffolding, Student Centered-Learning, Behaviorism, and Constructivism to Teach Nuclear Magnetic Resonance and IR Spectroscopy in a Two-Semester Organic Chemistry Course

    ERIC Educational Resources Information Center

    Livengood, Kimberly; Lewallen, Denver W.; Leatherman, Jennifer; Maxwell, Janet L.

    2012-01-01

    Since 2002, infrared spectroscopy (IR) and nuclear magnetic resonance (NMR) spectrometry have been introduced at the beginning of the first-semester organic chemistry lab course at this university. Starting in 2008, each individual student was given 20 unique homework problems that consisted of multiple-choice [superscript 1]H NMR and IR problems…

  3. Identification of the traditional Tibetan medicine "Shaji" and their different extracts through tri-step infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Yue; Li, Jingyi; Fan, Gang; Sun, Suqin; Zhang, Yuxin; Zhang, Yi; Tu, Ya

    2016-11-01

    Hippophae rhamnoides subsp. sinensis Rousi, Hippophae gyantsensis (Rousi) Y. S. Lian, Hippophae neurocarpa S. W. Liu & T. N. He and Hippophae tibetana Schlechtendal are typically used under one name "Shaji", to treat cardiovascular diseases and lung disorders in Tibetan medicine (TM). A complete set of infrared (IR) macro-fingerprints of these four Hippophae species should be characterized and compared simply, accurately, and in detail for identification. In the present study, tri-step IR spectroscopy, which included Fourier transform IR (FT-IR) spectroscopy, second derivative IR (SD-IR) spectroscopy and two-dimensional correlation IR (2D-IR) spectroscopy, was employed to discriminate the four Hippophae species and their corresponding extracts using different solvents. The relevant spectra exhibited the holistic chemical compositions and variations. Flavonoids, fatty acids and sugars were found to be the main chemical components. Characteristic peak positions, intensities and shapes derived from FT-IR, SD-IR and 2D-IR spectra provided valuable information for sample discrimination. Principal component analysis (PCA) of spectral differences was performed to illustrate the objective identification. Results showed that the species and their extracts can be clearly distinguished. Thus, a quick, precise and effective tri-step IR spectroscopy combined with PCA can be applied to identify and discriminate medicinal materials and their extracts in TM research.

  4. Determination of lycopene and beta-carotene content in tomato fruits and related products: Comparison of FT-Raman, ATR-IR, and NIR spectroscopy.

    PubMed

    Baranska, M; Schütze, W; Schulz, H

    2006-12-15

    Tomatoes and various products derived from thermally processed tomatoes are major sources of lycopene, but apart from this micronutrient, other carotenoids such as beta-carotene also are present in the fruit. They occur in tomato fruits and various tomato products in amounts of 2.62-629.00 (lycopene) and 0.23-2.83 mg/100 g (beta-carotene). Standard methods for determining the carotenoid content require the extraction of the analyte as well as other cleanup steps. In this work, FT-Raman, ATR-IR, and NIR spectroscopy are applied in order to establish new, fast, and nondestructive calibration methods for quantification of lycopene and beta-carotene content in tomato fruits and related products. The best prediction quality was achieved using a model based on IR spectroscopy (R2 = 0.98 and 0.97, SECV = 33.20 and 0.16 for lycopene and beta-carotene, respectively). In spite of the fact that Raman spectra of tomato products show characteristic key bands of the investigated carotenoids, this method gives slightly lower reliability (R2 = 0.91 and 0.89, SECV = 74.34 and 0.34 for lycopene and beta-carotene, respectively). NIR spectroscopy, which has been used for quantification purposes in the agricultural sector for several decades, in this study shows the worse prediction quality (R2 = 0.85 and 0.80, SECV = 91.19 and 0.41 for lycopene and beta-carotene, respectively).

  5. An experimental investigation of Lewis acid-base interactions of liquid carbon dioxide using Fourier Transform Infrared (FT-IR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Reilly, J. T.; Bokis, C. P.; Donohue, M. D.

    1995-05-01

    Presented here is an investigation into the solvent properties of liquid carbon dioxide by means of FT-IR spectroscopy. A high-pressure, circulation-type apparatus was designed and built specifically for this study. The spectra for the combination bands for carbon dioxide show that there are interactions between methanol and carbon dioxide. However, the spectra of the fundamental O-D vibration of deuterated methanol in liquid carbon dioxide indicate that there is no hydrogen bonding. Therefore. we conclude that the interactions between carbon dioxide and methanol are Lewis acid-base interactions rather than hydrogen bonding. This conclusion is supported by experiments where acetone is introduced into the CO2/methanol- d binary system. FT-IR measurements show that acetone hydrogen bonds with deuterated methanol.

  6. Structural Investigations of CuO-B2O3-Bi2O3 Glasses by Means of EPR and Ft-Ir Spectroscopies

    NASA Astrophysics Data System (ADS)

    Ardelean, I.; Cora, Simona; Ciceo-Lucacel, Raluca

    EPR and FT-IR spectroscopy have been used to investigate the B2O3-Bi2O3 glass matrix containing CuO in order to obtain more information about the local structure of these glasses. The EPR absorption spectra revealed the presence in the glass structure of the Cu2+ ions in axially distorted octahedral environments. No superexchange interaction of Cu2+ was detected. In the samples with x≥5 mol%, mixed valence states of copper ions were revealed. The FT-IR measurements indicate the presence in the glass structure of the distorted [BiO6] polyhedra, tri- and tetra-borate units (BO3, BO4) and its dependence by the copper content.

  7. Implications for Extraterrestrial Hydrocarbon Chemistry: Analysis of Ethylene (C2H4) and D4-Ethylene (C2D4) Ices Exposed to Ionizing Radiation via Combined Infrared Spectroscopy and Reflectron Time-of-flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Abplanalp, Matthew J.; Kaiser, Ralf I.

    2017-02-01

    The processing of the hydrocarbon ice, ethylene (C2H4/C2D4), via energetic electrons, thus simulating the processes in the track of galactic cosmic-ray particles, was carried out in an ultrahigh vacuum apparatus. The chemical evolution of the ices was monitored online and in situ utilizing Fourier transform infrared spectroscopy (FTIR) and during temperature programmed desorption, via a quadrupole mass spectrometer utilizing electron impact ionization (EI-QMS) and a reflectron time-of-flight mass spectrometer utilizing a photoionization source (PI-ReTOF-MS). Several previous in situ studies of ethylene ice irradiation using FTIR were substantiated with the detection of six products: [CH4 (CD4)], acetylene [C2H2 (C2D2)], the ethyl radical [C2H5 (C2D5)], ethane [C2H6 (C2D6)], 1-butene [C4H8 (C4D8)], and n-butane [C4H10 (C4D10)]. Contrary to previous gas phase studies, the PI-ReTOF-MS detected several groups of hydrocarbon with varying degrees of saturation: C n H2n+2 (n = 4–10), C n H2n (n = 2–12, 14, 16), C n H2n‑2 (n = 3–12, 14, 16), C n H2n‑4 (n = 4–12, 14, 16), C n H2n‑6 (n = 4–10, 12), C n H2n‑8 (n = 6–10), and C n H2n‑10 (n = 6–10). Multiple laboratory studies have shown the facile production of ethylene from methane, which is a known ice constituent in the interstellar medium. Various astrophysically interesting molecules can be associated with the groups detected here, such as allene/methylacetylene (C3H4) or 1, 3-butadiene (C4H6) and its isomers, which have been shown to lead to polycyclic aromatic hydrocarbons. Finally, several hydrocarbon groups detected here are unique to ethylene ice versus ethane ice and may provide understanding of how complex hydrocarbons form in astrophysical environments.

  8. Detection of Soluble and Fixed NH4+ in Clay Minerals by DTA and IR Reflectance Spectroscopy : A Potential Tool for Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Janice, Bishop; Banin, A.; Mancinelli, R. L.; Klovstad, M. R.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Nitrogen is an essential element for life. It is the only element among the six major biogenic elements, C, O, S, O, P, H, whose presence in the Martian soil has not been positively and directly established. We describe here a study assessing the ability to detect NH4 in soils by two methods: differential thermal analysis (DTA) and infrared (IR) reflectance spectroscopy. Four standard clay minerals (kaolinite, montmorillonite, illite and attapulgite) and an altered tephra sample from Mauna Kea were treated with NH4 in this study. Samples of the NH4-treated and leached clays were analyzed by DTA and infrared (IR) reflectance spectroscopy to quantify the delectability of soluble and sorbed/fixed NH4. An exotherm at 270-280 C was clearly detected in the DTA curves of NH4-treated (non-leached) samples. This feature is assigned to the thermal decomposition reaction of NH4. Spectral bands observed at 1.56, 2.05, 2.12, 3.06, 3.3, 3.5, 5.7 and 7.0 microns in the reflectance spectra of NH4-treated and leached samples are assigned to the sorbed/fixed ammonium in the clays. The montmorillonite has shown the most intense absorbance due to fixed ammonium among the leached samples in this study, as a result of its high cation sorption capacity. It is concluded that the presence of sorbed or fixed NH4 in clays may be detected by infrared (IR) reflectance or emission spectroscopy. Distinction between soluble and sorbed NH4 may be achieved through the presence or absence of several spectral features assigned to the sorbed NH4 moietyi and, specifically, by use of the 4.2 micrometer feature assigned to solution NH4. Thermal analyses furnish supporting evidence of ammonia in our study through detection of N released at temperatures of 270-330 C. Based on these results it is estimated that IR spectra measured from a rover should be able to detect ammonia if present above 20 mg NH4/g sample in the surface layers. Orbital IR spectra and thermal analyses measured on a rover may be able to

  9. Structural phase transition in IrTe2: A combined study of optical spectroscopy and band structure calculations

    PubMed Central

    Fang, A. F.; Xu, G.; Dong, T.; Zheng, P.; Wang, N. L.

    2013-01-01

    Ir1−xPtxTe2 is an interesting system showing competing phenomenon between structural instability and superconductivity. Due to the large atomic numbers of Ir and Te, the spin-orbital coupling is expected to be strong in the system which may lead to nonconventional superconductivity. We grew single crystal samples of this system and investigated their electronic properties. In particular, we performed optical spectroscopic measurements, in combination with density function calculations, on the undoped compound IrTe2 in an effort to elucidate the origin of the structural phase transition at 280 K. The measurement revealed a dramatic reconstruction of band structure and a significant reduction of conducting carriers below the phase transition. We elaborate that the transition is not driven by the density wave type instability but caused by the crystal field effect which further splits/separates the energy levels of Te (px, py) and Te pz bands. PMID:23362455

  10. Noninvasive express diagnostics of pulmonary diseases based on control of patient's gas emission using methods of IR and terahertz laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Starikova, M. K.; Bulanova, A. A.; Bukreeva, E. B.; Karapuzikov, A. A.; Karapuzikov, A. I.; Kistenev, Y. V.; Klementyev, V. M.; Kolker, D. B.; Kuzmin, D. A.; Nikiforova, O. Y.; Ponomarev, Yu. N.; Sherstov, I. V.; Boyko, A. A.

    2013-11-01

    Pulmonary diseases diagnostics always occupies one of the key positions in medicine practices. A large variety of high technology methods are used today, but none of them cannot be used for early screening of pulmonary diseases. We discuss abilities of methods of IR and terahertz laser spectroscopy for noninvasive express diagnostics of pulmonary diseases on a base of analysis of absorption spectra of patient's gas emission, in particular, exhaled air. Experience in the field of approaches to experimental data analysis and hard-ware realization of gas analyzers for medical applications is also discussed.

  11. Time-Resolved Surface-Enhanced IR-Absorption Spectroscopy of Direct Electron Transfer to Cytochrome c Oxidase from R. sphaeroides

    PubMed Central

    Schwaighofer, Andreas; Steininger, Christoph; Hildenbrandt, David M.; Srajer, Johannes; Nowak, Christoph; Knoll, Wolfgang; Naumann, Renate L.C.

    2013-01-01

    Time-resolved surface-enhanced IR-absorption spectroscopy triggered by electrochemical modulation has been performed on cytochrome c oxidase from Rhodobacter sphaeroides. Single bands isolated from a broad band in the amide I region using phase-sensitive detection were attributed to different redox centers. Their absorbances changing on the millisecond timescale could be fitted to a model based on protonation-dependent chemical reaction kinetics established previously. Substantial conformational changes of secondary structures coupled to redox transitions were revealed. PMID:24359742

  12. Structural Investigations of MnO-Bi2O3 and MnO-Bi2O3-As2O3 Glass Systems by IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ardelean, I.; Todor, Ioana; Păşcuţă, P.; Ioncu, V.

    Glasses from xMnO . (100-x)Bi2O3 and xMnO . (100-x)[Bi2O3 . As2O3] systems, with 0<= x<= 50 mol% were obtained in the same conditions and characterized by IR spectroscopy. The influence of a gradual increase of MnO content on the glass structure and the effect of changing the glass matrix compositions, were projected. The presence and the dependence of the bismuthate structural units BiO3 and BiO6 on the MnO content was analyzed.

  13. Visible and near-IR spectroscopy of endohedral Gd@C82( C 2 v ) and Ho@C82( C 2 v ) metallofullerenes and their monoanions

    NASA Astrophysics Data System (ADS)

    Kareev, I. E.; Nekrasov, V. M.; Dutlov, A. E.; Martynenko, V. M.; Bubnov, V. P.; Laukhina, E.; Veciana, J.; Rovira, C.

    2017-03-01

    Solutions of endohedral Gd@C82( C 2 v ) and Ho@C82( C 2 v ) metallofullerenes are studied by means of visible and near-IR spectroscopy upon their conversion from neutral to the anionic form via a redox reaction with the electron donor potassium perchlorotriphenylmethide K(18-crown-6)[C(C6Cl5)3]. The concentrations of the studied solutions of endohedral Gd@C82( C 2 v ) and Ho@C82( C 2 v ) metallofullerenes in o-dichlorobenzene were determined from the spectroscopic data, and their molar extinction coefficients are calculated.

  14. Novel Concept of Frequency-Combs Interferometric Spectroscopy in the Mid-IR for Significantly Enhanced Detection of Explosives

    DTIC Science & Technology

    2015-12-01

    frequency combs. Ultrasensitive detection of methane, isotopic carbon dioxide, carbon monoxide, formaldehyde, acetylene, and ethylene was performed in...performance spectroscopic sensor based on mid-IR frequency combs. Ultrasensitive detection of methane, isotopic carbon diox ide, carbon monoxide, fo...trace point detection of methane, carbon dioxide, isotopic (13C02) carbon dioxide, carbon monoxide, ethylene, acetylene, and formaldehyde and

  15. Carbonate measurements in PM10 near the marble quarries of Carrara (Italy) by infrared spectroscopy (FT-IR) and source apportionment by positive matrix factorization (PMF)

    NASA Astrophysics Data System (ADS)

    Cuccia, E.; Piazzalunga, A.; Bernardoni, V.; Brambilla, L.; Fermo, P.; Massabò, D.; Molteni, U.; Prati, P.; Valli, G.; Vecchi, R.

    2011-11-01

    The concentration of carbonates in atmospheric Particulate Matter (PM) is usually quite low. The surroundings of marble quarries are peculiar sites where the impact of carbonates in PM levels can be significant. We present here the results of a PM10 sampling campaign performed in Carrara (Italy). The town lies between the famous marble quarries and the harbour: about 1000 trucks per day transport marble blocks and debris from the quarries to the harbour passing through the town centre. PM10 was collected on daily basis on PTFE filters analyzed by Energy-Dispersive X-Ray Fluorescence (ED-XRF) and Ion-Chromatography (IC). Carbonate concentration was measured by a non-destructive Infrared Spectroscopy analysis (FT-IR). Time series of elemental (Na-Pb by ED-XRF), ionic (SO 42-, NH 4+ by ion-chromatography) and carbonate (by FT-IR) concentration values were merged in a unique data set and a PMF analysis singled out the major PM10 sources in the area. Marble transportation turned out to be the major pollution source in the town accounting to PM10 for about 36%; this corresponded to a CaCO 3 average level of about 8 μg m -3 during working days. The FT-IR analysis was a crucial part of the work and an ad-hoc analytical procedure was specifically set up, calibrated, and tested as described in the text.

  16. Applications of FT-IR spectroscopy to the studies of esterification and crosslinking of cellulose by polycarboxylic acids: Part II. The performance of the crosslinked cotton fabrics

    NASA Astrophysics Data System (ADS)

    Wei, Weishu; Yang, Charles Q.

    1998-06-01

    Durable press finishing processes are commonly used in the textile industry to produce wrinkle-free cotton fabrics and garments. A durable press finishing agent forms covalent bands with cellulosic hydroxyl groups, thus crosslinking the cellulose molecules. The crosslinking of cellulose increases wrinkle resistance of the treated cotton fabric and reduces fabric mechanical strength. Wrinkle recovery angle (WRA) and tensile strength are the two most important parameters used to evaluate the performance of the crosslinked cotton fabrics and garments. In this study, we investigated the correlation between WRA and tensile strength on one hand, and the amount of crosslinkages formed by the crosslinking agents including dimethyloldihydroxylethyleneurea (DMDHEU) and 1,2,3,4-butanetetracarboxylic acid (BTCA) determined by FT-IR spectroscopy on the other hand. Linear regression curves between the carbonyl band absorbance, and WRA and tensile strength of the treated cotton fabric were developed. The data indicated that FT-IR spectroscopy is a reliable technique for predicting the performance of durable press finished cotton fabrics, therefore can be used as a convenient instrumental method for quality control in the textile and garment industry.

  17. Identification of Quercus agrifolia (coast live oak) resistant to the invasive pathogen Phytophthora ramorum in native stands using Fourier-transform infrared (FT-IR) spectroscopy

    PubMed Central

    Conrad, Anna O.; Rodriguez-Saona, Luis E.; McPherson, Brice A.; Wood, David L.; Bonello, Pierluigi

    2014-01-01

    Over the last two decades coast live oak (CLO) dominance in many California coastal ecosystems has been threatened by the alien invasive pathogen Phytophthora ramorum, the causal agent of sudden oak death. In spite of high infection and mortality rates in some areas, the presence of apparently resistant trees has been observed, including trees that become infected but recover over time. However, identifying resistant trees based on recovery alone can take many years. The objective of this study was to determine if Fourier-transform infrared (FT-IR) spectroscopy, a chemical fingerprinting technique, can be used to identify CLO resistant to P. ramorum prior to infection. Soft independent modeling of class analogy identified spectral regions that differed between resistant and susceptible trees. Regions most useful for discrimination were associated with carbonyl group vibrations. Additionally, concentrations of two putative phenolic biomarkers of resistance were predicted using partial least squares regression; >99% of the variation was explained by this analysis. This study demonstrates that chemical fingerprinting can be used to identify resistance in a natural population of forest trees prior to infection with a pathogen. FT-IR spectroscopy may be a useful approach for managing forests impacted by sudden oak death, as well as in other situations where emerging or existing forest pests and diseases are of concern. PMID:25352852

  18. Crystal structure, IR and Mössbauer spectroscopy and magnetic properties of KZnFe(PO{sub 4}){sub 2} related to the zeolite-ABW-like compounds

    SciTech Connect

    Badri, Abdessalem; Hidouri, Mourad; Wattiaux, Alain; López, María Luisa; Veiga, María Luisa; Amara, Mongi Ben

    2014-07-01

    Highlights: • The reported structure of KZnFe(PO{sub 4}){sub 2} is closely related to the zeolite ABW-type. • The structure is described in detail. • The IR and Mössbauer spectroscopy results are reported. • The magnetic properties are developed. - Abstract: The new iron phosphate KZnFe(PO{sub 4}){sub 2} has been synthesized by flux method and solid state reaction, and characterized by X-ray diffraction, IR, Mössbauer spectroscopy and magnetic susceptibility. This compound crystallizes in the monoclinic space group C2/c with the cell parameters: a = 13.514(4) Å, b = 13.273(6) Å, c = 8.742(3) Å and β = 100.07(2)°. It displays strong similarities with the phosphates KCoAl(PO{sub 4}){sub 2} and NaCoPO{sub 4} and features some analogies with the zeolite-ABW structural type. 3D framework is built up by a corner-sharing between MO{sub 4} (M = 0.5 Zn + 0.5 Fe) and PO{sub 4} tetrahedra. The K{sup +} ions are found within crossing tunnels perpendicular to the (1 0 0), (0 1 0) and (0 0 1) planes, delimited by this framework. A Mössbauer study confirmed the presence of Fe{sup 3+} ions in a tetrahedral environment. Magnetic measurements revealed an antiferromagnetic behavior with T{sub N} = 8.5 K.

  19. Evaluation of a setting reaction pathway in the novel composite TiHA-CSD bone cement by FT-Raman and FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Paluszkiewicz, Czesława; Czechowska, Joanna; Ślósarczyk, Anna; Paszkiewicz, Zofia

    2013-02-01

    The aim of this study was to determine a setting reaction pathway in a novel, surgically handy implant material, based on calcium sulfate hemihydrate (CSH) and titanium doped hydroxyapatite (TiHA). The previous studies confirmed superior biological properties of TiHA in comparison to the undoped hydroxyapatite (HA) what makes it highly attractive for future medical applications. In this study the three types of titanium modified HA powders: untreated, calcined at 800 °C, sintered at 1250 °C and CSH were used to produce bone cements. The Fourier Transform-InfraRed (FT-IR) spectroscopy and Raman spectroscopy were applied to evaluate processes taking place during the setting of the studied materials. Our results undoubtedly confirmed that the reaction pathways and the phase compositions differed significantly for set cements and were dependent on the initial heat treatment of TiHA powder. Final materials were multiphase composites consisting of calcium sulfate dihydrate, bassanite, tricalcium phosphate, hydroxyapatite and calcium titanate (perovskite). The FT-IR and Scanning Electron Microscopy (SEM) measurements performed after the incubation of the cement samples in the simulated body fluid (SBF), indicate on high bioactive potential of the obtained bone cements.

  20. Study of Chemical Intermediates by Means of ATR-IR Spectroscopy and Hybrid Hard- and Soft-Modelling Multivariate Curve Resolution-Alternating Least Squares.

    PubMed

    Ma, Junxiu; Qi, Juan; Gao, Xinyu; Yan, Chunhua; Zhang, Tianlong; Tang, Hongsheng; Li, Hua

    2017-01-01

    3,5-Diamino-1,2,4-triazole (DAT) became a significant energetic materials intermediate, and the study of its reaction mechanism has fundamental significance in chemistry. The aim of this study is to investigate the ability of online attenuated total reflection infrared (ATR-IR) spectroscopy combined with the novel approach of hybrid hard- and soft-modelling multivariate curve resolution-alternating least squares (HS-MCR) analysis to monitor and detect changes in structural properties of compound during 3,5-diamino-1,2,4-triazole (DAT) synthesis processes. The subspace comparison method (SCM) was used to obtain the principal components number, and then the pure IR spectra of each substance were obtained by independent component analysis (ICA) and HS-MCR. The extent of rotation ambiguity was estimated from the band boundaries of feasible solutions calculated using the MCR-BANDS procedure. There were five principal components including two intermediates in the process in the results. The reaction rate constants of DAT formation reaction were also obtained by HS-MCR. HS-MCR was used to analyze spectroscopy data in chemical synthesis process, which not only increase the information domain but also reduce the ambiguities of the obtained results. This study provides the theoretical basis for the optimization of synthesis process and technology of energetic materials and provides a strong technical support of research and development of energy material with extraordinary damage effects.