Science.gov

Sample records for 2d ir spectrum

  1. A salt-bridge structure in solution revealed by 2D-IR spectroscopy.

    PubMed

    Huerta-Viga, Adriana; Domingos, Sérgio R; Amirjalayer, Saeed; Woutersen, Sander

    2014-08-14

    Salt bridges are important interactions for the stability of protein conformations, but up to now it has been difficult to determine salt-bridge geometries in solution. Here we characterize the spatial structure of a salt bridge between guanidinium (Gdm(+)) and acetate (Ac(-)) using two-dimensional vibrational (2D-IR) spectroscopy. We find that as a result of salt bridge formation there is a significant change in the infrared response of Gdm(+) and Ac(-), and cross peaks between them appear in the 2D-IR spectrum. From the 2D-IR spectrum we determine the relative orientation of the transition-dipole moments of the vibrational modes of Gdm(+) and Ac(-), as well as the coupling between them. PMID:24676430

  2. Hydrogen Bond Migration between Molecular Sites Observed with Ultrafast 2D IR Chemical Exchange Spectroscopy

    PubMed Central

    Rosenfeld, Daniel E.; Kwak, Kyungwon; Gengeliczki, Zsolt

    2010-01-01

    Hydrogen bonded complexes between phenol and phenylacetylene are studied using ultrafast two-dimensional infrared (2D IR) chemical exchange spectroscopy. Phenylacetylene has two possible π hydrogen bonding acceptor sites (phenyl or acetylene) that compete for hydrogen bond donors in solution at room temperature. The OD stretch frequency of deuterated phenol is sensitive to which acceptor site it is bound. The appearance of off-diagonal peaks between the two vibrational frequencies in the 2D IR spectrum reports on the exchange process between the two competitive hydrogen bonding sites of phenol-phenylacetylene complexes in the neat phenylacetylene solvent. The chemical exchange process occurs in ∼5 ps, and is assigned to direct hydrogen bond migration along the phenylacetylene molecule. Other non-migration mechanisms are ruled out by performing 2D IR experiments on phenol dissolved in the phenylacetylene/carbon tetrachloride mixed solvent. The observation of direct hydrogen bond migration can have implications for macromolecular systems. PMID:20121275

  3. Transient 2D IR spectroscopy of charge injection in dye-sensitized nanocrystalline thin films.

    PubMed

    Xiong, Wei; Laaser, Jennifer E; Paoprasert, Peerasak; Franking, Ryan A; Hamers, Robert J; Gopalan, Padma; Zanni, Martin T

    2009-12-23

    We use nonlinear 2D IR spectroscopy to study TiO(2) nanocrystalline thin films sensitized with a Re dye. We find that the free electron signal, which often obscures the vibrational features in the transient absorption spectrum, is not observed in the 2D IR spectra. Its absence allows the vibrational features of the dye to be much better resolved than with the typical IR absorption probe. We observe multiple absorption bands but no cross peaks in the 2D IR spectra, which indicates that the dyes have at least three conformations. Furthermore, by using a pulse sequence in which we initiate electron transfer in the middle of the infrared pulse train, we are able to assign the excited state features by correlating them to the ground state vibrational modes and determine that the three conformations have different time scales and cross sections for electron injection. 2D IR spectroscopy is proving to be very useful in disentangling overlapping structural distributions in biological and chemical physics processes. These experiments demonstrate that nonlinear infrared probes are also a powerful new tool for studying charge transfer at interfaces. PMID:19947603

  4. Water of Hydration Dynamics in Minerals Gypsum and Bassanite: Ultrafast 2D IR Spectroscopy of Rocks.

    PubMed

    Yan, Chang; Nishida, Jun; Yuan, Rongfeng; Fayer, Michael D

    2016-08-01

    Water of hydration plays an important role in minerals, determining their crystal structures and physical properties. Here ultrafast nonlinear infrared (IR) techniques, two-dimensional infrared (2D IR) and polarization selective pump-probe (PSPP) spectroscopies, were used to measure the dynamics and disorder of water of hydration in two minerals, gypsum (CaSO4·2H2O) and bassanite (CaSO4·0.5H2O). 2D IR spectra revealed that water arrangement in freshly precipitated gypsum contained a small amount of inhomogeneity. Following annealing at 348 K, water molecules became highly ordered; the 2D IR spectrum became homogeneously broadened (motional narrowed). PSPP measurements observed only inertial orientational relaxation. In contrast, water in bassanite's tubular channels is dynamically disordered. 2D IR spectra showed a significant amount of inhomogeneous broadening caused by a range of water configurations. At 298 K, water dynamics cause spectral diffusion that sampled a portion of the inhomogeneous line width on the time scale of ∼30 ps, while the rest of inhomogeneity is static on the time scale of the measurements. At higher temperature, the dynamics become faster. Spectral diffusion accelerates, and a portion of the lower temperature spectral diffusion became motionally narrowed. At sufficiently high temperature, all of the dynamics that produced spectral diffusion at lower temperatures became motionally narrowed, and only homogeneous broadening and static inhomogeneity were observed. Water angular motions in bassanite exhibit temperature-dependent diffusive orientational relaxation in a restricted cone of angles. The experiments were made possible by eliminating the vast amount of scattered light produced by the granulated powder samples using phase cycling methods. PMID:27385320

  5. 2D IR spectra of cyanide in water investigated by molecular dynamics simulations

    USGS Publications Warehouse

    Lee, Myung Won; Carr, Joshua K.; Göllner, Michael; Hamm, Peter; Meuwly, Markus

    2013-01-01

    Using classical molecular dynamics simulations, the 2D infrared (IR) spectroscopy of CN− solvated in D2O is investigated. Depending on the force field parametrizations, most of which are based on multipolar interactions for the CN− molecule, the frequency-frequency correlation function and observables computed from it differ. Most notably, models based on multipoles for CN− and TIP3P for water yield quantitatively correct results when compared with experiments. Furthermore, the recent finding that T 1 times are sensitive to the van der Waals ranges on the CN− is confirmed in the present study. For the linear IR spectrum, the best model reproduces the full widths at half maximum almost quantitatively (13.0 cm−1 vs. 14.9 cm−1) if the rotational contribution to the linewidth is included. Without the rotational contribution, the lines are too narrow by about a factor of two, which agrees with Raman and IR experiments. The computed and experimental tilt angles (or nodal slopes) α as a function of the 2D IR waiting time compare favorably with the measured ones and the frequency fluctuation correlation function is invariably found to contain three time scales: a sub-ps, 1 ps, and one on the 10-ps time scale. These time scales are discussed in terms of the structural dynamics of the surrounding solvent and it is found that the longest time scale (≈10 ps) most likely corresponds to solvent exchange between the first and second solvation shell, in agreement with interpretations from nuclear magnetic resonance measurements.

  6. 2D IR spectra of cyanide in water investigated by molecular dynamics simulations.

    PubMed

    Lee, Myung Won; Carr, Joshua K; Göllner, Michael; Hamm, Peter; Meuwly, Markus

    2013-08-01

    Using classical molecular dynamics simulations, the 2D infrared (IR) spectroscopy of CN(-) solvated in D2O is investigated. Depending on the force field parametrizations, most of which are based on multipolar interactions for the CN(-) molecule, the frequency-frequency correlation function and observables computed from it differ. Most notably, models based on multipoles for CN(-) and TIP3P for water yield quantitatively correct results when compared with experiments. Furthermore, the recent finding that T1 times are sensitive to the van der Waals ranges on the CN(-) is confirmed in the present study. For the linear IR spectrum, the best model reproduces the full widths at half maximum almost quantitatively (13.0 cm(-1) vs. 14.9 cm(-1)) if the rotational contribution to the linewidth is included. Without the rotational contribution, the lines are too narrow by about a factor of two, which agrees with Raman and IR experiments. The computed and experimental tilt angles (or nodal slopes) α as a function of the 2D IR waiting time compare favorably with the measured ones and the frequency fluctuation correlation function is invariably found to contain three time scales: a sub-ps, 1 ps, and one on the 10-ps time scale. These time scales are discussed in terms of the structural dynamics of the surrounding solvent and it is found that the longest time scale (≈10 ps) most likely corresponds to solvent exchange between the first and second solvation shell, in agreement with interpretations from nuclear magnetic resonance measurements. PMID:23927269

  7. 2D IR spectra of cyanide in water investigated by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Lee, Myung Won; Carr, Joshua K.; Göllner, Michael; Hamm, Peter; Meuwly, Markus

    2013-08-01

    Using classical molecular dynamics simulations, the 2D infrared (IR) spectroscopy of CN- solvated in D2O is investigated. Depending on the force field parametrizations, most of which are based on multipolar interactions for the CN- molecule, the frequency-frequency correlation function and observables computed from it differ. Most notably, models based on multipoles for CN- and TIP3P for water yield quantitatively correct results when compared with experiments. Furthermore, the recent finding that T1 times are sensitive to the van der Waals ranges on the CN- is confirmed in the present study. For the linear IR spectrum, the best model reproduces the full widths at half maximum almost quantitatively (13.0 cm-1 vs. 14.9 cm-1) if the rotational contribution to the linewidth is included. Without the rotational contribution, the lines are too narrow by about a factor of two, which agrees with Raman and IR experiments. The computed and experimental tilt angles (or nodal slopes) α as a function of the 2D IR waiting time compare favorably with the measured ones and the frequency fluctuation correlation function is invariably found to contain three time scales: a sub-ps, 1 ps, and one on the 10-ps time scale. These time scales are discussed in terms of the structural dynamics of the surrounding solvent and it is found that the longest time scale (≈10 ps) most likely corresponds to solvent exchange between the first and second solvation shell, in agreement with interpretations from nuclear magnetic resonance measurements.

  8. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores

    DOE PAGESBeta

    Burris, Paul C.; Laage, Damien; Thompson, Ward H.

    2016-05-20

    Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this Paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is usedmore » to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. Lastly, the simulated spectra indicate that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra.« less

  9. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores.

    PubMed

    Burris, Paul C; Laage, Damien; Thompson, Ward H

    2016-05-21

    Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is used to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. The simulated spectra indicates that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra. PMID:27208967

  10. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores

    NASA Astrophysics Data System (ADS)

    Burris, Paul C.; Laage, Damien; Thompson, Ward H.

    2016-05-01

    Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is used to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. The simulated spectra indicates that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra.

  11. Applications of 2D IR spectroscopy to peptides, proteins, and hydrogen-bond dynamics

    PubMed Central

    Kim, Yung Sam; Hochstrasser, Robin M.

    2010-01-01

    Following a survey of 2D IR principles this Feature Article describes recent experiments on the hydrogen-bond dynamics of small ions, amide-I modes, nitrile probes, peptides, reverse transcriptase inhibitors, and amyloid fibrils. PMID:19351162

  12. Estimating 2-D vector velocities using multidimensional spectrum analysis.

    PubMed

    Oddershede, Niels; Løvstakken, Lasse; Torp, Hans; Jensen, Jørgen Arendt

    2008-08-01

    Wilson (1991) presented an ultrasonic wideband estimator for axial blood flow velocity estimation through the use of the 2-D Fourier transform. It was shown how a single velocity component was concentrated along a line in the 2-D Fourier space, where the slope was given by the axial velocity. Later, it was shown that this approach could also be used for finding the lateral velocity component by also including a lateral sampling. A single velocity component would then be concentrated along a plane in the 3-D Fourier space, tilted according to the 2 velocity components. This paper presents 2 new velocity estimators for finding both the axial and lateral velocity components. The estimators essentially search for the plane in the 3- D Fourier space, where the integrated power spectrum is largest. The first uses the 3-D Fourier transform to find the power spectrum, while the second uses a minimum variance approach. Based on this plane, the axial and lateral velocity components are estimated. Several phantom measurements, for flow-to-depth angles of 60, 75, and 90 degrees, were performed. Multiple parallel lines were beamformed simultaneously, and 2 different receive apodization schemes were tried. The 2 estimators were then applied to the data. The axial velocity component was estimated with an average standard deviation below 2.8% of the peak velocity, while the average standard deviation of the lateral velocity estimates was between 2.0% and 16.4%. The 2 estimators were also tested on in vivo data from a transverse scan of the common carotid artery, showing the potential of the vector velocity estimation method under in vivo conditions. PMID:18986918

  13. Simple fully reflective method of scatter reduction in 2D-IR spectroscopy.

    PubMed

    Spector, Ivan C; Olson, Courtney M; Huber, Christopher J; Massari, Aaron M

    2015-04-15

    A fully reflective two-dimensional IR (2D-IR) setup is described that enables efficient cancellation of scattered light from multiple pulses in the phase-matched direction. The local oscillator pulse and the pulse that stimulates the vibrational echo signal are synchronously modulated (or fibrillated) in time maintaining their phase relationships with the echo wavepacket. The modification is cost-effective and can be easily implemented on existing 2D-IR instruments, and it avoids the addition of dispersive elements into the beam paths. The fibrillation results in a decrease of waiting-time resolution of only tens of femtoseconds and has no impact on the spectral lineshape, making it a general improvement for 2D-IR spectrometers even for weakly or non-scattering samples. PMID:25872090

  14. Comparisons of 2D IR measured spectral diffusion in rotating frames using pulse shaping and in the stationary frame using the standard method

    NASA Astrophysics Data System (ADS)

    Karthick Kumar, S. K.; Tamimi, A.; Fayer, M. D.

    2012-11-01

    Multidimensional visible spectroscopy using pulse shaping to produce pulses with stable controllable phases and delays has emerged as an elegant tool to acquire electronic spectra faster and with greatly reduced instrumental and data processing errors. Recent migration of this approach using acousto-optic modulator (AOM) pulse shaping to the mid-infrared region has proved useful for acquiring two dimensional infrared (2D IR) vibrational echo spectra. The measurement of spectral diffusion in 2D IR experiments hinges on obtaining accurate 2D line shapes. To date, pulse shaping 2D IR has not been used to study the time-dependent spectral diffusion of a vibrational chromophore. Here we compare the spectral diffusion data obtained from a standard non-collinear 2D IR spectrometer using delay lines to the data obtained from an AOM pulse shaper based 2D IR spectrometer. The pulse shaping experiments are performed in stationary, partially rotating, and fully rotating reference frames and are the first in the infrared to produce 2D spectra collected in a fully rotating frame using a phase controlled pulse sequence. Rotating frame experiments provide a dramatic reduction in the number of time points that must be measured to obtain a 2D IR spectrum, with the fully rotating frame giving the greatest reduction. Experiments were conducted on the transition metal carbonyl complex tricarbonylchloro(1,10-phenanthroline)rhenium(I) in chloroform. The time dependent data obtained from the different techniques and with different reference frames are shown to be in agreement.

  15. Structural dynamics inside a functionalized metal–organic framework probed by ultrafast 2D IR spectroscopy

    PubMed Central

    Nishida, Jun; Tamimi, Amr; Fei, Honghan; Pullen, Sonja; Ott, Sascha; Cohen, Seth M.; Fayer, Michael D.

    2014-01-01

    The structural elasticity of metal–organic frameworks (MOFs) is a key property for their functionality. Here, we show that 2D IR spectroscopy with pulse-shaping techniques can probe the ultrafast structural fluctuations of MOFs. 2D IR data, obtained from a vibrational probe attached to the linkers of UiO-66 MOF in low concentration, revealed that the structural fluctuations have time constants of 7 and 670 ps with no solvent. Filling the MOF pores with dimethylformamide (DMF) slows the structural fluctuations by reducing the ability of the MOF to undergo deformations, and the dynamics of the DMF molecules are also greatly restricted. Methodology advances were required to remove the severe light scattering caused by the macroscopic-sized MOF particles, eliminate interfering oscillatory components from the 2D IR data, and address Förster vibrational excitation transfer. PMID:25512539

  16. Utilizing Lifetimes to Suppress Random Coil Features in 2D IR Spectra of Peptides

    PubMed Central

    Middleton, Chris T.; Buchanan, Lauren E.; Dunkelberger, Emily B.

    2011-01-01

    We report that the waiting time delay in 2D IR pulse sequences can be used to suppress signals from structurally disordered regions of amyloid fibrils. At a waiting time delay of 1.0 ps, the random coil vibrational modes of amylin fibrils are no longer detectable, leaving only the sharp excitonic vibrational features of the fibril β-sheets. Isotope labeling with 13C18O reveals that structurally disordered residues decay faster than residues protected from solvent. Since structural disorder is usually accompanied by hydration, we conclude that the shorter lifetimes of random-coil residues is due to solvent exposure. These results indicate that 2D IR pulse sequences can utilize the waiting time to better resolve solvent-protected regions of peptides and that local mode lifetimes should be included in simulations of 2D IR spectra. PMID:21966585

  17. 2D IR spectroscopy at 100 kHz utilizing a Mid-IR OPCPA laser source.

    PubMed

    Luther, Bradley M; Tracy, Kathryn M; Gerrity, Michael; Brown, Susannah; Krummel, Amber T

    2016-02-22

    We present a 100 kHz 2D IR spectrometer. The system utilizes a ytterbium all normal dispersion fiber oscillator as a common source for the pump and seed beams of a MgO:PPLN OPCPA. The 1030 nm OPCPA pump is generated by amplification of the oscillator in cryocooled Yb:YAG amplifiers, while the 1.68 μm seed is generated in a OPO pumped by the oscillator. The OPCPA outputs are used in a ZGP DFG stage to generate 4.65 μm pulses. A mid-IR pulse shaper delivers pulse pairs to a 2D IR spectrometer allowing for data collection at 100 kHz. PMID:26907062

  18. Discrimination of five species of Fritillaria and its extracts by FT-IR and 2D-IR

    NASA Astrophysics Data System (ADS)

    Li, Dan; Jin, Zhexiong; Zhou, Qun; Chen, Jianbo; Lei, Yu; Sun, Suqin

    2010-06-01

    Bulbus Fritillariae (in Chinese named Beimu), referred to the bulbs of several Fritillaria species ( Liliaceae), is a commonly used anti-tussive and expectorant herb in traditional Chinese medicine (TCM) for more than 2000 years. The objective of this study is to discriminate five species of Beimu herbs and their total alkaloid extracts by Fourier transform infrared spectroscopy (FT-IR), second derivative infrared spectroscopy, and two-dimensional correlation infrared spectroscopy (2D-IR) under thermal perturbation. The structural information of the samples indicated that, Beimu and their extract residues contain a large amount of starch, since some characteristic absorption peaks of the starch, such as 1158, 1080, 1015 and 987 cm -1 can be observed. Further more, the characteristic absorption peaks of the sulfate which arouse at 1120 ± 5 and 618 cm -1 in the IR spectra of Beimu aqueous extracts can be find. This validated that people used the sulfur fumigation method in the processing. The macroscopical fingerprint characters of FT-IR and 2D-IR spectra can not only provide the information of main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. In conclusion, the multi-steps IR macro-fingerprint method is rapid, effective, visual and accurate for pharmaceutical research.

  19. Interrogating Fiber Formation Kinetics with Automated 2D-IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Strasfeld, David B.; Ling, Yun L.; Shim, Sang-Hee; Zanni, Martin T.

    A new method for collecting 2D-IR spectra that utilizes both a pump-probe beam geometry and a mid-IR pulse shaper is used to gain a fuller understanding of fiber formation in the human islet amyloid polypeptide (hIAPP). We extract structural kinetics in order to better understand aggregation in hIAPP, the protein component of the amyloid fibers found to inhibit insulin production in type II diabetes patients.

  20. Observation of kinetic networks of hydrogen-bond exchange using 2D IR echo spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Yung Sam; Hochstrasser, Robin M.

    The ultrafast H-bond motion in acetonitrile/methanol and of methanol and water around a dicarbonyl (piperidone) dominates the mechanism of vibrational coherence transfer in linear and 2D IR echo spectra. Multiple state coherence transfer and energy transfer are seen at and between the two carbonyl groups of the piperidone in both water and methanol.

  1. Rapid discrimination of extracts of Chinese propolis and poplar buds by FT-IR and 2D IR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Yan-Wen; Sun, Su-Qin; Zhao, Jing; Li, Yi; Zhou, Qun

    2008-07-01

    The extract of Chinese propolis (ECP) has recently been adulterated with that of poplar buds (EPB), because most of ECP is derived from the poplar plant, and ECP and EPB have almost identical chemical compositions. It is very difficult to differentiate them by using the chromatographic methods such as high performance liquid chromatography (HPLC) and gas chromatography (GC). Therefore, how to effectively discriminate these two mixtures is a problem to be solved urgently. In this paper, a rapid method for discriminating ECP and EPB was established by the Fourier transform infrared (FT-IR) spectra combined with the two-dimensional infrared correlation (2D IR) analysis. Forty-three ECP and five EPB samples collected from different areas of China were analyzed by the FT-IR spectroscopy. All the ECP and EPB samples tested show similar IR spectral profiles. The significant differences between ECP and EPB appear in the region of 3000-2800 cm -1 of the spectra. Based on such differences, the two species were successfully classified with the soft independent modeling of class analogy (SIMCA) pattern recognition technique. Furthermore, these differences were well validated by a series of temperature-dependent dynamic FT-IR spectra and the corresponding 2D IR plots. The results indicate that the differences in these two natural products are caused by the amounts of long-chain alkyl compounds (including long-chain alkanes, long-chain alkyl esters and long chain alkyl alcohols) in them, rather than the flavonoid compounds, generally recognized as the bioactive substances of propolis. There are much more long-chain alkyl compounds in ECP than those in EPB, and the carbon atoms of the compounds in ECP remain in an order Z-shaped array, but those in EPB are disorder. It suggests that FT-IR and 2D IR spectroscopy can provide a valuable method for the rapid differentiation of similar natural products, ECP and EPB. The IR spectra could directly reflect the integrated chemical

  2. The fourth spectrum of iridium (Ir IV)

    NASA Astrophysics Data System (ADS)

    Azarov, Vladimir I.; Gayasov, Robert R.

    2016-03-01

    The spectrum of three times ionized iridium, Ir IV, was investigated in the 650-2045 Å wavelength region. The analysis has led to the determination of the 5d6, 5d5 6 s and 5d5 6 p configurations. Twenty-nine of 34 theoretically possible 5d6 levels, 44 of 74 possible 5d5 6 s levels and 150 of 214 possible 5d5 6 p levels have been established. The levels are based on 1348 classified spectral lines. The level structure and transition probabilities were calculated using the orthogonal operators technique. The energy parameters have been determined by the least squares fit to the observed levels. Calculated energy values and LS-compositions obtained from the fitted parameter values are given. The level optimization procedure and the determination of uncertainties of the obtained energy level values are discussed.

  3. 2D IR Spectroscopy using Four-Wave Mixing, Pulse Shaping, and IR Upconversion: A Quantitative Comparison

    PubMed Central

    Rock, William; Li, Yun-Liang; Pagano, Philip; Cheatum, Christopher M.

    2013-01-01

    Recent technological advances have led to major changes in the apparatuses used to collect 2D IR spectra. Pulse shaping offers several advantages including rapid data collection, inherent phase stability, and phase cycling capabilities. Visible array detection via upconversion allows the use of visible detectors that are cheaper, faster, more sensitive, and less noisy than IR detectors. However, despite these advantages, many researchers are reluctant to implement these technologies. Here we present a quantitative study of the S/N of 2D IR spectra collected with a traditional four-wave mixing (FWM) apparatus, with a pulse shaping apparatus, and with visible detection via upconversion to address the question of whether or not weak chromophores at low concentrations are still accessible with such an apparatus. We find that the enhanced averaging capability of the pulse shaping apparatus enables the detection of small signals that would be challenging to measure even with the traditional FWM apparatus, and we demonstrate this ability on a sample of cyanylated dihydrofolate reductase (DHFR). PMID:23687988

  4. Comparisons of 2D IR measured spectral diffusion in rotating frames using pulse shaping and in the stationary frame using the standard method.

    PubMed

    Karthick Kumar, S K; Tamimi, A; Fayer, M D

    2012-11-14

    Multidimensional visible spectroscopy using pulse shaping to produce pulses with stable controllable phases and delays has emerged as an elegant tool to acquire electronic spectra faster and with greatly reduced instrumental and data processing errors. Recent migration of this approach using acousto-optic modulator (AOM) pulse shaping to the mid-infrared region has proved useful for acquiring two dimensional infrared (2D IR) vibrational echo spectra. The measurement of spectral diffusion in 2D IR experiments hinges on obtaining accurate 2D line shapes. To date, pulse shaping 2D IR has not been used to study the time-dependent spectral diffusion of a vibrational chromophore. Here we compare the spectral diffusion data obtained from a standard non-collinear 2D IR spectrometer using delay lines to the data obtained from an AOM pulse shaper based 2D IR spectrometer. The pulse shaping experiments are performed in stationary, partially rotating, and fully rotating reference frames and are the first in the infrared to produce 2D spectra collected in a fully rotating frame using a phase controlled pulse sequence. Rotating frame experiments provide a dramatic reduction in the number of time points that must be measured to obtain a 2D IR spectrum, with the fully rotating frame giving the greatest reduction. Experiments were conducted on the transition metal carbonyl complex tricarbonylchloro(1,10-phenanthroline)rhenium(I) in chloroform. The time dependent data obtained from the different techniques and with different reference frames are shown to be in agreement. PMID:23163363

  5. Dye aggregation identified by vibrational coupling using 2D IR spectroscopy

    SciTech Connect

    Oudenhoven, Tracey A.; Laaser, Jennifer E.; Zanni, Martin T.; Joo, Yongho; Gopalan, Padma

    2015-06-07

    We report that a model dye, Re(CO){sub 3}(bypy)CO{sub 2}H, aggregates into clusters on TiO{sub 2} nanoparticles regardless of our preparation conditions. Using two-dimensional infrared (2D IR) spectroscopy, we have identified characteristic frequencies of monomers, dimers, and trimers. A comparison of 2D IR spectra in solution versus those deposited on TiO{sub 2} shows that the propensity to dimerize in solution leads to higher dimer formation on TiO{sub 2}, but that dimers are formed even if there are only monomers in solution. Aggregates cannot be washed off with standard protocols and are present even at submonolayer coverages. We observe cross peaks between aggregates of different sizes, primarily dimers and trimers, indicating that clusters consist of microdomains in close proximity. 2D IR spectroscopy is used to draw these conclusions from measurements of vibrational couplings, but if molecules are close enough to be vibrationally coupled, then they are also likely to be electronically coupled, which could alter charge transfer.

  6. Folding of a heterogeneous β-hairpin peptide from temperature-jump 2D IR spectroscopy

    PubMed Central

    Jones, Kevin C.; Peng, Chunte Sam; Tokmakoff, Andrei

    2013-01-01

    We provide a time- and structure-resolved characterization of the folding of the heterogeneous β-hairpin peptide Tryptophan Zipper 2 (Trpzip2) using 2D IR spectroscopy. The amide I′ vibrations of three Trpzip2 isotopologues are used as a local probe of the midstrand contacts, β-turn, and overall β-sheet content. Our experiments distinguish between a folded state with a type I′ β-turn and a misfolded state with a bulged turn, providing evidence for distinct conformations of the peptide backbone. Transient 2D IR spectroscopy at 45 °C following a laser temperature jump tracks the nanosecond and microsecond kinetics of unfolding and the exchange between conformers. Hydrogen bonds to the peptide backbone are loosened rapidly compared with the 5-ns temperature jump. Subsequently, all relaxation kinetics are characterized by an observed 1.2 ± 0.2-μs exponential. Our time-dependent 2D IR spectra are explained in terms of folding of either native or nonnative contacts from a common compact disordered state. Conversion from the disordered state to the folded state is consistent with a zip-out folding mechanism. PMID:23382249

  7. Water dynamics in salt solutions studied with ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy.

    PubMed

    Fayer, Michael D; Moilanen, David E; Wong, Daryl; Rosenfeld, Daniel E; Fenn, Emily E; Park, Sungnam

    2009-09-15

    with another pulse, the local oscillator. Heterodyne detection provides phase and amplitude information, which are both necessary to perform the two Fourier transforms that take the data from the time domain to a two-dimensional frequency domain spectrum. The time dependence of a series of 2D IR vibrational echo spectra provides direct information on system dynamics. Here, we use two types of 2D IR vibrational echo experiments to examine the influence that charged species have on water hydrogen-bond dynamics. Solutions of NaBr and NaBF(4) are studied. The NaBr solutions are studied as a function of the concentration using vibrational echo measurements of spectral diffusion and polarization-selective IR pump-probe measurements of orientational relaxation. Both types of measurements show the slowing of hydrogen-bond network structural evolution with an increasing salt concentration. NaBF(4) is studied using vibrational echo chemical-exchange spectroscopy. In these experiments, it is possible to directly observe the chemical exchange of water molecules switching their hydrogen-bond partners between BF(4)(-) and other water molecules. The results demonstrate that water interacting with ions has slower hydrogen-bond dynamics than pure water, but the slowing is a factor of 3 or 4 rather than orders of magnitude. PMID:19378969

  8. 2D IR Cross Peaks Reveal Hydrogen-Deuterium Exchange with Single Residue Specificity

    PubMed Central

    Dunkelberger, Emily B.; Woys, Ann Marie; Zanni, Martin T.

    2013-01-01

    A form of chemical exchange, hydrogen-deuterium exchange (HDX), has long been used as a method for studying the secondary and tertiary structure of peptides and proteins using mass spectrometry and NMR spectroscopy. Using 2D IR (two dimensional infrared) spectroscopy, we resolve cross peaks between the amide II band and a 13C18O isotope labeled amide I band, which we show measures HDX with site-specific resolution. By rapidly scanning 2D IR spectra using mid-IR pulse shaping, we monitor the kinetics of HDX exchange on-the-fly. For the antimicrobial peptide, ovispirin, bound to membrane bilayers, we find that the amide II peak decays with a biexponential with rate constants of 0.54 ± 0.02 and 0.12 ± 0.01 min−1, which is a measure of the overall HDX in the peptide. The cross peaks between Ile-10 labeled ovispirin and the amide II mode, which specifically monitor HDX kinetics at Ile-10, decay with a single rate constant of 0.36 ± 0.1 min−1. Comparing this exchange rate to theoretically determined exchange rates of Ile-10 for ovispirin in a solution random coil configuration, the exchange rate at Ile-10 is at least 100 times slower, consistent with the known α-helix structure of ovispirin in bilayers. Because backbone isotope labels produce only a very small shift of the amide II band, site-specific HDX cannot be measured with FTIR spectroscopy, which is why 2D IR spectroscopy is needed for these measurements. PMID:23659731

  9. Protein Dynamics Studied with Ultrafast 2D IR Vibrational Echo Spectroscopy

    PubMed Central

    THIELGES, MEGAN C.; FAYER, MICHAEL D.

    2012-01-01

    CONSPECTUS Proteins, enzymes, and other biological molecules undergo structural dynamics as an intrinsic part of their biological functions. While many biological processes occur on the millisecond, second, and even longer time scales, the fundamental structural dynamics that eventually give rise to such processes occur on much faster time scales. Many decades ago, chemical kineticists focused on the inverse of the reaction rate constant as the important time scale for a chemical reaction. However, through transition state theory and a vast amount of experimental evidence, we now know that the key events in a chemical reaction can involve structural fluctuations that take a system of reactants to its transitions state, the crossing of a barrier, and the eventual relaxation to product states. Such dynamics occur on very fast time scales. Today researchers would like to investigate the fast structural fluctuations of biological molecules to gain an understanding of how biological processes proceed from simple structural changes in biomolecules to the final, complex biological function. The study of the fast structural dynamics of biological molecules requires experiments that operate on the appropriate time scales, and in this Account, we discuss the application of ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy to the study of dynamics. The 2D IR vibrational echo experiment is akin to 2D NMR, but it operates on time scales many orders of magnitude faster. In the experiments, a particular vibrational oscillator serves as a vibrational dynamics probe. As the structure of the protein evolves in time, the structural changes are manifested as time dependent changes in the frequency of the vibrational dynamics probe. The 2D IR vibrational echo experiments can track the vibrational frequency evolution, which we then relate to the time evolution of the protein structure. In particular, we measured protein substate interconversion for mutants of

  10. [Study on the IR and UV dual-spectrum radiation].

    PubMed

    Chen, Z; Zhu, Q; Xu, S; Wan, S

    2000-06-01

    The article gives a method to produce dual spectrum radiation in IR and UV. Relying on theoretical analysis, the relative data are computed, some atomic materials are selected and added to a double-base propellants. When the UV pyrotechnics is ignited together with traditional IR pyrotechnics, the spectrum of IR and UV is emitted at the same time. The final measuring curves show that all results are satisfying. PMID:12958935

  11. Experimental implementations of 2D IR spectroscopy through a horizontal pulse shaper design and a focal plane array detector.

    PubMed

    Ghosh, Ayanjeet; Serrano, Arnaldo L; Oudenhoven, Tracey A; Ostrander, Joshua S; Eklund, Elliot C; Blair, Alexander F; Zanni, Martin T

    2016-02-01

    Aided by advances in optical engineering, two-dimensional infrared spectroscopy (2D IR) has developed into a promising method for probing structural dynamics in biophysics and material science. We report two new advances for 2D IR spectrometers. First, we report a fully reflective and totally horizontal pulse shaper, which significantly simplifies alignment. Second, we demonstrate the applicability of mid-IR focal plane arrays (FPAs) as suitable detectors in 2D IR experiments. FPAs have more pixels than conventional linear arrays and can be used to multiplex optical detection. We simultaneously measure the spectra of a reference beam, which improves the signal-to-noise by a factor of 4; and two additional beams that are orthogonally polarized probe pulses for 2D IR anisotropy experiments. PMID:26907414

  12. The structure of salt bridges between Arg+ and Glu- in peptides investigated with 2D-IR spectroscopy: Evidence for two distinct hydrogen-bond geometries

    NASA Astrophysics Data System (ADS)

    Huerta-Viga, Adriana; Amirjalayer, Saeed; Domingos, Sérgio R.; Meuzelaar, Heleen; Rupenyan, Alisa; Woutersen, Sander

    2015-06-01

    Salt bridges play an important role in protein folding and in supramolecular chemistry, but they are difficult to detect and characterize in solution. Here, we investigate salt bridges between glutamate (Glu-) and arginine (Arg+) using two-dimensional infrared (2D-IR) spectroscopy. The 2D-IR spectrum of a salt-bridged dimer shows cross peaks between the vibrational modes of Glu- and Arg+, which provide a sensitive structural probe of Glu-⋯Arg+ salt bridges. We use this probe to investigate a β-turn locked by a salt bridge, an α-helical peptide whose structure is stabilized by salt bridges, and a coiled coil that is stabilized by intra- and intermolecular salt bridges. We detect a bidentate salt bridge in the β-turn, a monodentate one in the α-helical peptide, and both salt-bridge geometries in the coiled coil. To our knowledge, this is the first time 2D-IR has been used to probe tertiary side chain interactions in peptides, and our results show that 2D-IR spectroscopy is a powerful method for investigating salt bridges in solution.

  13. Determining Transition State Geometries in Liquids Using 2D-IR

    SciTech Connect

    Harris, Charles; Cahoon, James F.; Sawyer, Karma R.; Schlegel, Jacob P.; Harris, Charles B.

    2007-12-11

    Many properties of chemical reactions are determined by the transition state connecting reactant and product, yet it is difficult to directly obtain any information about these short-lived structures in liquids. We show that two-dimensional infrared (2D-IR) spectroscopy can provide direct information about transition states by tracking the transformation of vibrational modes as a molecule crossed a transition state. We successfully monitored a simple chemical reaction, the fluxional rearrangement of Fe(CO)5, in which the exchange of axial and equatorial CO ligands causes an exchange of vibrational energy between the normal modes of the molecule. This energy transfer provides direct evidence regarding the time scale, transition state, and mechanism of the reaction.

  14. Residue-Specific Structural Kinetics of Proteins through the Union of Isotope Labeling, Mid-IR Pulse Shaping, and Coherent 2D IR Spectroscopy

    PubMed Central

    Middleton, Chris T.; Woys, Ann Marie; Mukherjee, Sudipta S.; Zanni, Martin T.

    2010-01-01

    We describe a methodology for studying protein kinetics using a rapid-scan technology for collecting 2D IR spectra. In conjunction with isotope labeling, 2D IR spectroscopy is able to probe the secondary structure and environment of individual residues in polypeptides and proteins. It is particularly useful for membrane and aggregate proteins. Our rapid-scan technology relies on a mid-IR pulse shaper that computer generates the pulse shapes, much like in an NMR spectrometer. With this device, data collection is faster, easier, and more accurate. We describe our 2D IR spectrometer, as well as protocols for 13C=18O isotope labeling, and then illustrate the technique with an application to the aggregation of the human islet amyloid polypeptide form type 2 diabetes. PMID:20472067

  15. Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy

    PubMed Central

    Díaz-Visurraga, Judith; Daza, Carla; Pozo, Claudio; Becerra, Abraham; von Plessing, Carlos; García, Apolinaria

    2012-01-01

    Background The objective of this study was to clarify the intermolecular interaction between antibacterial copper nanoparticles (Cu NPs) and sodium alginate (NaAlg) by Fourier transform infrared spectroscopy (FT-IR) and to process the spectra applying two-dimensional infrared (2D-IR) correlation analysis. To our knowledge, the addition of NaAlg as a stabilizer of copper nanoparticles has not been previously reported. It is expected that the obtained results will provide valuable additional information on: (1) the influence of reducing agent ratio on the formation of copper nanoparticles in order to design functional nanomaterials with increased antibacterial activity, and (2) structural changes related to the incorporation of Cu NPs into the polymer matrix. Methods Cu NPs were prepared by microwave heating using ascorbic acid as reducing agent and NaAlg as stabilizing agent. The characterization of synthesized Cu NPs by ultraviolet visible spectroscopy, transmission electron microscopy (TEM), electron diffraction analysis, X-ray diffraction (XRD), and semiquantitative analysis of the weight percentage composition indicated that the average particle sizes of Cu NPs are about 3–10 nm, they are spherical in shape, and consist of zerovalent Cu and Cu2O. Also, crystallite size and relative particle size of stabilized Cu NPs were calculated by XRD using Scherrer’s formula and FT from the X-ray diffraction data. Thermogravimetric analysis, differential thermal analysis, differential scanning calorimetry (DSC), FT-IR, second-derivative spectra, and 2D-IR correlation analysis were applied to studying the stabilization mechanism of Cu NPs by NaAlg molecules. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of stabilized Cu NPs against five bacterial strains (Staphylococccus aureus ATCC 6538P, Escherichia coli ATCC 25922 and O157: H7, and Salmonella enterica serovar Typhimurium ATCC 13311 and 14028) were evaluated with macrodilution

  16. Structural modifications of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Popescu, Maria-Cristina; Froidevaux, Julien; Navi, Parviz; Popescu, Carmen-Mihaela

    2013-02-01

    It is known that heat treatment of wood combined with a low percent of relative humidity causes transformations in the chemical composition of it. The modifications and/or degradation of wood components occur by hydrolysis, oxidation, and decarboxylation reactions. The aim of this study was to give better insights on wood chemical modifications during wood heat treatment under low temperature at about 140 °C and 10% percentage of relative humidity, by infrared, principal component analysis and two dimensional infrared correlation spectroscopy. For this purpose, hardwood samples of lime (Tilia cordata) were investigated and analysed. The infrared spectra of treated samples were compared with the reference ones, the most important differences being observed in the "fingerprint" region. Due to the complexity of this region, which have contributions from all the wood constituents the chemical changes during hydro-thermal treatment were examined in detail using principal component analysis and 2D IR correlation spectroscopy. By hydro-thermal treatment of wood results the formation of acetic acid, which catalyse the hydrolysis reactions of hemicelluloses and amorphous cellulose. The cleavage of the β-O-4 linkages and splitting of the aliphatic methoxyl chains from the aromatic lignin ring was also observed. For the first treatment interval, a higher extent of carbohydrates degradation was observed, then an increase of the extent of the lignin degradation also took place.

  17. Evaluation on intrinsic quality of licorice influenced by environmental factors by using FTIR combined with 2D-IR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Ying-qun; Yu, Hua; Zhang, Yan-ling; Sun, Su-qin; Chen, Shi-lin; Zhao, Run-huai; Zhou, Qun; Noda, Isao

    2010-06-01

    To evaluate the intrinsic quality of licorice influenced by environmental factors, the spectral comparison of licorice from two typical ecological habitats was conducted by using FTIR and 2D-IR correlation spectroscopy. There were differences in the peak intensities of 1155, 1076 and 1048 cm -1 of FTIR profiles. The difference was amplified by the second derivative spectrum for the peak intensities at 1370, 1365 and 1317 cm -1 and the peak shape in 958-920 cm -1 and 1050-988 cm -1. The synchronous 2D-IR spectra within the range of 860-1300 cm -1 were classified into type I and type II and their frequency in the two groups was noticeably different. Although the chemical compounds of licorice samples from two areas were generally similar, the contents of starch, calcium oxalate, and some chemical compounds containing alcohol hydroxyl group were different, indicating the influence of precipitation and temperature. This study demonstrates that the systematical analysis of FTIR, the second derivative spectrum and 2D-IR can effectively determine the differences in licorice samples from different ecological habitats.

  18. Rapid authentication of different ages of tissue-cultured and wild Dendrobium huoshanense as well as wild Dendrobium henanense using FTIR and 2D-COS IR

    NASA Astrophysics Data System (ADS)

    Chen, Nai-Dong; Chen, Nai-Fu; Li, Jun; Cao, Cai-Yun; Wang, Jin-Mei

    2015-12-01

    The accumulating of pharmaceutical chemicals in medicinal plants would greatly be affected by their ages and establishing a fast quality-identification method to evaluate the similarity of medicinal herbs at different cultivated ages is a critical step for assurance of quality and safety in the TCM industry. In this work, tri-step IR macro-fingerprinting and 2D-COS IR spectrum techniques combined with statistical pattern recognition were applied for discrimination and similarity evaluation of different ages of tissue-cultured and wild Dendrobium huoshanense C. Z. Tang et S. J. Cheng as well as Dendrobium henanense J.L.Lu et L.X Gao. Both tissue-cultured and wild D. huoshanense were easily differentiated from D. henanense by FTIR and SD-IR spectra, while it's quite difficult to discriminate different cultivated years of the three investigated Dendrobiums. In 2D-COS IR spectra, 1-5 auto-peaks with different indensity and positions were located in the region 1160-1030 cm-1 of the twelve Dendrobium samples and thus could be used to identify Dendrobium samples at different ages. Principle component analysis (PCA) of synchronous 2D-COS data showed that the twelve samples were effectively identified and evaluated. The results indicated that the tri-step infrared macro-fingerprinting combined with PCA method was suitable to differentiate the cultivated ages of Dendrobiums with species and orgins rapidly and nondestructively.

  19. Ultrasonic tissue characterization via 2-D spectrum analysis: theory and in vitro measurements

    PubMed Central

    Liu, Tian; Lizzi, Frederic L.; Ketterling, Jeffrey A.; Silverman, Ronald H.; Kutcher, Gerald J.

    2010-01-01

    A theoretical model is described for application in ultrasonic tissue characterization using a calibrated 2-D spectrum analysis method. This model relates 2-D spectra computed from ultrasonic backscatter signals to intrinsic physical properties of tissue microstructures, e.g., size, shape, and acoustic impedance. The model is applicable to most clinical diagnostic ultrasound systems. Two experiments employing two types of tissue architectures, spherical and cylindrical scatterers, are conducted using ultrasound with center frequencies of 10 and 40 MHz, respectively. Measurements of a tissue-mimicking phantom with an internal suspension of microscopic glass beads are used to validate the theoretical model. Results from in vitro muscle fibers are presented to further elucidate the utility of 2-D spectrum analysis in ultrasonic tissue characterization. PMID:17441250

  20. Enhancing signal detection and completely eliminating scattering using quasi-phase-cycling in 2D IR experiments.

    PubMed

    Bloem, Robbert; Garrett-Roe, Sean; Strzalka, Halina; Hamm, Peter; Donaldson, Paul

    2010-12-20

    We demonstrate how quasi-phase-cycling achieved by sub-cycle delay modulation can be used to replace optical chopping in a box-CARS 2D IR experiment in order to enhance the signal size, and, at the same time, completely eliminate any scattering contamination. Two optical devices are described that can be used for this purpose, a wobbling Brewster window and a photoelastic modulator. They are simple to construct, easy to incorporate into any existing 2D IR setup, and have attractive features such as a high optical throughput and a fast modulation frequency needed to phase cycle on a shot-to-shot basis. PMID:21196983

  1. Probing Intermolecular Interactions in Polycyclic Aromatic Hydrocarbons with 2D IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Krummel, Amber

    2014-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment and impact geochemical processes that are critical to sustainable energy resources. For example, asphaltenes exist naturally in geologic formations and their aggregates heavily impact the petroleum economy. Unfortunately, the chemical dynamics that drive asphaltene nanoaggregation processes are still poorly understood. Solvent dynamics and intermolecular interactions such as π-stacking interactions play integral roles in asphaltene nanoaggregation. Linear and nonlinear vibrational spectroscopy including two-dimensional infrared spectroscopy (2DIR), are well suited to explore these fundamental interactions. Teasing apart the vibrational characteristics in PAHs that model asphaltenic compounds represents an important step towards utilizing 2D IR spectroscopy to understand the intermolecular interactions that are prevalent in asphaltene nanoaggregation. A solar dye, N,N'-Dioctyl-3,4,9,10-perylenedicarboximide, is used in this work to model aphaltenes. Carbonyl and ring vibrations are used to probe the nanoaggregates of the model compounds. However, the characteristics of these normal modes change as a function of the size of the conjugated ring system. Thus, in order to fully understand the nature of these normal modes, we include a systematic study of a series of quinones. Our investigation employs a combination of 2DIR spectroscopy and electronic structure calculations to explore vibrational coupling in quinones and PAHs. We compare the calculated vibrational characteristics to those extracted from 2DIR spectra. ATK acknowledges the Donors of the American Chemical Society Petroleum Research Fund for support of this research.

  2. [Identification and analysis of genuine and false Flos Rosae Rugosae by FTIR and 2D correlation IR spectroscopy].

    PubMed

    Cai, Fang; Sun, Su-qin; Yan, Wen-rong; Niu, Shi-jie; Li, Xian-en

    2009-09-01

    The genuine and false Flos Rosae Rugosae (Flos Rosae Chinensis and Flos Rosa multiflora) were examined in terms of their differences by using Fourier transform infrared spectroscopy (FTIR) combined with two-dimensional (2D) correlation IR spectroscopy. The three species were shown very similar in FTIR spectra. The peak of 1318 cm(-1) of genuine Flos Rosae Rugosae is not obvious but this peak could be found sharp in Flos Rosae Chinensis and Flos Rosa multiflora. Generally, the second derivative IR spectrum can clearly enhance the spectral resolution. Flos Rosae Rugosae and Flos rosae Chinensis have aromatic compounds distinct fingerprint characteristics at 1 617 and 1 618 cm(-1), respectively. Nevertheless, FlosRosa multiflora has the peak at 1612 cm(-1). There is a discrepancy of 5 to 6 cm(-1). FlosRosa multiflora has glucide's distinct fingerprint characteristics at 1 044 cm(-1), but Flos Rosae Rugosae and Flos Rosae Chinensis don't. The second derivative infrared spectra indicated different fingerprint characteristics. Three of them showed aromatic compounds with autopeaks at 1620, 1560 and 1460 cm(-1). Flos Rosae Chinensis and Flos Rosa multiflora have the shoulder peak at 1660 cm(-1). In the range of 850-1250 cm(-1), three of them are distinct different, Flos Rosae Rugosae has the strongest autopeak, Flos Rosae Chinensis has the feeble autopeak and Flos Rosa multiflora has no autopeak at 1050 cm(-1). In third-step identification, the different contents of aromatic compounds and glucide in Flos Rosae Rugosae, Flos Rosae Chinensis and Flos Rosa multiflora were revealed. It is proved that the method is fast and effective for distinguishing and analyzing genuine Flos Rosae Rugosae and false Flos Rosae Rugosae (Flos Rosae Chinensis and Flos Rosa multiflora). PMID:19950645

  3. Polarization shaping in the mid-IR and polarization-based balanced heterodyne detection with application to 2D IR spectroscopy

    PubMed Central

    Middleton, Chris T.; Strasfeld, David B.; Zanni, Martin T.

    2010-01-01

    We demonstrate amplitude, phase and polarization shaping of femtosecond mid-IR pulses using a germanium acousto-optical modulator by independently shaping the frequency-dependent amplitudes and phases of two orthogonally polarized pulses which are then collinearly overlapped using a wire-grid polarizer. We use a feedback loop to set and stabilize the relative phase of the orthogonal pulses. We have also used a wire-grid polarizer to implement polarization-based balanced heterodyne detection for improved signal-to-noise of 2D IR spectra collected in a pump-probe geometry. Applications include coherent control of molecular vibrations and improvements in multidimensional IR spectroscopy. PMID:19687931

  4. Study on molecular structure and hydration mechanism of Domyoji-ko starch by IR and NIR hetero 2D analysis

    NASA Astrophysics Data System (ADS)

    Katayama, Norihisa; Kondo, Miyuki; Miyazawa, Mitsuhiro

    2010-06-01

    The hydration structure of starch molecule in Domyoji-ko, which is made from gluey rice, was investigated by hetero 2D correlation analysis of IR and NIR spectroscopy. The feature near 1020 cm -1 in the IR spectra of Domyoji-ko is changed by rehydration process, indicating that the molecular structure of amylopectin in the starch has been varied by the hydration without heating. The intensity of a band at 4770 cm -1 in NIR spectra is decreasing with the increasing of either the heating time with water or rehydration time without heating. These results suggest that the hydration of Domyoji-ko has proceeded in similar mechanisms on these processes. The generalized hetero 2D IR-NIR correlation analysis for rehydration of Domyoji-ko has supported the assignments for NIR bands concerning the gelatinization of starch.

  5. The infrared spectrum of the Ne-C2D2 complex.

    PubMed

    Moazzen-Ahmadi, N; McKellar, A R W; Fernández, Berta; Farrelly, David

    2015-11-28

    Infrared spectra of Ne-C2D2 are observed in the region of the ν3 fundamental band (asymmetric C-D stretch, ≈2440 cm(-1)) using a tunable optical parametric oscillator to probe a pulsed supersonic slit jet expansion from a cooled nozzle. Like helium-acetylene, this system lies close to the free rotor limit, making analysis tricky because stronger transitions tend to pile up close to monomer (C2D2) rotation-vibration transitions. Assignments are aided by predicted rotational energies calculated from a published ab initio intermolecular potential energy surface. The analysis extends up to the j = 3←2 band, where j labels C2D2 rotation within the dimer, and is much more complete than the limited infrared assignments previously reported for Ne-C2H2 and Ne-C2HD. Two previous microwave transitions within the j = 1 state of Ne-C2D2 are reassigned. Coriolis model fits to the theoretical levels and to the spectrum are compared. Since the variations observed as a function of C2D2 vibrational excitation are comparable to those noted between theory and experiment, it is evident that more detailed testing of theory will require vibrational averaging over the acetylene intramolecular modes. PMID:26627959

  6. The infrared spectrum of the Ne-C2D2 complex

    NASA Astrophysics Data System (ADS)

    Moazzen-Ahmadi, N.; McKellar, A. R. W.; Fernández, Berta; Farrelly, David

    2015-11-01

    Infrared spectra of Ne-C2D2 are observed in the region of the ν3 fundamental band (asymmetric C-D stretch, ≈2440 cm-1) using a tunable optical parametric oscillator to probe a pulsed supersonic slit jet expansion from a cooled nozzle. Like helium-acetylene, this system lies close to the free rotor limit, making analysis tricky because stronger transitions tend to pile up close to monomer (C2D2) rotation-vibration transitions. Assignments are aided by predicted rotational energies calculated from a published ab initio intermolecular potential energy surface. The analysis extends up to the j = 3←2 band, where j labels C2D2 rotation within the dimer, and is much more complete than the limited infrared assignments previously reported for Ne-C2H2 and Ne-C2HD. Two previous microwave transitions within the j = 1 state of Ne-C2D2 are reassigned. Coriolis model fits to the theoretical levels and to the spectrum are compared. Since the variations observed as a function of C2D2 vibrational excitation are comparable to those noted between theory and experiment, it is evident that more detailed testing of theory will require vibrational averaging over the acetylene intramolecular modes.

  7. A 2-D Array of Superconducting Magnesium Diboride (MgB2) Far-IR Thermal Detectors for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Lakew, Brook

    2009-01-01

    A 2-D array of superconducting Magnesium Diboride(MgB2) far IR thermal detectors has been fabricated. Such an array is intended to be at the focal plane of future generation thermal imaging far-IR instruments that will investigate the outer planets and their icy moons. Fabrication and processing of the pixels of the array as well as noise characterization of architectured MgB2 thin films will be presented. Challenges and solutions for improving the performance of the array will be discussed.

  8. Using 2D correlation analysis to enhance spectral information available from highly spatially resolved AFM-IR spectra

    NASA Astrophysics Data System (ADS)

    Marcott, Curtis; Lo, Michael; Hu, Qichi; Kjoller, Kevin; Boskey, Adele; Noda, Isao

    2014-07-01

    The recent combination of atomic force microscopy and infrared spectroscopy (AFM-IR) has led to the ability to obtain IR spectra with nanoscale spatial resolution, nearly two orders-of-magnitude better than conventional Fourier transform infrared (FT-IR) microspectroscopy. This advanced methodology can lead to significantly sharper spectral features than are typically seen in conventional IR spectra of inhomogeneous materials, where a wider range of molecular environments are coaveraged by the larger sample cross section being probed. In this work, two-dimensional (2D) correlation analysis is used to examine position sensitive spectral variations in datasets of closely spaced AFM-IR spectra. This analysis can reveal new key insights, providing a better understanding of the new spectral information that was previously hidden under broader overlapped spectral features. Two examples of the utility of this new approach are presented. Two-dimensional correlation analysis of a set of AFM-IR spectra were collected at 200-nm increments along a line through a nucleation site generated by remelting a small spot on a thin film of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). There are two different crystalline carbonyl band components near 1720 cm-1 that sequentially disappear before a band at 1740 cm-1 due to more disordered material appears. In the second example, 2D correlation analysis of a series of AFM-IR spectra spaced every 1 μm of a thin cross section of a bone sample measured outward from an osteon center of bone growth. There are many changes in the amide I and phosphate band contours, suggesting changes in the bone structure are occurring as the bone matures.

  9. Observation and theory of reorientation-induced spectral diffusion in polarization-selective 2D IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kramer, Patrick L.; Nishida, Jun; Giammanco, Chiara H.; Tamimi, Amr; Fayer, Michael D.

    2015-05-01

    In nearly all applications of ultrafast multidimensional infrared spectroscopy, the spectral degrees of freedom (e.g., transition frequency) and the orientation of the transition dipole are assumed to be decoupled. We present experimental results which confirm that frequency fluctuations can be caused by rotational motion and observed under appropriate conditions. A theory of the frequency-frequency correlation function (FFCF) observable under various polarization conditions is introduced, and model calculations are found to reproduce the qualitative trends in FFCF rates. The FFCF determined with polarization-selective two-dimensional infrared (2D IR) spectroscopy is a direct reporter of the frequency-rotational coupling. For the solute methanol in a room temperature ionic liquid, the FFCF of the hydroxyl (O-D) stretch decays due to spectral diffusion with different rates depending on the polarization of the excitation pulses. The 2D IR vibrational echo pulse sequence consists of three excitation pulses that generate the vibrational echo, a fourth pulse. A faster FFCF decay is observed when the first two excitation pulses are polarized perpendicular to the third pulse and the echo, , than in the standard all parallel configuration, , in which all four pulses have the same polarization. The 2D IR experiment with polarizations ("polarization grating" configuration) gives a FFCF that decays even more slowly than in the configuration. Polarization-selective 2D IR spectra of bulk water do not exhibit polarization-dependent FFCF decays; spectral diffusion is effectively decoupled from reorientation in the water system.

  10. Observation and theory of reorientation-induced spectral diffusion in polarization-selective 2D IR spectroscopy.

    PubMed

    Kramer, Patrick L; Nishida, Jun; Giammanco, Chiara H; Tamimi, Amr; Fayer, Michael D

    2015-05-14

    In nearly all applications of ultrafast multidimensional infrared spectroscopy, the spectral degrees of freedom (e.g., transition frequency) and the orientation of the transition dipole are assumed to be decoupled. We present experimental results which confirm that frequency fluctuations can be caused by rotational motion and observed under appropriate conditions. A theory of the frequency-frequency correlation function (FFCF) observable under various polarization conditions is introduced, and model calculations are found to reproduce the qualitative trends in FFCF rates. The FFCF determined with polarization-selective two-dimensional infrared (2D IR) spectroscopy is a direct reporter of the frequency-rotational coupling. For the solute methanol in a room temperature ionic liquid, the FFCF of the hydroxyl (O-D) stretch decays due to spectral diffusion with different rates depending on the polarization of the excitation pulses. The 2D IR vibrational echo pulse sequence consists of three excitation pulses that generate the vibrational echo, a fourth pulse. A faster FFCF decay is observed when the first two excitation pulses are polarized perpendicular to the third pulse and the echo, 〈XXY Y〉, than in the standard all parallel configuration, 〈XXXX〉, in which all four pulses have the same polarization. The 2D IR experiment with polarizations 〈XY XY〉 ("polarization grating" configuration) gives a FFCF that decays even more slowly than in the 〈XXXX〉 configuration. Polarization-selective 2D IR spectra of bulk water do not exhibit polarization-dependent FFCF decays; spectral diffusion is effectively decoupled from reorientation in the water system. PMID:25978898

  11. Ionic Liquid Dynamics Measured with 2D IR and IR Pump-Probe Experiments on a Linear Anion and the Influence of Potassium Cations.

    PubMed

    Tamimi, Amr; Fayer, Michael D

    2016-07-01

    The room-temperature ionic liquid EmimNTf2 (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) was studied with two-dimensional infrared (2D IR) spectroscopy and polarization selective pump-probe (PSPP) experiments using low-concentration selenocyanate (SeCN(-)) as the vibrational probe. SeCN(-) was added as EmimSeCN, which keeps the cation the same. KSeCN was also used, so K(+) was added. Two 2D IR polarization configurations were employed: ⟨XXXX⟩ (all pulses have the same polarization) and ⟨XXYY⟩ (the first two pulse polarizations are perpendicular to that of the third pulse and the echo). The spectral diffusion differs for the two configurations, demonstrating that reorientation-induced spectral diffusion, in addition to structural spectral diffusion (SSD), plays a role in the observed dynamics. The SSD was extracted from the 2D IR time-dependent data. The samples with EmimSeCN have dynamics on several fast time scales; however, when KSeCN is used, both the PPSP anisotropy decay and the 2D IR decays have low amplitude offsets (nondecaying values at long times). The size of the offsets increased with increased K(+) concentration. These results are explained in terms of a two-ensemble model. A small fraction of the SeCN(-) is located in the regions modified by the presence of K(+), causing a substantial slowing of the SeCN(-) orientational relaxation and spectral diffusion. Having a small ensemble of SeCN(-) that undergoes very slow dynamics is sufficient to explain the offsets. For the major ensemble, the dynamics with and without K(+) are the same. PMID:26872207

  12. Power Versus Spectrum 2-D Sensing in Energy Harvesting Cognitive Radio Networks

    NASA Astrophysics Data System (ADS)

    Zhang, Yanyan; Han, Weijia; Li, Di; Zhang, Ping; Cui, Shuguang

    2015-12-01

    Energy harvester based cognitive radio is a promising solution to address the shortage of both spectrum and energy. Since the spectrum access and power consumption patterns are interdependent, and the power value harvested from certain environmental sources are spatially correlated, the new power dimension could provide additional information to enhance the spectrum sensing accuracy. In this paper, the Markovian behavior of the primary users is considered, based on which we adopt a hidden input Markov model to specify the primary vs. secondary dynamics in the system. Accordingly, we propose a 2-D spectrum and power (harvested) sensing scheme to improve the primary user detection performance, which is also capable of estimating the primary transmit power level. Theoretical and simulated results demonstrate the effectiveness of the proposed scheme, in term of the performance gain achieved by considering the new power dimension. To the best of our knowledge, this is the first work to jointly consider the spectrum and power dimensions for the cognitive primary user detection problem.

  13. Rapid identification of Pterocarpus santalinus and Dalbergia louvelii by FTIR and 2D correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Fang-Da; Xu, Chang-Hua; Li, Ming-Yu; Huang, An-Min; Sun, Su-Qin

    2014-07-01

    Since Pterocarpus santalinus and Dalbergia louvelii, which are of precious Rosewood, are very similar in their appearance and anatomy characteristics, cheaper Hongmu D. louvelii is often illegally used to impersonate valuable P. santalinus, especially in Chinese furniture manufacture. In order to develop a rapid and effective method for easy confused wood furniture differentiation, we applied tri-step identification method, i.e., conventional infrared spectroscopy (FT-IR), second derivative infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2DCOS-IR) spectroscopy to investigate P. santalinus and D. louvelii furniture. According to FT-IR and SD-IR spectra, it has been found two unconditional stable difference at 848 cm-1 and 700 cm-1 and relative stable differences at 1735 cm-1, 1623 cm-1, 1614 cm-1, 1602 cm-1, 1509 cm-1, 1456 cm-1, 1200 cm-1, 1158 cm-1, 1055 cm-1, 1034 cm-1 and 895 cm-1 between D. louvelii and P. santalinus IR spectra. The stable discrepancy indicates that the category of extractives is different between the two species. Besides, the relative stable differences imply that the content of holocellulose in P. santalinus is more than that of D. louvelii, whereas the quantity of extractives in D. louvelii is higher. Furthermore, evident differences have been observed in their 2DCOS-IR spectra of 1550-1415 cm-1 and 1325-1030 cm-1. P. santalinus has two strong auto-peaks at 1459 cm-1 and 1467 cm-1, three mid-strong auto-peaks at 1518 cm-1, 1089 cm-1 and 1100 cm-1 and five weak auto-peaks at 1432 cm-1, 1437 cm-1, 1046 cm-1, 1056 cm-1 and 1307 cm-1 while D. louvelii has four strong auto-peaks at 1465 cm-1, 1523 cm-1, 1084 cm-1 and 1100 cm-1, four mid-strong auto-peaks at 1430 cm-1, 1499 cm-1, 1505 cm-1 and 1056 cm-1 and two auto-peaks at 1540 cm-1 and 1284 cm-1. This study has proved that FT-IR integrated with 2DCOS-IR could be applicable for precious wood furniture authentication in a direct, rapid and holistic manner.

  14. Differentiation of five species of Danggui raw materials by FTIR combined with 2D-COS IR

    NASA Astrophysics Data System (ADS)

    Li, Jian-Rui; Sun, Su-Qin; Wang, Xiao-Xiao; Xu, Chang-Hua; Chen, Jian-Bo; Zhou, Qun; Lu, Guang-Hua

    2014-07-01

    Five herbs named as Chinese Danggui (CDG), Japanese Danggui (JDG), Korea Danggui (KDG), Lovage root (LR) and Angelica root (AR) are widely and confusedly used in eastern and western countries owing to their homonym. These herbs come from different plant species resulting in the variety of bioactive components and medical efficacy. A method combing tri-step IR macro-fingerprinting techniques with statistical pattern recognition was therefore employed discriminate the five herbs in order to assure their genuineness. A total of 26 samples were collected and identified by conventional Fourier transform infrared (FTIR) spectroscopy, second derivative infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2D-COS IR) spectroscopy. CDG and KDG were easily differentiated from others herbs by FTIR and SD-IR spectra. The characteristic peaks of CDG were located at 1068, 1051, 990, 909 and 867 cm-1, whilst KDG contained the peaks located at 1628, 1565, 1392, 1232 and 1136 cm-1. By 2D-COS IR spectra, the bands in the range of 950-1110 cm-1 could be a characteristic range to identify the five herbs. There were six auto-peaks located at 978, 991, 1028 (strongest), 1061, 1071 and 1097 cm-1 for CDG, six auto-peaks at 975, 991, 1026, 1053, 1070 (strongest) and 1096 cm-1 for KDG, five auto-peaks at 970, 1009, 1037, 1070 and 1096 (strongest) cm-1 for JDG, five auto-peaks at 973 (strongest), 1009, 1033, 1072 and 1099 cm-1 for LR, and five auto-peaks at 974 (strongest), 1010, 1033, 1072 and 1099 cm-1 for AR. Classification analysis of FTIR showed that these species located in different clusters. The results indicate the tri-step infrared macro-fingerprinting combines with principle component analysis (PCA) is suitable to rapidly and nondestructively differentiate these herbs.

  15. Disentangling Redshift-Space Distortions and Nonlinear Bias using the 2D Power Spectrum

    SciTech Connect

    Jennings, Elise; Wechsler, Risa H.

    2015-08-07

    We present the nonlinear 2D galaxy power spectrum, P(k, µ), in redshift space, measured from the Dark Sky simulations, using galaxy catalogs constructed with both halo occupation distribution and subhalo abundance matching methods, chosen to represent an intermediate redshift sample of luminous red galaxies. We find that the information content in individual µ (cosine of the angle to the line of sight) bins is substantially richer then multipole moments, and show that this can be used to isolate the impact of nonlinear growth and redshift space distortion (RSD) effects. Using the µ < 0.2 simulation data, which we show is not impacted by RSD effects, we can successfully measure the nonlinear bias to an accuracy of ~ 5% at k < 0.6hMpc-1 . This use of individual µ bins to extract the nonlinear bias successfully removes a large parameter degeneracy when constraining the linear growth rate of structure. We carry out a joint parameter estimation, using the low µ simulation data to constrain the nonlinear bias, and µ > 0.2 to constrain the growth rate and show that f can be constrained to ~ 26(22)% to a kmax < 0.4(0.6)hMpc-1 from clustering alone using a simple dispersion model, for a range of galaxy models. Our analysis of individual µ bins also reveals interesting physical effects which arise simply from different methods of populating halos with galaxies. We also find a prominent turnaround scale, at which RSD damping effects are greater then the nonlinear growth, which differs not only for each µ bin but also for each galaxy model. These features may provide unique signatures which could be used to shed light on the galaxy–dark matter connection. Furthermore, the idea of separating nonlinear growth and RSD effects making use of the full information in the 2D galaxy power spectrum yields significant improvements in constraining cosmological parameters and may be a promising probe of galaxy formation models.

  16. Disentangling redshift-space distortions and non-linear bias using the 2D power spectrum

    NASA Astrophysics Data System (ADS)

    Jennings, Elise; Wechsler, Risa H.; Skillman, Samuel W.; Warren, Michael S.

    2016-03-01

    We present the 2D redshift-space galaxy power spectrum, P(k, μ), measured from the Dark Sky simulations, using catalogues constructed with halo occupation distribution and subhalo abundance matching methods, chosen to represent an intermediate redshift sample of luminous red galaxies. We find that the information content in individual μ (cosine of the angle to the line of sight) bins is substantially richer then multipole moments, and show that this can be used to isolate the impact of non-linear growth and redshift-space distortion (RSD) effects. Using the μ < 0.2 simulation data, which is not impacted by RSD, we can successfully measure the non-linear bias to ˜5 per cent at k < 0.6 h Mpc-1. Using the low μ simulation data to constrain the non-linear bias, and μ ≥ 0.2 to constrain the growth rate, we show that f can be constrained to ˜26(22) per cent to a kmax < 0.4(0.6) h Mpc-1 from clustering alone using a dispersion model, for a range of galaxy models. Our analysis of individual μ bins reveals interesting physical effects which arise from different methods of populating haloes with galaxies. We find a prominent turnaround scale, at which RSD damping effects are greater than the non-linear growth, which differs for each galaxy model. The idea of separating non-linear growth and RSD effects making use of the full information in the 2D galaxy power spectrum yields significant improvements in constraining cosmological parameters and may be a promising probe of galaxy formation models.

  17. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    PubMed

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-01-01

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking. PMID:25808773

  18. Location Detection and Tracking of Moving Targets by a 2D IR-UWB Radar System

    PubMed Central

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-01-01

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking. PMID:25808773

  19. Disentangling Redshift-Space Distortions and Nonlinear Bias using the 2D Power Spectrum

    DOE PAGESBeta

    Jennings, Elise; Wechsler, Risa H.

    2015-08-07

    We present the nonlinear 2D galaxy power spectrum, P(k, µ), in redshift space, measured from the Dark Sky simulations, using galaxy catalogs constructed with both halo occupation distribution and subhalo abundance matching methods, chosen to represent an intermediate redshift sample of luminous red galaxies. We find that the information content in individual µ (cosine of the angle to the line of sight) bins is substantially richer then multipole moments, and show that this can be used to isolate the impact of nonlinear growth and redshift space distortion (RSD) effects. Using the µ < 0.2 simulation data, which we show ismore » not impacted by RSD effects, we can successfully measure the nonlinear bias to an accuracy of ~ 5% at k < 0.6hMpc-1 . This use of individual µ bins to extract the nonlinear bias successfully removes a large parameter degeneracy when constraining the linear growth rate of structure. We carry out a joint parameter estimation, using the low µ simulation data to constrain the nonlinear bias, and µ > 0.2 to constrain the growth rate and show that f can be constrained to ~ 26(22)% to a kmax < 0.4(0.6)hMpc-1 from clustering alone using a simple dispersion model, for a range of galaxy models. Our analysis of individual µ bins also reveals interesting physical effects which arise simply from different methods of populating halos with galaxies. We also find a prominent turnaround scale, at which RSD damping effects are greater then the nonlinear growth, which differs not only for each µ bin but also for each galaxy model. These features may provide unique signatures which could be used to shed light on the galaxy–dark matter connection. Furthermore, the idea of separating nonlinear growth and RSD effects making use of the full information in the 2D galaxy power spectrum yields significant improvements in constraining cosmological parameters and may be a promising probe of galaxy formation models.« less

  20. Mid-IR hyperspectral imaging of laminar flames for 2-D scalar values.

    PubMed

    Rhoby, Michael R; Blunck, David L; Gross, Kevin C

    2014-09-01

    This work presents a new emission-based measurement which permits quantification of two-dimensional scalar distributions in laminar flames. A Michelson-based Fourier-transform spectrometer coupled to a mid-infrared camera (1.5 μm to 5.5 μm) obtained 256 × 128pixel hyperspectral flame images at high spectral (δν̃ = 0.75cm(−1)) and spatial (0.52 mm) resolutions. The measurements revealed line and band emission from H2O, CO2, and CO. Measurements were collected from a well-characterized partially-premixed ethylene (C2H4) flame produced on a Hencken burner at equivalence ratios, Φ, of 0.8, 0.9, 1.1, and 1.3. After describing the instrument and novel calibration methodology, analysis of the flames is presented. A single-layer, line-by-line radiative transfer model is used to retrieve path-averaged temperature, H2O, CO2 and CO column densities from emission spectra between 2.3 μm to 5.1 μm. The radiative transfer model uses line intensities from the latest HITEMP and CDSD-4000 spectroscopic databases. For the Φ = 1.1 flame, the spectrally estimated temperature for a single pixel 10 mm above burner center was T = (2318 ± 19)K, and agrees favorably with recently reported laser absorption measurements, T = (2348 ± 115)K, and a NASA CEA equilibrium calculation, T = 2389K. Near the base of the flame, absolute concentrations can be estimated, and H2O, CO2, and CO concentrations of (12.5 ± 1.7) %, (10.1 ± 1.0) %, and (3.8 ± 0.3) %, respectively, compared favorably with the corresponding CEA values of 12.8%, 9.9% and 4.1%. Spectrally-estimated temperatures and concentrations at the other equivalence ratios were in similar agreement with measurements and equilibrium calculations. 2-D temperature and species column density maps underscore the Φ-dependent chemical composition of the flames. The reported uncertainties are 95% confidence intervals and include both statistical fit errors and the propagation of systematic calibration errors using a Monte Carlo

  1. Ultrafast relaxation and 2D IR of the aqueous trifluorocarboxylate ion

    PubMed Central

    Kuroda, Daniel G.; Vorobyev, Dmitriy Yu.; Hochstrasser, Robin M.

    2010-01-01

    The asymmetric stretching vibration of the amphiphilic trifluoroacetate ion and its 13C=16O isotopologue in D2O were investigated with infrared spectroscopy (FTIR), ultrafast infrared pump probe, and two dimensional vibrational photon echo techniques and simulations. Trifluoroacetate ions have a nonexponential depopulation of the first vibrational excited state, which is well described by a kinetic mechanism involving a temperature dependent solvent assisted relaxation to the symmetric stretch mode. The vibrational spectrum of the asymmetric stretch of the 13C=16O isotopologue presents an unusual spectral shape. The frequency-frequency autocorrelation function shows a static term not present in the 13C=16O form, which is caused by an accidental degeneracy with a combinational mode. A newly developed frequency map for carboxylate is used to characterize the processes and dynamics observed in the frequency fluctuations of the carboxylate asymmetric stretch mode in aqueous solution. An assignment of the molecular processes that govern the frequency fluctuations is suggested from an analysis of the solvation shell configurations obtained from molecular dynamics simulations. PMID:20113043

  2. Structural Disorder of Folded Proteins: Isotope-Edited 2D IR Spectroscopy and Markov State Modeling

    PubMed Central

    Baiz, Carlos R.; Tokmakoff, Andrei

    2015-01-01

    The conformational heterogeneity of the N-terminal domain of the ribosomal protein L9 (NTL91-39) in its folded state is investigated using isotope-edited two-dimensional infrared spectroscopy. Backbone carbonyls are isotope-labeled (13C=18O) at five selected positions (V3, V9, V9G13, G16, and G24) to provide a set of localized spectroscopic probes of the structure and solvent exposure at these positions. Structural interpretation of the amide I line shapes is enabled by spectral simulations carried out on structures extracted from a recent Markov state model. The V3 label spectrum indicates that the β-sheet contacts between strands I and II are well folded with minimal disorder. The V9 and V9G13 label spectra, which directly probe the hydrogen-bond contacts across the β-turn, show significant disorder, indicating that molecular dynamics simulations tend to overstabilize ideally folded β-turn structures in NTL91-39. In addition, G24-label spectra provide evidence for a partially disordered α-helix backbone that participates in hydrogen bonding with the surrounding water. PMID:25863066

  3. Earle K. Plyler Prize for Molecular Spectroscopy and Dynamics Lecture: 2D IR Spectroscopy of Peptide Conformation

    NASA Astrophysics Data System (ADS)

    Tokmakoff, Andrei

    2012-02-01

    Descriptions of protein and peptide conformation are colored by the methods we use to study them. Protein x-ray and NMR structures often lead to impressions of rigid or well-defined conformations, even though these are dynamic molecules. The conformational fluctuations and disorder of proteins and peptides is more difficult to quantify. This presentation will describe an approach toward characterizing and quantifying structural heterogeneity and disorder in peptides using 2D IR spectroscopy. Using amide I vibrational spectroscopy, isotope labeling strategies, and computational modeling based on molecular dynamics simulations and Markov state models allows us to characterize distinct peptide conformers and conformational variation. The examples illustrated include the beta-hairpin tripzip2 and elastin-like peptides.

  4. Studying Protein-Protein Binding through T-Jump Induced Dissociation: Transient 2D IR Spectroscopy of Insulin Dimer.

    PubMed

    Zhang, Xin-Xing; Jones, Kevin C; Fitzpatrick, Ann; Peng, Chunte Sam; Feng, Chi-Jui; Baiz, Carlos R; Tokmakoff, Andrei

    2016-06-16

    Insulin homodimer associates through the coupled folding and binding of two partially disordered monomers. We aim to understand this dynamics by observing insulin dimer dissociation initiated with a nanosecond temperature jump using transient two-dimensional infrared spectroscopy (2D IR) of amide I vibrations. With the help of equilibrium FTIR and 2D IR spectra, and through a systematic study of the dependence of dissociation kinetics on temperature and insulin concentration, we are able to decompose and analyze the spectral evolution associated with different secondary structures. We find that the dissociation under all conditions is characterized by two processes whose influence on the kinetics varies with temperature: the unfolding of the β sheet at the dimer interface observed as exponential kinetics between 250 and 1000 μs and nonexponential kinetics between 5 and 150 μs that we attribute to monomer disordering. Microscopic reversibility arguments lead us to conclude that dimer association requires significant conformational changes within the monomer in concert with the folding of the interfacial β sheet. While our data indicates a more complex kinetics, we apply a two-state model to the β-sheet unfolding kinetics to extract thermodynamic parameters and kinetic rate constants. The association rate constant, ka (23 °C) = 8.8 × 10(5) M(-1) s(-1) (pH 0, 20% EtOD), is approximately 3 orders of magnitude slower than the calculated diffusion limited association rate, which is explained by the significant destabilizing effect of ethanol on the dimer state and the highly positive charge of the monomers at this pH. PMID:27203447

  5. Analysis of the rotational spectrum of the ground and first torsional excited states of monodeuterated ethane, CH3CH2D

    NASA Astrophysics Data System (ADS)

    Daly, Adam M.; Drouin, Brian J.; Groner, Peter; Yu, Shanshan; Pearson, John C.

    2015-01-01

    The pure rotational spectrum of mono-deuterated ethane, CH3CH2D, has been measured up to 1600 GHz and spectroscopic constants have been fit to 984 transitions in the ground state and 422 transitions in the first torsional excited state (ν18). Analyses of the ground state data were performed with the programs SPFIT, ERHAM and XIAM and of the first torsional state with SPFIT and ERHAM to extract molecular and spectroscopic constants. A combined fit of both states using ERHAM was used to determine ρ = 0.4344026(68), which in the symmetric limit is the ratio Iα/Iz and a measure of the periodicity of the internal rotation energy with K and the energy differences between the A and E torsional substates, ΔE(E-A), of 74.167(18) and -3382.23(34) MHz for the ground and excited states, respectively. Using these energy differences and the overtone transitions Δv = 2 from Raman measurements in the literature, the coefficients V3 and V6 of the potential function of the internal rotation in CH3CH2D were determined as V3 = 1004.56(4) cm-1 and V6 = 7.09(12) cm-1. This analysis lays the ground work for the assignment of the IR spectrum of CH3CH2D between (680-880 cm-1) which will help quantify isotopic ratios by remote sensing missions.

  6. Chemical Shifts to Metabolic Pathways: Identifying Metabolic Pathways Directly from a Single 2D NMR Spectrum.

    PubMed

    Dubey, Abhinav; Rangarajan, Annapoorni; Pal, Debnath; Atreya, Hanudatta S

    2015-12-15

    Identifying cellular processes in terms of metabolic pathways is one of the avowed goals of metabolomics studies. Currently, this is done after relevant metabolites are identified to allow their mapping onto specific pathways. This task is daunting due to the complex nature of cellular processes and the difficulty in establishing the identity of individual metabolites. We propose here a new method: ChemSMP (Chemical Shifts to Metabolic Pathways), which facilitates rapid analysis by identifying the active metabolic pathways directly from chemical shifts obtained from a single two-dimensional (2D) [(13)C-(1)H] correlation NMR spectrum without the need for identification and assignment of individual metabolites. ChemSMP uses a novel indexing and scoring system comprised of a "uniqueness score" and a "coverage score". Our method is demonstrated on metabolic pathways data from the Small Molecule Pathway Database (SMPDB) and chemical shifts from the Human Metabolome Database (HMDB). Benchmarks show that ChemSMP has a positive prediction rate of >90% in the presence of decluttered data and can sustain the same at 60-70% even in the presence of noise, such as deletions of peaks and chemical shift deviations. The method tested on NMR data acquired for a mixture of 20 amino acids shows a success rate of 93% in correct recovery of pathways. When used on data obtained from the cell lysate of an unexplored oncogenic cell line, it revealed active metabolic pathways responsible for regulating energy homeostasis of cancer cells. Our unique tool is thus expected to significantly enhance analysis of NMR-based metabolomics data by reducing existing impediments. PMID:26556218

  7. Digit ratio 2D:4D in relation to autism spectrum disorders, empathizing, and systemizing: a quantitative review.

    PubMed

    Hönekopp, Johannes

    2012-08-01

    Prenatal testosterone (PT) effects have been proposed to increase systemizing (the drive to understand lawful input-output relationships), to decrease empathizing (the drive to understand others), and to cause autism via hypermasculinization of the brain. Digit ratio 2D:4D is a putative marker of PT effects in humans. An online study (n = 1896) into the relationship between the Reading the Mind in the Eyes Test (a widely used measure of empathizing) and self-measured 2D:4D in a nonclinical sample is reported. No evidence for a link between empathizing and 2D:4D in either females or males emerged. Further, three meta-analyses are presented that look into the relationships of 2D:4D with autism spectrum disorder (ASD), systemizing, and empathizing. 2D:4D was substantially lower (more masculine) in ASD-affected individuals than in normal controls (d = -0.58, P < 0.001). However, 2D:4D was found to be virtually unrelated to systemizing and empathizing in normal adults. The results support the idea that high PT is a risk factor for autism, but they challenge the view that PT substantially contributes to sex differences in systemizing and empathizing. Possibly, this pattern reflects an interaction effect, whereby PT drives ASD characteristic changes only in brains with a specific damage. PMID:22674640

  8. Volatility-dependent 2D IR correlation analysis of traditional Chinese medicine ‘Red Flower Oil’ preparation from different manufacturers

    NASA Astrophysics Data System (ADS)

    Wu, Yan-Wen; Sun, Su-Qin; Zhou, Qun; Tao, Jia-Xun; Noda, Isao

    2008-06-01

    As a traditional Chinese medicine (TCM), 'Red Flower Oil' preparation is widely used as a household remedy in China and Southeast Asia. Usually, the preparation is a mixture of several plant essential oils with different volatile features, such as wintergreen oil, turpentine oil and clove oil. The proportions of these plant essential oils in 'Red Flower Oil' vary from different manufacturers. Thus, it is important to develop a simple and rapid evaluation method for quality assurance of the preparations. Fourier transform infrared (FT-IR) was applied and two-dimensional correlation infrared spectroscopy (2D IR) based on the volatile characteristic of samples was used to enhance the resolution of FT-IR spectra. 2D IR technique could, not only easily provide the composition and their volatile sequences in 'Red flower Oil' preparations, but also rapidly discriminate the subtle differences in products from different manufacturers. Therefore, FT-IR combined with volatility-dependent 2D IR correlation analysis provides a very fast and effective method for the quality control of essential oil mixtures in TCM.

  9. The roles of CC2D1A and HTR1A gene expressions in autism spectrum disorders.

    PubMed

    Sener, Elif Funda; Cıkılı Uytun, Merve; Korkmaz Bayramov, Keziban; Zararsiz, Gokmen; Oztop, Didem Behice; Canatan, Halit; Ozkul, Yusuf

    2016-06-01

    Classical autism belongs to a group of heterogeneous disorders known as autism spectrum disorders (ASD). Autism is defined as a neurodevelopmental disorder, characterized by repetitive stereotypic behaviors or restricted interests, social withdrawal, and communication deficits. Numerous susceptibility genes and chromosomal abnormalities have been reported in association with autism but the etiology of this disorder is unknown in many cases. CC2D1A gene has been linked to mental retardation (MR) in a family with a large deletion before. Intellectual disability (ID) is a common feature of autistic cases. Therefore we aimed to investigate the expressions of CC2D1A and HTR1A genes with the diagnosis of autism in Turkey. Forty-four autistic patients (35 boys, 9 girls) and 27 controls were enrolled and obtained whole blood samples to isolate RNA samples from each participant. CC2D1A and HTR1A gene expressions were assessed by quantitative Real-Time PCR (qRT-PCR) in Genome and Stem Cell Center, Erciyes University. Both expressions of CC2D1A and HTR1A genes studied on ASD cases and controls were significantly different (p < 0.001). The expression of HTR1A was undetectable in the ASD samples. Comparison of ID and CC2D1A gene expression was also found statistically significant (p = 0.028). CC2D1A gene expression may be used as a candidate gene for ASD cases with ID. Further studies are needed to investigate the potential roles of these CC2D1A and HTR1A genes in their related pathways in ASD. PMID:26782176

  10. Optimized 2D array of thin silicon pillars for efficient antireflective coatings in the visible spectrum

    PubMed Central

    Proust, Julien; Fehrembach, Anne-Laure; Bedu, Frédéric; Ozerov, Igor; Bonod, Nicolas

    2016-01-01

    Light reflection occuring at the surface of silicon wafers is drastically diminished by etching square pillars of height 110 nm and width 140 nm separated by a 100 nm gap distance in a square lattice. The design of the nanostructure is optimized to widen the spectral tolerance of the antireflective coatings over the visible spectrum for both fundamental polarizations. Angle and polarized resolved optical measurements report a light reflection remaining under 5% when averaged in the visible spectrum for both polarizations in a wide angular range. Light reflection remains almost insensitive to the light polarization even in oblique incidence. PMID:27109643

  11. Optimized 2D array of thin silicon pillars for efficient antireflective coatings in the visible spectrum.

    PubMed

    Proust, Julien; Fehrembach, Anne-Laure; Bedu, Frédéric; Ozerov, Igor; Bonod, Nicolas

    2016-01-01

    Light reflection occuring at the surface of silicon wafers is drastically diminished by etching square pillars of height 110 nm and width 140 nm separated by a 100 nm gap distance in a square lattice. The design of the nanostructure is optimized to widen the spectral tolerance of the antireflective coatings over the visible spectrum for both fundamental polarizations. Angle and polarized resolved optical measurements report a light reflection remaining under 5% when averaged in the visible spectrum for both polarizations in a wide angular range. Light reflection remains almost insensitive to the light polarization even in oblique incidence. PMID:27109643

  12. IR spectrum simulation of molecular structure model of Shendong coal vitrinite by using quantum chemistry method.

    PubMed

    Jia, Jian-Bo; Wang, Ying; Li, Feng-Hai; Yi, Gui-Yun; Zeng, Fan-Gui; Guo, Hong-Yu

    2014-01-01

    The structure of coal needs to be understood from a molecular point of view for clean, effective and high value-added utilization of coal. In the literature, molecular structure model of Shendong coal vitrinite (SV) was established by the authors on the basis of experimental results of ultimate analysis and 13C NMR, and the calculated 13C NMR spectrum of SV model was consistent with the experimental spectrum. In order to further verify the accuracy of SV structure model established by the authors, the infrared spectrum of SV structure model was calculated using quantum chemistry semi-empirical VAMP in this thesis. The results showed that the peak shape of calculated IR spectrum of SV structure model was similar to the experiment's, but the wave number of calculated IR spectrum was obviously higher than that of experimental spectrum. According to the calculated results for model compounds by using the same method, calculated vibrational frequency was higher than that of experiment for the same functional groups. Hence, the calculated IR spectrum should be corrected. After correction the calculated IR spectrum of SV structure model matched well with the experimental spectrum. In other words, the SV structure model can truly reflect the structure characteristics of SV. PMID:24783531

  13. The infrared spectrum of the He–C{sub 2}D{sub 2} complex

    SciTech Connect

    Moazzen-Ahmadi, N.; McKellar, A. R. W.; Fernández, Berta; Farrelly, David

    2015-02-28

    Spectra of the helium-acetylene complex are elusive because this weakly bound system lies close to the free rotor limit. Previously, limited assignments of He–C{sub 2}D{sub 2} transitions in the R(0) region of the ν{sub 3} fundamental band (≈2440 cm{sup −1}) were published. Here, new He–C{sub 2}D{sub 2} infrared spectra of this band are obtained using a tunable optical parametric oscillator laser source to probe a pulsed supersonic slit jet expansion from a cooled nozzle, and the analysis is extended to the weaker and more difficult P(1) and R(1) regions. A term value approach is used to obtain a consistent set of “experimental” energy levels. These are compared directly with calculations using two recently reported ab initio intermolecular potential energy surfaces, which exhibit small but significant differences. Rovibrational energies for the He–C{sub 2}H{sub 2} complex are also calculated using both surfaces. A Coriolis model, useful for predicting spectral intensities, is used to interpret the energy level patterns, and a comparison with the isoelectronic complex He–CO is made.

  14. The infrared spectrum of the He-C2D2 complex.

    PubMed

    Moazzen-Ahmadi, N; McKellar, A R W; Fernández, Berta; Farrelly, David

    2015-02-28

    Spectra of the helium-acetylene complex are elusive because this weakly bound system lies close to the free rotor limit. Previously, limited assignments of He-C2D2 transitions in the R(0) region of the ν3 fundamental band (≈2440 cm(-1)) were published. Here, new He-C2D2 infrared spectra of this band are obtained using a tunable optical parametric oscillator laser source to probe a pulsed supersonic slit jet expansion from a cooled nozzle, and the analysis is extended to the weaker and more difficult P(1) and R(1) regions. A term value approach is used to obtain a consistent set of "experimental" energy levels. These are compared directly with calculations using two recently reported ab initio intermolecular potential energy surfaces, which exhibit small but significant differences. Rovibrational energies for the He-C2H2 complex are also calculated using both surfaces. A Coriolis model, useful for predicting spectral intensities, is used to interpret the energy level patterns, and a comparison with the isoelectronic complex He-CO is made. PMID:25725736

  15. Sensitivity of Cosmic-Ray Proton Spectra to the Low-wavenumber Behavior of the 2D Turbulence Power Spectrum

    NASA Astrophysics Data System (ADS)

    Engelbrecht, N. E.; Burger, R. A.

    2015-12-01

    In this study, a novel ab initio cosmic ray (CR) modulation code that solves a set of stochastic transport equations equivalent to the Parker transport equation, and that uses output from a turbulence transport code as input for the diffusion tensor, is introduced. This code is benchmarked with a previous approach to ab initio modulation. The sensitivity of computed galactic CR proton spectra at Earth to assumptions made as to the low-wavenumber behavior of the two-dimensional (2D) turbulence power spectrum is investigated using perpendicular mean free path expressions derived from two different scattering theories. Constraints on the low-wavenumber behavior of the 2D power spectrum are inferred from the qualitative comparison of computed CR spectra with spacecraft observations at Earth. Another key difference from previous studies is that observed and inferred CR intensity spectra at 73 AU are used as boundary spectra instead of the usual local interstellar spectrum. Furthermore, the results presented here provide a tentative explanation as to the reason behind the unusually high galactic proton intensity spectra observed in 2009 during the recent unusual solar minimum.

  16. Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory

    SciTech Connect

    Taruya, Atsushi; Nishimichi, Takahiro; Saito, Shun

    2010-09-15

    We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2%, and the growth-rate parameter by {approx}5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.

  17. Development of 2-D Array of Superconducting Magnesium Diboride (MgB2) for Far-IR Investigations of the Outer Planets and Icy Moons

    NASA Astrophysics Data System (ADS)

    Lakew, Brook

    2009-09-01

    A 2-D array of superconducting Magnesium Diboride(MgB2) far -IR thermal detectors has been fabricated. Such an array is intended to be at the focal plane of future generation thermal imaging far-IR instruments that will investigate the outer planets and their icy moons. Fabrication and processing of the pixels of the array as well as noise characterization of architectured MgB2 thin films will be presented. Challenges and solutions for improving the performance of the array will be discussed.

  18. ir overtone spectrum of the vibrational soliton in crystalline acetanilide

    NASA Astrophysics Data System (ADS)

    Scott, A. C.; Gratton, E.; Shyamsunder, E.; Careri, G.

    1985-10-01

    The self-trapping (soliton) theory which was recently developed to account for the anomalous amide-I band at 1650 cm-1 in crystalline acetanilide (a model system for protein) has been extended to predict the anharmonicity constant of the overtone spectrum. These infrared-active overtones which have been detected at 3250, 4803, and 6304 cm-1 yield an anharmonicity constant that is in good agreement with the theory.

  19. ir overtone spectrum of the vibrational soliton in crystalline acetanilide

    SciTech Connect

    Scott, A.C.; Gratton, E.; Shyamsunder, E.; Careri, G.

    1985-10-15

    The self-trapping (soliton) theory which was recently developed to account for the anomalous amide-I band at 1650 cm/sup -1/ in crystalline acetanilide (a model system for protein) has been extended to predict the anharmonicity constant of the overtone spectrum. These infrared-active overtones which have been detected at 3250, 4803, and 6304 cm/sup -1/ yield an anharmonicity constant that is in good agreement with the theory.

  20. [IR spectrum characteristics and significance of Luodian jade from Guizhou].

    PubMed

    Yang, Lin; Lin, Jin-Hui; Wang, Lei; Wang, Bing; Du, Ying

    2013-08-01

    In the present paper we selected some typical samples from Luodian jade to perform FTIR test in order to study the vibration attribution of crystals structure. The results confirm that the main mineral composition of Luodian jade is tremolite. Not only has it been not reported in other IR study on natural nephrite that the absorption bands at wave numbers between 840 and 860 cm(-1) caused by residual diopside exist in Luodian jade with the process of tremolite rock transformed to nephrite, but is also the biggest difference between the Luodian jade and other nephrite. The results reveal important mineralogy evidence of metamorphism of Luodian jade, and on the other hand, it also shows that there is a certain difference in the process of nephrite change between Luodian jade and other natural nephrite. Moreover, it further suggests that Luodian jade is a kind of new genetic nephrite ore. PMID:24159852

  1. Two Keggin-type heteropolytungstates with transition metal as a central atom: Crystal structure and magnetic study with 2D-IR correlation spectroscopy

    SciTech Connect

    Chai, Feng; Chen, YiPing; You, ZhuChai; Xia, ZeMin; Ge, SuZhi; Sun, YanQiong; Huang, BiHua

    2013-06-01

    Two Keggin-type heteropolytungstates, [Co(phen)₃]₃[CoW₁₂O₄₀]·9H₂O 1 (phen=1,10-phenanthroline) and [Fe(phen)₃]₂[FeW₁₂O₄₀]·H₃O·H₂O 2, have been synthesized via the hydrothermal technique and characterized by single crystal X-ray diffraction analyses, IR, XPS, TG analysis, UV–DRS, XRD, thermal-dependent and magnetic-dependent 2D-COS IR (two-dimensional infrared correlation spectroscopy). Crystal structure analysis reveals that the polyanions in compound 1 are linked into 3D supramolecule through hydrogen bonding interactions between lattice water molecules and terminal oxygen atoms of polyanion units, and [Co(phen)₃]²⁺ cations distributed in the polyanion framework with many hydrogen bonding interactions. The XPS spectra indicate that all the Co atoms in 1 are +2 oxidation state, the Fe atoms in 2 existing with +2 and +3 mixed oxidation states. - Graphical abstract: The magnetic-dependent synchronous 2D correlation IR spectra of 1 (a), 2 (b) over 0–50 mT in the range of 600–1000 cm⁻¹, the obvious response indicate two Keggin polyanions skeleton susceptible to applied magnetic field. Highlights: • Two Keggin-type heteropolytungstates with transition metal as a central atom has been obtained. • Compound 1 forms into 3D supramolecular architecture through hydrogen bonding between water molecules and polyanions. • Magnetic-dependent 2D-IR correlation spectroscopy was introduced to discuss the magnetism of polyoxometalate.

  2. Mid-infrared pulse shaping permits the pathway of amyloid aggregation to be determined with rapid-scan 2D IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zanni, Martin

    2010-03-01

    We have developed a means for rapidly acquiring 2D IR spectra in a continuous fashion to monitoring protein kinetics. Our method relies on a mid-IR pulse shaper that generates precise pulse trains for collecting 2D IR spectra. The phase, amplitude and now the polarization of the pulse trains can be automatically generated without optical alignment, which produces higher accuracy spectra in a much easier fashion than with standard 4-wave mixing. Using this new technology as well as site-specific isotope labeling, we have measured the development of secondary structures for six residues during the aggregation process of the 37-residue polypeptide associated with type 2 diabetes, the human islet amyloid polypeptide (hIAPP), also called amylin. By monitoring the kinetics at six different labeled sites, we find that the peptides initially develop well ordered structures near the ordered loop of the fibrils, followed by formation of the two parallel β-sheets with the N-terminal β-sheet likely forming before the C-terminal sheet. This experimental approach provides residue-by-residue details on the aggregation pathway of hIAPP fibril formation as well as a general methodology for studying other amyloid forming proteins without the use of structure perturbing labels. Moreover, this approach is also applicable to membrane catalyzed amyloid formation, and experiments along these lines will be presented as well.

  3. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel

    NASA Astrophysics Data System (ADS)

    Ghosh, Ayanjeet; Wang, Jun; Moroz, Yurii S.; Korendovych, Ivan V.; Zanni, Martin; DeGrado, William F.; Gai, Feng; Hochstrasser, Robin M.

    2014-06-01

    Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs.

  4. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel

    SciTech Connect

    Ghosh, Ayanjeet E-mail: gai@sas.upenn.edu; Gai, Feng E-mail: gai@sas.upenn.edu; Hochstrasser, Robin M.; Wang, Jun; DeGrado, William F.; Moroz, Yurii S.; Korendovych, Ivan V.; Zanni, Martin

    2014-06-21

    Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs.

  5. 2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel

    PubMed Central

    Ghosh, Ayanjeet; Wang, Jun; Moroz, Yurii S.; Korendovych, Ivan V.; Zanni, Martin; DeGrado, William F.; Gai, Feng; Hochstrasser, Robin M.

    2014-01-01

    Water is an integral part of the homotetrameric M2 proton channel of the influenza A virus, which not only assists proton conduction but could also play an important role in stabilizing channel-blocking drugs. Herein, we employ two dimensional infrared (2D IR) spectroscopy and site-specific IR probes, i.e., the amide I bands arising from isotopically labeled Ala30 and Gly34 residues, to probe how binding of either rimantadine or 7,7-spiran amine affects the water dynamics inside the M2 channel. Our results show, at neutral pH where the channel is non-conducting, that drug binding leads to a significant increase in the mobility of the channel water. A similar trend is also observed at pH 5.0 although the difference becomes smaller. Taken together, these results indicate that the channel water facilitates drug binding by increasing its entropy. Furthermore, the 2D IR spectral signatures obtained for both probes under different conditions collectively support a binding mechanism whereby amantadine-like drugs dock in the channel with their ammonium moiety pointing toward the histidine residues and interacting with a nearby water cluster, as predicted by molecular dynamics simulations. We believe these findings have important implications for designing new anti-influenza drugs. PMID:24952572

  6. Re-analysis of the high resolution FTIR spectrum of C2H2D2-cis in the region of 1280-1400 cm-1

    NASA Astrophysics Data System (ADS)

    Ulenikov, O. N.; Gromova, O. V.; Bekhtereva, E. S.; Konov, I. A.; Chertavskikh, Yu. V.; Maul, C.; Bauerecker, S.

    2016-02-01

    The high-resolution infrared spectrum of C2H2D2-cis ethylene was analyzed in the region of 1280-1400 cm-1, where the strong ν12 band is located. More than 2000 transitions (about three times more than it was made in the preceding studies) were assigned with the maximum values of the upper quantum numbers Jmax. = 45 and Kamax. = 19 (Jmax. = 31 and Kamax . = 13 in the preceding studies). For the first time, 22 transitions belonging to the 2ν10 weak band were assigned. For description of the assigned transitions (upper ro-vibrational energy levels), the Hamiltonian model was used which takes into account resonance interactions between the vibrational state (v12 = 1) and three other closely located states: (v10 = 2), (v8 =v10 = 1), and (v3 = 1). A set of 43 spectroscopic parameters obtained from a weighted least square fit reproduces the initial experimental data (817 upper energy values and more than 2000 transitions) with the drms = 2.2 ×10-4cm-1 which is close to experimental uncertainties and considerably better than in prior studies. Ground state rotational and centrifugal distortion parameters were improved on the basis of the IR experimental data of the present study and microwave data from the earlier literature.

  7. Unraveling the dynamics and structure of functionalized self-assembled monolayers on gold using 2D IR spectroscopy and MD simulations.

    PubMed

    Yan, Chang; Yuan, Rongfeng; Pfalzgraff, William C; Nishida, Jun; Wang, Lu; Markland, Thomas E; Fayer, Michael D

    2016-05-01

    Functionalized self-assembled monolayers (SAMs) are the focus of ongoing investigations because they can be chemically tuned to control their structure and dynamics for a wide variety of applications, including electrochemistry, catalysis, and as models of biological interfaces. Here we combine reflection 2D infrared vibrational echo spectroscopy (R-2D IR) and molecular dynamics simulations to determine the relationship between the structures of functionalized alkanethiol SAMs on gold surfaces and their underlying molecular motions on timescales of tens to hundreds of picoseconds. We find that at higher head group density, the monolayers have more disorder in the alkyl chain packing and faster dynamics. The dynamics of alkanethiol SAMs on gold are much slower than the dynamics of alkylsiloxane SAMs on silica. Using the simulations, we assess how the different molecular motions of the alkyl chain monolayers give rise to the dynamics observed in the experiments. PMID:27044113

  8. The role of hydrogen in small amorphous carbon grains: the IR spectrum.

    NASA Astrophysics Data System (ADS)

    Mennella, V.; Colangeli, L.; Pestellini, C. C.; Palomba, E.; Palumbo, P.; Rotundi, A.; Bussoletti, E.

    1996-10-01

    Preliminary results on the evolution of the IR spectrum of hydrogenated carbon grains as a function of heat tretment are presented. The transformation of C-H and C-C bonding configurations is considered and the correlation with other properties of grains, such as their microstructure, is analyzed.

  9. Spectrum simulation of rough and nanostructured targets from their 2D and 3D image by Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Schiettekatte, François; Chicoine, Martin

    2016-03-01

    Corteo is a program that implements Monte Carlo (MC) method to simulate ion beam analysis (IBA) spectra of several techniques by following the ions trajectory until a sufficiently large fraction of them reach the detector to generate a spectrum. Hence, it fully accounts for effects such as multiple scattering (MS). Here, a version of Corteo is presented where the target can be a 2D or 3D image. This image can be derived from micrographs where the different compounds are identified, therefore bringing extra information into the solution of an IBA spectrum, and potentially significantly constraining the solution. The image intrinsically includes many details such as the actual surface or interfacial roughness, or actual nanostructures shape and distribution. This can for example lead to the unambiguous identification of structures stoichiometry in a layer, or at least to better constraints on their composition. Because MC computes in details the trajectory of the ions, it simulates accurately many of its aspects such as ions coming back into the target after leaving it (re-entry), as well as going through a variety of nanostructures shapes and orientations. We show how, for example, as the ions angle of incidence becomes shallower than the inclination distribution of a rough surface, this process tends to make the effective roughness smaller in a comparable 1D simulation (i.e. narrower thickness distribution in a comparable slab simulation). Also, in ordered nanostructures, target re-entry can lead to replications of a peak in a spectrum. In addition, bitmap description of the target can be used to simulate depth profiles such as those resulting from ion implantation, diffusion, and intermixing. Other improvements to Corteo include the possibility to interpolate the cross-section in angle-energy tables, and the generation of energy-depth maps.

  10. High-power THz to IR emission by femtosecond laser irradiation of random 2D metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Liangliang; Mu, Kaijun; Zhou, Yunsong; Wang, Hai; Zhang, Cunlin; Zhang, X.-C.

    2015-07-01

    Terahertz (THz) spectroscopic sensing and imaging has identified its potentials in a number of areas such as standoff security screening at portals, explosive detection at battle fields, bio-medical research, and so on. With these needs, the development of an intense and broadband THz source has been a focus of THz research. In this work, we report an intense (~10 mW) and ultra-broadband (~150 THz) THz to infrared (IR) source with a Gaussian wavefront, emitted from nano-pore-structured metallic thin films with femtosecond laser pulse excitation. The underlying mechanism has been proposed as thermal radiation. In addition, an intense coherent THz signal was generated through the optical rectification process simultaneously with the strong thermal signal. This unique feature opens up new avenues in biomedical research.

  11. High-power THz to IR emission by femtosecond laser irradiation of random 2D metallic nanostructures.

    PubMed

    Zhang, Liangliang; Mu, Kaijun; Zhou, Yunsong; Wang, Hai; Zhang, Cunlin; Zhang, X-C

    2015-01-01

    Terahertz (THz) spectroscopic sensing and imaging has identified its potentials in a number of areas such as standoff security screening at portals, explosive detection at battle fields, bio-medical research, and so on. With these needs, the development of an intense and broadband THz source has been a focus of THz research. In this work, we report an intense (~10 mW) and ultra-broadband (~150 THz) THz to infrared (IR) source with a Gaussian wavefront, emitted from nano-pore-structured metallic thin films with femtosecond laser pulse excitation. The underlying mechanism has been proposed as thermal radiation. In addition, an intense coherent THz signal was generated through the optical rectification process simultaneously with the strong thermal signal. This unique feature opens up new avenues in biomedical research. PMID:26205611

  12. High-power THz to IR emission by femtosecond laser irradiation of random 2D metallic nanostructures

    PubMed Central

    Zhang, Liangliang; Mu, Kaijun; Zhou, Yunsong; Wang, Hai; Zhang, Cunlin; Zhang, X.-C.

    2015-01-01

    Terahertz (THz) spectroscopic sensing and imaging has identified its potentials in a number of areas such as standoff security screening at portals, explosive detection at battle fields, bio-medical research, and so on. With these needs, the development of an intense and broadband THz source has been a focus of THz research. In this work, we report an intense (~10 mW) and ultra-broadband (~150 THz) THz to infrared (IR) source with a Gaussian wavefront, emitted from nano-pore-structured metallic thin films with femtosecond laser pulse excitation. The underlying mechanism has been proposed as thermal radiation. In addition, an intense coherent THz signal was generated through the optical rectification process simultaneously with the strong thermal signal. This unique feature opens up new avenues in biomedical research. PMID:26205611

  13. Combination of transient 2D-IR experiments and ab initio computations sheds light on the formation of the charge-transfer state in photoexcited carbonyl carotenoids.

    PubMed

    Di Donato, Mariangela; Segado Centellas, Mireia; Lapini, Andrea; Lima, Manuela; Avila, Francisco; Santoro, Fabrizio; Cappelli, Chiara; Righini, Roberto

    2014-08-14

    The excited state dynamics of carbonyl carotenoids is very complex because of the coupling of single- and doubly excited states and the possible involvement of intramolecular charge-transfer (ICT) states. In this contribution we employ ultrafast infrared spectroscopy and theoretical computations to investigate the relaxation dynamics of trans-8'-apo-β-carotenal occurring on the picosecond time scale, after excitation in the S2 state. In a (slightly) polar solvent like chloroform, one-dimensional (T1D-IR) and two-dimensional (T2D-IR) transient infrared spectroscopy reveal spectral components with characteristic frequencies and lifetimes that are not observed in nonpolar solvents (cyclohexane). Combining experimental evidence with an analysis of CASPT2//CASSCF ground and excited state minima and energy profiles, complemented with TDDFT calculations in gas phase and in solvent, we propose a photochemical decay mechanism for this system where only the bright single-excited 1Bu(+) and the dark double-excited 2Ag(-) states are involved. Specifically, the initially populated 1Bu(+) relaxes toward 2Ag(-) in 200 fs. In a nonpolar solvent 2Ag(-) decays to the ground state (GS) in 25 ps. In polar solvents, distortions along twisting modes of the chain promote a repopulation of the 1Bu(+) state which then quickly relaxes to the GS (18 ps in chloroform). The 1Bu(+) state has a high electric dipole and is the main contributor to the charge-transfer state involved in the dynamics in polar solvents. The 2Ag(-) → 1Bu(+) population transfer is evidenced by a cross peak on the T2D-IR map revealing that the motions along the same stretching of the conjugated chain on the 2Ag(-) and 1Bu(+) states are coupled. PMID:25050938

  14. Critical Slowing of Density Fluctuations Approaching the Isotropic-Nematic Transition in Liquid Crystals: 2D IR Measurements and Mode Coupling Theory.

    PubMed

    Sokolowsky, Kathleen P; Bailey, Heather E; Hoffman, David J; Andersen, Hans C; Fayer, Michael D

    2016-07-21

    Two-dimensional infrared (2D IR) data are presented for a vibrational probe in three nematogens: 4-cyano-4'-pentylbiphenyl, 4-cyano-4'-octylbiphenyl, and 4-(trans-4-amylcyclohexyl)-benzonitrile. The spectral diffusion time constants in all three liquids in the isotropic phase are proportional to [T*/(T - T*)](1/2), where T* is 0.5-1 K below the isotropic-nematic phase transition temperature (TNI). Rescaling to a reduced temperature shows that the decays of the frequency-frequency correlation function (FFCF) for all three nematogens fall on the same curve, suggesting a universal dynamic behavior of nematogens above TNI. Spectral diffusion is complete before significant orientational relaxation in the liquid, as measured by optically heterodyne detected-optical Kerr effect (OHD-OKE) spectroscopy, and before any significant orientational randomization of the probe measured by polarization selective IR pump-probe experiments. To interpret the OHD-OKE and FFCF data, we constructed a mode coupling theory (MCT) schematic model for the relationships among three correlation functions: ϕ1, a correlator for large wave vector density fluctuations; ϕ2, the orientational correlation function whose time derivative is the observable in the OHD-OKE experiment; and ϕ3, the FFCF for the 2D IR experiment. The equations for ϕ1 and ϕ2 match those in the previous MCT schematic model for nematogens, and ϕ3 is coupled to the first two correlators in a straightforward manner. Resulting models fit the data very well. Across liquid crystals, the temperature dependences of the coupling constants show consistent, nonmonotonic behavior. A remarkable change in coupling occurs at ∼5 K above TNI, precisely where the rate of spectral diffusion in 5CB was observed to deviate from that of a similar nonmesogenic liquid. PMID:27363680

  15. Solvation of fluoro-acetonitrile in water by 2D-IR spectroscopy: A combined experimental-computational study

    SciTech Connect

    Cazade, Pierre-André; Das, Akshaya K.; Tran, Halina; Kläsi, Felix; Hamm, Peter; Bereau, Tristan; Meuwly, Markus

    2015-06-07

    The solvent dynamics around fluorinated acetonitrile is characterized by 2-dimensional infrared spectroscopy and atomistic simulations. The lineshape of the linear infrared spectrum is better captured by semiempirical (density functional tight binding) mixed quantum mechanical/molecular mechanics simulations, whereas force field simulations with multipolar interactions yield lineshapes that are significantly too narrow. For the solvent dynamics, a relatively slow time scale of 2 ps is found from the experiments and supported by the mixed quantum mechanical/molecular mechanics simulations. With multipolar force fields fitted to the available thermodynamical data, the time scale is considerably faster—on the 0.5 ps time scale. The simulations provide evidence for a well established CF–HOH hydrogen bond (population of 25%) which is found from the radial distribution function g(r) from both, force field and quantum mechanics/molecular mechanics simulations.

  16. An Ion’s Perspective on the Molecular Motions of Nano-confined Water: A 2D IR Spectroscopy Study

    PubMed Central

    Singh, Prabhat K; Kuroda, Daniel G.; Hochstrasser, Robin M.

    2013-01-01

    The vibrational population relaxation and the hydration shell dynamics of the symmetric tricyanomethanide (TCM) anion is investigated in AOT reverse micelle as a function of the water pool radius. Two-dimensional infrared spectroscopy in combination with linear absorption and ultrafast IR pump-probe spectroscopy is utilized in this study. Spectroscopic measurements show that the anion has two bands in the 2160 – 2175 cm−1 region, each with its own spectroscopic signatures. Analysis of the vibrational dynamics shows that the two vibrational bands are consistent with the anion located either at the interface or in the water pool. The sensitivity of the TCM anion to the environment allows us to unequivocally monitor the vibrational and hydration dynamics of the anion in those two different environments. TCM anion located at the interface does not show any significant variation of the vibrational dynamics with the water pool size. On the contrary, the TCM anion inside the water pool exhibits a large and non-linear variation of the vibrational lifetime and the frequency-frequency correlation time with the pool radius. Moreover for the solvated anion in water pools of 49 Å in radius (W0=30), the vibrational lifetime reaches the values observed for the anion in bulk water while the frequency-frequency correlation time shows a characteristic time higher than that observed in the bulk. In addition, for the first time a model is developed and used to explain the observed non-linear variation of the spectroscopic observables with the pool size. This model attributes the changes in the vibrational dynamics of the TCM anion in the water pool to the slow and radius dependent water dynamics present in the confined environment of a reverse micelle. PMID:23855349

  17. A Characteristic Transmission Spectrum for WFC3 IR Water Hosting Exoplanet

    NASA Astrophysics Data System (ADS)

    Swain, Mark R.

    2015-12-01

    Using the 19 published Hubble/WFC3 IR exoplanet transmission spectra, we perform a meta-analysis of the spectral modulation due to water. Because of the heterogeneous nature of these data, in which spectral resolution, calibration approach, and observational method vary, we introduce a formalism to de-bias the estimates of spectral modulation. This analysis finds a characteristic transmission spectrum and examines trends for these water-hosting exoplanets.

  18. Study of non-axisymmetric divertor footprints using 2-D IR and visible cameras and a 3-D heat conduction solver in NSTX

    NASA Astrophysics Data System (ADS)

    Ahn, J.-W.; Gan, K. F.; Scotti, F.; Lore, J. D.; Maingi, R.; Canik, J. M.; Gray, T. K.; McLean, A. G.; Roquemore, A. L.; Soukhanovskii, V. A.

    2013-07-01

    Toroidally non-axisymmetric divertor profiles during the 3-D field application and for ELMs are studied with simultaneous observation by a new wide angle visible camera and a high speed IR camera. A newly implemented 3-D heat conduction code, TACO, is used to obtain divertor heat flux. The wide angle camera data confirmed the previously reported result on the validity of vacuum field line tracing on the prediction of split strike point pattern by 3-D fields as well as the phase locking of ELM heat flux to the 3-D fields. TACO calculates the 2-D heat flux distribution allowing assessment of toroidal asymmetry of peak heat flux and heat flux width. The degree of asymmetry (ɛDA) is defined to quantify the asymmetric heat deposition on the divertor surface and is found to have a strong positive dependence on peak heat flux.

  19. A Strongly Absorbing Class of Non-Natural Labels for Probing Protein Electrostatics and Solvation with FTIR and 2D IR Spectroscopies

    PubMed Central

    Woys, Ann Marie; Mukherjee, Sudipta S.; Skoff, David R.; Moran, Sean D.; Zanni, Martin T.

    2013-01-01

    A series of non-natural infrared probes is reported that consist of a metal-tricarbonyl modified with a -(CH2)n- linker and cysteine-specific leaving group. They can be site-specifically attached to proteins using mutagenesis and similar protocols for EPR spin labels, which have the same leaving group. We characterize the label’s frequencies and lifetimes using 2D IR spectroscopy in solvents of varying dielectric. The frequency range spans 10 cm−1, and the variation in lifetimes ranges from 6 to 19 ps, indicating that these probes are very sensitive to their environments. Also, we attached probes with -(CH2)-, -(CH2)3-, -(CH2)4- linkers to ubiquitin at positions 6 and 63 and collected spectra in aqueous buffer. The frequencies and lifetimes were correlated for 3C and 4C linkers, as they were in the solvents, but did not correlate for the 1C linker. We concluded that lifetime measures solvation, whereas frequency reflects the electrostatics of the environment, which in the case of the 1C linker is a measure of the protein electrostatic field. We also labeled V71C α-synuclein in buffer and membrane-bound. Unlike most other infrared labels, this label has extremely-strong cross-sections and so can be measured with 2D IR spectroscopy at sub-millimolar concentrations. We expect that these labels will find use in studying the structure and dynamics of membrane-bound, aggregated, and kinetically-evolving proteins for which high signal-to-noise at low protein concentrations is imperative. PMID:23537223

  20. Ultrafast vibrational spectroscopy (2D-IR) of CO2 in ionic liquids: Carbon capture from carbon dioxide's point of view.

    PubMed

    Brinzer, Thomas; Berquist, Eric J; Ren, Zhe; Dutta, Samrat; Johnson, Clinton A; Krisher, Cullen S; Lambrecht, Daniel S; Garrett-Roe, Sean

    2015-06-01

    The CO2ν3 asymmetric stretching mode is established as a vibrational chromophore for ultrafast two-dimensional infrared (2D-IR) spectroscopic studies of local structure and dynamics in ionic liquids, which are of interest for carbon capture applications. CO2 is dissolved in a series of 1-butyl-3-methylimidazolium-based ionic liquids ([C4C1im][X], where [X](-) is the anion from the series hexafluorophosphate (PF6 (-)), tetrafluoroborate (BF4 (-)), bis-(trifluoromethyl)sulfonylimide (Tf2N(-)), triflate (TfO(-)), trifluoroacetate (TFA(-)), dicyanamide (DCA(-)), and thiocyanate (SCN(-))). In the ionic liquids studied, the ν3 center frequency is sensitive to the local solvation environment and reports on the timescales for local structural relaxation. Density functional theory calculations predict charge transfer from the anion to the CO2 and from CO2 to the cation. The charge transfer drives geometrical distortion of CO2, which in turn changes the ν3 frequency. The observed structural relaxation timescales vary by up to an order of magnitude between ionic liquids. Shoulders in the 2D-IR spectra arise from anharmonic coupling of the ν2 and ν3 normal modes of CO2. Thermal fluctuations in the ν2 population stochastically modulate the ν3 frequency and generate dynamic cross-peaks. These timescales are attributed to the breakup of ion cages that create a well-defined local environment for CO2. The results suggest that the picosecond dynamics of CO2 are gated by local diffusion of anions and cations. PMID:26049445

  1. Ultrafast vibrational spectroscopy (2D-IR) of CO2 in ionic liquids: Carbon capture from carbon dioxide's point of view

    NASA Astrophysics Data System (ADS)

    Brinzer, Thomas; Berquist, Eric J.; Ren, Zhe; Dutta, Samrat; Johnson, Clinton A.; Krisher, Cullen S.; Lambrecht, Daniel S.; Garrett-Roe, Sean

    2015-06-01

    The CO2ν3 asymmetric stretching mode is established as a vibrational chromophore for ultrafast two-dimensional infrared (2D-IR) spectroscopic studies of local structure and dynamics in ionic liquids, which are of interest for carbon capture applications. CO2 is dissolved in a series of 1-butyl-3-methylimidazolium-based ionic liquids ([C4C1im][X], where [X]- is the anion from the series hexafluorophosphate (PF 6- ), tetrafluoroborate (BF 4- ), bis-(trifluoromethyl)sulfonylimide (Tf2N-), triflate (TfO-), trifluoroacetate (TFA-), dicyanamide (DCA-), and thiocyanate (SCN-)). In the ionic liquids studied, the ν3 center frequency is sensitive to the local solvation environment and reports on the timescales for local structural relaxation. Density functional theory calculations predict charge transfer from the anion to the CO2 and from CO2 to the cation. The charge transfer drives geometrical distortion of CO2, which in turn changes the ν3 frequency. The observed structural relaxation timescales vary by up to an order of magnitude between ionic liquids. Shoulders in the 2D-IR spectra arise from anharmonic coupling of the ν2 and ν3 normal modes of CO2. Thermal fluctuations in the ν2 population stochastically modulate the ν3 frequency and generate dynamic cross-peaks. These timescales are attributed to the breakup of ion cages that create a well-defined local environment for CO2. The results suggest that the picosecond dynamics of CO2 are gated by local diffusion of anions and cations.

  2. Ultrafast vibrational spectroscopy (2D-IR) of CO{sub 2} in ionic liquids: Carbon capture from carbon dioxide’s point of view

    SciTech Connect

    Brinzer, Thomas; Berquist, Eric J.; Ren, Zhe; Dutta, Samrat; Johnson, Clinton A.; Krisher, Cullen S.; Lambrecht, Daniel S.; Garrett-Roe, Sean

    2015-06-07

    The CO{sub 2}ν{sub 3} asymmetric stretching mode is established as a vibrational chromophore for ultrafast two-dimensional infrared (2D-IR) spectroscopic studies of local structure and dynamics in ionic liquids, which are of interest for carbon capture applications. CO{sub 2} is dissolved in a series of 1-butyl-3-methylimidazolium-based ionic liquids ([C{sub 4}C{sub 1}im][X], where [X]{sup −} is the anion from the series hexafluorophosphate (PF{sub 6}{sup −}), tetrafluoroborate (BF{sub 4}{sup −}), bis-(trifluoromethyl)sulfonylimide (Tf{sub 2}N{sup −}), triflate (TfO{sup −}), trifluoroacetate (TFA{sup −}), dicyanamide (DCA{sup −}), and thiocyanate (SCN{sup −})). In the ionic liquids studied, the ν{sub 3} center frequency is sensitive to the local solvation environment and reports on the timescales for local structural relaxation. Density functional theory calculations predict charge transfer from the anion to the CO{sub 2} and from CO{sub 2} to the cation. The charge transfer drives geometrical distortion of CO{sub 2}, which in turn changes the ν{sub 3} frequency. The observed structural relaxation timescales vary by up to an order of magnitude between ionic liquids. Shoulders in the 2D-IR spectra arise from anharmonic coupling of the ν{sub 2} and ν{sub 3} normal modes of CO{sub 2}. Thermal fluctuations in the ν{sub 2} population stochastically modulate the ν{sub 3} frequency and generate dynamic cross-peaks. These timescales are attributed to the breakup of ion cages that create a well-defined local environment for CO{sub 2}. The results suggest that the picosecond dynamics of CO{sub 2} are gated by local diffusion of anions and cations.

  3. The BPS spectrum of the 4d {N}=2 SCFT's H 1, H 2, D 4, E 6, E 7, E 8

    NASA Astrophysics Data System (ADS)

    Cecotti, Sergio; Del Zotto, Michele

    2013-06-01

    Extending results of 1112.3984, we show that all rank 1 {N}=2 SCFT's in the sequence H 1, H 2, D 4 E 6, E 7, E 8 have canonical finite BPS chambers containing precisely 2 h(F) = 12(∆ - 1) hypermultiplets. The BPS spectrum of the canonical BPS chambers saturates the conformal central charge c, and satisfies some intriguing numerology.

  4. Inertial solvation in femtosecond 2D spectra

    NASA Astrophysics Data System (ADS)

    Hybl, John; Albrecht Ferro, Allison; Farrow, Darcie; Jonas, David

    2001-03-01

    We have used 2D Fourier transform spectroscopy to investigate polar solvation. 2D spectroscopy can reveal molecular lineshapes beneath ensemble averaged spectra and freeze molecular motions to give an undistorted picture of the microscopic dynamics of polar solvation. The transition from "inhomogeneous" to "homogeneous" 2D spectra is governed by both vibrational relaxation and solvent motion. Therefore, the time dependence of the 2D spectrum directly reflects the total response of the solvent-solute system. IR144, a cyanine dye with a dipole moment change upon electronic excitation, was used to probe inertial solvation in methanol and propylene carbonate. Since the static Stokes' shift of IR144 in each of these solvents is similar, differences in the 2D spectra result from solvation dynamics. Initial results indicate that the larger propylene carbonate responds more slowly than methanol, but appear to be inconsistent with rotational estimates of the inertial response. To disentangle intra-molecular vibrations from solvent motion, the 2D spectra of IR144 will be compared to the time-dependent 2D spectra of the structurally related nonpolar cyanine dye HDITCP.

  5. The pH-Dependent Picosecond Structural Dynamics in the Distal Pocket of Nitrophorin 4 Investigated by 2D IR Spectroscopy

    PubMed Central

    Cheng, Mark; Brookes, Jennifer F.; Montfort, William R.; Khalil, Munira

    2013-01-01

    Nitrophorin 4 (NP4) belongs to a family of pH-sensitive, nitric oxide (NO) transporter proteins which undergo a large structural change from a closed to an open conformation at high pH to allow for NO delivery. Measuring the pH-dependent structural dynamics in NP4–NO around the ligand binding site is crucial for developing a mechanistic understanding of NO binding and release. In this study we use coherent two-dimensional infrared (2D IR) spectroscopy to measure picosecond structural dynamics sampled by the nitrosyl stretch in NP4–NO as a function of pH at room temperature. Our results show that both the closed and open conformers of the protein are present at low (pD 5.1) and high (pD 7.9) pH conditions. The closed and open conformers are characterized by two frequencies of the nitrosyl stretching vibration labeled A0 and A1, respectively. Analysis of the 2D IR lineshapes reveals that at pD 5.1, the closed conformer experiences structural fluctuations arising from solvation dynamics on a ∼3 ps timescale. At pD 7.9, both the open and closed conformers exhibit fluctuations on a ∼1 ps timescale. At both pD conditions, the closed conformers maintain a static distribution of structures within the experimental time window of 100 ps. This is in contrast to the open conformer, which is able to interconvert among its sub-states on a ∼100 ps timescale. Our results directly measure the timescales of solvation dynamics in the distal pocket, the flexibility of the open conformation at high pH, and the rigidity of the closed conformers at both pH conditions. We discuss how the pH dependent equilibrium structural fluctuations of the nitrosyl ligand measured in this study are related to the uptake and delivery of nitric oxide in Nitrophorin 4. PMID:23885811

  6. Parallel β-sheet vibrational couplings revealed by 2D IR spectroscopy of an isotopically labeled macrocycle: Quantitative benchmark for the interpretation of amyloid and protein infrared spectra

    PubMed Central

    Woys, Ann Marie; Almeida, Aaron M.; Wang, Lu; Chiu, Chi Cheng; McGovern, Michael; de Pablo, Juan J.; Skinner, James L.; Gellman, Samuel H.; Zanni, Martin T.

    2012-01-01

    Infrared spectroscopy is playing an important role in the elucidation of amyloid fiber formation, but the coupling models that link spectra to structure are not well tested for parallel β-sheets. Using a synthetic macrocycle that enforces a two stranded parallel β-sheet conformation, we measured the lifetimes and frequency for six combinations of doubly 13C=18O labeled amide I modes using 2D IR spectroscopy. The average vibrational lifetime of the isotope labeled residues was 550 fs. The frequen cies of the labels ranged from 1585 to 1595 cm−1, with the largest frequency shift occurring for in-register amino acids. The 2D IR spectra of the coupled isotope labels were calculated from molecular dynamics simulations of a series of macrocycle structures generated from replica exchange dynamics to fully sample the conformational distribution. The models used to simulate the spectra include through-space coupling, through-bond coupling, and local frequency shifts caused by environment electrostatics and hydrogen bonding. The calculated spectra predict the linewidths and frequencies nearly quantitatively. Historically, the characteristic features of β-sheet infrared spectra have been attributed to through-space couplings such as transition dipole coupling. We find that frequency shifts of the local carbonyl groups due to nearest neighbor couplings and environmental factors are more important, while the through space couplings dictate the spectral intensities. As a result, the characteristic absorption spectra empirically used for decades to assign parallel β-sheet secondary structure arises because of a redistribution of oscillator strength, but the through-space couplings do not themselves dramatically alter the frequency distribution of eigenstates much more than already exists in random coil structures. Moreover, solvent exposed residues have amide I bands with >20 cm−1 linewidth. Narrower linewidths indicate that the amide I backbone is solvent protected

  7. A New Blind 2D-RAKE Receiver Based on CMA Criteria for Spread Spectrum Systems Suitable for Software Defined Radio Architecture

    NASA Astrophysics Data System (ADS)

    Takayama, Kei; Kamiya, Yukihiro; Fujii, Takeo; Suzuki, Yasuo

    Spread Spectrum (SS) has been widely used for various wireless systems such as cellular systems, wireless local area network (LAN) and so on. Using multiple antennas at the receiver, two-dimensional (2D) RAKE is realized over the time- and the space-domain. However, it should be noted that the 2D-RAKE receiver must detect the bit timing prior to the RAKE combining. In case of deep fading, it is often difficult to detect it due to low signal-to-noise power ratio (SNR). To solve this problem, we propose a new blind 2D-RAKE receiver based on the constant modulus algorithm (CMA). Since it does not need a priori bit timing detection, it is possible to compensate frequency selective fading even in very low SNR environments. The proposed method is particularly suitable for the software defined radio (SDR) architecture. The performance of the proposed method is investigated through computer simulations.

  8. Interplay of Ion-Water and Water-Water Interactions within the Hydration Shells of Nitrate and Carbonate Directly Probed with 2D IR Spectroscopy.

    PubMed

    Fournier, Joseph A; Carpenter, William; De Marco, Luigi; Tokmakoff, Andrei

    2016-08-01

    The long-range influence of ions in solution on the water hydrogen-bond (H-bond) network remains a topic of vigorous debate. Recent spectroscopic and theoretical studies have, for the most part, reached the consensus that weakly coordinating ions only affect water molecules in the first hydration shell. Here, we apply ultrafast broadband two-dimensional infrared (2D IR) spectroscopy to aqueous nitrate and carbonate in neat H2O to study the solvation structure and dynamics of ions on opposite ends of the Hofmeister series. By exciting both the water OH stretches and ion stretches and probing the associated cross-peaks between them, we are afforded a comprehensive view into the complex nature of ion hydration. We show in aqueous nitrate that weak ion-water H-bonding leads to water-water interactions in the ion solvation shells dominating the dynamics. In contrast, the carbonate CO stretches show significant mixing with the water OH stretches due to strong ion-water H-bonding such that the water and ion modes are intimately correlated. Further, the excitonic nature of vibrations in neat H2O, which spans multiple water molecules, is an important factor in describing ion hydration. We attribute these complex dynamics to the likely presence of intermediate-range effects influenced by waters beyond the first solvation shell. PMID:27404015

  9. The first astrophysical detection, terahertz spectrum, and database for the monodeuterated species of methyl formate HCOOCH{sub 2}D

    SciTech Connect

    Coudert, L. H.; Drouin, B. J.; Tercero, B.; Cernicharo, J.; Guillemin, J.-C.; Motiyenko, R. A.; Margulès, L.

    2013-12-20

    Based on new measurements carried out in the laboratory from 0.77 to 1.2 THz and on a line-frequency analysis of these new data, along with previously published data, we build a line list for HCOOCH{sub 2}D that leads to its first detection in the Orion KL nebula. The observed lines, both in space and in the laboratory, involve the cis D-in-plane and trans D-out-of-plane conformations of HCOOCH{sub 2}D and the two tunneling states arising from the large-amplitude motion connecting the two trans configurations. The model used in the line position calculation accounts for both cis and trans conformations, as well as the large-amplitude motion.

  10. Application of Mobility Spectrum Analysis to Modern Multi-layered IR Device Material

    NASA Astrophysics Data System (ADS)

    Brown, Alexander Earl

    Modern detector materials used for infrared (IR) imaging purposes contain complex multi-layered architectures, making more robust characterization techniques necessary. In order to determine mutli-carrier transport properties in the presence of mixed conduction, variable-field Hall characterization can be performed and then analyzed using mobility spectrum analysis to extract parameters of interest. Transport parameters are expected to aid in modeling and simulation of materials and can be used in optimization of particular problem areas. The performances of infrared devices ultimately depend on transport mechanisms, so an accurate determination becomes paramount. This work focuses on the characterization of two materials at the forefront of IR detectors; incumbent, tried and true, HgCdTe technologies and emergent III-V based superlattice structures holding much promise for future detector purposes. Ex-situ doped long-wave planar devices and in-situ doped mid-wave dual-layer heterojunctions (P+/n architecture) HgCdTe structures are explored with regards to substrate choice, namely lattice-matched CdZnTe and lattice-mismatched Si or GaAs. A detailed study of scattering mechanisms reveal that growth on lattice-mismatched substrates leads to dislocation scattering limited mobility at low temperature, correlating with extrinsically limited minority carrier lifetime and excesses diode tunneling current, resulting in overall lower performance. Mobility spectrum analysis proves to be an effective diagnostic on performance as well as providing insight in surface, substrate-interface, and minority carrier transport. Two main issues limiting performance of III-V based superlattices are addressed; high residual doping backgrounds and surface passivation. Mobility spectrum analysis proves to be a reliable method of determining background doping levels. Modest improvements are obtained via post-growth thermal annealing, but results suggest future efforts should be placed upon

  11. Using optical parametric oscillators (OPO) for wavelength shifting IR images to visible spectrum

    SciTech Connect

    McDonald, T.E. Jr.; Numkena, D.M.; Payton, J.; Yates, G.J.; Zagarino, P.

    1998-12-31

    The authors have carried out preliminary investigations into coherent imaging using Optical Parametric Oscillators (OPO) for wavelength conversion of near IR images to visible spectrum. A nonlinear crystal, second harmonic generator (SHG), was used for degenerate optical parametric up-conversion. A Potassium Titanyl Phosphate (KTP) doubling crystal was used to convert incident 1,540 nm flux to 772 nm. Experiments included investigation of spatial resolution and responsivity of the OPO. Spatial resolution of 1.3 1p/mm was attained in both horizontal and vertical axis. Measured responsivity for this OPO configuration compared well with that attained from image intensifier-based systems. Equipment used for this experiment included an ORION SB2-2R pulsed solid state laser used as a light source and a CCD camera and frame grabber to capture and record all data. The experiment and results are discussed.

  12. Analysis of the High-Resolution Fourier Spectrum of the ν6 Band of the cis-C2h2d2 Molecule

    NASA Astrophysics Data System (ADS)

    Konov, I. A.; Chertavskikh, Yu. V.; Fomchenko, A. L.; Aslapovskaya, Yu. S.; Zhdanovich, S. A.; Sydow, C.

    2016-03-01

    The spectrum of the ν6 band of the cis-ethylene-d2 molecule (cis-C2H2D2) is recorded with a Bruker IFS 125 HR Fourier spectrometer in the range 580-1210 cm-1 with resolution of 0.0021 cm-1. An analysis of the experimental spectrum allows more than 1500 transitions belonging to this band to be assigned that by more than 2.5 times greater than it has been known in the literature so far. The obtained experimental data are then used to determine the model parameters of the molecule (the effective Hamiltonian in the A-reduction and I'- representation). Strong resonance interaction with the band ν4 forbidden in absorption by the symmetry of a molecule is taken into account. 10 parameters of the Hamiltonian obtained by solving inverse spectroscopic problem reproduce 427 initial experimental energies (more than 1500 transitions) with accuracy close to the experimental uncertainty.

  13. Method of spectral subtraction of gas-phase Fourier transform infrared (FT-IR) spectra by minimizing the spectrum length.

    PubMed

    Kozlov, Denis; Besov, Alexey

    2011-08-01

    A new method of spectral subtraction for gas-phase Fourier transform infrared (FT-IR) spectra was developed for long-path gas measurements. The method is based on minimization of the length of the spectrum that results from subtracting the spectrum of an individual component of a gas mixture (water, CO(2), etc.) from the experimental spectrum of the mixture. For this purpose a subtraction coefficient (k(min)) is found for which the length of the resulting spectrum is minimized. A mathematical simulation with two Lorentzian absorption bands was conducted and the limits of application for the proposed method were determined. Two experimental examples demonstrate that a successful result could be achieved in the case when the subtrahend spectrum contains a number of narrow absorption bands (such as the spectrum of water vapor). PMID:21819781

  14. A SPITZER/IRS SPECTRUM OF THE 2008 LUMINOUS TRANSIENT IN NGC 300: CONNECTION TO PROTO-PLANETARY NEBULAE

    SciTech Connect

    Prieto, Jose L.; Sellgren, Kris; Thompson, Todd A.; Kochanek, Christopher S.

    2009-11-10

    We present a Spitzer/IRS low-resolution mid-infrared (mid-IR) spectrum (5-14 mum) of the luminous transient discovered in the nearby galaxy NGC 300 in 2008 May. This transient had peak luminosity M{sub V} approx = -13, showed an optical spectrum dominated by relatively narrow Balmer and Ca II lines in emission, and its progenitor was identified in pre-explosion images as a dust-enshrouded approx10 M {sub sun} star, characteristics that make it a twin of SN 2008S. The Spitzer spectrum, obtained three months after discovery, shows that the transient is very luminous in the mid-IR. Furthermore, the spectrum shows strong, broad emission features at 8 mum and 12 mum that are observed in Galactic carbon-rich proto-planetary nebulae. Combining these data with published optical and near-IR photometry obtained at the same epoch, we find that the mid-IR excess traced by the Spitzer spectrum accounts for approx20% of the total energy output. This component can be well explained by emission from approx3 x 10{sup -4} M{sub sun} of pre-existing progenitor dust at temperature T approx 400 K. The spectral energy distribution of the transient also shows a near-IR excess that can be explained by emission from newly formed dust in the ejecta. Alternatively, both the near-IR and mid-IR excesses can together be explained by a single pre-existing geometrically thick dust shell. In light of the new observations obtained with Spitzer, we revisit the analysis of the optical spectra and kinematics, which were compared to the massive yellow-hypergiant IRC+10420 in previous studies. We show that proto-planetary nebulae share many properties with the NGC 300 transient and SN 2008S. We conclude that even though the explosion of a massive star (M approx> 10 M{sub sun}) cannot be ruled out, an explosive event on a massive (M approx 6-10 M{sub sun}) carbon-rich AGB/super-AGB or post-AGB star is consistent with all observations of the transients and their progenitors presented thus far.

  15. CH3D Near Infrared Cavity Ring-Down Spectrum Reanalysis and Ir-Ir Double Resonance

    NASA Astrophysics Data System (ADS)

    Yang, Shaoyue; Schwartz, George; Lehmann, Kevin

    2015-06-01

    As one of the most important hydrocarbon prototype molecules, CH3D's overtone band in near infrared region has not been well studied. Various methods were used to help identifying transitions from previous cavity ring down spectrum of CH3D in the near infrared region. Symmetric top molecules' Hamiltonian diagonal terms for the ground state, perpendicular state and parallel state were simulated by software PGopher. Combination differences were used to find possible pairs of transitions starting from adjacent ground state and ending in same excited states. Also we introduced our temperature controlled spectrum setup for ground state energy and rotational quanta prediction from temperature dependence, and proven to be working well for lower J levels for CH4. At last, we set up a double resonance system, using two lasers (3.3 and 1.65 μm, respectively) to excite transitions from the same ground state, to provide strong proof for the lower state quanta.

  16. Association between IRS1 Gene Polymorphism and Autism Spectrum Disorder: A Pilot Case-Control Study in Korean Males

    PubMed Central

    Park, Hae Jeong; Kim, Su Kang; Kang, Won Sub; Park, Jin Kyung; Kim, Young Jong; Nam, Min; Kim, Jong Woo; Chung, Joo-Ho

    2016-01-01

    The insulin-like growth factor (IGF) pathway is thought to play an important role in brain development. Altered levels of IGFs and their signaling regulators have been shown in autism spectrum disorder (ASD) patients. In this study, we investigated whether coding region single-nucleotide polymorphisms (cSNPs) of the insulin receptor substrates (IRS1 and IRS2), key mediators of the IGF pathway, were associated with ASD in Korean males. Two cSNPs (rs1801123 of IRS1, and rs4773092 of IRS2) were genotyped using direct sequencing in 180 male ASD patients and 147 male control subjects. A significant association between rs1801123 of IRS1 and ASD was shown in additive (p = 0.022, odds ratio (OR) = 0.66, 95% confidence interval (CI) = 0.46–0.95) and dominant models (p = 0.013, OR = 0.57, 95% CI = 0.37–0.89). Allele frequency analysis also showed an association between rs1801123 and ASD (p = 0.022, OR = 0.66, 95% CI = 0.46–0.94). These results suggest that IRS1 may contribute to the susceptibility of ASD in Korean males. PMID:27483248

  17. Association between IRS1 Gene Polymorphism and Autism Spectrum Disorder: A Pilot Case-Control Study in Korean Males.

    PubMed

    Park, Hae Jeong; Kim, Su Kang; Kang, Won Sub; Park, Jin Kyung; Kim, Young Jong; Nam, Min; Kim, Jong Woo; Chung, Joo-Ho

    2016-01-01

    The insulin-like growth factor (IGF) pathway is thought to play an important role in brain development. Altered levels of IGFs and their signaling regulators have been shown in autism spectrum disorder (ASD) patients. In this study, we investigated whether coding region single-nucleotide polymorphisms (cSNPs) of the insulin receptor substrates (IRS1 and IRS2), key mediators of the IGF pathway, were associated with ASD in Korean males. Two cSNPs (rs1801123 of IRS1, and rs4773092 of IRS2) were genotyped using direct sequencing in 180 male ASD patients and 147 male control subjects. A significant association between rs1801123 of IRS1 and ASD was shown in additive (p = 0.022, odds ratio (OR) = 0.66, 95% confidence interval (CI) = 0.46-0.95) and dominant models (p = 0.013, OR = 0.57, 95% CI = 0.37-0.89). Allele frequency analysis also showed an association between rs1801123 and ASD (p = 0.022, OR = 0.66, 95% CI = 0.46-0.94). These results suggest that IRS1 may contribute to the susceptibility of ASD in Korean males. PMID:27483248

  18. Hydrogenated graphene on Ir(111): A high-resolution electron energy loss spectroscopy study of the vibrational spectrum

    NASA Astrophysics Data System (ADS)

    Kyhl, Line; Balog, Richard; Angot, Thierry; Hornekær, Liv; Bisson, Régis

    2016-03-01

    Hydrogen atom adsorption on high-quality graphene on Ir(111) [gr/Ir(111)] is investigated using high-resolution electron energy loss spectroscopy. The evolution of the vibrational spectrum, up to 400 meV, of gr/Ir(111) upon increasing hydrogen atom exposures is measured. The two dominant binding configurations of atomic hydrogen are identified as (1) graphanelike hydrogen clusters on the parts of the graphene more strongly interacting with the Ir(111) surface and (2) dimers bound more weakly to the freestanding parts of the graphene. The graphanelike surface structures lead to increased corrugation of the graphene sheet, yielding graphane-related phonon components. Additionally, a recent theoretical prediction of the existence of a bending character for a LO/TO graphane chair phonon mode is experimentally verified. No clear evidence was found for hydrogen bound on both sides of a high-quality graphene sheet and phonon features strongly suggest interactions between graphanelike hydrogen clusters and Ir atoms in the substrate.

  19. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser-Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations.

    PubMed

    Najbauer, Eszter E; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György

    2015-08-20

    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, six conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-life of (3.7 ± 0.5) × 10(3) s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser-induced conversions revealed that the excitation of the stretching overtone of both the side chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations. PMID:26201050

  20. An unambiguous identification of 2D electron gas features in the photoluminescence spectrum of AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Jana, Dipankar; Sharma, T. K.

    2016-07-01

    A fast and non-destructive method for probing the true signatures of 2D electron gas (2DEG) states in AlGaN/GaN heterostructures is presented. Two broad features superimposed with interference oscillations are observed in the low temperature photoluminescence (PL) spectrum. The two features are identified as the ground and excited 2DEG states which are confirmed by comparing the PL spectra of as-grown and top barrier layer etched samples. Broad PL features disappear at a certain temperature along with the associated interference oscillations. Furthermore, the two broad PL features depicts specific temperature and excitation intensity dependencies which make them easily distinguishable from the bandedge excitonic or defect related PL features. The presence of strong interference oscillations associated with the 2DEG PL features is explained by considering the localized generation of PL signal at the AlGaN/GaN heterointerface. Finally, a large value of the polarization induced electric field of ~1.01 MV cm‑1 is reported from PL measurements for AlGaN/GaN HEMT structures. It became possible only when the true identification of 2DEG features was made possible by the proposed method.

  1. Diogenite-like Features in the Spitzer IRS (5-35 micrometers) Spectrum of 956 ELISA

    NASA Technical Reports Server (NTRS)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nicholas A.

    2009-01-01

    We report preliminary results from the Spitzer Infrared Spectrograph (IRS) observations of the V-type asteroid 956 Elisa. Elisa was observed as part of a campaign to measure the 5.2-38 micron spectra of small basaltic asteroids with the Spitzer IRS. Targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vesroids"), several outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid 4055 Magellan.

  2. Increasing the quantitative credibility of open-path FT-IR spectroscopic data with focus on several properties of the background spectrum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The choice of the type of background spectrum affects the credibility of open-path Fourier transform infrared (OP/FT-IR) spectroscopic data, and consequently the quality of data analysis. We systematically investigated several properties of the background spectrum. The results show that a short-pa...

  3. Experimental Raman and IR spectral and theoretical studies of vibrational spectrum and molecular structure of Pantothenic acid (vitamin B5)

    NASA Astrophysics Data System (ADS)

    Srivastava, Mayuri; Singh, N. P.; Yadav, R. A.

    2014-08-01

    Vibrational spectrum of Pantothenic acid has been investigated using experimental IR and Raman spectroscopies and density functional theory methods available with the Gaussian 09 software. Vibrational assignments of the observed IR and Raman bands have been proposed in light of the results obtained from computations. In order to assign the observed IR and Raman frequencies the potential energy distributions (PEDs) have also been computed using GAR2PED software. Optimized geometrical parameters suggest that the overall symmetry of the molecule is C1. The molecule is found to possess eight conformations. Conformational analysis was carried out to obtain the most stable configuration of the molecule. In the present paper the vibrational features of the lowest energy conformer C-I have been studied. The two methyl groups have slightly distorted symmetries from C3V. The acidic Osbnd H bond is found to be the smallest one. To investigate molecular stability and bond strength we have used natural bond orbital analysis (NBO). Charge transfer occurs in the molecule have been shown by the calculated highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energies. The mapping of electron density iso-surface with electrostatic potential (ESP), has been carried out to get the information about the size, shape, charge density distribution and site of chemical reactivity of the molecule.

  4. Middle UV to near-IR spectrum of electron-excited SO2

    USGS Publications Warehouse

    Ajello, J.M.; Aguilar, A.; Mangina, R.S.; James, G.K.; Geissler, P.; Trafton, L.

    2008-01-01

    We investigated the electron impact–induced fluorescence spectrum of SO2 to provide excitation cross sections for modeling Io's emission spectrum and analyzing Cassini Imaging Science Subsystem observations. The electron-excited middle-ultraviolet visible optical near-infrared (VOIR) emission spectrum of SO2 gas was generated in the laboratory and studied from 2000 to 11,000 Å at a resolution of Δλ ∼ 2.5 Å full width at half maximum (FWHM). The VOIR laboratory spectrum longward of 6000 Å consists entirely of S I, II and O I, II multiplets for electron impact energies above ∼15 eV. Between 2000 and 6000 Å, we find previously identified molecular bands from both SO and SO2. This work represents a significant improvement in spectral resolution over our earlier work done at 18 Å FWHM. From a measurement of the medium-resolution spectrum, we provide detailed 25- and 100-eV emission cross sections for spectral features from 2000 to 11,000 Å. On the basis of these data, we suggest future ground-based and satellite telescopic observations in the VOIR that are of promise for understanding Io's atmosphere.

  5. Middle UV to Near-IR Spectrum of Electron-Excited SO2

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; Aguilar, Alejandro; Mangina, Rao S.; James, Geoffrey K.; Geissler, Paul; Trafton, Laurence

    2008-01-01

    We investigated the electron impact-induced fluorescence spectrum of SO2 to provide excitation cross sections for modeling Io's mission spectrum and analyzing Cassini Imaging Science Subsystem observations. The electron-excited middle-ultraviolet visible optical near-infrared (VOIR) emission spectrum of SO2 gas was generated in the laboratory and studied from 2000 to 11,000 A at a resolution of (Delta)(lamda) approximately 2.5 A full width at half maximum (FWHM). The VOIR laboratory spectrum longward of 6000 A consists entirely of S I, II and O I, II multiplets for electron impact energies above approximately 15 eV. Between 2000 and 6000 A, we find previously identified molecular bands from both SO and SO2. This work represents a significant improvement in spectral resolution over our earlier work done at 18 A FWHM. From a measurement of the medium-resolution spectrum, we provide detailed 25- and 100-eV emission cross sections for spectral features from 2000 to 11,000 A . On the basis of these data, we suggest future ground-based and satellite telescopic observations in the VOIR that are of promise for understanding Io's atmosphere.

  6. Quantum Local Monomer IR Spectrum of Liquid D2O at 300 K from 0 to 4000 cm(-1) Is in Near-Quantitative Agreement with Experiment.

    PubMed

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M

    2016-03-17

    The local monomer model is applied, with ab initio potential energy and dipole moment surfaces, to a calculation of the IR spectrum of liquid D2O at 300 K, over the spectral range 0 to 4000 cm(-1). The spectrum is an incoherent superposition of spectra of many monomers over snapshots of a molecular dynamics trajectory, where both intramolecular and intermolecular coupling in each monomer is treated. The comparison to experiment shows an unprecedented level of agreement for the stretch, bend, and libration bands and also the bend+libration and stretch+bend combination bands. This indicates that the incoherent approach captures much of the dynamics underlying the spectrum, provided monomer couplings are considered. The calculated spectrum is compared to the recently calculated IR spectrum of H2O, using the same method and potential energy and dipole moment surfaces, and shifts relative to that spectrum are presented and discussed. PMID:26906967

  7. Study of inclusion complex between 2,6-dinitrobenzoic acid and β-cyclodextrin by 1H NMR, 2D 1H NMR (ROESY), FT-IR, XRD, SEM and photophysical methods.

    PubMed

    Srinivasan, Krishnan; Stalin, Thambusamy

    2014-09-15

    The formation of host-guest inclusion complex of 2,6-dinitrobenzoic acid (2,6-DNB) with nano-hydrophobic cavity of β-cyclodextrin (β-CD) in solution phase has been studied by UV-visible spectroscopy and electrochemical analysis (cyclic voltammetry, CV). The effect of acid-base concentrations of 2,6-DNB has been studied in presence and absence of β-CD to determination for the ground state acidity constant (pKa). The binding constant of inclusion complex at 303 K was calculated using Benesi-Hildebrand plot and thermodynamic parameter (ΔG) was also calculated. The solid inclusion complex formation between β-CD and 2,6-DNB was confirmed by 1H NMR, 2D 1H NMR (ROESY), FT-IR, XRD and SEM analysis. A schematic representation of this inclusion process was proposed by molecular docking studies using patch dock server. PMID:24769381

  8. Study of inclusion complex between 2,6-dinitrobenzoic acid and β-cyclodextrin by 1H NMR, 2D 1H NMR (ROESY), FT-IR, XRD, SEM and photophysical methods

    NASA Astrophysics Data System (ADS)

    Srinivasan, Krishnan; Stalin, Thambusamy

    2014-09-01

    The formation of host-guest inclusion complex of 2,6-dinitrobenzoic acid (2,6-DNB) with nano-hydrophobic cavity of β-cyclodextrin (β-CD) in solution phase has been studied by UV-visible spectroscopy and electrochemical analysis (cyclic voltammetry, CV). The effect of acid-base concentrations of 2,6-DNB has been studied in presence and absence of β-CD to determination for the ground state acidity constant (pKa). The binding constant of inclusion complex at 303 K was calculated using Benesi-Hildebrand plot and thermodynamic parameter (ΔG) was also calculated. The solid inclusion complex formation between β-CD and 2,6-DNB was confirmed by 1H NMR, 2D 1H NMR (ROESY), FT-IR, XRD and SEM analysis. A schematic representation of this inclusion process was proposed by molecular docking studies using patch dock server.

  9. THEMIS-IR Emissivity Spectrum of a Large "Dark Streak" near Olympus Mons

    NASA Astrophysics Data System (ADS)

    Brumby, S. P.

    2004-03-01

    "Dark streaks" are unusual transient surface features found on Mars. We have obtained an infrared emissivity spectrum of a large dark streak on the north western edge of Olympus Mons, using imagery from the THEMIS instrument on the Mars Odyssey 2001 spacecraft.

  10. The IR emission spectrum of N2 excited under auroral conditions.

    NASA Technical Reports Server (NTRS)

    Cartwright, D. C.; Williams, W.; Trajmar, S.

    1972-01-01

    Recently determined experimental and theoretical cross sections for electron impact excitation of six triplet states of N2 (A, B, W, C, E, D) have been utilized to predict the absolute IR volume emission rates from N2 under nighttime auroral conditions. Secondary electron fluxes appropriate to an IBC II normal aurora were used in the calculations. The cascade contributions coupling the various electronic states were included as well as the most important quenching processes. The results indicate that the B yields reversibly A and W yields reversibly B cascade processes, which are important in the population of the A, B, and W states, produce appreciable radiation in the 1- to 5-micron wavelength region.

  11. Detection of the 2165 Inverse Centimeter (4.619 Micron) XCN Band in the Spectrum of L1551 IRS 5

    NASA Technical Reports Server (NTRS)

    Tegler, Stephen C.; Weintraub, David A.; Allamandola, Louis J.; Sandford, Scott A.; Rettig, Terrence W.; Campins, Humberto

    1993-01-01

    We report the detection of a broad absorption band at 2165 cm (4.619 microns) in the spectrum of L1551 IRS 5. New laboratory results over the 2200-2100 /cm wavenumber interval (4.55-4.76 microns), performed with realistic interstellar ice analogs, suggest that this feature is due to a CN-containing compound. We will refer to this compound as XCN. We also confirm the presence of frozen CO (both in nonpolar and polar matrices) through absorption bands at 2140 /cm (4.67 microns) and 2135 /cm (4.68 microns). The relative abundance of solid-state CO to frozen H2O is approx. 0.13 while the abundance of XCN seems comparable to that of frozen CO.

  12. Terpenes in the gas phase: The Far-IR spectrum of perillaldehyde

    NASA Astrophysics Data System (ADS)

    Huet, T. R.; Aviles Moreno, J.-R.; Pirali, O.; Tudorie, M.; Partal Ureña, F.; Lopez Gonzalez, J.-J.

    2012-07-01

    The far infrared spectrum of S-(-)-perillaldehyde, a monoterpene containing an aldehyde functional group, has been recorded in the gas phase using FTIR spectroscopy. The vibration signature of the three most populated rotamers has been observed and identified in the 30-650 cm-1 range. The vibration assignment was based on the scaled B3LYP/cc-pVDZ harmonic force field of Partal Ureña et al., 2008 [10]. Anharmonic contributions calculated at the HF/6-31+G* level were found negligible.

  13. [Measurements of IR absorption across section and spectrum simulation of lewisite].

    PubMed

    Zhang, Yuan-peng; Wang, Hai-tao; Zhang, Lin; Yang, Liu; Guo, Xiao-di; Bai, Yun; Sun, Hao

    2015-02-01

    The vapor infrared transmission spectra of varied concentration of lewisite-1 were measured by a long-path FT-IR spectrometer, and its characteristic frequencies are 814, 930, 1563 cm(-1); their infrared absorption cross section (a) were determined using Beer-Lambert law. The corresponding sigma values are 3.89 +/- 0.01, 1.43 +/- 0.06, 4.47 +/- 0.05 ( X 10(-20) cm2 x molecule(-1)). Two little teeny peaks, 1158, 1288 cm(-1) were found in the measured spectra. Density Functional Theory (DFT) was applied to calculated the infrared spectra of lewisite-1, -2, -3 on a b3lyp/6-311+g(d, p) level by Gauss09 package. The vibration modes were assigned by Gaussview5. 08. The calculated spectra and experimental spectra are in good agreement with each other in 600-1600 cm(-1) range, for the Person's r is 0.9991. The calculated spectra also showed three characteristic frequencies (293, 360, 374 cm(-1)) related to As atom. 0.977 was a scaling factor we determined for lewisite-1 through least-square error and its performance to scale lewisite-1, -2, -3 was acceptable. The results of this work are useful for monitoring environmental atmospheric concentrations of lewisite. PMID:25970914

  14. Intramolecular hydrogen bonding in 5-nitrosalicylaldehyde: IR spectrum and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Moosavi-Tekyeh, Zainab; Taherian, Fatemeh; Tayyari, Sayyed Faramarz

    2016-05-01

    The structural parameters, and vibrational frequencies of 5-nitrosalicylaldehyde (5NSA) were studied by the FT-IR and Raman spectra and the quantum chemical calculations carried out at the B3LYP/6-311++G(d,p) level of theory in order to investigate the intramolecular hydrogen bonding (IHB) present in its structure. The strength and nature of IHB in the optimized structure of 5NSA were studied in detail by means of the atoms in molecules (AIM) and the natural bond orbital (NBO) approaches. The results obtained were then compared with the corresponding data for its parent molecule, salicylaldehyde (SA). Comparisons made between the geometrical structures for 5NSA and SA, their OH/OD stretching and out-of-plane bending modes, their enthalpies for the hydrogen bond, and their AIM parameters demonstrated a stronger H-bonding in 5NSA compared with that in SA. The calculated binding enthalpy (ΔHbind) for 5NSA was -10.92 kcal mol-1. The observed νOH and γOH appeared at about 3120 cm-1 and 786 cm-1 respectively. The stretching frequency shift of H-bond formation was 426 cm-1 which is consistent with ΔHbind and the strength of H-bond in 5NSA. The delocalization energies and electron delocalization indices derived by the NBO and AIM approaches indicate that the resonance effects were responsible for the stronger IHB in 5NSA than in SA.

  15. Quantitative IR Spectrum and Vibrational Assignments for Glycolaldehyde Vapor: Glycolaldehyde Measurements in Biomass Burning Plumes

    SciTech Connect

    Johnson, Timothy J.; Sams, Robert L.; Profeta, Luisa T.; Akagi, Sheryl; Burling, Ian R.; Yokelson, Robert J.; Williams, Stephen D.

    2013-04-15

    Glycolaldehyde (GA, 2-hydroxyethanal, C2H4O2) is a semi-volatile molecule of atmospheric importance, recently proposed as a precursor in the formation of aqueous-phase secondary organic aerosol (SOA). There are few methods to measure glycolaldehyde vapor, but infrared spectroscopy has been used successfully. Using vetted protocols we have completed the first assignment of all fundamental vibrational modes and derived quantitative IR absorption band strengths using both neat and pressure-broadened GA vapor. Even though GA is problematic due to its propensity to both dimerize and condense, our intensities agree well with the few previously published values. Using the reference ν10 band Q-branch at 860.51 cm-1, we have also determined GA mixing ratios in biomass burning plumes generated by field and laboratory burns of fuels from the southeastern and southwestern United States, including the first field measurements of glycolaldehyde in smoke. The GA emission factors were anti-correlated with modified combustion efficiency confirming release of GA from smoldering combustion. The GA emission factors (g of GA emitted per kg dry biomass burned on a dry mass basis) had a low dependence on fuel type consistent with the production mechanism being pyrolysis of cellulose. GA was emitted at 0.23 ± 0.13% of CO from field fires and we calculate that it accounts for ~18% of the aqueous-phase SOA precursors that we were able to measure.

  16. VizieR Online Data Catalog: 12C16O lines in Arcturus IR spectrum

    NASA Astrophysics Data System (ADS)

    Tsuji T.

    2009-06-01

    Based on the Infrared Atlas of the Arcturus Spectrum by Hinkle, Wallace, and Livingston (1995, Cat. ), we measured line-depth, full-width at half-maximum (FWHM), and equivalent width (EW) of 12C16O lines including fundamental, first and second overtone bands, and the results are given in table2. We used the electronic version of the ratioed spectra in our measurement and the tabulated results are measured raw data without any correction yet. The resulting data are used to investigate the nature of the infrared spectrum of Arcturus. It is found that only the weak lines (log(W/nu)<-4.75) can be analyzed consistently on the basis of the classical line-formation theory and hence can be used to extract the nature of the photosphere: We found logAC=7.97 (on the scale of log AH=12.00), micro and macro turbulent velocities to be 1.87 and 3.47km/s, respectively, for the photosphere. The nature of CO lines, however, shows abrupt change at about log(W/nu)=-4.75: The EWs of the lines larger than this limit can no longer be accounted for by the photospheric parameters determined from the weaker lines. A more simple demonstration of this fact is that the curves-of-growth of overtone as well as of fundamental CO lines show unpredictable upturn at about log(W/nu)=-4.75. Similar unusual behaviors of empirical curves-of-growth are found in other red giant and supergiant stars, and it looks as if the curves-of-growth are composite of at least two components of different origins. We think it difficult to understand such empirical data as due to the classical photosphere alone, and infrared spectra of cool luminous stars including Arcturus should be hybrid in nature. Although strong lines of the CO fundamentals show strengthening, the weaker lines show slight weakening, and we consider a possibility that these results are due to absorption/emission by the molecular clouds formed in the extended atmosphere. In cooler giant and supergiant stars in which CO lines show

  17. Phase transition, thermodynamics properties and IR spectrum of α- and γ-RDX: First principles and MD studies

    NASA Astrophysics Data System (ADS)

    Yuan, Jiaonan; Ji, Guangfu; Chen, Xiangrong; Wei, Dongqing; Zhao, Feng; Wu, Qiang

    2016-01-01

    In present letter, based on density functional theory plus dispersion (DFT-D) and a self-consistent charge density-functional tight-binding (SCC-DFTB) method, the structural and electronic properties are reported, and the phase transition are investigated by analyzing its thermodynamics properties and IR spectrum of RDX. The anisotropy of α- and γ-RDX were discussed at 0-10 GPa. By fitting the third-order Birch-Murnaghan equation of states, the bulk modulus and its pressure derivative of RDX were determined. The α-RDX phase is found stable at ambient condition, however, under pressures, both the values of lattice constants a, b, c and the ΔEvdw at around 4 GPa show abrupt changes which indicate a structural transition occurred. By analyzing the linear compressibility of a, b, c axes at 0-8 GPa, one clearly see that the molecules in α-RDX phase underwent rotations and translational motion to their position in the γ-RDX phase at about 4 GPa, which validates the α-γ phase transition. The IR spectra of α-form and γ-form RDX was calculated by analyzing the trajectory of molecules motion, which also show the phase transition from the spectra changes. Employing the quasi-harmonic Debye model, the enthalpy and specific heat were investigated at various pressures of both phases. The condition of equal enthalpies in both phases also indicates the phase transition of α-form to γ-form at around 4 GPa. The variation of specific heat with temperature approaches to the classical Dulong-Petit's law at high temperature, while at low-temperature it obeys the Debye's T3 law.

  18. Optical properties in the visible and infrared spectrum of fiber-reinforced composites determined by combined photoacoustic and IR detection (abstract)

    NASA Astrophysics Data System (ADS)

    Gibkes, J.; Fotsing, J. L. N.; Dietzel, D.; Bein, B. K.; Pelzl, J.

    2003-01-01

    Carbon based fiber-reinforced composites are mostly used because of their particular mechanical properties combining a low specific weight with good elastic properties, namely from stability and break resistance. This combination allows applications which are not realizable with other materials. Other advantages are a low thermal expansion and a relatively high-temperature stability, which are the important properties for heat shields, e.g., when high heat pulses have to be absorbed. Such materials can be slightly transparent, both in the visible and the IR spectrum, which makes the thermal characterization extremely difficult. For this work, a measurement system has been developed which combines IR radiometric and photoacoustic detection in two geometrical configurations: (i) In the reflection configuration of thermal waves, where modulated heating in the visible spectrum and IR detection of the thermal wave take place at the same surface, the phase retardation measured by photoacoustics depends on the absorption coefficient in the visible spectrum βVIS whereas the phase measured by IR detection additionally depends on the absorption coefficient in the IR spectrum βIR, and (ii) in the transmission configuration of thermal waves, where modulated heating and detection take place on the opposite surfaces of a sample of finite thickness, information on the integral thermal properties, namely the thermal diffusivity α=k/(ρc) and the effusivity e=(kρc)1/2 is obtained from frequency-dependent measurements of the amplitude and phase retardation of the thermal wave. Here k, ρ, and c are the thermal conductivity, mass density, and specific heat capacity. The amplitude detected by IR radiometry additionally depends on the emissivity ɛ, whereas the photoacoustic amplitude is mostly independent of the emissivity. By combining photoacoustic [J. Gibkes, B. K. Bein, D. Krüger, and J. Pelzl, Carbon 31, 801 (1993)] and IR detection [J. Bolte, J. H. Gu, and B. K. Bein, High

  19. Adding a dimension to the infrared spectra of interfaces using heterodyne detected 2D sum-frequency generation (HD 2D SFG) spectroscopy

    PubMed Central

    Xiong, Wei; Laaser, Jennifer E.; Mehlenbacher, Randy D.; Zanni, Martin T.

    2011-01-01

    In the last ten years, two-dimensional infrared spectroscopy has become an important technique for studying molecular structures and dynamics. We report the implementation of heterodyne detected two-dimensional sum-frequency generation (HD 2D SFG) spectroscopy, which is the analog of 2D infrared (2D IR) spectroscopy, but is selective to noncentrosymmetric systems such as interfaces. We implement the technique using mid-IR pulse shaping, which enables rapid scanning, phase cycling, and automatic phasing. Absorptive spectra are obtained, that have the highest frequency resolution possible, from which we extract the rephasing and nonrephasing signals that are sometimes preferred. Using this technique, we measure the vibrational mode of CO adsorbed on a polycrystalline Pt surface. The 2D spectrum reveals a significant inhomogenous contribution to the spectral line shape, which is quantified by simulations. This observation indicates that the surface conformation and environment of CO molecules is more complicated than the simple “atop” configuration assumed in previous work. Our method can be straightforwardly incorporated into many existing SFG spectrometers. The technique enables one to quantify inhomogeneity, vibrational couplings, spectral diffusion, chemical exchange, and many other properties analogous to 2D IR spectroscopy, but specifically for interfaces. PMID:22143772

  20. Mineralogy and Thermal Properties of V-Type Asteroid 956 Elisa: Evidence for Diogenitic Material from the Spitzer IRS (5-35 Micrometers) Spectrum

    NASA Technical Reports Server (NTRS)

    Lim, Lucy F.; Emery, Joshua P.; Moskovitz, Nicholas A.

    2010-01-01

    We present the thermal infrared (5-35 micrometer) spectrum of 956 Elisa as measured by the Spitzer Infrared Spectrograph ("IRS"; Houck,1.R. et .11. [20041. Astrophys, 1. SuppL 154, 18-24) together with new ground-based lightcurve data and near-IR spectra. From the visible lightcurve photometry, we determine a rotation period of 16.494 +/- 0.001 h, identify the rotational phase of the Spitzer observations, and estimate the visible absolute magnitude (Hv) at that rotational phase to be 12.58 +/- 0.04. From radiometric analysis of the thermal flux spectrum, we find that at the time of observation 956 Elisa had a projected radius of 5.3 +/- 0.4 km with a visible albedo pv = 0.142+/- 0.022, significantly lower than that of the prototype V-type asteroid, 4 Vesta. (This corresponds to a radius of 5.2 +/- 0.4 km at lightcurve mean.) Analysis with the standard thermal model (STM) results in a sub-solar temperature of 292.3 +/- 2.8 K and beaming parameter eta = 1.16 +/- 0.05. Thermophysical modeling places a lower limit of 20 J m(exp -2)K(exp -1)s(exp -1/2) on the thermal inertia of the asteroid's surface layer (if the surface is very smooth) but more likely values fall between 30 and 150 J m(exp -2)K(exp -1)s(exp -1/2) depending on the sense of rotation. The emissivity spectrum, calculated by dividing the measured thermal flux spectrum by the modeled thermal continuum, exhibits mineralogically interpretable spectral features within the 9-12 micrometer reststrahlen band, the 15-16.5 micrometer Si-O-Si stretching region, and the 16-25 micrometer reststrahlen region that are consistent with pyroxene of diogenitic composition: extant diogenitic pyroxenes fall within the narrow compositional range W0(sub 2+/-1)En(sub 74+/-2)Fs(sub 24+/-1). Spectral deconvolution of the 9-12 micrometer reststrahlen features indicates that up to approximately 20% olivine may also be present, suggesting an olivine-diogenite-like mineralogy. The mid-IR spectrum is inconsistent with non

  1. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    SciTech Connect

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm{sup −1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  2. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-05-01

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm-1 is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  3. Multi-spectrum retrieval of Venus IR surface emissivity maps from VIRTIS/VEX nightside measurements at Themis Regio

    NASA Astrophysics Data System (ADS)

    Kappel, David; Arnold, Gabriele; Haus, Rainer

    2016-02-01

    Surface emissivity maps in the infrared can contribute to explore Venus' geology. Nightside radiance spectra at Themis Regio acquired by the IR mapping channel of the Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS-M-IR) aboard Venus EXpress (VEX) are used to derive emissivity data from the three accessible spectral surface windows at 1.02, 1.10, and 1.18 μm. The measured spectra are simulated by applying a full radiative transfer model. Neglecting geologic activity, a multi-spectrum retrieval algorithm is utilized to determine the emissivity maps of the surface target as parameter vectors that are common to many spectrally resolved images that cover this target. Absolute emissivity values are difficult to obtain due to strong interferences from other parameters. The true emissivity mean of the target cannot be retrieved, nor can the emissivity mean of a retrieved map be strictly preset. The retrieved map can exhibit trends with latitude and topography that are probably artificial. Once the trends have been removed in a post-processing step, it can be observed that the magnitude of the resulting spatial emissivity fluctuations around their mean value increases with increasing mean value. A linear transformation is applied that converts the de-trended map to exhibit a defined emissivity mean value called reference emissivity, here 0.5, yielding the 'renormalized emissivity map' with accordingly transformed fluctuations. It is verified that renormalized emissivity maps are largely independent of the emissivity mean before renormalization, of modifications to interfering atmospheric, surface, and instrumental parameters, and of selected details of the retrieval pipeline and data calibration and preprocessing. Extremely large emissivity retrieval errors due to imperfect or unconsidered forward model parameters are effectively avoided. If the absolute emissivity at a given bin of the target were known, the absolute emissivity map of the entire target could be

  4. Fourier transform two-dimensional electronic-vibrational spectroscopy using an octave-spanning mid-IR probe.

    PubMed

    Gaynor, James D; Courtney, Trevor L; Balasubramanian, Madhumitha; Khalil, Munira

    2016-06-15

    The development of coherent Fourier transform two-dimensional electronic-vibrational (2D EV) spectroscopy with acousto-optic pulse-shaper-generated near-UV pump pulses and an octave-spanning broadband mid-IR probe pulse is detailed. A 2D EV spectrum of a silicon wafer demonstrates the full experimental capability of this experiment, and a 2D EV spectrum of dissolved hexacyanoferrate establishes the viability of our 2D EV experiment for studying condensed phase molecular ensembles. PMID:27304316

  5. Increasing the quantitative credibility of open-path Fourier transform infrared (FT-IR) spectroscopic data, with focus on several properties of the background spectrum.

    PubMed

    Shao, Limin; Wang, Wanping; Griffiths, Peter R; Leytem, April B

    2013-03-01

    The choice of the type of background spectrum affects the credibility of open-path Fourier transform infrared spectroscopy (OP/FT-IR) data, and consequently, the quality of data analysis. We systematically investigated several properties of the background spectrum. The results show that a short-path background measured with the lowest amplifier gain could significantly reduce noise in the calculated absorbance spectrum, by at least 30% in our case. We demonstrated that by using a short-path background, data analysis is more resistant to interferences such as wavenumber shift or resolution alteration that occurs as a consequence of aging hardware or misalignment. We discussed a systematic error introduced into quantitative analyses by the short-path background and developed a procedure to correct that error. With this correction approach, a short-path background established five years ago was still found to be valid. By incorporating these findings into the protocol for quantitative analysis, we processed the measurements with two OP/FT-IR instruments set up side by side in the vicinity of a large dairy farm, to monitor NH3, CH4, and N2O. The two sets of calculated concentrations showed high agreement with each other. The findings of our investigations are helpful to atmospheric monitoring practitioners of OP/FT-IR spectroscopy and could also be a reference for future amendments to the protocols outlined in the guidelines of the U.S. Environmental Protection Agency, the American Society for Testing and Materials, and the European Committee for Standardization. PMID:23452499

  6. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO{sup +}(H{sub 2}O) cluster using accurate potential energy and dipole moment surfaces

    SciTech Connect

    Homayoon, Zahra

    2014-09-28

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO{sup +}(H{sub 2}O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO{sup +}(H{sub 2}O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water “antisymmetric” stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  7. Infrared spectrum and predissociation dynamics of H2O+ -Ar.

    PubMed

    Dopfer, O; Engel, V

    2004-12-22

    The infrared (IR) spectrum and vibrational predissociation of the proton-bound H(2)O(+)-Ar ionic complex are investigated within an ab initio and quantum dynamical study. For this purpose, a two-dimensional potential energy surface (2D PES) is determined as a function of the HO-H and OH-Ar coordinates. This PES is then employed in a wave-packet calculation to determine spectral properties of the system and to calculate the IR absorption spectrum. The vibrational energy levels and relative IR intensities agree well with the experimental spectrum reported earlier. On the other hand, the predissociation lifetimes in the nanosecond regime derived from the 2D PES are in disagreement with the experimental observations, indicating the importance of the neglected degrees of freedom for a correct description of the dynamics of the complex. PMID:15606253

  8. IR spectrum of the protonated neurotransmitter 2-phenylethylamine: dispersion and anharmonicity of the NH3(+)-π interaction.

    PubMed

    Bouchet, Aude; Schütz, Markus; Chiavarino, Barbara; Crestoni, Maria Elisa; Fornarini, Simonetta; Dopfer, Otto

    2015-10-21

    The structure and dynamics of the highly flexible side chain of (protonated) phenylethylamino neurotransmitters are essential for their function. The geometric, vibrational, and energetic properties of the protonated neutrotransmitter 2-phenylethylamine (H(+)PEA) are characterized in the N-H stretch range by infrared photodissociation (IRPD) spectroscopy of cold ions using rare gas tagging (Rg = Ne and Ar) and anharmonic calculations at the B3LYP-D3/(aug-)cc-pVTZ level including dispersion corrections. A single folded gauche conformer (G) protonated at the basic amino group and stabilized by an intramolecular NH(+)-π interaction is observed. The dispersion-corrected density functional theory calculations reveal the important effects of dispersion on the cation-π interaction and the large vibrational anharmonicity of the NH3(+) group involved in the NH(+)-π hydrogen bond. They allow for assigning overtone and combination bands and explain anomalous intensities observed in previous IR multiple-photon dissociation spectra. Comparison with neutral PEA reveals the large effects of protonation on the geometric and electronic structure. PMID:25757357

  9. Crystal structure and IR spectrum of 1- O- α- D-glucopyranosyl- D-mannitol-ethanol (2/1)

    NASA Astrophysics Data System (ADS)

    Perkkalainen, P.; Pitkänen, I.; Huuskonen, J.

    1999-11-01

    1- O- α- D-Glucopyranosyl- D-mannitol-ethanol (2/1), (C 12H 24O 11) 2-C 2H 5OH, crystallizes in the monoclinic space group P2 1 with unit cell dimensions a=11.4230(8) Å, b=9.525(4) Å, c=15.854(2) Å, β=102.751(7)° and V=1682.4(7) Å 3, Z=2, Dx=1.45 Mg m -3, λ (Mo-K α)=0.71069 Å, μ=0.128 mm -1, F(000)=788 and T=293(2) K. The structure was solved by direct methods and refined by least-squares calculations on F2 to R1=0.0371[ I>2 σ( I)], and 0.0930 (all data, 3542 independent reflections, Rint=0.021). There are two molecules of glucopyranosylmannitol (GPM) and one ethanol molecule in the asymmetric unit, and the glucopyranosyl ring adopts a chair conformation in both GPM molecules. Bond lengths and angles accord well with the mean values of related structures. The conformation along the mannitol side chain for one of the GPM molecules was the same as for the known polymorphs of D-mannitol, while the conformation of the other molecule was different, indicating different conformational arrangements in the terminal carbon atoms of the mannitol side chains of the two GPM molecules. The structure in 1- O- α- D-glucopyranosyl- D-mannitol-ethanol (2/1) is held together by a very complex hydrogen bonding system, which consists of an infinte chain propagating along the b-axis and a discontinuous chain, which binds the ethanol molecule to the structure. The FTIR spectra for anhydrous GPM, GPM dihydrate and GPM-ethanol (2/1) were recorded. Both IR and X-ray results indicate the extensive hydrogen bonding in crystalline state.

  10. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  11. A novel 2D porous indium coordination polymer with tunable luminescent property

    NASA Astrophysics Data System (ADS)

    Li, Xuejiao; Wang, Fangfang; Yang, He; Xu, Bo; Li, Cuncheng

    2016-08-01

    A new Indium coordination polymer [In(pda)1.5(phen)]n1 based on 1,4-phenylenediacetic acid (H2pda) and phen = 1,10-phenanthroline was obtained under hydrothermal condition and further characterized by single crystal X-ray analysis and other physicochemical studies such as infrared spectrum (IR), elemental analysis, thermogravimetric analysis (TGA) and powder X-ray diffraction (PXRD). Structure analysis reveals that complex 1 exhibits 2D porous (6,3) connected layer structure. Luminescent property of 1 was investigated both in the solid state and in different solvents and the results indicated that complex 1 demonstrates distinct solvent dependent luminescent property.

  12. Mesh2d

    SciTech Connect

    Greg Flach, Frank Smith

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.

  13. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  14. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  15. Computational study of the transition state for H[sub 2] addition to Vaska-type complexes (trans-Ir(L)[sub 2](CO)X). Substituent effects on the energy barrier and the origin of the small H[sub 2]/D[sub 2] kinetic isotope effect

    SciTech Connect

    Abu-Hasanayn, F.; Goldman, A.S.; Krogh-Jespersen, K. )

    1993-06-03

    Ab initio molecular orbital methods have been used to study transition state properties for the concerted addition reaction of H[sub 2] to Vaska-type complexes, trans-Ir(L)[sub 2](CO)X, 1 (L = PH[sub 3] and X = F, Cl, Br, I, CN, or H; L = NH[sub 3] and X = Cl). Stationary points on the reaction path retaining the trans-L[sub 2] arrangement were located at the Hartree-Fock level using relativistic effective core potentials and valence basis sets of double-[zeta] quality. The identities of the stationary points were confirmed by normal mode analysis. Activation energy barriers were calculated with electron correlation effects included via Moller-Plesset perturbation theory carried fully through fourth order, MP4(SDTQ). The more reactive complexes feature structurally earlier transition states and larger reaction exothermicities, in accord with the Hammond postulate. The experimentally observed increase in reactivity of Ir(PPh[sub 3])[sub 2](CO)X complexes toward H[sub 2] addition upon going from X = F to X = I is reproduced well by the calculations and is interpreted to be a consequence of diminished halide-to-Ir [pi]-donation by the heavier halogens. Computed activation barriers (L = PH[sub 3]) range from 6.1 kcal/mol (X = H) to 21.4 kcal/mol (X = F). Replacing PH[sub 3] by NH[sub 3] when X = Cl increases the barrier from 14.1 to 19.9 kcal/mol. Using conventional transition state theory, the kinetic isotope effects for H[sub 2]/D[sub 2] addition are computed to lie between 1.1 and 1.7 with larger values corresponding to earlier transition states. Judging from the computational data presented here, tunneling appears to be unimportant for H[sub 2] addition to these iridium complexes. 51 refs., 4 tabs.

  16. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  17. Two-dimensional sum-frequency generation (2D SFG) spectroscopy: Summary of principles and its application to amyloid fiber monolayers

    PubMed Central

    Ghosh, Ayanjeet; Ho, Jia-Jung; Serrano, Arnaldo L.; Skoff, David R.; Zhang, Tianqi; Zanni, Martin T.

    2015-01-01

    By adding a mid-infrared pulse shaper to a sum-frequency generation (SFG) spectrometer, we have built a 2D SFG spectrometer capable of measuring spectra analogous to 2D IR spectra but with monolayer sensitivity and SFG selection rules. In this paper, we describe the experimental apparatus and provide an introduction to 2D SFG spectroscopy to help the reader interpret 2D SFG spectra. The main aim of this manuscript is to report 2D SFG spectra of the amyloid forming peptide FGAIL. FGAIL is a critical segment of the human islet amyloid polypeptide (hIAPP or amylin) that aggregates in people with type 2 diabetes. FGAIL is catalyzed into amyloid fibers by many types of surfaces. Here, we study the structure of FGAIL upon deposition onto a gold surface covered with a self-assembled monolayer of methyl 4-mercaptobenzoate (MMB) that produces an ester coating. FGAIL deposited on bare gold does not form ordered layers. The measured 2D SFG spectrum is consistent with amyloid fiber formation, exhibiting both the parallel (a+) and perpendicular (a−) symmetry modes associated with amyloid β-sheets. Cross peaks are observed between the ester stretches of the coating and the FGAIL peptides. Simulations are presented for two possible structures of FGAIL amyloid β-sheets that illustrates the sensitivity of the 2D SFG spectra to structure and orientation. These results provide some of the first molecular insights into surface catalyzed amyloid fiber structure. PMID:25611039

  18. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  19. AnisWave 2D

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  20. Q branches in the rotational spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Chance, K. V.; Traub, W. A.

    1983-01-01

    The far IR rotational spectrum of HOCl from 70-263/cm have been obtained. The most prominent features of the rotational spectrum are the Q branches, for which positions have been measured. Statistical strengths for the Q branches have been calculated and mu sub b, the component of the dipole moment that allows Q branch transitions, has been determined from P and R branch line intensities. It is found that mu sub b = 1.4 + or - 0.2 D. Q branch strengths and shifts at stratospheric temperature are calculated.

  1. Stacking up 2D materials

    NASA Astrophysics Data System (ADS)

    Mayor, Louise

    2016-05-01

    Graphene might be the most famous example, but there are other 2D materials and compounds too. Louise Mayor explains how these atomically thin sheets can be layered together to create flexible “van der Waals heterostructures”, which could lead to a range of novel applications.

  2. Quantum-mechanical simulation of the IR reflectance spectrum of Mn{sub 3}Al{sub 2}Si{sub 3}O{sub 12} spessartine

    SciTech Connect

    Ferrari, A. M.; Demichelis, R.; Meyer, A.; Maschio, L.; Dovesi, R.; Pascale, F.

    2015-01-22

    The reflectance spectrum of one member of the garnet family, Mn{sub 3}Al{sub 2}Si{sub 3}O{sub 12} spessartine, was computed at the ab initio level with an all electron Gaussian type basis set and the B3LYP Hamiltonian. The static high frequency dielectric constant was obtained by applying the Coupled Perturbed Kohn Sham scheme as implemented in the CRYSTAL code; the Hessian matrix was evaluated numerically starting from the analytical gradients of the total energy with respect to the Cartesian coordinates of the atoms; the oscillator strengths were computed from well localized Wannier functions. An excellent agreement was obtained with the corresponding experimental spectrum, the exception being the very low frequency region.

  3. Synthesis, experimental and theoretical studies on its crystal structure and FT-IR spectrum of new thiosemicarbazone compound E-2-(4-isopropylbenzylidene)thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Khalaji, Aliakbar Dehno; Mehrani, Sepideh; Eigner, Vaclav; Dusek, Michal

    2013-09-01

    The title compound E-2-(4-isopropylbenzylidene)thiosemicarbazone (1) derived from the reaction of 4-isopropylbenzaldehyde and thiosemicarbazide in ethanol solution has been synthesized and characterized by elemental analyses, FT-IR and 1H NMR spectroscopy and single-crystal X-ray diffraction. Its optimized geometry together with the theoretical assignment of the vibrational frequencies of the title compound has been computed by using density functional theory (DFT) method. In the gas phase the four conformers of the title compound were found and it was found that the conformer Sn1 is the most stable one. The title compound crystallizes in the monoclinic space group P21/c with unit cell parameters: a = 14.4054(4), b = 5.6832(10), c = 14.4337(3) Å, β = 93.306(2)°, V = 1179.70(5) Å3 and Z = 4.

  4. Use of IRS-P4 Ocean Color Monitor (OCM) images for tracing the red edge of the terrestrial vegetation reflectance spectrum

    NASA Astrophysics Data System (ADS)

    Raychaudhuri, B.

    2016-04-01

    A methodology is put forward to retrieve the red edge for terrestrial vegetated regions of IRS P4 Ocean Color Monitor (OCM) images. The objective is to utilize land-related portions of the archived OCM images that contain a significant amount of digital information on land cover. OCM band data were simulated from spectroradiometric reflectance of fresh green leaves and hyperspectral reflectance of vegetated regions derived from EO-1 Hyperion images. The red edge recovered from these model data using numerical techniques of Lagrange interpolation and inverted Gaussian was compared with the original one and reasonable accuracy was obtained. The technique was then applied to the actual red and near-infrared bands of OCM images, and red edge reflectance curves were computed for evergreen, deciduous and mangrove forest regions of the images for winter and spring seasons. Consistent results were obtained for seasonal changes, and vegetated and non-vegetated areas could be distinguished.

  5. Study on Angelica and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hong-xia; Sun, Su-qin; Lv, Guang-hua; Chan, Kelvin K. C.

    2006-05-01

    In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional correlation infrared spectroscopy (2D-IR) to study the main constituents in traditional Chinese medicine Angelica and its different extracts (extracted by petroleum ether, ethanol and water in turn). The findings indicated that FT-IR spectrum can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can not only identify the main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. This analytical method is highly rapid, effective, visual and accurate for pharmaceutical research.

  6. MOSS2D V1

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  7. NASA High-Speed 2D Photogrammetric Measurement System

    NASA Technical Reports Server (NTRS)

    Dismond, Harriett R.

    2012-01-01

    The object of this report is to provide users of the NASA high-speed 2D photogrammetric measurement system with procedures required to obtain drop-model trajectory and impact data for full-scale and sub-scale models. This guide focuses on use of the system for vertical drop testing at the NASA Langley Landing and Impact Research (LandIR) Facility.

  8. Photocurrent spectroscopy of 2D materials

    NASA Astrophysics Data System (ADS)

    Cobden, David

    Confocal photocurrent measurements provide a powerful means of studying many aspects of the optoelectronic and electrical properties of a 2D device or material. At a diffraction-limited point they can provide a detailed absorption spectrum, and they can probe local symmetry, ultrafast relaxation rates and processes, electron-electron interaction strengths, and transport coefficients. We illustrate this with several examples, once being the photo-Nernst effect. In gapless 2D materials, such as graphene, in a perpendicular magnetic field a photocurrent antisymmetric in the field is generated near to the free edges, with opposite sign at opposite edges. Its origin is the transverse thermoelectric current associated with the laser-induced electron temperature gradient. This effect provides an unambiguous demonstration of the Shockley-Ramo nature of long-range photocurrent generation in gapless materials. It also provides a means of investigating quasiparticle properties. For example, in the case of graphene on hBN, it can be used to probe the Lifshitz transition that occurs due to the minibands formed by the Moire superlattice. We also observe and discuss photocurrent generated in other semimetallic (WTe2) and semiconducting (WSe2) monolayers. Work supported by DoE BES and NSF EFRI grants.

  9. Dominant 2D magnetic turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.

    1995-01-01

    There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevector aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of inertial ranged magnetic spectra in the solar wind. The first test is based upon a characteristic difference between perpendicular and parallel reduced power spectra which is expected for the 2D component but not for the slab component. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant (approximately 85 percent by energy) 2D component in solar wind magnetic turbulence.

  10. Dominant 2D magnetic turbulence in the solar wind

    SciTech Connect

    Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.

    1996-07-20

    There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevectors aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of mid-inertial range magnetic spectra in the solar wind. The first test is based upon a characteristic difference between reduced magnetic power spectra in the two different directions perpendicular to the mean field. Such a difference is expected for 2D geometry but not for slab geometry. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant ({approx}85% by energy) 2D component in solar wind magnetic turbulence.

  11. Nanoimprint lithography: 2D or not 2D? A review

    NASA Astrophysics Data System (ADS)

    Schift, Helmut

    2015-11-01

    Nanoimprint lithography (NIL) is more than a planar high-end technology for the patterning of wafer-like substrates. It is essentially a 3D process, because it replicates various stamp topographies by 3D displacement of material and takes advantage of the bending of stamps while the mold cavities are filled. But at the same time, it keeps all assets of a 2D technique being able to pattern thin masking layers like in photon- and electron-based traditional lithography. This review reports about 20 years of development of replication techniques at Paul Scherrer Institut, with a focus on 3D aspects of molding, which enable NIL to stay 2D, but at the same time enable 3D applications which are "more than Moore." As an example, the manufacturing of a demonstrator for backlighting applications based on thermally activated selective topography equilibration will be presented. This technique allows generating almost arbitrary sloped, convex and concave profiles in the same polymer film with dimensions in micro- and nanometer scale.

  12. Efficient 2D MRI relaxometry using compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.

    2015-06-01

    Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.

  13. Conformers, infrared spectrum, UV-induced photochemistry, and near-IR-induced generation of two rare conformers of matrix-isolated phenylglycine

    SciTech Connect

    Borba, Ana Fausto, Rui; Gómez-Zavaglia, Andrea

    2014-10-21

    The conformational space of α-phenylglycine (PG) have been investigated theoretically at both the DFT/B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) levels of approximation. Seventeen different minima were found on the investigated potential energy surfaces, which are characterized by different dominant intramolecular interactions: type I conformers are stabilized by hydrogen bonds of the type N–H···O=C, type II by a strong O–H···N hydrogen bond, type III by weak N–H···O–H hydrogen bonds, and type IV by a C=O···H–C contact. The calculations indicate also that entropic effects are relevant in determining the equilibrium populations of the conformers of PG in the gas phase, in particular in the case of conformers of type II, where the strong intramolecular O–H···N hydrogen bond considerably diminishes entropy by reducing the conformational mobility of the molecule. In consonance with the relative energies of the conformers and barriers for conformational interconversion, only 3 conformers of PG were observed for the compound isolated in cryogenic Ar, Xe, and N{sub 2} matrices: the conformational ground state (ICa), and forms ICc and IITa. All other significantly populated conformers existing in the gas phase prior to deposition convert either to conformer ICa or to conformer ICc during matrix deposition. The experimental observation of ICc had never been achieved hitherto. Narrowband near-IR irradiation of the first overtone of νOH vibrational mode of ICa and ICc in nitrogen matrices (at 6910 and 6930 cm{sup −1}, respectively) led to selective generation of two additional conformers of high-energy, ITc and ITa, respectively, which were also observed experimentally for the first time. In addition, these experiments also provided the key information for the detailed vibrational characterization of the 3 conformers initially present in the matrices. On the other hand, UV irradiation (λ = 255 nm) of PG isolated in a xenon matrix revealed that

  14. Noninvasive deep Raman detection with 2D correlation analysis

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug

    2014-07-01

    The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.

  15. Two-dimensional IR spectroscopy of protein dynamics using two vibrational labels: a site-specific genetically encoded unnatural amino acid and an active site ligand.

    PubMed

    Thielges, Megan C; Axup, Jun Y; Wong, Daryl; Lee, Hyun Soo; Chung, Jean K; Schultz, Peter G; Fayer, Michael D

    2011-09-29

    Protein dynamics and interactions in myoglobin (Mb) were characterized via two vibrational dynamics labels (VDLs): a genetically incorporated site-specific azide (Az) bearing unnatural amino acid (AzPhe43) and an active site CO ligand. The Az-labeled protein was studied using ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy. CO bound at the active site of the heme serves as a second VDL located nearby. Therefore, it was possible to use Fourier transform infrared (FT-IR) and 2D IR spectroscopic experiments on the Az in unligated Mb and in Mb bound to CO (MbAzCO) and on the CO in MbCO and MbAzCO to investigate the environment and motions of different states of one protein from the perspective of two spectrally resolved VDLs. A very broad bandwidth 2D IR spectrum, encompassing both the Az and CO spectral regions, found no evidence of direct coupling between the two VDLs. In MbAzCO, both VDLs reported similar time scale motions: very fast homogeneous dynamics, fast, ∼1 ps dynamics, and dynamics on a much slower time scale. Therefore, each VDL reports independently on the protein dynamics and interactions, and the measured dynamics are reflective of the protein motions rather than intrinsic to the chemical nature of the VDL. The AzPhe VDL also permitted study of oxidized Mb dynamics, which could not be accessed previously with 2D IR spectroscopy. The experiments demonstrate that the combined application of 2D IR spectroscopy and site-specific incorporation of VDLs can provide information on dynamics, structure, and interactions at virtually any site throughout any protein. PMID:21823631

  16. Two-Dimensional IR Spectroscopy of Protein Dynamics Using Two Vibrational Labels: A Site-Specific Genetically Encoded Unnatural Amino Acid and an Active Site Ligand

    PubMed Central

    Thielges, Megan C.; Axup, Jun Y.; Wong, Daryl; Lee, Hyun Soo; Chung, Jean K.; Schultz, Peter G.; Fayer, Michael D.

    2012-01-01

    Protein dynamics and interactions in myoglobin (Mb) were characterized via two vibrational dynamics labels (VDLs): a genetically incorporated site-specific azide (Az) bearing unnatural amino acid (AzPhe43) and an active site CO ligand. The Az-labeled protein was studied using ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy. CO bound at the active site of the heme serves as a second VDL located nearby. Therefore, it was possible to use Fourier transform infrared (FT-IR) and 2D IR spectroscopic experiments on the Az in unligated Mb and in Mb bound to CO (MbAzCO) and on the CO in MbCO and MbAzCO to investigate the environment and motions of different states of one protein from the perspective of two spectrally resolved VDLs. A very broad bandwidth 2D IR spectrum, encompassing both the Az and CO spectral regions, found no evidence of direct coupling between the two VDLs. In MbAzCO, both VDLs reported similar time scale motions: very fast homogeneous dynamics, fast, ~1 ps dynamics, and dynamics on a much slower time scale. Therefore, each VDL reports independently on the protein dynamics and interactions, and the measured dynamics are reflective of the protein motions rather than intrinsic to the chemical nature of the VDL. The AzPhe VDL also permitted study of oxidized Mb dynamics, which could not be accessed previously with 2D IR spectroscopy. The experiments demonstrate that the combined application of 2D IR spectroscopy and site-specific incorporation of VDLs can provide information on dynamics, structure, and interactions at virtually any site throughout any protein. PMID:21823631

  17. IRS organigram

    NASA Technical Reports Server (NTRS)

    Messerschmid, Ernst

    1991-01-01

    Charts and graphs relative to magnetoplasmadynamic (MPD) thruster technology are given. The research activities at the Institute of Space Transportation, University of Stuttgart, are summarized. Information is given on the Institute's Electric Propulsion and Plasma Wind Tunnel; thermal arcjet research; the nozzle-type thruster, DT-IRS; nozzle-type MPD thrusters; a hot anode thruster; the DT6 thruster; the ZT-1 thruster; the cylindrical MPD thruster; and a comparison of continuous and quasi-steady MPD.

  18. 2D materials for photon conversion and nanophotonics

    NASA Astrophysics Data System (ADS)

    Tahersima, Mohammad H.; Sorger, Volker J.

    2015-09-01

    The field of two-dimensional (2D) materials has the potential to enable unique applications across a wide range of the electromagnetic spectrum. While 2D-layered materials hold promise for next-generation photon-conversion intrinsic limitations and challenges exist that shall be overcome. Here we discuss the intrinsic limitations as well as application opportunities of this new class of materials, and is sponsored by the NSF program Designing Materials to Revolutionize and Engineer our Future (DMREF) program, which links to the President's Materials Genome Initiative. We present general material-related details for photon conversion, and show that taking advantage of the mechanical flexibility of 2D materials by rolling MoS2/graphene/hexagonal boron nitride stack to a spiral solar cell allows for solar absorption up to 90%.

  19. Multi-Watt mid-IR femtosecond polycrystalline Cr(2+):ZnS and Cr(2+):ZnSe laser amplifiers with the spectrum spanning 2.0-2.6 µm.

    PubMed

    Vasilyev, Sergey; Moskalev, Igor; Mirov, Mike; Mirov, Sergey; Gapontsev, Valentin

    2016-01-25

    We demonstrate efficient amplification of few-optical-cycle mid-IR pulses in single-pass continuously pumped laser amplifiers based on polycrystalline Cr(2+):ZnS and Cr(2+):ZnSe. The 1.7 W output of a Kerr-lens mode-locked master oscillator at 2.4 µm central wavelength, 79 MHz repetition rate was amplified to 7.1 W and 2.7 W in Cr(2+):ZnS and Cr(2+):ZnSe, respectively. High peak power of the input pulses (0.5 MW) and high nonlinearity of the amplifiers' gain media resulted in a significant shortening of the output pulses and in spectral broadening. Transform-limited 40 fs pulses of the master oscillator were compressed to about 27-30 fs. The spectrum of the pulses was broadened from 136 nm to 450 nm (at -3 dB level); the span of the spectra exceeds 600 nm at -10 dB level. PMID:26832539

  20. IR Asterisms

    NASA Astrophysics Data System (ADS)

    Riess, Adam

    2010-09-01

    Observing asterisms for photometric calibration provides a "happy medium" between observing single stars which areobservable from the ground but lack statistics, and star clusters which have excellent statistics but are too crowded to observe from the ground.Asterisms in the IR for calibration have been less available than in the optical, e.g., Landolt's standard fields.While ad-hoc asterisms for calibration could be formed from 2MASS calibration, the photometric precision of 2MASSis relatively low, 0.02-0.05, for the fainter stars, m=9-13, that can still be observed without saturation in WFC3-IR.However, IR monitoring of variable phenomena {e.g., AGN SNe, stellar variables} from the ground has produced calibration of stars in asterisms with m=9-13 with a relative uncertainty of 0.001 to 0.01 mag due to the high frequency of monitoring. We have selected 4 such asterisms to observe. Because the stars are bright we need to use subarrays of 64x64 or 128x128 to get read out short enough to avoid saturation. The observations are obtained in pairs of 3 close stars, i.e., 2x3=6 stars per orbit in F125W and F160W as well as a F555W full frame to verify astrometry. In all we expect to measure 24 stars with m=9 to 14. The goal is to provide 2 calibrations, an independent zeropoint and its uncertainty as well as a measure of count rate non linearity. For the latter, an expected CRNL over 2 dex {5 mag} is expected tobe 0.02 mag.

  1. Mean flow and anisotropic cascades in decaying 2D turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki

    2015-11-01

    Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.

  2. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  3. Distinction of three wood species by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Anmin; Zhou, Qun; Liu, Junliang; Fei, Benhua; Sun, Suqin

    2008-07-01

    Dalbergia odorifera T. Chen, Pterocarpus santalinus L.F. and Pterocarpus soyauxii are three kinds of the most valuable wood species, which are hard to distinguish. In this paper, differentiation of D. odorifera, P. santalinus and P. soyauxii was carried out by using Fourier transform infrared spectroscopy (FT-IR), second derivative IR spectra and two-dimensional correlation infrared (2D-IR) spectroscopy. The three woods have their characteristic peaks in conventional IR spectra. For example, D. odorifera has obvious absorption peaks at 1640 and 1612 cm -1; P. santalinus has only one peak at 1614 cm -1; and P. soyauxii has one peak at 1619 cm -1 and one shoulder peak at 1597 cm -1. To enhance spectrum resolution and amplify the differences between the IR spectra of different woods, the second derivative technology was adopted to examine the three wood samples. More differences could be observed in the region of 800-1700 cm -1. Then, the thermal perturbation is applied to distinguish different wood samples in an easier way, because of the spectral resolution being enhanced by the 2D correlation spectroscopy. In the region of 1300-1800 cm -1, D. odorifera has five auto-peaks at 1518, 1575, 1594, 1620 and 1667 cm -1; P. santalinus has four auto-peaks at 1469, 1518, 1627 and 1639 cm -1 and P. soyauxii has only two auto-peaks at 1627 and 1639 cm -1. It is proved that the 2D correlation IR spectroscopy can be a new method to distinguish D. odorifera, P. santalinus and P. soyauxii.

  4. Perspectives for spintronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  5. Similarities between 2D and 3D convection for large Prandtl number

    NASA Astrophysics Data System (ADS)

    Pandey, Ambrish; Verma, Mahendra K.; Chatterjee, Anando G.; Dutta, Biplab

    2016-06-01

    Using direct numerical simulations of Rayleigh-B\\'{e}nard convection (RBC), we perform a comparative study of the spectra and fluxes of energy and entropy, and the scaling of large-scale quantities for large and infinite Prandtl numbers in two (2D) and three (3D) dimensions. We observe close similarities between the 2D and 3D RBC, in particular the kinetic energy spectrum $E_u(k) \\sim k^{-13/3}$, and the entropy spectrum exhibits a dual branch with a dominant $k^{-2}$ spectrum. We showed that the dominant Fourier modes in the 2D and 3D flows are very close. Consequently, the 3D RBC is quasi two-dimensional, which is the reason for the similarities between the 2D and 3D RBC for large- and infinite Prandtl numbers.

  6. Syntheses, structures, and properties of two novel cadmium coordination polymers with 1D and 2D structures

    NASA Astrophysics Data System (ADS)

    Yan, Li; Li, Chuanbi; Zhu, Dongsheng; Xu, Lin

    2011-09-01

    Two novel complexes [Cd 2(MIP) 2(BDC) 2]n ( 1) [MIP = 2-(3-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline, BDC = terephthalic acid] and [Cd(IPM)(NDC)]n ( 2) [IPM = 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)-2-methoxyphenol, NDC = naphthalene-1,4-dicarboxylic acid] have been synthesized by hydrothermal reaction and characterized by elemental analysis, IR, single-crystal X-ray diffraction and thermogravimetric analysis (TGA). Complex 1 exhibits 1D zigzag chain structure and complex 2 shows 2D layer topology. The intermolecular C sbnd H⋯O interactions extend the complex 1 into 2D networks, and the existing H-bonds further stabilized the complexes 1-2, which can be proved by TGA experiment. Furthermore, the solid-state fluorescence spectrum of the complex 2 was studied, as well as the ligand IPM. The complex 2 exhibits intense broad emission at 540 nm at room temperature, which is red-shifted by 45 nm relative to that of free ligand IPM.

  7. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  8. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  9. IR Windstreaks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Windstreaks are features caused by the interaction of wind and topographic landforms. The raised rims and bowls of impact craters causes a complex interaction such that the wind vortex in the lee of the crater can both scour away the surface dust and deposit it back in the center of the lee. If you look closely, you will see evidence of this in a darker 'rim' enclosing a brighter interior.

    This infrared image shows windstreaks in the region between Gordii Dorsum and Amazonis Mensa.

    Image information: IR instrument. Latitude -15.8, Longitude 215 East (145 West). 97 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. Light field morphing using 2D features.

    PubMed

    Wang, Lifeng; Lin, Stephen; Lee, Seungyong; Guo, Baining; Shum, Heung-Yeung

    2005-01-01

    We present a 2D feature-based technique for morphing 3D objects represented by light fields. Existing light field morphing methods require the user to specify corresponding 3D feature elements to guide morph computation. Since slight errors in 3D specification can lead to significant morphing artifacts, we propose a scheme based on 2D feature elements that is less sensitive to imprecise marking of features. First, 2D features are specified by the user in a number of key views in the source and target light fields. Then the two light fields are warped view by view as guided by the corresponding 2D features. Finally, the two warped light fields are blended together to yield the desired light field morph. Two key issues in light field morphing are feature specification and warping of light field rays. For feature specification, we introduce a user interface for delineating 2D features in key views of a light field, which are automatically interpolated to other views. For ray warping, we describe a 2D technique that accounts for visibility changes and present a comparison to the ideal morphing of light fields. Light field morphing based on 2D features makes it simple to incorporate previous image morphing techniques such as nonuniform blending, as well as to morph between an image and a light field. PMID:15631126

  11. 2D materials for nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  12. Internal Photoemission Spectroscopy of 2-D Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  13. IR Variability of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2007-02-01

    Every 5.5 years, η Carinae experiences a dramatic ``spectroscopic event'' when high-excitation lines in its UV, optical, and IR spectrum disappear, and its hard X-ray and radio continuum flux crash. This periodicity has been attributed to an eccentric binary system with a shell ejection occurring at periastron. In addition, η Car shows long term changes as it is still recovering from its giant 19th century outburst. Both types of variability are directly linked to the current mass-loss rate and dust formation in its wind. Mid-IR images and spectra with T-ReCS provide a direct measure of changes in the current bolometric luminosity and trace dust formation episodes. This will provide a direct measurement of the mass ejected. Near-IR emission lines trace related changes in the post-event wind and ionization changes in the circumstellar environment needed to test specific models for the cause of η Car's variability as it recovers from its recent ``event''. High resolution near-IR spectra with GNIRS will continue the important work of HST/STIS, investigating changes in the direct and reflected spectrum of the stellar wind, and ionization changes in the nebula.

  14. IR Variability of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2008-02-01

    Every 5.5 years, η Carinae experiences a dramatic ``spectroscopic event'' when high-excitation lines in its UV, optical, and IR spectrum disappear, and its hard X-ray and radio continuum flux crash. This periodicity has been attributed to an eccentric binary system with a shell ejection occurring at periastron, and the next periastron event will occur at the very end of 2008. In addition, η Car shows long term changes as it is still recovering from its giant 19th century outburst. Both types of variability are directly linked to the current mass-loss rate and dust formation in its wind. Mid-IR images and spectra with T-ReCS provide a direct measure of changes in the current bolometric luminosity and a direct measure of the massw in dust formation episodes that may occur at periastron in the colliding wind shock. Near-IR emission lines trace related changes in the post-event wind and ionization changes in the circumstellar environment needed to test specific models for the cause of η Car's variability as it recovers from its recent ``event''. High resolution near-IR spectra with Phoenix will continue the important work of HST/STIS, investigating changes in the direct and reflected spectrum of the stellar wind, and ionization changes in the nebula.

  15. Beam-Plasma Instabilities in a 2D Yukawa Lattice

    SciTech Connect

    Kyrkos, S.; Kalman, G. J.; Rosenberg, M.

    2009-06-05

    We consider a 2D Yukawa lattice of grains, with a beam of other charged grains moving in the lattice plane. In contrast to Vlasov plasmas, where the electrostatic instability excited by the beam is only longitudinal, here both longitudinal and transverse instabilities of the lattice phonons can develop. We determine and compare the transverse and longitudinal growth rates. The growth rate spectrum in wave number space exhibits remarkable gaps where no instability can develop. Depending on the system parameters, the transverse instability can be selectively excited.

  16. Visualizing Infrared (IR) Spectroscopy with Computer Animation

    NASA Technical Reports Server (NTRS)

    Abrams, Charles B.; Fine, Leonard W.

    1996-01-01

    IR Tutor, an interactive, animated infrared (IR) spectroscopy tutorial has been developed for Macintosh and IBM-compatible computers. Using unique color animation, complicated vibrational modes can be introduced to beginning students. Rules governing the appearance of IR absorption bands become obvious because the vibrational modes can be visualized. Each peak in the IR spectrum is highlighted, and the animation of the corresponding normal mode can be shown. Students can study each spectrum stepwise, or click on any individual peak to see its assignment. Important regions of each spectrum can be expanded and spectra can be overlaid for comparison. An introduction to the theory of IR spectroscopy is included, making the program a complete instructional package. Our own success in using this software for teaching and research in both academic and industrial environments will be described. IR Tutor consists of three sections: (1) The 'Introduction' is a review of basic principles of spectroscopy. (2) 'Theory' begins with the classical model of a simple diatomic molecule and is expanded to include larger molecules by introducing normal modes and group frequencies. (3) 'Interpretation' is the heart of the tutorial. Thirteen IR spectra are analyzed in detail, covering the most important functional groups. This section features color animation of each normal mode, full interactivity, overlay of related spectra, and expansion of important regions. This section can also be used as a reference.

  17. Rovibrational constants of the ground state and v9 = 1 state of 13C2D4 by high-resolution Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, T. L.; Gabona, M. G.; Woo, J. Q.; Ng, L. L.; Wong, Andy; McNaughton, Don

    2016-03-01

    The Fourier transform infrared (FTIR) rovibrational spectrum of the b-type ν9 band of 13C2D4 was recorded at a unapodized resolution of 0.0063 cm-1 in the 2230-2450 cm-1 region. By assigning and fitting a total of 1171 rotationally resolved infrared transitions of the ν9 band and using the Watson's A-reduced Hamiltonian in the Ir representation, rovibrational constants for the upper state (v9 = 1) up to five quartic centrifugal distortion terms were derived for the first time. The root-mean-square (rms) deviation of the infrared fit was 0.00043 cm-1. The ground state constants of 13C2D4 were determined with higher accuracy than previously by fitting 1485 ground state combination-differences (GSCDs) from the present and previous infrared measurements, with rms deviation of 0.00034 cm-1. The band center of ν9 band of 13C2D4 was determined to be at 2324.3593 cm-1. The equilibrium state rovibrational constants up to all 5 quartic terms were derived from theoretical harmonic calculations at three levels of theory: B3LYP/cc-pVTZ, MP2/cc-pVTZ, and CCSD/cc-pVTZ using the principal axis coordinate system. These constants agreed reasonably well with the ground state constants of 13C2D4 derived from the present experimental GSCD fit. Furthermore, all 3 rotational constants of the upper state (v9 = 1) and of the ground state of 13C2D4 were obtained from anharmonic calculations using B3LYP and MP2 levels with the cc-pVTZ basis set. The calculated rotational constants were found to agree with those derived experimentally within 0.40%.

  18. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  19. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  20. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  1. 2D electronic materials for army applications

    NASA Astrophysics Data System (ADS)

    O'Regan, Terrance; Perconti, Philip

    2015-05-01

    The record electronic properties achieved in monolayer graphene and related 2D materials such as molybdenum disulfide and hexagonal boron nitride show promise for revolutionary high-speed and low-power electronic devices. Heterogeneous 2D-stacked materials may create enabling technology for future communication and computation applications to meet soldier requirements. For instance, transparent, flexible and even wearable systems may become feasible. With soldier and squad level electronic power demands increasing, the Army is committed to developing and harnessing graphene-like 2D materials for compact low size-weight-and-power-cost (SWAP-C) systems. This paper will review developments in 2D electronic materials at the Army Research Laboratory over the last five years and discuss directions for future army applications.

  2. 2-d Finite Element Code Postprocessor

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less

  3. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology. PMID:27478083

  4. Extended 2D generalized dilaton gravity theories

    NASA Astrophysics Data System (ADS)

    de Mello, R. O.

    2008-09-01

    We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2D relativity principle, which introduces a non-trivial centre in the 2D Poincaré algebra. Then we work out the reduced phase space of the anomaly-free 2D relativistic particle, in order to show that it lives in a noncommutative 2D Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2D generalized dilaton gravity models by a specific Maxwell component, which guages the extra symmetry associated with the centre of the 2D Poincaré algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of spacetime. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved spacetime, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson Sigma models based on a nonlinear deformation of the extended Poincaré algebra.

  5. Synthesis, structural elucidation and spectroscopic analysis of 3a,8b-dihydroxy-4-oxo-1H,2H,3H,3aH,4H,8bH-indeno[1,2-d]imidazolidin-2-iminium chloride

    NASA Astrophysics Data System (ADS)

    Uma Devi, T.; Priya, S.; Selvanayagam, S.; Ravikumar, K.; Anitha, K.

    2012-11-01

    Ninhydrin guanidinium chloride (3a,8b-dihydroxy-4-oxo-1H,2H,3H,3aH,4H,8bH-indeno [1,2-d]imidazolidin-2-iminium chloride) a semiorganic crystal was synthesized. The structure was determined using X-ray single crystal technique. Comparisons between the FT-IR spectrum of ninhydrin guanidinium chloride with ninhydrin were made. Melting point was found using thermal measurements. The molecular geometry, vibrational frequencies and Mulliken charges of the compound in the ground state have been calculated by the density functional theory (DFT) method with 3-21G(d,p) basis set and theoretical frequencies were compared with the experimental FT-IR spectrum. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis, natural bond orbitals (NBO) and thermodynamic properties at various temperatures of the compound were investigated by theoretical calculations.

  6. Probing dipole-dipole interaction in a rubidium gas via double-quantum 2D spectroscopy.

    PubMed

    Gao, Feng; Cundiff, Steven T; Li, Hebin

    2016-07-01

    We have implemented double-quantum 2D spectroscopy on a rubidium vapor and shown that this technique provides sensitive and background-free detection of the dipole-dipole interaction. The 2D spectra include signals from both individual atoms and interatomic interactions, allowing quantitative studies of the interaction. A theoretical model based on the optical Bloch equations is used to reproduce the experimental spectrum and confirm the origin of double-quantum signals. PMID:27367074

  7. Optical modulators with 2D layered materials

    NASA Astrophysics Data System (ADS)

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  8. Large Area Synthesis of 2D Materials

    NASA Astrophysics Data System (ADS)

    Vogel, Eric

    Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.

  9. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  10. 2D microwave imaging reflectometer electronics

    NASA Astrophysics Data System (ADS)

    Spear, A. G.; Domier, C. W.; Hu, X.; Muscatello, C. M.; Ren, X.; Tobias, B. J.; Luhmann, N. C.

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  11. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program. PMID:25430247

  12. 2D-Crystal-Based Functional Inks.

    PubMed

    Bonaccorso, Francesco; Bartolotta, Antonino; Coleman, Jonathan N; Backes, Claudia

    2016-08-01

    The possibility to produce and process graphene, related 2D crystals, and heterostructures in the liquid phase makes them promising materials for an ever-growing class of applications as composite materials, sensors, in flexible optoelectronics, and energy storage and conversion. In particular, the ability to formulate functional inks with on-demand rheological and morphological properties, i.e., lateral size and thickness of the dispersed 2D crystals, is a step forward toward the development of industrial-scale, reliable, inexpensive printing/coating processes, a boost for the full exploitation of such nanomaterials. Here, the exfoliation strategies of graphite and other layered crystals are reviewed, along with the advances in the sorting of lateral size and thickness of the exfoliated sheets together with the formulation of functional inks and the current development of printing/coating processes of interest for the realization of 2D-crystal-based devices. PMID:27273554

  13. Ultrafast IR pump-probe and 2D-IR photon echo spectroscopy of adenosine-thymidine base pairs

    NASA Astrophysics Data System (ADS)

    Greve, Christian; Preketes, Nicholas K.; Costard, Rene.; Koeppe, Benjamin; Fidder, Henk; Nibbering, Erik T. J.; Temps, Friedrich; Mukamel, Shaul; Elsaesser, Thomas

    2013-03-01

    We characterize diagonal and off-diagonal anharmonicities of N-H stretching vibrations in adenosine and thymidine monomers and in A•T-base pairs in chloroform solution, showing the important role of coupling between vibrationally excited N-H stretching states.

  14. The 2D lingual appliance system.

    PubMed

    Cacciafesta, Vittorio

    2013-09-01

    The two-dimensional (2D) lingual bracket system represents a valuable treatment option for adult patients seeking a completely invisible orthodontic appliance. The ease of direct or simplified indirect bonding of 2D lingual brackets in combination with low friction mechanics makes it possible to achieve a good functional and aesthetic occlusion, even in the presence of a severe malocclusion. The use of a self-ligating bracket significantly reduces chair-side time for the orthodontist, and the low-profile bracket design greatly improves patient comfort. PMID:24005953

  15. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. PMID:25169938

  16. Measurement of 2D birefringence distribution

    NASA Astrophysics Data System (ADS)

    Noguchi, Masato; Ishikawa, Tsuyoshi; Ohno, Masahiro; Tachihara, Satoru

    1992-10-01

    A new measuring method of 2-D birefringence distribution has been developed. It has not been an easy job to get a birefringence distribution in an optical element with conventional ellipsometry because of its lack of scanning means. Finding an analogy between the rotating analyzer method in ellipsometry and the phase-shifting method in recently developed digital interferometry, we have applied the phase-shifting algorithm to ellipsometry, and have developed a new method that makes the measurement of 2-D birefringence distribution easy and possible. The system contains few moving parts, assuring reliability, and measures a large area of a sample at one time, making the measuring time very short.

  17. Parallel stitching of 2D materials

    DOE PAGESBeta

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; et al

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  18. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-01

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits. PMID:26813882

  19. Baby universes in 2d quantum gravity

    NASA Astrophysics Data System (ADS)

    Ambjørn, Jan; Jain, Sanjay; Thorleifsson, Gudmar

    1993-06-01

    We investigate the fractal structure of 2d quantum gravity, both for pure gravity and for gravity coupled to multiple gaussian fields and for gravity coupled to Ising spins. The roughness of the surfaces is described in terms of baby universes and using numerical simulations we measure their distribution which is related to the string susceptibility exponent γstring.

  20. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  1. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  2. ALBERMARLE PAMLICO IR 2002

    EPA Science Inventory

    The 2002 Albermarle Pamlico Implementation Review (IR) highlights recent successes and challenges with the estuary program. Various components within the IR include: CCMP implementation, outlining priority management actions, public involvement, stakeholder contribution, and limi...

  3. Ribonuclease S Dynamics Measured Using a Nitrile Label with 2D IR Vibrational Echo Spectroscopy

    PubMed Central

    Bagchi, Sayan; Boxer, Steven G.; Fayer, M. D.

    2012-01-01

    A nitrile labeled amino acid, p-cyanophenylalanine, is introduced near the active site of the semisynthetic enzyme ribonuclease S to serve as a probe of protein dynamics and fluctuations. Ribonuclease S is the limited proteolysis product of subtilisin acting on ribonuclease A, and consists of a small fragment including amino acids 1–20, the S-peptide, and a larger fragment including residues 21–124, the S-protein. A series of two-dimensional vibrational echo experiments performed on the nitrile labeled S-peptide and the RNase S are described. The time-dependent changes in the two-dimensional infrared vibrational echo line shapes are analyzed using the center line slope method to obtain the frequency-frequency correlation function (FFCF). The observations show that the nitrile probe in the S-peptide has dynamics that are similar to, but faster than, those of the single amino acid p-cyanophenylalanine in water. In contrast, the dynamics of the nitrile label when the peptide is bound to form ribonuclease S are dominated by homogeneous dephasing (motionally narrowed) contributions with only a small contribution from very fast inhomogeneous structural dynamics. The results provide insights into the nature of the structural dynamics of the ribonuclease S complex. The equilibrium dynamics of the nitrile labeled S-peptide and the ribonuclease S complex are also investigated by molecular dynamics simulations. The experimentally determined FFCFs are compared to the FFCFs obtained from the molecular dynamics simulations, thereby testing the capacity of simulations to determine the amplitudes and time scales of protein structural fluctuations on fast time scales under thermal equilibrium conditions. PMID:22417088

  4. Computational Amide I 2D IR Spectroscopy as a Probe of Protein Structure and Dynamics.

    PubMed

    Reppert, Mike; Tokmakoff, Andrei

    2016-05-27

    Two-dimensional infrared spectroscopy of amide I vibrations is increasingly being used to study the structure and dynamics of proteins and peptides. Amide I, a primarily carbonyl stretching vibration of the protein backbone, provides information on secondary structures as a result of vibrational couplings and on hydrogen-bonding contacts when isotope labeling is used to isolate specific sites. In parallel with experiments, computational models of amide I spectra that use atomistic structures from molecular dynamics simulations have evolved to calculate experimental spectra. Mixed quantum-classical models use spectroscopic maps to translate the structural information into a quantum-mechanical Hamiltonian for the spectroscopically observed vibrations. This allows one to model the spectroscopy of large proteins, disordered states, and protein conformational dynamics. With improvements in amide I models, quantitative modeling of time-dependent structural ensembles and of direct feedback between experiments and simulations is possible. We review the advances in developing these models, their theoretical basis, and current and future applications. PMID:27023758

  5. Computational Amide I 2D IR Spectroscopy as a Probe of Protein Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Reppert, Mike; Tokmakoff, Andrei

    2016-05-01

    Two-dimensional infrared spectroscopy of amide I vibrations is increasingly being used to study the structure and dynamics of proteins and peptides. Amide I, a primarily carbonyl stretching vibration of the protein backbone, provides information on secondary structures as a result of vibrational couplings and on hydrogen-bonding contacts when isotope labeling is used to isolate specific sites. In parallel with experiments, computational models of amide I spectra that use atomistic structures from molecular dynamics simulations have evolved to calculate experimental spectra. Mixed quantum-classical models use spectroscopic maps to translate the structural information into a quantum-mechanical Hamiltonian for the spectroscopically observed vibrations. This allows one to model the spectroscopy of large proteins, disordered states, and protein conformational dynamics. With improvements in amide I models, quantitative modeling of time-dependent structural ensembles and of direct feedback between experiments and simulations is possible. We review the advances in developing these models, their theoretical basis, and current and future applications.

  6. 2D-IR spectroscopy of hydrogen-bond-mediated vibrational excitation transfer.

    PubMed

    Chuntonov, Lev

    2016-05-18

    Vibrational excitation transfer along the hydrogen-bond-mediated pathways in the complex of methyl acetate (MA) and 4-cyanophenol (4CP) was studied by dual-frequency femtosecond two-dimensional infrared spectroscopy. We excited the energy-donating ester carbonyl stretching vibrational mode and followed the transfer to the energy-accepting benzene ring and cyano stretching vibrations. The complexes with no, one, and two hydrogen-bonded 4CP molecules were studied. Vibrational relaxation of the carbonyl mode is more efficient in both hydrogen-bonded complexes as compared with free MA molecules. The inter-molecular transport in a hydrogen-bonded complex involving a single 4CP molecule is slower than that in a complex with two 4CP molecules. In the former, vibrational relaxation leads to local heating, as shown by the spectroscopy of the carbonyl mode, whereas the local heating is suppressed in the latter because the excitation redistribution is more efficient. At early times, the transfer to the benzene ring is governed by its direct coupling with the energy-donating carbonyl mode, whereas at later times intermediate states are involved. The transfer to a more distant site of the cyano group in 4CP involves intermediate states at all times, since no direct coupling between the energy-donating and accepting modes was observed. We anticipate that our findings will be of importance for spectroscopic studies of bio-molecular structures and dynamics, and inter- and intra-molecular signaling pathways, and for developing molecular networking applications. PMID:27145861

  7. Mercury (I) nitroprusside: A 2D structure supported on homometallic interactions

    SciTech Connect

    Osiry, H.; Cano, A.; Reguera, L.; Lemus-Santana, A.A.; Reguera, E.

    2015-01-15

    The pentacyanonitrosylferrate complex anion, [Fe(CN){sub 5}NO]{sup 2−}, forms an insoluble solid with Hg(I) ion, of formula unit Hg{sub 2}[Fe(CN){sub 5}NO]·2H{sub 2}O, whose crystal structure and related properties are unknown. This contribution reports the preparation of that compound by the precipitation method and its structural study from X-ray powder patterns complemented with spectroscopic information from IR, Raman, and UV–vis techniques. The crystal structure was solved ab initio and then refined using the Rietveld method. The solid crystallizes with a triclinic unit cell, in the P−1 space group, with cell parameters a=10.1202(12), b=10.1000(13), c=7.4704(11) Å; α=110.664(10), β=110.114(10), γ=104.724(8) °. Within the unit cell, two formula units are accommodated (Z=2). It adopts a layered structure related with the coordination of the equatorial CN groups at their N end to the Hg atoms while the axial CN ligand remains unlinked. Within the layers neighboring Hg{sub 2}[Fe(CN){sub 5}NO] building units remain linked through four relatively strong Hg–Hg interactions, with an interatomic distance of 2.549(3) Å. The charge donation from the equatorial CN groups through their 5σ orbitals results into an increase for the electron density on the Hg atoms, which strengths the Hg–Hg bond. In the Raman spectrum, that metal–metal bond is detected as a stretching vibration band at 167 cm{sup −1}. The available free volume between neighboring layers accommodates two water molecules, which are stabilized within the framework through hydrogen bonds with the N end of the unlinked axial CN group. The removal of these weakly bonded water molecules results in structural disorder for the material 3D framework. - Graphical abstract: Assembling of Hg{sub 2}[Fe(CN){sub 5}NO] units through Hg–Hg interactions. - Highlights: • Homometallic Hg–Hg interactions in metal nitroprusside. • 2D structure supported on metal–metal interactions. • Crystal

  8. Static & Dynamic Response of 2D Solids

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemore » contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.« less

  9. Stochastic Inversion of 2D Magnetotelluric Data

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less

  10. Stochastic Inversion of 2D Magnetotelluric Data

    SciTech Connect

    Chen, Jinsong

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows

  11. Explicit 2-D Hydrodynamic FEM Program

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  12. Schottky diodes from 2D germanane

    NASA Astrophysics Data System (ADS)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  13. Layer Engineering of 2D Semiconductor Junctions.

    PubMed

    He, Yongmin; Sobhani, Ali; Lei, Sidong; Zhang, Zhuhua; Gong, Yongji; Jin, Zehua; Zhou, Wu; Yang, Yingchao; Zhang, Yuan; Wang, Xifan; Yakobson, Boris; Vajtai, Robert; Halas, Naomi J; Li, Bo; Xie, Erqing; Ajayan, Pulickel

    2016-07-01

    A new concept for junction fabrication by connecting multiple regions with varying layer thicknesses, based on the thickness dependence, is demonstrated. This type of junction is only possible in super-thin-layered 2D materials, and exhibits similar characteristics as p-n junctions. Rectification and photovoltaic effects are observed in chemically homogeneous MoSe2 junctions between domains of different thicknesses. PMID:27136275

  14. 2dF mechanical engineering

    NASA Astrophysics Data System (ADS)

    Smith, Greg; Lankshear, Allan

    1998-07-01

    2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.

  15. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  16. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  17. 2D materials: Graphene and others

    NASA Astrophysics Data System (ADS)

    Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh

    2016-05-01

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  18. TACO (2D AND 3D). Taco

    SciTech Connect

    Mason, W.E.

    1983-03-01

    A set of finite element codes for the solution of nonlinear, two-dimensional (TACO2D) and three-dimensional (TACO3D) heat transfer problems. Performs linear and nonlinear analyses of both transient and steady state heat transfer problems. Has the capability to handle time or temperature dependent material properties. Materials may be either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions and loadings are available including temperature, flux, convection, radiation, and internal heat generation.

  19. Tomosynthesis imaging with 2D scanning trajectories

    NASA Astrophysics Data System (ADS)

    Khare, Kedar; Claus, Bernhard E. H.; Eberhard, Jeffrey W.

    2011-03-01

    Tomosynthesis imaging in chest radiography provides volumetric information with the potential for improved diagnostic value when compared to the standard AP or LAT projections. In this paper we explore the image quality benefits of 2D scanning trajectories when coupled with advanced image reconstruction approaches. It is intuitively clear that 2D trajectories provide projection data that is more complete in terms of Radon space filling, when compared with conventional tomosynthesis using a linearly scanned source. Incorporating this additional information for obtaining improved image quality is, however, not a straightforward problem. The typical tomosynthesis reconstruction algorithms are based on direct inversion methods e.g. Filtered Backprojection (FBP) or iterative algorithms that are variants of the Algebraic Reconstruction Technique (ART). The FBP approach is fast and provides high frequency details in the image but at the same time introduces streaking artifacts degrading the image quality. The iterative methods can reduce the image artifacts by using image priors but suffer from a slow convergence rate, thereby producing images lacking high frequency details. In this paper we propose using a fast converging optimal gradient iterative scheme that has advantages of both the FBP and iterative methods in that it produces images with high frequency details while reducing the image artifacts. We show that using favorable 2D scanning trajectories along with the proposed reconstruction method has the advantage of providing improved depth information for structures such as the spine and potentially producing images with more isotropic resolution.

  20. MAGNUM-2D computer code: user's guide

    SciTech Connect

    England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.

    1985-01-01

    Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.

  1. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells. PMID:25602462

  2. Measurement of topological invariants in a 2D photonic system

    NASA Astrophysics Data System (ADS)

    Mittal, Sunil; Ganeshan, Sriram; Fan, Jingyun; Vaezi, Abolhassan; Hafezi, Mohammad

    2016-03-01

    A hallmark feature of topological physics is the presence of one-way propagating chiral modes at the system boundary. The chirality of edge modes is a consequence of the topological character of the bulk. For example, in a non-interacting quantum Hall model, edge modes manifest as mid-gap states between two topologically distinct bulk bands. The bulk-boundary correspondence dictates that the number of chiral edge modes, a topological invariant called the winding number, is completely determined by the bulk topological invariant, the Chern number. Here, for the first time, we measure the winding number in a 2D photonic system. By inserting a unit flux quantum at the edge, we show that the edge spectrum resonances shift by the winding number. This experiment provides a new approach for unambiguous measurement of topological invariants, independent of the microscopic details, and could possibly be extended to probe strongly correlated topological orders.

  3. Local currents in a 2D topological insulator

    NASA Astrophysics Data System (ADS)

    Dang, Xiaoqian; Burton, J. D.; Tsymbal, Evgeny Y.

    2015-12-01

    Symmetry protected edge states in 2D topological insulators are interesting both from the fundamental point of view as well as from the point of view of potential applications in nanoelectronics as perfectly conducting 1D channels and functional elements of circuits. Here using a simple tight-binding model and the Landauer-Büttiker formalism we explore local current distributions in a 2D topological insulator focusing on effects of non-magnetic impurities and vacancies as well as finite size effects. For an isolated edge state, we show that the local conductance decays into the bulk in an oscillatory fashion as explained by the complex band structure of the bulk topological insulator. We demonstrate that although the net conductance of the edge state is topologically protected, impurity scattering leads to intricate local current patterns. In the case of vacancies we observe vortex currents of certain chirality, originating from the scattering of current-carrying electrons into states localized at the edges of hollow regions. For finite size strips of a topological insulator we predict the formation of an oscillatory band gap in the spectrum of the edge states, the emergence of Friedel oscillations caused by an open channel for backscattering from an impurity and antiresonances in conductance when the Fermi energy matches the energy of the localized state created by an impurity.

  4. 2D superconductivity by ionic gating

    NASA Astrophysics Data System (ADS)

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially

  5. Two 2D metal-organic frameworks based on N-heterocyclic and polycarboxylates ligands: Syntheses, structures, and photoluminescent properties

    NASA Astrophysics Data System (ADS)

    Yan, Li; Li, Chuanbi; Zhu, Dongsheng

    2013-02-01

    Two novel complexes constructed from aromatic acid and N-heterocyclic ligands have been synthesized by hydrothermal reaction: {[Mn(dipt)(BDC)3ṡH2O]n (1) [dipt = 2-(2,4-dichlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline, BDC = terephthalic acid] and [Pb(dnpt)(BDC)2]n (2) [dnpt = 2-(4-nitrophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline]. Complexes 1 and 2 were characterized by elemental analysis, IR, single crystal X-ray diffraction and thermogravimetric analysis (TGA). The results suggest that complexes 1-2 exhibit 1D chain structure. The intermolecular C-H⋯O and N-H⋯O interactions extend the complexes into 2D networks, and the existing H-bonds further stabilized the title complexes, which can be proved by TGA experiment. Furthermore, the solid-state fluorescence spectrum of complexes 1 and 2 were also investigated, as well as the ligands dipt and dnpt.

  6. A Simulation Program for Dynamic Infrared (IR) Spectra

    ERIC Educational Resources Information Center

    Zoerb, Matthew C.; Harris, Charles B.

    2013-01-01

    A free program for the simulation of dynamic infrared (IR) spectra is presented. The program simulates the spectrum of two exchanging IR peaks based on simple input parameters. Larger systems can be simulated with minor modifications. The program is available as an executable program for PCs or can be run in MATLAB on any operating system. Source…

  7. GBL-2D Version 1.0: a 2D geometry boolean library.

    SciTech Connect

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J.

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  8. Theoretical IR spectra of ionized naphthalene

    NASA Technical Reports Server (NTRS)

    Pauzat, F.; Talbi, D.; Miller, M. D.; DeFrees, D. J.; Ellinger, Y.

    1992-01-01

    We report the results of a theoretical study of the effect of ionization on the IR spectrum of naphthalene, using ab initio molecular orbital theory. For that purpose we determined the structures, band frequencies, and intensities of neutral and positively ionized naphthalene. The calculated frequencies and intensities allowed an assignment of the most important bands appearing in the newly reported experimental spectrum of the positive ion. Agreement with the experimental spectrum is satisfactory enough to take into consideration the unexpected and important result that ionization significantly affects the intensities of most vibrations. A possible consequence on the interpretation of the IR interstellar emission, generally supposed to originate from polycyclic aromatic hydrocarbons (PAHs), is briefly presented.

  9. Interparticle Attraction in 2D Complex Plasmas

    NASA Astrophysics Data System (ADS)

    Kompaneets, Roman; Morfill, Gregor E.; Ivlev, Alexei V.

    2016-03-01

    Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecularlike. In this Letter, we propose how to achieve a molecularlike interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.

  10. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  11. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  12. A scalable 2-D parallel sparse solver

    SciTech Connect

    Kothari, S.C.; Mitra, S.

    1995-12-01

    Scalability beyond a small number of processors, typically 32 or less, is known to be a problem for existing parallel general sparse (PGS) direct solvers. This paper presents a parallel general sparse PGS direct solver for general sparse linear systems on distributed memory machines. The algorithm is based on the well-known sequential sparse algorithm Y12M. To achieve efficient parallelization, a 2-D scattered decomposition of the sparse matrix is used. The proposed algorithm is more scalable than existing parallel sparse direct solvers. Its scalability is evaluated on a 256 processor nCUBE2s machine using Boeing/Harwell benchmark matrices.

  13. 2D stepping drive for hyperspectral systems

    NASA Astrophysics Data System (ADS)

    Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin

    2015-07-01

    We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.

  14. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  15. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  16. Multienzyme Inkjet Printed 2D Arrays.

    PubMed

    Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel

    2015-08-19

    The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072

  17. Solute-solvent complex switching dynamics of chloroform between acetone and dimethylsulfoxide-two-dimensional IR chemical exchange spectroscopy.

    PubMed

    Kwak, Kyungwon; Rosenfeld, Daniel E; Chung, Jean K; Fayer, Michael D

    2008-11-01

    Hydrogen bonds formed between C-H and various hydrogen bond acceptors play important roles in the structure of proteins and organic crystals, and the mechanisms of C-H bond cleavage reactions. Chloroform, a C-H hydrogen bond donor, can form weak hydrogen-bonded complexes with acetone and with dimethylsulfoxide (DMSO). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO, both types of hydrogen-bonded complexes exist. The two complexes, chloroform-acetone and chloroform-DMSO, are in equilibrium, and they rapidly interconvert by chloroform exchanging hydrogen bond acceptors. This fast hydrogen bond acceptor substitution reaction is probed using ultrafast two-dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy. Deuterated chloroform is used in the experiments, and the 2D-IR spectrum of the C-D stretching mode is measured. The chemical exchange of the chloroform hydrogen bonding partners is tracked by observing the time-dependent growth of off-diagonal peaks in the 2D-IR spectra. The measured substitution rate is 1/30 ps for an acetone molecule to replace a DMSO molecule in a chloroform-DMSO complex and 1/45 ps for a DMSO molecule to replace an acetone molecule in a chloroform-acetone complex. Free chloroform exists in the mixed solvent, and it acts as a reactive intermediate in the substitution reaction, analogous to a SN1 type reaction. From the measured rates and the equilibrium concentrations of acetone and DMSO, the dissociation rates for the chloroform-DMSO and chloroform-acetone complexes are found to be 1/24 ps and 1/5.5 ps, respectively. The difference between the measured rate for the complete substitution reaction and the rate for complex dissociation corresponds to the diffusion limited rate. The estimated diffusion limited rate agrees well with the result from a Smoluchowski treatment of diffusive reactions. PMID:18855462

  18. 2-D Inhomogeneous Modeling of the Solar CO Bands

    NASA Astrophysics Data System (ADS)

    Ayres, T. R.

    1996-05-01

    The recent discovery of off-limb emissions in the mid-IR ( ~ 5 mu m) vibration-rotation bands of solar carbon monoxide (CO) has sparked new interest in the formation of the molecular lines, and their ability to diagnose thermal conditions at high altitudes. The off-limb extensions of the strong CO lines indicate the penetration of cool material (T ~ 3500 K) several hundred kilometers into the otherwise hot (T ~ 6000 K) chromosphere. The origin of the cool gas, and its role in the thermal energy balance, remain controversial. The interpretation of the CO observations must rely heavily upon numerical modeling, in particular highly-inhomogeneous thermal structures arrayed in a 2-D scheme that can properly treat the geometry of the grazing rays at the solar limb. The radiation transport, itself, is especially simple for the CO off-limb emissions, because the fundamental bands form quite close to LTE (high collision rates; low spontaneous decay rates) and the background continuum is purely thermal as well (f--f transitions in H(-) and H). Thus, the geometrical aspects of the problem can be treated in considerably more detail than would be practical for typical NLTE scattering lines. I describe the recent modeling efforts, and the diagnostic potential of the CO bands for future observational studies of inhomogeneous surface structure on the Sun, and on other stars of late spectral type. This work was supported by NSF grant AST-9218063 to the University of Colorado.

  19. 2D to 3D transition of polymeric carbon nitride nanosheets

    SciTech Connect

    Chamorro-Posada, Pedro; Vázquez-Cabo, José; Martín-Ramos, Pablo; Martín-Gil, Jesús; Navas-Gracia, Luis M.; Dante, Roberto C.

    2014-11-15

    The transition from a prevalent turbostratic arrangement with low planar interactions (2D) to an array of polymeric carbon nitride nanosheets with stronger interplanar interactions (3D), occurring for samples treated above 650 °C, was detected by terahertz-time domain spectroscopy (THz-TDS). The simulated 3D material made of stacks of shifted quasi planar sheets composed of zigzagged polymer ribbons, delivered a XRD simulated pattern in relatively good agreement with the experimental one. The 2D to 3D transition was also supported by the simulation of THz-TDS spectra obtained from quantum chemistry calculations, in which the same broad bands around 2 THz and 1.5 THz were found for 2D and 3D arrays, respectively. This transition was also in accordance with the tightening of the interplanar distance probably due to an interplanar π bond contribution, as evidenced also by a broad absorption around 2.6 eV in the UV–vis spectrum, which appeared in the sample treated at 650 °C, and increased in the sample treated at 700 °C. The band gap was calculated for 1D and 2D cases. The value of 3.374 eV for the 2D case is, within the model accuracy and precision, in a relative good agreement with the value of 3.055 eV obtained from the experimental results. - Graphical abstract: 2D lattice mode vibrations and structural changes correlated with the so called “2D to 3D transition”. - Highlights: • A 2D to 3D transition has been detected for polymeric carbon nitride. • THz-TDS allowed us to discover and detect the 2D to 3D transition of polymeric carbon nitride. • We propose a structure for polymeric carbon nitride confirming it with THz-TDS.

  20. VizieR Online Data Catalog: c2d Spitzer final data release (DR4) (Evans+, 2003)

    NASA Astrophysics Data System (ADS)

    Evans, N. J., II; Allen, L. E.; Blake, G. A.; Boogert, A. C. A.; Bourke, T.; Harvey, P. M.; Kessler, J. E.; Koerner, D. W.; Lee, C. W.; Mundy, L. G.; Myers, P. C.; Padgett, D. L.; Pontoppidan, K.; Sargent, A. I.; Stapelfeldt, K. R.; van Dishoeck, E. F.; Young, C. H.; Young, K. E.

    2014-05-01

    This is the final delivery (DR4, Fall 2006 and Fall 2007) of the Spitzer Space Telescope "From Molecular Cores to Planet-Forming Disks" (c2d) Legacy Project. The data are also available as Enhanced Products from the Spitzer Science Center (SSC). c2d has delivered 867 catalogs. IRSA has merged these delivered catalogs into four groups - Clouds, Off-Cloud, Cores, Stars - and serves them through the general catalog search engine Gator. Many of the delivered catalogs, images and spectra are accessible through IRSA's general search service, Atlas. As a service to its users, the CDS has downloaded a dataset containing most of the c2d data (but not all columns) from the IRSA archive. The individual catalogs are listed below: C2D Fall '07 Full CLOUDS Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 High Reliability (HREL) CLOUDS Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 candidate Young Stellar Objects (YSO) CLOUDS Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 Full OFF-CLOUD Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 candidate Young Stellar Objects (YSO) OFF-CLOUD Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 Full CORES Catalog C2D Fall '07 candidate Young Stellar Objects (YSO) CORES Catalog C2D Fall '07 Full STARS Catalog C2D Fall '07 candidate Young Stellar Objects (YSO) STARS Catalog These tables have been merged into a single table at CDS. All three SIRTF instruments (Infrared Array Camera [IRAC], Multiband Imaging Photometer for SIRTF [MIPS], and Infrared Spectrograph [IRS]) were used to observe sources that span the evolutionary sequence from molecular cores to protoplanetary disks, encompassing a wide range of cloud masses, stellar masses, and star-forming environments. (1 data file).

  1. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  2. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  3. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  4. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  5. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  6. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  7. The mouse ruby-eye 2(d) (ru2(d) /Hps5(ru2-d) ) allele inhibits eumelanin but not pheomelanin synthesis.

    PubMed

    Hirobe, Tomohisa; Ito, Shosuke; Wakamatsu, Kazumasa

    2013-09-01

    The novel mutation named ru2(d) /Hps5(ru2-d) , characterized by light-colored coats and ruby-eyes, prohibits differentiation of melanocytes by inhibiting tyrosinase (Tyr) activity, expression of Tyr, Tyr-related protein 1 (Tyrp1), Tyrp2, and Kit. However, it is not known whether the ru2(d) allele affects pheomelanin synthesis in recessive yellow (e/Mc1r(e) ) or in pheomelanic stage in agouti (A) mice. In this study, effects of the ru2(d) allele on pheomelanin synthesis were investigated by chemical analysis of melanin present in dorsal hairs of 5-week-old mice from F2 generation between C57BL/10JHir (B10)-co-isogenic ruby-eye 2(d) and B10-congenic recessive yellow or agouti. Eumelanin content was decreased in ruby-eye 2(d) and ruby-eye 2(d) agouti mice, whereas pheomelanin content in ruby-eye 2(d) recessive yellow and ruby-eye 2(d) agouti mice did not differ from the corresponding Ru2(d) /- mice, suggesting that the ru2(d) allele inhibits eumelanin but not pheomelanin synthesis. PMID:23672590

  8. IOT Overview: IR Instruments

    NASA Astrophysics Data System (ADS)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  9. IR Hot Wave

    SciTech Connect

    Graham, T. B.

    2010-04-01

    The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

  10. A new inversion method for (T2, D) 2D NMR logging and fluid typing

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Zou, Youlong; Zhou, Cancan

    2013-02-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.

  11. 2-D Path Corrections for Local and Regional Coda Waves: A Test of Transportability

    SciTech Connect

    Mayeda, K M; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D S; Morasca, P

    2005-07-13

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. [2003] has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. We will compare performance of 1-D versus 2-D path corrections in a variety of regions. First, the complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Next, we will compare results for the Italian Alps using high frequency data from the University of Genoa. For Northern California, we used the same station and event distribution and compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7 {le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter

  12. Cytochrome P450 CYP2D6 gene polymorphism and lung cancer susceptibility in Caucasians.

    PubMed

    Legrand-Andréoletti, M; Stücker, I; Marez, D; Galais, P; Cosme, J; Sabbagh, N; Spire, C; Cenée, S; Lafitte, J J; Beaune, P; Broly, F

    1998-02-01

    Many studies have been performed in an attempt to establish a link between the polymorphism of the cytochrome P450 CYP2D6 gene and the incidence of lung cancer. Nevertheless, whether or not this genetic polymorphism has a role in the development of the disease remains unclear. Recently, new advances in our knowledge of the CYP2D6 gene and its locus (CYP2D) have been achieved. In particular, CYP2D6 was found to be highly polymorphic and multiple novel mutations and allelic variants of the gene have been identified. In addition, a number of CYP2D rearrangements, including those with amplification of the gene, have been demonstrated. Taking this new information into account, we have reconsidered the potential influence of CYP2D6 polymorphism in lung cancer susceptibility by performing a comparative analysis of the overall mutational spectrum of CYP2D6 and of the rearrangements of CYP2D in 249 patients with lung cancer and in 265 control individuals matched on age, sex, hospital and residence area. For this purpose, a strategy based on SSCP analysis of the entire coding sequence of CYP2D6 and on RFLP analysis of the gene locus was carried out in DNA samples from each individual. Forty mutations occurring in various combinations on 42 alleles of the gene and 82 different genotypes were identified. No significant difference in the distribution of the mutations, alleles or genotypes was observed between the two groups, except a particular genotype (CYP2D6*1A/*2), which was more common in the sub-group of moderate smokers (< 30 pack-years) suffering from small cell carcinoma (Odds Ratio (OR) 3.6, 95% CI 1.1-11.9). When the phenotype was predicted according to genotype, only a trend toward a higher frequency of ultrarapid metabolizers in patients was obtained. In spite of a complete analysis of the CYP2D6 gene and its locus, this case-control study provides elements against an influence of the CYP2D6 polymorphism on lung cancer susceptibility. PMID:9511176

  13. Discrimination of Chinese Sauce liquor using FT-IR and two-dimensional correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Su-Qin; Li, Chang-Wen; Wei, Ji-Ping; Zhou, Qun; Noda, Isao

    2006-11-01

    We applied the three-step IR macro-fingerprint identification method to obtain the IR characteristic fingerprints of so-called Chinese Sauce liquor (Moutai liquor and Kinsly liquor) and a counterfeit Moutai. These fingerprints can be used for the identification and discrimination of similar liquor products. The comparison of their conventional IR spectra, as the first step of identification, shows that the primary difference in Sauce liquor is the intensity of characteristic peaks at 1592 and 1225 cm -1. The comparison of the second derivative IR spectra, as the second step of identification, shows that the characteristic absorption in 1400-1800 cm -1 is substantially different. The comparison of 2D-IR correlation spectra, as the third and final step of identification, can discriminate the liquors from another direction. Furthermore, the method was successfully applied to the discrimination of a counterfeit Moutai from the genuine Sauce liquor. The success of the three-step IR macro-fingerprint identification to provide a rapid and effective method for the identification of Chinese liquor suggests the potential extension of this technique to the identification and discrimination of other wine and spirits, as well.

  14. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  15. Spin orientations of the spin-half Ir4+ ions in Sr3NiIrO6, Sr2IrO4, and Na2IrO3: Density functional, perturbation theory, and Madelung potential analyses

    NASA Astrophysics Data System (ADS)

    Gordon, Elijah E.; Xiang, Hongjun; Köhler, Jürgen; Whangbo, Myung-Hwan

    2016-03-01

    The spins of the low-spin Ir4+ (S = 1/2, d5) ions at the octahedral sites of the oxides Sr3NiIrO6, Sr2IrO4, and Na2IrO3 exhibit preferred orientations with respect to their IrO6 octahedra. We evaluated the magnetic anisotropies of these S = 1/2 ions on the basis of density functional theory (DFT) calculations including spin-orbit coupling (SOC), and probed their origin by performing perturbation theory analyses with SOC as perturbation within the LS coupling scheme. The observed spin orientations of Sr3NiIrO6 and Sr2IrO4 are correctly predicted by DFT calculations, and are accounted for by the perturbation theory analysis. As for the spin orientation of Na2IrO3, both experimental studies and DFT calculations have not been unequivocal. Our analysis reveals that the Ir4+ spin orientation of Na2IrO3 should have nonzero components along the c- and a-axis directions. The spin orientations determined by DFT calculations are sensitive to the accuracy of the crystal structures employed, which is explained by perturbation theory analyses when interactions between adjacent Ir4+ ions are taken into consideration. There are indications implying that the 5d electrons of Na2IrO3 are less strongly localized compared with those of Sr3NiIrO6 and Sr2IrO4. This implication was confirmed by showing that the Madelung potentials of the Ir4+ ions are less negative in Na2IrO3 than in Sr3NiIrO6 and Sr2IrO4. Most transition-metal S = 1/2 ions do have magnetic anisotropies because the SOC induces interactions among their crystal-field split d-states, and the associated mixing of the states modifies only the orbital parts of the states. This finding cannot be mimicked by a spin Hamiltonian because this model Hamiltonian lacks the orbital degree of freedom, thereby leading to the spin-half syndrome. The spin-orbital entanglement for the 5d spin-half ions Ir4+ is not as strong as has been assumed.

  16. Spin orientations of the spin-half Ir(4+) ions in Sr3NiIrO6, Sr2IrO4, and Na2IrO3: Density functional, perturbation theory, and Madelung potential analyses.

    PubMed

    Gordon, Elijah E; Xiang, Hongjun; Köhler, Jürgen; Whangbo, Myung-Hwan

    2016-03-21

    The spins of the low-spin Ir(4+) (S = 1/2, d(5)) ions at the octahedral sites of the oxides Sr3NiIrO6, Sr2IrO4, and Na2IrO3 exhibit preferred orientations with respect to their IrO6 octahedra. We evaluated the magnetic anisotropies of these S = 1/2 ions on the basis of density functional theory (DFT) calculations including spin-orbit coupling (SOC), and probed their origin by performing perturbation theory analyses with SOC as perturbation within the LS coupling scheme. The observed spin orientations of Sr3NiIrO6 and Sr2IrO4 are correctly predicted by DFT calculations, and are accounted for by the perturbation theory analysis. As for the spin orientation of Na2IrO3, both experimental studies and DFT calculations have not been unequivocal. Our analysis reveals that the Ir(4+) spin orientation of Na2IrO3 should have nonzero components along the c- and a-axis directions. The spin orientations determined by DFT calculations are sensitive to the accuracy of the crystal structures employed, which is explained by perturbation theory analyses when interactions between adjacent Ir(4+) ions are taken into consideration. There are indications implying that the 5d electrons of Na2IrO3 are less strongly localized compared with those of Sr3NiIrO6 and Sr2IrO4. This implication was confirmed by showing that the Madelung potentials of the Ir(4+) ions are less negative in Na2IrO3 than in Sr3NiIrO6 and Sr2IrO4. Most transition-metal S = 1/2 ions do have magnetic anisotropies because the SOC induces interactions among their crystal-field split d-states, and the associated mixing of the states modifies only the orbital parts of the states. This finding cannot be mimicked by a spin Hamiltonian because this model Hamiltonian lacks the orbital degree of freedom, thereby leading to the spin-half syndrome. The spin-orbital entanglement for the 5d spin-half ions Ir(4+) is not as strong as has been assumed. PMID:27004892

  17. Spin orientations of the spin-half Ir4+ ions in Sr3NiIrO6, Sr2IrO4 and Na2IrO3: Density functional, perturbation theory and Madelung potential analyses

    DOE PAGESBeta

    Gordon, Elijah E.; Xiang, Hongjun; Koehler, Jurgen; Whangbo, Myung -Hwan

    2016-03-01

    The spins of the low-spin Ir4+ (S = 1/2, d5) ions at the octahedral sites of the oxides Sr3NiIrO6, Sr2IrO4 and Na2IrO3 exhibit preferred orientations with respect to their IrO6 octahedra. We evaluated the magnetic anisotropies of these S = 1/2 ions on the basis of DFT calculations including spin-orbit coupling (SOC), and probed their origin by performing perturbation theory analyses with SOC as perturbation within the LS coupling scheme. The observed spin orientations of Sr3NiIrO6 and Sr2IrO4 are correctly predicted by DFT calculations, and are accounted for by the perturbation theory analysis. As for the spin orientation of Na2IrO3,more » both experimental studies and DFT calculations have not been unequivocal. Our analysis reveals that the Ir4+ spin orientation of Na2IrO3 should have nonzero components along the c- and a-axes directions. The spin orientations determined by DFT calculations are sensitive to the accuracy of the crystal structures employed, which is explained by perturbation theory analyses when interactions between adjacent Ir4+ ions are taken into consideration. There are indications implying that the 5d electrons of Na2IrO3 are less strongly localized compared with those of Sr3NiIrO6 and Sr2IrO4. This implication was confirmed by showing that the Madelung potentials of the Ir4+ ions are less negative in Na2IrO3 than in Sr3NiIrO6, Sr2IrO4. Most transition-metal S = 1/2 ions do have magnetic anisotropies because the SOC induces interactions among their crystal-field split d-states, and the associated mixing of the states modifies only the orbital parts of the states. This finding cannot be mimicked by a spin Hamiltonian because this model Hamiltonian lacks the orbital degree of freedom, thereby leading to the spin-half syndrome. As a result, the spin-orbital entanglement for the 5d spin-half ions Ir4+ is not as strong as has been assumed lately.« less

  18. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  19. 2D Radiative Processes Near Cloud Edges

    NASA Technical Reports Server (NTRS)

    Varnai, T.

    2012-01-01

    Because of the importance and complexity of dynamical, microphysical, and radiative processes taking place near cloud edges, the transition zone between clouds and cloud free air has been the subject of intense research both in the ASR program and in the wider community. One challenge in this research is that the one-dimensional (1D) radiative models widely used in both remote sensing and dynamical simulations become less accurate near cloud edges: The large horizontal gradients in particle concentrations imply that accurate radiative calculations need to consider multi-dimensional radiative interactions among areas that have widely different optical properties. This study examines the way the importance of multidimensional shortwave radiative interactions changes as we approach cloud edges. For this, the study relies on radiative simulations performed for a multiyear dataset of clouds observed over the NSA, SGP, and TWP sites. This dataset is based on Microbase cloud profiles as well as wind measurements and ARM cloud classification products. The study analyzes the way the difference between 1D and 2D simulation results increases near cloud edges. It considers both monochromatic radiances and broadband radiative heating, and it also examines the influence of factors such as cloud type and height, and solar elevation. The results provide insights into the workings of radiative processes and may help better interpret radiance measurements and better estimate the radiative impacts of this critical region.

  20. Simulation of Yeast Cooperation in 2D.

    PubMed

    Wang, M; Huang, Y; Wu, Z

    2016-03-01

    Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse. PMID:26988702

  1. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950

  2. Ion Transport in 2-D Graphene Nanochannels

    NASA Astrophysics Data System (ADS)

    Xie, Quan; Foo, Elbert; Duan, Chuanhua

    2015-11-01

    Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).

  3. Parallel map analysis on 2-D grids

    SciTech Connect

    Berry, M.; Comiskey, J.; Minser, K.

    1993-12-31

    In landscape ecology, computer modeling is used to assess habitat fragmentation and its ecological iMPLications. Specifically, maps (2-D grids) of habitat clusters must be analyzed to determine number, sizes and geometry of clusters. Models prior to this study relied upon sequential Fortran-77 programs which limited the sizes of maps and densities of clusters which could be analyzed. In this paper, we present more efficient computer models which can exploit recursion or parallelism. Significant improvements over the original Fortran-77 programs have been achieved using both recursive and nonrecursive C implementations on a variety of workstations such as the Sun Sparc 2, IBM RS/6000-350, and HP 9000-750. Parallel implementations on a 4096-processor MasPar MP-1 and a 32-processor CM-5 are also studied. Preliminary experiments suggest that speed improvements for the parallel model on the MasPar MP-1 (written in MPL) and on the CM-5 (written in C using CMMD) can be as much as 39 and 34 times faster, respectively, than the most efficient sequential C program on a Sun Sparc 2 for a 512 map. An important goal in this research effort is to produce a scalable map analysis algorithm for the identification and characterization of clusters for relatively large maps on massively-parallel computers.

  4. 2D Turbulence with Complicated Boundaries

    NASA Astrophysics Data System (ADS)

    Roullet, G.; McWilliams, J. C.

    2014-12-01

    We examine the consequences of lateral viscous boundary layers on the 2D turbulence that arises in domains with complicated boundaries (headlands, bays etc). The study is carried out numerically with LES. The numerics are carefully designed to ensure all global conservation laws, proper boundary conditions and a minimal range of dissipation scales. The turbulence dramatically differs from the classical bi-periodic case. Boundary layer separations lead to creation of many small vortices and act as a continuing energy source exciting the inverse cascade of energy throughout the domain. The detachments are very intermittent in time. In free decay, the final state depends on the effective numerical resolution: laminar with a single dominant vortex for low Re and turbulent with many vortices for large enough Re. After very long time, the turbulent end-state exhibits a striking tendency for the emergence of shielded vortices which then interact almost elastically. In the forced case, the boundary layers allow the turbulence to reach a statistical steady state without any artificial hypo-viscosity or other large-scale dissipation. Implications are discussed for the oceanic mesoscale and submesoscale turbulence.

  5. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  6. Competing coexisting phases in 2D water.

    PubMed

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  7. 2-D wavelet with position controlled resolution

    NASA Astrophysics Data System (ADS)

    Walczak, Andrzej; Puzio, Leszek

    2005-09-01

    Wavelet transformation localizes all irregularities in the scene. It is most effective in the case when intensities in the scene have no sharp details. It is the case often present in a medical imaging. To identify the shape one has to extract it from the scene as typical irregularity. When the scene does not contain sharp changes then common differential filters are not efficient tool for a shape extraction. The new 2-D wavelet for such task has been proposed. Described wavelet transform is axially symmetric and has varied scale in dependence on the distance from the centre of the wavelet symmetry. The analytical form of the wavelet has been presented as well as its application for details extraction in the scene. Most important feature of the wavelet transform is that it gives a multi-scale transformation, and if zoom is on the wavelet selectivity varies proportionally to the zoom step. As a result, the extracted shape does not change during zoom operation. What is more the wavelet selectivity can be fit to the local intensity gradient properly to obtain best extraction of the irregularities.

  8. Zellweger Spectrum

    MedlinePlus

    ... the Zellweger spectrum result from defects in the assembly of a cellular structure called the peroxisome, and ... Zellweger spectrum are caused by defects in the assembly of the peroxisome. There are at least 12 ...

  9. 2-D Animation's Not Just for Mickey Mouse.

    ERIC Educational Resources Information Center

    Weinman, Lynda

    1995-01-01

    Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)

  10. Infrared Measurements of Possible IR Filter Materials

    SciTech Connect

    Koller,D.; Ediss, G.; Mihaly, L.; Carr, G.

    2006-01-01

    A Fourier Transform Infrared Spectrometer (FTS) was used to obtain the transmission spectra of candidate materials for use as infrared (IR) filters in cryogenic receivers. The data cover the range from 50 cm-1 ({approx}1.5 THz), well below the peak of the 300 K black body spectrum, to 5000 cm-1 ({approx}150 THz), Z-cut quartz, Gore-Tex, Zitex G and Zitex A, High Density Polyethylene (HDPE), Teflon (PTFE), Fluorogold and Black Polyethylene were measured. The relative effectiveness of each material as a filter is determined by integrating the transmission spectrum multiplied by the Planck distribution to obtain a normalized attenuation for the mid-IR band. Measurements at both room temperature and 8 K are compared.

  11. The NASA Ames PAH IR Spectroscopic Database and the far-IR

    NASA Astrophysics Data System (ADS)

    Boersma, C.; Allamandola, L. J.; Bauschlicher, C. W.; Ricca, A.; Cami, J.; Peeters, E.; Sánchez de Armas, F.; Puerta Saborido, G.; Mattioda, A. L.; Hudgins, D. M.

    2011-03-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are widespread across the Universe and influence many stages of the Galactic lifecycle. The presence of PAHs has been well established and the rich mid-IR PAH spectrum is now commonly used as a probe into (inter)stellar environments. The NASA Ames PAH IR Spectroscopic Database has been key to test and refine the "PAH hypothesis". This database is a large coherent set (>600 spectra) of laboratory measured and DFT computed infrared spectra of PAHs from C10H8 to C130H28 and has been made available on the web at ( http://www.astrochem.org/pahdb). With a new spectral window opening up; the far-IR, the study of PAH far-IR spectra and the quest for identifying a unique member of the interstellar PAH family has begun. To guide this research, the far-IR (>20 μm) spectra of different sets of PAHs are investigated using the NASA Ames PAH IR Spectroscopic Database. These sets explore the influence of size, shape, charge and composition on the far-IR PAH spectrum. The far-IR is also the domain of the so-called "drumhead" modes and other molecular vibrations involving low order bending vibrations of the carbon skeleton as a whole. As with drums, these are molecule and shape specific and promise to be a key diagnostic for specific PAHs. Here, the sensitivity of these "drumhead" modes to size and shape is assessed by comparing the frequencies of the lowest drumhead modes of a family of circular shaped (the coronene "family") and rhombus shaped (the pyrene "family") PAH molecules. From this study, some consequences for an observing strategy are drawn.

  12. 2D electron temperature diagnostic using soft x-ray imaging technique

    SciTech Connect

    Nishimura, K. Sanpei, A. Tanaka, H.; Ishii, G.; Kodera, R.; Ueba, R.; Himura, H.; Masamune, S.; Ohdachi, S.; Mizuguchi, N.

    2014-03-15

    We have developed a two-dimensional (2D) electron temperature (T{sub e}) diagnostic system for thermal structure studies in a low-aspect-ratio reversed field pinch (RFP). The system consists of a soft x-ray (SXR) camera with two pin holes for two-kinds of absorber foils, combined with a high-speed camera. Two SXR images with almost the same viewing area are formed through different absorber foils on a single micro-channel plate (MCP). A 2D T{sub e} image can then be obtained by calculating the intensity ratio for each element of the images. We have succeeded in distinguishing T{sub e} image in quasi-single helicity (QSH) from that in multi-helicity (MH) RFP states, where the former is characterized by concentrated magnetic fluctuation spectrum and the latter, by broad spectrum of edge magnetic fluctuations.

  13. [Study on the wavelength accuracy of the 2-D slit-array Hadamard spectrometer].

    PubMed

    Chi, Ming-Bo; Hao, Peng; Wu, Yi-Hui

    2013-01-01

    The 2-D slit array mask is a new design of Hadamard spectrometer mask. Having discussed the influence of the inconsistency caused by the machining errors in the size and location between the slits in the same column on the wavelength accuracy of the Hadamard spectrometer, the authors bring up with the way to decrease the influence on the wavelength accuracy of the spectrometer caused by the difference in the height and location vertical to the spectrum between the slits in the same column, and then estimate the spectral shift caused by the relative location shift along the spectrum between the slits in the same column. A model for simulation was built, and the measurement errors in the decoded spectrum generated by one column of the slits on the mask were calculated, when there are inconsistency errors in width and location along the spectrum between the slits in another column. Based on the simulation calculation, we can determine the machining precision of the mask. The research will be meaningful to the design of the 2-D slit array mask using MEMS(micro-electro-mechanism system) technique and the revise of the decoded spectrum, which can provide the spectrometer with a reasonable wavelength accuracy. PMID:23586265

  14. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  15. On 2D graphical representation of DNA sequence of nondegeneracy

    NASA Astrophysics Data System (ADS)

    Zhang, Yusen; Liao, Bo; Ding, Kequan

    2005-08-01

    Some two-dimensional (2D) graphical representations of DNA sequences have been given by Gates, Nandy, Leong and Mogenthaler, Randić, and Liao et al., which give visual characterizations of DNA sequences. In this Letter, we introduce a nondegeneracy 2D graphical representation of DNA sequence, which is different from Randić's novel 2D representation and Liao's 2D representation. We also present the nondegeneracy forms corresponding to the representations of Gates, Nandy, Leong and Mogenthaler.

  16. Generates 2D Input for DYNA NIKE & TOPAZ

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  17. Evaluation of 2D spatially selective MR spectroscopy using parallel excitation at 7 T

    PubMed Central

    Haas, Martin; Darji, Niravkumar; Speck, Oliver

    2015-01-01

    Background In this work, two-dimensional (2D) spatially selective magnetic resonance spectroscopy (MRS) was evaluated in both phantom and human brain using 8-channel parallel excitation (pTX) at 7 T and compared to standard STEAM. Materials and methods A 2D spiral excitation k-space trajectory was segmented into multiple individual segments to increase the bandwidth. pTX was used to decrease the number of segments by accelerating the trajectory. Different radio frequency (RF) shim settings were used for refocusing, water suppression and fat saturation pulses. Results Phantom experiments demonstrate that, although segmented 2D excitation provided excellent spatial selectivity and spectral quality, STEAM outperformed it in terms of outer volume suppression with 0.6% RMSD compared to 1.7%, 2.5%, 3.9% and 5.5% RMSDs for acceleration factors of R=1, 2, 3 and 4, respectively. Seven major metabolites [choline (Cho), creatine (Cr), phosphocreatine (PCr), glutamate (Glu), glutamine (Gln), glutathione (GSH) and N-acetylaspartate (NAA)] were detected with sufficient accuracy [Cramér-Rao lower bounds (CRLBs) <20%] from the in vivo spectra of both methods. Conservative RF power limits resulted in reduced SNR for 2D selective MR spectra (SNR 131 and 82 for R=1 and 2, respectively) compared to the reference STEAM spectrum (SNR 199). Conclusions Single voxel spectra acquired using 2D selective MRS with and without pTX showed very good agreement with the reference STEAM spectrum. Efficient SAR management of the 2D selective MRS sequence would potentially improve the SNR of spectra. PMID:26029637

  18. 2d PDE Linear Symmetric Matrix Solver

    1983-10-01

    ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  19. 2d PDE Linear Asymmetric Matrix Solver

    1983-10-01

    ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  20. Ultrasonic 2D matrix PVDF transducer

    NASA Astrophysics Data System (ADS)

    Ptchelintsev, A.; Maev, R. Gr.

    2000-05-01

    During the past decade a substantial amount of work has been done in the area of ultrasonic imaging technology using 2D arrays. The main problems arising for the two-dimensional matrix transducers at megahertz frequencies are small size and huge count of the elements, high electrical impedance, low sensitivity, bad SNR and slower data acquisition rate. The major technological difficulty remains the high density of the interconnect. To solve these problems numerous approaches have been suggested. In the present work, a 24×24 elements (24 transmit+24 receive) matrix and a switching board were developed. The transducer consists of two 52 μm PVDF layers each representing a linear array of 24 elements placed one on the top of the other. Electrodes in these two layers are perpendicular and form the grid of 0.5×0.5 mm pitch. The layers are bonded together with the ground electrode being monolithic and located between the layers. The matrix is backed from the rear surface with an epoxy composition. During the emission, a linear element from the emitting layer generates a longitudinal wave pulse propagating inside the test object. Reflected pulses are picked-up by the receiving layer. During one transmit-receive cycle one transmit element and one receive element are selected by corresponding multiplexers. These crossed elements emulate a small element formed by their intersection. The present design presents the following advantages: minimizes number of active channels and density of the interconnect; reduces the electrical impedance of the element improving electrical matching; enables the transmit-receive mode; due to the efficient backing provides bandwidth and good time resolution; and, significantly reduces the electronics complexity. The matrix can not be used for the beam steering and focusing. Owing to this impossibility of focusing, the penetration depth is limited as well by the diffraction phenomena.

  1. Antenna coupled detectors for 2D staring focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gritz, Michael A.; Kolasa, Borys; Lail, Brian; Burkholder, Robert; Chen, Leonard

    2013-06-01

    Millimeter-wave (mmW)/sub-mmW/THz region of the electro-magnetic spectrum enables imaging thru clothing and other obscurants such as fog, clouds, smoke, sand, and dust. Therefore considerable interest exists in developing low cost millimeter-wave imaging (MMWI) systems. Previous MMWI systems have evolved from crude mechanically scanned, single element receiver systems into very complex multiple receiver camera systems. Initial systems required many expensive mmW integrated-circuit low-noise amplifiers. In order to reduce the cost and complexity of the existing systems, attempts have been made to develop new mmW imaging sensors employing direct detection arrays. In this paper, we report on Raytheon's recent development of a unique focal plane array technology, which operates broadly from the mmW through the sub-mmW/THz region. Raytheon's innovative nano-antenna based detector enables low cost production of 2D staring mmW focal plane arrays (mmW FPA), which not only have equivalent sensitivity and performance to existing MMWI systems, but require no mechanical scanning.

  2. Recovering the Fermi surface with 2D-ACAR spectroscopy in samples with defects

    NASA Astrophysics Data System (ADS)

    Dugdale, S. B.; Laverock, J.

    2014-04-01

    When two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) experiments are performed in metals containing defects, conventional analysis in which the measured momentum distribution is folded back into the first Brillouin zone is rendered ineffective due to the contribution from positrons annihilating from the defect. However, by working with the radial anisotropy of the spectrum, it is shown that an image of the Fermi surface can be recovered since the defect contribution is essentially isotropic.

  3. Silicene, a promising new 2D material

    NASA Astrophysics Data System (ADS)

    Oughaddou, Hamid; Enriquez, Hanna; Tchalala, Mohammed Rachid; Yildirim, Handan; Mayne, Andrew J.; Bendounan, Azzedine; Dujardin, Gérald; Ait Ali, Mustapha; Kara, Abdelkader

    2015-02-01

    Silicene is emerging as a two-dimensional material with very attractive electronic properties for a wide range of applications; it is a particularly promising material for nano-electronics in silicon-based technology. Over the last decade, the existence and stability of silicene has been the subject of much debate. Theoretical studies were the first to predict a puckered honeycomb structure with electronic properties resembling those of graphene. Though these studies were for free-standing silicene, experimental fabrication of silicene has been achieved so far only through epitaxial growth on crystalline surfaces. Indeed, it was only in 2010 that researchers presented the first experimental evidence of the formation of silicene on Ag(1 1 0) and Ag(1 1 1), which has launched silicene in a similar way to graphene. This very active field has naturally led to the recent growth of silicene on Ir(1 1 1), ZrB2(0 0 0 1) and Au(1 1 0) substrates. However, the electronic properties of epitaxially grown silicene on metal surfaces are influenced by the strong silicene-metal interactions. This has prompted experimental studies of the growth of multi-layer silicene, though the nature of its "silicene" structure remains questionable. Of course, like graphene, synthesizing free-standing silicene represents the ultimate challenge. A first step towards this has been reported recently through chemical exfoliation from calcium disilicide (CaSi2). In this review, we discuss the experimental and theoretical studies of silicene performed to date. Special attention is given to different experimental studies of the electronic properties of silicene on metal substrates. New avenues for the growth of silicene on other substrates with different chemical characteristics are presented along with foreseeable applications such as nano-devices and novel batteries.

  4. Development of a 2D precision cryogenic chopper for METIS

    NASA Astrophysics Data System (ADS)

    Paalvast, Sander L.; Janssen, Huub; Teuwen, Maurice; Huisman, Robert; Brandl, Bernhard; Molster, Frank; Venema, Lars

    2012-09-01

    The Mid-infrared E-ELT Imager and Spectrograph, or METIS, is foreseen as the third instrument for the European Extremely Large Telescope (E-ELT). A key part of METIS is the Cold Chopper (MCC) which switches the optical beam between the target and a nearby reference sky during observation for elimination of the fluctuating IR background signal in post-processing. This paper discusses the development of the MCC demonstrator. The chopper mirror (Ø64mm) has to tip/tilt in 2D with a combined angle of up to 13.6mrad with 1.7μrad stability and repeatability within 5ms (95% duty cycle at 5Hz) at 80K. As these requirements cannot be met in the presence of friction or backlash, the mirror is guided by a monolithically integrated flexure mechanism. The angular position is actuated by three linear actuators and measured by three linear position sensors, resulting in a fast tip, tilt, and focus mirror. Using the third actuator to introduce symmetry, homogeneity in forces and heat flux is obtained. Both the actuators and the sensors are key components. A voice coil actuator had to be custom designed, to achieve the required acceleration force within the specified 1W heat load. The requirements for the displacement measurement can be met with a commercially available, fiber interferometry system. For integration of this system, stray light elimination is a critical design aspect and retro-reflectors have been used to reflect sufficient power into the fiber at large tip/tilt angles.

  5. Geometrical Correlation and Matching of 2d Image Shapes

    NASA Astrophysics Data System (ADS)

    Vizilter, Y. V.; Zheltov, S. Y.

    2012-07-01

    The problem of image correspondence measure selection for image comparison and matching is addressed. Many practical applications require image matching "just by shape" with no dependence on the concrete intensity or color values. Most popular technique for image shape comparison utilizes the mutual information measure based on probabilistic reasoning and information theory background. Another approach was proposed by Pytiev (so called "Pytiev morphology") based on geometrical and algebraic reasoning. In this framework images are considered as piecewise-constant 2D functions, tessellation of image frame by the set of non-intersected connected regions determines the "shape" of image and the projection of image onto the shape of other image is determined. Morphological image comparison is performed using the normalized morphological correlation coefficients. These coefficients estimate the closeness of one image to the shape of other image. Such image analysis technique can be characterized as an ""ntensity-to-geometry" matching. This paper generalizes the Pytiev morphological approach for obtaining the pure "geometry-to-geometry" matching techniques. The generalized intensity-geometrical correlation coefficient is proposed including the linear correlation coefficient and the square of Pytiev correlation coefficient as its partial cases. The morphological shape correlation coefficient is proposed based on the statistical averaging of images with the same shape. Centered morphological correlation coefficient is obtained under the condition of intensity centering of averaged images. Two types of symmetric geometrical normalized correlation coefficients are proposed for comparison of shape-tessellations. The technique for correlation and matching of shapes with ordered intensities is proposed with correlation measures invariant to monotonous intensity transformations. The quality of proposed geometrical correlation measures is experimentally estimated in the task of

  6. Downregulation of Ubiquitin-conjugating Enzyme UBE2D3 Promotes Telomere Maintenance and Radioresistance of Eca-109 Human Esophageal Carcinoma Cells

    PubMed Central

    Yang, Hui; Wu, Lin; Ke, Shaobo; Wang, Wenbo; Yang, Lei; Gao, Xiaojia; Fang, Hongyan; Yu, Haijun; Zhong, Yahua; Xie, Conghua; Zhou, Fuxiang; Zhou, Yunfeng

    2016-01-01

    Ubiquitin-conjugating enzyme UBE2D3 is an important member of the ubiquitin-proteasome pathways. Our previous study showed that the expression of UBE2D3 was negatively related to human telomerase reverse transcriptase (hTERT) and radioresistance in human breast cancer cells. However, in esophageal carcinoma, the exact effects and mechanisms of UBE2D3 in radioresistance remain unclear. This study shows that UBE2D3 knockdown was associated with significant increases in radioresistance to X-rays, telomerase activity, telomere length, and telomere shelterins. UBE2D3 knockdown-mediated radioresistance was related to a decrease in the spontaneous and ionizing radiation-induced apoptosis, resulting from a decrease in the Bax/Bcl-2 ratio. Furthermore, UBE2D3 downregulation was associated with increased G1-S phase transition and prolonged IR-induced G2/M arrest through over expression of cyclin D1, decrease of CDC25A expression and promotion of the ATM/ATR-Chk1-CDC25C pathway. Moreover, UBE2D3 downregulation reduced spontaneous DNA double-strand breaks and accelerated the repair of DNA damage induced by IR. The current data thus demonstrate that UBE2D3 downregulation enhances radioresistance by increased telomere homeostasis and prolonged IR-induced G2/M arrest, but decreases the IR-induced apoptosis and the number of DNA damage foci. These results suggest that UBE2D3 might be a potential molecular target to improve radiotherapy effects in esophageal carcinoma. PMID:27326259

  7. A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures

    SciTech Connect

    Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.

    1998-12-14

    We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.

  8. CHARLOTTE HARBOR IR, 2002

    EPA Science Inventory

    The 2002 Charlotte Harbor Implementation Review (IR) summarizes the progress and challenges ahead for the Charlotte Harbor National Estuary Program (CHNEP). The implementation review report requires seven components: Status of CCMP implementation (programmatic progress); Environm...

  9. Advanced ROICs design for cooled IR detectors

    NASA Astrophysics Data System (ADS)

    Zécri, Michel; Maillart, Patrick; Sanson, Eric; Decaens, Gilbert; Lefoul, Xavier; Baud, Laurent

    2008-04-01

    The CMOS silicon focal plan array technologies hybridized with infrared detectors materials allow to cover a wide range of applications in the field of space, airborne and grounded-based imaging. Regarding other industries which are also using embedded systems, the requirements of such sensor assembly can be seen as very similar; high reliability, low weight, low power, radiation hardness for space applications and cost reduction. Comparing to CCDs technology, excepted the fact that CMOS fabrication uses standard commercial semiconductor foundry, the interest of this technology used in cooled IR sensors is its capability to operate in a wide range of temperature from 300K to cryogenic with a high density of integration and keeping at the same time good performances in term of frequency, noise and power consumption. The CMOS technology roadmap predict aggressive scaling down of device size, transistor threshold voltage, oxide and metal thicknesses to meet the growing demands for higher levels of integration and performance. At the same time infrared detectors manufacturing process is developing IR materials with a tunable cut-off wavelength capable to cover bandwidths from visible to 20μm. The requirements of third generation IR detectors are driving to scaling down the pixel pitch, to develop IR materials with high uniformity on larger formats, to develop Avalanche Photo Diodes (APD) and dual band technologies. These needs in IR detectors technologies developments associated to CMOS technology, used as a readout element, are offering new capabilities and new opportunities for cooled infrared FPAs. The exponential increase of new functionalities on chip, like the active 2D and 3D imaging, the on chip analog to digital conversion, the signal processing on chip, the bicolor, the dual band and DTI (Double Time Integration) mode ...is aiming to enlarge the field of application for cooled IR FPAs challenging by the way the design activity.

  10. The infrared spectrum of asteroid 433 Eros

    NASA Technical Reports Server (NTRS)

    Larson, H. P.; Fink, U.; Treffers, R. R.; Gautier, T. N., III

    1976-01-01

    The mineralogical composition of asteroid Eros has been determined from its infrared spectrum (0.9-2.7 micrometers; 28/cm resolution). Major minerals include metallic Ni-Fe and pyroxene; no spectroscopic evidence for olivine or plagioclase feldspar was found. The IR spectrum of Eros is most consistent with a stony-iron composition.

  11. 2D imaging and 3D sensing data acquisition and mutual registration for painting conservation

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale

    2005-01-01

    We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.

  12. 2D imaging and 3D sensing data acquisition and mutual registration for painting conservation

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale

    2004-12-01

    We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.

  13. Correlated Electron Phenomena in 2D Materials

    NASA Astrophysics Data System (ADS)

    Lambert, Joseph G.

    In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in

  14. TECHNICAL DESIGN NOTE: Currency verification by a 2D infrared barcode

    NASA Astrophysics Data System (ADS)

    Schirripa Spagnolo, Giuseppe; Cozzella, Lorenzo; Simonetti, Carla

    2010-10-01

    Nowadays all the National Central Banks are continuously studying innovative anti-counterfeiting systems for banknotes. In this note, an innovative solution is proposed, which combines the potentiality of a hylemetric approach (methodology conceptually similar to biometry), based on notes' intrinsic characteristics, with a well-known and consolidated 2D barcode identification system. In particular, in this note we propose to extract from the banknotes a univocal binary control sequence (template) and insert an encrypted version of it in a barcode printed on the same banknote. For a more acceptable look and feel of a banknote, the superposed barcode can be stamped using IR ink that is visible to near-IR image sensors. This makes the banknote verification simpler.

  15. A 2D Polychloride Network Held Together by Halogen-Halogen Interactions.

    PubMed

    Brückner, Robin; Haller, Heike; Steinhauer, Simon; Müller, Carsten; Riedel, Sebastian

    2015-12-14

    In a eutectic mixture of two ionic liquids, we have synthesized and crystallized the new polychloride compound [Et4 N]2 [(Cl3 )2 ⋅Cl2 ] that exhibits a periodic 2D polychloride network acting as an anionic layer. Based on its low melting point and vapor pressure, this compound can be described as a room-temperature ionic liquid. The compound was fully characterized by IR and Raman spectroscopy as well as single-crystal X-ray structure determination. The characterization was complemented by solid-state quantum-chemical calculations confirming the results of the experimental work. PMID:26545703

  16. IR Activities. IR Applications, Volume 12

    ERIC Educational Resources Information Center

    Chambers, Stephen; Gerek, Mary Louise

    2007-01-01

    Institutional research is the sum total of all activities directed at describing the full spectrum of functions (educational, administrative, and support) occurring within a college or university. Institutional research activities examine those functions in their broadest definitions, and embrace data collection and analytical strategies in…

  17. Progress in Understanding the Infrared Spectra of He- and Ne-C_2D_2

    NASA Astrophysics Data System (ADS)

    Moazzen-Ahmadi, Nasser; McKellar, Bob

    2014-06-01

    Infrared spectra of He-C_2H_2 were recorded around 1990 in Roger Miller's lab, but detailed rotational assignment was apparently not possible even with the help of theoretical predictions. So there were no published experimental spectra of helium-acetylene van der Waals complexes until our recent work on He-C_2D_2 in the νb{3} region (˜2440 wn). The problem is that this complex lies close to the free rotor limit, so that most of the intensity in the spectrum piles up in tangles of closely spaced lines located close to the monomer rotational transitions, R(0), P(1), etc. Our previous He-C_2D_2 assignments were limited to the R(0) region, that is, the j = 1 ← 0 subband, where j represents C_2D_2 rotation. Here, we extend the analysis to j = 0 ← 1 and 2 ← 1 transitions with the help of new spectra obtained using a tunable OPO laser probe and a cooled supersonic jet nozzle. These subbands are weaker, not only because of the Boltzmann factor, but also the 2:1 nuclear spin statistics of j" = even:odd C_2D_2 levels. Moreover, the j = 0 ← 1 subband is overlapped by strong (C_2D_2)_2 transitions. We use a term value approach, obtaining a self-consistent set of ``experimental" energy levels which can be directly compared with theory or fitted in terms of a Coriolis model. Challenges also arise with Ne-C_2D_2, which is not quite so close to the free rotor limit, but still has many overlapping lines. Insights gained here help in assigning the tricky R(1) region for Ne-C_2D_2. M. Rezaei, N. Moazzen-Ahmadi, A.R.W. McKellar, B. Fernández, and D. Farrelly, Mol. Phys. 110, 2743 (2012).

  18. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  19. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  20. Differential CYP 2D6 Metabolism Alters Primaquine Pharmacokinetics

    PubMed Central

    Potter, Brittney M. J.; Xie, Lisa H.; Vuong, Chau; Zhang, Jing; Zhang, Ping; Duan, Dehui; Luong, Thu-Lan T.; Bandara Herath, H. M. T.; Dhammika Nanayakkara, N. P.; Tekwani, Babu L.; Walker, Larry A.; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.

    2015-01-01

    Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity. PMID:25645856

  1. 2D to 3D to 2D Dimensionality Crossovers in Thin BSCCO Films

    NASA Astrophysics Data System (ADS)

    Williams, Gary A.

    2003-03-01

    With increasing temperature the superfluid fraction in very thin BSCCO films undergoes a series of dimensionality crossovers. At low temperatures the strong anisotropy causes the thermal excitations to be 2D pancake-antipancake pairs in uncoupled layers. At higher temperatures where the c-axis correlation length becomes larger than a layer there is a crossover to 3D vortex loops. These are initially elliptical, but as the 3D Tc is approached they become more circular as the anisotropy scales away, as modeled by Shenoy and Chattopadhyay [1]. Close to Tc when the correlation length becomes comparable to the film thickness there is a further crossover to a 2D Kosterlitz-Thouless transition, with a drop of the superfluid fraction to zero at T_KT which can be of the order of 1 K below T_c. Good agreement with this model is found for experiments on thin BSCCO 2212 films [2]. 1. S. R. Shenoy and B. Chattopadhyay, Phys. Rev. B 51, 9129 (1995). 2. K. Osborn et al., cond-mat/0204417.

  2. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  3. 2D-ELDOR using full Sc- fitting and absorption lineshapes

    NASA Astrophysics Data System (ADS)

    Chiang, Yun-Wei; Costa-Filho, Antonio; Freed, Jack H.

    2007-10-01

    Recent progress in developing 2D-ELDOR (2D electron-electron double resonance) techniques to better capture molecular dynamics in complex fluids, particularly in model and biological membranes, is reported. The new "full Sc- method", which corrects the spectral analysis for the phase distortion effects present in the experiments, is demonstrated to enhance the sensitivity of 2D-ELDOR in reporting on molecular dynamics in complex membrane environments. That is, instead of performing spectral fitting in the magnitude mode, our new method enables simultaneous fitting of both the real and imaginary components of the Sc- signal. The full Sc- fitting not only corrects the phase distortions in the experimental data but also more accurately determines instrumental dead times. The phase corrections applied to the Sc- spectrum enable the extraction of the pure absorption-mode spectrum, which is characterized by much better resolution than the magnitude-mode spectrum. In the absorption mode, the variation of homogeneous broadening, which reports on the dynamics of the spin probe, can even be observed by visual inspection. This new method is illustrated with results from model membranes of dipalmitoyl-sn-glycero-phosphatidylcholine (DPPC)-cholesterol binary mixtures, as well as with results from plasma membrane vesicles of mast cells. In addition to the dynamic parameters, which provide quantitative descriptions for membranes at the molecular level, the high-resolution absorption spectra themselves may be used as a "fingerprint" to characterize membrane phases and distinguish coexisting components in biomembranes. Thus we find that 2D-ELDOR is greatly improved with the new "full Sc- method" especially for exploring the complexity of model and biological membranes.

  4. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  5. Differential Cytochrome P450 2D Metabolism Alters Tafenoquine Pharmacokinetics

    PubMed Central

    Vuong, Chau; Xie, Lisa H.; Potter, Brittney M. J.; Zhang, Jing; Zhang, Ping; Duan, Dehui; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Nanayakkara, N. P. Dhammika; Tekwani, Babu L.; Walker, Larry A.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.; Smith, Bryan

    2015-01-01

    Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations. PMID:25870069

  6. A Geometric Boolean Library for 2D Objects

    2006-01-05

    The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various filemore » formats, are also provided in the library.« less

  7. A Geometric Boolean Library for 2D Objects

    SciTech Connect

    McBride, Corey L.; Yarberry, Victor; Jorgensen, Craig

    2006-01-05

    The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various file formats, are also provided in the library.

  8. Families of 2D superintegrable anisotropic Dunkl oscillators and algebraic derivation of their spectrum

    NASA Astrophysics Data System (ADS)

    Isaac, Phillip S.; Marquette, Ian

    2016-03-01

    We generalize the construction of integrals of motion for quantum superintegrable models and the deformed oscillator algebra approach. This is presented in the context of 1D systems admitting ladder operators satisfying a parabosonic algebra involving reflection operators and more generally {c}λ extended oscillator algebras with grading. We apply the construction on two-dimensional {c}λ oscillators. We also introduce two new superintegrable Hamiltonians that are the anisotropic Dunkl and the singular Dunkl oscillators. Integrals are constructed by extending the approach of Daskaloyannis to include grading. An algebraic derivation of the energy spectra of the two models is presented, making use of finite dimensional unitary representations. We show how the spectra divide into sectors, and make comparisons with the physical case.

  9. AnisWave2D: User's Guide to the 2d Anisotropic Finite-DifferenceCode

    SciTech Connect

    Toomey, Aoife

    2005-01-06

    This document describes a parallel finite-difference code for modeling wave propagation in 2D, fully anisotropic materials. The code utilizes a mesh refinement scheme to improve computational efficiency. Mesh refinement allows the grid spacing to be tailored to the velocity model, so that fine grid spacing can be used in low velocity zones where the seismic wavelength is short, and coarse grid spacing can be used in zones with higher material velocities. Over-sampling of the seismic wavefield in high velocity zones is therefore avoided. The code has been implemented to run in parallel over multiple processors and allows large-scale models and models with large velocity contrasts to be simulated with ease.

  10. Klassifikation von Standardebenen in der 2D-Echokardiographie mittels 2D-3D-Bildregistrierung

    NASA Astrophysics Data System (ADS)

    Bergmeir, Christoph; Subramanian, Navneeth

    Zum Zweck der Entwicklung eines Systems, das einen unerfahrenen Anwender von Ultraschall (US) zur Aufnahme relevanter anatomischer Strukturen leitet, untersuchen wir die Machbarkeit von 2D-US zu 3D-CT Registrierung. Wir verwenden US-Aufnahmen von Standardebenen des Herzens, welche zu einem 3D-CT-Modell registriert werden. Unser Algorithmus unterzieht sowohl die US-Bilder als auch den CT-Datensatz Vorverarbeitungsschritten, welche die Daten durch Segmentierung auf wesentliche Informationen in Form von Labein für Muskel und Blut reduzieren. Anschließend werden diese Label zur Registrierung mittels der Match-Cardinality-Metrik genutzt. Durch mehrmaliges Registrieren mit verschiedenen Initialisierungen ermitteln wir die im US-Bild sichtbare Standardebene. Wir evaluierten die Methode auf sieben US-Bildern von Standardebenen. Fünf davon wurden korrekt zugeordnet.

  11. Rapid identification of amino acid types in proteins using phase modulated 2D HN(CACB) and 2D HN(COCACB)

    NASA Astrophysics Data System (ADS)

    Dubey, Abhinav; Mondal, Somnath; Chandra, Kousik; Atreya, Hanudatta S.

    2016-06-01

    We present a simple approach to rapidly identify amino acid types in proteins from a 2D spectrum. The method is based on the fact that 13Cβ chemical shifts of different amino acid types fall in distinct spectral regions. By evolving the 13C chemical shifts in the conventional HNCACB or HN(CO)CACB type experiment for a single specified delay period, the phase of the cross peaks of different amino acid residues are modulated depending on their 13Cβ shift values. Following this specified evolution period, the 2D HN projections of these experiments are acquired. The 13C evolution period can be chosen such that all residues belonging to a given set of amino acid types have the same phase pattern (positive or negative) facilitating their identification. This approach does not require the preparation of any additional samples, involves the analysis of 2D [15N-1H] HSQC-type spectra obtained from the routinely used triple resonance experiments with minor modifications, and is applicable to deuterated proteins. The method will be useful for quick assignment of signals that shift during ligand binding or in combination with selective labeling/unlabeling approaches for identification of amino acid types to aid the sequential assignment process.

  12. Rapid identification of amino acid types in proteins using phase modulated 2D HN(CACB) and 2D HN(COCACB).

    PubMed

    Dubey, Abhinav; Mondal, Somnath; Chandra, Kousik; Atreya, Hanudatta S

    2016-06-01

    We present a simple approach to rapidly identify amino acid types in proteins from a 2D spectrum. The method is based on the fact that (13)C(β) chemical shifts of different amino acid types fall in distinct spectral regions. By evolving the (13)C chemical shifts in the conventional HNCACB or HN(CO)CACB type experiment for a single specified delay period, the phase of the cross peaks of different amino acid residues are modulated depending on their (13)C(β) shift values. Following this specified evolution period, the 2D HN projections of these experiments are acquired. The (13)C evolution period can be chosen such that all residues belonging to a given set of amino acid types have the same phase pattern (positive or negative) facilitating their identification. This approach does not require the preparation of any additional samples, involves the analysis of 2D [(15)N-(1)H] HSQC-type spectra obtained from the routinely used triple resonance experiments with minor modifications, and is applicable to deuterated proteins. The method will be useful for quick assignment of signals that shift during ligand binding or in combination with selective labeling/unlabeling approaches for identification of amino acid types to aid the sequential assignment process. PMID:27078090

  13. BUZZARDS BAY IR, 2002

    EPA Science Inventory

    The 2002 Buzzards Bay Implementation Review (IR) summarizes the progress and challenges ahead for the Buzzards Bay Project. Major new completed actions during the past two years include: designation of Buzzards Bay as a no discharge area in August 2000; full support by the Massac...

  14. High resolution infrared synchrotron study of CH2D81Br: ground state constants and analysis of the ν5, ν6 and ν9 fundamentals

    NASA Astrophysics Data System (ADS)

    Baldacci, A.; Stoppa, P.; Visinoni, R.; Wugt Larsen, R.

    2012-09-01

    The high resolution infrared absorption spectrum of CH2D81Br has been recorded by Fourier transform spectroscopy in the range 550-1075 cm-1, with an unapodized resolution of 0.0025 cm-1, employing a synchrotron radiation source. This spectral region is characterized by the ν6 (593.872 cm-1), ν5 (768.710 cm-1) and ν9 (930.295 cm-1) fundamental bands. The ground state constants up to sextic centrifugal distortion terms have been obtained for the first time by ground-state combination differences from the three bands and subsequently employed for the evaluation of the excited state parameters. Watson's A-reduced Hamiltonian in the Ir representation has been used in the calculations. The ν 6 = 1 level is essentially free from perturbation whereas the ν 5 = 1 and ν 9 = 1 states are mutually interacting through a-type Coriolis coupling. Accurate spectroscopic parameters of the three excited vibrational states and a high-order coupling constant which takes into account the interaction between ν5 and ν9 have been determined.

  15. Functional characterization of CYP2D6 enhancer polymorphisms

    PubMed Central

    Wang, Danxin; Papp, Audrey C.; Sun, Xiaochun

    2015-01-01

    CYP2D6 metabolizes nearly 25% of clinically used drugs. Genetic polymorphisms cause large inter-individual variability in CYP2D6 enzyme activity and are currently used as biomarker to predict CYP2D6 metabolizer phenotype. Previously, we had identified a region 115 kb downstream of CYP2D6 as enhancer for CYP2D6, containing two completely linked single nucleotide polymorphisms (SNPs), rs133333 and rs5758550, associated with enhanced transcription. However, the enhancer effect on CYP2D6 expression, and the causative variant, remained to be ascertained. To characterize the CYP2D6 enhancer element, we applied chromatin conformation capture combined with the next-generation sequencing (4C assays) and chromatin immunoprecipitation with P300 antibody, in HepG2 and human primary culture hepatocytes. The results confirmed the role of the previously identified enhancer region in CYP2D6 expression, expanding the number of candidate variants to three highly linked SNPs (rs133333, rs5758550 and rs4822082). Among these, only rs5758550 demonstrated regulating enhancer activity in a reporter gene assay. Use of clustered regularly interspaced short palindromic repeats mediated genome editing in HepG2 cells targeting suspected enhancer regions decreased CYP2D6 mRNA expression by 70%, only upon deletion of the rs5758550 region. These results demonstrate robust effects of both the enhancer element and SNP rs5758550 on CYP2D6 expression, supporting consideration of rs5758550 for CYP2D6 genotyping panels to yield more accurate phenotype prediction. PMID:25381333

  16. An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Chae, Dongho; Constantin, Peter; Wu, Jiahong

    2014-09-01

    We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.

  17. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density. PMID:27334788

  18. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  19. Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array

    PubMed Central

    Cao, Tun; Wei, Chenwei; Mao, Libang; Li, Yang

    2014-01-01

    Giant chiroptical responses routinely occur in three dimensional chiral metamaterials (MMs), but their resonance elements with complex subwavelength chiral shapes are challenging to fabricate in the optical region. Here, we propose a new paradigm for obtaining strong circular conversion dichroism (CCD) based on extrinsic 2D chirality in multilayer achiral MMs, showing that giant chiroptical response can be alternatively attained without complex structures. Our structure consists of an array of thin Au squares separated from a continuous Au film by a GaAs dielectric layer, where the Au squares occupy the sites of a rectangular lattice. This structure gives rise to a pronounced extrinsically 2D-chiral effect (CCD) in the mid-infrared (M-IR) region under an oblique incidence, where the 2D-chiral effect is due to the mutual orientation of the Au squares array and the incident light propagation direction; the large magnitude of CCD due to the large difference between left-to-left and right-to-right circularly polarized reflectance conversion efficiencies. PMID:25501766

  20. All-fiber mid-IR supercontinuum: a powerful new tool for IR-spectroscopy

    NASA Astrophysics Data System (ADS)

    Moselund, Peter M.; Huot, Laurent; Brooks, Chris D.

    2016-03-01

    spectroscopy has until now been greatly limited by the availability of lightsources. The choice has generally stood between a laser whose narrow spectrum limits flexibility or a globar, whose low brightness limits signal to noise ratio. Mid-IR supercontinuum sources, which can deliver an ultra-broad spectrum with a million times higher brightness than a globar, are now appearing to fill the performance gap between the traditional lightsources. The generation of a supercontinuum is a highly nonlinear process produced by high peak power pulses propagating through a nonlinear medium. Since the underlying processes are fundamentally random there will normally be some pulse to pulse fluctuation in the output light which can cause problems in spectroscopy. Most of the mid-IR supercontinuum sources shown to date have also been limited to pulse repetition rates of only a few tens of kilohertz which makes it difficult to apply them to the popular FTIR spectroscopy techniques. Here we will demonstrate a fully packaged, all-fiber, turn-key, low noise, 4.8W, 1.8-4.2 μm supercontinuum source, which can operate with variable repetition rates of up to 30 MHz. In addition we will discuss ways to reduce and counter the effects of pulse fluctuations and we demonstrate optimization of the output spectrum of the source for various applications. Such a source can give any mid-IR optics lab access to a performance which has previously only been available from dedicated beamlines at huge synchrotron facilities.

  1. Van der Waals stacked 2D layered materials for optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.

    2016-06-01

    The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.

  2. Unitary quantum lattice gas representation of 2D quantum turbulence

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Vahala, George; Vahala, Linda; Soe, Min

    2011-05-01

    Quantum vortex structures and energy cascades are examined for two dimensional quantum turbulence (2D QT) using a special unitary evolution algorithm. The qubit lattice gas (QLG) algorithm, is employed to simulate the weakly-coupled Bose-Einstein condensate (BEC) governed by the Gross-Pitaevskii (GP) equation. A parameter regime is uncovered in which, as in 3D QT, there is a very short Poincare recurrence time. This short recurrence time is destroyed as the nonlinear interaction energy is increased. Energy cascades for 2D QT are considered to examine whether 2D QT exhibits the inverse cascades of 2D classical turbulence. In the parameter regime considered, the spectra analysis reveals no such dual cascades---dual cascades being a hallmark of 2D classical turbulence.

  3. CYP2D6 polymorphism in patients with eating disorders.

    PubMed

    Peñas-Lledó, E M; Dorado, P; Agüera, Z; Gratacós, M; Estivill, X; Fernández-Aranda, F; Llerena, A

    2012-04-01

    CYP2D6 polymorphism is associated with variability in drug response, endogenous metabolism (that is, serotonin), personality, neurocognition and psychopathology. The relationship between CYP2D6 genetic polymorphism and the risk of eating disorders (ED) was analyzed in 267 patients with ED and in 285 controls. A difference in the CYP2D6 active allele distribution was found between these groups. Women carrying more than two active genes (ultrarapid metabolizers) (7.5 vs 4.6%) or two (67 vs 58.9%) active genes were more frequent among patients with ED, whereas those with one (20.6 vs 30.2%) or zero active genes (4.9 vs 6.3%) were more frequent among controls (P<0.05). Although further research is needed, present findings suggest an association between CYP2D6 and ED. CYP2D6 allele distribution in patients with ED seems related to increased enzyme activity. PMID:20877302

  4. 2D materials and van der Waals heterostructures.

    PubMed

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices. PMID:27471306

  5. Rapid identification of Chinese Sauce liquor from different fermentation positions with FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Changwen; Wei, Jiping; Zhou, Qun; Sun, Suqin

    2008-07-01

    FT-IR and two-dimensional correlation spectroscopy (2D-IR) technology were applied to discriminate Chinese Sauce liquor from different fermentation positions (top, middle and bottom of fermentation cellar) for the first time. The liquors at top, middle and bottom of fermentation cellar, possessed the characteristic peaks at 1731 cm -1, 1733 cm -1 and 1602 cm -1, respectively. In the 2D correlation infrared spectra, the differences were amplified. A strong auto-peak at 1725 cm -1 showed in the 2D spectra of the Top Liquor, which indicated that the liquor might contain some ester compounds. Different from Top Liquor, three auto-peaks at 1695, 1590 and 1480 cm -1 were identified in 2D spectra of Middle Liquor, which were the characteristic absorption of acid, lactate. In 2D spectra of Bottom Liquor, two auto-peaks at 1570 and 1485 cm -1 indicated that lactate was the major component. As a result, FT-IR and 2D-IR correlation spectra technology provided a rapid and effective method for the quality analysis of the Sauce liquor.

  6. 2D surface temperature measurement of plasma facing components with modulated active pyrometry

    SciTech Connect

    Amiel, S.; Loarer, T.; Pocheau, C.; Roche, H.; Gauthier, E.; Aumeunier, M.-H.; Courtois, X.; Jouve, M.; Balorin, C.; Moncada, V.; Le Niliot, C.; Rigollet, F.

    2014-10-01

    In nuclear fusion devices, such as Tore Supra, the plasma facing components (PFC) are in carbon. Such components are exposed to very high heat flux and the surface temperature measurement is mandatory for the safety of the device and also for efficient plasma scenario development. Besides this measurement is essential to evaluate these heat fluxes for a better knowledge of the physics of plasma-wall interaction, it is also required to monitor the fatigue of PFCs. Infrared system (IR) is used to manage to measure surface temperature in real time. For carbon PFCs, the emissivity is high and known (ε ~ 0.8), therefore the contribution of the reflected flux from environment and collected by the IR cameras can be neglected. However, the future tokamaks such as WEST and ITER will be equipped with PFCs in metal (W and Be/W, respectively) with low and variable emissivities (ε ~ 0.1–0.4). Consequently, the reflected flux will contribute significantly in the collected flux by IR camera. The modulated active pyrometry, using a bicolor camera, proposed in this paper allows a 2D surface temperature measurement independently of the reflected fluxes and the emissivity. Experimental results with Tungsten sample are reported and compared with simultaneous measurement performed with classical pyrometry (monochromatic and bichromatic) with and without reflective flux demonstrating the efficiency of this method for surface temperature measurement independently of the reflected flux and the emissivity.

  7. 2D surface temperature measurement of plasma facing components with modulated active pyrometry

    NASA Astrophysics Data System (ADS)

    Amiel, S.; Loarer, T.; Pocheau, C.; Roche, H.; Gauthier, E.; Aumeunier, M.-H.; Le Niliot, C.; Rigollet, F.; Courtois, X.; Jouve, M.; Balorin, C.; Moncada, V.

    2014-10-01

    In nuclear fusion devices, such as Tore Supra, the plasma facing components (PFC) are in carbon. Such components are exposed to very high heat flux and the surface temperature measurement is mandatory for the safety of the device and also for efficient plasma scenario development. Besides this measurement is essential to evaluate these heat fluxes for a better knowledge of the physics of plasma-wall interaction, it is also required to monitor the fatigue of PFCs. Infrared system (IR) is used to manage to measure surface temperature in real time. For carbon PFCs, the emissivity is high and known (ɛ ˜ 0.8), therefore the contribution of the reflected flux from environment and collected by the IR cameras can be neglected. However, the future tokamaks such as WEST and ITER will be equipped with PFCs in metal (W and Be/W, respectively) with low and variable emissivities (ɛ ˜ 0.1-0.4). Consequently, the reflected flux will contribute significantly in the collected flux by IR camera. The modulated active pyrometry, using a bicolor camera, proposed in this paper allows a 2D surface temperature measurement independently of the reflected fluxes and the emissivity. Experimental results with Tungsten sample are reported and compared with simultaneous measurement performed with classical pyrometry (monochromatic and bichromatic) with and without reflective flux demonstrating the efficiency of this method for surface temperature measurement independently of the reflected flux and the emissivity.

  8. Infarct quantification using 3D inversion recovery and 2D phase sensitive inversion recovery; validation in patients and ex vivo

    PubMed Central

    2013-01-01

    Background Cardiovascular-MR (CMR) is the gold standard for quantifying myocardial infarction using late gadolinium enhancement (LGE) technique. Both 2D- and 3D-LGE-sequences are used in clinical practise and in clinical and experimental studies for infarct quantification. Therefore the aim of this study was to investigate if image acquisitions with 2D- and 3D-LGE show the same infarct size in patients and ex vivo. Methods Twenty-six patients with previous myocardial infarction who underwent a CMR scan were included. Images were acquired 10-20 minutes after an injection of 0.2 mmol/kg gadolinium-based contrast agent. Two LGE-sequences, 3D-inversion recovery (IR) and 2D-phase-sensitive (PS) IR, were used in all patients to quantify infarction size. Furthermore, six pigs with reperfused infarction in the left anterior descending artery (40 minutes occlusion and 4 hours of reperfusion) were scanned with 2D- and 3D-LGE ex vivo. A high resolution T1-sequence was used as reference for the infarct quantification ex vivo. Spearman’s rank-order correlation, Wilcoxon matched pairs test and bias according to Bland-Altman was used for comparison of infarct size with different LGE-sequences. Results There was no significant difference between the 2D- and 3D-LGE sequence in left ventricular mass (LVM) (2D: 115 ± 25 g; 3D: 117 ± 24 g: p = 0.35). Infarct size in vivo using 2D- and 3D-LGE showed high correlation and low bias for both LGE-sequences both in absolute volume of infarct (r = 0.97, bias 0.47 ± 2.1 ml) and infarct size as part of LVM (r = 0.94, bias 0.16 ± 2.0%). The 2D- and 3D-LGE-sequences ex vivo correlated well (r = 0.93, bias 0.67 ± 2.4%) for infarct size as part of the LVM. The IR LGE-sequences overestimated infarct size as part of the LVM ex vivo compared to the high resolution T1-sequence (bias 6.7 ± 3.0%, 7.3 ± 2.7% for 2D-PSIR and 3D-IR respectively, p < 0.05 for both). Conclusions Infarct quantification with

  9. Mineralogy of an OH/IR superwind

    NASA Astrophysics Data System (ADS)

    Lombaert, R.; de Vries, B. L.; Hillen, M.

    2016-07-01

    The mineralogy of the dense, dusty superwind of OH/IR stars can provide important constraints for understanding the dust formation process as well as the acceleration of the wind. We aim to model the ISO-SWS spectrum of the OH/IR star OH 30.1-0.7 in detail by reproducing the slope of the spectral energy distribution in the continuum regions between 3 and 8 μm and 12 and 15 μm. In addition to metallic Fe, we find that larger amorphous olivine grains of size on the order of 1 μm may also contribute to the continuum emission. We report here on the preliminary model results and discuss their validity given the important assumption of a 1D spherically symmetric stellar wind.

  10. Nuclear IRS-1 and Cancer

    PubMed Central

    Reiss, Krzysztof; Valle, Luis Del; Lassak, Adam; Trojanek, Joanna

    2011-01-01

    The family of insulin receptor substrates (IRS) consists of four proteins (IRS-1 - IRS-4), which were initially characterized as typical cytosolic adaptor proteins involved in insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) signaling. The first cloned and characterized member of the IRS family, IRS-1, has predicted molecular weight of 132 kDa, however, as a result of its extensive serine phosphorylation it separates on a SDS gel as a band of approximately 160–185 kDa. In addition to its metabolic and growth-promoting functions, IRS-1 is also suspected to play a role in malignant transformation. The mechanism by which IRS-1 supports tumor growth is not fully understood, and the argument that IRS-1 merely amplifies the signal from the IGF-1R and/or IR requires further investigation. Almost a decade ago, we reported the presence of nuclear IRS-1 in medulloblastoma clinical samples, which express viral oncoprotein, large T-antigen of human polyomavirus JC (JCV T-antigen). This first demonstration of nuclear IRS-1 was confirmed in several other laboratories. The nuclear IRS-1 was also detected by cells expressing the SV40 T-antigen, v-Src, in immortalized fibroblasts stimulated with IGF-I, in hepatocytes, 32D cells, and in an osteosarcoma cell line. More recently, nuclear IRS-1 was detected in breast cancer cells in association with estrogen receptor alpha (ERα), and in JC virus negative medulloblastoma cells expressing ERβ, further implicating nuclear IRS-1 in cellular transformation. Here, we discuss how nuclear IRS-1 acting on DNA repair fidelity, transcriptional activity, and cell growth can support tumor development and progression. PMID:22454254

  11. Anomalous temperature dependence of the IR spectrum of polyalanine

    NASA Astrophysics Data System (ADS)

    Helenius, V.; Korppi-Tommola, J.; Kotila, S.; Nieminen, J.; Lohikoski, R.; Timonen, J.

    1997-12-01

    We have studied the temperature dependence of the infrared spectra of acetanilide (ACN), tryptophan-(alanine) 15, and tyrosine-(alanine) 15. No sidebands of the amide-I vibration were observed in the polypeptides, but two anomalous sidebands of the NH stretch with a similar temperature dependence as that of the anomalous amide-I vibrational mode at 1650 cm -1 of crystalline ACN were detected. Fermi resonance combined with the appearance of a red-shifted sideband of NH stretch through coupling to lattice modes seems to explain this band structure. Observations are indicative of excitons that may occur in polypeptides as well as in single crystals of ACN.

  12. HWIL IR imaging testing

    NASA Astrophysics Data System (ADS)

    Vinson, R. J.; Passwater, R. D.

    1981-03-01

    The Army simulator facilities are presently configured to conduct hardware-in-the-loop mission tasks on the HELLFIRE and COPPERHEAD missile systems. These systems presently use a LASER seeker. The facility is an ideal candidate to be converted to include infrared (IR) seekers used on the TGSM system. This study investigates the possibility and impact of a facility update. This report documents the feasibility of developing a hardware-in-the-loop (HWIL) hybrid simulation incorporating infrared IR seekers used for the Assault Breaker program. Other hardware to be considered are the autopilot, signal conditioning, signal processing, and actuators which may be integrated into the system simulation. Considerations are given to replacing all or elements of hardware while substituting math models in the system simulation.

  13. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-01

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples. PMID:27378648

  14. 2D vs. 3D mammography observer study

    NASA Astrophysics Data System (ADS)

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  15. NKG2D receptor and its ligands in host defense

    PubMed Central

    Lanier, Lewis L.

    2015-01-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8+ T cells, and subsets of CD4+ T cells, iNKT cells, and γδ T cells. In humans NKG2D transmits signals by its association with the DAP10 adapter subunit and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least 8 genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and post-translation. In general healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyper-proliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves a mechanism for the immune system to detect and eliminate cells that have undergone “stress”. Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases. PMID:26041808

  16. Standoff imaging of chemicals using IR spectroscopy

    SciTech Connect

    Senesac, Larry R; Thundat, Thomas George; Morales Rodriguez, Marissa E

    2011-01-01

    Here we report on a standoff spectroscopic technique for identifying chemical residues on surfaces. A hand-held infrared camera was used in conjunction with a wavelength tunable mid-IR quantum cascade laser (QCL) to create hyperspectral image arrays of a target with an explosive residue on its surface. Spectral signatures of the explosive residue (RDX) were extracted from the hyperspectral image arrays and compared with a reference spectrum. Identification of RDX was achieved for residue concentrations of 20 g per cm2 at a distance of 1.5 m, and for 5 g per cm2 at a distance of 15 cm.

  17. 2D constant-loss taper for mode conversion

    NASA Astrophysics Data System (ADS)

    Horth, Alexandre; Kashyap, Raman; Quitoriano, Nathaniel J.

    2015-03-01

    Proposed in this manuscript is a novel taper geometry, the constant-loss taper (CLT). This geometry is derived with 1D slabs of silicon embedded in silicon dioxide using coupled-mode theory (CMT). The efficiency of the CLT is compared to both linear and parabolic tapers using CMT and 2D finite-difference time-domain simulations. It is shown that over a short 2D, 4.45 μm long taper the CLT's mode conversion efficiency is ~90% which is 10% and 18% more efficient than a 2D parabolic or linear taper, respectively.

  18. Recent advances in 2D materials for photocatalysis

    NASA Astrophysics Data System (ADS)

    Luo, Bin; Liu, Gang; Wang, Lianzhou

    2016-03-01

    Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.

  19. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  20. Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials

    NASA Astrophysics Data System (ADS)

    Kim, Sang Jin; Choi, Kyoungjun; Lee, Bora; Kim, Yuna; Hong, Byung Hee

    2015-07-01

    Recently, 2D materials have been intensively studied as emerging materials for future electronics, including flexible electronics, photonics, and electrochemical energy storage devices. Among representative 2D materials (such as graphene, boron nitride, and transition metal dichalcogenides) that exhibit extraordinary properties, graphene stands out in the flexible electronics field due to its combination of high electron mobility, high thermal conductivity, high specific surface area, high optical transparency, excellent mechanical flexibility, and environmental stability. This review covers the synthesis, transfer, and characterization methods of graphene and 2D materials and graphene's application to flexible devices as well as comparison with other competing materials.

  1. Magnetic helicity signature produced by cross-field 2D turbulence

    SciTech Connect

    Markovskii, S. A.; Vasquez, Bernard J.

    2013-06-13

    Hybrid numerical simulations of freely decaying 2D turbulence are presented. The background magnetic field is perpendicular to the simulation plane, which eliminates linear kinetic Alfven waves from the system. The normalized magnetic helicity of the initial large-scale fluctuations is zero, while the normalized cross-helicity is not. As the turbulence evolves, it develops nonzero magnetic helicity at smaller scales, in the proton kinetic range. In the quasi-steady state of evolution, the magnetic helicity spectrum has a peak consistent with the solar wind observations.

  2. IRS View of a Planetary Collision in the Pleiades

    NASA Astrophysics Data System (ADS)

    Song, Inseok; Lisse, Carey; Rhee, Joseph; Zuckerman, Ben

    2008-03-01

    Recently, we identified a sun-like Pleiades member, HD 23514, hosting a huge quantity of warm dust grains. Next to BD+20 307 (a field sun-like star), HD 23514 is currently the second dustiest, adolescent-age, star known with warm excess IR emission. Very short removal timescales of warm dust grains and adolescent ages of these two stars (>~100 Myr) indicate that the very dusty, warm excess, phenomenon is a transient event. A catastrophic collision between planetary embryos or planets is the most plausible origin of so much warm dust and such a collision mimics the postulated Moon-creation event in our terrestrial system. But the N-band spectra of BD+20 307 and HD 23514 appear very different, with peculiar emission at HD 23514 peaking at ~9 microns, a peak wavelength hardly seen among young stars and other main sequence excess stars. The strange N-band spectrum may point to an extra-ordinary condition around HD 23514 such as a very thick crust of a planet, a freakish chemical composition, or shocked silicates from a planetary collision. An IRS spectrum covering the 5-35um spectral range, rather than the highly restricted ground-based N-band spectrum will provide much stronger and clearer constraints on the dusty environment of HD 23514. We propose IRS observations with all four low resolution modules to obtain a diagnostic mid-IR spectrum of this rare, fascinating star.

  3. Recent developments in 2D layered inorganic nanomaterials for sensing

    NASA Astrophysics Data System (ADS)

    Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar

    2015-08-01

    Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.

  4. 2. D Street facade and rear (east) blank wall of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. D Street facade and rear (east) blank wall of parking garage. Farther east is 408 8th Street (National Art And Frame Company). - PMI Parking Garage, 403-407 Ninth Street, Northwest, Washington, District of Columbia, DC

  5. Collective excitations in 2D hard-disc fluid.

    PubMed

    Huerta, Adrian; Bryk, Taras; Trokhymchuk, Andrij

    2015-07-01

    Collective dynamics of a two-dimensional (2D) hard-disc fluid was studied by molecular dynamics simulations in the range of packing fractions that covers states up to the freezing. Some striking features concerning collective excitations in this system were observed. In particular, the short-wavelength shear waves while being absent at low packing fractions were observed in the range of high packing fractions, just before the freezing transition in a 2D hard-disc fluid. In contrast, the so-called "positive sound dispersion" typically observed in dense Lennard-Jones-like fluids, was not detected for the 2D hard-disc fluid. The ratio of specific heats in the 2D hard-disc fluid shows a monotonic increase with density approaching the freezing, resembling in this way the similar behavior in the vicinity of the Widom line in the case of supercritical fluids. PMID:25595625

  6. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-01

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices. PMID:26839956

  7. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  8. From weakly to strongly interacting 2D Fermi gases

    NASA Astrophysics Data System (ADS)

    Dyke, Paul; Fenech, Kristian; Lingham, Marcus; Peppler, Tyson; Hoinka, Sascha; Vale, Chris

    2014-05-01

    We study ultracold 2D Fermi gases of 6Li formed in a highly oblate trapping potential. The potential is generated by a cylindrically focused, blue detuned TEM01 mode laser beam. Weak magnetic field curvature provides highly harmonic confinement in the radial direction and we can readily produce single clouds with an aspect ratio of 230. Our experiments investigate the dimensional crossover from 3D to 2D for a two component Fermi gas in the Bose-Einstein Condensate to Bardeen Cooper Schrieffer crossover. Observation of an elbow in measurements of the cloud width vs. atom number is consistent with populating only the lowest transverse harmonic oscillator state for weak attractive interactions. This measurement is extended to the strongly interacting region using the broad Feshbach resonance at 832 G. We also report our progress towards measurement of the 2D equation of state for an interacting 2D Fermi gas via in-situ absorption imaging.

  9. Chemical vapour deposition: Transition metal carbides go 2D

    NASA Astrophysics Data System (ADS)

    Gogotsi, Yury

    2015-11-01

    The unique properties of 2D materials, such as graphene or transition metal dichalcogenides, have been attracting much attention in the past decade. Now, metallically conductive and even superconducting transition metal carbides are entering the game.

  10. Efficient framework for deformable 2D-3D registration

    NASA Astrophysics Data System (ADS)

    Fluck, Oliver; Aharon, Shmuel; Khamene, Ali

    2008-03-01

    Using 2D-3D registration it is possible to extract the body transformation between the coordinate systems of X-ray and volumetric CT images. Our initial motivation is the improvement of accuracy of external beam radiation therapy, an effective method for treating cancer, where CT data play a central role in radiation treatment planning. Rigid body transformation is used to compute the correct patient setup. The drawback of such approaches is that the rigidity assumption on the imaged object is not valid for most of the patient cases, mainly due to respiratory motion. In the present work, we address this limitation by proposing a flexible framework for deformable 2D-3D registration consisting of a learning phase incorporating 4D CT data sets and hardware accelerated free form DRR generation, 2D motion computation, and 2D-3D back projection.

  11. Computational Design of 2D materials for Energy Applications

    NASA Astrophysics Data System (ADS)

    Sun, Qiang

    2015-03-01

    Since the successful synthesis of graphene, tremendous efforts have been devoted to two-dimensional monolayers such as boron nitride (BN), silicene and MoS2. These 2D materials exhibit a large variety of physical and chemical properties with unprecedented applications. Here we report our recent studies of computational design of 2D materials for fuel cell applications which include hydrogen storage, CO2 capture, CO conversion and O2 reduction.

  12. Generating a 2D Representation of a Complex Data Structure

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.

  13. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  14. A radiative model for Titan's atmosphere in the IR

    NASA Astrophysics Data System (ADS)

    Cofano, A.; Sindoni, G.

    2015-10-01

    The aim of this work is the development of a model of Titan atmosphere between 1 and 5 micron, using data from Cassini-Huygens mission. The simulations will be useful to remove the atmospheric features from the measured spectrum, to study the surface. The radiative transfer model is performed with ARS (Atmosphere Radiation Spectrum), a a group of Fortran 77 routines, able to calculate absorption coefficients, radiance and other parameters about gas and aerosols at LTE (Local Thermal Equilibrium) [5] and considering multiple scattering in nadir geometry. Our study covers the IR spectral range but it would be extended also to the visible spectrum.

  15. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman; Van Ongeval, Chantal; Zanca, Federica; Cockmartin, Lesley; Marshall, Nicholas; Jacobs, Jurgen; Young, Kenneth C.; Dance, David R.; Bosmans, Hilde

    2011-12-15

    Purpose: This work proposes a new method of building 3D models of microcalcification clusters and describes the validation of their realistic appearance when simulated into 2D digital mammograms and into breast tomosynthesis images. Methods: A micro-CT unit was used to scan 23 breast biopsy specimens of microcalcification clusters with malignant and benign characteristics and their 3D reconstructed datasets were segmented to obtain 3D models of microcalcification clusters. These models were then adjusted for the x-ray spectrum used and for the system resolution and simulated into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. Six radiologists were asked to distinguish between 40 real and 40 simulated clusters of microcalcifications in two separate studies on 2D mammography and tomosynthesis datasets. Receiver operating characteristic (ROC) analysis was used to test the ability of each observer to distinguish between simulated and real microcalcification clusters. The kappa statistic was applied to assess how often the individual simulated and real microcalcification clusters had received similar scores (''agreement'') on their realistic appearance in both modalities. This analysis was performed for all readers and for the real and the simulated group of microcalcification clusters separately. ''Poor'' agreement would reflect radiologists' confusion between simulated and real clusters, i.e., lesions not systematically evaluated in both modalities as either simulated or real, and would therefore be interpreted as a success of the present models. Results: The area under the ROC curve, averaged over the observers, was 0.55 (95% confidence interval [0.44, 0.66]) for the 2D study, and 0.46 (95% confidence interval [0.29, 0.64]) for the tomosynthesis study, indicating no statistically significant difference between real and simulated

  16. 2D simultaneous spatial and temporal focusing multiphoton microscopy for fast volume imaging with improved sectioning ability

    NASA Astrophysics Data System (ADS)

    Song, Qiyuan; Isobe, Keisuke; Hirosawa, Kenichi; Midorikawa, Katsumi; Kannari, Fumihiko

    2015-03-01

    Simultaneous spatial and temporal focusing (SSTF) multiphoton microscopy offers us widefield imaging with sectioning ability. As extending the idea to 2D SSTF, people can utilize a 2D spectral disperser. In this study, we use a 2D spectral disperser via a virtually-imaged phased-array (VIPA) and a diffraction grating to fulfill the back aperture of objective lens with a spectrum matrix. This offers us an axial resolution enhanced by a factor of ~1.7 compared with conventional SSTF microscopy. Furthermore, the small free spectral range (FSR) of VIPA will reduce the temporal self-imaging effect around out-of-focus region and thus will reduce the out-of-focus multiphoton excited fluorescence (MPEF) signal of 2D SSTF microscopy. We experimentally show that inside a sample with dense MPEF, the contrast of the sectioning image is increased in our 2D SSTF microscope compared with SSTF microscope. In our microscope, we use a 1 kHz chirped amplification laser, a piezo stage and a sCMOS camera integrated with 2D SSTF to realize high speed volume imaging at a speed of 50 volumes per second as well as improved sectioning ability. Volume imaging of Brownian motions of fluorescent beads as small as 1μm has been demonstrated. Not only the lateral motion but also the axial motion could be traced.

  17. IR Spot Weld Inspect

    SciTech Connect

    Chen, Jian; Feng, Zhili

    2014-01-01

    In automotive industry, destructive inspection of spot welds is still the mandatory quality assurance method due to the lack of efficient non-destructive evaluation (NDE) tools. However, it is costly and time-consuming. Recently at ORNL, a new NDE prototype system for spot weld inspection using infrared (IR) thermography has been developed to address this problem. This software contains all the key functions that ensure the NDE system to work properly: system input/output control, image acquisition, data analysis, weld quality database generation and weld quality prediction, etc.

  18. IR Spot Weld Inspect

    2014-01-01

    In automotive industry, destructive inspection of spot welds is still the mandatory quality assurance method due to the lack of efficient non-destructive evaluation (NDE) tools. However, it is costly and time-consuming. Recently at ORNL, a new NDE prototype system for spot weld inspection using infrared (IR) thermography has been developed to address this problem. This software contains all the key functions that ensure the NDE system to work properly: system input/output control, image acquisition, datamore » analysis, weld quality database generation and weld quality prediction, etc.« less

  19. Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials

    NASA Astrophysics Data System (ADS)

    Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna

    2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.

  20. Differentiation of the root of Cultivated Ginseng, Mountain Cultivated Ginseng and Mountain Wild Ginseng using FT-IR and two-dimensional correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Li, Yong-Guo; Xu, Hong; Sun, Su-Qin; Wang, Zheng-Tao

    2008-07-01

    Ginseng is one of the most widely used herbal medicines. Based on the grown environments and the cultivate method, three kinds of ginseng, Cultivated Ginseng (CG), Mountain Cultivated Ginseng (MCG) and Mountain Wild Ginseng (MWG) are classified. A novel and scientific-oriented method was developed and established to discriminate and identify three kinds of ginseng using Fourier transform infrared spectroscopy (FT-IR), secondary derivative IR spectra and two-dimensional correlation infrared spectroscopy (2D-IR). The findings indicated that the relative contents of starch in the CG were more than that in MCG and MWG, while the relative contents of calcium oxalate and lipids in MWG were more than that in CG and MCG, and the relative contents of fatty acid in MCG were more than that in CG and MWG. The hierarchical cluster analysis was applied to data analysis of MWG, CG and MWG, which could be classified successfully. The results demonstrated the macroscopic IR fingerprint method, including FT-IR, secondary derivative IR and 2D-IR, can be applied to discriminate different ginsengs rapidly, effectively and non-destructively.

  1. Automated structure verification based on a combination of 1D (1)H NMR and 2D (1)H - (13)C HSQC spectra.

    PubMed

    Golotvin, Sergey S; Vodopianov, Eugene; Pol, Rostislav; Lefebvre, Brent A; Williams, Antony J; Rutkowske, Randy D; Spitzer, Timothy D

    2007-10-01

    A method for structure validation based on the simultaneous analysis of a 1D (1)H NMR and 2D (1)H - (13)C single-bond correlation spectrum such as HSQC or HMQC is presented here. When compared with the validation of a structure by a 1D (1)H NMR spectrum alone, the advantage of including a 2D HSQC spectrum in structure validation is that it adds not only the information of (13)C shifts, but also which proton shifts they are directly coupled to, and an indication of which methylene protons are diastereotopic. The lack of corresponding peaks in the 2D spectrum that appear in the 1D (1)H spectrum, also gives a clear picture of which protons are attached to heteroatoms. For all these benefits, combined NMR verification was expected and found by all metrics to be superior to validation by 1D (1)H NMR alone. Using multiple real-life data sets of chemical structures and the corresponding 1D and 2D data, it was possible to unambiguously identify at least 90% of the correct structures. As part of this test, challenging incorrect structures, mostly regioisomers, were also matched with each spectrum set. For these incorrect structures, the false positive rate was observed as low as 6%. PMID:17694570

  2. Status of VibroIR at Lawrence Livermore National Laboratory

    NASA Astrophysics Data System (ADS)

    Burke, Michael W.; Miller, Wayne O.

    2004-04-01

    Current efforts at Lawrence Livermore National Laboratory in the area of vibrothermography (VibroIR or SonicIR) are presented. The primary goals of the efforts of the NDE group at LLNL have been to demonstrate the applicability of vibrothermography to new areas, to examine the degree to which VibroIR may replace existing NDE inspection procedures, and to conduct research on the underlying processes and optimal parameters in its implementation. We report three new applications of VibroIR, in the areas of brazed tube joint inspection, evaluationtion of thick multilayer carbon/carbon composites as used in the NASA Shuttle, and the inspection of soft composite materials. The goal of the brazed joint inspection process is ultimately the replacement of a current dye penetrant inspection procedure. Therefore a direct comparison between VibroIR and dye penetrant inspection is made. Preliminary results of the analysis of a leading edge panel from a NASA Shuttle is also reported as an example of the application of VibroIR to thick composites. Finally, a comparison betweeen the effectiveness of VibroIR versus a spectrum of other NDE techniques (ultrasonic imaging, radiographic tomography) for the imaging of known ceramic defects is briefly discussed.

  3. Oscillations of light absorption in 2D macroporous silicon structures with surface nanocoatings

    NASA Astrophysics Data System (ADS)

    Karachevtseva, L.; Kuchmii, S.; Lytvynenko, O.; Sizov, F.; Stronska, O.; Stroyuk, A.

    2011-02-01

    We investigated the near-IR light absorption oscillations in 2D macroporous silicon structures with microporous silicon layers and CdTe, ZnO surface nanocrystals. The electro-optical effect was taken into account within the strong electric field approximation. Well-separated oscillations were observed in the spectral ranges of the surface bonds of macroporous silicon structures with surface nanocrystals. The model of the resonant electron scattering on impurity states in electric field of heterojunction “silicon-nanocoating” on macropore surface as well as realization of Wannier-Stark effect on the randomly distributed surface bonds were considered. The Wannier-Stark ladders are not broken by impurities because of the longer scattering lifetime as compared with the period of electron oscillations in an external electric field, in all spectral regions considered for macroporous silicon structures with CdTe and ZnO surface nanocrystals.

  4. Wavelet characterization of 2D turbulence and intermittency in magnetized electron plasmas

    NASA Astrophysics Data System (ADS)

    Romé, M.; Chen, S.; Maero, G.

    2016-06-01

    A study of the free relaxation of turbulence in a two-dimensional (2D) flow is presented, with a focus on the role of the initial vorticity conditions. Exploiting a well-known analogy with 2D inviscid incompressible fluids, the system investigated here is a magnetized pure electron plasma. The dynamics of this system are simulated by means of a 2D particle-in-cell code, starting from different spiral density (vorticity) distributions. A wavelet multiresolution analysis is adopted, which allows the coherent and incoherent parts of the flow to be separated. Comparison of the turbulent evolution in the different cases is based on the investigation of the time evolution of statistical properties, including the probability distribution functions and structure functions of the vorticity increments. It is also based on an analysis of the enstrophy evolution and its spectrum for the two components. In particular, while the statistical features assess the degree of flow intermittency, spectral analysis allows us not only to estimate the time required to reach a state of fully developed turbulence, but also estimate its dependence on the thickness of the initial spiral density distribution, accurately tracking the dynamics of both the coherent structures and the turbulent background. The results are compared with those relevant to annular initial vorticity distributions (Chen et al 2015 J. Plasma Phys. 81 495810511).

  5. Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates

    NASA Astrophysics Data System (ADS)

    Leon Swisher, Christine; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder

    2015-08-01

    In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate-lactate, pyruvate-alanine, and pyruvate-hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines.

  6. Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates

    PubMed Central

    Swisher, Christine Leon; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder

    2015-01-01

    In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate–lactate, pyruvate–alanine, and pyruvate–hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines. PMID:26117655

  7. CoPc 2D and 1D Arrangement on a Ferromagnetic Surface.

    PubMed

    Annese, Emilia; ViolBarbosa, Carlos E; Rossi, Giorgio; Fujii, Jun

    2016-05-31

    We investigated the growth and electronic properties of Co-phthalocyanine (CoPc) molecule deposited on iron film with different structures (pseudomorph-fcc and bcc) and on iron nanowires by scanning tunnelling microscopy and X-ray absorption spectroscopy (XAS). CoPc molecules self-assemble in a two-dimensional (2D) arrangement with the molecular plane parallel to the iron surfaces, and the local order is lost after the first layer. The molecule-ferromagnet interaction causes the broadening of Co and N unoccupied molecular states as well as different electronic distribution of N states as a function of the atomic structure of iron surface. The ferromagnetic coupling between the molecule and the iron film is dominated by the electronic interaction between Co and the first Fe layer. CoPc 2D arrangement turns into 1D by using as a template the iron nanowire grown on a facet surface of oxidized Cu(332) surface. CoPc molecules interact weakly with the iron nanowires manifesting a substantial Co 3dz spectral feature in XAS spectrum and the possibility of a magnetic interaction between Co moment and iron nanowires. Both CoPc 2D and 1D arrangements can open up new interesting scenarios to tune the magnetic properties of hybrid interfaces involving metallorganic molecules. PMID:27191039

  8. [Preparation and spectral characterisation of TiO2/polyaniline nanocomposites with 2D lamellar morphology].

    PubMed

    Shi, Li; Luo, Zhi-Yuan; Wu, Xiao-Dong; Yang, Xu-Jie; Lu, Lu-De; Wang, Xin

    2011-02-01

    Nanostructured polyanilines (PANIs) are selected quite often as the matrix for the synthesis of inorganic/conductive polymer composites due to their excellent optical, electrical and magnetic properties. Herein both 2D lamellar PANI and the cor responding composite loading TiO2 species were successfully prepared from a microemulsion system, as composed by dodecyl benzenesulfonic acid (DBSA) and water. The composite was achieved through a simultaneous polymerization of aniline in the presence of ammonium persulfate and hydrolysis of tetrabutyl titanate. Scanning electron microscopy (SEM) images indicate clearly that 2D PANI lamella are formed through organization of small PANI sheets. The inter-lamellar distance of PANI and that of TiO2/polyaniline composite, as derived from X-ray diffraction (XRD), is about 3.4 nm (nearly twice the length of one DBS molecule), suggesting that PANI and double-layered DBSA species are arranged in an alternated way. FTIR spectrum displays that PANI chains exhibit quinonoid and benzenoid strutures while both Raman and X-ray photoelectron spectroscopy (XPS) indicate that rutile TiO2 is produced upon hydrolyzation of tetrabutyl titanate in the microemulsion system. Moreover, UV-Vis spectrum suggests that the electronic absorption behaviour of PANI species is influenced upon loading TiO2. PMID:21510404

  9. Process to generate a synthetic diagnostic for microwave imaging reflectometry with the full-wave code FWR2D.

    PubMed

    Ren, X; Domier, C W; Kramer, G; Luhmann, N C; Muscatello, C M; Shi, L; Tobias, B J; Valeo, E

    2014-11-01

    A synthetic microwave imaging reflectometer (MIR) diagnostic employing the full-wave reflectometer code (FWR2D) has been developed and is currently being used to guide the design of real systems, such as the one recently installed on DIII-D. The FWR2D code utilizes real plasma profiles as input, and it is combined with optical simulation tools for synthetic diagnostic signal generation. A detailed discussion of FWR2D and the process to generate the synthetic signal are presented in this paper. The synthetic signal is also compared to a prescribed density fluctuation spectrum to quantify the imaging quality. An example is presented with H-mode-like plasma profiles derived from a DIII-D discharge, where the MIR focal is located in the pedestal region. It is shown that MIR is suitable for diagnosing fluctuations with poloidal wavenumber up to 2.0 cm(-1) and fluctuation amplitudes less than 5%. PMID:25430276

  10. Far-field infrared super-resolution microscopy using picosecond time-resolved transient fluorescence detected IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakai, Makoto; Kawashima, Yasutake; Takeda, Akihiro; Ohmori, Tsutomu; Fujii, Masaaki

    2007-05-01

    A new far-field infrared super-resolution microscopy combining laser fluorescence microscope and picosecond time-resolved transient fluorescence detected IR (TFD-IR) spectroscopy is proposed. TFD-IR spectroscopy is a kind of IR-visible/UV double resonance spectroscopy, and detects IR transitions by the transient fluorescence due to electronic transition originating from vibrationally excited level populated by IR light. IR images of rhodamine-6G solution and of fluorescent beads were clearly observed by monitoring the transient fluorescence. Super-resolution twice higher than the diffraction limit for IR light was achieved. The IR spectrum due to the transient fluorescence was also measured from spatial domains smaller than the diffraction limit.

  11. Is 2-D turbulence relevant in the atmosphere?

    NASA Astrophysics Data System (ADS)

    Lovejoy, Shaun; Schertzer, Daniel

    2010-05-01

    argue that now exactly such a reinterpretation of the aircraft data has been found (Lovejoy et al., 2009b). We argue that the debate has now been decisively resolved in favour of the SP approaches so that neither 2-D isotropic nor 3D isotropic turbulence - are relevant in the atmosphere. References: J.G. Charney, Geostrophic Turbulence, J. Atmos. Sci 28(1971), p. 1087. J. Cho and E. Lindborg, Horizontal velocity structure functions in the upper troposphere and lower stratosphere i: Observations, J. Geophys. Res. 106(2001), pp. 10223-10232. E. Dewan, Saturated-cascade similtude theory of gravity wave sepctra, J. Geophys. Res. 102(1997), pp. 29799-29817. R. Fjortoft, On the changes in the spectral distribution of kinetic energy in two dimensional, nondivergent flow, Tellus 7(1953), pp. 168-176. D. Fritts, T. Tsuda, T. Sato, S. Fukao and S. Kato, Observational evidence of a saturated gravity wave spectrum in the troposphere and lower stratosphere, Journal of the Atmospheric Sciences 45(1988), p. 1741. K.S. Gage and G.D. Nastrom, Theoretical Interpretation of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft during GASP, J. of the Atmos. Sci. 43(1986), pp. 729-740. C.S. Gardner, C.A. Hostetler and S.J. Franke, Gravity Wave models for the horizontal wave number spectra of atmospheric velocity and density flucutations, J. Geophys. Res. 98(1993), pp. 1035-1049. C.A. Hostetler and C.S. Gardner, Observations of horizontal and vertical wave number spectra of gravity wave motions in the stratosphere and mesosphere ove rthe mid-Pacific, J. Geophys. Res. 99(1994), pp. 1283-1302. A.N. Kolmogorov, Local structure of turbulence in an incompressible liquid for very large Reynolds numbers. (English translation: Proc. Roy. Soc. A434, 9-17, 1991), Proc. Acad. Sci. URSS., Geochem. Sect. 30(1941), pp. 299-303. R.H. Kraichnan, Inertial ranges in two-dimensional turbulence, Physics of Fluids 10(1967), pp. 1417-1423. A. Lazarev, D. Schertzer, S. Lovejoy and

  12. Growth and Characterization of Silicon at the 2D Limit

    NASA Astrophysics Data System (ADS)

    Mannix, Andrew; Kiraly, Brian; Hersam, Mark; Guisinger, Nathan

    2015-03-01

    Because bulk silicon has dominated the development of microelectronics over the past 50 years, the recent interest in two-dimensional (2D) materials (e.g., graphene, MoS2, phosphorene, etc.) naturally raises questions regarding the growth and properties of silicon at the 2D limit. Utilizing atomic-scale, ultra-high vacuum (UHV) scanning tunneling microscopy (STM), we have investigated the 2D limits of silicon growth on Ag(111). In agreement with previous reports of sp2-bonded silicene phases, we observe the temperature-dependent evolution of ordered 2D phases. However, we attribute these to apparent Ag-Si surface alloys. At sufficiently high silicon coverage, we observe the precipitation of crystalline, sp3-bonded Si(111) domains. These domains are capped with a √3 honeycomb phase that is indistinguishable from the silver-induced √3 honeycomb-chained-trimer reconstruction on bulk Si(111). Further ex-situcharacterization with Raman spectroscopy, atomic force microscopy, cross-sectional transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy reveals that these sheets are ultrathin sheets of bulk-like, (111) oriented, sp3 silicon. Even at the 2D limit, scanning tunneling spectroscopy shows that these silicon nanosheets exhibit semiconducting electronic characteristics.

  13. 2D nanostructures for water purification: graphene and beyond.

    PubMed

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future. PMID:27506268

  14. Sparse radar imaging using 2D compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Radar imaging is an ill-posed linear inverse problem and compressed sensing (CS) has been proved to have tremendous potential in this field. This paper surveys the theory of radar imaging and a conclusion is drawn that the processing of ISAR imaging can be denoted mathematically as a problem of 2D sparse decomposition. Based on CS, we propose a novel measuring strategy for ISAR imaging radar and utilize random sub-sampling in both range and azimuth dimensions, which will reduce the amount of sampling data tremendously. In order to handle 2D reconstructing problem, the ordinary solution is converting the 2D problem into 1D by Kronecker product, which will increase the size of dictionary and computational cost sharply. In this paper, we introduce the 2D-SL0 algorithm into the reconstruction of imaging. It is proved that 2D-SL0 can achieve equivalent result as other 1D reconstructing methods, but the computational complexity and memory usage is reduced significantly. Moreover, we will state the results of simulating experiments and prove the effectiveness and feasibility of our method.

  15. Ultrafast 2D NMR: an emerging tool in analytical spectroscopy.

    PubMed

    Giraudeau, Patrick; Frydman, Lucio

    2014-01-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry--from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  16. Ultrafast 2D NMR: An Emerging Tool in Analytical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Giraudeau, Patrick; Frydman, Lucio

    2014-06-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry—from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications.

  17. Phosphorene: A New High-Mobility 2D Semiconductor

    NASA Astrophysics Data System (ADS)

    Liu, Han; Neal, Adam; Zhu, Zhen; Tomanek, David; Ye, Peide

    2014-03-01

    The rise of 2D crystals has opened various possibilities for future electrical and optical applications. MoS2 n-type transistors are showing great potential in ultra-scaled and low-power electronics. Here, we introduce phosphorene, a name we coined for 2D few-layer black phosphorus, a new 2D material with layered structure. We perform ab initio band structure calculations and show that the fundamental band gap depends sensitively on the number of layers. We observe transport behavior, which shows a mobility variation in the 2D plane. High on-current of 194 mA/mm, high hole mobility up to 286 cm2/V .s and on/off ratio up to 104 was achieved with phosphorene transistors at room temperature. Schottky barrier height at the metal/phosphorene interface was also measured as a function of temperature. We demonstrate a CMOS inverter with combination to MoS2 NMOS transistors, which shows great potential for semiconducting 2D crystals in future electronic, optoelectronic and flexible electronic devices.

  18. Off-resonance effects on 2D NMR nutation spectra of I = 3/2 quadrupolar nuclei in static samples.

    PubMed

    Xia, Y; Deng, F; Ye, C

    1995-12-01

    The off-resonance effects on 2D NMR nutation of I = 3/2 quadrupolar nuclei are demonstrated with perturbation theory and numerical calculation in static samples. The off-resonant (delta omega) rf field (omega 1) enlarges a nutation frequency and consequently increases the measurement range of nuclear quadrupolar interaction parameters. When omega e > omega Qmax, and arctg(omega 1/delta omega) = +/- 54.7 degrees (magic angle), the satellite lines (produced by coherence transfers) in a nutation spectrum are superimposed with the line of central transition, and hence the nutation spectrum is simplified and its sensitivity is enhanced. The nuclear quadrupolar interaction parameters of 23Na nuclei in Na omega molecular sieve are obtained using 2D NMR nutation. PMID:9053113

  19. Integrated IR sensors

    NASA Astrophysics Data System (ADS)

    Tom, Michael; Trujillo, Edward

    1994-06-01

    Integrated infrared (IR) sensors which exploit modular avionics concepts can provide features such as operational flexibility, enhanced stealthiness, and ease of maintenance to meet the demands of tactical, airborne sensor systems. On-board, tactical airborne sensor systems perform target acquisition, tracking, identification, threat warning, missile launch detection, and ground mapping in support of situation awareness, self-defense, navigation, target attack, weapon support, and reconnaissance activities. The use of sensor suites for future tactical aircraft such as US Air Force's multirole fighter require a blend of sensor inputs and outputs that may vary over time. It is expected that special-role units of these tactical aircraft will be formed to conduct tasks and missions such as anti-shipping, reconnaissance, or suppression of enemy air defenses.

  20. Methane Line Intensities: Near and Far IR

    NASA Astrophysics Data System (ADS)

    Brown, Linda R.; Devi, V. Malathy; Wishnow, Edward H.; Sung, Keeyoon; Crawford, Timothy J.; Mantz, Arlan W.; Smith, Mary Ann H.; Predoi-Cross, Adriana; Benner, D. Chris

    2014-11-01

    Accurate knowledge of line intensities is crucial input for radiance calculations to interpret atmospheric observations of planets and moons. We have therefore undertaken extensive laboratory studies to measure the methane spectrum line-by-line in order to improve theoretical quantum mechanical modeling for molecular spectroscopy databases (e. g. HITRAN and GEISA) used by planetary astronomers. Preliminary results will be presented for selected ro-vibrational transitions in both the near-IR (1.66 and 2.2 - 2.4 microns) and the far-IR (80 - 120 microns) regions. For this, we have recorded high-resolution spectra (instrumental resolving power: 1,300,000 (NIR) and 10,000 (FIR)) with the Bruker 125HR Fourier transform spectrometer at JPL using isotopically-enriched 12CH4 and 13CH4, as well as normal methane samples. For the NIR wavelengths, three different absorption cells have been employed to achieve sample temperatures ranging from 78 K to 299 K: 1) a White cell set to a path length of 13.09 m for room temperature data, 2) a single-pass 0.2038 m cold cell and 3) a new coolable Herriott cell with a fixed 20.941 m optical path and configured for the first time to a FT-IR spectrometer. For the Far-IR, another coolable absorption chamber set to a 52 m optical path has been used. These new experiments and intensity measurements will be presented and discussed.Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, the University of California, Berkeley, Connecticut College, and NASA Langley under contracts and grants with the National Aeronautics and Space Administration. A. Predoi-Cross and her research group have been supported by the National Science and Engineering Research Council of Canada.

  1. Design and synthesis of novel tamoxifen analogues that avoid CYP2D6 metabolism.

    PubMed

    Ahmed, Nermin S; Elghazawy, Nehal H; ElHady, Ahmed K; Engel, Matthias; Hartmann, Rolf W; Abadi, Ashraf H

    2016-04-13

    Tamoxifen (TAM) is a widely used drug in the prophylaxis and treatment of breast cancer. TAM is metabolized to the more active 4-hydroxytamoxifen (4-OH-TAM) and endoxifen by cytochrome P450 (CYP) mainly CYP2D6 and CYP3A4 enzymes. Due to the genetic polymorphisms in CYP2D6 genes, high variation in the clinical outcomes of TAM treatment is observed among women of different populations. To address this issue, novel TAM analogues with possible altered activation pathways were synthesized. These analogues were tested for their antiproliferative action on MCF-7 breast cancer cell lines as well as their binding affinity for estrogen receptor (ER) ER-α and ER-β receptors. These entire novel compounds showed better antiproliferative activity than did TAM on the MCF-7 cells. Moreover, compound 10 exhibited a half maximal growth inhibition (GI50) that was 1000 times more potent than that of TAM (GI50 < 0.005 μM vs 1.58 μM, respectively). Along with a broad spectrum activity on various cancer cell lines, all the TAM analogues showed considerable activity on the ER-negative breast cancer cell line. For further study, compound 10 was incubated in human liver microsomes (HLM), human hepatocytes (hHEP) and CYP2D6 supersomes. The active hydroxyl metabolite was detected after incubation in HLM and hHEP, implicating the involvement of other enzymes in its metabolism. These results prove that this novel series of TAM analogues might provide improved clinical outcomes for poor 2D6 metabolizers. PMID:26896706

  2. Use of 2-D cadmium mercury teluride (CMT) IRFPA for seeker applications

    NASA Astrophysics Data System (ADS)

    Bertrand, Francis; Riviere, Philippe; Migaud, Pascal; Chatard, Jean-Pierre

    1994-10-01

    For a wide variety of applications, imaging infrared seeker allows new generation weapon systems to reach high performance in terms of accuracy, standoff capability, target/false target discrimination, target recognition, etc. In the design of the seeker, the detector is a key component because the global performance is strongly related to the detector's and also because it has a large impact on the opto-mechanical concept. Thanks to the use of state-of- the-art CMT 2D IRFPA, new generation imaging infrared seeker (IIS) has very high performance (sensitivity, resolution, number of pixels) as well as a simple opto-mechanical architecture. Thomson-CSF Missile Electronics Division (DEM) has designed, manufactured, and tested breadboards of IIS with the support of French MoD. These IIS are based on 2D IRFPA provided by Sofradir under DEM requirements. The IRFPA selected for this development is a 128 X 128 CMT IRCCD sensitive in the 3-5 micrometers waveband integrated in an operational dewar cooled by a Joule-Thomson cooler. In this paper, first a technical description of the IR detector is given, then the electronic set developed is described, and finally the measured main figures are given.

  3. Perception-based reversible watermarking for 2D vector maps

    NASA Astrophysics Data System (ADS)

    Men, Chaoguang; Cao, Liujuan; Li, Xiang

    2010-07-01

    This paper presents an effective and reversible watermarking approach for digital copyright protection of 2D-vector maps. To ensure that the embedded watermark is insensitive for human perception, we only select the noise non-sensitive regions for watermark embedding by estimating vertex density within each polyline. To ensure the exact recovery of original 2D-vector map after watermark extraction, we introduce a new reversible watermarking scheme based on reversible high-frequency wavelet coefficients modification. Within the former-selected non-sensitive regions, our watermarking operates on the lower-order vertex coordinate decimals with integer wavelet transform. Such operation further reduces the visual distortion caused by watermark embedding. We have validated the effectiveness of our scheme on our real-world city river/building 2D-vector maps. We give extensive experimental comparisons with state-of-the-art methods, including embedding capability, invisibility, and robustness over watermark attacking.

  4. Graphene based 2D-materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  5. Simultaneous 2D Strain Sensing Using Polymer Planar Bragg Gratings

    PubMed Central

    Rosenberger, Manuel; Eisenbeil, Waltraud; Schmauss, Bernhard; Hellmann, Ralf

    2015-01-01

    We demonstrate the application of polymer planar Bragg gratings for multi-axial strain sensing and particularly highlight simultaneous 2D strain measurement. A polymer planar Bragg grating (PPBG) fabricated with a single writing step in bulk polymethylmethacrylate is used for measuring both tensile and compressive strain at various angles. It is shown that the sensitivity of the PPBG strongly depends on the angle between the optical waveguide into which the grating is inscribed and the direction along which the mechanical load is applied. Additionally, a 2D PPBG fabricated by writing two Bragg gratings angularly displaced from each other into a single polymer platelet is bonded to a stainless steel plate. The two reflected wavelengths exhibit different sensitivities while tested toward tensile and compressive strain. These characteristics make 2D PPBG suitable for measuring multi-axial tensile and compressive strain. PMID:25686313

  6. Simultaneous 2D strain sensing using polymer planar Bragg gratings.

    PubMed

    Rosenberger, Manuel; Eisenbeil, Waltraud; Schmauss, Bernhard; Hellmann, Ralf

    2015-01-01

    We demonstrate the application of polymer planar Bragg gratings for multi-axial strain sensing and particularly highlight simultaneous 2D strain measurement. A polymer planar Bragg grating (PPBG) fabricated with a single writing step in bulk polymethylmethacrylate is used for measuring both tensile and compressive strain at various angles. It is shown that the sensitivity of the PPBG strongly depends on the angle between the optical waveguide into which the grating is inscribed and the direction along which the mechanical load is applied. Additionally, a 2D PPBG fabricated by writing two Bragg gratings angularly displaced from each other into a single polymer platelet is bonded to a stainless steel plate. The two reflected wavelengths exhibit different sensitivities while tested toward tensile and compressive strain. These characteristics make 2D PPBG suitable for measuring multi-axial tensile and compressive strain. PMID:25686313

  7. Focusing surface wave imaging with flexible 2D array

    NASA Astrophysics Data System (ADS)

    Zhou, Shiyuan; Fu, Junqiang; Li, Zhe; Xu, Chunguang; Xiao, Dingguo; Wang, Shaohan

    2016-04-01

    Curved surface is widely exist in key parts of energy and power equipment, such as, turbine blade cylinder block and so on. Cycling loading and harsh working condition of enable fatigue cracks appear on the surface. The crack should be found in time to avoid catastrophic damage to the equipment. A flexible 2D array transducer was developed. 2D Phased Array focusing method (2DPA), Mode-Spatial Double Phased focusing method (MSDPF) and the imaging method using the flexible 2D array probe are studied. Experiments using these focusing and imaging method are carried out. Surface crack image is obtained with both 2DPA and MSDPF focusing method. It have been proved that MSDPF can be more adaptable for curved surface and more calculate efficient than 2DPA.

  8. 2D bifurcations and Newtonian properties of memristive Chua's circuits

    NASA Astrophysics Data System (ADS)

    Marszalek, W.; Podhaisky, H.

    2016-01-01

    Two interesting properties of Chua's circuits are presented. First, two-parameter bifurcation diagrams of Chua's oscillatory circuits with memristors are presented. To obtain various 2D bifurcation images a substantial numerical effort, possibly with parallel computations, is needed. The numerical algorithm is described first and its numerical code for 2D bifurcation image creation is available for free downloading. Several color 2D images and the corresponding 1D greyscale bifurcation diagrams are included. Secondly, Chua's circuits are linked to Newton's law φ ''= F(t,φ,φ')/m with φ=\\text{flux} , constant m > 0, and the force term F(t,φ,φ') containing memory terms. Finally, the jounce scalar equations for Chua's circuits are also discussed.

  9. Microscale 2D separation systems for proteomic analysis

    PubMed Central

    Xu, Xin; Liu, Ke; Fan, Z. Hugh

    2012-01-01

    Microscale 2D separation systems have been implemented in capillaries and microfabricated channels. They offer advantages of faster analysis, higher separation efficiency and less sample consumption than the conventional methods, such as liquid chromatography (LC) in a column and slab gel electrophoresis. In this article, we review their recent advancement, focusing on three types of platforms, including 2D capillary electrophoresis (CE), CE coupling with capillary LC, and microfluidic devices. A variety of CE and LC modes have been employed to construct 2D separation systems via sophistically designed interfaces. Coupling of different separation modes has also been realized in a number of microfluidic devices. These separation systems have been applied for the proteomic analysis of various biological samples, ranging from a single cell to tumor tissues. PMID:22462786

  10. Olivine Composition of the Mars Trojan 5261 Eureka: Spitzer IRS Data

    NASA Technical Reports Server (NTRS)

    Lim, L. F.; Burt, B. J.; Emery, J. P.; Mueller, M.; Rivkin, A. S.; Trilling, D.

    2011-01-01

    The largest Mars trojan, 5261 Eureka, is one of two prototype "Sa" asteroids in the Bus-Demeo taxonomy. Analysis of its visible/near-IR spectrum led to the conclusion that it might represent either an angritic analog or an olivine-rich composition such as an R chondrite. Spitzer IRS data (5-30 micrometers) have enabled us to resolve this ambiguity. The thermal-IR spectrum exhibits strong olivine reststrahlen features consistent with a composition of approximately equals Fo60-70. Laboratory spectra of R chondrites, brachinites, and chassignites are dominated by similar features.

  11. 2D ACAR momentum density study of the nature of the positron surface state on Al(100)

    SciTech Connect

    Berko, S.; Canter, K.F.; Lynn, K.G.; Mills, A.P.; Roellig, L.O.; West, R.N.

    1985-01-01

    The two-dimensional angular correlation of the 2..gamma.. annihilation radiation (2D ACAR) has been measured from an Al(100) surface bombarded by 200-eV positrons. After removing the contribution of fast para-positronium annihilation, the spectrum from positrons annihilating at the surface exhibits a nearly isotropic conical shape with a (7.1 +- 0.5) mrad FWHM. 5 refs., 6 figs.

  12. Focal plane readout for 2-D LWIR application implemented with current mode background suppression per pixel

    NASA Astrophysics Data System (ADS)

    Woo, Doo Hyung; Kang, Sang Gu; Lee, Hee Chul

    2004-02-01

    In this paper, a readout technique involving current mode background suppression is studied for 2-dimensional infrared focal plane arrays (IR FPA"s). This technique has a current memory per pixel, and the suppression current can be optimized per pixel element. Capacitive transimpedende amplifier (CTIA) and feedback amplifier structure are adopted for input circuit and background suppression circuit, respectively. Feedback amplifier structure can minimize skimming error due to channel length modulation. The area size of the pixel circuit is generally limited in the case of 2-D application. So, the amplifier used in the CTIA input circuit adopts timesharing for background suppression. To further improve the area limitation, a half circuit of the CTIA is shared in row circuit out of the pixel array. Because of the leakage of the current memory, the skimming data of the current memory in the pixel array is stored in SRAM array through ADC, and is refreshed periodically with SRAM data through DAC. The readout circuit was fabricated using 0.6um 2-poly 3-metal CMOS process for 64 x 64 LWIR HgCdTe IR array with the pixel size of 50um x 50um. The measurement performance of the skimming circuit exhibits about only 3% error for 100nA background current. The simulation results exhibit that skimming error can be reduced further to 0.3% when the ratioed current mirror scheme and/or multi step refresh scheme is adopted.

  13. Real-time 2-D temperature imaging using ultrasound.

    PubMed

    Liu, Dalong; Ebbini, Emad S

    2010-01-01

    We have previously introduced methods for noninvasive estimation of temperature change using diagnostic ultrasound. The basic principle was validated both in vitro and in vivo by several groups worldwide. Some limitations remain, however, that have prevented these methods from being adopted in monitoring and guidance of minimally invasive thermal therapies, e.g., RF ablation and high-intensity-focused ultrasound (HIFU). In this letter, we present first results from a real-time system for 2-D imaging of temperature change using pulse-echo ultrasound. The front end of the system is a commercially available scanner equipped with a research interface, which allows the control of imaging sequence and access to the RF data in real time. A high-frame-rate 2-D RF acquisition mode, M2D, is used to capture the transients of tissue motion/deformations in response to pulsed HIFU. The M2D RF data is streamlined to the back end of the system, where a 2-D temperature imaging algorithm based on speckle tracking is implemented on a graphics processing unit. The real-time images of temperature change are computed on the same spatial and temporal grid of the M2D RF data, i.e., no decimation. Verification of the algorithm was performed by monitoring localized HIFU-induced heating of a tissue-mimicking elastography phantom. These results clearly demonstrate the repeatability and sensitivity of the algorithm. Furthermore, we present in vitro results demonstrating the possible use of this algorithm for imaging changes in tissue parameters due to HIFU-induced lesions. These results clearly demonstrate the value of the real-time data streaming and processing in monitoring, and guidance of minimally invasive thermotherapy. PMID:19884075

  14. Design of the LRP airfoil series using 2D CFD

    NASA Astrophysics Data System (ADS)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N.; Vronsky, Tomas; Gaudern, Nicholas

    2014-06-01

    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils.

  15. Quantum process tomography by 2D fluorescence spectroscopy

    SciTech Connect

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  16. Evaluation of 2D ceramic matrix composites in aeroconvective environments

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R.; Love, Wendell L.; Balter-Peterson, Aliza

    1992-01-01

    An evaluation is conducted of a novel ceramic-matrix composite (CMC) material system for use in the aeroconvective-heating environments encountered by the nose caps and wing leading edges of such aerospace vehicles as the Space Shuttle, during orbit-insertion and reentry from LEO. These CMCs are composed of an SiC matrix that is reinforced with Nicalon, Nextel, or carbon refractory fibers in a 2D architecture. The test program conducted for the 2D CMCs gave attention to their subsurface oxidation.

  17. Radiative heat transfer in 2D Dirac materials

    DOE PAGESBeta

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  18. Nomenclature for human CYP2D6 alleles.

    PubMed

    Daly, A K; Brockmöller, J; Broly, F; Eichelbaum, M; Evans, W E; Gonzalez, F J; Huang, J D; Idle, J R; Ingelman-Sundberg, M; Ishizaki, T; Jacqz-Aigrain, E; Meyer, U A; Nebert, D W; Steen, V M; Wolf, C R; Zanger, U M

    1996-06-01

    To standardize CYP2D6 allele nomenclature, and to conform with international human gene nomenclature guidelines, an alternative to the current arbitrary system is described. Based on recommendations for human genome nomenclature, we propose that alleles be designated by CYP2D6 followed by an asterisk and a combination of roman letters and arabic numerals distinct for each allele with the number specifying the key mutation and, where appropriate, a letter specifying additional mutations. Criteria for classification as a separate allele and protein nomenclature are also presented. PMID:8807658

  19. The 2D large deformation analysis using Daubechies wavelet

    NASA Astrophysics Data System (ADS)

    Liu, Yanan; Qin, Fei; Liu, Yinghua; Cen, Zhangzhi

    2010-01-01

    In this paper, Daubechies (DB) wavelet is used for solution of 2D large deformation problems. Because the DB wavelet scaling functions are directly used as basis function, no meshes are needed in function approximation. Using the DB wavelet, the solution formulations based on total Lagrangian approach for two-dimensional large deformation problems are established. Due to the lack of Kroneker delta properties in wavelet scaling functions, Lagrange multipliers are used for imposition of boundary condition. Numerical examples of 2D large deformation problems illustrate that this method is effective and stable.

  20. Optical imaging systems analyzed with a 2D template.

    PubMed

    Haim, Harel; Konforti, Naim; Marom, Emanuel

    2012-05-10

    Present determination of optical imaging systems specifications are based on performance values and modulation transfer function results carried with a 1D resolution template (such as the USAF resolution target or spoke templates). Such a template allows determining image quality, resolution limit, and contrast. Nevertheless, the conventional 1D template does not provide satisfactory results, since most optical imaging systems handle 2D objects for which imaging system response may be different by virtue of some not readily observable spatial frequencies. In this paper we derive and analyze contrast transfer function results obtained with 1D as well as 2D templates. PMID:22614498

  1. 2dF grows up: Echidna for the AAT

    NASA Astrophysics Data System (ADS)

    McGrath, Andrew; Barden, Sam; Miziarski, Stan; Rambold, William; Smith, Greg

    2008-07-01

    We present the concept design of a new fibre positioner and spectrograph system for the Anglo-Australian Telescope, as a proposed enhancement to the Anglo-Australian Observatory's well-known 2dF facility. A four-fold multiplex enhancement is accomplished by replacing the 400-fibre 2dF fibre positioning robot with a 1600-fibre Echidna unit, feeding three clones of the AAOmega optical spectrograph. Such a facility has the capability of a redshift 1 survey of a large fraction of the southern sky, collecting five to ten thousand spectra per night for a million-galaxy survey.

  2. CH2D+, the Search for the Holy Grail

    NASA Astrophysics Data System (ADS)

    Roueff, Evelyne; Gerin, Maryvonne; Lis, Dariusz C.; Wootten, Alwyn; Marcelino, Nuria; Cernicharo, Jose; Tercero, Belen

    2013-10-01

    CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of Kelvin, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+, and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.

  3. EM 2dV1.0.F

    2012-01-05

    Code is for a layered electric medium with 2d structure. Includes air-earth interface at node z=2.. The electric ex and ez fields are calculated on edges of elemental grid and magnetic field hy is calculated on the face of the elemental grid. The code allows for a layered earth with 2d structures. Solutions of coupled first order Maxwell's equations are solved in the two dimensional environment using a finite- difference scheme on a staggered spationamore » and temporal grid.« less

  4. On 2D bisection method for double eigenvalue problems

    SciTech Connect

    Ji, X.

    1996-06-01

    The two-dimensional bisection method presented in (SIAM J. Matrix Anal. Appl. 13(4), 1085 (1992)) is efficient for solving a class of double eigenvalue problems. This paper further extends the 2D bisection method of full matrix cases and analyses its stability. As in a single parameter case, the 2D bisection method is very stable for the tridiagonal matrix triples satisfying the symmetric-definite condition. Since the double eigenvalue problems arise from two-parameter boundary value problems, an estimate of the discretization error in eigenpairs is also given. Some numerical examples are included. 42 refs., 1 tab.

  5. Experimental validation of equations for 2D DIC uncertainty quantification.

    SciTech Connect

    Reu, Phillip L.; Miller, Timothy J.

    2010-03-01

    Uncertainty quantification (UQ) equations have been derived for predicting matching uncertainty in two-dimensional image correlation a priori. These equations include terms that represent the image noise and image contrast. Researchers at the University of South Carolina have extended previous 1D work to calculate matching errors in 2D. These 2D equations have been coded into a Sandia National Laboratories UQ software package to predict the uncertainty for DIC images. This paper presents those equations and the resulting error surfaces for trial speckle images. Comparison of the UQ results with experimentally subpixel-shifted images is also discussed.

  6. A novel improved method for analysis of 2D diffusion relaxation data—2D PARAFAC-Laplace decomposition

    NASA Astrophysics Data System (ADS)

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  7. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction.

    PubMed

    Rowley-Neale, Samuel J; Fearn, Jamie M; Brownson, Dale A C; Smith, Graham C; Ji, Xiaobo; Banks, Craig E

    2016-08-21

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm(-2) modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR. PMID:27448174

  8. Theory for spiralling ions for 2D FT-ICR and comparison with precessing magnetization vectors in 2D NMR.

    PubMed

    Sehgal, Akansha Ashvani; Pelupessy, Philippe; Rolando, Christian; Bodenhausen, Geoffrey

    2016-04-01

    Two-dimensional (2D) Fourier transform ion cyclotron resonance (FT-ICR) offers an approach to mass spectrometry (MS) that pursuits similar objectives as MS/MS experiments. While the latter must focus on one ion species at a time, 2D FT ICR can examine all possible correlations due to ion fragmentation in a single experiment: correlations between precursors, charged and neutral fragments. We revisited the original 2D FT-ICR experiment that has hitherto fallen short of stimulating significant analytical applications, probably because it is technically demanding. These shortcomings can now be overcome by improved FT-ICR instrumentation and computer hard- and software. We seek to achieve a better understanding of the intricacies of the behavior of ions during a basic two-dimensional ICR sequence comprising three simple monochromatic pulses. Through simulations based on Lorentzian equations, we have mapped the ion trajectories for different pulse durations and phases. PMID:26974979

  9. Analysis of 2D THz-Raman spectroscopy using a non-Markovian Brownian oscillator model with nonlinear system-bath interactions.

    PubMed

    Ikeda, Tatsushi; Ito, Hironobu; Tanimura, Yoshitaka

    2015-06-01

    We explore and describe the roles of inter-molecular vibrations employing a Brownian oscillator (BO) model with linear-linear (LL) and square-linear (SL) system-bath interactions, which we use to analyze two-dimensional (2D) THz-Raman spectra obtained by means of molecular dynamics (MD) simulations. In addition to linear infrared absorption (1D IR), we calculated 2D Raman-THz-THz, THz-Raman-THz, and THz-THz-Raman signals for liquid formamide, water, and methanol using an equilibrium non-equilibrium hybrid MD simulation. The calculated 1D IR and 2D THz-Raman signals are compared with results obtained from the LL+SL BO model applied through use of hierarchal Fokker-Planck equations with non-perturbative and non-Markovian noise. We find that all of the qualitative features of the 2D profiles of the signals obtained from the MD simulations are reproduced with the LL+SL BO model, indicating that this model captures the essential features of the inter-molecular motion. We analyze the fitted 2D profiles in terms of anharmonicity, nonlinear polarizability, and dephasing time. The origins of the echo peaks of the librational motion and the elongated peaks parallel to the probe direction are elucidated using optical Liouville paths. PMID:26049441

  10. Fission Spectrum

    DOE R&D Accomplishments Database

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  11. ELLIPT2D: A Flexible Finite Element Code Written Python

    SciTech Connect

    Pletzer, A.; Mollis, J.C.

    2001-03-22

    The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.

  12. Rheological Properties of Quasi-2D Fluids in Microgravity

    NASA Technical Reports Server (NTRS)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  13. Creation of a scalar potential in 2D dilaton gravity

    SciTech Connect

    Behrndt, K.

    1994-09-01

    The authors investigate quantum corrections of the 2-d dilaton gravity near the singularity. Their motivation comes from a s-wave reduced cosmological solution which is classically singular in the scalar fields (dilaton and moduli). As a result they find, that the singularity disappears and a dilaton/moduli potential is created.

  14. NKG2D ligands mediate immunosurveillance of senescent cells

    PubMed Central

    Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery

    2016-01-01

    Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797

  15. Discrepant Results in a 2-D Marble Collision

    ERIC Educational Resources Information Center

    Kalajian, Peter

    2013-01-01

    Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many…

  16. Validation and testing of the VAM2D computer code

    SciTech Connect

    Kool, J.B.; Wu, Y.S. )

    1991-10-01

    This document describes two modeling studies conducted by HydroGeoLogic, Inc. for the US NRC under contract no. NRC-04089-090, entitled, Validation and Testing of the VAM2D Computer Code.'' VAM2D is a two-dimensional, variably saturated flow and transport code, with applications for performance assessment of nuclear waste disposal. The computer code itself is documented in a separate NUREG document (NUREG/CR-5352, 1989). The studies presented in this report involve application of the VAM2D code to two diverse subsurface modeling problems. The first one involves modeling of infiltration and redistribution of water and solutes in an initially dry, heterogeneous field soil. This application involves detailed modeling over a relatively short, 9-month time period. The second problem pertains to the application of VAM2D to the modeling of a waste disposal facility in a fractured clay, over much larger space and time scales and with particular emphasis on the applicability and reliability of using equivalent porous medium approach for simulating flow and transport in fractured geologic media. Reflecting the separate and distinct nature of the two problems studied, this report is organized in two separate parts. 61 refs., 31 figs., 9 tabs.

  17. On Regularity Criteria for the 2D Generalized MHD System

    NASA Astrophysics Data System (ADS)

    Jiang, Zaihong; Wang, Yanan; Zhou, Yong

    2016-06-01

    This paper deals with the problem of regularity criteria for the 2D generalized MHD system with fractional dissipative terms {-Λ^{2α}u} for the velocity field and {-Λ^{2β}b} for the magnetic field respectively. Various regularity criteria are established to guarantee smoothness of solutions. It turns out that our regularity criteria imply previous global existence results naturally.

  18. Dispersionless 2D Toda hierarchy, Hurwitz numbers and Riemann theorem

    NASA Astrophysics Data System (ADS)

    Natanzon, Sergey M.

    2016-01-01

    We describe all formal symmetric solutions of dispersionless 2D Toda hierarchy. This classification we use for solving of two classical problems: 1) The calculation of conformal mapping of an arbitrary simply connected domain to the standard disk; 2) Calculation of 2- Hurwitz numbers of genus 0.

  19. 2D signature for detection and identification of drugs

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Shen, Jingling; Zhang, Cunlin; Zhou, Qingli; Shi, Yulei

    2011-06-01

    The method of spectral dynamics analysis (SDA-method) is used for obtaining the2D THz signature of drugs. This signature is used for the detection and identification of drugs with similar Fourier spectra by transmitted THz signal. We discuss the efficiency of SDA method for the identification problem of pure methamphetamine (MA), methylenedioxyamphetamine (MDA), 3, 4-methylenedioxymethamphetamine (MDMA) and Ketamine.

  20. RADMC: A 2-D Continuum Radiative Transfer Tool

    NASA Astrophysics Data System (ADS)

    Dullemond, C. P.

    2011-08-01

    RADMC is a 2-D Monte-Carlo code for dust continuum radiative transfer circumstellar disks and envelopes. It is based on the method of Bjorkman & Wood (ApJ 2001, 554, 615), but with several modifications to produce smoother results with fewer photon packages.

  1. Kinematics of segregating granular mixtures in quasi-2D heaps

    NASA Astrophysics Data System (ADS)

    Fan, Yi; Umbanhowar, Paul; Ottino, Julio; Lueptow, Richard

    2012-11-01

    Segregation of granular mixtures of different sized particles in heap flow appears in a variety of contexts. Our recent experiments showed that when bi-disperse mixtures of different sized spherical particles fill a quasi-two dimensional (2D) silo, three different final heap configurations - stratified, segregated, and mixed - occur, depending on either 2D flow rate or heap rise velocity. However, since it is difficult to measure the kinematic details of the segregating granular mixtures in heap flow experimentally, the underlying mechanisms for how 2D flow rate or heap rise velocity influences final particle configurations have not been well understood. In this work, we use the discrete element method (DEM) to simulate heap flow of bi-disperse mixtures in experimental scale quasi-2D heaps. The final particle distributions in the simulations agree quantitatively with experiments. We measure several key kinematic properties of the segregating granular mixtures including the local flow rate, velocity, and flowing layer thickness. We correlate the characteristics of these kinematic properties with the local particle distributions of the mixtures. This provides new insights for understanding the mechanisms of segregation and stratification in heap flow including the linear decrease in flow rate and maximum velocity down the heap as well as the relatively constant flowing layer thickness along the length of the heap. Funded by Dow Chemical Co.

  2. On the phase diagram of 2d Lorentzian Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Ambjørn, Jan; Anagnostopoulos, K. N.; Loll, R.

    The phase diagram of 2d Lorentzian quantum gravity (LQG) coupled to conformal matter is studied. A phase transition is observed at c = c crit ( {1}/{2} < c crit < 4) which can be thought of as the analogue of the c = 1 barrier of Euclidean quantum gravity (EQG). The non-trivial properties of the quantum geometry are discussed.

  3. Optoelectronics of supported and suspended 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Bolotin, Kirill

    2014-03-01

    Two-dimensional semiconductors, materials such monolayer molybdenum disulfide (MoS2) are characterized by strong spin-orbit and electron-electron interactions. However, both electronic and optoelectronic properties of these materials are dominated by disorder-related scattering. In this talk, we investigate approaches to reduce scattering and explore physical phenomena arising in intrinsic 2D semiconductors. First, we discuss fabrication of pristine suspended monolayer MoS2 and use photocurrent spectroscopy measurements to study excitons in this material. We observe band-edge and van Hove singularity excitons and estimate their binding energies. Furthermore, we study dissociation of these excitons and uncover the mechanism of their contribution to photoresponse of MoS2. Second, we study strain-induced modification of bandstructures of 2D semiconductors. With increasing strain, we find large and controllable band gap reduction of both single- and bi-layer MoS2. We also detect experimental signatures consistent with strain-induced transition from direct to indirect band gap in monolayer MoS2. Finally, we fabricate heterostructures of dissimilar 2D semiconductors and study their photoresponse. For closely spaced 2D semiconductors we detect charge transfer, while for separation larger than 10nm we observe Forster-like energy transfer between excitations in different layers.

  4. 2-D Imaging of Electron Temperature in Tokamak Plasmas

    SciTech Connect

    T. Munsat; E. Mazzucato; H. Park; C.W. Domier; M. Johnson; N.C. Luhmann Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

    2004-07-08

    By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.

  5. NKG2D ligands mediate immunosurveillance of senescent cells.

    PubMed

    Sagiv, Adi; Burton, Dominick G A; Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery

    2016-02-01

    Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797

  6. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.

    2016-08-01

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets

  7. Mid-IR Photometry and Near-IR Spectroscopy of the FU Ori Protostar V2775 Ori (HOPS 223)

    NASA Astrophysics Data System (ADS)

    Fischer, William J.; Safron, Emily J.; Megeath, S. Thomas; Terebey, Susan; Soto, Edith; Wilson, Thomas L.; Adams, Joseph D.

    2016-02-01

    On 2015 November 20.39, we obtained mid-IR photometry of V2775 Ori (HOPS 223) with the FORCAST instrument aboard SOFIA. This is a low-mass embedded young stellar object that was reported to have undergone a luminosity outburst by Caratti o Garatti et al. (2011, A & A, 526, L1). Fischer et al. (2012, ApJ, 756, 99) dated the beginning of the outburst to between 2005 April and 2007 March and discussed the similarity of its near-IR spectrum to that of FU Orionis.

  8. IR Stray Light

    NASA Astrophysics Data System (ADS)

    Petro, Larry

    2009-07-01

    Structures outside the optical path of the detector FOV and the surfaces of optical elements could scatter significant light from bright sources onto the IR FPA. Such structures are oversized by typically a few mm relative to the FOV?s beam. The beam footprint of a source outside the FOV can overlap the edges of those structures, which will cause light to be scattered onto the detector. During ground test, it was found that one per cent of the signal from a target imaged onto the edge of the detector was scattered into an approximately 10 pixel by 100 pixel flare. This on orbit test will: 1} verify that release of gravitational stress has not changed the detector mask, 2} assess the far wing stray light from a sources outside the detector FOV, 3} note any sources of stray light in the near and far field that were not noted during ground test, and 4} assess the surface brightness of the off-detector target PSF relative to the on-detector PSF

  9. 2D/3D Image Registration using Regression Learning

    PubMed Central

    Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen

    2013-01-01

    In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object’s 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region’s motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method’s application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof. PMID:24058278

  10. Resonances of piezoelectric plate with embedded 2D electron system

    NASA Astrophysics Data System (ADS)

    Suslov, A. V.

    2009-02-01

    A thin GaAs/AlGaAs plate was studied by the resonant ultrasound spectroscopy (RUS) in the temperature range 0.3-10 K and in magnetic fields of up to 18 T. The resonance frequencies and linewidths were measured. Quantum oscillations of both these values were observed and were associated with the quantum Hall effect occurred in the 2D electron system. For an analysis the sample was treated as a dielectric piezoelectric plate covered on one side by a film with a field dependent conductivity. Screening of the strain-driven electric field was changed due to the variation of the electron relaxation time in the vicinity of the metal-dielectric transitions caused by the magnetic field in the 2D system. The dielectric film does not affect properties of GaAs and thus the resonance frequencies are defined only by the elastic, piezoelectric and dielectric constants of GaAs. A metallic 2D sheet effectively screens the parallel electric field, so the ultrasound wave velocities and resonance frequencies decrease when the sheet conductivity increases. Oscillations of the resonance linewidth reflect the influence of the 2D system on the ultrasound attenuation, which is proportional to the linewidth. A metallic film as well as a dielectric one does not affect this attenuation but at some finite nonzero value of the conductivity the linewidth approaches a maximum. In high magnetic field each oscillation of the conductivity produces one oscillation of a resonance frequency and two linewidth peaks. The observed phenomena can be described by the relaxation type equations and the resonant ultrasound spectroscopy opens another opportunity for contactless studies on 2D electron systems.

  11. The physics of 2D microfluidic droplet ensembles

    NASA Astrophysics Data System (ADS)

    Beatus, Tsevi; Bar-Ziv, Roy H.; Tlusty, Tsvi

    2012-07-01

    We review non-equilibrium many-body phenomena in ensembles of 2D microfluidic droplets. The system comprises of continuous two-phase flow with disc-shaped droplets driven in a channel, at low Reynolds number of 10-4-10-3. The basic physics is that of an effective potential flow, governed by the 2D Laplace equation, with multiple, static and dynamic, boundaries of the droplets and the walls. The motion of the droplets induces dipolar flow fields, which mediate 1/r2 hydrodynamic interaction between the droplets. Summation of these long-range 2D forces over droplet ensembles converges, in contrast to the divergence of the hydrodynamic forces in 3D. In analogy to electrostatics, the strong effect of boundaries on the equations of motion is calculated by means of image dipoles. We first consider the dynamics of droplets flowing in a 1D crystal, which exhibits unique phonon-like excitations, and a variety of nonlinear instabilities-all stemming from the hydrodynamic interactions. Narrowing the channel results in hydrodynamic screening of the dipolar interactions, which changes salient features of the phonon spectra. Shifting from a 1D ordered crystal to 2D disordered ensemble, the hydrodynamic interactions induce collective density waves and shocks, which are superposed on single-droplet randomized motion and dynamic clustering. These collective modes originate from density-velocity coupling, whose outcome is a 1D Burgers equation. The rich observational phenomenology and the tractable theory render 2D droplet ensembles a suitable table-top system for studying non-equilibrium many-body physics with long-range interactions.

  12. 2d-LCA - an alternative to x-wires

    NASA Astrophysics Data System (ADS)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2014-11-01

    The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.

  13. Half-metallicity in 2D organometallic honeycomb frameworks.

    PubMed

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-26

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology. PMID:27541575

  14. Synthesis, structure and luminescence property of 2D lanthanide complexes with 3-fluorophthalate and oxalate

    SciTech Connect

    Cha, Yu-E; Li, Xia; Song, Shuang

    2012-12-15

    Complexes [Ln{sub 2}(fpht){sub 2}(ox)(H{sub 2}O){sub 4}]{center_dot}H{sub 2}O (Ln=Sm 1, Eu 2, Tb 3 and Dy 4; fpht=3-fluorophthalate and ox=oxalate) have been synthesized and structurally characterized by single crystal X-ray diffraction. The four complexes possess similar 2D framework structures constructed from Ln-fpht double-stranded helices and ox linkages. Complexes 2 and 3 display the characteristic emission {sup 5}D{sub 0}{yields}{sup 7}F{sub J} (J=0-4) transitions of Eu(III) ion and {sup 5}D{sub 4}{yields}{sup 7}F{sub J} (J=6-3) transitions of Tb(III) ion, respectively. The emission decay curves reveal a monoexponential behavior yielding the lifetime values of 0.266{+-}0.002 ms for 2 and 0.733{+-}0.002 ms for 3. The emission spectrum of 1 shows three weak bands corresponding to the characteristic emission {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 5/2}, {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 7/2} and {sup 4}G{sub 5/2}{yields}{sup 6}H{sub 9/2} transitions of Sm(III) ion. The emission spectrum of 4 displays a broad band centered at 438 nm, which comes from the {pi}{sup Low-Asterisk }-{pi} transition of the ligand. - Graphical abstract: Complexes [Ln{sub 2}(fpht){sub 2}(ox)(H{sub 2}O){sub 4}]{center_dot}H{sub 2}O (fpht=3-fluorophthalate, ox=oxalate) possess 2D structures. Sm(III), Eu(III) and Tb(III) complexes show the characteristic fluorescent emission of the Ln(III). Dy(III) complex displays ligand-based luminescent behavior. Highlights: Black-Right-Pointing-Pointer [Ln{sub 2}(fpht){sub 2}(ox)(H{sub 2}O){sub 4}]{center_dot}H{sub 2}O (fpht=3-fluorophthalate; ox=oxalate) show 2D structures. Black-Right-Pointing-Pointer The 2D structures are constructed from Ln-fpht double-stranded helices and ox linkage. Black-Right-Pointing-Pointer The Sm(III), Eu(III) and Tb(III) complexes show the characteristic emission of the Ln(III) ions. Black-Right-Pointing-Pointer Dy(III) complex displays ligand-based luminescent behavior.

  15. Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources

    PubMed Central

    Ghorbani, Mahdi; Davenport, David

    2016-01-01

    Abstract Aim The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Background Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. Materials and methods MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Results Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Conclusions Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems. PMID:27247558

  16. Accelerated 2D magnetic resonance spectroscopy of single spins using matrix completion

    PubMed Central

    Scheuer, Jochen; Stark, Alexander; Kost, Matthias; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2015-01-01

    Two dimensional nuclear magnetic resonance (NMR) spectroscopy is one of the major tools for analysing the chemical structure of organic molecules and proteins. Despite its power, this technique requires long measurement times, which, particularly in the recently emerging diamond based single molecule NMR, limits its application to stable samples. Here we demonstrate a method which allows to obtain the spectrum by collecting only a small fraction of the experimental data. Our method is based on matrix completion which can recover the full spectral information from randomly sampled data points. We confirm experimentally the applicability of this technique by performing two dimensional electron spin echo envelope modulation (ESEEM) experiments on a two spin system consisting of a single nitrogen vacancy (NV) centre in diamond coupled to a single 13C nuclear spin. The signal to noise ratio of the recovered 2D spectrum is compared to the Fourier transform of randomly subsampled data, where we observe a strong suppression of the noise when the matrix completion algorithm is applied. We show that the peaks in the spectrum can be obtained with only 10% of the total number of the data points. We believe that our results reported here can find an application in all types of two dimensional spectroscopy, as long as the measured matrices have a low rank. PMID:26631593

  17. Accelerated 2D magnetic resonance spectroscopy of single spins using matrix completion

    NASA Astrophysics Data System (ADS)

    Scheuer, Jochen; Stark, Alexander; Kost, Matthias; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2015-12-01

    Two dimensional nuclear magnetic resonance (NMR) spectroscopy is one of the major tools for analysing the chemical structure of organic molecules and proteins. Despite its power, this technique requires long measurement times, which, particularly in the recently emerging diamond based single molecule NMR, limits its application to stable samples. Here we demonstrate a method which allows to obtain the spectrum by collecting only a small fraction of the experimental data. Our method is based on matrix completion which can recover the full spectral information from randomly sampled data points. We confirm experimentally the applicability of this technique by performing two dimensional electron spin echo envelope modulation (ESEEM) experiments on a two spin system consisting of a single nitrogen vacancy (NV) centre in diamond coupled to a single 13C nuclear spin. The signal to noise ratio of the recovered 2D spectrum is compared to the Fourier transform of randomly subsampled data, where we observe a strong suppression of the noise when the matrix completion algorithm is applied. We show that the peaks in the spectrum can be obtained with only 10% of the total number of the data points. We believe that our results reported here can find an application in all types of two dimensional spectroscopy, as long as the measured matrices have a low rank.

  18. IR imaging simulation and analysis for aeroengine exhaust system based on reverse Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Chen, Shiguo; Chen, Lihai; Mo, Dongla; Shi, Jingcheng

    2014-11-01

    The IR radiation characteristics of aeroengine are the important basis for IR stealth design and anti-stealth detection of aircraft. With the development of IR imaging sensor technology, the importance of aircraft IR stealth increases. An effort is presented to explore target IR radiation imaging simulation based on Reverse Monte Carlo Method (RMCM), which combined with the commercial CFD software. Flow and IR radiation characteristics of an aeroengine exhaust system are investigated, which developing a full size geometry model based on the actual parameters, using a flow-IR integration structured mesh, obtaining the engine performance parameters as the inlet boundary conditions of mixer section, and constructing a numerical simulation model of engine exhaust system of IR radiation characteristics based on RMCM. With the above models, IR radiation characteristics of aeroengine exhaust system is given, and focuses on the typical detecting band of IR spectral radiance imaging at azimuth 20°. The result shows that: (1) in small azimuth angle, the IR radiation is mainly from the center cone of all hot parts; near the azimuth 15°, mixer has the biggest radiation contribution, while center cone, turbine and flame stabilizer equivalent; (2) the main radiation components and space distribution in different spectrum is different, CO2 at 4.18, 4.33 and 4.45 micron absorption and emission obviously, H2O at 3.0 and 5.0 micron absorption and emission obviously.

  19. Rapid discrimination of cultivated Codonopsis lanceolata in different ages by FT-IR and 2DCOS-IR

    NASA Astrophysics Data System (ADS)

    Zhu, Yun; Xu, Chang-hua; Huang, Jian; Li, Guo-yu; Liu, Xin-Hu; Sun, Su-qin; Wang, Jin-hui

    2014-07-01

    Deodeok (Codonopsis lanceolata) root, a traditional Chinese herbal medicine, has been used to treat lung ailments, rheumatism, menstrual disturbance and bruises with a long history in China and some other Asian countries. In this study, four types of Deodeok with different growth years were discriminated and identified by a Tri-step infrared spectroscopy method (Fourier transform-infrared spectroscopy (conventional FT-IR) coupled with second derivative infrared spectroscopy (SD-IR) and two dimensional correlation infrared spectroscopy(2DCOS-IR) under thermal perturbation. Although only small differences were found in the FT-IR spectra of the samples, the positions and intensities of peaks around 1736, 1634, 1246, 1055, 1033, 818, 779 cm-1 could be considered as the key factors for discriminating them. The differences among them were amplified by their SD-IR spectra. The 2DCOS-IR spectra provided obvious dynamic chemical structure information of Deodeok samples, which present different particular auto peak clusters in the range of 875-1130 cm-1 and 1170-1630 cm-1, respectively. It was demonstrated that the content of triterpene were decreasing when C. lanceolata were growing older, but the relative content of saccharides initially increased and decreased significantly afterwards. It indicated a general trend that the content of polysaccharides accumulated with increasing years. Specifically, the content of polysaccharides accumulated in the root of 2-year-old plant was the lowest, 4-years-old was the highest, and then the content decreased gradually. Furthermore, according to the differences of locations and intensities of auto-peaks in 2D-IR spectra, the integral changes of components were revealed. This study offers a promising method inherent with cost-effective and time-saving to characterize and discriminate the complicated system like Deodeok.

  20. The vibrational spectrum of tetrafluoropropyne

    NASA Astrophysics Data System (ADS)

    Friedrich, H. Bruce; Burton, Donald J.; Schemmer, Pamela A.

    1989-01-01

    The i.r. spectrum of gaseous tetrafluoropropyne has been measured from 4000 to 100 cm -1, and all of the observed bands have been assigned. The e mode frequencies of the CF 3 group are similar to those of other CF 3CCX species, and even though the a1 modes are less regular, the variations can be explained without changes in force constants other than those involving the CX bond. Several bands, particularly ν 1 and combinations with ν 1, show pronounced sequence structure due to excited levels of ν 10, the CCC skeletal bend.

  1. A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.

    PubMed

    Qiu, Weibao; Wang, Congzhi; Li, Yongchuan; Zhou, Juan; Yang, Ge; Xiao, Yang; Feng, Ge; Jin, Qiaofeng; Mu, Peitian; Qian, Ming; Zheng, Hairong

    2015-09-01

    Ultrasound elastography is widely used for the non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) is a quantitative method for assessing tissue stiffness. SWI has been demonstrated to be less operator dependent than quasi-static elastography, and has the ability to acquire quantitative elasticity information in contrast with acoustic radiation force impulse (ARFI) imaging. However, traditional SWI implementations cannot acquire two dimensional (2D) quantitative images of the tissue elasticity distribution. This study proposes and evaluates a scanning-mode 2D SWI (s2D-SWI) system. The hardware and image processing algorithms are presented in detail. Programmable devices are used to support flexible control of the system and the image processing algorithms. An analytic signal based cross-correlation method and a Radon transformation based shear wave speed determination method are proposed, which can be implemented using parallel computation. Imaging of tissue mimicking phantoms, and in vitro, and in vivo imaging test are conducted to demonstrate the performance of the proposed system. The s2D-SWI system represents a new choice for the quantitative mapping of tissue elasticity, and has great potential for implementation in commercial ultrasound scanners. PMID:26025508

  2. 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures

    NASA Astrophysics Data System (ADS)

    Roy, Tania; Tosun, Mahmut; Hettick, Mark; Ahn, Geun Ho; Hu, Chenming; Javey, Ali

    2016-02-01

    Two-dimensional materials present a versatile platform for developing steep transistors due to their uniform thickness and sharp band edges. We demonstrate 2D-2D tunneling in a WSe2/SnSe2 van der Waals vertical heterojunction device, where WSe2 is used as the gate controlled p-layer and SnSe2 is the degenerately n-type layer. The van der Waals gap facilitates the regulation of band alignment at the heterojunction, without the necessity of a tunneling barrier. ZrO2 is used as the gate dielectric, allowing the scaling of gate oxide to improve device subthreshold swing. Efficient gate control and clean interfaces yield a subthreshold swing of ˜100 mV/dec for >2 decades of drain current at room temperature, hitherto unobserved in 2D-2D tunneling devices. The subthreshold swing is independent of temperature, which is a clear signature of band-to-band tunneling at the heterojunction. A maximum switching ratio ION/IOFF of 107 is obtained. Negative differential resistance in the forward bias characteristics is observed at 77 K. This work bodes well for the possibilities of two-dimensional materials for the realization of energy-efficient future-generation electronics.

  3. 2-D linear motion system. Innovative technology summary report

    SciTech Connect

    1998-11-01

    The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology

  4. SiC IR emitter design for thermophotovoltaic generators

    NASA Astrophysics Data System (ADS)

    Fraas, Lewis M.; Ferguson, Luke; McCoy, Larry G.; Pernisz, Udo C.

    1996-02-01

    An improved ceramic spine disc burner/emitter for use in a thermophotovoltaic (TPV) generator is described. A columnar infrared (IR) emitter consisting of a stack of silicon carbide (SiC) spine discs provides for both high conductance for the combustion gases and efficient heat transfer from the hot combustion gases to the emitter. Herein, we describe the design, fabrication, and testing of this SiC burner as well as the characterization of the IR spectrum it emits. We note that when the SiC column is surrounded with fused silica heat shields, these heat shields suppress the emitted power beyond 4 microns. Thus, a TPV generator using GaSb photovoltaic cells covered by simple dielectric filters can convert over 30% of the emitted IR radiation to DC electric power.

  5. Measuring the IR solar corona during the 2017 eclipse

    NASA Astrophysics Data System (ADS)

    Bryans, Paul; Hannigan, James; Philip, Judge; Larson, Brandon; Sewell, Scott; McIntire, Lauren

    2016-05-01

    On 21 August 2017 a total solar eclipse will pass across the continental United States, offering a unique opportunity to conduct scientific research of the solar atmosphere. With the light from the Sun eclipsed, the solar corona becomes visible in a way not possible when swamped by the light from the photosphere. The infrared (IR) spectrum of the corona, in particular, is predicted to contain some of the most magnetically sensitive spectral lines. However, no comprehensive survey of this spectral range has been carried out to date. Here, we describe a Fourier Transform Spectrometer, currently under construction at NCAR, to measure the IR spectrum from 2 to 12 microns. We will discuss the operation of the experiment, which will be deployed along the path of totality in Wyoming, and the scientific results we hope to obtain.

  6. Acoustic levitation as an IR spectroscopy sampling technique

    SciTech Connect

    Cronin, J. T.; Brill, T. B.

    1989-02-01

    Acoustic levitation of liquid droplets (/lt/4 mm diameter), bubbles,and solid particles is described as an unusual sampling techniquefor obtaining the infrared spectrum of samples that might be incompatiblewith conventional sample support methods, and for studies of materialsunder extreme conditions. Excellent FT-IR spectra were recorded ofbubbles of a concentrated aqueous nitrate solution, of mineral oil,and of an aqueous surfactant solution. Polymethacrylic acidpacking foam also produced a high-quality spectrum. Large aqueousdroplets and dense solids gave unsatisfactory spectra. The designof the levitator and various spectroscopic considerations are discussed.

  7. MPEG-4-based 2D facial animation for mobile devices

    NASA Astrophysics Data System (ADS)

    Riegel, Thomas B.

    2005-03-01

    The enormous spread of mobile computing devices (e.g. PDA, cellular phone, palmtop, etc.) emphasizes scalable applications, since users like to run their favorite programs on the terminal they operate at that moment. Therefore appliances are of interest, which can be adapted to the hardware realities without loosing a lot of their functionalities. A good example for this is "Facial Animation," which offers an interesting way to achieve such "scalability." By employing MPEG-4, which provides an own profile for facial animation, a solution for low power terminals including mobile phones is demonstrated. From the generic 3D MPEG-4 face a specific 2D head model is derived, which consists primarily of a portrait image superposed by a suited warping mesh and adapted 2D animation rules. Thus the animation process of MPEG-4 need not be changed and standard compliant facial animation parameters can be used to displace the vertices of the mesh and warp the underlying image accordingly.

  8. In search of a 2-dB coding gain

    NASA Technical Reports Server (NTRS)

    Yuen, J. H.; Vo, Q. D.

    1985-01-01

    A recent code search found a (15,1/5), a (14,1/6), and a (15,1/6) convolutional code which, when concatenated with a 10-bit (1023,959) Reed-Solomon (RS) code, achieves a bit-error rate (BER) of 0.000001 at a bit signal-to-noise ratio (SNR) of 0.50 dB, 0.47 dB and 0.42 B, respectively. All of these three codes outperform the Voyager communication system, our baseline, which achieves a BER of 10.000001 at bit SNR of 2.53 db, by more than 2 dB. The 2 dB coding improvement goal was exceeded.

  9. Critical Dynamics in Quenched 2D Atomic Gases

    NASA Astrophysics Data System (ADS)

    Larcher, F.; Dalfovo, F.; Proukakis, N. P.

    2016-05-01

    Non-equilibrium dynamics across phase transitions is a subject of intense investigations in diverse physical systems. One of the key issues concerns the validity of the Kibble-Zurek (KZ) scaling law for spontaneous defect creation. The KZ mechanism has been recently studied in cold atoms experiments. Interesting open questions arise in the case of 2D systems, due to the distinct nature of the Berezinskii-Kosterlitz-Thouless (BKT) transition. Our studies rely on the stochastic Gross-Pitaevskii equation. We perform systematic numerical simulations of the spontaneous emergence and subsequent dynamics of vortices in a uniform 2D Bose gas, which is quenched across the BKT phase transition in a controlled manner, focusing on dynamical scaling and KZ-type effects. By varying the transverse confinement, we also look at the extent to which such features can be seen in current experiments. Financial support from EPSRC and Provincia Autonoma di Trento.

  10. Graphical representations of DNA as 2-D map

    NASA Astrophysics Data System (ADS)

    Randić, Milan

    2004-03-01

    We describe a modification of the compact representation of DNA sequences which transforms the sequence into a 2-D diagram in which the 'spots' have integer coordinates. As a result the accompanying numerical characterization of DNA is quite simple and straightforward. This is an important advantage, particularly when considering DNA sequences having thousands of nucleic bases. The approach starts with the compact representation of DNA based on zigzag spiral template used for placing 'spots' associated with binary codes of the nucleic acids and subsequent suppression of the underlying zigzag curve. As a result, a 2-D map is formed in which all 'spots' have integer coordinates. By using only distances between spots having the same x or the same y coordinate one can construct a 'map profile' using integer arithmetic. The approach is illustrated on DNA sequences of the first exon of human β-globin.

  11. Interpretation of Magnetic Phase Anomalies over 2D Tabular Bodies

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, M.

    2016-05-01

    In this study, phase angle (inverse tangent of the ratio of the horizontal to vertical gradients of magnetic anomalies) profile over two-dimensional tabular bodies has been subjected to detailed analysis for determining the source parameters. Distances between certain characteristic positions on this phase curve are related to the parameters of two-dimensional tabular magnetic sources. In this paper, I have derived the mathematical expressions for these relations. It has been demonstrated here that for locating the origin of the 2D tabular source, knowledge on the type of the model (contact, sheet, dyke, and fault) is not necessary. A procedure is evolved to determine the location, depth, width and magnetization angle of the 2D sources from the mathematical expressions. The method is tested on real field data. The effect of the overlapping bodies is also discussed with two synthetic examples. The interpretation technique is developed for contact, sheet, dike and inclined fault bodies.

  12. Semiregular solid texturing from 2D image exemplars.

    PubMed

    Du, Song-Pei; Hu, Shi-Min; Martin, Ralph R

    2013-03-01

    Solid textures, comprising 3D particles embedded in a matrix in a regular or semiregular pattern, are common in natural and man-made materials, such as brickwork, stone walls, plant cells in a leaf, etc. We present a novel technique for synthesizing such textures, starting from 2D image exemplars which provide cross-sections of the desired volume texture. The shapes and colors of typical particles embedded in the structure are estimated from their 2D cross-sections. Particle positions in the texture images are also used to guide spatial placement of the 3D particles during synthesis of the 3D texture. Our experiments demonstrate that our algorithm can produce higher quality structures than previous approaches; they are both compatible with the input images, and have a plausible 3D nature. PMID:22614330

  13. FPCAS2D user's guide, version 1.0

    NASA Astrophysics Data System (ADS)

    Bakhle, Milind A.

    1994-12-01

    The FPCAS2D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady two-dimensional full potential equation which is solved for a cascade of blades. The structural analysis is based on a two degree-of-freedom rigid typical section model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS2D code. A complete description of the input data is provided in this report. In addition, four test cases, including inputs and outputs, are provided.

  14. 2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  15. 2D FEM Heat Transfer & E&M Field Code

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation.more » By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  16. 2D ice from first principles: structures and phase transitions

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Schusteritsch, Georg; Pickard, Chris J.; Salzmann, Christoph G.; Michaelides, Angelos

    Despite relevance to disparate areas such as cloud microphysics and tribology, major gaps in the understanding of the structures and phase transitions of low-dimensional water ice remain. Here we report a first principles study of confined 2D ice as a function of pressure. We find that at ambient pressure hexagonal and pentagonal monolayer structures are the two lowest enthalpy phases identified. Upon mild compression the pentagonal structure becomes the most stable and persists up to ca. 2 GPa at which point square and rhombic phases are stable. The square phase agrees with recent experimental observations of square ice confined within graphene sheets. We also find a double layer AA stacked square ice phase, which clarifies the difference between experimental observations and earlier force field simulations. This work provides a fresh perspective on 2D confined ice, highlighting the sensitivity of the structures observed to both the confining pressure and width.

  17. 2-D and 3-D computations of curved accelerator magnets

    SciTech Connect

    Turner, L.R.

    1991-01-01

    In order to save computer memory, a long accelerator magnet may be computed by treating the long central region and the end regions separately. The dipole magnets for the injector synchrotron of the Advanced Photon Source (APS), now under construction at Argonne National Laboratory (ANL), employ magnet iron consisting of parallel laminations, stacked with a uniform radius of curvature of 33.379 m. Laplace's equation for the magnetic scalar potential has a different form for a straight magnet (x-y coordinates), a magnet with surfaces curved about a common center (r-{theta} coordinates), and a magnet with parallel laminations like the APS injector dipole. Yet pseudo 2-D computations for the three geometries give basically identical results, even for a much more strongly curved magnet. Hence 2-D (x-y) computations of the central region and 3-D computations of the end regions can be combined to determine the overall magnetic behavior of the magnets. 1 ref., 6 figs.

  18. 2D FEM Heat Transfer & E&M Field Code

    SciTech Connect

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.

  19. MasterChem: cooking 2D-polymers.

    PubMed

    Rodríguez-San-Miguel, D; Amo-Ochoa, P; Zamora, F

    2016-03-18

    2D-polymers are still dominated by graphene and closely related materials such as boron nitride, transition metal sulphides and oxides. However, the rational combination of molecules with suitable design is already showing the high potential of chemistry in this new research field. The aim of this feature article is to illustrate, and provide some perspectives, the current state-of-the-art in the field of synthetic 2D-polymers showing different alternatives to prepare this novel type of polymers based on the rational use of chemistry. This review comprises a brief revision of the essential concepts, the strategies of preparation following the two general approaches, bottom-up and top-down, and a revision of the promising seminal properties showed by some of these nanomaterials. PMID:26790817

  20. Controlling avalanche criticality in 2D nano arrays

    NASA Astrophysics Data System (ADS)

    Zohar, Y. C.; Yochelis, S.; Dahmen, K. A.; Jung, G.; Paltiel, Y.

    2013-05-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments.

  1. A 2D MEMS stage for optical applications

    NASA Astrophysics Data System (ADS)

    Ataman, Caglar; Petremand, Yves; Noell, Wilfried; Ürey, Hakan; Epitaux, Marc; de Rooij, Nico F.

    2006-04-01

    A 2D MEMS platform for a microlens scanner application is reported. The platform is fabricated on an SOI wafer with 50 μm thick device layer. Entire device is defined with a single etching step on the same layer. Through four S-shaped beams, the device is capable of producing nonlinear 2D motion from linear 1D translation of two pairs of comb actuator sets. The device has a clear aperture of 2mm by 2mm, which is hallowed from the backside for micro-optics assembly. In this paper, a numerical device model and its validation via experimental characterization results are presented. Integration of the micro-optical components with the stage is also discussed. Additionally, a new driving scheme to minimize the settling time of the device in DC operation is explored.

  2. A Better 2-D Mechanical Energy Conservation Experiment

    NASA Astrophysics Data System (ADS)

    Paesler, Michael

    2012-02-01

    A variety of simple classical mechanics energy conservation experiments are used in teaching laboratories. Typical one-dimensional (1-D) setups may involve falling balls or oscillating springs. Many of these can be quite satisfying in that students can confirm—within a few percent—that mechanical energy is conserved. Students generally have little trouble identifying discrepancies such as the loss of a few percent of the gravitational potential energy due to air friction encountered by a falling ball. Two-dimensional (2-D) systems can require more sophisticated analysis for higher level laboratories, but such systems often incorporate complicating components that can make the exercise academically incomplete and experimentally less accurate. The following describes a simple 2-D energy conservation experiment based on the popular "Newton's Cradle" toy that allows students to account for nearly all of the mechanical energy in the system in an academically complete analysis.

  3. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Mak, Kin Fai; Shan, Jie

    2016-04-01

    Recent advances in the development of atomically thin layers of van der Waals bonded solids have opened up new possibilities for the exploration of 2D physics as well as for materials for applications. Among them, semiconductor transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se), have bandgaps in the near-infrared to the visible region, in contrast to the zero bandgap of graphene. In the monolayer limit, these materials have been shown to possess direct bandgaps, a property well suited for photonics and optoelectronics applications. Here, we review the electronic and optical properties and the recent progress in applications of 2D semiconductor transition metal dichalcogenides with emphasis on strong excitonic effects, and spin- and valley-dependent properties.

  4. Thermal conductivity measurements in a 2D Yukawa system

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Ivlev, A.; Zhdanov, S.; Morfill, G.; Goree, J.; Piel, A.

    2007-03-01

    Thermal conductivity was measured for a 2D Yukawa system. First, we formed a monolayer suspension of microspheres in a plasma, i.e., a dusty plasma, which is like a colloidal suspension, but with an extremely low volume fraction and a partially-ionized rarefied gas instead of solvent. In the absence of manipulation, the suspension forms a 2D triangular lattice. To melt this lattice and form a liquid, we used a laser-heating method. Two focused laser beams were moved rapidly around in the monolayer. The kinetic temperature of the particles increased with the laser power applied, and above a threshold a melting transition occurred. We used digital video microscopy for direct imaging and particle tracking. The spatial profiles of the particle kinetic temperature were calculated. Using the heat transport equation with an additional term to account for the energy dissipation due to the gas drag, we analyzed the temperature distribution to derive the thermal conductivity.

  5. Fully automated 2D-3D registration and verification.

    PubMed

    Varnavas, Andreas; Carrell, Tom; Penney, Graeme

    2015-12-01

    Clinical application of 2D-3D registration technology often requires a significant amount of human interaction during initialisation and result verification. This is one of the main barriers to more widespread clinical use of this technology. We propose novel techniques for automated initial pose estimation of the 3D data and verification of the registration result, and show how these techniques can be combined to enable fully automated 2D-3D registration, particularly in the case of a vertebra based system. The initialisation method is based on preoperative computation of 2D templates over a wide range of 3D poses. These templates are used to apply the Generalised Hough Transform to the intraoperative 2D image and the sought 3D pose is selected with the combined use of the generated accumulator arrays and a Gradient Difference Similarity Measure. On the verification side, two algorithms are proposed: one using normalised features based on the similarity value and the other based on the pose agreement between multiple vertebra based registrations. The proposed methods are employed here for CT to fluoroscopy registration and are trained and tested with data from 31 clinical procedures with 417 low dose, i.e. low quality, high noise interventional fluoroscopy images. When similarity value based verification is used, the fully automated system achieves a 95.73% correct registration rate, whereas a no registration result is produced for the remaining 4.27% of cases (i.e. incorrect registration rate is 0%). The system also automatically detects input images outside its operating range. PMID:26387052

  6. A discrete simulation of 2-D fluid flow on TERASYS

    SciTech Connect

    Mullins, P.G.; Krolak, P.D.

    1995-12-01

    A discrete simulation of two-dimensional (2-D) fluid flow, on a recently designed novel architecture called TERASYS is presented. The simulation uses a cellular automaton approach, implemented in a new language called data-parallel bit C (dbC). A performance comparison between our implementation on TERASYS and an implementation on the Connection Machine is discussed. We comment briefly on the suitability of the TERASYS system for modeling fluid flow using cellular automata.

  7. An inverse design method for 2D airfoil

    NASA Astrophysics Data System (ADS)

    Liang, Zhi-Yong; Cui, Peng; Zhang, Gen-Bao

    2010-03-01

    The computational method for aerodynamic design of aircraft is applied more universally than before, in which the design of an airfoil is a hot problem. The forward problem is discussed by most relative papers, but inverse method is more useful in practical designs. In this paper, the inverse design of 2D airfoil was investigated. A finite element method based on the variational principle was used for carrying out. Through the simulation, it was shown that the method was fit for the design.

  8. Report of the 1988 2-D Intercomparison Workshop, chapter 3

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Brasseur, Guy; Soloman, Susan; Guthrie, Paul D.; Garcia, Rolando; Yung, Yuk L.; Gray, Lesley J.; Tung, K. K.; Ko, Malcolm K. W.; Isaken, Ivar

    1989-01-01

    Several factors contribute to the errors encountered. With the exception of the line-by-line model, all of the models employ simplifying assumptions that place fundamental limits on their accuracy and range of validity. For example, all 2-D modeling groups use the diffusivity factor approximation. This approximation produces little error in tropospheric H2O and CO2 cooling rates, but can produce significant errors in CO2 and O3 cooling rates at the stratopause. All models suffer from fundamental uncertainties in shapes and strengths of spectral lines. Thermal flux algorithms being used in 2-D tracer tranport models produce cooling rates that differ by as much as 40 percent for the same input model atmosphere. Disagreements of this magnitude are important since the thermal cooling rates must be subtracted from the almost-equal solar heating rates to derive the net radiative heating rates and the 2-D model diabatic circulation. For much of the annual cycle, the net radiative heating rates are comparable in magnitude to the cooling rate differences described. Many of the models underestimate the cooling rates in the middle and lower stratosphere. The consequences of these errors for the net heating rates and the diabatic circulation will depend on their meridional structure, which was not tested here. Other models underestimate the cooling near 1 mbar. Suchs errors pose potential problems for future interactive ozone assessment studies, since they could produce artificially-high temperatures and increased O3 destruction at these levels. These concerns suggest that a great deal of work is needed to improve the performance of thermal cooling rate algorithms used in the 2-D tracer transport models.

  9. Statistical analysis of quiet stance sway in 2-D

    PubMed Central

    DiZio, Paul; Lackner, James R.

    2014-01-01

    Subjects exposed to a rotating environment that perturbs their postural sway show adaptive changes in their voluntary spatially directed postural motion to restore accurate movement paths but do not exhibit any obvious learning during passive stance. We have found, however, that a variable known to characterize the degree of stochasticity in quiet stance can also reveal subtle learning phenomena in passive stance. We extended Chow and Collins (Phys Rev E 52(1):909–912, 1995) one-dimensional pinned-polymer model (PPM) to two dimensions (2-D) and then evaluated the model’s ability to make analytical predictions for 2-D quiet stance. To test the model, we tracked center of mass and centers of foot pressures, and compared and contrasted stance sway for the anterior–posterior versus medio-lateral directions before, during, and after exposure to rotation at 10 rpm. Sway of the body during rotation generated Coriolis forces that acted perpendicular to the direction of sway. We found significant adaptive changes for three characteristic features of the mean square displacement (MSD) function: the exponent of the power law defined at short time scales, the proportionality constant of the power law, and the saturation plateau value defined at longer time scales. The exponent of the power law of MSD at a short time scale lies within the bounds predicted by the 2-D PPM. The change in MSD during exposure to rotation also had a power-law exponent in the range predicted by the theoretical model. We discuss the Coriolis force paradigm for studying postural and movement control and the applicability of the PPM model in 2-D for studying postural adaptation. PMID:24477760

  10. Energy level transitions of gas in a 2D nanopore

    SciTech Connect

    Grinyaev, Yurii V.; Chertova, Nadezhda V.; Psakhie, Sergei G.

    2015-10-27

    An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters.

  11. 2D imaging of functional structures in perfused pig heart

    NASA Astrophysics Data System (ADS)

    Kessler, Manfred D.; Cristea, Paul D.; Hiller, Michael; Trinks, Tobias

    2002-06-01

    In 2000 by 2D-imaging we were able for the first time to visualize in subcellular space functional structures of myocardium. For these experiments we used hemoglobin-free perfused pig hearts in our lab. Step by step we learned to understand the meaning of subcellular structures. Principally, the experiment revealed that in subcellular space very fast changes of light scattering can occur. Furthermore, coefficients of different parameters were determined on the basis of multicomponent system theory.

  12. Multicolor symbology for remotely scannable 2D barcodes

    NASA Astrophysics Data System (ADS)

    Wissner-Gross, Alexander D.; Sullivan, Timothy M.

    2008-03-01

    There has been much recent interest in mobile systems for augmented reality. However, existing visual tagging solutions are not robust at the low resolutions typical of current camera phones or at the low solid angles needed for "across-the-room" reality augmentation. In this paper, we propose a new 2D barcode symbology that uses multiple colors in order to address these challenges. We present preliminary results, showing the detection of example barcodes in this scheme over a range of angles.

  13. 2 1/2 -D compressible reconnection model

    NASA Astrophysics Data System (ADS)

    Skender, M.; Vršnak, B.

    The exact solution of the jump conditions on the RD/SMS discontinuity system in a two-and-half-dimensional (2 1/2 -D) symmetrical reconnection model enables one to analyse the outflowing jet characteristics in dependence on the inflow velocity, and to follow changes in transition to the two-dimensional model. Implications arising from the exact solution and its relevance for solar flares are discussed.

  14. CBEAM. 2-D: a two-dimensional beam field code

    SciTech Connect

    Dreyer, K.A.

    1985-05-01

    CBEAM.2-D is a two-dimensional solution of Maxwell's equations for the case of an electron beam propagating through an air medium. Solutions are performed in the beam-retarded time frame. Conductivity is calculated self-consistently with field equations, allowing sophisticated dependence of plasma parameters to be handled. A unique feature of the code is that it is implemented on an IBM PC microcomputer in the BASIC language. Consequently, it should be available to a wide audience.

  15. Universal Fabrication of 2D Electron Systems in Functional Oxides.

    PubMed

    Rödel, Tobias Chris; Fortuna, Franck; Sengupta, Shamashis; Frantzeskakis, Emmanouil; Fèvre, Patrick Le; Bertran, François; Mercey, Bernard; Matzen, Sylvia; Agnus, Guillaume; Maroutian, Thomas; Lecoeur, Philippe; Santander-Syro, Andrés Felipe

    2016-03-01

    2D electron systems (2DESs) in functional oxides are promising for applications, but their fabrication and use, essentially limited to SrTiO3 -based heterostructures, are hampered by the need for growing complex oxide overlayers thicker than 2 nm using evolved techniques. It is demonstrated that thermal deposition of a monolayer of an elementary reducing agent suffices to create 2DESs in numerous oxides. PMID:26753522

  16. Statistical analysis of quiet stance sway in 2-D.

    PubMed

    Bakshi, Avijit; DiZio, Paul; Lackner, James R

    2014-04-01

    Subjects exposed to a rotating environment that perturbs their postural sway show adaptive changes in their voluntary spatially directed postural motion to restore accurate movement paths but do not exhibit any obvious learning during passive stance. We have found, however, that a variable known to characterize the degree of stochasticity in quiet stance can also reveal subtle learning phenomena in passive stance. We extended Chow and Collins (Phys Rev E 52(1):909-912, 1995) one-dimensional pinned-polymer model (PPM) to two dimensions (2-D) and then evaluated the model's ability to make analytical predictions for 2-D quiet stance. To test the model, we tracked center of mass and centers of foot pressures, and compared and contrasted stance sway for the anterior-posterior versus medio-lateral directions before, during, and after exposure to rotation at 10 rpm. Sway of the body during rotation generated Coriolis forces that acted perpendicular to the direction of sway. We found significant adaptive changes for three characteristic features of the mean square displacement (MSD) function: the exponent of the power law defined at short time scales, the proportionality constant of the power law, and the saturation plateau value defined at longer time scales. The exponent of the power law of MSD at a short time scale lies within the bounds predicted by the 2-D PPM. The change in MSD during exposure to rotation also had a power-law exponent in the range predicted by the theoretical model. We discuss the Coriolis force paradigm for studying postural and movement control and the applicability of the PPM model in 2-D for studying postural adaptation. PMID:24477760

  17. Valley and electric photocurrents in 2D silicon and graphene

    SciTech Connect

    Tarasenko, S. A.; Ivchenko, E. L.; Olbrich, P.; Ganichev, S. D.

    2013-12-04

    We show that the optical excitation of multi-valley systems leads to valley currents which depend on the light polarization. The net electric current, determined by the vector sum of single-valley contributions, vanishes for some peculiar distributions of carriers in the valley and momentum spaces forming a pure valley current. We report on the study of this phenomenon, both experimental and theoretical, for graphene and 2D electron channels on the silicon surface.

  18. Baby universes and fractal structure of 2d gravity

    NASA Astrophysics Data System (ADS)

    Thorleifsson, Gudmar

    1994-04-01

    We extract the string susceptibility exponent γstr by measuring the distribution of baby universes on surfaces in the case of various matter fields coupled to discrete 2d quantum gravity. For c <= 1 the results are in good agreement with the KPZ-formula, if logarithmic corrections are taken into account for c = 1. For c > 1 it is not as clear how to extract γstr but universality with respect to c is observed in the fractal structure.

  19. An Intercomparison of 2-D Models Within a Common Framework

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.; Scott, Courtney J.; Jackman, Charles H.; Fleming, Eric L.; Considine, David B.; Kinnison, Douglas E.; Connell, Peter S.; Rotman, Douglas A.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    A model intercomparison among the Atmospheric and Environmental Research (AER) 2-D model, the Goddard Space Flight Center (GSFC) 2-D model, and the Lawrence Livermore National Laboratory 2-D model allows us to separate differences due to model transport from those due to the model's chemical formulation. This is accomplished by constructing two hybrid models incorporating the transport parameters of the GSFC and LLNL models within the AER model framework. By comparing the results from the native models (AER and e.g. GSFC) with those from the hybrid model (e.g. AER chemistry with GSFC transport), differences due to chemistry and transport can be identified. For the analysis, we examined an inert tracer whose emission pattern is based on emission from a High Speed Civil Transport (HSCT) fleet; distributions of trace species in the 2015 atmosphere; and the response of stratospheric ozone to an HSCT fleet. Differences in NO(y) in the upper stratosphere are found between models with identical transport, implying different model representations of atmospheric chemical processes. The response of O3 concentration to HSCT aircraft emissions differs in the models from both transport-dominated differences in the HSCT-induced perturbations of H2O and NO(y) as well as from differences in the model represent at ions of O3 chemical processes. The model formulations of cold polar processes are found to be the most significant factor in creating large differences in the calculated ozone perturbations

  20. Resolving 2D Amorphous Materials with Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Burson, Kristen M.; Buechner, Christin; Lewandowski, Adrian; Heyde, Markus; Freund, Hans-Joachim

    Novel two-dimensional (2D) materials have garnered significant scientific interest due to their potential technological applications. Alongside the emphasis on crystalline materials, such as graphene and hexagonal BN, a new class of 2D amorphous materials must be pursued. For amorphous materials, a detailed understanding of the complex structure is necessary. Here we present a structural study of 2D bilayer silica on Ru(0001), an insulating material which is weakly coupled to the substrate. Atomic structure has been determined with a dual mode atomic force microscopy (AFM) and scanning tunneling microscopy (STM) sensor in ultra-high vacuum (UHV) at low temperatures, revealing a network of different ring sizes. Liquid AFM measurements with sub-nanometer resolution bridge the gap between clean UHV conditions and the environments that many material applications demand. Samples are grown and characterized in vacuum and subsequently transferred to the liquid AFM. Notably, the key structural features observed, namely nanoscale ring networks and larger holes to the substrate, show strong quantitative agreement between the liquid and UHV microscopy measurements. This provides direct evidence for the structural stability of these silica films for nanoelectronics and other applications. KMB acknowledges support from the Alexander von Humboldt Foundation.